Comparison of DAC and MONACO DSMC Codes with Flat Plate Simulation
NASA Technical Reports Server (NTRS)
Padilla, Jose F.
2010-01-01
Various implementations of the direct simulation Monte Carlo (DSMC) method exist in academia, government and industry. By comparing implementations, deficiencies and merits of each can be discovered. This document reports comparisons between DSMC Analysis Code (DAC) and MONACO. DAC is NASA's standard DSMC production code and MONACO is a research DSMC code developed in academia. These codes have various differences; in particular, they employ distinct computational grid definitions. In this study, DAC and MONACO are compared by having each simulate a blunted flat plate wind tunnel test, using an identical volume mesh. Simulation expense and DSMC metrics are compared. In addition, flow results are compared with available laboratory data. Overall, this study revealed that both codes, excluding grid adaptation, performed similarly. For parallel processing, DAC was generally more efficient. As expected, code accuracy was mainly dependent on physical models employed.
Object-Oriented/Data-Oriented Design of a Direct Simulation Monte Carlo Algorithm
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2014-01-01
Over the past decade, there has been much progress towards improved phenomenological modeling and algorithmic updates for the direct simulation Monte Carlo (DSMC) method, which provides a probabilistic physical simulation of gas Rows. These improvements have largely been based on the work of the originator of the DSMC method, Graeme Bird. Of primary importance are improved chemistry, internal energy, and physics modeling and a reduction in time to solution. These allow for an expanded range of possible solutions In altitude and velocity space. NASA's current production code, the DSMC Analysis Code (DAC), is well-established and based on Bird's 1994 algorithms written in Fortran 77 and has proven difficult to upgrade. A new DSMC code is being developed in the C++ programming language using object-oriented and data-oriented design paradigms to facilitate the inclusion of the recent improvements and future development activities. The development efforts on the new code, the Multiphysics Algorithm with Particles (MAP), are described, and performance comparisons are made with DAC.
dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver
NASA Astrophysics Data System (ADS)
White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.
2018-03-01
dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.
Pressure measurements in a low-density nozzle plume for code verification
NASA Technical Reports Server (NTRS)
Penko, Paul F.; Boyd, Iain D.; Meissner, Dana L.; Dewitt, Kenneth J.
1991-01-01
Measurements of Pitot pressure were made in the exit plane and plume of a low-density, nitrogen nozzle flow. Two numerical computer codes were used to analyze the flow, including one based on continuum theory using the explicit MacCormack method, and the other on kinetic theory using the method of direct-simulation Monte Carlo (DSMC). The continuum analysis was carried to the nozzle exit plane and the results were compared to the measurements. The DSMC analysis was extended into the plume of the nozzle flow and the results were compared with measurements at the exit plane and axial stations 12, 24 and 36 mm into the near-field plume. Two experimental apparatus were used that differed in design and gave slightly different profiles of pressure measurements. The DSMC method compared well with the measurements from each apparatus at all axial stations and provided a more accurate prediction of the flow than the continuum method, verifying the validity of DSMC for such calculations.
Investigation on a coupled CFD/DSMC method for continuum-rarefied flows
NASA Astrophysics Data System (ADS)
Tang, Zhenyu; He, Bijiao; Cai, Guobiao
2012-11-01
The purpose of the present work is to investigate the coupled CFD/DSMC method using the existing CFD and DSMC codes developed by the authors. The interface between the continuum and particle regions is determined by the gradient-length local Knudsen number. A coupling scheme combining both state-based and flux-based coupling methods is proposed in the current study. Overlapping grids are established between the different grid systems of CFD and DSMC codes. A hypersonic flow over a 2D cylinder has been simulated using the present coupled method. Comparison has been made between the results obtained from both methods, which shows that the coupled CFD/DSMC method can achieve the same precision as the pure DSMC method and obtain higher computational efficiency.
NASA Technical Reports Server (NTRS)
Macrossan, M. N.
1995-01-01
The direct simulation Monte Carlo (DSMC) method is the established technique for the simulation of rarefied gas flows. In some flows of engineering interest, such as occur for aero-braking spacecraft in the upper atmosphere, DSMC can become prohibitively expensive in CPU time because some regions of the flow, particularly on the windward side of blunt bodies, become collision dominated. As an alternative to using a hybrid DSMC and continuum gas solver (Euler or Navier-Stokes solver) this work is aimed at making the particle simulation method efficient in the high density regions of the flow. A high density, infinite collision rate limit of DSMC, the Equilibrium Particle Simulation method (EPSM) was proposed some 15 years ago. EPSM is developed here for the flow of a gas consisting of many different species of molecules and is shown to be computationally efficient (compared to DSMC) for high collision rate flows. It thus offers great potential as part of a hybrid DSMC/EPSM code which could handle flows in the transition regime between rarefied gas flows and fully continuum flows. As a first step towards this goal a pure EPSM code is described. The next step of combining DSMC and EPSM is not attempted here but should be straightforward. EPSM and DSMC are applied to Taylor-Couette flow with Kn = 0.02 and 0.0133 and S(omega) = 3). Toroidal vortices develop for both methods but some differences are found, as might be expected for the given flow conditions. EPSM appears to be less sensitive to the sequence of random numbers used in the simulation than is DSMC and may also be more dissipative. The question of the origin and the magnitude of the dissipation in EPSM is addressed. It is suggested that this analysis is also relevant to DSMC when the usual accuracy requirements on the cell size and decoupling time step are relaxed in the interests of computational efficiency.
Hypersonic Shock Interactions About a 25 deg/65 deg Sharp Double Cone
NASA Technical Reports Server (NTRS)
Moss, James N.; LeBeau, Gerald J.; Glass, Christopher E.
2002-01-01
This paper presents the results of a numerical study of shock interactions resulting from Mach 10 air flow about a sharp double cone. Computations are made with the direct simulation Monte Carlo (DSMC) method by using two different codes: the G2 code of Bird and the DAC (DSMC Analysis Code) code of LeBeau. The flow conditions are the pretest nominal free-stream conditions specified for the ONERA R5Ch low-density wind tunnel. The focus is on the sensitivity of the interactions to grid resolution while providing information concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.
DSMC Shock Simulation of Saturn Entry Probe Conditions
NASA Technical Reports Server (NTRS)
Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.
2016-01-01
This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 kms shock waves are obtained at 0.2 and 0.1 Torr respectively and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.
DSMC Shock Simulation of Saturn Entry Probe Conditions
NASA Technical Reports Server (NTRS)
Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron M.; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.
2016-01-01
This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at the NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 km/s shock waves are obtained at 0.2 and 0.1 Torr, respectively, and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.
A DSMC Study of Low Pressure Argon Discharge
NASA Astrophysics Data System (ADS)
Hash, David; Meyyappan, M.
1997-10-01
Work toward a self-consistent plasma simulation using the DSMC method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due the availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar^+, Ar^*, Ar_2, and e where Ar^* is a metastable.
Hypersonic simulations using open-source CFD and DSMC solvers
NASA Astrophysics Data System (ADS)
Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.
2016-11-01
Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.
Particle kinetic simulation of high altitude hypervelocity flight
NASA Technical Reports Server (NTRS)
Haas, Brian L.
1993-01-01
In this grant period, the focus has been on enhancement and application of the direct simulation Monte Carlo (DSMC) particle method for computing hypersonic flows of re-entry vehicles. Enhancement efforts dealt with modeling gas-gas interactions for thermal non-equilibrium relaxation processes and gas-surface interactions for prediction of vehicle surface temperatures. Both are important for application to problems of engineering interest. The code was employed in a parametric study to improve future applications, and in simulations of aeropass maneuvers in support of the Magellan mission. Detailed comparisons between continuum models for internal energy relaxation and DSMC models reveals that several discrepancies exist. These include definitions of relaxation parameters and the methodologies for implementing them in DSMC codes. These issues were clarified and all differences were rectified in a paper (Appendix A) submitted to Physics of Fluids A, featuring several key figures in the DSMC community as co-authors and B. Haas as first author. This material will be presented at the Fluid Dynamics meeting of the American Physical Society on November 21, 1993. The aerodynamics of space vehicles in highly rarefied flows are very sensitive to the vehicle surface temperatures. Rather than require prescribed temperature estimates for spacecraft as is typically done in DSMC methods, a new technique was developed which couples the dynamic surface heat transfer characteristics into the DSMC flow simulation code to compute surface temperatures directly. This model, when applied to thin planar bodies such as solar panels, was described in AIAA Paper No. 93-2765 (Appendix B) and was presented at the Thermophysics Conference in July 1993. The paper has been submitted to the Journal of Thermophysics and Heat Transfer. Application of the DSMC method to problems of practical interest requires a trade off between solution accuracy and computational expense and limitations. A parametric study was performed and reported in AIAA Paper No. 93-2806 (Appendix C) which assessed the accuracy penalties associated with simulations of varying grid resolution and flow domain size. The paper was also presented at the Thermophysics Conference and will be submitted to the journal shortly. Finally, the DSMC code was employed to assess the pitch, yaw, and roll aerodynamics of the Magellan spacecraft during entry into the Venus atmosphere at off-design attitudes. This work was in support of the Magellan aerobraking maneuver of May 25-Aug. 3, 1993. Furthermore, analysis of the roll characteristics of the configuration with canted solar panels was performed in support of the proposed 'Windmill' experiment. Results were reported in AIAA Paper No. 93-3676 (Appendix D) presented at the Atmospheric Flight Mechanics Conference in August 1993, and were submitted to Journal of Spacecraft and Rockets.
Automatic mesh refinement and parallel load balancing for Fokker-Planck-DSMC algorithm
NASA Astrophysics Data System (ADS)
Küchlin, Stephan; Jenny, Patrick
2018-06-01
Recently, a parallel Fokker-Planck-DSMC algorithm for rarefied gas flow simulation in complex domains at all Knudsen numbers was developed by the authors. Fokker-Planck-DSMC (FP-DSMC) is an augmentation of the classical DSMC algorithm, which mitigates the near-continuum deficiencies in terms of computational cost of pure DSMC. At each time step, based on a local Knudsen number criterion, the discrete DSMC collision operator is dynamically switched to the Fokker-Planck operator, which is based on the integration of continuous stochastic processes in time, and has fixed computational cost per particle, rather than per collision. In this contribution, we present an extension of the previous implementation with automatic local mesh refinement and parallel load-balancing. In particular, we show how the properties of discrete approximations to space-filling curves enable an efficient implementation. Exemplary numerical studies highlight the capabilities of the new code.
Axisymmetric Plume Simulations with NASA's DSMC Analysis Code
NASA Technical Reports Server (NTRS)
Stewart, B. D.; Lumpkin, F. E., III
2012-01-01
A comparison of axisymmetric Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) results to analytic and Computational Fluid Dynamics (CFD) solutions in the near continuum regime and to 3D DAC solutions in the rarefied regime for expansion plumes into a vacuum is performed to investigate the validity of the newest DAC axisymmetric implementation. This new implementation, based on the standard DSMC axisymmetric approach where the representative molecules are allowed to move in all three dimensions but are rotated back to the plane of symmetry by the end of the move step, has been fully integrated into the 3D-based DAC code and therefore retains all of DAC s features, such as being able to compute flow over complex geometries and to model chemistry. Axisymmetric DAC results for a spherically symmetric isentropic expansion are in very good agreement with a source flow analytic solution in the continuum regime and show departure from equilibrium downstream of the estimated breakdown location. Axisymmetric density contours also compare favorably against CFD results for the R1E thruster while temperature contours depart from equilibrium very rapidly away from the estimated breakdown surface. Finally, axisymmetric and 3D DAC results are in very good agreement over the entire plume region and, as expected, this new axisymmetric implementation shows a significant reduction in computer resources required to achieve accurate simulations for this problem over the 3D simulations.
NASA Technical Reports Server (NTRS)
Campbell, David; Wysong, Ingrid; Kaplan, Carolyn; Mott, David; Wadsworth, Dean; VanGilder, Douglas
2000-01-01
An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional (SUPREM) Direct Simulation Monte Carlo (DSMC) code for the DoD user community under the High Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software Support Initiative (CHSSI). This paper will introduce the JANNAF Exhaust Plume community to this three-year development effort and present the overall goals, schedule, and current status of this new code.
Particle kinetic simulation of high altitude hypervelocity flight
NASA Technical Reports Server (NTRS)
Boyd, Iain; Haas, Brian L.
1994-01-01
Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration-dissociation recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.
Study of Plume Impingement Effects in the Lunar Lander Environment
NASA Technical Reports Server (NTRS)
Marichalar, Jeremiah; Prisbell, A.; Lumpkin, F.; LeBeau, G.
2010-01-01
Plume impingement effects from the descent and ascent engine firings of the Lunar Lander were analyzed in support of the Lunar Architecture Team under the Constellation Program. The descent stage analysis was performed to obtain shear and pressure forces on the lunar surface as well as velocity and density profiles in the flow field in an effort to understand lunar soil erosion and ejected soil impact damage which was analyzed as part of a separate study. A CFD/DSMC decoupled methodology was used with the Bird continuum breakdown parameter to distinguish the continuum flow from the rarefied flow. The ascent stage analysis was performed to ascertain the forces and moments acting on the Lunar Lander Ascent Module due to the firing of the main engine on take-off. The Reacting and Multiphase Program (RAMP) method of characteristics (MOC) code was used to model the continuum region of the nozzle plume, and the Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) was used to model the impingement results in the rarefied region. The ascent module (AM) was analyzed for various pitch and yaw rotations and for various heights in relation to the descent module (DM). For the ascent stage analysis, the plume inflow boundary was located near the nozzle exit plane in a region where the flow number density was large enough to make the DSMC solution computationally expensive. Therefore, a scaling coefficient was used to make the DSMC solution more computationally manageable. An analysis of the effectiveness of this scaling technique was performed by investigating various scaling parameters for a single height and rotation of the AM. Because the inflow boundary was near the nozzle exit plane, another analysis was performed investigating three different inflow contours to determine the effects of the flow expansion around the nozzle lip on the final plume impingement results.
NASA Technical Reports Server (NTRS)
Borner, A.; Swaminathan-Gopalan, K.; Stephani, Kelly; Poovathingal, S.; Murray, V. J.; Minton, T. K.; Panerai, F.; Mansour, N. N.
2017-01-01
A collaborative effort between the University of Illinois at Urbana-Champaign (UIUC), NASA Ames Research Center (ARC) and Montana State University (MSU) succeeded at developing a new finite-rate carbon oxidation model from molecular beam scattering experiments on vitreous carbon (VC). We now aim to use the direct simulation Monte Carlo (DSMC) code SPARTA to apply the model to each fiber of the porous fibrous Thermal Protection Systems (TPS) material FiberForm (FF). The detailed micro-structure of FF was obtained from X-ray micro-tomography and then used in DSMC. Both experiments and simulations show that the CO/O products ratio increased at all temperatures from VC to FF. We postulate this is due to the larger number of collisions an O atom encounters inside the porous FF material compared to the flat surface of VC. For the simulations, we particularly focused on the lowest and highest temperatures studied experimentally, 1023 K and 1823 K, and found good agreement between the finite-rate DSMC simulations and experiments.
NASA Technical Reports Server (NTRS)
Prisbell, Andrew; Marichalar, J.; Lumpkin, F.; LeBeau, G.
2010-01-01
Plume impingement effects on the Orion Crew Service Module (CSM) were analyzed for various dual Reaction Control System (RCS) engine firings and various configurations of the solar arrays. The study was performed using a decoupled computational fluid dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) approach. This approach included a single jet plume solution for the R1E RCS engine computed with the General Aerodynamic Simulation Program (GASP) CFD code. The CFD solution was used to create an inflow surface for the DSMC solution based on the Bird continuum breakdown parameter. The DSMC solution was then used to model the dual RCS plume impingement effects on the entire CSM geometry with deployed solar arrays. However, because the continuum breakdown parameter of 0.5 could not be achieved due to geometrical constraints and because high resolution in the plume shock interaction region is desired, a focused DSMC simulation modeling only the plumes and the shock interaction region was performed. This high resolution intermediate solution was then used as the inflow to the larger DSMC solution to obtain plume impingement heating, forces, and moments on the CSM and the solar arrays for a total of 21 cases that were analyzed. The results of these simulations were used to populate the Orion CSM Aerothermal Database.
Analysis of Effectiveness of Phoenix Entry Reaction Control System
NASA Technical Reports Server (NTRS)
Dyakonov, Artem A.; Glass, Christopher E.; Desai, Prasun, N.; VanNorman, John W.
2008-01-01
Interaction between the external flowfield and the reaction control system (RCS) thruster plumes of the Phoenix capsule during entry has been investigated. The analysis covered rarefied, transitional, hypersonic and supersonic flight regimes. Performance of pitch, yaw and roll control authority channels was evaluated, with specific emphasis on the yaw channel due to its low nominal yaw control authority. Because Phoenix had already been constructed and its RCS could not be modified before flight, an assessment of RCS efficacy along the trajectory was needed to determine possible issues and to make necessary software changes. Effectiveness of the system at various regimes was evaluated using a hybrid DSMC-CFD technique, based on DSMC Analysis Code (DAC) code and General Aerodynamic Simulation Program (GASP), the LAURA (Langley Aerothermal Upwind Relaxation Algorithm) code, and the FUN3D (Fully Unstructured 3D) code. Results of the analysis at hypersonic and supersonic conditions suggest a significant aero-RCS interference which reduced the efficacy of the thrusters and could likely produce control reversal. Very little aero-RCS interference was predicted in rarefied and transitional regimes. A recommendation was made to the project to widen controller system deadbands to minimize (if not eliminate) the use of RCS thrusters through hypersonic and supersonic flight regimes, where their performance would be uncertain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Womble, David E.
Unified collision operator demonstrated for both radiation transport and PIC-DSMC. A side-by-side comparison between the DSMC method and the radiation transport method was conducted for photon attenuation in the atmosphere over 2 kilometers in physical distance with a reduction of photon density of six orders of magnitude. Both DSMC and traditional radiation transport agreed with theory to two digits. This indicates that PIC-DSMC operators can be unified with the radiation transport collision operators into a single code base and that physics kernels can remain unique to the actual collision pairs. This simulation example provides an initial validation of the unifiedmore » collision theory approach that will later be implemented into EMPIRE.« less
DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments
NASA Technical Reports Server (NTRS)
Moss, James N.; Bird, Graeme A.
2004-01-01
The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolutions, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.
DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments
NASA Technical Reports Server (NTRS)
Moss, James N.; Bird, Graeme A.
2004-01-01
The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolution, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.
AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE
NASA Technical Reports Server (NTRS)
Liever, P. A.; Sheta, E. F.; Habchi, S. D.
2006-01-01
A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.
DSMC simulation of the interaction between rarefied free jets
NASA Technical Reports Server (NTRS)
Dagum, Leonardo; Zhu, S. H. K.
1993-01-01
This paper presents a direct simulation Monte Carlo (DSMC) calculation of two interacting free jets exhausting into vacuum. The computed flow field is compared against available experimental data and shows excellent agreement everywhere except in the very near field (less than one orifice diameter downstream of the jet exhaust plane). The lack of agreement in this region is attributed to having assumed an inviscid boundary condition for the orifice lip. The results serve both to validate the DSMC code for a very complex, three dimensional non-equilibrium flow field, and to provide some insight as to the complicated nature of this flow.
DREAM: An Efficient Methodology for DSMC Simulation of Unsteady Processes
NASA Astrophysics Data System (ADS)
Cave, H. M.; Jermy, M. C.; Tseng, K. C.; Wu, J. S.
2008-12-01
A technique called the DSMC Rapid Ensemble Averaging Method (DREAM) for reducing the statistical scatter in the output from unsteady DSMC simulations is introduced. During post-processing by DREAM, the DSMC algorithm is re-run multiple times over a short period before the temporal point of interest thus building up a combination of time- and ensemble-averaged sampling data. The particle data is regenerated several mean collision times before the output time using the particle data generated during the original DSMC run. This methodology conserves the original phase space data from the DSMC run and so is suitable for reducing the statistical scatter in highly non-equilibrium flows. In this paper, the DREAM-II method is investigated and verified in detail. Propagating shock waves at high Mach numbers (Mach 8 and 12) are simulated using a parallel DSMC code (PDSC) and then post-processed using DREAM. The ability of DREAM to obtain the correct particle velocity distribution in the shock structure is demonstrated and the reduction of statistical scatter in the output macroscopic properties is measured. DREAM is also used to reduce the statistical scatter in the results from the interaction of a Mach 4 shock with a square cavity and for the interaction of a Mach 12 shock on a wedge in a channel.
DSMC Simulations of Hypersonic Flows and Comparison With Experiments
NASA Technical Reports Server (NTRS)
Moss, James N.; Bird, Graeme A.; Markelov, Gennady N.
2004-01-01
This paper presents computational results obtained with the direct simulation Monte Carlo (DSMC) method for several biconic test cases in which shock interactions and flow separation-reattachment are key features of the flow. Recent ground-based experiments have been performed for several biconic configurations, and surface heating rate and pressure measurements have been proposed for code validation studies. The present focus is to expand on the current validating activities for a relatively new DSMC code called DS2V that Bird (second author) has developed. Comparisons with experiments and other computations help clarify the agreement currently being achieved between computations and experiments and to identify the range of measurement variability of the proposed validation data when benchmarked with respect to the current computations. For the test cases with significant vibrational nonequilibrium, the effect of the vibrational energy surface accommodation on heating and other quantities is demonstrated.
DSMC Studies of the Richtmyer-Meshkov Instability
NASA Astrophysics Data System (ADS)
Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.
2014-11-01
A new exascale-capable Direct Simulation Monte Carlo (DSMC) code, SPARTA, developed to be highly efficient on massively parallel computers, has extended the applicability of DSMC to challenging, transient three-dimensional problems in the continuum regime. Because DSMC inherently accounts for compressibility, viscosity, and diffusivity, it has the potential to improve the understanding of the mechanisms responsible for hydrodynamic instabilities. Here, the Richtmyer-Meshkov instability at the interface between two gases was studied parametrically using SPARTA. Simulations performed on Sequoia, an IBM Blue Gene/Q supercomputer at Lawrence Livermore National Laboratory, are used to investigate various Atwood numbers (0.33-0.94) and Mach numbers (1.2-12.0) for two-dimensional and three-dimensional perturbations. Comparisons with theoretical predictions demonstrate that DSMC accurately predicts the early-time growth of the instability. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Experimental validation of a direct simulation by Monte Carlo molecular gas flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shufflebotham, P.K.; Bartel, T.J.; Berney, B.
1995-07-01
The Sandia direct simulation Monte Carlo (DSMC) molecular/transition gas flow simulation code has significant potential as a computer-aided design tool for the design of vacuum systems in low pressure plasma processing equipment. The purpose of this work was to verify the accuracy of this code through direct comparison to experiment. To test the DSMC model, a fully instrumented, axisymmetric vacuum test cell was constructed, and spatially resolved pressure measurements made in N{sub 2} at flows from 50 to 500 sccm. In a ``blind`` test, the DSMC code was used to model the experimental conditions directly, and the results compared tomore » the measurements. It was found that the model predicted all the experimental findings to a high degree of accuracy. Only one modeling issue was uncovered. The axisymmetric model showed localized low pressure spots along the axis next to surfaces. Although this artifact did not significantly alter the accuracy of the results, it did add noise to the axial data. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less
State-to-state models of vibrational relaxation in Direct Simulation Monte Carlo (DSMC)
NASA Astrophysics Data System (ADS)
Oblapenko, G. P.; Kashkovsky, A. V.; Bondar, Ye A.
2017-02-01
In the present work, the application of state-to-state models of vibrational energy exchanges to the Direct Simulation Monte Carlo (DSMC) is considered. A state-to-state model for VT transitions of vibrational energy in nitrogen and oxygen, based on the application of the inverse Laplace transform to results of quasiclassical trajectory calculations (QCT) of vibrational energy transitions, along with the Forced Harmonic Oscillator (FHO) state-to-state model is implemented in DSMC code and applied to flows around blunt bodies. Comparisons are made with the widely used Larsen-Borgnakke model and the in uence of multi-quantum VT transitions is assessed.
Uniform rovibrational collisional N2 bin model for DSMC, with application to atmospheric entry flows
NASA Astrophysics Data System (ADS)
Torres, E.; Bondar, Ye. A.; Magin, T. E.
2016-11-01
A state-to-state model for internal energy exchange and molecular dissociation allows for high-fidelity DSMC simulations. Elementary reaction cross sections for the N2 (v, J)+ N system were previously extracted from a quantum-chemical database, originally compiled at NASA Ames Research Center. Due to the high computational cost of simulating the full range of inelastic collision processes (approx. 23 million reactions), a coarse-grain model, called the Uniform RoVibrational Collisional (URVC) bin model can be used instead. This allows to reduce the original 9390 rovibrational levels of N2 to 10 energy bins. In the present work, this reduced model is used to simulate a 2D flow configuration, which more closely reproduces the conditions of high-speed entry into Earth's atmosphere. For this purpose, the URVC bin model had to be adapted for integration into the "Rarefied Gas Dynamics Analysis System" (RGDAS), a separate high-performance DSMC code capable of handling complex geometries and parallel computations. RGDAS was developed at the Institute of Theoretical and Applied Mechanics in Novosibirsk, Russia for use by the European Space Agency (ESA) and shares many features with the well-known SMILE code developed by the same group. We show that the reduced mechanism developed previously can be implemented in RGDAS, and the results exhibit nonequilibrium effects consistent with those observed in previous 1D-simulations.
An Object-Oriented Serial DSMC Simulation Package
NASA Astrophysics Data System (ADS)
Liu, Hongli; Cai, Chunpei
2011-05-01
A newly developed three-dimensional direct simulation Monte Carlo (DSMC) simulation package, named GRASP ("Generalized Rarefied gAs Simulation Package"), is reported in this paper. This package utilizes the concept of simulation engine, many C++ features and software design patterns. The package has an open architecture which can benefit further development and maintenance of the code. In order to reduce the engineering time for three-dimensional models, a hybrid grid scheme, combined with a flexible data structure compiled by C++ language, are implemented in this package. This scheme utilizes a local data structure based on the computational cell to achieve high performance on workstation processors. This data structure allows the DSMC algorithm to be very efficiently parallelized with domain decomposition and it provides much flexibility in terms of grid types. This package can utilize traditional structured, unstructured or hybrid grids within the framework of a single code to model arbitrarily complex geometries and to simulate rarefied gas flows. Benchmark test cases indicate that this package has satisfactory accuracy for complex rarefied gas flows.
Comparison of DSMC and CFD Solutions of Fire II Including Radiative Heating
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Johnston, Christopher O.; Lewis, Mark J.
2011-01-01
The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. These flows may also contain significant radiative heating. To prepare for these missions, NASA is developing the capability to simulate rarefied, ionized flows and to then calculate the resulting radiative heating to the vehicle's surface. In this study, the DSMC codes DAC and DS2V are used to obtain charge-neutral ionization solutions. NASA s direct simulation Monte Carlo code DAC is currently being updated to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced Quantum-Kinetic chemistry model, and to include electronic energy levels as an additional internal energy mode. The Fire II flight test is used in this study to assess these new capabilities. The 1634 second data point was chosen for comparisons to be made in order to include comparisons to computational fluid dynamics solutions. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid. It is shown that there can be quite a bit of variability in the vibrational temperature inferred from DSMC solutions and that, from how radiative heating is computed, the electronic temperature is much better suited for radiative calculations. To include the radiative portion of heating, the flow-field solutions are post-processed by the non-equilibrium radiation code HARA. Acceptable agreement between CFD and DSMC flow field solutions is demonstrated and the progress of the updates to DAC, along with an appropriate radiative heating solution, are discussed. In addition, future plans to generate more high fidelity radiative heat transfer solutions are discussed.
Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate
NASA Technical Reports Server (NTRS)
Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel
1994-01-01
This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.
Spectral fitting, shock layer modeling, and production of nitrogen oxides and excited nitrogen
NASA Technical Reports Server (NTRS)
Blackwell, H. E.
1991-01-01
An analysis was made of N2 emission from 8.72 MJ/kg shock layer at 2.54, 1.91, and 1.27 cm positions and vibrational state distributions, temperatures, and relative electronic state populations was obtained from data sets. Other recorded arc jet N2 and air spectral data were reviewed and NO emission characteristics were studied. A review of operational procedures of the DSMC code was made. Information on other appropriate codes and modifications, including ionization, were made as well as a determination of the applicability of codes reviewed to task requirement. A review was also made of computational procedures used in CFD codes of Li and other codes on JSC computers. An analysis was made of problems associated with integration of specific chemical kinetics applicable to task into CFD codes.
DSMC Simulations of Disturbance Torque to ISS During Airlock Depressurization
NASA Technical Reports Server (NTRS)
Lumpkin, F. E., III; Stewart, B. S.
2015-01-01
The primary attitude control system on the International Space Station (ISS) is part of the United States On-orbit Segment (USOS) and uses Control Moment Gyroscopes (CMG). The secondary system is part of the Russian On orbit Segment (RSOS) and uses a combination of gyroscopes and thrusters. Historically, events with significant disturbances such as the airlock depressurizations associated with extra-vehicular activity (EVA) have been performed using the RSOS attitude control system. This avoids excessive propulsive "de-saturations" of the CMGs. However, transfer of attitude control is labor intensive and requires significant propellant. Predictions employing NASA's DSMC Analysis Code (DAC) of the disturbance torque to the ISS for depressurization of the Pirs airlock on the RSOS will be presented [1]. These predictions were performed to assess the feasibility of using USOS control during these events. The ISS Pirs airlock is vented using a device known as a "T-vent" as shown in the inset in figure 1. By orienting two equal streams of gas in opposite directions, this device is intended to have no propulsive effect. However, disturbance force and torque to the ISS do occur due to plume impingement. The disturbance torque resulting from the Pirs depressurization during EVAs is estimated by using a loosely coupled CFD/DSMC technique [2]. CFD is used to simulate the flow field in the nozzle and the near field plume. DSMC is used to simulate the remaining flow field using the CFD results to create an in flow boundary to the DSMC simulation. Due to the highly continuum nature of flow field near the T-vent, two loosely coupled DSMC domains are employed. An 88.2 cubic meter inner domain contains the Pirs airlock and the T-vent. Inner domain results are used to create an in flow boundary for an outer domain containing the remaining portions of the ISS. Several orientations of the ISS solar arrays and radiators have been investigated to find cases that result in minimal disturbance torque. Figure 1 shows surface pressure contours on the ISS and a plane of number density contours for a particular case.
FDDO and DSMC analyses of rarefied gas flow through 2D nozzles
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.
1992-01-01
Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas expanding through a two-dimensional nozzle and into a surrounding low-density environment. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, the variable hard sphere model is used as a molecular model and the no time counter method is employed as a collision sampling technique. The results of both the FDDO and the DSMC methods show good agreement. The FDDO method requires less computational effort than the DSMC method by factors of 10 to 40 in CPU time, depending on the degree of rarefaction.
Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Hao; Li, Z.; Levin, D.
2011-05-20
Low pressure plasma reactors are important tools for ionized metal physical vapor deposition (IMPVD), a semiconductor plasma processing technology that is increasingly being applied to deposit Cu seed layers on semiconductor surfaces of trenches and vias with the high aspect ratio (e.g., >5:1). A large fraction of ionized atoms produced by the IMPVD process leads to an anisotropic deposition flux towards the substrate, a feature which is critical for attaining a void-free and uniform fill. Modeling such devices is challenging due to their high plasma density, reactive environment, but low gas pressure. A modular code developed by the Computational Opticalmore » and Discharge Physics Group, the Hybrid Plasma Equipment Model (HPEM), has been successfully applied to the numerical investigations of IMPVD by modeling a hollow cathode magnetron (HCM) device. However, as the development of semiconductor devices progresses towards the lower pressure regime (e.g., <5 mTorr), the breakdown of the continuum assumption limits the application of the fluid model in HPEM and suggests the incorporation of the kinetic method, such as the direct simulation Monte Carlo (DSMC), in the plasma simulation.The DSMC method, which solves the Boltzmann equation of transport, has been successfully applied in modeling micro-fluidic flows in MEMS devices with low Reynolds numbers, a feature shared with the HCM. Modeling of the basic physical and chemical processes for ion/neutral species in plasma have been developed and implemented in DSMC, which include ion particle motion due to the Lorentz force, electron impact reactions, charge exchange reactions, and charge recombination at the surface. The heating of neutrals due to collisions with ions and the heating of ions due to the electrostatic field will be shown to be captured by the DSMC simulations. In this work, DSMC calculations were coupled with the modules from HPEM so that the plasma can be self-consistently solved. Differences in the Ar results, the dominant species in the reactor, produced by the DSMC-HPEM coupled simulation will be shown in comparison with the original HPEM results. The effects of the DSMC calculations for ion/neutral species on HPEM plasma simulation will be further analyzed.« less
Axisymmetric Implementation for 3D-Based DSMC Codes
NASA Technical Reports Server (NTRS)
Stewart, Benedicte; Lumpkin, F. E.; LeBeau, G. J.
2011-01-01
The primary objective in developing NASA s DSMC Analysis Code (DAC) was to provide a high fidelity modeling tool for 3D rarefied flows such as vacuum plume impingement and hypersonic re-entry flows [1]. The initial implementation has been expanded over time to offer other capabilities including a novel axisymmetric implementation. Because of the inherently 3D nature of DAC, this axisymmetric implementation uses a 3D Cartesian domain and 3D surfaces. Molecules are moved in all three dimensions but their movements are limited by physical walls to a small wedge centered on the plane of symmetry (Figure 1). Unfortunately, far from the axis of symmetry, the cell size in the direction perpendicular to the plane of symmetry (the Z-direction) may become large compared to the flow mean free path. This frequently results in inaccuracies in these regions of the domain. A new axisymmetric implementation is presented which aims to solve this issue by using Bird s approach for the molecular movement while preserving the 3D nature of the DAC software [2]. First, the computational domain is similar to that previously used such that a wedge must still be used to define the inflow surface and solid walls within the domain. As before molecules are created inside the inflow wedge triangles but they are now rotated back to the symmetry plane. During the move step, molecules are moved in 3D but instead of interacting with the wedge walls, the molecules are rotated back to the plane of symmetry at the end of the move step. This new implementation was tested for multiple flows over axisymmetric shapes, including a sphere, a cone, a double cone and a hollow cylinder. Comparisons to previous DSMC solutions and experiments, when available, are made.
Particle/Continuum Hybrid Simulation in a Parallel Computing Environment
NASA Technical Reports Server (NTRS)
Baganoff, Donald
1996-01-01
The objective of this study was to modify an existing parallel particle code based on the direct simulation Monte Carlo (DSMC) method to include a Navier-Stokes (NS) calculation so that a hybrid solution could be developed. In carrying out this work, it was determined that the following five issues had to be addressed before extensive program development of a three dimensional capability was pursued: (1) find a set of one-sided kinetic fluxes that are fully compatible with the DSMC method, (2) develop a finite volume scheme to make use of these one-sided kinetic fluxes, (3) make use of the one-sided kinetic fluxes together with DSMC type boundary conditions at a material surface so that velocity slip and temperature slip arise naturally for near-continuum conditions, (4) find a suitable sampling scheme so that the values of the one-sided fluxes predicted by the NS solution at an interface between the two domains can be converted into the correct distribution of particles to be introduced into the DSMC domain, (5) carry out a suitable number of tests to confirm that the developed concepts are valid, individually and in concert for a hybrid scheme.
Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature
NASA Astrophysics Data System (ADS)
Tisovský, Tomáš; Vít, Tomáš
Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC) code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.
Plume Impingement to the Lunar Surface: A Challenging Problem for DSMC
NASA Technical Reports Server (NTRS)
Lumpkin, Forrest; Marichalar, Jermiah; Piplica, Anthony
2007-01-01
The President's Vision for Space Exploration calls for the return of human exploration of the Moon. The plans are ambitious and call for the creation of a lunar outpost. Lunar Landers will therefore be required to land near predeployed hardware, and the dust storm created by the Lunar Lander's plume impingement to the lunar surface presents a hazard. Knowledge of the number density, size distribution, and velocity of the grains in the dust cloud entrained into the flow is needing to develop mitigation strategies. An initial step to acquire such knowledge is simulating the associated plume impingement flow field. The following paper presents results from a loosely coupled continuum flow solver/Direct Simulation Monte Carlo (DSMC) technique for simulating the plume impingement of the Apollo Lunar module on the lunar surface. These cases were chosen for initial study to allow for comparison with available Apollo video. The relatively high engine thrust and the desire to simulate interesting cases near touchdown result in flow that is nearly entirely continuum. The DSMC region of the flow field was simulated using NASA's DSMC Analysis Code (DAC) and must begin upstream of the impingement shock for the loosely coupled technique to succeed. It was therefore impossible to achieve mean free path resolution with a reasonable number of molecules (say 100 million) as is shown. In order to mitigate accuracy and performance issues when using such large cells, advanced techniques such as collision limiting and nearest neighbor collisions were employed. The final paper will assess the benefits and shortcomings of such techniques. In addition, the effects of plume orientation, plume altitude, and lunar topography, such as craters, on the flow field, the surface pressure distribution, and the surface shear stress distribution are presented.
NAS Experiences of Porting CM Fortran Codes to HPF on IBM SP2 and SGI Power Challenge
NASA Technical Reports Server (NTRS)
Saini, Subhash
1995-01-01
Current Connection Machine (CM) Fortran codes developed for the CM-2 and the CM-5 represent an important class of parallel applications. Several users have employed CM Fortran codes in production mode on the CM-2 and the CM-5 for the last five to six years, constituting a heavy investment in terms of cost and time. With Thinking Machines Corporation's decision to withdraw from the hardware business and with the decommissioning of many CM-2 and CM-5 machines, the best way to protect the substantial investment in CM Fortran codes is to port the codes to High Performance Fortran (HPF) on highly parallel systems. HPF is very similar to CM Fortran and thus represents a natural transition. Conversion issues involved in porting CM Fortran codes on the CM-5 to HPF are presented. In particular, the differences between data distribution directives and the CM Fortran Utility Routines Library, as well as the equivalent functionality in the HPF Library are discussed. Several CM Fortran codes (Cannon algorithm for matrix-matrix multiplication, Linear solver Ax=b, 1-D convolution for 2-D datasets, Laplace's Equation solver, and Direct Simulation Monte Carlo (DSMC) codes have been ported to Subset HPF on the IBM SP2 and the SGI Power Challenge. Speedup ratios versus number of processors for the Linear solver and DSMC code are presented.
Aerodynamic characterization of the jet of an arc wind tunnel
NASA Astrophysics Data System (ADS)
Zuppardi, Gennaro; Esposito, Antonio
2016-11-01
It is well known that, due to a very aggressive environment and to a rather high rarefaction level of the arc wind tunnel jet, the measurement of fluid-dynamic parameters is difficult. For this reason, the aerodynamic characterization of the jet relies also on computer codes, simulating the operation of the tunnel. The present authors already used successfully such a kind of computing procedure for the tests in the arc wind tunnel (SPES) in Naples (Italy). In the present work an improved procedure is proposed. Like the former procedure also the present procedure relies on two codes working in tandem: 1) one-dimensional code simulating the inviscid and thermally not-conducting flow field in the torch, in the mix-chamber and in the nozzle up to the position, along the nozzle axis, of the continuum breakdown, 2) Direct Simulation Monte Carlo (DSMC) code simulating the flow field in the remaining part of the nozzle. In the present procedure, the DSMC simulation includes the simulation both in the nozzle and in the test chamber. An interesting problem, considered in this paper by means of the present procedure, has been the simulation of the flow field around a Pitot tube and of the related measurement of the stagnation pressure. The measured stagnation pressure, under rarefied conditions, may be even four times the theoretical value. Therefore a substantial correction has to be applied to the measured pressure. In the present paper a correction factor for the stagnation pressure measured in SPES is proposed. The analysis relies on twelve tests made in SPES.
Shock-Wave/Boundary-Layer Interactions in Hypersonic Low Density Flows
NASA Technical Reports Server (NTRS)
Moss, James N.; Olejniczak, Joseph
2004-01-01
Results of numerical simulations of Mach 10 air flow over a hollow cylinder-flare and a double-cone are presented where viscous effects are significant. The flow phenomena include shock-shock and shock- boundary-layer interactions with accompanying flow separation, recirculation, and reattachment. The purpose of this study is to promote an understanding of the fundamental gas dynamics resulting from such complex interactions and to clarify the requirements for meaningful simulations of such flows when using the direct simulation Monte Carlo (DSMC) method. Particular emphasis is placed on the sensitivity of computed results to grid resolution. Comparisons of the DSMC results for the hollow cylinder-flare (30 deg.) configuration are made with the results of experimental measurements conducted in the ONERA RSCh wind tunnel for heating, pressure, and the extent of separation. Agreement between computations and measurements for various quantities is good except that for pressure. For the same flow conditions, the double- cone geometry (25 deg.- 65 deg.) produces much stronger interactions, and these interactions are investigated numerically using both DSMC and Navier-Stokes codes. For the double-cone computations, a two orders of magnitude variation in free-stream density (with Reynolds numbers from 247 to 24,7 19) is investigated using both computational methods. For this range of flow conditions, the computational results are in qualitative agreement for the extent of separation with the DSMC method always predicting a smaller separation region. Results from the Navier-Stokes calculations suggest that the flow for the highest density double-cone case may be unsteady; however, the DSMC solution does not show evidence of unsteadiness.
Development of a Detailed Surface Chemistry Framework in DSMC
NASA Technical Reports Server (NTRS)
Swaminathan-Gopalan, K.; Borner, A.; Stephani, K. A.
2017-01-01
Many of the current direct simulation Monte Carlo (DSMC) codes still employ only simple surface catalysis models. These include only basic mechanisms such as dissociation, recombination, and exchange reactions, without any provision for adsorption and finite rate kinetics. Incorporating finite rate chemistry at the surface is increasingly becoming a necessity for various applications such as high speed re-entry flows over thermal protection systems (TPS), micro-electro-mechanical systems (MEMS), surface catalysis, etc. In the recent years, relatively few works have examined finite-rate surface reaction modeling using the DSMC method.In this work, a generalized finite-rate surface chemistry framework incorporating a comprehensive list of reaction mechanisms is developed and implemented into the DSMC solver SPARTA. The various mechanisms include adsorption, desorption, Langmuir-Hinshelwood (LH), Eley-Rideal (ER), Collision Induced (CI), condensation, sublimation, etc. The approach is to stochastically model the various competing reactions occurring on a set of active sites. Both gas-surface (e.g., ER, CI) and pure-surface (e.g., LH, desorption) reaction mechanisms are incorporated. The reaction mechanisms could also be catalytic or surface altering based on the participation of the bulk-phase species (e.g., bulk carbon atoms). Marschall and MacLean developed a general formulation in which multiple phases and surface sites are used and we adopt a similar convention in the current work. Microscopic parameters of reaction probabilities (for gas-surface reactions) and frequencies (for pure-surface reactions) that are require for DSMC are computed from the surface properties and macroscopic parameters such as rate constants, sticking coefficients, etc. The energy and angular distributions of the products are decided based on the reaction type and input parameters. Thus, the user has the capability to model various surface reactions via user-specified reaction rate constants, surface properties and parameters.
Predicting Flows of Rarefied Gases
NASA Technical Reports Server (NTRS)
LeBeau, Gerald J.; Wilmoth, Richard G.
2005-01-01
DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases -- especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuum-based equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation.
NASA Astrophysics Data System (ADS)
Mahieux, Arnaud; Goldstein, David B.; Varghese, Philip; Trafton, Laurence M.
2017-10-01
The vapor and particulate plumes arising from the southern polar regions of Enceladus are a key signature of what lies below the surface. Multiple Cassini instruments (INMS, CDA, CAPS, MAG, UVIS, VIMS, ISS) measured the gas-particle plume over the warm Tiger Stripe region and there have been several close flybys. Numerous observations also exist of the near-vent regions in the visible and the IR. The most likely source for these extensive geysers is a subsurface liquid reservoir of somewhat saline water and other volatiles boiling off through crevasse-like conduits into the vacuum of space.In this work, we use a DSMC code to simulate the plume as it exits a vent, considering axisymmetric conditions, in a vertical domain extending up to 10 km. Above 10 km altitude, the flow is collisionless and well modeled in a separate free molecular code. We perform a DSMC parametric and sensitivity study of the following vent parameters: vent diameter, outgassed flow density, water gas/water ice mass flow ratio, gas and ice speed, and ice grain diameter. We build parametric expressions of the plume characteristics at the 10 km upper boundary (number density, temperature, velocity) that will be used in a Bayesian inversion algorithm in order to constrain source conditions from fits to plume observations by various instruments on board the Cassini spacecraft and assess the parametric sensitivity study.
N-S/DSMC hybrid simulation of hypersonic flow over blunt body including wakes
NASA Astrophysics Data System (ADS)
Li, Zhonghua; Li, Zhihui; Li, Haiyan; Yang, Yanguang; Jiang, Xinyu
2014-12-01
A hybrid N-S/DSMC method is presented and applied to solve the three-dimensional hypersonic transitional flows by employing the MPC (modular Particle-Continuum) technique based on the N-S and the DSMC method. A sub-relax technique is adopted to deal with information transfer between the N-S and the DSMC. The hypersonic flows over a 70-deg spherically blunted cone under different Kn numbers are simulated using the CFD, DSMC and hybrid N-S/DSMC method. The present computations are found in good agreement with DSMC and experimental results. The present method provides an efficient way to predict the hypersonic aerodynamics in near-continuum transitional flow regime.
Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow
2018-02-09
Lens-XX facility. This flow was chosen since a recent blind-code validation exercise revealed differences in CFD predictions and experimental data... experimental data that could be due to rarefied flow effects. The CFD solutions (using the US3D code) were run with no-slip boundary conditions and with...excellent agreement with that predicted by CFD. This implies that the dif- ference between CFD predictions and experimental data is not due to rarefied
Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp
The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculatingmore » the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.« less
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2014-01-01
The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties are extended in the current work to include electronic energy level transitions and reactions involving charged particles. These extensions are shown to agree favorably with reported transition and reaction rates from the literature for near-equilibrium conditions. Also, the extensions are applied to the second flight of the Project FIRE flight experiment at 1634 seconds with a Knudsen number of 0.001 at an altitude of 76.4 km. In order to accomplish this, NASA's direct simulation Monte Carlo code DAC was rewritten to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced chemistry model, and to include the extensions presented in this work. The 1634 second data point was chosen for comparisons to be made in order to include a CFD solution. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid because, although near-transitional, the flow is still considered to be continuum. It is shown that the inclusion of electronic energy levels in the DSMC simulation is necessary for flows of this nature and is required for comparison to the CFD solution. The flow field solutions are also post-processed by the nonequilibrium radiation code HARA to compute the radiative portion.
NASA Technical Reports Server (NTRS)
Holden, Michael S.; Harvey, John K.; Boyd, Iain D.; George, Jyothish; Horvath, Thomas J.
1997-01-01
This paper summarizes the results of a series of experimental studies in the LENS shock tunnel and computations with DSMC and Navier Stokes codes which have been made to examine the aerothermal and flowfield characteristics of the flow over a sting-supported planetary probe configuration in hypervelocity air and nitrogen flows. The experimental program was conducted in the LENS hypervelocity shock tunnel at total enthalpies of 5and 10 MJkg for a range of reservoir pressure conditions from 70 to 500 bars. Heat transfer and pressure measurements were made on the front and rear face of the probe and along the supporting sting. High-speed and single shot schlieren photography were also employed to examine the flow over the model and the time to establish the flow in the base recirculation region. Predictions of the flowfield characteristics and the distributions of heat transfer and pressure were made with DSMC codes for rarefied flow conditions and with the Navier-Stokes solvers for the higher pressure conditions where the flows were assumed to be laminar. Analysis of the time history records from the heat transfer and pressure instrumentation on the face of the probe and in the base region indicated that the base flow was fully established in under 4 milliseconds from flow initiation or between 35 and 50 flow lengths based on base height. The measurements made in three different tunnel entries with two models of identical geometries but with different instrumentation packages, one prepared by NASA Langley and the second prepared by CUBRC, demonstrated good agreement between heat transfer measurements made with two different types of thin film and coaxial gage instrumentation. The measurements of heat transfer and pressure to the front face of the probe were in good agreement with theoretical predictions from both the DSMC and Navier Stokes codes. For the measurements made in low density flows, computations with the DSMC code were found to compare well with the pressure and heat transfer measurements on the sting, although the computed heat transfer rates in the recirculation region did not exhibit the same characteristics as the measurements. For the 10MJkg and 500 bar reservoir match point condition, the measurements and heat transfer along the sting from the first group of studies were in agreement with the Navier Stokes solutions for laminar conditions. A similar set of measurements made in later tests where the model was moved to a slightly different position in the test section indicated that the boundary layer in the reattachment compression region was close to transition or transitional where small changes in the test environment can result in larger than laminar heating rates. The maximum heating coefficients on the sting observed in the present studies was a small fraction of similar measurements obtained at nominally the same conditions in the HEG shock tunnel, where it is possible for transition to occur in the base flow, and in the low enthalpy studies conducted in the NASA Langley high Reynolds number Mach 10 tunnel where the base flow was shown to be turbulent. While the hybrid Navier- StokedDMSC calculations by Gochberg et al. (Reference 1) suggested that employing the Navier- Stokes calculations for the entire flowfield could be seriously in error in the base region for the 10 MJkg, 500 bar test case, similar calculations performed by Cornell, presented here, do not.
DSMC Simulation and Experimental Validation of Shock Interaction in Hypersonic Low Density Flow
2014-01-01
Direct simulation Monte Carlo (DSMC) of shock interaction in hypersonic low density flow is developed. Three collision molecular models, including hard sphere (HS), variable hard sphere (VHS), and variable soft sphere (VSS), are employed in the DSMC study. The simulations of double-cone and Edney's type IV hypersonic shock interactions in low density flow are performed. Comparisons between DSMC and experimental data are conducted. Investigation of the double-cone hypersonic flow shows that three collision molecular models can predict the trend of pressure coefficient and the Stanton number. HS model shows the best agreement between DSMC simulation and experiment among three collision molecular models. Also, it shows that the agreement between DSMC and experiment is generally good for HS and VHS models in Edney's type IV shock interaction. However, it fails in the VSS model. Both double-cone and Edney's type IV shock interaction simulations show that the DSMC errors depend on the Knudsen number and the models employed for intermolecular interaction. With the increase in the Knudsen number, the DSMC error is decreased. The error is the smallest in HS compared with those in the VHS and VSS models. When the Knudsen number is in the level of 10−4, the DSMC errors, for pressure coefficient, the Stanton number, and the scale of interaction region, are controlled within 10%. PMID:24672360
Transient Macroscopic Chemistry in the DSMC Method
NASA Astrophysics Data System (ADS)
Goldsworthy, M. J.; Macrossan, M. N.; Abdel-Jawad, M.
2008-12-01
In the Direct Simulation Monte Carlo method, a combination of statistical and deterministic procedures applied to a finite number of `simulator' particles are used to model rarefied gas-kinetic processes. Traditionally, chemical reactions are modelled using information from specific colliding particle pairs. In the Macroscopic Chemistry Method (MCM), the reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell is used to determine a reaction rate coefficient for that cell. MCM has previously been applied to steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation and during the unsteady development of 2-D flow through a cavity. For the shock tube simulation, close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature and species mole fractions. For the cavity flow, a high degree of thermal non-equilibrium is present and non-equilibrium reaction rate correction factors are employed in MCM. Very close agreement is demonstrated for ensemble averaged mole fraction contours predicted by the particle and macroscopic methods at three different flow-times. A comparison of the accumulated number of net reactions per cell shows that both methods compute identical numbers of reaction events. For the 2-D flow, MCM required similar CPU and memory resources to the particle chemistry method. The Macroscopic Chemistry Method is applicable to any general DSMC code using any viscosity or non-reacting collision models and any non-reacting energy exchange models. MCM can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies.
All-Particle Multiscale Computation of Hypersonic Rarefied Flow
NASA Astrophysics Data System (ADS)
Jun, E.; Burt, J. M.; Boyd, I. D.
2011-05-01
This study examines a new hybrid particle scheme used as an alternative means of multiscale flow simulation. The hybrid particle scheme employs the direct simulation Monte Carlo (DSMC) method in rarefied flow regions and the low diffusion (LD) particle method in continuum flow regions. The numerical procedures of the low diffusion particle method are implemented within an existing DSMC algorithm. The performance of the LD-DSMC approach is assessed by studying Mach 10 nitrogen flow over a sphere with a global Knudsen number of 0.002. The hybrid scheme results show good overall agreement with results from standard DSMC and CFD computation. Subcell procedures are utilized to improve computational efficiency and reduce sensitivity to DSMC cell size in the hybrid scheme. This makes it possible to perform the LD-DSMC simulation on a much coarser mesh that leads to a significant reduction in computation time.
NASA Astrophysics Data System (ADS)
Christou, Chariton; Kokou Dadzie, S.; Thomas, Nicolas; Hartogh, Paul; Jorda, Laurent; Kührt, Ekkehard; Whitby, James; Wright, Ian; Zarnecki, John
2017-04-01
While ESA's Rosetta mission has formally been completed, the data analysis and interpretation continues. Here, we address the physics of the gas flow at the surface of the comet. Understanding the sublimation of ice at the surface of the nucleus provides the initial boundary condition for studying the inner coma. The gas flow at the surface of the comet 67P/Churyumov-Gerasimenko can be in the rarefaction regime and a non-Maxwellian velocity distribution may be present. In these cases, continuum methods like Navier-Stokes-Fourier (NSF) set of equations are rarely applicable. Discrete particle methods such as Direct Simulation Monte Carlo (DSMC) method are usually adopted. DSMC is currently the dominant numerical method to study rarefied gas flows. It has been widely used to study cometary outflow over past years .1,2. In the present study, we investigate numerically, gas transport near the surface of the nucleus using DSMC. We focus on the outgassing from the near surface boundary layer into the vacuum (˜20 cm above the nucleus surface). Simulations are performed using the open source code dsmcFoam on an unstructured grid. Until now, artificially generated random porous media formed by packed spheres have been used to represent the comet surface boundary layer structure .3. In the present work, we used instead Micro-computerized-tomography (micro-CT) scanned images to provide geologically realistic 3D representations of the boundary layer porous structure. The images are from earth basins. The resolution is relatively high - in the range of some μm. Simulations from different rock samples with high porosity (and comparable to those expected at 67P) are compared. Gas properties near the surface boundary layer are presented and characterized. We have identified effects of the various porous structure properties on the gas flow fields. Temperature, density and velocity profiles have also been analyzed. .1. J.-F. Crifo, G. Loukianov, A. Rodionov and V. Zakharov, Icarus 176 (1), 192-219 (2005). 2. Y. Liao, C. Su, R. Marschall, J. Wu, M. Rubin, I. Lai, W. Ip, H. Keller, J. Knollenberg and E. Kührt, Earth, Moon, and Planets 117 (1), 41-64 (2016). 3. Y. V. Skorov, R. Van Lieshout, J. Blum and H. U. Keller, Icarus 212 (2), 867-876 (2011).
Aero-thermo-dynamic analysis of the Spaceliner-7.1 vehicle in high altitude flight
NASA Astrophysics Data System (ADS)
Zuppardi, Gennaro; Morsa, Luigi; Sippel, Martin; Schwanekamp, Tobias
2014-12-01
SpaceLiner, designed by DLR, is a visionary, extremely fast passenger transportation concept. It consists of two stages: a winged booster, a vehicle. After separation of the two stages, the booster makes a controlled re-entry and returns to the launch site. According to the current project, version 7-1 of SpaceLiner (SpaceLiner-7.1), the vehicle should be brought at an altitude of 75 km and then released, undertaking the descent path. In the perspective that the vehicle of SpaceLiner-7.1 could be brought to altitudes higher than 75 km, e.g. 100 km or above and also for a speculative purpose, in this paper the aerodynamic parameters of the SpaceLiner-7.1 vehicle are calculated in the whole transition regime, from continuum low density to free molecular flows. Computer simulations have been carried out by three codes: two DSMC codes, DS3V in the altitude interval 100-250 km for the evaluation of the global aerodynamic coefficients and DS2V at the altitude of 60 km for the evaluation of the heat flux and pressure distributions along the vehicle nose, and the DLR HOTSOSE code for the evaluation of the global aerodynamic coefficients in continuum, hypersonic flow at the altitude of 44.6 km. The effectiveness of the flaps with deflection angle of -35 deg. was evaluated in the above mentioned altitude interval. The vehicle showed longitudinal stability in the whole altitude interval even with no flap. The global bridging formulae verified to be proper for the evaluation of the aerodynamic coefficients in the altitude interval 80-100 km where the computations cannot be fulfilled either by CFD, because of the failure of the classical equations computing the transport coefficients, or by DSMC because of the requirement of very high computer resources both in terms of the core storage (a high number of simulated molecules is needed) and to the very long processing time.
State resolved vibrational relaxation modeling for strongly nonequilibrium flows
NASA Astrophysics Data System (ADS)
Boyd, Iain D.; Josyula, Eswar
2011-05-01
Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.
DSMC Evaluation of the Navier-Stokes Shear Viscosity of a Granular Fluid
2005-07-13
transport coefficients of the HCS have been measured from DSMC by using the associated Green – Kubo formulas [8]. In the case of a system heated by the action...DSMC evaluation of the Navier–Stokes shear viscosity of a granular fluid José María Montanero∗, Andrés Santos† and Vicente Garzó† ∗Departamento de...proposed to measure the Navier–Stokes shear viscosity in a granular fluid described by the Enskog equation. The method is implemented in DSMC
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2013-01-01
The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties are extended in the current work to include electronic energy level transitions and reactions involving charged particles. These extensions are shown to agree favorably with reported transition and reaction rates from the literature for nearequilibrium conditions. Also, the extensions are applied to the second flight of the Project FIRE flight experiment at 1634 seconds with a Knudsen number of 0.001 at an altitude of 76.4 km. In order to accomplish this, NASA's direct simulation Monte Carlo code DAC was rewritten to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced chemistry model, and to include the extensions presented in this work. The 1634 second data point was chosen for comparisons to be made in order to include a CFD solution. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid because, although near-transitional, the flow is still considered to be continuum. It is shown that the inclusion of electronic energy levels in the DSMC simulation is necessary for flows of this nature and is required for comparison to the CFD solution. The flow field solutions are also post-processed by the nonequilibrium radiation code HARA to compute the radiative portion of the heating and is then compared to the total heating measured in flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Küchlin, Stephan, E-mail: kuechlin@ifd.mavt.ethz.ch; Jenny, Patrick
2017-01-01
A major challenge for the conventional Direct Simulation Monte Carlo (DSMC) technique lies in the fact that its computational cost becomes prohibitive in the near continuum regime, where the Knudsen number (Kn)—characterizing the degree of rarefaction—becomes small. In contrast, the Fokker–Planck (FP) based particle Monte Carlo scheme allows for computationally efficient simulations of rarefied gas flows in the low and intermediate Kn regime. The Fokker–Planck collision operator—instead of performing binary collisions employed by the DSMC method—integrates continuous stochastic processes for the phase space evolution in time. This allows for time step and grid cell sizes larger than the respective collisionalmore » scales required by DSMC. Dynamically switching between the FP and the DSMC collision operators in each computational cell is the basis of the combined FP-DSMC method, which has been proven successful in simulating flows covering the whole Kn range. Until recently, this algorithm had only been applied to two-dimensional test cases. In this contribution, we present the first general purpose implementation of the combined FP-DSMC method. Utilizing both shared- and distributed-memory parallelization, this implementation provides the capability for simulations involving many particles and complex geometries by exploiting state of the art computer cluster technologies.« less
Vectorization of a particle code used in the simulation of rarefied hypersonic flow
NASA Technical Reports Server (NTRS)
Baganoff, D.
1990-01-01
A limitation of the direct simulation Monte Carlo (DSMC) method is that it does not allow efficient use of vector architectures that predominate in current supercomputers. Consequently, the problems that can be handled are limited to those of one- and two-dimensional flows. This work focuses on a reformulation of the DSMC method with the objective of designing a procedure that is optimized to the vector architectures found on machines such as the Cray-2. In addition, it focuses on finding a better balance between algorithmic complexity and the total number of particles employed in a simulation so that the overall performance of a particle simulation scheme can be greatly improved. Simulations of the flow about a 3D blunt body are performed with 10 to the 7th particles and 4 x 10 to the 5th mesh cells. Good statistics are obtained with time averaging over 800 time steps using 4.5 h of Cray-2 single-processor CPU time.
DSMC simulations of shock tube experiments for the dissociation rate of nitrogen
NASA Astrophysics Data System (ADS)
Bird, G. A.
2012-11-01
The DSMC method has been used to simulate the flow associated with several experiments that led to predictions of the dissociation rate in nitrogen. One involved optical interferometry to determine the density behind strong shock wave and the other involved the measurement of the shock tube end-wall pressure after the reflection of a similar shock wave. DSMC calculations for the un-reflected shock wave were made with the older TCE model that converts rate coefficients to reaction cross-sections, with the newer Q-K model that predicts the rates and with a set of reaction cross-sections for nitrogen dissociation from QCT calculations. A comparison of the resulting density profiles with the measured profile provides a test of the validity of the DSMC chemistry models. The DSMC reaction rates were sampled directly in the DSMC calculation, both far downstream where the flow is in equilibrium and in the non-equilibrium region immediately behind the shock. This permits a critical evaluation of data reduction procedures that were employed to deduce the dissociation rate from the measured quantities.
A continuum analysis of chemical nonequilibrium under hypersonic low-density flight conditions
NASA Technical Reports Server (NTRS)
Gupta, R. N.
1986-01-01
Results of employing the continuum model of Navier-Stokes equations under the low-density flight conditions are presented. These results are obtained with chemical nonequilibrium and multicomponent surface slip boundary conditions. The conditions analyzed are those encountered by the nose region of the Space Shuttle Orbiter during reentry. A detailed comparison of the Navier-Stokes (NS) results is made with the viscous shock-layer (VSL) and direct simulation Monte Carlo (DSMC) predictions. With the inclusion of new surface-slip boundary conditions in NS calculations, the surface heat transfer and other flowfield quantities adjacent to the surface are predicted favorably with the DSMC calculations from 75 km to 115 km in altitude. This suggests a much wider practical range for the applicability of Navier-Stokes solutions than previously thought. This is appealing because the continuum (NS and VSL) methods are commonly used to solve the fluid flow problems and are less demanding in terms of computer resource requirements than the noncontinuum (DSMC) methods.
Measurement and analysis of a small nozzle plume in vacuum
NASA Technical Reports Server (NTRS)
Penko, P. F.; Boyd, I. D.; Meissner, D. L.; Dewitt, K. J.
1993-01-01
Pitot pressures and flow angles are measured in the plume of a nozzle flowing nitrogen and exhausting to a vacuum. Total pressures are measured with Pitot tubes sized for specific regions of the plume and flow angles measured with a conical probe. The measurement area for total pressure extends 480 mm (16 exit diameters) downstream of the nozzle exit plane and radially to 60 mm (1.9 exit diameters) off the plume axis. The measurement area for flow angle extends to 160 mm (5 exit diameters) downstream and radially to 60 mm. The measurements are compared to results from a numerical simulation of the flow that is based on kinetic theory and uses the direct-simulation Monte Carlo (DSMC) method. Comparisons of computed results from the DSMC method with measurements of flow angle display good agreement in the far-field of the plume and improve with increasing distance from the exit plane. Pitot pressures computed from the DSMC method are in reasonably good agreement with experimental results over the entire measurement area.
Nonequilibrium hypersonic flows simulations with asymptotic-preserving Monte Carlo methods
NASA Astrophysics Data System (ADS)
Ren, Wei; Liu, Hong; Jin, Shi
2014-12-01
In the rarefied gas dynamics, the DSMC method is one of the most popular numerical tools. It performs satisfactorily in simulating hypersonic flows surrounding re-entry vehicles and micro-/nano- flows. However, the computational cost is expensive, especially when Kn → 0. Even for flows in the near-continuum regime, pure DSMC simulations require a number of computational efforts for most cases. Albeit several DSMC/NS hybrid methods are proposed to deal with this, those methods still suffer from the boundary treatment, which may cause nonphysical solutions. Filbet and Jin [1] proposed a framework of new numerical methods of Boltzmann equation, called asymptotic preserving schemes, whose computational costs are affordable as Kn → 0. Recently, Ren et al. [2] realized the AP schemes with Monte Carlo methods (AP-DSMC), which have better performance than counterpart methods. In this paper, AP-DSMC is applied in simulating nonequilibrium hypersonic flows. Several numerical results are computed and analyzed to study the efficiency and capability of capturing complicated flow characteristics.
Implementation of a vibrationally linked chemical reaction model for DSMC
NASA Technical Reports Server (NTRS)
Carlson, A. B.; Bird, Graeme A.
1994-01-01
A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.
Evaluation of nonequilibrium boundary conditions for hypersonic rarefied gas flows
NASA Astrophysics Data System (ADS)
Le, N. T. P.; Greenshields, Ch. J.; Reese, J. M.
2012-01-01
A new Computational Fluid Dynamics (CFD) solver for high-speed viscous §ows in the OpenFOAM code is validated against published experimental data and Direct Simulation Monte Carlo (DSMC) results. The laminar §at plate and circular cylinder cases are studied for Mach numbers, Ma, ranging from 6 to 12.7, and with argon and nitrogen as working gases. Simulation results for the laminar §at plate cases show that the combination of accommodation coefficient values σu = 0.7 and σT = 1.0 in the Maxwell/Smoluchowski conditions, and the coefficient values A1 = 1.5 and A2 = 1.0 in the second-order velocity slip condition, give best agreement with experimental data of surface pressure. The values σu = 0.7 and σT = 1.0 also give good agreement with DSMC data of surface pressure at the stagnation point in the circular cylinder case at Kn = 0.25. The Langmuir surface adsorption condition is also tested for the laminar §at plate case, but initial results were not as good as the Maxwell/Smoluchowski boundary conditions.
Conservative bin-to-bin fractional collisions
NASA Astrophysics Data System (ADS)
Martin, Robert
2016-11-01
Particle methods such as direct simulation Monte Carlo (DSMC) and particle-in-cell (PIC) are commonly used to model rarefied kinetic flows for engineering applications because of their ability to efficiently capture non-equilibrium behavior. The primary drawback to these methods relates to the poor convergence properties due to the stochastic nature of the methods which typically rely heavily on high degrees of non-equilibrium and time averaging to compensate for poor signal to noise ratios. For standard implementations, each computational particle represents many physical particles which further exacerbate statistical noise problems for flow with large species density variation such as encountered in flow expansions and chemical reactions. The stochastic weighted particle method (SWPM) introduced by Rjasanow and Wagner overcome this difficulty by allowing the ratio of real to computational particles to vary on a per particle basis throughout the flow. The DSMC procedure must also be slightly modified to properly sample the Boltzmann collision integral accounting for the variable particle weights and to avoid the creation of additional particles with negative weight. In this work, the SWPM with necessary modification to incorporate the variable hard sphere (VHS) collision cross section model commonly used in engineering applications is first incorporated into an existing engineering code, the Thermophysics Universal Research Framework. The results and computational efficiency are compared to a few simple test cases using a standard validated implementation of the DSMC method along with the adapted SWPM/VHS collision using an octree based conservative phase space reconstruction. The SWPM method is then further extended to combine the collision and phase space reconstruction into a single step which avoids the need to create additional computational particles only to destroy them again during the particle merge. This is particularly helpful when oversampling the collision integral when compared to the standard DSMC method. However, it is found that the more frequent phase space reconstructions can cause added numerical thermalization with low particle per cell counts due to the coarseness of the octree used. However, the methods are expected to be of much greater utility in transient expansion flows and chemical reactions in the future.
Radiolytic Model for Chemical Composition of Europa's Atmosphere and Surface
NASA Technical Reports Server (NTRS)
Cooper, John F.
2004-01-01
The overall objective of the present effort is to produce models for major and selected minor components of Europa s neutral atmosphere in 1-D versus altitude and in 2-D versus altitude and longitude or latitude. A 3-D model versus all three coordinates (alt, long, lat) will be studied but development on this is at present limited by computing facilities available to the investigation team. In this first year we have focused on 1-D modeling with Co-I Valery Shematovich s Direct Simulation Monte Carlo (DSMC) code for water group species (H2O, O2, O, OH) and on 2-D with Co-I Mau Wong's version of a similar code for O2, O, CO, CO2, and Na. Surface source rates of H2O and O2 from sputtering and radiolysis are used in the 1-D model, while observations for CO2 at the Europa surface and Na detected in a neutral cloud ejected from Europa are used, along with the O2 sputtering rate, to constrain source rates in the 2-D version. With these separate approaches we are investigating a range of processes important to eventual implementation of a comprehensive 3-D atmospheric model which could be used to understand present observations and develop science requirements for future observations, e.g. from Earth and in Europa orbit. Within the second year we expect to merge the full water group calculations into the 2-D version of the DSMC code which can then be extended to 3-D, pending availability of computing resources. Another important goal in the second year would be the inclusion of sulk and its more volatile oxides (SO, SO2).
Aerodynamic characteristics of the upper stages of a launch vehicle in low-density regime
NASA Astrophysics Data System (ADS)
Oh, Bum Seok; Lee, Joon Ho
2016-11-01
Aerodynamic characteristics of the orbital block (remaining configuration after separation of nose fairing and 1st and 2nd stages of the launch vehicle) and the upper 2-3stage (configuration after separation of 1st stage) of the 3 stages launch vehicle (KSLV-II, Korea Space Launch Vehicle) at high altitude of low-density regime are analyzed by SMILE code which is based on DSMC (Direct Simulation Monte-Carlo) method. To validating of the SMILE code, coefficients of axial force and normal forces of Apollo capsule are also calculated and the results agree very well with the data predicted by others. For the additional validations and applications of the DSMC code, aerodynamic calculation results of simple shapes of plate and wedge in low-density regime are also introduced. Generally, aerodynamic characteristics in low-density regime differ from those of continuum regime. To understand those kinds of differences, aerodynamic coefficients of the upper stages (including upper 2-3 stage and the orbital block) of the launch vehicle in low-density regime are analyzed as a function of Mach numbers and altitudes. The predicted axial force coefficients of the upper stages of the launch vehicle are very high compared to those in continuum regime. In case of the orbital block which flies at very high altitude (higher than 250km), all aerodynamic coefficients are more dependent on velocity variations than altitude variations. In case of the upper 2-3 stage which flies at high altitude (80km-150km), while the axial force coefficients and the locations of center of pressure are less changed with the variations of Knudsen numbers (altitudes), the normal force coefficients and pitching moment coefficients are more affected by variations of Knudsen numbers (altitude).
In Depth Analysis of AVCOAT TPS Response to a Reentry Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, E. V.; Kumar, Rakesh; Levin, D. A.
2011-05-20
Modeling of the high altitude portion of reentry vehicle trajectories with DSMC or statistical BGK solvers requires accurate evaluation of the boundary conditions at the ablating TPS surface. Presented in this article is a model which takes into account the complex ablation physics including the production of pyrolysis gases, and chemistry at the TPS surface. Since the ablation process is time dependent the modeling of the material response to the high energy reentry flow starts with the solution of the rarefied flow over the vehicle and then loosely couples with the material response. The objective of the present work ismore » to carry out conjugate thermal analysis by weakly coupling a flow solver to a material thermal response model. The latter model solves the one dimensional heat conduction equation accounting for the pyrolysis process that takes place in the reaction zone of an ablative thermal protection system (TPS) material. An estimate of the temperature range within which the pyrolysis reaction (decomposition and volatilization) takes place is obtained from Ref. [1]. The pyrolysis reaction results in the formation of char and the release of gases through the porous charred material. These gases remove additional amount of heat as they pass through the material, thus cooling the material (the process known as transpiration cooling). In the present work, we incorporate the transpiration cooling model in the material thermal response code in addition to the pyrolysis model. The flow in the boundary layer and in the vicinity of the TPS material is in the transitional flow regime. Therefore, we use a previously validated statistical BGK method to model the flow physics in the vicinity of the micro-cracks, since the BGK method allows simulations of flow at pressures higher than can be computed using DSMC.« less
Low-Density Nozzle Flow by the Direct Simulation Monte Carlo and Continuum Methods
NASA Technical Reports Server (NTRS)
Chung, Chang-Hong; Kim, Sku C.; Stubbs, Robert M.; Dewitt, Kenneth J.
1994-01-01
Two different approaches, the direct simulation Monte Carlo (DSMC) method based on molecular gasdynamics, and a finite-volume approximation of the Navier-Stokes equations, which are based on continuum gasdynamics, are employed in the analysis of a low-density gas flow in a small converging-diverging nozzle. The fluid experiences various kinds of flow regimes including continuum, slip, transition, and free-molecular. Results from the two numerical methods are compared with Rothe's experimental data, in which density and rotational temperature variations along the centerline and at various locations inside a low-density nozzle were measured by the electron-beam fluorescence technique. The continuum approach showed good agreement with the experimental data as far as density is concerned. The results from the DSMC method showed good agreement with the experimental data, both in the density and the rotational temperature. It is also shown that the simulation parameters, such as the gas/surface interaction model, the energy exchange model between rotational and translational modes, and the viscosity-temperature exponent, have substantial effects on the results of the DSMC method.
Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry
NASA Technical Reports Server (NTRS)
Marichalar, J.; Lumpkin, F.; Boyles, K.
2012-01-01
During reentry of the Orion Crew Module (CM), vehicle attitude control will be performed by firing reaction control system (RCS) thrusters. Simulation of RCS plumes and their interaction with the oncoming flow has been difficult for the analysis community due to the large scarf angles of the RCS thrusters and the unsteady nature of the Orion capsule backshell environments. The model for the aerothermal database has thus relied on wind tunnel test data to capture the heating effects of thruster plume interactions with the freestream. These data are only valid for the continuum flow regime of the reentry trajectory. A Direct Simulation Monte Carlo (DSMC) analysis was performed to study the vehicle heating effects that result from the RCS thruster plume interaction with the oncoming freestream flow at high altitudes during Orion CM reentry. The study was performed with the DSMC Analysis Code (DAC). The inflow boundary conditions for the jets were obtained from Data Parallel Line Relaxation (DPLR) computational fluid dynamics (CFD) solutions. Simulations were performed for the roll, yaw, pitch-up and pitch-down jets at altitudes of 105 km, 125 km and 160 km as well as vacuum conditions. For comparison purposes (see Figure 1), the freestream conditions were based on previous DAC simulations performed without active RCS to populate the aerodynamic database for the Orion CM. Other inputs to the analysis included a constant Orbital reentry velocity of 7.5 km/s and angle of attack of 160 degrees. The results of the study showed that the interaction effects decrease quickly with increasing altitude. Also, jets with highly scarfed nozzles cause more severe heating compared to the nozzles with lower scarf angles. The difficulty of performing these simulations was based on the maximum number density and the ratio of number densities between the freestream and the plume for each simulation. The lowest altitude solutions required a substantial amount of computational resources (up to 1800 processors) to simulate approximately 2 billion molecules for the refined (adapted) solutions.
The direct simulation of acoustics on Earth, Mars, and Titan.
Hanford, Amanda D; Long, Lyle N
2009-02-01
With the recent success of the Huygens lander on Titan, a moon of Saturn, there has been renewed interest in further exploring the acoustic environments of the other planets in the solar system. The direct simulation Monte Carlo (DSMC) method is used here for modeling sound propagation in the atmospheres of Earth, Mars, and Titan at a variety of altitudes above the surface. DSMC is a particle method that describes gas dynamics through direct physical modeling of particle motions and collisions. The validity of DSMC for the entire range of Knudsen numbers (Kn), where Kn is defined as the mean free path divided by the wavelength, allows for the exploration of sound propagation in planetary environments for all values of Kn. DSMC results at a variety of altitudes on Earth, Mars, and Titan including the details of nonlinearity, absorption, dispersion, and molecular relaxation in gas mixtures are given for a wide range of Kn showing agreement with various continuum theories at low Kn and deviation from continuum theory at high Kn. Despite large computation time and memory requirements, DSMC is the method best suited to study high altitude effects or where continuum theory is not valid.
Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.
Di Staso, G; Clercx, H J H; Succi, S; Toschi, F
2016-11-13
Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Simulation of unsteady flows by the DSMC macroscopic chemistry method
NASA Astrophysics Data System (ADS)
Goldsworthy, Mark; Macrossan, Michael; Abdel-jawad, Madhat
2009-03-01
In the Direct Simulation Monte-Carlo (DSMC) method, a combination of statistical and deterministic procedures applied to a finite number of 'simulator' particles are used to model rarefied gas-kinetic processes. In the macroscopic chemistry method (MCM) for DSMC, chemical reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell, not just those selected for collisions, is used to determine a reaction rate coefficient for that cell. Unlike collision-based methods, MCM can be used with any viscosity or non-reacting collision models and any non-reacting energy exchange models. It can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies. MCM has been previously validated for steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation. Close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature, density and species mole fractions, as well as for the accumulated number of net reactions per cell.
DSMC simulations of the Shuttle Plume Impingement Flight EXperiment(SPIFEX)
NASA Technical Reports Server (NTRS)
Stewart, Benedicte; Lumpkin, Forrest
2017-01-01
During orbital maneuvers and proximity operations, a spacecraft fires its thrusters inducing plume impingement loads, heating and contamination to itself and to any other nearby spacecraft. These thruster firings are generally modeled using a combination of Computational Fluid Dynamics (CFD) and DSMC simulations. The Shuttle Plume Impingement Flight EXperiment(SPIFEX) produced data that can be compared to a high fidelity simulation. Due to the size of the Shuttle thrusters this problem was too resource intensive to be solved with DSMC when the experiment flew in 1994.
A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter
NASA Technical Reports Server (NTRS)
Glass, Christopher E.; Gnoffo, Peter A.
2000-01-01
A method to obtain coupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC), 3-D flow field solutions for highly blunt bodies at low incidence is presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique. CFD is used to solve the high-density blunt forebody flow defining an inflow boundary condition for a DSMC solution of the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow field is modeled in an appropriate manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevyrin, Alexander A.; Vashchenkov, Pavel V.; Bondar, Yevgeniy A.
An ionized flow around the RAM C-II vehicle in the range of altitudes from 73 to 81 km is studied by the Direct Simulation Monte Carlo (DSMC) method with three models of chemical reactions. It is demonstrated that vibration favoring in reactions of dissociation of neutral molecules affects significantly the predicted values of plasma density in the shock layer, and good agreement between the results of experiments and DSMC computations can be achieved in terms of the plasma density as a function of the flight altitude.
Plume flowfield analysis of the shuttle primary Reaction Control System (RCS) rocket engine
NASA Technical Reports Server (NTRS)
Hueser, J. E.; Brock, F. J.
1990-01-01
A solution was generated for the physical properties of the Shuttle RCS 4000 N (900 lb) rocket engine exhaust plume flowfield. The modeled exhaust gas consists of the five most abundant molecular species, H2, N2, H2O, CO, and CO2. The solution is for a bare RCS engine firing into a vacuum; the only additional hardware surface in the flowfield is a cylinder (=engine mount) which coincides with the nozzle lip outer corner at X = 0, extends to the flowfield outer boundary at X = -137 m and is coaxial with the negative symmetry axis. Continuum gas dynamic methods and the Direct Simulation Monte Carlo (DSMC) method were combined in an iterative procedure to produce a selfconsistent solution. Continuum methods were used in the RCS nozzle and in the plume as far as the P = 0.03 breakdown contour; the DSMC method was used downstream of this continuum flow boundary. The DSMC flowfield extends beyond 100 m from the nozzle exit and thus the solution includes the farfield flow properties, but substantial information is developed on lip flow dynamics and thus results are also presented for the flow properties in the vicinity of the nozzle lip.
Particle behavior simulation in thermophoresis phenomena by direct simulation Monte Carlo method
NASA Astrophysics Data System (ADS)
Wada, Takao
2014-07-01
A particle motion considering thermophoretic force is simulated by using direct simulation Monte Carlo (DSMC) method. Thermophoresis phenomena, which occur for a particle size of 1 μm, are treated in this paper. The problem of thermophoresis simulation is computation time which is proportional to the collision frequency. Note that the time step interval becomes much small for the simulation considering the motion of large size particle. Thermophoretic forces calculated by DSMC method were reported, but the particle motion was not computed because of the small time step interval. In this paper, the molecule-particle collision model, which computes the collision between a particle and multi molecules in a collision event, is considered. The momentum transfer to the particle is computed with a collision weight factor, where the collision weight factor means the number of molecules colliding with a particle in a collision event. The large time step interval is adopted by considering the collision weight factor. Furthermore, the large time step interval is about million times longer than the conventional time step interval of the DSMC method when a particle size is 1 μm. Therefore, the computation time becomes about one-millionth. We simulate the graphite particle motion considering thermophoretic force by DSMC-Neutrals (Particle-PLUS neutral module) with above the collision weight factor, where DSMC-Neutrals is commercial software adopting DSMC method. The size and the shape of the particle are 1 μm and a sphere, respectively. The particle-particle collision is ignored. We compute the thermophoretic forces in Ar and H2 gases of a pressure range from 0.1 to 100 mTorr. The results agree well with Gallis' analytical results. Note that Gallis' analytical result for continuum limit is the same as Waldmann's result.
Application of a Modular Particle-Continuum Method to Partially Rarefied, Hypersonic Flow
NASA Astrophysics Data System (ADS)
Deschenes, Timothy R.; Boyd, Iain D.
2011-05-01
The Modular Particle-Continuum (MPC) method is used to simulate partially-rarefied, hypersonic flow over a sting-mounted planetary probe configuration. This hybrid method uses computational fluid dynamics (CFD) to solve the Navier-Stokes equations in regions that are continuum, while using direct simulation Monte Carlo (DSMC) in portions of the flow that are rarefied. The MPC method uses state-based coupling to pass information between the two flow solvers and decouples both time-step and mesh densities required by each solver. It is parallelized for distributed memory systems using dynamic domain decomposition and internal energy modes can be consistently modeled to be out of equilibrium with the translational mode in both solvers. The MPC results are compared to both full DSMC and CFD predictions and available experimental measurements. By using DSMC in only regions where the flow is nonequilibrium, the MPC method is able to reproduce full DSMC results down to the level of velocity and rotational energy probability density functions while requiring a fraction of the computational time.
Numerical simulation of rarefied gas flow through a slit
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Jeng, Duen-Ren; De Witt, Kenneth J.; Chung, Chan-Hong
1990-01-01
Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas from one reservoir to another through a two-dimensional slit. The cases considered are for hard vacuum downstream pressure, finite pressure ratios, and isobaric pressure with thermal diffusion, which are not well established in spite of the simplicity of the flow field. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, three kinds of collision sampling techniques, the time counter (TC) method, the null collision (NC) method, and the no time counter (NTC) method, are used.
NASA Astrophysics Data System (ADS)
Hansen, K. C.; Fougere, N.; Bieler, A. M.; Altwegg, K.; Combi, M. R.; Gombosi, T. I.; Huang, Z.; Rubin, M.; Tenishev, V.; Toth, G.; Tzou, C. Y.
2015-12-01
We have previously published results from the AMPS DSMC (Adaptive Mesh Particle Simulator Direct Simulation Monte Carlo) model and its characterization of the neutral coma of comet 67P/Churyumov-Gerasimenko through detailed comparison with data collected by the ROSINA/COPS (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/COmet Pressure Sensor) instrument aboard the Rosetta spacecraft [Bieler, 2015]. Results from these DSMC models have been used to create an empirical model of the near comet coma (<200 km) of comet 67P. The empirical model characterizes the neutral coma in a comet centered, sun fixed reference frame as a function of heliocentric distance, radial distance from the comet, local time and declination. The model is a significant improvement over more simple empirical models, such as the Haser model. While the DSMC results are a more accurate representation of the coma at any given time, the advantage of a mean state, empirical model is the ease and speed of use. One use of such an empirical model is in the calculation of a total cometary coma production rate from the ROSINA/COPS data. The COPS data are in situ measurements of gas density and velocity along the ROSETTA spacecraft track. Converting the measured neutral density into a production rate requires knowledge of the neutral gas distribution in the coma. Our empirical model provides this information and therefore allows us to correct for the spacecraft location to calculate a production rate as a function of heliocentric distance. We will present the full empirical model as well as the calculated neutral production rate for the period of August 2014 - August 2015 (perihelion).
Analysis of vibrational-translational energy transfer using the direct simulation Monte Carlo method
NASA Technical Reports Server (NTRS)
Boyd, Iain D.
1991-01-01
A new model is proposed for energy transfer between the vibrational and translational modes for use in the direct simulation Monte Carlo method (DSMC). The model modifies the Landau-Teller theory for a harmonic oscillator and the rate transition is related to an experimental correlation for the vibrational relaxation time. Assessment of the model is made with respect to three different computations: relaxation in a heat bath, a one-dimensional shock wave, and hypersonic flow over a two-dimensional wedge. These studies verify that the model achieves detailed balance, and excellent agreement with experimental data is obtained in the shock wave calculation. The wedge flow computation reveals that the usual phenomenological method for simulating vibrational nonequilibrium in the DSMC technique predicts much higher vibrational temperatures in the wake region.
DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept
NASA Astrophysics Data System (ADS)
Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert
2016-10-01
The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.
Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge
NASA Astrophysics Data System (ADS)
Pan, Shaowu; Gao, Zhenxun; Lee, Chunhian
2014-12-01
This paper presents a study of rarefaction effect on hypersonic flow over a sharp leading edge. Both continuum approach and kinetic method: a widely spread commercial Computational Fluid Dynamics-Navior-Stokes-Fourier (CFD-NSF) software - Fluent together with a direct simulation Monte Carlo (DSMC) code developed by the authors are employed for simulation of transition regime with Knudsen number ranging from 0.005 to 0.2. It is found that Fluent can predict the wall fluxes in the case of hypersonic argon flow over the sharp leading edge for the lowest Kn case (Kn = 0.005) in current paper while for other cases it also has a good agreement with DSMC except at the location near the sharp leading edge. Among all of the wall fluxes, it is found that coefficient of pressure is the most sensitive to rarefaction while heat transfer is the least one. A parameter based on translational nonequilibrium and a cut-off value of 0.34 is proposed for continuum breakdown in this paper. The structure of entropy and velocity profile in boundary layer is analyzed. Also, it is found that the ratio of heat transfer coefficient to skin friction coefficient remains uniform along the surface for the four cases in this paper.
NASA Astrophysics Data System (ADS)
Goldsworthy, M. J.
2012-10-01
One of the most useful tools for modelling rarefied hypersonic flows is the Direct Simulation Monte Carlo (DSMC) method. Simulator particle movement and collision calculations are combined with statistical procedures to model thermal non-equilibrium flow-fields described by the Boltzmann equation. The Macroscopic Chemistry Method for DSMC simulations was developed to simplify the inclusion of complex thermal non-equilibrium chemistry. The macroscopic approach uses statistical information which is calculated during the DSMC solution process in the modelling procedures. Here it is shown how inclusion of macroscopic information in models of chemical kinetics, electronic excitation, ionization, and radiation can enhance the capabilities of DSMC to model flow-fields where a range of physical processes occur. The approach is applied to the modelling of a 6.4 km/s nitrogen shock wave and results are compared with those from existing shock-tube experiments and continuum calculations. Reasonable agreement between the methods is obtained. The quality of the comparison is highly dependent on the set of vibrational relaxation and chemical kinetic parameters employed.
Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow
NASA Astrophysics Data System (ADS)
Holman, Timothy D.; Boyd, Iain D.
2011-02-01
This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.
Oxygen transport properties estimation by DSMC-CT simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro
Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy ofmore » the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.« less
1994-06-01
Defense Systems Management requirements for program executive College (DSMC). However. the sec- officers ( PEas ), program managers ond and third sets have...and presenting in- predictable outcomes in terms of cul- formation would change the entire tural change. t4 of culture. Once, carrier pigeons took days
Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability
Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; ...
2015-08-14
The Rayleigh-Taylor instability (RTI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce all qualitative features of the RTI and are in reasonable quantitative agreement with existing theoretical and empirical models in the linear, nonlinear, and self-similar regimes. At late times, the instability is seen to exhibit a self-similar behavior, in agreement with experimental observations. Formore » the conditions simulated, diffusion can influence the initial instability growth significantly.« less
Aspects of GPU perfomance in algorithms with random memory access
NASA Astrophysics Data System (ADS)
Kashkovsky, Alexander V.; Shershnev, Anton A.; Vashchenkov, Pavel V.
2017-10-01
The numerical code for solving the Boltzmann equation on the hybrid computational cluster using the Direct Simulation Monte Carlo (DSMC) method showed that on Tesla K40 accelerators computational performance drops dramatically with increase of percentage of occupied GPU memory. Testing revealed that memory access time increases tens of times after certain critical percentage of memory is occupied. Moreover, it seems to be the common problem of all NVidia's GPUs arising from its architecture. Few modifications of the numerical algorithm were suggested to overcome this problem. One of them, based on the splitting the memory into "virtual" blocks, resulted in 2.5 times speed up.
Molecular-Level Simulations of the Turbulent Taylor-Green Flow
NASA Astrophysics Data System (ADS)
Gallis, M. A.; Bitter, N. P.; Koehler, T. P.; Plimpton, S. J.; Torczynski, J. R.; Papadakis, G.
2017-11-01
The Direct Simulation Monte Carlo (DSMC) method, a statistical, molecular-level technique that provides accurate solutions to the Boltzmann equation, is applied to the turbulent Taylor-Green vortex flow. The goal of this work is to investigate whether DSMC can accurately simulate energy decay in a turbulent flow. If so, then simulating turbulent flows at the molecular level can provide new insights because the energy decay can be examined in detail from molecular to macroscopic length scales, thereby directly linking molecular relaxation processes to macroscopic transport processes. The DSMC simulations are performed on half a million cores of Sequoia, the 17 Pflop platform at Lawrence Livermore National Laboratory, and the kinetic-energy dissipation rate and the energy spectrum are computed directly from the molecular velocities. The DSMC simulations are found to reproduce the Kolmogorov -5/3 law and to agree with corresponding Navier-Stokes simulations obtained using a spectral method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.
In this paper, the Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters themore » self-similar regime, in agreement with experimental observations. Finally, for the conditions simulated, diffusion can influence the initial instability growth significantly.« less
Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability
Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; ...
2016-08-31
In this paper, the Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters themore » self-similar regime, in agreement with experimental observations. Finally, for the conditions simulated, diffusion can influence the initial instability growth significantly.« less
NASA Astrophysics Data System (ADS)
Gicquel, Adeline; Vincent, Jean-Baptiste; Sierks, Holger; Rose, Martin; Agarwal, Jessica; Deller, Jakob; Guettler, Carsten; Hoefner, Sebastian; Hofmann, Marc; Hu, Xuanyu; Kovacs, Gabor; Oklay Vincent, Nilda; Shi, Xian; Tubiana, Cecilia; Barbieri, Cesare; Lamy, Phylippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; OSIRIS Team
2016-10-01
Images of the nucleus and the coma (gas and dust) of comet 67P/Churyumov- Gerasimenko have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras system since March 2014 using both the wide angle camera (WAC) and the narrow angle camera (NAC). We are using the NAC camera to study the bright outburst observed on July 29th, 2015 in the southern hemisphere. The NAC camera's wavelength ranges between 250-1000 nm with a combination of 12 filters. The high spatial resolution is needed to localize the source point of the outburst on the surface of the nucleus. At the time of the observations, the heliocentric distance was 1.25AU and the distance between the spacecraft and the comet was 126 km. We aim to understand the physics leading to such outgassing: Is the jet associated to the outbursts controlled by the micro-topography? Or by ice suddenly exposed? We are using the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus. The goal of the DSMC code is to reproduce the opening angle of the jet, and constrain the outgassing ratio between outburst source and local region. The results of this model will be compared to the images obtained with the NAC camera.
Direct Simulation Monte Carlo Simulations of Low Pressure Semiconductor Plasma Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gochberg, L. A.; Ozawa, T.; Deng, H.
2008-12-31
The two widely used plasma deposition tools for semiconductor processing are Ionized Metal Physical Vapor Deposition (IMPVD) of metals using either planar or hollow cathode magnetrons (HCM), and inductively-coupled plasma (ICP) deposition of dielectrics in High Density Plasma Chemical Vapor Deposition (HDP-CVD) reactors. In these systems, the injected neutral gas flows are generally in the transonic to supersonic flow regime. The Hybrid Plasma Equipment Model (HPEM) has been developed and is strategically and beneficially applied to the design of these tools and their processes. For the most part, the model uses continuum-based techniques, and thus, as pressures decrease below 10more » mTorr, the continuum approaches in the model become questionable. Modifications have been previously made to the HPEM to significantly improve its accuracy in this pressure regime. In particular, the Ion Monte Carlo Simulation (IMCS) was added, wherein a Monte Carlo simulation is used to obtain ion and neutral velocity distributions in much the same way as in direct simulation Monte Carlo (DSMC). As a further refinement, this work presents the first steps towards the adaptation of full DSMC calculations to replace part of the flow module within the HPEM. Six species (Ar, Cu, Ar*, Cu*, Ar{sup +}, and Cu{sup +}) are modeled in DSMC. To couple SMILE as a module to the HPEM, source functions for species, momentum and energy from plasma sources will be provided by the HPEM. The DSMC module will then compute a quasi-converged flow field that will provide neutral and ion species densities, momenta and temperatures. In this work, the HPEM results for a hollow cathode magnetron (HCM) IMPVD process using the Boltzmann distribution are compared with DSMC results using portions of those HPEM computations as an initial condition.« less
Dynamic load balance scheme for the DSMC algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jin; Geng, Xiangren; Jiang, Dingwu
The direct simulation Monte Carlo (DSMC) algorithm, devised by Bird, has been used over a wide range of various rarified flow problems in the past 40 years. While the DSMC is suitable for the parallel implementation on powerful multi-processor architecture, it also introduces a large load imbalance across the processor array, even for small examples. The load imposed on a processor by a DSMC calculation is determined to a large extent by the total of simulator particles upon it. Since most flows are impulsively started with initial distribution of particles which is surely quite different from the steady state, themore » total of simulator particles will change dramatically. The load balance based upon an initial distribution of particles will break down as the steady state of flow is reached. The load imbalance and huge computational cost of DSMC has limited its application to rarefied or simple transitional flows. In this paper, by taking advantage of METIS, a software for partitioning unstructured graphs, and taking the total of simulator particles in each cell as a weight information, the repartitioning based upon the principle that each processor handles approximately the equal total of simulator particles has been achieved. The computation must pause several times to renew the total of simulator particles in each processor and repartition the whole domain again. Thus the load balance across the processors array holds in the duration of computation. The parallel efficiency can be improved effectively. The benchmark solution of a cylinder submerged in hypersonic flow has been simulated numerically. Besides, hypersonic flow past around a complex wing-body configuration has also been simulated. The results have displayed that, for both of cases, the computational time can be reduced by about 50%.« less
1991-09-01
Maintaining Goal Congruence International Cooperation-the Next Generation ENDNOTES 1. Wolfgang Flume and David Swa, "British Aerospace-Leading...Program Management Questionnaire Report. Michael G. Krause , DSMC internal document, May 1989- 10. Bonn Seminar on Armaments cooperation, proceedings, w...Appendix K 154 International Cooperation-the Next Generation Dudney, Robert S., "The Electronics Industry Flume, Wolfgang , "Electronics for the Ger- Is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less
NASA Technical Reports Server (NTRS)
Goldstein, David B.; Varghese, Philip L.
1997-01-01
We proposed to create a single computational code incorporating methods that can model both rarefied and continuum flow to enable the efficient simulation of flow about space craft and high altitude hypersonic aerospace vehicles. The code was to use a single grid structure that permits a smooth transition between the continuum and rarefied portions of the flow. Developing an appropriate computational boundary between the two regions represented a major challenge. The primary approach chosen involves coupling a four-speed Lattice Boltzmann model for the continuum flow with the DSMC method in the rarefied regime. We also explored the possibility of using a standard finite difference Navier Stokes solver for the continuum flow. With the resulting code we will ultimately investigate three-dimensional plume impingement effects, a subject of critical importance to NASA and related to the work of Drs. Forrest Lumpkin, Steve Fitzgerald and Jay Le Beau at Johnson Space Center. Below is a brief background on the project and a summary of the results as of the end of the grant.
NASA Astrophysics Data System (ADS)
Prakash, Ram; Gai, Sudhir L.; O'Byrne, Sean; Brown, Melrose
2016-11-01
The flow over a `tick' shaped configuration is performed using two Direct Simulation Monte Carlo codes: the DS2V code of Bird and the code from Sandia National Laboratory, called SPARTA. The configuration creates a flow field, where the flow is expanded initially but then is affected by the adverse pressure gradient induced by a compression surface. The flow field is challenging in the sense that the full flow domain is comprised of localized areas spanning continuum and transitional regimes. The present work focuses on the capability of SPARTA to model such flow conditions and also towards a comparative evaluation with results from DS2V. An extensive grid adaptation study is performed using both the codes on a model with a sharp leading edge and the converged results are then compared. The computational predictions are evaluated in terms of surface parameters such as heat flux, shear stress, pressure and velocity slip. SPARTA consistently predicts higher values for these surface properties. The skin friction predictions of both the codes don't give any indication of separation but the velocity slip plots indicate an incipient separation behavior at the corner. The differences in the results are attributed towards the flow resolution at the leading edge that dictates the downstream flow characteristics.
Comparisons of the Maxwell and CLL Gas/Surface Interaction Models Using DSMC
NASA Technical Reports Server (NTRS)
Hedahl, Marc O.
1995-01-01
Two contrasting models of gas-surface interactions are studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate is that of one of the solar panels on the Magellan spacecraft, and the freestream conditions are one of those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two plate system is not representative of the Magellan geometry, but is studied to explore possible experiments that might be used to differentiate between the two gas surface interaction models.
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Burt, Jonathan M.
2016-01-01
There are many flows fields that span a wide range of length scales where regions of both rarefied and continuum flow exist and neither direct simulation Monte Carlo (DSMC) nor computational fluid dynamics (CFD) provide the appropriate solution everywhere. Recently, a new viscous collision limited (VCL) DSMC technique was proposed to incorporate effects of physical diffusion into collision limiter calculations to make the low Knudsen number regime normally limited to CFD more tractable for an all-particle technique. This original work had been derived for a single species gas. The current work extends the VCL-DSMC technique to gases with multiple species. Similar derivations were performed to equate numerical and physical transport coefficients. However, a more rigorous treatment of determining the mixture viscosity is applied. In the original work, consideration was given to internal energy non-equilibrium, and this is also extended in the current work to chemical non-equilibrium.
NASA Astrophysics Data System (ADS)
Gallis, M. A.; Torczynski, J. R.
2011-03-01
The ellipsoidal-statistical Bhatnagar-Gross-Krook (ES-BGK) kinetic model is investigated for steady gas-phase transport of heat, tangential momentum, and mass between parallel walls (i.e., Fourier, Couette, and Fickian flows). This investigation extends the original study of Cercignani and Tironi, who first applied the ES-BGK model to heat transport (i.e., Fourier flow) shortly after this model was proposed by Holway. The ES-BGK model is implemented in a molecular-gas-dynamics code so that results from this model can be compared directly to results from the full Boltzmann collision term, as computed by the same code with the direct simulation Monte Carlo (DSMC) algorithm of Bird. A gas of monatomic molecules is considered. These molecules collide in a pairwise fashion according to either the Maxwell or the hard-sphere interaction and reflect from the walls according to the Cercignani-Lampis-Lord model with unity accommodation coefficients. Simulations are performed at pressures from near-free-molecular to near-continuum. Unlike the BGK model, the ES-BGK model produces heat-flux and shear-stress values that both agree closely with the DSMC values at all pressures. However, for both interactions, the ES-BGK model produces molecular-velocity-distribution functions that are qualitatively similar to those determined for the Maxwell interaction from Chapman-Enskog theory for small wall temperature differences and moment-hierarchy theory for large wall temperature differences. Moreover, the ES-BGK model does not produce accurate values of the mass self-diffusion coefficient for either interaction. Nevertheless, given its reasonable accuracy for heat and tangential-momentum transport, its sound theoretical foundation (it obeys the H-theorem), and its available extension to polyatomic molecules, the ES-BGK model may be a useful method for simulating certain classes of single-species noncontinuum gas flows, as Cercignani suggested.
2008-01-17
15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18 . NUMBER OF PAGES 261 19a. NAME OF RESPONSIBLE PERSON a...REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39- 18 This material...Sciences Meeting and Exhibit. Several DSMC [13, 58] and CFD [ 18 , 28, 43] solutions were submitted. Later, others compared CFD and DSMC solutions to these
Restricted Collision List method for faster Direct Simulation Monte-Carlo (DSMC) collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macrossan, Michael N., E-mail: m.macrossan@uq.edu.au
The ‘Restricted Collision List’ (RCL) method for speeding up the calculation of DSMC Variable Soft Sphere collisions, with Borgnakke–Larsen (BL) energy exchange, is presented. The method cuts down considerably on the number of random collision parameters which must be calculated (deflection and azimuthal angles, and the BL energy exchange factors). A relatively short list of these parameters is generated and the parameters required in any cell are selected from this list. The list is regenerated at intervals approximately equal to the smallest mean collision time in the flow, and the chance of any particle re-using the same collision parameters inmore » two successive collisions is negligible. The results using this method are indistinguishable from those obtained with standard DSMC. The CPU time saving depends on how much of a DSMC calculation is devoted to collisions and how much is devoted to other tasks, such as moving particles and calculating particle interactions with flow boundaries. For 1-dimensional calculations of flow in a tube, the new method saves 20% of the CPU time per collision for VSS scattering with no energy exchange. With RCL applied to rotational energy exchange, the CPU saving can be greater; for small values of the rotational collision number, for which most collisions involve some rotational energy exchange, the CPU may be reduced by 50% or more.« less
DSMC Modeling of Flows with Recombination Reactions
2017-06-23
Rogasinsky, “Analysis of the numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics,” Russ. J. Numer. Anal. Math ...reflection in steady flows,” Comput. Math . Appl. 35(1-2), 113–126 (1998). 45K. L. Wray, “Shock-tube study of the recombination of O atoms by Ar catalysts at
Numerical Simulation of Transitional, Hypersonic Flows using a Hybrid Particle-Continuum Method
NASA Astrophysics Data System (ADS)
Verhoff, Ashley Marie
Analysis of hypersonic flows requires consideration of multiscale phenomena due to the range of flight regimes encountered, from rarefied conditions in the upper atmosphere to fully continuum flow at low altitudes. At transitional Knudsen numbers there are likely to be localized regions of strong thermodynamic nonequilibrium effects that invalidate the continuum assumptions of the Navier-Stokes equations. Accurate simulation of these regions, which include shock waves, boundary and shear layers, and low-density wakes, requires a kinetic theory-based approach where no prior assumptions are made regarding the molecular distribution function. Because of the nature of these types of flows, there is much to be gained in terms of both numerical efficiency and physical accuracy by developing hybrid particle-continuum simulation approaches. The focus of the present research effort is the continued development of the Modular Particle-Continuum (MPC) method, where the Navier-Stokes equations are solved numerically using computational fluid dynamics (CFD) techniques in regions of the flow field where continuum assumptions are valid, and the direct simulation Monte Carlo (DSMC) method is used where strong thermodynamic nonequilibrium effects are present. Numerical solutions of transitional, hypersonic flows are thus obtained with increased physical accuracy relative to CFD alone, and improved numerical efficiency is achieved in comparison to DSMC alone because this more computationally expensive method is restricted to those regions of the flow field where it is necessary to maintain physical accuracy. In this dissertation, a comprehensive assessment of the physical accuracy of the MPC method is performed, leading to the implementation of a non-vacuum supersonic outflow boundary condition in particle domains, and more consistent initialization of DSMC simulator particles along hybrid interfaces. The relative errors between MPC and full DSMC results are greatly reduced as a direct result of these improvements. Next, a new parameter for detecting rotational nonequilibrium effects is proposed and shown to offer advantages over other continuum breakdown parameters, achieving further accuracy gains. Lastly, the capabilities of the MPC method are extended to accommodate multiple chemical species in rotational nonequilibrium, each of which is allowed to equilibrate independently, enabling application of the MPC method to more realistic atmospheric flows.
Predictive Modeling in Plasma Reactor and Process Design
NASA Technical Reports Server (NTRS)
Hash, D. B.; Bose, D.; Govindan, T. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)
1997-01-01
Research continues toward the improvement and increased understanding of high-density plasma tools. Such reactor systems are lauded for their independent control of ion flux and energy enabling high etch rates with low ion damage and for their improved ion velocity anisotropy resulting from thin collisionless sheaths and low neutral pressures. Still, with the transition to 300 mm processing, achieving etch uniformity and high etch rates concurrently may be a formidable task for such large diameter wafers for which computational modeling can play an important role in successful reactor and process design. The inductively coupled plasma (ICP) reactor is the focus of the present investigation. The present work attempts to understand the fundamental physical phenomena of such systems through computational modeling. Simulations will be presented using both computational fluid dynamics (CFD) techniques and the direct simulation Monte Carlo (DSMC) method for argon and chlorine discharges. ICP reactors generally operate at pressures on the order of 1 to 10 mTorr. At such low pressures, rarefaction can be significant to the degree that the constitutive relations used in typical CFD techniques become invalid and a particle simulation must be employed. This work will assess the extent to which CFD can be applied and evaluate the degree to which accuracy is lost in prediction of the phenomenon of interest; i.e., etch rate. If the CFD approach is found reasonably accurate and bench-marked with DSMC and experimental results, it has the potential to serve as a design tool due to the rapid time relative to DSMC. The continuum CFD simulation solves the governing equations for plasma flow using a finite difference technique with an implicit Gauss-Seidel Line Relaxation method for time marching toward a converged solution. The equation set consists of mass conservation for each species, separate energy equations for the electrons and heavy species, and momentum equations for the gas. The sheath is modeled by imposing the Bohm velocity to the ions near the walls. The DSMC method simulates each constituent of the gas as a separate species which would be analogous in CFD to employing separate species mass, momentum, and energy equations. All particles including electrons are moved and allowed to collide with one another with the stipulation that the electrons remain tied to the ions consistent with the concept of ambipolar diffusion. The velocities of the electrons are allowed to be modified during collisions and are not confined to a Maxwellian distribution. These benefits come at a price in terms of computational time and memory. The DSMC and CFD are made as consistent as possible by using similar chemistry and power deposition models. Although the comparison of CFD and DSMC is interesting, the main goal of this work is the increased understanding of high-density plasma flowfields that can then direct improvements in both techniques. This work is unique in the level of the physical models employed in both the DSMC and CFD for high-density plasma reactor applications. For example, the electrons are simulated in the present DSMC work which has not been done before for low temperature plasma processing problems. In the CFD approach, for the first time, the charged particle transport (discharge physics) has been self-consistently coupled to the gas flow and heat transfer.
NASA Astrophysics Data System (ADS)
Dickson, S.; Gausa, M. A.; Robertson, S. H.; Sternovsky, Z.
2012-12-01
We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 75 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on the two sounding rockets of the CHAMPS (CHarge And mass of Meteoritic smoke ParticleS) rocket campaign which were launched into the mesosphere in October 2011 from Andøya Rocket Range, Norway. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void beneath an aft-facing surface. An enclosure containing the CEM was placed above an aft-facing deck and a valve was opened on the downleg to expose the CEM to the aerodynamically evacuated region below. The CEM operated successfully from apogee down to ~75 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.
Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows
NASA Astrophysics Data System (ADS)
Roohi, Ehsan; Stefanov, Stefan
2016-10-01
The motivation of this review paper is to present a detailed summary of different collision models developed in the framework of the direct simulation Monte Carlo (DSMC) method. The emphasis is put on a newly developed collision model, i.e., the Simplified Bernoulli trial (SBT), which permits efficient low-memory simulation of rarefied gas flows. The paper starts with a brief review of the governing equations of the rarefied gas dynamics including Boltzmann and Kac master equations and reiterates that the linear Kac equation reduces to a non-linear Boltzmann equation under the assumption of molecular chaos. An introduction to the DSMC method is provided, and principles of collision algorithms in the DSMC are discussed. A distinction is made between those collision models that are based on classical kinetic theory (time counter, no time counter (NTC), and nearest neighbor (NN)) and the other class that could be derived mathematically from the Kac master equation (pseudo-Poisson process, ballot box, majorant frequency, null collision, Bernoulli trials scheme and its variants). To provide a deeper insight, the derivation of both collision models, either from the principles of the kinetic theory or the Kac master equation, is provided with sufficient details. Some discussions on the importance of subcells in the DSMC collision procedure are also provided and different types of subcells are presented. The paper then focuses on the simplified version of the Bernoulli trials algorithm (SBT) and presents a detailed summary of validation of the SBT family collision schemes (SBT on transient adaptive subcells: SBT-TAS, and intelligent SBT: ISBT) in a broad spectrum of rarefied gas-flow test cases, ranging from low speed, internal micro and nano flows to external hypersonic flow, emphasizing first the accuracy of these new collision models and second, demonstrating that the SBT family scheme, if compared to other conventional and recent collision models, requires smaller number of particles per cell to obtain sufficiently accurate solutions.
DSMC Simulations of High Mach Number Taylor-Couette Flow
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2017-11-01
The main focus of this work is to characterise the Taylor-Couette flow of an ideal gas between two coaxial cylinders at Mach number Ma =(Uw /√{ kbTw / m }) in the range 0.01
Error estimation for CFD aeroheating prediction under rarefied flow condition
NASA Astrophysics Data System (ADS)
Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian
2014-12-01
Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.
Comparison of a 3-D CFD-DSMC Solution Methodology With a Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Glass, Christopher E.; Horvath, Thomas J.
2002-01-01
A solution method for problems that contain both continuum and rarefied flow regions is presented. The methodology is applied to flow about the 3-D Mars Sample Return Orbiter (MSRO) that has a highly compressed forebody flow, a shear layer where the flow separates from a forebody lip, and a low density wake. Because blunt body flow fields contain such disparate regions, employing a single numerical technique to solve the entire 3-D flow field is often impractical, or the technique does not apply. Direct simulation Monte Carlo (DSMC) could be employed to solve the entire flow field; however, the technique requires inordinate computational resources for continuum and near-continuum regions, and is best suited for the wake region. Computational fluid dynamics (CFD) will solve the high-density forebody flow, but continuum assumptions do not apply in the rarefied wake region. The CFD-DSMC approach presented herein may be a suitable way to obtain a higher fidelity solution.
Development of the ARISTOTLE webware for cloud-based rarefied gas flow modeling
NASA Astrophysics Data System (ADS)
Deschenes, Timothy R.; Grot, Jonathan; Cline, Jason A.
2016-11-01
Rarefied gas dynamics are important for a wide variety of applications. An improvement in the ability of general users to predict these gas flows will enable optimization of current, and discovery of future processes. Despite this potential, most rarefied simulation software is designed by and for experts in the community. This has resulted in low adoption of the methods outside of the immediate RGD community. This paper outlines an ongoing effort to create a rarefied gas dynamics simulation tool that can be used by a general audience. The tool leverages a direct simulation Monte Carlo (DSMC) library that is available to the entire community and a web-based simulation process that will enable all users to take advantage of high performance computing capabilities. First, the DSMC library and simulation architecture are described. Then the DSMC library is used to predict a number of representative transient gas flows that are applicable to the rarefied gas dynamics community. The paper closes with a summary and future direction.
DSMC simulations of shock interactions about sharp double cones
NASA Astrophysics Data System (ADS)
Moss, James N.
2001-08-01
This paper presents the results of a numerical study of shock interactions resulting from Mach 10 flow about sharp double cones. Computations are made by using the direct simulation Monte Carlo (DSMC) method of Bird. The sensitivity and characteristics of the interactions are examined by varying flow conditions, model size, and configuration. The range of conditions investigated includes those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel.
DSMC Simulations of Shock Interactions About Sharp Double Cones
NASA Technical Reports Server (NTRS)
Moss, James N.
2000-01-01
This paper presents the results of a numerical study of shock interactions resulting from Mach 10 flow about sharp double cones. Computations are made by using the direct simulation Monte Carlo (DSMC) method of Bird. The sensitivity and characteristics of the interactions are examined by varying flow conditions, model size, and configuration. The range of conditions investigated includes those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel.
Multi-Species Fluxes for the Parallel Quiet Direct Simulation (QDS) Method
NASA Astrophysics Data System (ADS)
Cave, H. M.; Lim, C.-W.; Jermy, M. C.; Krumdieck, S. P.; Smith, M. R.; Lin, Y.-J.; Wu, J.-S.
2011-05-01
Fluxes of multiple species are implemented in the Quiet Direct Simulation (QDS) scheme for gas flows. Each molecular species streams independently. All species are brought to local equilibrium at the end of each time step. The multi species scheme is compared to DSMC simulation, on a test case of a Mach 20 flow of a xenon/helium mixture over a forward facing step. Depletion of the heavier species in the bow shock and the near-wall layer are seen. The multi-species QDS code is then used to model the flow in a pulsed-pressure chemical vapour deposition reactor set up for carbon film deposition. The injected gas is a mixture of methane and hydrogen. The temporal development of the spatial distribution of methane over the substrate is tracked.
Effects of Chemistry on Blunt-Body Wake Structure
NASA Technical Reports Server (NTRS)
Dogra, Virendra K.; Moss, James N.; Wilmoth, Richard G.; Taylor, Jeff C.; Hassan, H. A.
1995-01-01
Results of a numerical study are presented for hypersonic low-density flow about a 70-deg blunt cone using direct simulation Monte Carlo (DSMC) and Navier-Stokes calculations. Particular emphasis is given to the effects of chemistry on the near-wake structure and on the surface quantities and the comparison of the DSMC results with the Navier-Stokes calculations. The flow conditions simulated are those experienced by a space vehicle at an altitude of 85 km and a velocity of 7 km/s during Earth entry. A steady vortex forms in the near wake for these freestream conditions for both chemically reactive and nonreactive air gas models. The size (axial length) of the vortex for the reactive air calculations is 25% larger than that of the nonreactive air calculations. The forebody surface quantities are less sensitive to the chemistry than the base surface quantities. The presence of the afterbody has no effect on the forebody flow structure or the surface quantities. The comparisons of DSMC and Navier-Stokes calculations show good agreement for the wake structure and the forebody surface quantities.
Second-Order Consensus in Multiagent Systems via Distributed Sliding Mode Control.
Yu, Wenwu; Wang, He; Cheng, Fei; Yu, Xinghuo; Wen, Guanghui
2016-11-22
In this paper, the new decoupled distributed sliding-mode control (DSMC) is first proposed for second-order consensus in multiagent systems, which finally solves the fundamental unknown problem for sliding-mode control (SMC) design of coupled networked systems. A distributed full-order sliding-mode surface is designed based on the homogeneity with dilation for reaching second-order consensus in multiagent systems, under which the sliding-mode states are decoupled. Then, the SMC is applied to the decoupled sliding-mode states to reach their origin in finite time, which is the sliding-mode surface. The states of agents can first reach the designed sliding-mode surface in finite time and then move to the second-order consensus state along the surface in finite time as well. The DSMC designed in this paper can eliminate the influence of singularity problems and weaken the influence of chattering, which is still very difficult in the SMC systems. In addition, DSMC proposes a general decoupling framework for designing SMC in networked multiagent systems. Simulations are presented to verify the theoretical results in this paper.
Direct simulation of high-vorticity gas flows
NASA Technical Reports Server (NTRS)
Bird, G. A.
1987-01-01
The computational limitations associated with the molecular dynamics (MD) method and the direct simulation Monte Carlo (DSMC) method are reviewed in the context of the computation of dilute gas flows with high vorticity. It is concluded that the MD method is generally limited to the dense gas case in which the molecular diameter is one-tenth or more of the mean free path. It is shown that the cell size in DSMC calculations should be small in comparison with the mean free path, and that this may be facilitated by a new subcell procedure for the selection of collision partners.
Simulations of Ground and Space-Based Oxygen Atom Experiments
NASA Technical Reports Server (NTRS)
Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.
2003-01-01
A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.
Direct Simulation of Reentry Flows with Ionization
NASA Technical Reports Server (NTRS)
Carlson, Ann B.; Hassan, H. A.
1989-01-01
The Direct Simulation Monte Carlo (DSMC) method is applied in this paper to the study of rarefied, hypersonic, reentry flows. The assumptions and simplifications involved with the treatment of ionization, free electrons and the electric field are investigated. A new method is presented for the calculation of the electric field and handling of charged particles with DSMC. In addition, a two-step model for electron impact ionization is implemented. The flow field representing a 10 km/sec shock at an altitude of 65 km is calculated. The effects of the new modeling techniques on the calculation results are presented and discussed.
Comparison of Hall Thruster Plume Expansion Model with Experimental Data
2006-05-23
focus of this study, is a hybrid particle- in-cell ( PIC ) model that tracks particles along an unstructured tetrahedral mesh. * Research Engineer...measurements of the ion current density profile, ion energy distributions, and ion species fraction distributions using a nude Faraday probe, retarding...Vol.37 No.1. 6 Oh, D. and Hastings, D., “Three Dimensional PIC -DSMC Simulations of Hall Thruster Plumes and Analysis for Realistic Spacecraft
NASA Astrophysics Data System (ADS)
Fei, Huang; Xu-hong, Jin; Jun-ming, Lv; Xiao-li, Cheng
2016-11-01
An attempt has been made to analyze impact of Martian atmosphere parameter uncertainties on entry vehicle aerodynamics for hypersonic rarefied conditions with a DSMC code. The code has been validated by comparing Viking vehicle flight data with present computational results. Then, by simulating flows around the Mars Science Laboratory, the impact of errors of free stream parameter uncertainties on aerodynamics is investigated. The validation results show that the present numerical approach can show good agreement with the Viking flight data. The physical and chemical properties of CO2 has strong impact on aerodynamics of Mars entry vehicles, so it is necessary to make proper corrections to the data obtained with air model in hypersonic rarefied conditions, which is consistent with the conclusions drawn in continuum regime. Uncertainties of free stream density and velocity weakly influence aerodynamics and pitching moment. However, aerodynamics appears to be little influenced by free stream temperature, the maximum error of what is below 0.5%. Center of pressure position is not sensitive to free stream parameters.
Comparison of Hall Thruster Plume Expansion Model with Experimental Data (Preprint)
2006-07-01
Cartesian mesh. AQUILA, the focus of this study, is a hybrid PIC model that tracks particles along an unstructured tetrahedral mesh. COLISEUM is capable...measurements of the ion current density profile, ion energy distributions, and ion species fraction distributions using a nude Faraday probe...Spacecraft and Rockets, Vol.37 No.1. 6 Oh, D. and Hastings, D., “Three Dimensional PIC -DSMC Simulations of Hall Thruster Plumes and Analysis for
NASA Astrophysics Data System (ADS)
Argha, Ahmadreza; Li, Li; W. Su, Steven
2017-04-01
This paper develops a novel stabilising sliding mode for systems involving uncertainties as well as measurement data packet dropouts. In contrast to the existing literature that designs the switching function by using unavailable system states, a novel linear sliding function is constructed by employing only the available communicated system states for the systems involving measurement packet losses. This also equips us with the possibility to build a novel switching component for discrete-time sliding mode control (DSMC) by using only available system states. Finally, using a numerical example, we evaluate the performance of the designed DSMC for networked systems.
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Simmonds, A. L.
1986-01-01
Solutions of the Navier-Stokes equations with chemical nonequilibrium and multicomponent surface slip are presented along the stagnation streamline under low-density hypersonic flight conditions. The conditions analyzed are those encountered by the nose region of the Space Shuttle Orbiter during reentry. A detailed comparison of the Navier-Stokes (NS) results is made with the viscous shock-layer (VSL) and Direct Simulation Monte Carlo (DSMC) predictions. With the inclusion of surface-slip boundary conditions in NS calculations, the surface heat transfer and other flow field quantities adjacent to the surface are predicted favorably with the DSMC calculations from 75 km to 115 km in altitude. Therefore, the practical range for the applicability of Navier-Stokes solutions is much wider than previously thought. This is appealing because the continuum (NS and VSL) methods are commonly used to solve the fluid flow problems and are less demanding in terms of computer resource requirements than the noncontinuum (DSMC) methods. The NS solutions agree well with the VSL results for altitudes less than 92 km. An assessment is made of the frozen flow approximation employed in the VSL calculations.
NASA Astrophysics Data System (ADS)
Borges Sebastião, Israel; Kulakhmetov, Marat; Alexeenko, Alina
2017-01-01
This work evaluates high-fidelity vibrational-translational (VT) energy relaxation and dissociation models for pure O2 normal shockwave simulations with the direct simulation Monte Carlo (DSMC) method. The O2-O collisions are described using ab initio state-specific relaxation and dissociation models. The Macheret-Fridman (MF) dissociation model is adapted to the DSMC framework by modifying the standard implementation of the total collision energy (TCE) model. The O2-O2 dissociation is modeled with this TCE+MF approach, which is calibrated with O2-O ab initio data and experimental equilibrium dissociation rates. The O2-O2 vibrational relaxation is modeled via the Larsen-Borgnakke model, calibrated to experimental VT rates. All the present results are compared to experimental data and previous calculations available in the literature. It is found that, in general, the ab initio dissociation model is better than the TCE model at matching the shock experiments. Therefore, when available, efficient ab initio models are preferred over phenomenological models. We also show that the proposed TCE + MF formulation can be used to improve the standard TCE model results when ab initio data are not available or limited.
Sensitivity analysis of the Gupta and Park chemical models on the heat flux by DSMC and CFD codes
NASA Astrophysics Data System (ADS)
Morsa, Luigi; Festa, Giandomenico; Zuppardi, Gennaro
2012-11-01
The present study is the logical continuation of a former paper by the first author in which the influence of the chemical models by Gupta and by Park on the computation of heat flux on the Orion and EXPERT capsules was evaluated. Tests were carried out by the direct simulation Monte Carlo code DS2V and by the computational fluiddynamic (CFD) code H3NS. DS2V implements the Gupta model, while H3NS implements the Park model. In order to compare the effects of the chemical models, the Park model was implemented also in DS2V. The results showed that DS2V and H3NS compute a different composition both in the flow field and on the surface, even using the same chemical model (Park). Furthermore DS2V computes, by the two chemical models, different compositions in the flow field but the same composition on the surface, therefore the same heat flux. In the present study, in order to evaluate the influence of these chemical models also in a CFD code, the Gupta and the Park models have been implemented in FLUENT. Tests by DS2V and by FLUENT, have been carried out for the EXPERT capsule at the altitude of 70 km and with velocity of 5000 m/s. The capsule experiences a hypersonic, continuum low density regime. Due to the energy level of the flow, the vibration equation, lacking in the original version of FLUENT, has been implemented. The results of the heat flux computation verify that FLUENT is quite sensitive to the Gupta and to the Park chemical models. In fact, at the stagnation point, the percentage difference between the models is about 13%. On the opposite the DS2V results by the two models are practically equivalent.
NASA Astrophysics Data System (ADS)
Finklenburg, S.; Thomas, N.; Su, C. C.; Wu, J.-S.
2014-07-01
The near nucleus coma of Comet 9P/Tempel 1 has been simulated with the 3D Direct Simulation Monte Carlo (DSMC) code PDSC++ (Su, C.-C. [2013]. Parallel Direct Simulation Monte Carlo (DSMC) Methods for Modeling Rarefied Gas Dynamics. PhD Thesis, National Chiao Tung University, Taiwan) and the derived column densities have been compared to observations of the water vapour distribution found by using infrared imaging spectrometer on the Deep Impact spacecraft (Feaga, L.M., A’Hearn, M.F., Sunshine, J.M., Groussin, O., Farnham, T.L. [2007]. Icarus 191(2), 134-145. http://dx.doi.org/10.1016/j.icarus.2007.04.038). Modelled total production rates are also compared to various observations made at the time of the Deep Impact encounter. Three different models were tested. For all models, the shape model constructed from the Deep Impact observations by Thomas et al. (Thomas, P.C., Veverka, J., Belton, M.J.S., Hidy, A., A’Hearn, M.F., Farnham, T.L., et al. [2007]. Icarus, 187(1), 4-15. http://dx.doi.org/10.1016/j.icarus.2006.12.013) was used. Outgassing depending only on the cosine of the solar insolation angle on each shape model facet is shown to provide an unsatisfactory model. Models constructed on the basis of active areas suggested by Kossacki and Szutowicz (Kossacki, K., Szutowicz, S. [2008]. Icarus, 195(2), 705-724. http://dx.doi.org/10.1016/j.icarus.2007.12.014) are shown to be superior. The Kossacki and Szutowicz model, however, also shows deficits which we have sought to improve upon. For the best model we investigate the properties of the outflow.
DSMC simulations of Mach 20 nitrogen flows about a 70 degree blunted cone and its wake
NASA Technical Reports Server (NTRS)
Moss, James N.; Dogra, Virendra K.; Wilmoth, Richard G.
1993-01-01
Numerical results obtained with the direct simulation Monte Carlo (DSMC) method are presented for Mach 20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are simulated with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is to characterize the wake flow under rarefied conditions. This is accomplished by calculating the influence of rarefaction on wake structure along with the impact that an afterbody has on flow features. This data report presents extensive information concerning flowfield features and surface quantities.
Investigation of Thermal Stress Convection in Nonisothermal Gases under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Mackowski, Daniel W.
1999-01-01
The project has sought to ascertain the veracity of the Burnett relations, as applied to slow moving, highly nonisothermal gases, by comparison of convection and stress predictions with those generated by the DSMC method. The Burnett equations were found to provide reasonable descriptions of the pressure distribution and normal stress in stationary gases with a 1-D temperature gradient. Continuum/Burnett predictions of thermal stress convection in 2-D heated enclosures, however, are not quantitatively supported by DSMC results. For such situations, it appears that thermal creep flows, generated at the boundaries of the enclosure, will be significantly larger than the flows resulting from thermal stress in the gas.
The solution of a model problem of the atmospheric entry of a small meteoroid
NASA Astrophysics Data System (ADS)
Zalogin, G. N.; Kusov, A. L.
2016-03-01
Direct simulation Monte Carlo modeling (DSMC) is used to solve the problem of the entry into the Earth's atmosphere of a small meteoroid. The main aspects of the physical theory of meteors, such as mass loss (ablation) and effects of aerodynamic and thermal shielding, are considered based on the numerical solution of the model problem of the atmospheric entry of an iron meteoroid. The DSMC makes it possible to obtain insight into the structure of the disturbed area around the meteoroid (coma) and trace its evolution depending on entry velocity and height (Knudsen number) in a transitional flow regime where calculation methods used for free molecular and continuum regimes are inapplicable.
DSMC Simulations of Apollo Capsule Aerodynamics for Hypersonic Rarefied Conditions
NASA Technical Reports Server (NTRS)
Moss, James N.; Glass, Christopher E.; Greene, Francis A.
2006-01-01
Direct simulation Monte Carlo DSMC simulations are performed for the Apollo capsule in the hypersonic low density transitional flow regime. The focus is on ow conditions similar to that experienced by the Apollo Command Module during the high altitude portion of its reentry Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction that is for free molecular to continuum conditions. Also aerodynamic data are presented that shows their sensitivity to a range of reentry velocity encompasing conditions that include reentry from low Earth orbit lunar return and Mars return velocities to km/s. The rarefied results are anchored in the continuum regime with data from Navier Stokes simulations
Molecular-level simulations of turbulence and its decay
Gallis, M. A.; Bitter, N. P.; Koehler, T. P.; ...
2017-02-08
Here, we provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov –5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can bemore » used to investigate turbulent flows quantitatively.« less
Numerical Simulations Of High-Altitude Aerothermodynamics Of A Prospective Spacecraft Model
NASA Astrophysics Data System (ADS)
Vashchenkov, P. V.; Kaskovsky, A. V.; Krylov, A. N.; Ivanov, M. S.
2011-05-01
The paper describes the computations of aerothermodynamic characteristics of a promising spacecraft (Prospective Piloted Transport System) along its de- scent trajectory at altitudes from 120 to 60 km. The computations are performed by the DSMC method with the use of the SMILE software system and by the engineering technique (local bridging method) with the use of the RuSat software system. The influence of real gas effects (excitation of rotational and vibrational energy modes and chemical reactions) on aerothermodynamic characteristics of the vehicle is studied. A comparison of results obtained by the approximate engineering method and the DSMC method allow the accuracy of prediction of aerodynamic characteristics by the local bridging method to be estimated.
NASA Astrophysics Data System (ADS)
Hansen, Kenneth; Altwegg, Kathrin; Berthelier, Jean-Jacques; Bieler, Andre; Calmonte, Ursina; Combi, Michael; De Keyser, Johan; Fiethe, Björn; Fougere, Nicolas; Fuselier, Stephen; Gombosi, Tamas; Hässig, Myrtha; Huang, Zhenguang; Le Roy, Lena; Rubin, Martin; Tenishev, Valeriy; Toth, Gabor; Tzou, Chia-Yu
2016-04-01
We have previously used results from the AMPS DSMC (Adaptive Mesh Particle Simulator Direct Simulation Monte Carlo) model to create an empirical model of the near comet coma (<400 km) of comet 67P for the pre-equinox orbit of comet 67P/Churyumov-Gerasimenko. In this work we extend the empirical model to the post-equinox, post-perihelion time period. In addition, we extend the coma model to significantly further from the comet (~100,000-1,000,000 km). The empirical model characterizes the neutral coma in a comet centered, sun fixed reference frame as a function of heliocentric distance, radial distance from the comet, local time and declination. Furthermore, we have generalized the model beyond application to 67P by replacing the heliocentric distance parameterizations and mapping them to production rates. Using this method, the model become significantly more general and can be applied to any comet. The model is a significant improvement over simpler empirical models, such as the Haser model. For 67P, the DSMC results are, of course, a more accurate representation of the coma at any given time, but the advantage of a mean state, empirical model is the ease and speed of use. One application of the empirical model is to de-trend the spacecraft motion from the ROSINA COPS and DFMS data (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Comet Pressure Sensor, Double Focusing Mass Spectrometer). The ROSINA instrument measures the neutral coma density at a single point and the measured value is influenced by the location of the spacecraft relative to the comet and the comet-sun line. Using the empirical coma model we can correct for the position of the spacecraft and compute a total production rate based on the single point measurement. In this presentation we will present the coma production rate as a function of heliocentric distance both pre- and post-equinox and perihelion.
Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC
NASA Technical Reports Server (NTRS)
Hedahl, Marc O.; Wilmoth, Richard G.
1995-01-01
The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.
Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model
NASA Astrophysics Data System (ADS)
Borges Sebastião, Israel; Alexeenko, Alina
2016-10-01
The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.
NASA Technical Reports Server (NTRS)
Yim, John T.; Burt, Jonathan M.
2015-01-01
The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.
Hypersonic Flows About a 25 degree Sharp Cone
NASA Technical Reports Server (NTRS)
Moss, James N.
2001-01-01
This paper presents the results of a numerical study that examines the surface heating discrepancies observed between computed and measured values along a sharp cone. With Mach numbers of an order of 10 and the freestream length Reynolds number of an order of 10 000, the present computations have been made with the direct simulation Monte Carlo (DSMC) method by using the G2 code of Bird. The flow conditions are those specified for two experiments conducted in the Veridian 48-inch Hypersonic Shock Tunnel. Axisymmetric simulations are made since the test model was assumed to be at zero incidence. Details of the current calculations are presented, along with comparisons between the experimental data, for surface heating and pressure distributions. Results of the comparisons show major differences in measured and calculated results for heating distributions, with differences in excess of 25 percent for the two cases examined.
Development and application of computational aerothermodynamics flowfield computer codes
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
1993-01-01
Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.
Extension of a hybrid particle-continuum method for a mixture of chemical species
NASA Astrophysics Data System (ADS)
Verhoff, Ashley M.; Boyd, Iain D.
2012-11-01
Due to the physical accuracy and numerical efficiency achieved by analyzing transitional, hypersonic flow fields with hybrid particle-continuum methods, this paper describes a Modular Particle-Continuum (MPC) method and its extension to include multiple chemical species. Considerations that are specific to a hybrid approach for simulating gas mixtures are addressed, including a discussion of the Chapman-Enskog velocity distribution function (VDF) for near-equilibrium flows, and consistent viscosity models for the individual CFD and DSMC modules of the MPC method. Representative results for a hypersonic blunt-body flow are then presented, where the flow field properties, surface properties, and computational performance are compared for simulations employing full CFD, full DSMC, and the MPC method.
Poly-Gaussian model of randomly rough surface in rarefied gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksenova, Olga A.; Khalidov, Iskander A.
2014-12-09
Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less
Modeling and simulation of radiation from hypersonic flows with Monte Carlo methods
NASA Astrophysics Data System (ADS)
Sohn, Ilyoup
During extreme-Mach number reentry into Earth's atmosphere, spacecraft experience hypersonic non-equilibrium flow conditions that dissociate molecules and ionize atoms. Such situations occur behind a shock wave leading to high temperatures, which have an adverse effect on the thermal protection system and radar communications. Since the electronic energy levels of gaseous species are strongly excited for high Mach number conditions, the radiative contribution to the total heat load can be significant. In addition, radiative heat source within the shock layer may affect the internal energy distribution of dissociated and weakly ionized gas species and the number density of ablative species released from the surface of vehicles. Due to the radiation total heat load to the heat shield surface of the vehicle may be altered beyond mission tolerances. Therefore, in the design process of spacecrafts the effect of radiation must be considered and radiation analyses coupled with flow solvers have to be implemented to improve the reliability during the vehicle design stage. To perform the first stage for radiation analyses coupled with gas-dynamics, efficient databasing schemes for emission and absorption coefficients were developed to model radiation from hypersonic, non-equilibrium flows. For bound-bound transitions, spectral information including the line-center wavelength and assembled parameters for efficient calculations of emission and absorption coefficients are stored for typical air plasma species. Since the flow is non-equilibrium, a rate equation approach including both collisional and radiatively induced transitions was used to calculate the electronic state populations, assuming quasi-steady-state (QSS). The Voigt line shape function was assumed for modeling the line broadening effect. The accuracy and efficiency of the databasing scheme was examined by comparing results of the databasing scheme with those of NEQAIR for the Stardust flowfield. An accuracy of approximately 1 % was achieved with an efficiency about three times faster than the NEQAIR code. To perform accurate and efficient analyses of chemically reacting flowfield - radiation interactions, the direct simulation Monte Carlo (DSMC) and the photon Monte Carlo (PMC) radiative transport methods are used to simulate flowfield - radiation coupling from transitional to peak heating freestream conditions. The non-catalytic and fully catalytic surface conditions were modeled and good agreement of the stagnation-point convective heating between DSMC and continuum fluid dynamics (CFD) calculation under the assumption of fully catalytic surface was achieved. Stagnation-point radiative heating, however, was found to be very different. To simulate three-dimensional radiative transport, the finite-volume based PMC (FV-PMC) method was employed. DSMC - FV-PMC simulations with the goal of understanding the effect of radiation on the flow structure for different degrees of hypersonic non-equilibrium are presented. It is found that except for the highest altitudes, the coupling of radiation influences the flowfield, leading to a decrease in both heavy particle translational and internal temperatures and a decrease in the convective heat flux to the vehicle body. The DSMC - FV-PMC coupled simulations are compared with the previous coupled simulations and correlations obtained using continuum flow modeling and one-dimensional radiative transport. The modeling of radiative transport is further complicated by radiative transitions occurring during the excitation process of the same radiating gas species. This interaction affects the distribution of electronic state populations and, in turn, the radiative transport. The radiative transition rate in the excitation/de-excitation processes and the radiative transport equation (RTE) must be coupled simultaneously to account for non-local effects. The QSS model is presented to predict the electronic state populations of radiating gas species taking into account non-local radiation. The definition of the escape factor which is dependent on the incoming radiative intensity from over all directions is presented. The effect of the escape factor on the distribution of electronic state populations of the atomic N and O radiating species is examined in a highly non-equilibrium flow condition using DSMC and PMC methods and the corresponding change of the radiative heat flux due to the non-local radiation is also investigated.
DSMC Computations for Regions of Shock/Shock and Shock/Boundary Layer Interaction
NASA Technical Reports Server (NTRS)
Moss, James N.
2001-01-01
This paper presents the results of a numerical study of hypersonic interacting flows at flow conditions that include those for which experiments have been conducted in the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel and the ONERA R5Ch low-density wind tunnel. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 9.3 to 11.4 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The results presented highlight the sensitivity of the calculations to grid resolution, provide results concerning the conditions for incipient separation, and provide information concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.
Multibillion-atom Molecular Dynamics Simulations of Plasticity, Spall, and Ejecta
NASA Astrophysics Data System (ADS)
Germann, Timothy C.
2007-06-01
Modern supercomputing platforms, such as the IBM BlueGene/L at Lawrence Livermore National Laboratory and the Roadrunner hybrid supercomputer being built at Los Alamos National Laboratory, are enabling large-scale classical molecular dynamics simulations of phenomena that were unthinkable just a few years ago. Using either the embedded atom method (EAM) description of simple (close-packed) metals, or modified EAM (MEAM) models of more complex solids and alloys with mixed covalent and metallic character, simulations containing billions to trillions of atoms are now practical, reaching volumes in excess of a cubic micron. In order to obtain any new physical insights, however, it is equally important that the analysis of such systems be tractable. This is in fact possible, in large part due to our highly efficient parallel visualization code, which enables the rendering of atomic spheres, Eulerian cells, and other geometric objects in a matter of minutes, even for tens of thousands of processors and billions of atoms. After briefly describing the BlueGene/L and Roadrunner architectures, and the code optimization strategies that were employed, results obtained thus far on BlueGene/L will be reviewed, including: (1) shock compression and release of a defective EAM Cu sample, illustrating the plastic deformation accompanying void collapse as well as the subsequent void growth and linkup upon release; (2) solid-solid martensitic phase transition in shock-compressed MEAM Ga; and (3) Rayleigh-Taylor fluid instability modeled using large-scale direct simulation Monte Carlo (DSMC) simulations. I will also describe our initial experiences utilizing Cell Broadband Engine processors (developed for the Sony PlayStation 3), and planned simulation studies of ejecta and spall failure in polycrystalline metals that will be carried out when the full Petaflop Opteron/Cell Roadrunner supercomputer is assembled in mid-2008.
NASA Astrophysics Data System (ADS)
Hansen, Kenneth C.; Altwegg, Kathrin; Bieler, Andre; Berthelier, Jean-Jacques; Calmonte, Ursina; Combi, Michael R.; De Keyser, Johan; Fiethe, Björn; Fougere, Nicolas; Fuselier, Stephen; Gombosi, T. I.; Hässig, Myrtha; Huang, Zhenguang; Le Roy, Léna; Rubin, Martin; Tenishev, Valeriy; Toth, Gabor; Tzou, Chia-Yu; ROSINA Team
2016-10-01
We have previously used results from the AMPS DSMC (Adaptive Mesh Particle Simulator Direct Simulation Monte Carlo) model to create an empirical model of the near comet water (H2O) coma of comet 67P/Churyumov-Gerasimenko. In this work we create additional empirical models for the coma distributions of CO2 and CO. The AMPS simulations are based on ROSINA DFMS (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Double Focusing Mass Spectrometer) data taken over the entire timespan of the Rosetta mission. The empirical model is created using AMPS DSMC results which are extracted from simulations at a range of radial distances, rotation phases and heliocentric distances. The simulation results are then averaged over a comet rotation and fitted to an empirical model distribution. Model coefficients are then fitted to piecewise-linear functions of heliocentric distance. The final product is an empirical model of the coma distribution which is a function of heliocentric distance, radial distance, and sun-fixed longitude and latitude angles. The model clearly mimics the behavior of water shifting production from North to South across the inbound equinox while the CO2 production is always in the South.The empirical model can be used to de-trend the spacecraft motion from the ROSINA COPS and DFMS data. The ROSINA instrument measures the neutral coma density at a single point and the measured value is influenced by the location of the spacecraft relative to the comet and the comet-sun line. Using the empirical coma model we can correct for the position of the spacecraft and compute a total production rate based on single point measurements. In this presentation we will present the coma production rates as a function of heliocentric distance for the entire Rosetta mission.This work was supported by contracts JPL#1266313 and JPL#1266314 from the US Rosetta Project and NASA grant NNX14AG84G from the Planetary Atmospheres Program.
Thermal lattice BGK models for fluid dynamics
NASA Astrophysics Data System (ADS)
Huang, Jian
1998-11-01
As an alternative in modeling fluid dynamics, the Lattice Boltzmann method has attracted considerable attention. In this thesis, we shall present a general form of thermal Lattice BGK. This form can handle large differences in density, temperature, and high Mach number. This generalized method can easily model gases with different adiabatic index values. The numerical transport coefficients of this model are estimated both theoretically and numerically. Their dependency on the sizes of integration steps in time and space, and on the flow velocity and temperature, are studied and compared with other established CFD methods. This study shows that the numerical viscosity of the Lattice Boltzmann method depends linearly on the space interval, and on the flow velocity as well for supersonic flow. This indicates this method's limitation in modeling high Reynolds number compressible thermal flow. On the other hand, the Lattice Boltzmann method shows promise in modeling micro-flows, i.e., gas flows in micron-sized devices. A two-dimensional code has been developed based on the conventional thermal lattice BGK model, with some modifications and extensions for micro- flows and wall-fluid interactions. Pressure-driven micro- channel flow has been simulated. Results are compared with experiments and simulations using other methods, such as a spectral element code using slip boundary condition with Navier-Stokes equations and a Direct Simulation Monte Carlo (DSMC) method.
Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC
NASA Astrophysics Data System (ADS)
Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina
2016-11-01
New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.
Modifications to Axially Symmetric Simulations Using New DSMC (2007) Algorithms
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2008-01-01
Several modifications aimed at improving physical accuracy are proposed for solving axially symmetric problems building on the DSMC (2007) algorithms introduced by Bird. Originally developed to solve nonequilibrium, rarefied flows, the DSMC method is now regularly used to solve complex problems over a wide range of Knudsen numbers. These new algorithms include features such as nearest neighbor collisions excluding the previous collision partners, separate collision and sampling cells, automatically adaptive variable time steps, a modified no-time counter procedure for collisions, and discontinuous and event-driven physical processes. Axially symmetric solutions require radial weighting for the simulated molecules since the molecules near the axis represent fewer real molecules than those farther away from the axis due to the difference in volume of the cells. In the present methodology, these radial weighting factors are continuous, linear functions that vary with the radial position of each simulated molecule. It is shown that how one defines the number of tentative collisions greatly influences the mean collision time near the axis. The method by which the grid is treated for axially symmetric problems also plays an important role near the axis, especially for scalar pressure. A new method to treat how the molecules are traced through the grid is proposed to alleviate the decrease in scalar pressure at the axis near the surface. Also, a modification to the duplication buffer is proposed to vary the duplicated molecular velocities while retaining the molecular kinetic energy and axially symmetric nature of the problem.
Orion Aerodynamics for Hypersonic Free Molecular to Continuum Conditions
NASA Technical Reports Server (NTRS)
Moss, James N.; Greene, Francis A.; Boyles, Katie A.
2006-01-01
Numerical simulations are performed for the Orion Crew Module, previously known as the Crew Exploration Vehicle (CEV) Command Module, to characterize its aerodynamics during the high altitude portion of its reentry into the Earth's atmosphere, that is, from free molecular to continuum hypersonic conditions. The focus is on flow conditions similar to those that the Orion Crew Module would experience during a return from the International Space Station. The bulk of the calculations are performed with two direct simulation Monte Carlo (DSMC) codes, and these data are anchored with results from both free molecular and Navier-Stokes calculations. Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction, that is, for free molecular to continuum conditions (Knudsen numbers of 111 to 0.0003). Also included are aerodynamic data as a function of angle of attack for different levels of rarefaction and results that demonstrate the aerodynamic sensitivity of the Orion CM to a range of reentry velocities (7.6 to 15 km/s).
Blunt Body Aerodynamics for Hypersonic Low Density Flows
NASA Technical Reports Server (NTRS)
Moss, James N.; Glass, Christopher E.; Greene, Francis A.
2006-01-01
Numerical simulations are performed for the Apollo capsule from the hypersonic rarefied to the continuum regimes. The focus is on flow conditions similar to those experienced by the Apollo 6 Command Module during the high altitude portion of its reentry. The present focus is to highlight some of the current activities that serve as a precursor for computational tool assessments that will be used to support the development of aerodynamic data bases for future capsule flight environments, particularly those for the Crew Exploration Vehicle (CEV). Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction; that is, free molecular to continuum conditions. Also, aerodynamic data are presented that shows their sensitivity to a range of reentry velocities, encompassing conditions that include reentry from low Earth orbit, lunar return, and Mars return velocities (7.7 to 15 km/s). The rarefied results obtained with direct simulation Monte Carlo (DSMC) codes are anchored in the continuum regime with data from Navier-Stokes simulations.
2017-01-01
A space propulsion system is important for the normal mission operations of a spacecraft by adjusting its attitude and maneuver. Generally, a mono- and a bipropellant thruster have been mainly used for low thrust liquid rocket engines. But as the plume gas expelled from these small thrusters diffuses freely in a vacuum space along all directions, unwanted effects due to the plume collision onto the spacecraft surfaces can dramatically cause a deterioration of the function and performance of a spacecraft. Thus, aim of the present study is to investigate and compare the major differences of the plume gas impingement effects quantitatively between the small mono- and bipropellant thrusters using the computational fluid dynamics (CFD). For an efficiency of the numerical calculations, the whole calculation domain is divided into two different flow regimes depending on the flow characteristics, and then Navier-Stokes equations and parallelized Direct Simulation Monte Carlo (DSMC) method are adopted for each flow regime. From the present analysis, thermal and mass influences of the plume gas impingements on the spacecraft were analyzed for the mono- and the bipropellant thrusters. As a result, it is concluded that a careful understanding on the plume impingement effects depending on the chemical characteristics of different propellants are necessary for the efficient design of the spacecraft. PMID:28636625
Accuracy Analysis of DSMC Chemistry Models Applied to a Normal Shock Wave
2012-06-20
CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON A. Ketsdever a. REPORT Unclassified b. ABSTRACT...coefficient from [4] is assumed to be 2×10−19 m3/s at 5000 K and 7− 18 m3/s at 10,000K ; the QK prediction using the present VHS collision parameters...is 9−20 m3/s at 5000 K and 2− 18 m3/s at 10000K. Note that the QK for the present work was modified for use with AHO energy levels for consistency
Review of blunt body wake flows at hypersonic low density conditions
NASA Technical Reports Server (NTRS)
Moss, J. N.; Price, J. M.
1996-01-01
Recent results of experimental and computational studies concerning hypersonic flows about blunted cones including their near wake are reviewed. Attention is focused on conditions where rarefaction effects are present, particularly in the wake. The experiments have been performed for a common model configuration (70 deg spherically-blunted cone) in five hypersonic facilities that encompass a significant range of rarefaction and nonequilibrium effects. Computational studies using direct simulation Monte Carlo (DSMC) and Navier-Stokes solvers have been applied to selected experiments performed in each of the facilities. In addition, computations have been made for typical flight conditions in both Earth and Mars atmospheres, hence more energetic flows than produced in the ground-based tests. Also, comparisons of DSMC calculations and forebody measurements made for the Japanese Orbital Reentry Experiment (OREX) vehicle (a 50 deg spherically-blunted cone) are presented to bridge the spectrum of ground to flight conditions.
Radiation Modeling with Direct Simulation Monte Carlo
NASA Technical Reports Server (NTRS)
Carlson, Ann B.; Hassan, H. A.
1991-01-01
Improvements in the modeling of radiation in low density shock waves with direct simulation Monte Carlo (DSMC) are the subject of this study. A new scheme to determine the relaxation collision numbers for excitation of electronic states is proposed. This scheme attempts to move the DSMC programs toward a more detailed modeling of the physics and more reliance on available rate data. The new method is compared with the current modeling technique and both techniques are compared with available experimental data. The differences in the results are evaluated. The test case is based on experimental measurements from the AVCO-Everett Research Laboratory electric arc-driven shock tube of a normal shock wave in air at 10 km/s and .1 Torr. The new method agrees with the available data as well as the results from the earlier scheme and is more easily extrapolated to di erent ow conditions.
A Fokker-Planck based kinetic model for diatomic rarefied gas flows
NASA Astrophysics Data System (ADS)
Gorji, M. Hossein; Jenny, Patrick
2013-06-01
A Fokker-Planck based kinetic model is presented here, which also accounts for internal energy modes characteristic for diatomic gas molecules. The model is based on a Fokker-Planck approximation of the Boltzmann equation for monatomic molecules, whereas phenomenological principles were employed for the derivation. It is shown that the model honors the equipartition theorem in equilibrium and fulfills the Landau-Teller relaxation equations for internal degrees of freedom. The objective behind this approximate kinetic model is accuracy at reasonably low computational cost. This can be achieved due to the fact that the resulting stochastic differential equations are continuous in time; therefore, no collisions between the simulated particles have to be calculated. Besides, because of the devised energy conserving time integration scheme, it is not required to resolve the collisional scales, i.e., the mean collision time and the mean free path of molecules. This, of course, gives rise to much more efficient simulations with respect to other particle methods, especially the conventional direct simulation Monte Carlo (DSMC), for small and moderate Knudsen numbers. To examine the new approach, first the computational cost of the model was compared with respect to DSMC, where significant speed up could be obtained for small Knudsen numbers. Second, the structure of a high Mach shock (in nitrogen) was studied, and the good performance of the model for such out of equilibrium conditions could be demonstrated. At last, a hypersonic flow of nitrogen over a wedge was studied, where good agreement with respect to DSMC (with level to level transition model) for vibrational and translational temperatures is shown.
Particle Methods for Simulating Atomic Radiation in Hypersonic Reentry Flows
NASA Astrophysics Data System (ADS)
Ozawa, T.; Wang, A.; Levin, D. A.; Modest, M.
2008-12-01
With a fast reentry speed, the Stardust vehicle generates a strong shock region ahead of its blunt body with a temperature above 60,000 K. These extreme Mach number flows are sufficiently energetic to initiate gas ionization processes and thermal and chemical ablation processes. The nonequilibrium gaseous radiation from the shock layer is so strong that it affects the flowfield macroparameter distributions. In this work, we present the first loosely coupled direct simulation Monte Carlo (DSMC) simulations with the particle-based photon Monte Carlo (p-PMC) method to simulate high-Mach number reentry flows in the near-continuum flow regime. To efficiently capture the highly nonequilibrium effects, emission and absorption cross section databases using the Nonequilibrium Air Radiation (NEQAIR) were generated, and atomic nitrogen and oxygen radiative transport was calculated by the p-PMC method. The radiation energy change calculated by the p-PMC method has been coupled in the DSMC calculations, and the atomic radiation was found to modify the flow field and heat flux at the wall.
Simulation of thermal transpiration flow using a high-order moment method
NASA Astrophysics Data System (ADS)
Sheng, Qiang; Tang, Gui-Hua; Gu, Xiao-Jun; Emerson, David R.; Zhang, Yong-Hao
2014-04-01
Nonequilibrium thermal transpiration flow is numerically analyzed by an extended thermodynamic approach, a high-order moment method. The captured velocity profiles of temperature-driven flow in a parallel microchannel and in a micro-chamber are compared with available kinetic data or direct simulation Monte Carlo (DSMC) results. The advantages of the high-order moment method are shown as a combination of more accuracy than the Navier-Stokes-Fourier (NSF) equations and less computation cost than the DSMC method. In addition, the high-order moment method is also employed to simulate the thermal transpiration flow in complex geometries in two types of Knudsen pumps. One is based on micro-mechanized channels, where the effect of different wall temperature distributions on thermal transpiration flow is studied. The other relies on porous structures, where the variation of flow rate with a changing porosity or pore surface area ratio is investigated. These simulations can help to optimize the design of a real Knudsen pump.
DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions
NASA Technical Reports Server (NTRS)
Moss, James N.
2000-01-01
This paper describes the results of a numerical study of interacting hypersonic flows at conditions that can be produced in ground-based test facilities. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 10 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The flow conditions are those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel. The range of flow conditions, model configurations, and model sizes provides a significant range of shock/shock and shock/boundary layer interactions at low Reynolds number conditions. Results presented will highlight the sensitivity of the calculations to grid resolution, contrast the differences in flow structure for hypersonic cold flows and those of more energetic but still low enthalpy flows, and compare the present results with experimental measurements for surface heating, pressure, and extent of separation.
Program Manager - A Bimonthly Magazine of DSMC, Volume 27, Number 2.
1998-04-01
catalog. http /www.gsa.gov -------------- - Online shopping for commercial items to http ’Iwww.ndia.org I--- support government interests. Events...funds. Allows users access to GAO "Whats New in Contracting?" educational reports, FAQs. products catalog. http://www.gsa.gov Online shopping for
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-10-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ω_i while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-09-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2017-11-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Numerical Modeling of Thermal Edge Flow
NASA Astrophysics Data System (ADS)
Ibrayeva, Aizhan
A gas flow can be induced between two interdigitated arrays of thin vanes, when one of the arrays is uniformly heated or cooled. Sharply curved isotherms near the vane edges leads to momentum imbalance among incident particles, which creates Knudsen force to the vane and thermal edge flow in a gas. The flow is observed in a rarefied gas, when the mean free path of the molecules are comparable with the characteristic length scale of the system. In order to understand a physical mechanism of the flow and Knudsen force, the configuration was numerically investigated under different gas rarefication degrees and temperature gradients in the system by direct simulation Monte Carlo (DSMC) method. From simulations, the highest force value is obtained when Knudsen number is around 0.5 and becomes negligible in free molecular and continuum regimes. DSMC results are analyzed from the theoretical point of view and compared to experimental data. Validation of the simulations is done by the RKDG method. An effect of various geometric parameters to the performance of the actuator was investigated and suggestions were made for improved design of the device.
Effect of plasma distribution on propulsion performance in electrodeless plasma thrusters
NASA Astrophysics Data System (ADS)
Takao, Yoshinori; Takase, Kazuki; Takahashi, Kazunori
2016-09-01
A helicon plasma thruster consisting of a helicon plasma source and a magnetic nozzle is one of the candidates for long-lifetime thrusters because no electrodes are employed to generate or accelerate plasma. A recent experiment, however, detected the non-negligible axial momentum lost to the lateral wall boundary, which degrades thruster performance, when the source was operated with highly ionized gases. To investigate this mechanism, we have conducted two-dimensional axisymmetric particle-in-cell (PIC) simulations with the neutral distribution obtained by Direct Simulation Monte Carlo (DSMC) method. The numerical results have indicated that the axially asymmetric profiles of the plasma density and potential are obtained when the strong decay of neutrals occurs at the source downstream. This asymmetric potential profile leads to the accelerated ion towards the lateral wall, leading to the non-negligible net axial force in the opposite direction of the thrust. Hence, to reduce this asymmetric profile by increasing the neutral density at downstream and/or by confining plasma with external magnetic field would result in improvement of the propulsion performance. These effects are also analyzed by PIC/DSMC simulations.
Pauley, Tim; Gargaro, Judith; Chenard, Glen; Cavanagh, Helen; McKay, Sandra M
2016-01-01
This study evaluated paraprofessional-led diabetes self-management coaching (DSMC) among 94 clients with type 2 diabetes recruited from a Community Care Access Centre in Ontario, Canada. Subjects were randomized to standard care or standard care plus coaching. Measures included the Diabetes Self-Efficacy Scale (DSES), Insulin Management Diabetes Self-Efficacy Scale (IMDSES), and Hospital Anxiety and Depression Scale (HADS). Both groups showed improvement in DSES (6.6 + 1.5 vs. 7.2 + 1.5, p < .001) and IMDSES (113.5 + 20.6 vs. 125.7 + 22.3, p < .001); there were no between-groups differences. There were no between-groups differences in anxiety (p > .05 for all) or depression scores (p > .05 for all), or anxiety (p > .05 for all) or depression (p > .05 for all) categories at baseline, postintervention, or follow-up. While all subjects demonstrated significant improvements in self-efficacy measures, there is no evidence to support paraprofessional-led DSMC as an intervention which conveys additional benefits over standard care.
Unified gas-kinetic scheme with multigrid convergence for rarefied flow study
NASA Astrophysics Data System (ADS)
Zhu, Yajun; Zhong, Chengwen; Xu, Kun
2017-09-01
The unified gas kinetic scheme (UGKS) is based on direct modeling of gas dynamics on the mesh size and time step scales. With the modeling of particle transport and collision in a time-dependent flux function in a finite volume framework, the UGKS can connect the flow physics smoothly from the kinetic particle transport to the hydrodynamic wave propagation. In comparison with the direct simulation Monte Carlo (DSMC) method, the current equation-based UGKS can implement implicit techniques in the updates of macroscopic conservative variables and microscopic distribution functions. The implicit UGKS significantly increases the convergence speed for steady flow computations, especially in the highly rarefied and near continuum regimes. In order to further improve the computational efficiency, for the first time, a geometric multigrid technique is introduced into the implicit UGKS, where the prediction step for the equilibrium state and the evolution step for the distribution function are both treated with multigrid acceleration. More specifically, a full approximate nonlinear system is employed in the prediction step for fast evaluation of the equilibrium state, and a correction linear equation is solved in the evolution step for the update of the gas distribution function. As a result, convergent speed has been greatly improved in all flow regimes from rarefied to the continuum ones. The multigrid implicit UGKS (MIUGKS) is used in the non-equilibrium flow study, which includes microflow, such as lid-driven cavity flow and the flow passing through a finite-length flat plate, and high speed one, such as supersonic flow over a square cylinder. The MIUGKS shows 5-9 times efficiency increase over the previous implicit scheme. For the low speed microflow, the efficiency of MIUGKS is several orders of magnitude higher than the DSMC. Even for the hypersonic flow at Mach number 5 and Knudsen number 0.1, the MIUGKS is still more than 100 times faster than the DSMC method for obtaining a convergent steady state solution.
1993-06-01
lr __________ r onM eth S()4 Greg Caruth _________________ William J. Perry, Typography and Design DEPSECDEF 43 Paula Croisetlere 3 Program Manager...the DSMC Press to be such a link to the govern- for publication consideration in either the brand ment and private sector defense acquisition com- new
DSMC analysis of species separation in rarefied nozzle flows
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.
1992-01-01
The direct-simulation Monte Carlo method has been used to investigate the behavior of a small amount of a harmful species in the plume and the backflow region of nuclear thermal propulsion rockets. Species separation due to pressure diffusion and nonequilibrium effects due to rapid expansion into a surrounding low-density environment are the most important factors in this type of flow. It is shown that a relatively large amount of the lighter species is scattered into the backflow region and the heavier species becomes negligible in this region due to the extreme separation between species. It is also shown that the type of molecular interaction between the species can have a substantial effect on separation of the species.
Thermal Nonequilibrium in Hypersonic Separated Flow
2014-12-22
flow duration and steadiness. 15. SUBJECT TERMS Hypersonic Flowfield Measurements, Laser Diagnostics of Gas Flow, Laser Induced...extent than the NS computation. While it would be convenient to believe that the more physically realistic flow modeling of the DSMC gas - surface...index and absorption coefficient. Each of the curves was produced assuming a 0.5 % concentration of lithium at the Condition A nozzle exit conditions
NASA Astrophysics Data System (ADS)
Akhlaghi, H.; Roohi, E.; Myong, R. S.
2012-11-01
Micro/nano geometries with specified wall heat flux are widely encountered in electronic cooling and micro-/nano-fluidic sensors. We introduce a new technique to impose the desired (positive/negative) wall heat flux boundary condition in the DSMC simulations. This technique is based on an iterative progress on the wall temperature magnitude. It is found that the proposed iterative technique has a good numerical performance and could implement both positive and negative values of wall heat flux rates accurately. Using present technique, rarefied gas flow through micro-/nanochannels under specified wall heat flux conditions is simulated and unique behaviors are observed in case of channels with cooling walls. For example, contrary to the heating process, it is observed that cooling of micro/nanochannel walls would result in small variations in the density field. Upstream thermal creep effects in the cooling process decrease the velocity slip despite of the Knudsen number increase along the channel. Similarly, cooling process decreases the curvature of the pressure distribution below the linear incompressible distribution. Our results indicate that flow cooling increases the mass flow rate through the channel, and vice versa.
Molecular simulation of small Knudsen number flows
NASA Astrophysics Data System (ADS)
Fei, Fei; Fan, Jing
2012-11-01
The direct simulation Monte Carlo (DSMC) method is a powerful particle-based method for modeling gas flows. It works well for relatively large Knudsen (Kn) numbers, typically larger than 0.01, but quickly becomes computationally intensive as Kn decreases due to its time step and cell size limitations. An alternative approach was proposed to relax or remove these limitations, based on replacing pairwise collisions with a stochastic model corresponding to the Fokker-Planck equation [J. Comput. Phys., 229, 1077 (2010); J. Fluid Mech., 680, 574 (2011)]. Similar to the DSMC method, the downside of that approach suffers from computationally statistical noise. To solve the problem, a diffusion-based information preservation (D-IP) method has been developed. The main idea is to track the motion of a simulated molecule from the diffusive standpoint, and obtain the flow velocity and temperature through sampling and averaging the IP quantities. To validate the idea and the corresponding model, several benchmark problems with Kn ˜ 10-3-10-4 have been investigated. It is shown that the IP calculations are not only accurate, but also efficient because they make possible using a time step and cell size over an order of magnitude larger than the mean collision time and mean free path, respectively.
Study of cluster behavior in the riser of CFB by the DSMC method
NASA Astrophysics Data System (ADS)
Liu, H. P.; Liu, D. Y.; Liu, H.
2010-03-01
The flow behaviors of clusters in the riser of a two-dimensional (2D) circulating fluidized bed was numerically studied based on the Euler-Lagrangian approach. Gas turbulence was modeled by means of Large Eddy Simulation (LES). Particle collision was modeled by means of the direct simulation Monte Carlo (DSMC) method. Clusters' hydrodynamic characteristics are obtained using a cluster identification method proposed by sharrma et al. (2000). The descending clusters near the wall region and the up- and down-flowing clusters in the core were studied separately due to their different flow behaviors. The effects of superficial gas velocity on the cluster behavior were analyzed. Simulated results showed that near wall clusters flow downward and the descent velocity is about -45 cm/s. The occurrence frequency of the up-flowing cluster is higher than that of down-flowing cluster in the core of riser. With the increase of superficial gas velocity, the solid concentration and occurrence frequency of clusters decrease, while the cluster axial velocity increase. Simulated results were in agreement with experimental data. The stochastic method used in present paper is feasible for predicting the cluster flow behavior in CFBs.
Rarefied flow past a flat plate at incidence
NASA Technical Reports Server (NTRS)
Dogra, Virendra K.; Moss, James N.; Price, Joseph M.
1988-01-01
Results of a numerical study using the direct simulation Monte Carlo (DSMC) method are presented for the transitional flow about a flat plate at 40 deg incidence. The plate has zero thickness and a length of 1.0 m. The flow conditions simulated are those experienced by the Shuttle Orbiter during reentry at 7.5 km/s. The range of freestream conditions are such that the freestream Knudsen number values are between 0.02 and 8.4, i.e., conditions that encompass most of the transitional flow regime. The DSMC simulations show that transitional effects are evident when compared with free molecule results for all cases considered. The calculated results demonstrate clearly the necessity of having a means of identifying the effects of transitional flow when making aerodynamic flight measurements as are currently being made with the Space Shuttle Orbiter vehicles. Previous flight data analyses have relied exclusively on adjustments in the gas-surface interaction models without accounting for the transitional effect which can be comparable in magnitude. The present calculations show that the transitional effect at 175 km would increase the Space Shuttle Orbiter lift-drag ratio by 90 percent over the free molecule value.
NASA Astrophysics Data System (ADS)
Yang, Guang; Weigand, Bernhard
2018-04-01
The pressure-driven gas transport characteristics through a porous medium consisting of arrays of discrete elements is investigated by using the direct simulation Monte Carlo (DSMC) method. Different porous structures are considered, accounting for both two- and three-dimensional arrangements of basic microscale and nanoscale elements. The pore scale flow patterns in the porous medium are obtained, and the Knudsen diffusion in the pores is studied in detail for slip and transition flow regimes. A new effective pore size of the porous medium is defined, which is a function of the porosity, the tortuosity, the contraction factor, and the intrinsic permeability of the porous medium. It is found that the Klinkenberg effect in different porous structures can be fully described by the Knudsen number characterized by the effective pore size. The accuracies of some widely used Klinkenberg correlations are evaluated by the present DSMC results. It is also found that the available correlations for apparent permeability, most of which are derived from simple pipe or channel flows, can still be applicative for more complex porous media flows, by using the effective pore size defined in this study.
Collisional spreading of Enceladus’ neutral cloud
NASA Astrophysics Data System (ADS)
Cassidy, T. A.; Johnson, R. E.
2010-10-01
We describe a direct simulation Monte Carlo (DSMC) model of Enceladus' neutral cloud and compare its results to observations of OH and O orbiting Saturn. The OH and O are observed far from Enceladus (at 3.95 R S), as far out as 25 R S for O. Previous DSMC models attributed this breadth primarily to ion/neutral scattering (including charge exchange) and molecular dissociation. However, the newly reported O observations and a reinterpretation of the OH observations (Melin, H., Shemansky, D.E., Liu, X. [2009] Planet. Space Sci., 57, 1743-1753, PS&S) showed that the cloud is broader than previously thought. We conclude that the addition of neutral/neutral scattering (Farmer, A.J. [2009] Icarus, 202, 280-286), which was underestimated by previous models, brings the model results in line with the new observations. Neutral/neutral collisions primarily happen in the densest part of the cloud, near Enceladus' orbit, but contribute to the spreading by pumping up orbital eccentricity. Based on the cloud model presented here Enceladus maybe the ultimate source of oxygen for the upper atmospheres of Titan and Saturn. We also predict that large quantities of OH, O and H 2O bombard Saturn's icy satellites.
Rarefaction Effects in Hypersonic Aerodynamics
NASA Astrophysics Data System (ADS)
Riabov, Vladimir V.
2011-05-01
The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.
Coma dust scattering concepts applied to the Rosetta mission
NASA Astrophysics Data System (ADS)
Fink, Uwe; Rinaldi, Giovanna
2015-09-01
This paper describes basic concepts, as well as providing a framework, for the interpretation of the light scattered by the dust in a cometary coma as observed by instruments on a spacecraft such as Rosetta. It is shown that the expected optical depths are small enough that single scattering can be applied. Each of the quantities that contribute to the scattered intensity is discussed in detail. Using optical constants of the likely coma dust constituents, olivine, pyroxene and carbon, the scattering properties of the dust are calculated. For the resulting observable scattering intensities several particle size distributions are considered, a simple power law, power laws with a small particle cut off and a log-normal distributions with various parameters. Within the context of a simple outflow model, the standard definition of Afρ for a circular observing aperture is expanded to an equivalent Afρ for an annulus and specific line-of-sight observation. The resulting equivalence between the observed intensity and Afρ is used to predict observable intensities for 67P/Churyumov-Gerasimenko at the spacecraft encounter near 3.3 AU and near perihelion at 1.3 AU. This is done by normalizing particle production rates of various size distributions to agree with observed ground based Afρ values. Various geometries for the column densities in a cometary coma are considered. The calculations for a simple outflow model are compared with more elaborate Direct Simulation Monte Carlo Calculation (DSMC) models to define the limits of applicability of the simpler analytical approach. Thus our analytical approach can be applied to the majority of the Rosetta coma observations, particularly beyond several nuclear radii where the dust is no longer in a collisional environment, without recourse to computer intensive DSMC calculations for specific cases. In addition to a spherically symmetric 1-dimensional approach we investigate column densities for the 2-dimensional DSMC model on the day and night side of the comet. Our calculations are also applied to estimates of the dust particle densities and flux which are useful for the in-situ experiments on Rosetta.
New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow
NASA Astrophysics Data System (ADS)
Zakeri, Ramin; Kamali Moghadam, Ramin; Mani, Mahmoud
2017-04-01
The modified quantum kinetic (MQK) chemical reaction model introduced by Zakeri et al. is developed for applicable cases in axisymmetric reactive rarefied gas flows using the direct simulation Monte Carlo (DSMC) method. Although, the MQK chemical model uses some modifications in the quantum kinetic (QK) method, it also employs the general soft sphere collision model and Stockmayer potential function to properly select the collision pairs in the DSMC algorithm and capture both the attraction and repulsion intermolecular forces in rarefied gas flows. For assessment of the presented model in the simulation of more complex and applicable reacting flows, first, the air dissociation is studied in a single cell for equilibrium and non-equilibrium conditions. The MQK results agree well with the analytical and experimental data and they accurately predict the characteristics of the rarefied flowfield with chemical reaction. To investigate accuracy of the MQK chemical model in the simulation of the axisymmetric flow, air dissociation is also assessed in an axial hypersonic flow around two geometries, the sphere as a benchmark case and the blunt body (STS-2) as an applicable test case. The computed results including the transient, rotational and vibrational temperatures, species concentration in the stagnation line, and also the heat flux and pressure coefficient on the surface are compared with those of the other chemical methods like the QK and total collision energy (TCE) models and available analytical and experimental data. Generally, the MQK chemical model properly simulates the chemical reactions and predicts flowfield characteristics more accurate rather than the typical QK model. Although in some cases, results of the MQK approaches match with those of the TCE method, the main point is that the MQK does not need any experimental data or unrealistic assumption of specular boundary condition as used in the TCE method. Another advantage of the MQK model is the significant reduction of computational cost rather than the QK chemical model to reach the same accuracy because of applying more proper collision model and consequently, decrease of the particles collision number.
DSMC Simulations of Blunt Body Flows for Mars Entries: Mars Pathfinder and Mars Microprobe Capsules
NASA Technical Reports Server (NTRS)
Moss, James N.; Wilmoth, Richard G.; Price, Joseph M.
1997-01-01
The hypersonic transitional flow aerodynamics of the Mars Pathfinder and Mars Microprobe capsules are simulated with the direct simulation Monte Carlo method. Calculations of axial, normal, and static pitching coefficients were obtained over an angle of attack range comparable to actual flight requirements. Comparisons are made with modified Newtonian and free-molecular-flow calculations. Aerothermal results were also obtained for zero incidence entry conditions.
Comparison of DSMC Reaction Models with QCT Reaction Rates for Nitrogen
2016-07-17
The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 13...Distribution A: Approved for Public Release, Distribution Unlimited PA #16299 Introduction • Comparison with measurements is final goal • Validation...model verification and parameter adjustment • Four chemistry models: total collision energy (TCE), quantum kinetic (QK), vibration-dissociation favoring
NASA Astrophysics Data System (ADS)
Chen, Syuan-Yi; Gong, Sheng-Sian
2017-09-01
This study aims to develop an adaptive high-precision control system for controlling the speed of a vane-type air motor (VAM) pneumatic servo system. In practice, the rotor speed of a VAM depends on the input mass air flow, which can be controlled by the effective orifice area (EOA) of an electronic throttle valve (ETV). As the control variable of a second-order pneumatic system is the integral of the EOA, an observation-based adaptive dynamic sliding-mode control (ADSMC) system is proposed to derive the differential of the control variable, namely, the EOA control signal. In the ADSMC system, a proportional-integral-derivative fuzzy neural network (PIDFNN) observer is used to achieve an ideal dynamic sliding-mode control (DSMC), and a supervisor compensator is designed to eliminate the approximation error. As a result, the ADSMC incorporates the robustness of a DSMC and the online learning ability of a PIDFNN. To ensure the convergence of the tracking error, a Lyapunov-based analytical method is employed to obtain the adaptive algorithms required to tune the control parameters of the online ADSMC system. Finally, our experimental results demonstrate the precision and robustness of the ADSMC system for highly nonlinear and time-varying VAM pneumatic servo systems.
State-specific catalytic recombination boundary condition for DSMC methods in aerospace applications
NASA Astrophysics Data System (ADS)
Bariselli, F.; Torres, E.; Magin, T. E.
2016-11-01
Accurate characterization of the hypersonic flow around a vehicle during its atmospheric entry is important for a precise quantification of heat flux margins. In some cases, exothermic reactions promoted by the catalytic properties of the surface material can significantly contribute to the overall heat flux. In this work, the effect of catalytic recombination of atomic nitrogen is examined within the framework of a state-specific DSMC implementation. State-to-state reaction cross sections are derived from a detailed quantum-chemical database for the N2(v, J) + N system. A coarse-grain model is used to reduce the number of internal states and state-specific reactions to a manageable level. The catalytic boundary condition is based on an phenomenological approach and the state-specific surface recombination probabilities can be imposed by the user. This can represent an important aspect in modelling catalysis, since experiments and molecular dynamics suggest that only part of the chemical energy is absorbed by the wall, with the formed molecules leaving the surface in an excited state. The implementation is verified in a simplified geometrical configuration by comparing the numerical results with an analytical solution, developed for a 1D diffusion problem in a binary mixture. Then, the effect of catalysis in a hypersonic flow along the stagnation line of a blunt body is studied.
Hypersonic separated flows about "tick" configurations with sensitivity to model design
NASA Astrophysics Data System (ADS)
Moss, J. N.; O'Byrne, S.; Gai, S. L.
2014-12-01
This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.
A diffusive information preservation method for small Knudsen number flows
NASA Astrophysics Data System (ADS)
Fei, Fei; Fan, Jing
2013-06-01
The direct simulation Monte Carlo (DSMC) method is a powerful particle-based method for modeling gas flows. It works well for relatively large Knudsen (Kn) numbers, typically larger than 0.01, but quickly becomes computationally intensive as Kn decreases due to its time step and cell size limitations. An alternative approach was proposed to relax or remove these limitations, based on replacing pairwise collisions with a stochastic model corresponding to the Fokker-Planck equation [J. Comput. Phys., 229, 1077 (2010); J. Fluid Mech., 680, 574 (2011)]. Similar to the DSMC method, the downside of that approach suffers from computationally statistical noise. To solve the problem, a diffusion-based information preservation (D-IP) method has been developed. The main idea is to track the motion of a simulated molecule from the diffusive standpoint, and obtain the flow velocity and temperature through sampling and averaging the IP quantities. To validate the idea and the corresponding model, several benchmark problems with Kn ˜ 10-3-10-4 have been investigated. It is shown that the IP calculations are not only accurate, but also efficient because they make possible using a time step and cell size over an order of magnitude larger than the mean collision time and mean free path, respectively.
Hypersonic Separated Flows About "Tick" Configurations With Sensitivity to Model Design
NASA Technical Reports Server (NTRS)
Moss, J. N.; O'Byrne, S.; Gai, S. L.
2014-01-01
This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.
Evaluation of new collision-pair selection models in DSMC
NASA Astrophysics Data System (ADS)
Akhlaghi, Hassan; Roohi, Ehsan
2017-10-01
The current paper investigates new collision-pair selection procedures in a direct simulation Monte Carlo (DSMC) method. Collision partner selection based on the random procedure from nearest neighbor particles and deterministic selection of nearest neighbor particles have already been introduced as schemes that provide accurate results in a wide range of problems. In the current research, new collision-pair selections based on the time spacing and direction of the relative movement of particles are introduced and evaluated. Comparisons between the new and existing algorithms are made considering appropriate test cases including fluctuations in homogeneous gas, 2D equilibrium flow, and Fourier flow problem. Distribution functions for number of particles and collisions in cell, velocity components, and collisional parameters (collision separation, time spacing, relative velocity, and the angle between relative movements of particles) are investigated and compared with existing analytical relations for each model. The capability of each model in the prediction of the heat flux in the Fourier problem at different cell numbers, numbers of particles, and time steps is examined. For new and existing collision-pair selection schemes, the effect of an alternative formula for the number of collision-pair selections and avoiding repetitive collisions are investigated via the prediction of the Fourier heat flux. The simulation results demonstrate the advantages and weaknesses of each model in different test cases.
Mankodi, T K; Bhandarkar, U V; Puranik, B P
2017-08-28
A new ab initio based chemical model for a Direct Simulation Monte Carlo (DSMC) study suitable for simulating rarefied flows with a high degree of non-equilibrium is presented. To this end, Collision Induced Dissociation (CID) cross sections for N 2 +N 2 →N 2 +2N are calculated and published using a global complete active space self-consistent field-complete active space second order perturbation theory N 4 potential energy surface and quasi-classical trajectory algorithm for high energy collisions (up to 30 eV). CID cross sections are calculated for only a selected set of ro-vibrational combinations of the two nitrogen molecules, and a fitting scheme based on spectroscopic weights is presented to interpolate the CID cross section for all possible ro-vibrational combinations. The new chemical model is validated by calculating equilibrium reaction rate coefficients that can be compared well with existing shock tube and computational results. High-enthalpy hypersonic nitrogen flows around a cylinder in the transition flow regime are simulated using DSMC to compare the predictions of the current ab initio based chemical model with the prevailing phenomenological model (the total collision energy model). The differences in the predictions are discussed.
NASA Astrophysics Data System (ADS)
Takase, Kazuki; Takahashi, Kazunori; Takao, Yoshinori
2018-02-01
The effects of neutral distribution and an external magnetic field on plasma distribution and thruster performance are numerically investigated using a particle-in-cell simulation with Monte Carlo collisions (PIC-MCC) and the direct simulation Monte Carlo (DSMC) method. The modeled thruster consists of a quartz tube 1 cm in diameter and 3 cm in length, where a double-turn rf loop antenna is wound at the center of the tube and a solenoid is placed between the loop antenna and the downstream tube exit. A xenon propellant is introduced from both the upstream and downstream sides of the thruster, and the flow rates are varied while maintaining the total gas flow rate of 30 μg/s. The PIC-MCC calculations have been conducted using the neutral distribution obtained from the DSMC calculations, which were applied with different strengths of the magnetic field. The numerical results show that both the downstream gas injection and the external magnetic field with a maximum strength near the thruster exit lead to a shift of the plasma density peak from the upstream to the downstream side. Consequently, a larger total thrust is obtained when increasing the downstream gas injection and the magnetic field strength, which qualitatively agrees with a previous experiment using a helicon plasma source.
TiOx deposited by magnetron sputtering: a joint modelling and experimental study
NASA Astrophysics Data System (ADS)
Tonneau, R.; Moskovkin, P.; Pflug, A.; Lucas, S.
2018-05-01
This paper presents a 3D multiscale simulation approach to model magnetron reactive sputter deposition of TiOx⩽2 at various O2 inlets and its validation against experimental results. The simulation first involves the transport of sputtered material in a vacuum chamber by means of a three-dimensional direct simulation Monte Carlo (DSMC) technique. Second, the film growth at different positions on a 3D substrate is simulated using a kinetic Monte Carlo (kMC) method. When simulating the transport of species in the chamber, wall chemistry reactions are taken into account in order to get the proper content of the reactive species in the volume. Angular and energy distributions of particles are extracted from DSMC and used for film growth modelling by kMC. Along with the simulation, experimental deposition of TiOx coatings on silicon samples placed at different positions on a curved sample holder was performed. The experimental results are in agreement with the simulated ones. For a given coater, the plasma phase hysteresis behaviour, film composition and film morphology are predicted. The used methodology can be applied to any coater and any films. This paves the way to the elaboration of a virtual coater allowing a user to predict composition and morphology of films deposited in silico.
Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow.
Tang, G H; Gu, X J; Barber, R W; Emerson, D R; Zhang, Y H
2008-08-01
Accurate evaluation of damping in laterally oscillating microstructures is challenging due to the complex flow behavior. In addition, device fabrication techniques and surface properties will have an important effect on the flow characteristics. Although kinetic approaches such as the direct simulation Monte Carlo (DSMC) method and directly solving the Boltzmann equation can address these challenges, they are beyond the reach of current computer technology for large scale simulation. As the continuum Navier-Stokes equations become invalid for nonequilibrium flows, we take advantage of the computationally efficient lattice Boltzmann method to investigate nonequilibrium oscillating flows. We have analyzed the effects of the Stokes number, Knudsen number, and tangential momentum accommodation coefficient for oscillating Couette flow and Stokes' second problem. Our results are in excellent agreement with DSMC data for Knudsen numbers up to Kn=O(1) and show good agreement for Knudsen numbers as large as 2.5. In addition to increasing the Stokes number, we demonstrate that increasing the Knudsen number or decreasing the accommodation coefficient can also expedite the breakdown of symmetry for oscillating Couette flow. This results in an earlier transition from quasisteady to unsteady flow. Our paper also highlights the deviation in velocity slip between Stokes' second problem and the confined Couette case.
A study of internal energy relaxation in shocks using molecular dynamics based models
NASA Astrophysics Data System (ADS)
Li, Zheng; Parsons, Neal; Levin, Deborah A.
2015-10-01
Recent potential energy surfaces (PESs) for the N2 + N and N2 + N2 systems are used in molecular dynamics (MD) to simulate rates of vibrational and rotational relaxations for conditions that occur in hypersonic flows. For both chemical systems, it is found that the rotational relaxation number increases with the translational temperature and decreases as the rotational temperature approaches the translational temperature. The vibrational relaxation number is observed to decrease with translational temperature and approaches the rotational relaxation number in the high temperature region. The rotational and vibrational relaxation numbers are generally larger in the N2 + N2 system. MD-quasi-classical trajectory (QCT) with the PESs is also used to calculate the V-T transition cross sections, the collision cross section, and the dissociation cross section for each collision pair. Direct simulation Monte Carlo (DSMC) results for hypersonic flow over a blunt body with the total collision cross section from MD/QCT simulations, Larsen-Borgnakke with new relaxation numbers, and the N2 dissociation rate from MD/QCT show a profile with a decreased translational temperature and a rotational temperature close to vibrational temperature. The results demonstrate that many of the physical models employed in DSMC should be revised as fundamental potential energy surfaces suitable for high temperature conditions become available.
Immersed boundary method for Boltzmann model kinetic equations
NASA Astrophysics Data System (ADS)
Pekardan, Cem; Chigullapalli, Sruti; Sun, Lin; Alexeenko, Alina
2012-11-01
Three different immersed boundary method formulations are presented for Boltzmann model kinetic equations such as Bhatnagar-Gross-Krook (BGK) and Ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model equations. 1D unsteady IBM solution for a moving piston is compared with the DSMC results and 2D quasi-steady microscale gas damping solutions are verified by a conformal finite volume method solver. Transient analysis for a sinusoidally moving beam is also carried out for the different pressure conditions (1 atm, 0.1 atm and 0.01 atm) corresponding to Kn=0.05,0.5 and 5. Interrelaxation method (Method 2) is shown to provide a faster convergence as compared to the traditional interpolation scheme used in continuum IBM formulations. Unsteady damping in rarefied regime is characterized by a significant phase-lag which is not captured by quasi-steady approximations.
Tutorial for Thermophysics Universal Research Framework
2017-07-30
DS1V are compared in Section 3.4.5. 3.4.2 Description of the Example Problem In a fluid, disturbance information is communicated within a medium at the...Universal Research Framework development (TURF-DEV) package on a case-by-case basis. Brief descriptions of the operations are provided in Tables 4.1 and...of additional experimental (E) and research (R) operations included in TURF-DEV. Module Operation Description DSMC SPDistDirectDSMCCellMergeOp (R
Study of the Transition Flow Regime using Monte Carlo Methods
NASA Technical Reports Server (NTRS)
Hassan, H. A.
1999-01-01
This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.
NASA Astrophysics Data System (ADS)
Fougere, N.; Combi, M. R.; Tenishev, V.; Bieler, A. M.; Migliorini, A.; Bockelée-Morvan, D.; Toth, G.; Huang, Z.; Gombosi, T. I.; Hansen, K. C.; Capaccioni, F.; Filacchione, G.; Piccioni, G.; Debout, V.; Erard, S.; Leyrat, C.; Fink, U.; Rubin, M.; Altwegg, K.; Tzou, C. Y.; Le Roy, L.; Calmonte, U.; Berthelier, J. J.; Rème, H.; Hässig, M.; Fuselier, S. A.; Fiethe, B.; De Keyser, J.
2015-12-01
As it orbits around comet 67P/Churyumov-Gerasimenko (CG), the Rosetta spacecraft acquires more information about its main target. The numerous observations made at various geometries and at different times enable a good spatial and temporal coverage of the evolution of CG's cometary coma. However, the question regarding the link between the coma measurements and the nucleus activity remains relatively open notably due to gas expansion and strong kinetic effects in the comet's rarefied atmosphere. In this work, we use coma observations made by the ROSINA-DFMS instrument to constrain the activity at the surface of the nucleus. The distribution of the H2O and CO2 outgassing is described with the use of spherical harmonics. The coordinates in the orthogonal system represented by the spherical harmonics are computed using a least squared method, minimizing the sum of the square residuals between an analytical coma model and the DFMS data. Then, the previously deduced activity distributions are used in a Direct Simulation Monte Carlo (DSMC) model to compute a full description of the H2O and CO2 coma of comet CG from the nucleus' surface up to several hundreds of kilometers. The DSMC outputs are used to create synthetic images, which can be directly compared with VIRTIS measurements. The good agreement between the VIRTIS observations and the DSMC model, itself constrained with ROSINA data, provides a compelling juxtaposition of the measurements from these two instruments. Acknowledgements Work at UofM was supported by contracts JPL#1266313, JPL#1266314 and NASA grant NNX09AB59G. Work at UoB was funded by the State of Bern, the Swiss National Science Foundation and by the ESA PRODEX Program. Work at Southwest Research institute was supported by subcontract #1496541 from the JPL. Work at BIRA-IASB was supported by the Belgian Science Policy Office via PRODEX/ROSINA PEA 90020. The authors would like to thank ASI, CNES, DLR, NASA for supporting this research. VIRTIS was built by a consortium formed by Italy, France and Germany, under the scientific responsibility of the IAPS of INAF, which guides also the scientific operations. The consortium includes also the LESIA of the Observatoire de Paris, and the Institut für Planetenforschung of DLR. The authors wish to thank the RSGS and the RMOC for their continuous support.
Subsurface Gas Flow and Ice Grain Acceleration within Enceladus and Europa Fissures: 2D DSMC Models
NASA Astrophysics Data System (ADS)
Tucker, O. J.; Combi, M. R.; Tenishev, V.
2014-12-01
The ejection of material from geysers is a ubiquitous occurrence on outer solar system bodies. Water vapor plumes have been observed emanating from the southern hemispheres of Enceladus and Europa (Hansen et al. 2011, Roth et al. 2014), and N2plumes carrying ice and ark particles on Triton (Soderblom et al. 2009). The gas and ice grain distributions in the Enceladus plume depend on the subsurface gas properties and the geometry of the fissures e.g., (Schmidt et al. 2008, Ingersoll et al. 2010). Of course the fissures can have complex geometries due to tidal stresses, melting, freezing etc., but directly sampled and inferred gas and grain properties for the plume (source rate, bulk velocity, terminal grain velocity) can be used to provide a basis to constrain characteristic dimensions of vent width and depth. We used a 2-dimensional Direct Simulation Monte Carlo (DSMC) technique to model venting from both axi-symmetric canyons with widths ~2 km and narrow jets with widths ~15-40 m. For all of our vent geometries, considered the water vapor source rates (1027 - 1028 s-1) and bulk gas velocities (~330 - 670 m/s) obtained at the surface were consistent with inferred values obtained by fits of the data for the plume densities (1026 - 1028 s-1, 250 - 1000 m/s) respectively. However, when using the resulting DSMC gas distribution for the canyon geometries to integrate the trajectories of ice grains we found it insufficient to accelerate submicron ice grains to Enceladus' escape speed. On the other hand, the gas distributions in the jet like vents accelerated grains > 10 μm significantly above Enceladus' escape speed. It has been suggested that micron-sized grains are ejected from the vents with speeds comparable to the Enceladus escape speed. Here we report on these results including comparisons to results obtained from 1D models as well as discuss the implications of our plume model results. We also show preliminary results for similar considerations applied to Europa. References: Hansen, 2011. Geophys. Res. Lett. 38, L11202; Ingersoll, 2010. Icarus 206, 594 - 607; Schmidt, 2008. Nature 451, 685 - 688; Soderblom, 2009. Science 250, 412 - 415; Roth, 2013l. Science http://dx.doi.org/10.1126/science.1247051 2013
Microscale Modeling of Porous Thermal Protection System Materials
NASA Astrophysics Data System (ADS)
Stern, Eric C.
Ablative thermal protection system (TPS) materials play a vital role in the design of entry vehicles. Most simulation tools for ablative TPS in use today take a macroscopic approach to modeling, which involves heavy empiricism. Recent work has suggested improving the fidelity of the simulations by taking a multi-scale approach to the physics of ablation. In this work, a new approach for modeling ablative TPS at the microscale is proposed, and its feasibility and utility is assessed. This approach uses the Direct Simulation Monte Carlo (DSMC) method to simulate the gas flow through the microstructure, as well as the gas-surface interaction. Application of the DSMC method to this problem allows the gas phase dynamics---which are often rarefied---to be modeled to a high degree of fidelity. Furthermore this method allows for sophisticated gas-surface interaction models to be implemented. In order to test this approach for realistic materials, a method for generating artificial microstructures which emulate those found in spacecraft TPS is developed. Additionally, a novel approach for allowing the surface to move under the influence of chemical reactions at the surface is developed. This approach is shown to be efficient and robust for performing coupled simulation of the oxidation of carbon fibers. The microscale modeling approach is first applied to simulating the steady flow of gas through the porous medium. Predictions of Darcy permeability for an idealized microstructure agree with empirical correlations from the literature, as well as with predictions from computational fluid dynamics (CFD) when the continuum assumption is valid. Expected departures are observed for conditions at which the continuum assumption no longer holds. Comparisons of simulations using a fabricated microstructure to experimental data for a real spacecraft TPS material show good agreement when similar microstructural parameters are used to build the geometry. The approach is then applied to investigating the ablation of porous materials through oxidation. A simple gas surface interaction model is described, and an approach for coupling the surface reconstruction algorithm to the DSMC method is outlined. Simulations of single carbon fibers at representative conditions suggest this approach to be feasible for simulating the ablation of porous TPS materials at scale. Additionally, the effect of various simulation parameters on in-depth morphology is investigated for random fibrous microstructures.
1992-10-01
sealed bidding and competitive proposals. governed by the same regulations and laws The sealed bidding procedure requires ade- that govern procurement ...Summary xiv NDI ACQUISITION: An Alternative to "Business as Usual" to successful, effective government procure - posal Cover Sheet). Moreover, the...became policy when the OPlP ;,;sued the first opment costs. These benefits may be offset by in a series of memoranda governing procure - performance
Integrated Logistics Guide. Second Edition
1994-06-14
FORMER FACULTY DEPARTMENT CHAIRMAN MR. JOHN RIFFEE MR. JOEL MANARY CDR DALE IMMEL, USN COL SHAROLYN HAYES, USA LT COL RICHARD EZZELL , USAF DSMC LOGISTICS...Compliance with the requirement by program management should depict of DoDI 5000.2, Part 7A, to establish an ILS the most essential support program mile ...system level fac- tors and the performance of readiness simu- 3.4 SUMMARY lations. e Initial LSA activities prior to Mile - 3.5 REFERENCES stone 0 and
2011-10-01
specific modules as needed. The term “startup” is inclusive of any point in a DoD acquisition program. As noted above, methodology for conducting...Acquisition Sustainment =Decision Point =Milestone Review =Decision Point if PDR is not conducted before Milestone B ProgramA B Initiation) C IOC FOC...start a new program 2.2 Background Conclusions flowing from these observations led the Office of the Secretary of Defense, the De - fense Acquisition
Heat transfer in nonequilibrium boundary layer flow over a partly catalytic wall
NASA Astrophysics Data System (ADS)
Wang, Zhi-Hui
2016-11-01
Surface catalysis has a huge influence on the aeroheating performance of hypersonic vehicles. For the reentry flow problem of a traditional blunt vehicle, it is reasonable to assume a frozen boundary layer surrounding the vehicles' nose, and the catalytic heating can be decoupled with the heat conduction. However, when considering a hypersonic cruise vehicle flying in the medium-density near space, the boundary layer flow around its sharp leading-edge is likely to be nonequilibrium rather than frozen due to rarefied gas effects. As a result, there will be a competition between the heat conduction and the catalytic heating. In this paper, the theoretical modeling and the direct simulation Monte Carlo (DSMC) method are employed to study the corresponding rarefied nonequilibrium flow and heat transfer phenomena near the leading edge of the near space hypersonic vehicles. It is found that even under identical rarefication degree, the nonequilibrium degree of the flow and the corresponding heat transfer performance of the sharp leading edges could be different from that of the big blunt noses. A generalized model is preliminarily proposed to describe and to evaluate the competitive effects between the homogeneous recombination of atoms inside the nonequilibrium boundary layer and the heterogeneous recombination of atoms on the catalytic wall surface. The introduced nonequilibrium criterion and the analytical formula are validated and calibrated by the DSMC results, and the physical mechanism is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Tong, E-mail: tongzhu2@illinois.edu; Levin, Deborah A., E-mail: deblevin@illinois.edu; Li, Zheng, E-mail: zul107@psu.edu
2016-08-14
A high fidelity internal energy relaxation model for N{sub 2}–N suitable for use in direct simulation Monte Carlo (DSMC) modeling of chemically reacting flows is proposed. A novel two-dimensional binning approach with variable bin energy resolutions in the rotational and vibrational modes is developed for treating the internal mode of N{sub 2}. Both bin-to-bin and state-specific relaxation cross sections are obtained using the molecular dynamics/quasi-classical trajectory (MD/QCT) method with two potential energy surfaces as well as the state-specific database of Jaffe et al. The MD/QCT simulations of inelastic energy exchange between N{sub 2} and N show that there is amore » strong forward-preferential scattering behavior at high collision velocities. The 99 bin model is used in homogeneous DSMC relaxation simulations and is found to be able to recover the state-specific master equation results of Panesi et al. when the Jaffe state-specific cross sections are used. Rotational relaxation energy profiles and relaxation times obtained using the ReaxFF and Jaffe potential energy surfaces (PESs) are in general agreement but there are larger differences between the vibrational relaxation times. These differences become smaller as the translational temperature increases because the difference in the PES energy barrier becomes less important.« less
A generalized form of the Bernoulli Trial collision scheme in DSMC: Derivation and evaluation
NASA Astrophysics Data System (ADS)
Roohi, Ehsan; Stefanov, Stefan; Shoja-Sani, Ahmad; Ejraei, Hossein
2018-02-01
The impetus of this research is to present a generalized Bernoulli Trial collision scheme in the context of the direct simulation Monte Carlo (DSMC) method. Previously, a subsequent of several collision schemes have been put forward, which were mathematically based on the Kac stochastic model. These include Bernoulli Trial (BT), Ballot Box (BB), Simplified Bernoulli Trial (SBT) and Intelligent Simplified Bernoulli Trial (ISBT) schemes. The number of considered pairs for a possible collision in the above-mentioned schemes varies between N (l) (N (l) - 1) / 2 in BT, 1 in BB, and (N (l) - 1) in SBT or ISBT, where N (l) is the instantaneous number of particles in the lth cell. Here, we derive a generalized form of the Bernoulli Trial collision scheme (GBT) where the number of selected pairs is any desired value smaller than (N (l) - 1), i.e., Nsel < (N (l) - 1), keeping the same the collision frequency and accuracy of the solution as the original SBT and BT models. We derive two distinct formulas for the GBT scheme, where both formula recover BB and SBT limits if Nsel is set as 1 and N (l) - 1, respectively, and provide accurate solutions for a wide set of test cases. The present generalization further improves the computational efficiency of the BT-based collision models compared to the standard no time counter (NTC) and nearest neighbor (NN) collision models.
Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong
2014-12-21
The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.
NASA Astrophysics Data System (ADS)
Xingxing, Chen; Zhihui, Wang; Yongliang, Yu
2016-11-01
Hypersonic chemical non-equilibrium gas flows around blunt nosed bodies are studied in the present paper to investigate the Reynolds analogy relation on curved surfaces. With a momentum and energy transfer model being applied through boundary layers, influences of molecular dissociations and recombinations on skin frictions and heat fluxes are separately modeled. Expressions on the ratio of Cf / Ch (skin friction coefficient to heat flux) are presented along the surface of circular cylinders under the ideal dissociation gas model. The analysis indicates that molecular dissociations increase the linear distribution of Cf / Ch, but the nonlinear Reynolds analogy relation could ultimately be obtained in flows with larger Reynolds numbers and Mach numbers, where the decrease of wall heat flux by molecular recombinations signifies. The present modeling and analyses are also verified by the DSMC calculations on nitrogen gas flows.
Modelling of the sublimation of icy grains in the coma of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Gicquel, A.; Vincent, J.-B.; Shi, X.; Sierks, H.; Rose, M.; Güttler, C.; Tubiana, C.
2015-10-01
The ESA (European Space Agency) Rosetta spacecraft was launched on 2 March 2004, to reach comet 67P/Churyumov-Gerasimenko in August 2014. Since March 2014, images of the nucleus and the coma (gas and dust) of the comet have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera system [1] using both, the wide angle camera (WAC) and the narrow angle camera (NAC). The orbiter will be maintained in the vicinity of the comet until perihelion (Rh=1.3 AU) or even until Rh=1.8 AU post-perihelion (December 2015). Nineteen months of uninterrupted, close-up observations of the gas and dust coma will be obtained and will help to characterize the evolution of comet gas and dust activity during its approach to the Sun. Indeed, for the first time, we will follow the development of a comet's coma from a close distance. Also the study of the dust-gas interaction in the coma will highlight the sublimation of icy grains. Even if the sublimation of icy grains is known, it is not yet integrated in a complete dust-gas model. We are using the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus. The code called PI-DSMC (www.pidsmc. com) can simulate millions of molecules for multiple species.When the gas flow is simulated, we inject the dust particle with a zero velocity and we take into account the 3 forces acting on the grains in a cometary environment (drag force, gravity and radiative pressure). We used the DLL (Dynamic Link Library) model to integrate the sublimation of icy grains in the gas flowand allow studying the effect of the additional gas on the dust particle trajectories. For a quantitative analysis of the sublimation of icy, outflowing grains we will consider an ensemble of grains of various radii with different compositions [2] The evolution of the grains, once they are ejected into the coma, depends on their initial size, their composition and the heliocentric distance (because the temperature of the grain is higher close to the Sun). The grain temperatures will be derived by assuming equilibrium between the energy absorbed from the Sun, the energy re-radiated in the infrared, and the cooling by sublimation. We will use Mie theory [3, 4] to compute the scattering properties of an assumed grain (grain size, shape and composition, including mineralogy and porosity). We follow the evolution of grains until the icy layer sublimates completely. Once ejected in the gas flow, the generated molecules have no preferred direction. First results highlighted that the sublimation has a significant influence on the dust trajectories and generates a gas cloud that moves with the velocity of the icy grains. Our model can produce artificial images for a wide range of parameters, including outgassing rate, surface temperature, dust properties and sublimation of icy grains. The results of this model will be compared to the images obtained with OSIRIS camera and to the published data from other instruments.
Establishing a Department of Defense Program Management Body of Knowledge
1991-09-01
systems included, "...thousands of jet fighters, bombers and transport aircraft; one hundred new combat and support vessels; and thousands of tanks and...cannon-carrying troop transports and strategic and tactical missiles" (12:9). Such systems were designed to achieve goals and performance levels never...to L. A a 20-week Program Mnageme-.nt .ur., ’ DSMc b-,o : taking command of a mra or pLog-im. A Major De ?-n.5 Acquisition (Category I) Program in the
2009-03-27
ones like the Lennard - Jones potential with established parameters for each gas (e.g. N2 and 02), and for inelastic collisions DSMC method employs...solution of the collision integral. Lennard - Jones potential with two free parameters is used to obtain the elastic cross-section of the gas molecules...and the so called "combinatory relations" are used to obtain parameters of Lennard - Jones potential for an interaction of molecule A with molecule B
1995-02-01
ANo11C ,ing Eio Collie J. Johnson Art Director Greg Caruth K Typography nod Design Paula Croisetiere > Jeanne Elmore es~ Protrm Mlanager (ISSN 0199...and is especially helpful in two cisions. "The message here is to all of small-purchase categories - under us - from program directors, to pro...Facilitation Center riers in meetings due to emotions , rank and personality; The facility uses GROUPWARE wil enabe the * parallel processing, as all partici
Molecular gas dynamics applied to low-thrust propulsion
NASA Astrophysics Data System (ADS)
Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.
1993-11-01
The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.
2008-07-02
In order to cover a range of molecular species, argon , nitrogen, and methane were used as test gases. The polarizability to mass ratio of these gases...Japan, 21-25 July 2008. 14. ABSTRACT The Direct Simulation Monte Carlo (DSMC) method was used to investigate the interaction between argon ...reducing the maximum temperature. The optimal intervening time was found to be 0.7, 1.0 and 0.25 ns for argon , nitrogen, and methane at one atmosphere
Molecular gas dynamics applied to low-thrust propulsion
NASA Technical Reports Server (NTRS)
Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.
1993-01-01
The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.
1990-09-01
decrease in average consumer prices , to think of Europe 1992 as a starting date or a point of departure for what some have called the largest...overall The European Community’s four consumer prices . executive institutions-- Commission, Parliament, Council of Ministers and Court In 1985, the...of the draft, but also for may want to skim Chapter One and go to the extra effort he put forth to ensure that Chapter Two’s discussion on parallel
The Role and Nature of Anti-Tamper Techniques in U.S. Defense Acquisition
1999-01-01
sales to an ally, accidental loss, or capture during a conflict by an enemy. Because U.S. military hardware and software have a high technical content...that provides a qualitative edge, protection of this technological superiority is a high priority. Program managers can mitigate such risks with a...dealing with technical and military topics. He is a graduate of DSMC’s APMC 97-3 and the USAF Test Pilot School . He has an M.S. degree in aerospace
Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.
He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang
2008-07-01
We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.
DSMC simulation of two-phase plume flow with UV radiation
NASA Astrophysics Data System (ADS)
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling
2014-12-01
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-04-01
The flow over a 2D leading-edge flat plate is studied at Mach number Ma =(Uinf / \\setmn √{kBTinf / m}) in the range
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2016-11-01
The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-01-01
The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2016-10-01
The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf / {kBTinf /m}) in the range
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf / ∖ sqrt{kBTinf / m})in the range
NASA Technical Reports Server (NTRS)
Groth, Clinton P. T.; Roe, Philip L.
1998-01-01
Six months of funding was received for the proposed three year research program (funding for the period from March 1, 1997 to August 31, 1997). Although the official starting date for the project was March 1, 1997, no funding for the project was received until July 1997. In the funded research period, considerable progress was made on Phase I of the proposed research program. The initial research efforts concentrated on applying the 10-, 20-, and 35-moment Gaussian-based closures to a series of standard two-dimensional non-reacting single species test flow problems, such as the flat plate, couette, channel, and rearward facing step flows, and to some other two-dimensional flows having geometries similar to those encountered in chemical-vapor deposition (CVD) reactors. Eigensystem analyses for these systems for the case of two spatial dimensions was carried out and efficient formulations of approximate Riemann solvers have been formulated using these eigenstructures. Formulations to include rotational non-equilibrium effects into the moment closure models for the treatment of polyatomic gases were explored, as the original formulations of the closure models were developed strictly for gases composed of monatomic molecules. The development of a software library and computer code for solving relaxing hyperbolic systems in two spatial dimensions of the type arising from the closure models was also initiated. The software makes use of high-resolution upwind finite-volumes schemes, multi-stage point implicit time stepping, and automatic adaptive mesh refinement (AMR) to solve the governing conservation equations for the moment closures. The initial phase of the code development was completed and a numerical investigation of the solutions of the 10-moment closure model for the simple two-dimensional test cases mentioned above was initiated. Predictions of the 10-moment model were compared to available theoretical solutions and the results of direct-simulation Monte Carlo (DSMC) calculations. The first results of this study were presented at a meeting last year.
2014-11-21
cover in the region where gas expands all the way round the nozzle exit in the vacuum of space. This geome- try is investigated using hybrid NS/DSMC with...Final 3. DATES COVERED (From - To) 19 May 2014 – 18 Oct 2014 4. TITLE AND SUBTITLE Report on Rarefied Gas Dynamics Research Status 5a...Air Force about the current status of research in rarefied gas dynamics and related fields, primarily via the 29th International Symposium on Rarefied
Rarefaction and Non-equilibrium Effects in Hypersonic Flows about Leading Edges of Small Bluntness
NASA Astrophysics Data System (ADS)
Ivanov, Mikhail; Khotyanovsky, Dmitry; Kudryavtsev, Alexey; Shershnev, Anton; Bondar, Yevgeniy; Yonemura, Shigeru
2011-05-01
A hypersonic flow about a cylindrically blunted thick plate at a zero angle of attack is numerically studied with the kinetic (DSMC) and continuum (Navier-Stokes equations) approaches. The Navier-Stokes equations with velocity slip and temperature jump boundary conditions correctly predict the flow fields and surface parameters for values of the Knudsen number (based on the radius of leading edge curvature) smaller than 0.1. The results of computations demonstrate significant effects of the entropy layer on the boundary layer characteristics.
NASA Astrophysics Data System (ADS)
Ivanov, M.; Zeitoun, D.; Vuillon, J.; Gimelshein, S.; Markelov, G.
1996-05-01
The problem of transition of planar shock waves over straight wedges in steady flows from regular to Mach reflection and back was numerically studied by the DSMC method for solving the Boltzmann equation and finite difference method with FCT algorithm for solving the Euler equations. It is shown that the transition from regular to Mach reflection takes place in accordance with detachment criterion while the opposite transition occurs at smaller angles. The hysteresis effect was observed at increasing and decreasing shock wave angle.
Nonequilibrium diffusive gas dynamics: Poiseuille microflow
NASA Astrophysics Data System (ADS)
Abramov, Rafail V.; Otto, Jasmine T.
2018-05-01
We test the recently developed hierarchy of diffusive moment closures for gas dynamics together with the near-wall viscosity scaling on the Poiseuille flow of argon and nitrogen in a one micrometer wide channel, and compare it against the corresponding Direct Simulation Monte Carlo computations. We find that the diffusive regularized Grad equations with viscosity scaling provide the most accurate approximation to the benchmark DSMC results. At the same time, the conventional Navier-Stokes equations without the near-wall viscosity scaling are found to be the least accurate among the tested closures.
The Program Manager’s Support System (PMSS). An Executive Overview and System Description,
1987-01-01
process. The PMSS tool will, when completed, support the program management process in all stages of program nanagement; that is, birth of the...module, developed as a template on LOTUS 1-2-3, is an application of the Constructive Cost Model (COCOMO) developed by B. Boehm. The DSMC SWCE module, a...developed for a specific program office but can be modified for use by others. It is a "template" system designed to operate on a Zenith Z-150 using Lotus 1
1992-05-01
one manager -to-player inter- coaching styles are being used in tions do best with structured and actions, which diminish as each these outside...May-june 1992’ MANAGER Journal of the Defense Systems Management College Program management ,teI hIN be pl~ vrb~c aeese and sole; its 92-19864 92 7...23 l 9~3 PROGRAM MANAGER Journal of the Defense Systems Management College Vol. XXI, No. 3, DSMC 108 2 8 Is There Going to Be a High- Rebuilding the
DSMC modeling of flows with recombination reactions
NASA Astrophysics Data System (ADS)
Gimelshein, Sergey; Wysong, Ingrid
2017-06-01
An empirical microscopic recombination model is developed for the direct simulation Monte Carlo method that complements the extended weak vibrational bias model of dissociation. The model maintains the correct equilibrium reaction constant in a wide range of temperatures by using the collision theory to enforce the number of recombination events. It also strictly follows the detailed balance requirement for equilibrium gas. The model and its implementation are verified with oxygen and nitrogen heat bath relaxation and compared with available experimental data on atomic oxygen recombination in argon and molecular nitrogen.
Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method
NASA Astrophysics Data System (ADS)
Cave, H. M.; Tseng, K.-C.; Wu, J.-S.; Jermy, M. C.; Huang, J.-C.; Krumdieck, S. P.
2008-06-01
An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced, allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are compared to experimental data and simulations from the literature where there these are available. In general, it was found that 10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5-3.3 times, based on the limited number of cases in the present study.
Full System Model of Magnetron Sputter Chamber - Proof-of-Principle Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walton, C; Gilmer, G; Zepeda-Ruiz, L
2007-05-04
The lack of detailed knowledge of internal process conditions remains a key challenge in magnetron sputtering, both for chamber design and for process development. Fundamental information such as the pressure and temperature distribution of the sputter gas, and the energies and arrival angles of the sputtered atoms and other energetic species is often missing, or is only estimated from general formulas. However, open-source or low-cost tools are available for modeling most steps of the sputter process, which can give more accurate and complete data than textbook estimates, using only desktop computations. To get a better understanding of magnetron sputtering, wemore » have collected existing models for the 5 major process steps: the input and distribution of the neutral background gas using Direct Simulation Monte Carlo (DSMC), dynamics of the plasma using Particle In Cell-Monte Carlo Collision (PIC-MCC), impact of ions on the target using molecular dynamics (MD), transport of sputtered atoms to the substrate using DSMC, and growth of the film using hybrid Kinetic Monte Carlo (KMC) and MD methods. Models have been tested against experimental measurements. For example, gas rarefaction as observed by Rossnagel and others has been reproduced, and it is associated with a local pressure increase of {approx}50% which may strongly influence film properties such as stress. Results on energies and arrival angles of sputtered atoms and reflected gas neutrals are applied to the Kinetic Monte Carlo simulation of film growth. Model results and applications to growth of dense Cu and Be films are presented.« less
Thin film deposition using rarefied gas jet
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-01-01
The rarefied gas jet of aluminium is studied at Mach number Ma =(U_j /√{ kbTj / m }) in the range .01
DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2016-09-01
The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range
Computational analysis of fluid dynamics in pharmaceutical freeze-drying.
Alexeenko, Alina A; Ganguly, Arnab; Nail, Steven L
2009-09-01
Analysis of water vapor flows encountered in pharmaceutical freeze-drying systems, laboratory-scale and industrial, is presented based on the computational fluid dynamics (CFD) techniques. The flows under continuum gas conditions are analyzed using the solution of the Navier-Stokes equations whereas the rarefied flow solutions are obtained by the direct simulation Monte Carlo (DSMC) method for the Boltzmann equation. Examples of application of CFD techniques to laboratory-scale and industrial scale freeze-drying processes are discussed with an emphasis on the utility of CFD for improvement of design and experimental characterization of pharmaceutical freeze-drying hardware and processes. The current article presents a two-dimensional simulation of a laboratory scale dryer with an emphasis on the importance of drying conditions and hardware design on process control and a three-dimensional simulation of an industrial dryer containing a comparison of the obtained results with analytical viscous flow solutions. It was found that the presence of clean in place (CIP)/sterilize in place (SIP) piping in the duct lead to significant changes in the flow field characteristics. The simulation results for vapor flow rates in an industrial freeze-dryer have been compared to tunable diode laser absorption spectroscopy (TDLAS) and gravimetric measurements.
Rarefied-continuum gas dynamics transition for SUMS project
NASA Technical Reports Server (NTRS)
Cheng, Sin-I
1989-01-01
This program is to develop an analytic method for reducing SUMS data for the determination of the undisturbed atmosphere conditions ahead of the shuttle along its descending trajectory. It is divided into an internal flow problem, an external flow problem and their matching conditions. Since the existing method of Direct Simulation Monte Carlo (DSMC) failed completely for the internal flow problem, the emphasis is on the internal flow of a highly non-equilibrium, rarefied air through a short tube of a diameter much less than the gaseous mean free path. A two fluid model analysis of this internal flow problem has been developed and studied with typical results illustrated. A computer program for such an analysis and a technical paper published in Lecture Notes in Physics No. 323 (1989) are included as Appendices 3 and 4. A proposal for in situ determination of the surface accommodation coefficients sigma sub t and sigma e is included in Appendix 5 because of their importance in quantitative data reduction. A two fluid formulation for the external flow problem is included as Appendix 6 and a review article for AIAA on Hypersonic propulsion, much dependent on ambient atmospheric density, is also included as Appendix 7.
NASA Astrophysics Data System (ADS)
Lai, Ian-Lin; Su, Cheng-Chin; Ip, Wing-Huen; Wei, Chen-En; Wu, Jong-Shinn; Lo, Ming-Chung; Liao, Ying; Thomas, Nicolas
2016-03-01
With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.
DSMC Simulations of Irregular Source Geometries for Io's Pele Plume
NASA Astrophysics Data System (ADS)
McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.
2010-10-01
Volcanic plumes on Io represent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D rarefied gas dynamics method (DSMC) is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. These deposition patterns, such as the deposition ring's shape and orientation, as well as the presence and shape of ash deposits around the vent, are linked to the shape of the vent from which the plume material arises. We will present three-dimensional simulations for a variety of possible vent geometries for Pele based on observations of the volcano's caldera. One is a curved line source corresponding to a Galileo IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire lava lake at the center of the plume. The curvature of the former is seen to be sufficient to produce the features seen in observations of Pele's deposition pattern, but the particular orientation of the source is found to be such that it cannot match the orientation of these features on Io's surface. The latter corrects the error in orientation while losing some of the structure, suggesting that the actual source may correspond well with part of the shore of the lava lake. In addition, we are collaborating with a group at the University of Illinois at Urbana-Champaign to develop a hybrid method to link the continuum flow beneath Io's surface and very close to the vent to the more rarefied flow in the large volcanic plumes. This work was funded by NASA-PATM grant NNX08AE72G.
Heavy particle transport in sputtering systems
NASA Astrophysics Data System (ADS)
Trieschmann, Jan
2015-09-01
This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.
HCN production from impact ejecta on the early Earth
NASA Astrophysics Data System (ADS)
Parkos, Devon; Pikus, Aaron; Alexeenko, Alina; Melosh, H. J.
2016-11-01
Major impact events have drastically altered the evolution of life on Earth. The reentry of ejecta formed from these events can trigger widespread chemical changes to the atmosphere on a global scale. This mechanism was proposed as a source of HCN during the Late Heavy Bombardment (LHB), 4.1 to 3.8 billion years ago. Significant concentrations of HCN in surface water could directly lead to adenine formation, a precursor for RNA. This work uses the Direct Simulation Monte Carlo (DSMC) method to examine the production of CN and HCN due to the reentry of impact ejecta. We use the Statistical Modeling in Low-Density Environment (SMILE) code, which utilizes the Total Collisional Energy (TCE) model for reactions. The collisions are described by the Variable Soft Sphere (VSS) and Larsen-Borgnakke (LB) models. We compare this nonequilibrium production to equilibrium concentrations from bulk atmospheric heating. The equilibrium HCN yield for a 1023 J impact is 7.0×104 moles, corresponding to a 2.5×1014 molecules per m2 surface deposition. We find that additional CN and HCN is produced under thermochemical nonequilibrium, particularly at higher altitudes. The total nonequilibrium yield for a 1023 J impact is 1.2×106 moles of HCN, a value 17 times the equilibrium result. This corresponds to a surface deposition of 1.4×1015 molecules per m2. This increase in production indicates that thermochemical nonequilibrium effects play a strong role in HCN from impact ejecta, and must be considered when investigating impacts as a plausible mechanism for significant adenine production during the LHB.
DSMC Simulations in Support of the Columbia Shuttle Orbiter Accident Investigation
NASA Technical Reports Server (NTRS)
Boyles, Katie; LeBeau, Gerald J.; Gallis, Michael A.
2004-01-01
Three-dimensional Direct Simulation Monte Carlo simulations of Columbia Shuttle Orbiter flight STS-107 are presented. The aim of this work is to determine the aerodynamic and heating behavior of the Orbiter during aerobraking maneuvers and to provide piecewise integration of key scenario events to assess the plausibility of the candidate failure scenarios. The flight of the Orbiter is examined at two altitudes: 350-kft and 300-kft. The flowfield around the Orbiter and the heat transfer to it are calculated for the undamaged configuration. The flow inside the wing for an assumed damage to the leading edge in the form of a 10- inch hole is studied.
Direct simulation with vibration-dissociation coupling
NASA Technical Reports Server (NTRS)
Hash, David B.; Hassan, H. A.
1992-01-01
The majority of implementations of the Direct Simulation Monte Carlo (DSMC) method of Bird do not account for vibration-dissociation coupling. Haas and Boyd have proposed the vibrationally-favored dissociation model to accomplish this task. This model requires measurements of induction distance to determine model constants. A more general expression has been derived that does not require any experimental input. The model is used to calculate one-dimensional shock waves in nitrogen and the flow past a lunar transfer vehicle (LTV). For the conditions considered in the simulation, the influence of vibration-dissociation coupling on heat transfer in the stagnation region of the LTV can be significant.
N2 Temperature of Vibration instrument for sounding rocket observation in the lower thermosphere
NASA Astrophysics Data System (ADS)
Kurihara, J.; Iwagami, N.; Oyama, K.-I.
2013-11-01
The N2 Temperature of Vibration (NTV) instrument was developed to study energetics and structure of the lower thermosphere, applying the Electron Beam Fluorescence (EBF) technique to measurements of vibrational temperature, rotational temperature and number density of atmospheric N2. The sounding rocket experiments using this instrument have been conducted four times, including one failure of the electron gun. Aerodynamic effects on the measurement caused by the supersonic motion of the rocket were analyzed quantitatively using three-dimensional simulation of Direct Simulation Monte Carlo (DSMC) method, and the absolute density profile was obtained through the correction of the spin modulation.
NASA Astrophysics Data System (ADS)
Snow, Michael G.; Bajaj, Anil K.
2015-08-01
This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.
An extended CFD model to predict the pumping curve in low pressure plasma etch chamber
NASA Astrophysics Data System (ADS)
Zhou, Ning; Wu, Yuanhao; Han, Wenbin; Pan, Shaowu
2014-12-01
Continuum based CFD model is extended with slip wall approximation and rarefaction effect on viscosity, in an attempt to predict the pumping flow characteristics in low pressure plasma etch chambers. The flow regime inside the chamber ranges from slip wall (Kn ˜ 0.01), and up to free molecular (Kn = 10). Momentum accommodation coefficient and parameters for Kn-modified viscosity are first calibrated against one set of measured pumping curve. Then the validity of this calibrated CFD models are demonstrated in comparison with additional pumping curves measured in chambers of different geometry configurations. More detailed comparison against DSMC model for flow conductance over slits with contraction and expansion sections is also discussed.
1988-11-01
library . o Air Force Tech Order Management System - Final Report, library o DLA CALS 1988 Implementation Plan, library . Where to go for Additional...0. ~l l LU; 0. 0 0 2. o 3 0 I) 0 U no V) 4- C 4. U) 00 u c.C0 Cco C Cl) cc m~0-CU . d" CD 0 m mooc Er.C 0 .0> s -w 2 c IM CO (aC wi E 0 r. X 0-0 a 0...as well as wider application. The Air Force AFTOMS Automation Plan, a copy of which is in the library , has excellent discussions of the expected
Navier-Stokes Dynamics by a Discrete Boltzmann Model
NASA Technical Reports Server (NTRS)
Rubinstein, Robet
2010-01-01
This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.
Assessment of predictive capabilities for aerodynamic heating in hypersonic flow
NASA Astrophysics Data System (ADS)
Knight, Doyle; Chazot, Olivier; Austin, Joanna; Badr, Mohammad Ali; Candler, Graham; Celik, Bayram; Rosa, Donato de; Donelli, Raffaele; Komives, Jeffrey; Lani, Andrea; Levin, Deborah; Nompelis, Ioannis; Panesi, Marco; Pezzella, Giuseppe; Reimann, Bodo; Tumuklu, Ozgur; Yuceil, Kemal
2017-04-01
The capability for CFD prediction of hypersonic shock wave laminar boundary layer interaction was assessed for a double wedge model at Mach 7.1 in air and nitrogen at 2.1 MJ/kg and 8 MJ/kg. Simulations were performed by seven research organizations encompassing both Navier-Stokes and Direct Simulation Monte Carlo (DSMC) methods as part of the NATO STO AVT Task Group 205 activity. Comparison of the CFD simulations with experimental heat transfer and schlieren visualization suggest the need for accurate modeling of the tunnel startup process in short-duration hypersonic test facilities, and the importance of fully 3-D simulations of nominally 2-D (i.e., non-axisymmmetric) experimental geometries.
Velocity Inversion In Cylindrical Couette Gas Flows
NASA Astrophysics Data System (ADS)
Dongari, Nishanth; Barber, Robert W.; Emerson, David R.; Zhang, Yonghao; Reese, Jason M.
2012-05-01
We investigate a power-law probability distribution function to describe the mean free path of rarefied gas molecules in non-planar geometries. A new curvature-dependent model is derived by taking into account the boundary-limiting effects on the molecular mean free path for surfaces with both convex and concave curvatures. In comparison to a planar wall, we find that the mean free path for a convex surface is higher at the wall and exhibits a sharper gradient within the Knudsen layer. In contrast, a concave wall exhibits a lower mean free path near the surface and the gradients in the Knudsen layer are shallower. The Navier-Stokes constitutive relations and velocity-slip boundary conditions are modified based on a power-law scaling to describe the mean free path, in accordance with the kinetic theory of gases, i.e. transport properties can be described in terms of the mean free path. Velocity profiles for isothermal cylindrical Couette flow are obtained using the power-law model. We demonstrate that our model is more accurate than the classical slip solution, especially in the transition regime, and we are able to capture important non-linear trends associated with the non-equilibrium physics of the Knudsen layer. In addition, we establish a new criterion for the critical accommodation coefficient that leads to the non-intuitive phenomena of velocity-inversion. Our results are compared with conventional hydrodynamic models and direct simulation Monte Carlo data. The power-law model predicts that the critical accommodation coefficient is significantly lower than that calculated using the classical slip solution and is in good agreement with available DSMC data. Our proposed constitutive scaling for non-planar surfaces is based on simple physical arguments and can be readily implemented in conventional fluid dynamics codes for arbitrary geometric configurations.
NASA Astrophysics Data System (ADS)
Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.; Bieler, A.
2016-12-01
Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on the BATS-R-US code of the University of Michigan, which is capable of computing both the inner and outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov-Gerasimenko at various heliocentric distances and demonstrated that it yields comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we characterize the cometary H2O expansion speeds and demonstrate the nonlinear dependencies of production rate and heliocentric distance. Our results are also compared to previous modeling work and remote observations, which serve as further validation of our model.
Plasma Flowfields Around Low Earth Orbit Objects: Aerodynamics to Underpin Orbit Predictions
NASA Astrophysics Data System (ADS)
Capon, Christopher; Boyce, Russell; Brown, Melrose
2016-07-01
Interactions between orbiting bodies and the charged space environment are complex. The large variation in passive body parameters e.g. size, geometry and materials, makes the plasma-body interaction in Low Earth Orbit (LEO) a region rich in fundamental physical phenomena. The aerodynamic interaction of LEO orbiting bodies with the neutral environment constitutes the largest non-conservative force on the body. However in general, study of the LEO plasma-body interaction has not been concerned with external flow physics, but rather with the effects on surface charging. The impact of ionospheric flow physics on the forces on space debris (and active objects) is not well understood. The work presented here investigates the contribution that plasma-body interactions have on the flow structure and hence on the total atmospheric force vector experienced by a polar orbiting LEO body. This work applies a hybrid Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFoam, to self-consistently model the electrostatic flowfield about a cylinder with a uniform, fixed surface potential. Flow conditions are representative of the mean conditions experienced by the Earth Observing Satellite (EOS) based on the International Reference Ionosphere model (IRI-86). The electron distribution function is represented by a non-linear Boltzmann electron fluid and ion gas-surface interactions are assumed to be that of a neutralising, conducting, thermally accommodating solid wall with diffuse reflections. The variation in flowfield and aerodynamic properties with surface potential at a fixed flow condition is investigated, and insight into the relative contributions of charged and neutral species to the flow physics experienced by a LEO orbiting body is provided. This in turn is intended to help improve the fidelity of physics-based orbit predictions for space debris and other near-Earth space objects.
Transient heat transfer in viscous rarefied gas between concentric cylinders. Effect of curvature
NASA Astrophysics Data System (ADS)
Gospodinov, P.; Roussinov, V.; Dankov, D.
2015-10-01
The thermoacoustic waves arising in cylindrical or planar Couette rarefied gas flow between rotating cylinders is studied in the cases of suddenly cylinder (active) wall velocity direction turn on. An unlimited increase in the radius of the inner cylinder flow can be interpreted as Couette flow between the two flat plates. Based on the developed in previous publications Navier-Stockes-Fourier (NSF) model and Direct Simulation Monte Carlo (DSMC) method and their numerical solutions, are considered transient processes in the gas phase. Macroscopic flow characteristics (velocity, density, temperature) are received. The cylindrical flow cases for fixed velocity and temperature of the both walls are considered. The curvature effects over the wave's distribution and attenuation are studied numerically.
Rarefaction effects on Galileo probe aerodynamics
NASA Technical Reports Server (NTRS)
Moss, James N.; LeBeau, Gerald J.; Blanchard, Robert C.; Price, Joseph M.
1996-01-01
Solutions of aerodynamic characteristics are presented for the Galileo Probe entering Jupiter's hydrogen-helium atmosphere at a nominal relative velocity of 47.4 km/s. Focus is on predicting the aerodynamic drag coefficient during the transitional flow regime using the direct simulation Monte Carlo (DSMC) method. Accuracy of the probe's drag coefficient directly impacts the inferred atmospheric properties that are being extracted from the deceleration measurements made by onboard accelerometers as part of the Atmospheric Structure Experiment. The range of rarefaction considered in the present study extends from the free molecular limit to continuum conditions. Comparisons made with previous calculations and experimental measurements show the present results for drag to merge well with Navier-Stokes and experimental results for the least rarefied conditions considered.
NASA Astrophysics Data System (ADS)
Huang, Z.; Jia, X.; Rubin, M.; Fougere, N.; Gombosi, T. I.; Tenishev, V.; Combi, M. R.; Bieler, A. M.; Toth, G.; Hansen, K. C.; Shou, Y.
2014-12-01
We study the plasma environment of the comet Churyumov-Gerasimenko, which is the target of the Rosetta mission, by performing large scale numerical simulations. Our model is based on BATS-R-US within the Space Weather Modeling Framework that solves the governing multifluid MHD equations, which describe the behavior of the cometary heavy ions, the solar wind protons, and electrons. The model includes various mass loading processes, including ionization, charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. The neutral background used in our MHD simulations is provided by a kinetic Direct Simulation Monte Carlo (DSMC) model. We will simulate how the cometary plasma environment changes at different heliocentric distances.
A particle-particle hybrid method for kinetic and continuum equations
NASA Astrophysics Data System (ADS)
Tiwari, Sudarshan; Klar, Axel; Hardt, Steffen
2009-10-01
We present a coupling procedure for two different types of particle methods for the Boltzmann and the Navier-Stokes equations. A variant of the DSMC method is applied to simulate the Boltzmann equation, whereas a meshfree Lagrangian particle method, similar to the SPH method, is used for simulations of the Navier-Stokes equations. An automatic domain decomposition approach is used with the help of a continuum breakdown criterion. We apply adaptive spatial and time meshes. The classical Sod's 1D shock tube problem is solved for a large range of Knudsen numbers. Results from Boltzmann, Navier-Stokes and hybrid solvers are compared. The CPU time for the hybrid solver is 3-4 times faster than for the Boltzmann solver.
Observations Regarding Use of Advanced CFD Analysis, Sensitivity Analysis, and Design Codes in MDO
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Hou, Gene J. W.; Taylor, Arthur C., III
1996-01-01
Observations regarding the use of advanced computational fluid dynamics (CFD) analysis, sensitivity analysis (SA), and design codes in gradient-based multidisciplinary design optimization (MDO) reflect our perception of the interactions required of CFD and our experience in recent aerodynamic design optimization studies using CFD. Sample results from these latter studies are summarized for conventional optimization (analysis - SA codes) and simultaneous analysis and design optimization (design code) using both Euler and Navier-Stokes flow approximations. The amount of computational resources required for aerodynamic design using CFD via analysis - SA codes is greater than that required for design codes. Thus, an MDO formulation that utilizes the more efficient design codes where possible is desired. However, in the aerovehicle MDO problem, the various disciplines that are involved have different design points in the flight envelope; therefore, CFD analysis - SA codes are required at the aerodynamic 'off design' points. The suggested MDO formulation is a hybrid multilevel optimization procedure that consists of both multipoint CFD analysis - SA codes and multipoint CFD design codes that perform suboptimizations.
A hybrid method with deviational particles for spatial inhomogeneous plasma
NASA Astrophysics Data System (ADS)
Yan, Bokai
2016-03-01
In this work we propose a Hybrid method with Deviational Particles (HDP) for a plasma modeled by the inhomogeneous Vlasov-Poisson-Landau system. We split the distribution into a Maxwellian part evolved by a grid based fluid solver and a deviation part simulated by numerical particles. These particles, named deviational particles, could be both positive and negative. We combine the Monte Carlo method proposed in [31], a Particle in Cell method and a Macro-Micro decomposition method [3] to design an efficient hybrid method. Furthermore, coarse particles are employed to accelerate the simulation. A particle resampling technique on both deviational particles and coarse particles is also investigated and improved. This method is applicable in all regimes and significantly more efficient compared to a PIC-DSMC method near the fluid regime.
1993-04-01
A;I r- c’I r- ’ Ae g-eac f ivenesSestr" 2’ý U c US ""’ c’ U SsS A ’ 3-a, ""r - Pedo ~~~~~e Ade~aU cl; a ," Marc ý4’ SAM-o"’ Rý 310C, ’at ’~ ">c ýxca-or...customer savs it is."• The second inherent concept is a Paradigm. Joel Barker. in his video tape Discovering the Future: The Busi- ness of Paradigms...management. I The company managemcnt philoso- viewed Tom Peters’ video tape entitled phv can be sunmnmarized in terms I will In Search of Excellence
NASA Astrophysics Data System (ADS)
Shimamura, Kohei
2016-09-01
To reduce the computational cost in the particle method for the numerical simulation of the laser plasma, we examined the simplification of the laser absorption process. Because the laser frequency is sufficiently larger than the collision frequency between the electron and heavy particles, we assumed that the electron obtained the constant value from the laser irradiation. First of all, the simplification of the laser absorption process was verified by the comparison of the EEDF and the laser-absorptivity with PIC-FDTD method. Secondary, the laser plasma induced by TEA CO2 laser in Argon atmosphere was modeled using the 1D3V DSMC method with the simplification of the laser-absorption. As a result, the LSDW was observed with the typical electron and neutral density distribution.
A Parametric Study of Jet Interactions with Rarefied Flow
NASA Technical Reports Server (NTRS)
Glass, C. E.
2004-01-01
Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.
Numerical Investigation of Physical Processes in High-Temperature MEMS-based Nozzle Flows
NASA Astrophysics Data System (ADS)
Alexeenko, A. A.; Levin, D. A.; Gimelshein, S. F.; Reed, B. D.
2003-05-01
Three-dimensional high-temperature flows in a MEMS-based micronozzle has been modeled using the DSMC method for Reynolds number at the throat from 30 to 440 and two different propellants. For these conditions, the gas flow and thrust performance are strongly influenced by surface effects, including friction and heat transfer losses. The calculated specific impulse is about 170 sec for Re=440 and about 120 sec for Re=43. In addition, the gas-surface interaction is the main mechanism for the change in vibrational energy of molecules in such flows. The calculated infrared spectra for the LAX112 propellant suggest that the infrared signal from such plumes can be detected and used to determine the influence of the cold wall boundary layer on the flow parameters at the nozzle exit.
Numerical Simulation of Rarefied Plume Flow Exhausting from a Small Nozzle
NASA Astrophysics Data System (ADS)
Hyakutake, Toru; Yamamoto, Kyoji
2003-05-01
This paper describes the numerical studies of a rarefied plume flow expanding through a nozzle into a vacuum, especially focusing on investigating the nozzle performance, the angular distributions of molecular flux in the nozzle plume and the influence of the backflow contamination for the variation of nozzle geometries and gas/surface interaction models. The direct simulation Monte Carlo (DSMC) method is employed for determining inside the nozzle and in the nozzle plume. The simulation results indicate that the half-angle of the diverging section in the highest thrust coefficient is 25° - 30° and this value varies with the expansion ratio of the nozzle. The descent of the half-angle brings about the increase of the molecules that are scattered in the backflow region.
X-Antenna: A graphical interface for antenna analysis codes
NASA Technical Reports Server (NTRS)
Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.
1995-01-01
This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.
Methodology for fast detection of false sharing in threaded scientific codes
Chung, I-Hsin; Cong, Guojing; Murata, Hiroki; Negishi, Yasushi; Wen, Hui-Fang
2014-11-25
A profiling tool identifies a code region with a false sharing potential. A static analysis tool classifies variables and arrays in the identified code region. A mapping detection library correlates memory access instructions in the identified code region with variables and arrays in the identified code region while a processor is running the identified code region. The mapping detection library identifies one or more instructions at risk, in the identified code region, which are subject to an analysis by a false sharing detection library. A false sharing detection library performs a run-time analysis of the one or more instructions at risk while the processor is re-running the identified code region. The false sharing detection library determines, based on the performed run-time analysis, whether two different portions of the cache memory line are accessed by the generated binary code.
Design and Analysis of a Getter-Based Vacuum Pumping System for a Rocket-Borne Mass Spectrometer
NASA Astrophysics Data System (ADS)
Everett, E. A.; Syrstad, E. A.; Dyer, J. S.
2010-12-01
The mesosphere / lower thermosphere (MLT) is a transition region where the turbulent mixing of earth’s lower atmosphere gives way to the molecular diffusion of space. This region hosts a rich array of chemical processes and atmospheric phenomena, and serves to collect and distribute particles of all sizes in thin layers. Spatially resolved in situ characterization of these layers is very difficult, due to the elevated pressure of the MLT, limited access via high-speed sounding rockets, and the enormous variety of charged and neutral species that range in size from atoms to smoke and dust particles. In terrestrial applications, time-of-flight mass spectrometry (TOF-MS) is the technique of choice for performing fast, sensitive composition measurements with extremely large mass range. However, because of its reliance on high voltages and microchannel plate (MCP) detectors prone to discharge at elevated pressures, TOF-MS has rarely been employed for measurements of the MLT, where ambient pressures approach 10 mTorr. We present a novel, compact mass spectrometer design appropriate for deployment aboard sounding rockets. This Hadamard transform time-of-flight mass spectrometer (HT-TOF-MS) applies a multiplexing technique through pseudorandom beam modulation and spectral deconvolution to achieve very high measurement duty cycles (50%), with a theoretically unlimited mass range. The HT-TOF-MS employs a simple, getter-based vacuum pumping system and pressure-tolerant MCP to allow operation in the MLT. The HT-TOF-MS must provide sufficient vacuum pumping to 1) maintain a minimum mean free path inside the instrument, to avoid spectral resolution loss, and 2) to avoid MCP failure through electrostatic discharge. The design incorporates inexpensive, room temperature tube getters loaded with nano-structured barium to meet these pumping speed requirements, without the use of cryogenics or mechanical pumping systems. We present experimental results for gettering rates and capacity under a variety of gas loads and experimental conditions. Additionally, rigorous modeling has been performed to simulate the gas load and performance of the instrument in the MLT. The Direct Simulation Monte Carlo (DSMC) method was used to simulate gas flow characteristics at various altitudes, from 70 to 110 km, for representative rocket trajectories. These simulations show the effects of high-speed rocket flight through the atmosphere, including the density and temperature enhancements due to the bow shock at the front of the instrument. Vacuum pumping analysis has also been performed using traditional gas flow equations, for comparison to DSMC results. The HT-TOF-MS uses a commercial MCP designed to operate at significantly greater pressures than typical fast charge-amplifying detectors. We present experimental data for MCP operation at high pressures for a variety of gases. Preliminary data indicates this detector will provide stable operation at the pressures provided by the tube getters. The combination of high-pressure MCP and getter-based vacuum pumping system will allow mass spectrometers and other MCP-based instruments to be deployed in the MLT region on future sounding rocket campaigns.
Network analysis for the visualization and analysis of qualitative data.
Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D
2018-03-01
We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Posttest analysis of the FFTF inherent safety tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padilla, A. Jr.; Claybrook, S.W.
Inherent safety tests were performed during 1986 in the 400-MW (thermal) Fast Flux Test Facility (FFTF) reactor to demonstrate the effectiveness of an inherent shutdown device called the gas expansion module (GEM). The GEM device provided a strong negative reactivity feedback during loss-of-flow conditions by increasing the neutron leakage as a result of an expanding gas bubble. The best-estimate pretest calculations for these tests were performed using the IANUS plant analysis code (Westinghouse Electric Corporation proprietary code) and the MELT/SIEX3 core analysis code. These two codes were also used to perform the required operational safety analyses for the FFTF reactormore » and plant. Although it was intended to also use the SASSYS systems (core and plant) analysis code, the calibration of the SASSYS code for FFTF core and plant analysis was not completed in time to perform pretest analyses. The purpose of this paper is to present the results of the posttest analysis of the 1986 FFTF inherent safety tests using the SASSYS code.« less
GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winn, W.G.
The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.
Integrated Composite Analyzer (ICAN): Users and programmers manual
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1986-01-01
The use of and relevant equations programmed in a computer code designed to carry out a comprehensive linear analysis of multilayered fiber composites is described. The analysis contains the essential features required to effectively design structural components made from fiber composites. The inputs to the code are constituent material properties, factors reflecting the fabrication process, and composite geometry. The code performs micromechanics, macromechanics, and laminate analysis, including the hygrothermal response of fiber composites. The code outputs are the various ply and composite properties, composite structural response, and composite stress analysis results with details on failure. The code is in Fortran IV and can be used efficiently as a package in complex structural analysis programs. The input-output format is described extensively through the use of a sample problem. The program listing is also included. The code manual consists of two parts.
Reliable absolute analog code retrieval approach for 3D measurement
NASA Astrophysics Data System (ADS)
Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Chen, Deyun
2017-11-01
The wrapped phase of phase-shifting approach can be unwrapped by using Gray code, but both the wrapped phase error and Gray code decoding error can result in period jump error, which will lead to gross measurement error. Therefore, this paper presents a reliable absolute analog code retrieval approach. The combination of unequal-period Gray code and phase shifting patterns at high frequencies are used to obtain high-frequency absolute analog code, and at low frequencies, the same unequal-period combination patterns are used to obtain the low-frequency absolute analog code. Next, the difference between the two absolute analog codes was employed to eliminate period jump errors, and a reliable unwrapped result can be obtained. Error analysis was used to determine the applicable conditions, and this approach was verified through theoretical analysis. The proposed approach was further verified experimentally. Theoretical analysis and experimental results demonstrate that the proposed approach can perform reliable analog code unwrapping.
A Semantic Analysis Method for Scientific and Engineering Code
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1998-01-01
This paper develops a procedure to statically analyze aspects of the meaning or semantics of scientific and engineering code. The analysis involves adding semantic declarations to a user's code and parsing this semantic knowledge with the original code using multiple expert parsers. These semantic parsers are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. In practice, a user would submit code with semantic declarations of primitive variables to the analysis procedure, and its semantic parsers would automatically recognize and document some static, semantic concepts and locate some program semantic errors. A prototype implementation of this analysis procedure is demonstrated. Further, the relationship between the fundamental algebraic manipulations of equations and the parsing of expressions is explained. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.
NASA Astrophysics Data System (ADS)
Kraljić, K.; Strüngmann, L.; Fimmel, E.; Gumbel, M.
2018-01-01
The genetic code is degenerated and it is assumed that redundancy provides error detection and correction mechanisms in the translation process. However, the biological meaning of the code's structure is still under current research. This paper presents a Genetic Code Analysis Toolkit (GCAT) which provides workflows and algorithms for the analysis of the structure of nucleotide sequences. In particular, sets or sequences of codons can be transformed and tested for circularity, comma-freeness, dichotomic partitions and others. GCAT comes with a fertile editor custom-built to work with the genetic code and a batch mode for multi-sequence processing. With the ability to read FASTA files or load sequences from GenBank, the tool can be used for the mathematical and statistical analysis of existing sequence data. GCAT is Java-based and provides a plug-in concept for extensibility. Availability: Open source Homepage:http://www.gcat.bio/
FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna
2016-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu
2015-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components
NASA Technical Reports Server (NTRS)
Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.
1999-01-01
This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will provide a simpler, faster and user-friendly tool for conducting design studies of aircraft and spacecraft engines, applicable in high speed civil transport and space missions.
An emulator for minimizing computer resources for finite element analysis
NASA Technical Reports Server (NTRS)
Melosh, R.; Utku, S.; Islam, M.; Salama, M.
1984-01-01
A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).
Wake coupling to full potential rotor analysis code
NASA Technical Reports Server (NTRS)
Torres, Francisco J.; Chang, I-Chung; Oh, Byung K.
1990-01-01
The wake information from a helicopter forward flight code is coupled with two transonic potential rotor codes. The induced velocities for the near-, mid-, and far-wake geometries are extracted from a nonlinear rigid wake of a standard performance and analysis code. These, together with the corresponding inflow angles, computation points, and azimuth angles, are then incorporated into the transonic potential codes. The coupled codes can then provide an improved prediction of rotor blade loading at transonic speeds.
Comparative analysis of design codes for timber bridges in Canada, the United States, and Europe
James Wacker; James (Scott) Groenier
2010-01-01
The United States recently completed its transition from the allowable stress design code to the load and resistance factor design (LRFD) reliability-based code for the design of most highway bridges. For an international perspective on the LRFD-based bridge codes, a comparative analysis is presented: a study addressed national codes of the United States, Canada, and...
Studies on Beam Formation in an Atomic Beam Source
NASA Astrophysics Data System (ADS)
Nass, A.; Stancari, M.; Steffens, E.
2009-08-01
Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC) [2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.
State-to-State Internal Energy Relaxation Following the Quantum-Kinetic Model in DSMC
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2014-01-01
A new model for chemical reactions, the Quantum-Kinetic (Q-K) model of Bird, has recently been introduced that does not depend on macroscopic rate equations or values of local flow field data. Subsequently, the Q-K model has been extended to include reactions involving charged species and electronic energy level transitions. Although this is a phenomenological model, it has been shown to accurately reproduce both equilibrium and non-equilibrium reaction rates. The usefulness of this model becomes clear as local flow conditions either exceed the conditions used to build previous models or when they depart from an equilibrium distribution. Presently, the applicability of the relaxation technique is investigated for the vibrational internal energy mode. The Forced Harmonic Oscillator (FHO) theory for vibrational energy level transitions is combined with the Q-K energy level transition model to accurately reproduce energy level transitions at a reduced computational cost compared to the older FHO models.
Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity.
Luan, Tian; Yao, Hepeng; Wang, Lu; Li, Chen; Yang, Shifeng; Chen, Xuzong; Ma, Zhaoyuan
2015-05-04
Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin.
Simulation of hypersonic rarefied flows with the immersed-boundary method
NASA Astrophysics Data System (ADS)
Bruno, D.; De Palma, P.; de Tullio, M. D.
2011-05-01
This paper provides a validation of an immersed boundary method for computing hypersonic rarefied gas flows. The method is based on the solution of the Navier-Stokes equation and is validated versus numerical results obtained by the DSMC approach. The Navier-Stokes solver employs a flexible local grid refinement technique and is implemented on parallel machines using a domain-decomposition approach. Thanks to the efficient grid generation process, based on the ray-tracing technique, and the use of the METIS software, it is possible to obtain the partitioned grids to be assigned to each processor with a minimal effort by the user. This allows one to by-pass the expensive (in terms of time and human resources) classical generation process of a body fitted grid. First-order slip-velocity boundary conditions are employed and tested for taking into account rarefied gas effects.
Monte Carlo simulation of a near-continuum shock-shock interaction problem
NASA Technical Reports Server (NTRS)
Carlson, Ann B.; Wilmoth, Richard G.
1992-01-01
A complex shock interaction is calculated with direct simulation Monte Carlo (DSMC). The calculation is performed for the near-continuum flow produced when an incident shock impinges on the bow shock of a 0.1 in. radius cowl lip for freestream conditions of approximately Mach 15 and 35 km altitude. Solutions are presented both for a full finite-rate chemistry calculation and for a case with chemical reactions suppressed. In each case, both the undisturbed flow about the cowl lip and the full shock interaction flowfields are calculated. Good agreement has been obtained between the no-chemistry simulation of the undisturbed flow and a perfect gas solution obtained with the viscous shock-layer method. Large differences in calculated surface properties when different chemical models are used demonstrate the necessity of adequately representing the chemistry when making surface property predictions. Preliminary grid refinement studies make it possible to estimate the accuracy of the solutions.
Comparison of two computer codes for crack growth analysis: NASCRAC Versus NASA/FLAGRO
NASA Technical Reports Server (NTRS)
Stallworth, R.; Meyers, C. A.; Stinson, H. C.
1989-01-01
Results are presented from the comparison study of two computer codes for crack growth analysis - NASCRAC and NASA/FLAGRO. The two computer codes gave compatible conservative results when the part through crack analysis solutions were analyzed versus experimental test data. Results showed good correlation between the codes for the through crack at a lug solution. For the through crack at a lug solution, NASA/FLAGRO gave the most conservative results.
Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frambati, S.; Frignani, M.
2012-07-01
We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less
Qualitative Data Analysis for Health Services Research: Developing Taxonomy, Themes, and Theory
Bradley, Elizabeth H; Curry, Leslie A; Devers, Kelly J
2007-01-01
Objective To provide practical strategies for conducting and evaluating analyses of qualitative data applicable for health services researchers. Data Sources and Design We draw on extant qualitative methodological literature to describe practical approaches to qualitative data analysis. Approaches to data analysis vary by discipline and analytic tradition; however, we focus on qualitative data analysis that has as a goal the generation of taxonomy, themes, and theory germane to health services research. Principle Findings We describe an approach to qualitative data analysis that applies the principles of inductive reasoning while also employing predetermined code types to guide data analysis and interpretation. These code types (conceptual, relationship, perspective, participant characteristics, and setting codes) define a structure that is appropriate for generation of taxonomy, themes, and theory. Conceptual codes and subcodes facilitate the development of taxonomies. Relationship and perspective codes facilitate the development of themes and theory. Intersectional analyses with data coded for participant characteristics and setting codes can facilitate comparative analyses. Conclusions Qualitative inquiry can improve the description and explanation of complex, real-world phenomena pertinent to health services research. Greater understanding of the processes of qualitative data analysis can be helpful for health services researchers as they use these methods themselves or collaborate with qualitative researchers from a wide range of disciplines. PMID:17286625
Qualitative data analysis for health services research: developing taxonomy, themes, and theory.
Bradley, Elizabeth H; Curry, Leslie A; Devers, Kelly J
2007-08-01
To provide practical strategies for conducting and evaluating analyses of qualitative data applicable for health services researchers. DATA SOURCES AND DESIGN: We draw on extant qualitative methodological literature to describe practical approaches to qualitative data analysis. Approaches to data analysis vary by discipline and analytic tradition; however, we focus on qualitative data analysis that has as a goal the generation of taxonomy, themes, and theory germane to health services research. We describe an approach to qualitative data analysis that applies the principles of inductive reasoning while also employing predetermined code types to guide data analysis and interpretation. These code types (conceptual, relationship, perspective, participant characteristics, and setting codes) define a structure that is appropriate for generation of taxonomy, themes, and theory. Conceptual codes and subcodes facilitate the development of taxonomies. Relationship and perspective codes facilitate the development of themes and theory. Intersectional analyses with data coded for participant characteristics and setting codes can facilitate comparative analyses. Qualitative inquiry can improve the description and explanation of complex, real-world phenomena pertinent to health services research. Greater understanding of the processes of qualitative data analysis can be helpful for health services researchers as they use these methods themselves or collaborate with qualitative researchers from a wide range of disciplines.
Combustion: Structural interaction in a viscoelastic material
NASA Technical Reports Server (NTRS)
Chang, T. Y.; Chang, J. P.; Kumar, M.; Kuo, K. K.
1980-01-01
The effect of interaction between combustion processes and structural deformation of solid propellant was considered. The combustion analysis was performed on the basis of deformed crack geometry, which was determined from the structural analysis. On the other hand, input data for the structural analysis, such as pressure distribution along the crack boundary and ablation velocity of the crack, were determined from the combustion analysis. The interaction analysis was conducted by combining two computer codes, a combustion analysis code and a general purpose finite element structural analysis code.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.
1995-01-01
NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittroth, F.
1979-09-01
A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples.
Current and anticipated uses of thermalhydraulic and neutronic codes at PSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksan, S.N.; Zimmermann, M.A.; Yadigaroglu, G.
1997-07-01
The thermalhydraulic and/or neutronic codes in use at PSI mainly provide the capability to perform deterministic safety analysis for Swiss NPPs and also serve as analysis tools for experimental facilities for LWR and ALWR simulations. In relation to these applications, physical model development and improvements, and assessment of the codes are also essential components of the activities. In this paper, a brief overview is provided on the thermalhydraulic and/or neutronic codes used for safety analysis of LWRs, at PSI, and also of some experiences and applications with these codes. Based on these experiences, additional assessment needs are indicated, together withmore » some model improvement needs. The future needs that could be used to specify both the development of a new code and also improvement of available codes are summarized.« less
Content Analysis Coding Schemes for Online Asynchronous Discussion
ERIC Educational Resources Information Center
Weltzer-Ward, Lisa
2011-01-01
Purpose: Researchers commonly utilize coding-based analysis of classroom asynchronous discussion contributions as part of studies of online learning and instruction. However, this analysis is inconsistent from study to study with over 50 coding schemes and procedures applied in the last eight years. The aim of this article is to provide a basis…
Modeling of the VIRTIS-M Observations of the Coma of Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Fougere, Nicolas; Combi, Michael R.; Tenishev, Valeriy; Bieler, Andre; Migliorini, Alessandra; Piccioni, Giuseppe; Capaccioni, Fabrizio; Filacchione, Gianrico; Toth, Gabor; Huang, Zhenguang; Gombosi, Tamas; Hansen, Kenneth; Bockelee-Morvan, Dominique; Debout, Vincent; Erard, Stephane; Leyrat, Cedric; Fink, Uwe; Rubin, Martin; Altwegg, Kathrin; Tzou, Chia-Yu; Le Roy, Lena; Calmonte, Ursina; Berthelier, Jean-Jacques; Reme, Henri; Hassig, Myrtha; Fuselier, Stephen; Fiethe, Bjorn; De Keyser, Johan
2015-11-01
The recent images of the inner coma of 67P/Churyumov-Gerasimenko (CG) made by the infrared channel of the VIRTIS-M instrument on board the Rosetta spacecraft show the gas distribution as it expands in the coma (Migliorini et al. 2015, DPS abstract).Since VIRTIS is a remote sensing instrument, a proper modeling of these observations requires the computation of the full coma of comet CG, which necessitates the use of a kinetic approach due to the rather low gas densities. Hence, we apply a Direct Simulation Monde Carlo (DSMC) method to solve the Boltzmann equation and describe CG’s coma from the nucleus surface up to a few hundreds of kilometers. The model uses the SHAP5 nucleus shape model from the OSIRIS team. The gas flux distribution takes into account solar illumination, including self-shadowing. The local activity at the surface of the nucleus is given by spherical harmonics expansion reproducing best the ROSINA-DFMS data. The densities from the DSMC model outputs are then integrated along the line-of-sight to create synthetic images that are directly comparable with the VIRTIS-M column density measurements.The good agreement between the observations and the model illustrates our continuously improving understanding of the physics of the coma of comet CG.AcknowledgementsWork at UofM was supported by contracts JPL#1266313, JPL#1266314 and NASA grant NNX09AB59G. Work at UoB was funded by the State of Bern, the Swiss National Science Foundation and by the European Space Agency PRODEX Program. Work at Southwest Research institute was supported by subcontract #1496541 from the JPL. Work at BIRA-IASB was supported by the Belgian Science Policy Office via PRODEX/ROSINA PEA 90020. The authors would like to thank ASI, CNES, DLR, NASA for supporting this research. VIRTIS was built by a consortium formed by Italy, France and Germany, under the scientific responsibility of the IAPS of INAF, which guides also the scientific operations. The consortium includes also the LESIA of the Observatoire de Paris, and the Institut für Planetenforschung of DLR. The authors wish to thank the RSGS and the RMOC for their continuous support.
Tortuosity Computations of Porous Materials using the Direct Simulation Monte Carlo
NASA Technical Reports Server (NTRS)
Borner, A.; Ferguson, C.; Panerai, F.; Mansour, Nagi N.
2017-01-01
Low-density carbon fiber preforms, used as thermal protection systems (TPS) materials for planetary entry systems, have permeable, highly porous microstructures consisting of interlaced fibers. Internal gas transport in TPS is important in modeling the penetration of hot boundary-layer gases and the in-depth transport of pyrolysis and ablation products. The gas effective diffusion coefficient of a porous material must be known before the gas transport can be modeled in material response solvers; however, there are very little available data for rigid fibrous insulators used in heritage TPS.The tortuosity factor, which reflects the efficiency of the percolation paths, can be computed from the effective diffusion coefficient of a gas inside a porous material and is based on the micro-structure of the material. It is well known, that the tortuosity factor is a strong function of the Knudsen number. Due to the small characteristic scales of porous media used in TPS applications (typical pore size of the order of 50 micron), the transport of gases can occur in the rarefied and transitional regimes, at Knudsen numbers above 1. A proper way to model the gas dynamics at these conditions consists in solving the Boltzmann equation using particle-based methods that account for movement and collisions of atoms and molecules.In this work we adopt, for the first time, the Direct Simulation Monte Carlo (DSMC) method to compute the tortuosity factor of fibrous media in the rarefied regime. To enable realistic simulations of the actual transport of gases in the porous medium, digitized computational grids are obtained from X-ray micro-tomography imaging of real TPS materials. The SPARTA DSMC solver is used for simulations. Effective diffusion coefficients and tortuosity factors are obtained by computing the mean-square displacement of diffusing particles.We first apply the method to compute the tortuosity factors as a function of the Knudsen number for computationally designed materials such as random cylindrical fibers and packed bed of spheres with prescribed porosity. Results are compared to literature values obtained using random walk methods in the rarefied and transitional regime and a finite-volume method for the continuum regime. We then compute tortuosity factors for a real carbon fiber material with a transverse isotropic structure (FiberForm), quantifying differences between through-thickness and in-plain tortuosities at various Knudsen regimes.
Meanline Analysis of Turbines with Choked Flow in the Object-Oriented Turbomachinery Analysis Code
NASA Technical Reports Server (NTRS)
Hendricks, Eric S.
2016-01-01
The Object-Oriented Turbomachinery Analysis Code (OTAC) is a new meanline/streamline turbomachinery modeling tool being developed at NASA GRC. During the development process, a limitation of the code was discovered in relation to the analysis of choked flow in axial turbines. This paper describes the relevant physics for choked flow as well as the changes made to OTAC to enable analysis in this flow regime.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral
2002-01-01
An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.
2006-01-01
collected, code both. Code Type of Analysis Code Type of Analysis A Physical properties I Common ions/trace elements B Common ions J Sanitary analysis and...1) A ground-water site is coded as if it is a single point, not a geographic area or property . (2) Latitude and longitude should be determined at a...terrace from an adjacent upland on one side, and a lowland coast or valley on the other. Due to the effects of erosion, the terrace surface may not be as
EAC: A program for the error analysis of STAGS results for plates
NASA Technical Reports Server (NTRS)
Sistla, Rajaram; Thurston, Gaylen A.; Bains, Nancy Jane C.
1989-01-01
A computer code is now available for estimating the error in results from the STAGS finite element code for a shell unit consisting of a rectangular orthotropic plate. This memorandum contains basic information about the computer code EAC (Error Analysis and Correction) and describes the connection between the input data for the STAGS shell units and the input data necessary to run the error analysis code. The STAGS code returns a set of nodal displacements and a discrete set of stress resultants; the EAC code returns a continuous solution for displacements and stress resultants. The continuous solution is defined by a set of generalized coordinates computed in EAC. The theory and the assumptions that determine the continuous solution are also outlined in this memorandum. An example of application of the code is presented and instructions on its usage on the Cyber and the VAX machines have been provided.
Development of probabilistic multimedia multipathway computer codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, C.; LePoire, D.; Gnanapragasam, E.
2002-01-01
The deterministic multimedia dose/risk assessment codes RESRAD and RESRAD-BUILD have been widely used for many years for evaluation of sites contaminated with residual radioactive materials. The RESRAD code applies to the cleanup of sites (soils) and the RESRAD-BUILD code applies to the cleanup of buildings and structures. This work describes the procedure used to enhance the deterministic RESRAD and RESRAD-BUILD codes for probabilistic dose analysis. A six-step procedure was used in developing default parameter distributions and the probabilistic analysis modules. These six steps include (1) listing and categorizing parameters; (2) ranking parameters; (3) developing parameter distributions; (4) testing parameter distributionsmore » for probabilistic analysis; (5) developing probabilistic software modules; and (6) testing probabilistic modules and integrated codes. The procedures used can be applied to the development of other multimedia probabilistic codes. The probabilistic versions of RESRAD and RESRAD-BUILD codes provide tools for studying the uncertainty in dose assessment caused by uncertain input parameters. The parameter distribution data collected in this work can also be applied to other multimedia assessment tasks and multimedia computer codes.« less
Energy Savings Analysis of the Proposed NYStretch-Energy Code 2018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bing; Zhang, Jian; Chen, Yan
This study was conducted by the Pacific Northwest National Laboratory (PNNL) in support of the stretch energy code development led by the New York State Energy Research and Development Authority (NYSERDA). In 2017 NYSERDA developed its 2016 Stretch Code Supplement to the 2016 New York State Energy Conservation Construction Code (hereinafter referred to as “NYStretch-Energy”). NYStretch-Energy is intended as a model energy code for statewide voluntary adoption that anticipates other code advancements culminating in the goal of a statewide Net Zero Energy Code by 2028. Since then, NYSERDA continues to develop the NYStretch-Energy Code 2018 edition. To support the effort,more » PNNL conducted energy simulation analysis to quantify the energy savings of proposed commercial provisions of the NYStretch-Energy Code (2018) in New York. The focus of this project is the 20% improvement over existing commercial model energy codes. A key requirement of the proposed stretch code is that it be ‘adoptable’ as an energy code, meaning that it must align with current code scope and limitations, and primarily impact building components that are currently regulated by local building departments. It is largely limited to prescriptive measures, which are what most building departments and design projects are most familiar with. This report describes a set of energy-efficiency measures (EEMs) that demonstrate 20% energy savings over ANSI/ASHRAE/IES Standard 90.1-2013 (ASHRAE 2013) across a broad range of commercial building types and all three climate zones in New York. In collaboration with New Building Institute, the EEMs were developed from national model codes and standards, high-performance building codes and standards, regional energy codes, and measures being proposed as part of the on-going code development process. PNNL analyzed these measures using whole building energy models for selected prototype commercial buildings and multifamily buildings representing buildings in New York. Section 2 of this report describes the analysis methodology, including the building types and construction area weights update for this analysis, the baseline, and the method to conduct the energy saving analysis. Section 3 provides detailed specifications of the EEMs and bundles. Section 4 summarizes the results of individual EEMs and EEM bundles by building type, energy end-use and climate zone. Appendix A documents detailed descriptions of the selected prototype buildings. Appendix B provides energy end-use breakdown results by building type for both the baseline code and stretch code in all climate zones.« less
New technologies for advanced three-dimensional optimum shape design in aeronautics
NASA Astrophysics Data System (ADS)
Dervieux, Alain; Lanteri, Stéphane; Malé, Jean-Michel; Marco, Nathalie; Rostaing-Schmidt, Nicole; Stoufflet, Bruno
1999-05-01
The analysis of complex flows around realistic aircraft geometries is becoming more and more predictive. In order to obtain this result, the complexity of flow analysis codes has been constantly increasing, involving more refined fluid models and sophisticated numerical methods. These codes can only run on top computers, exhausting their memory and CPU capabilities. It is, therefore, difficult to introduce best analysis codes in a shape optimization loop: most previous works in the optimum shape design field used only simplified analysis codes. Moreover, as the most popular optimization methods are the gradient-based ones, the more complex the flow solver, the more difficult it is to compute the sensitivity code. However, emerging technologies are contributing to make such an ambitious project, of including a state-of-the-art flow analysis code into an optimisation loop, feasible. Among those technologies, there are three important issues that this paper wishes to address: shape parametrization, automated differentiation and parallel computing. Shape parametrization allows faster optimization by reducing the number of design variable; in this work, it relies on a hierarchical multilevel approach. The sensitivity code can be obtained using automated differentiation. The automated approach is based on software manipulation tools, which allow the differentiation to be quick and the resulting differentiated code to be rather fast and reliable. In addition, the parallel algorithms implemented in this work allow the resulting optimization software to run on increasingly larger geometries. Copyright
Intrasystem Analysis Program (IAP) code summaries
NASA Astrophysics Data System (ADS)
Dobmeier, J. J.; Drozd, A. L. S.; Surace, J. A.
1983-05-01
This report contains detailed descriptions and capabilities of the codes that comprise the Intrasystem Analysis Program. The four codes are: Intrasystem Electromagnetic Compatibility Analysis Program (IEMCAP), General Electromagnetic Model for the Analysis of Complex Systems (GEMACS), Nonlinear Circuit Analysis Program (NCAP), and Wire Coupling Prediction Models (WIRE). IEMCAP is used for computer-aided evaluation of electromagnetic compatibility (ECM) at all stages of an Air Force system's life cycle, applicable to aircraft, space/missile, and ground-based systems. GEMACS utilizes a Method of Moments (MOM) formalism with the Electric Field Integral Equation (EFIE) for the solution of electromagnetic radiation and scattering problems. The code employs both full matrix decomposition and Banded Matrix Iteration solution techniques and is expressly designed for large problems. NCAP is a circuit analysis code which uses the Volterra approach to solve for the transfer functions and node voltage of weakly nonlinear circuits. The Wire Programs deal with the Application of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling for specific classes of problems.
NASA Technical Reports Server (NTRS)
Shapiro, Wilbur
1991-01-01
The industrial codes will consist of modules of 2-D and simplified 2-D or 1-D codes, intended for expeditious parametric studies, analysis, and design of a wide variety of seals. Integration into a unified system is accomplished by the industrial Knowledge Based System (KBS), which will also provide user friendly interaction, contact sensitive and hypertext help, design guidance, and an expandable database. The types of analysis to be included with the industrial codes are interfacial performance (leakage, load, stiffness, friction losses, etc.), thermoelastic distortions, and dynamic response to rotor excursions. The first three codes to be completed and which are presently being incorporated into the KBS are the incompressible cylindrical code, ICYL, and the compressible cylindrical code, GCYL.
NASA Technical Reports Server (NTRS)
Almroth, B. O.; Brogan, F. A.
1978-01-01
Basic information about the computer code STAGS (Structural Analysis of General Shells) is presented to describe to potential users the scope of the code and the solution procedures that are incorporated. Primarily, STAGS is intended for analysis of shell structures, although it has been extended to more complex shell configurations through the inclusion of springs and beam elements. The formulation is based on a variational approach in combination with local two dimensional power series representations of the displacement components. The computer code includes options for analysis of linear or nonlinear static stress, stability, vibrations, and transient response. Material as well as geometric nonlinearities are included. A few examples of applications of the code are presented for further illustration of its scope.
NASA Astrophysics Data System (ADS)
Hoang, M.; Altwegg, K.; Balsiger, H.; Beth, A.; Bieler, A.; Calmonte, U.; Combi, M. R.; De Keyser, J.; Fiethe, B.; Fougere, N.; Fuselier, S. A.; Galli, A.; Garnier, P.; Gasc, S.; Gombosi, T.; Hansen, K. C.; Jäckel, A.; Korth, A.; Lasue, J.; Le Roy, L.; Mall, U.; Rème, H.; Rubin, M.; Sémon, T.; Toublanc, D.; Tzou, C.-Y.; Waite, J. H.; Wurz, P.
2017-04-01
Context. The ESA Rosetta mission has been investigating the environment of comet 67P/Churyumov-Gerasimenko (67P) since August 2014. Among the experiments on board the spacecraft, the ROSINA experiment (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) includes two mass spectrometers to analyse the composition of neutrals and ions and a COmet Pressure Sensor (COPS) to monitor the density and velocity of neutrals in the coma. Aims: We study heterogeneities in the coma during three periods starting in October 2014 (summer in the northern hemisphere) and ending in February 2016 (end of winter in the northern hemisphere). We provide a detailed description of the main volatiles dynamics (H2O, CO2, CO) and their abundance ratios. Methods: We analysed and compared the data of the Reflectron-type Time-Of-Flight (RTOF) mass spectrometer with data from both the Double Focusing Mass Spectrometer (DFMS) and COPS during the comet escort phase. This comparison has demonstrated that the observations performed with each ROSINA sensor are indeed consistent. Furthermore, we used a Direct Simulation Monte Carlo (DSMC) model to compare modelled densitites with in situ detections. Results: Our analysis shows how the active regions of the main volatiles evolve with the seasons with a variability mostly driven by the illumination conditions; this is the case except for an unexpected dichotomy suggesting the presence of a dust layer containing water deposited in the northern hemisphere during previous perihelions hiding the presence of CO2. The influence of various parameters is investigated in detail: distance to the comet, heliocentric distance, longitude and latitude of sub-satellite point, local time, and phase angle.
NASA Technical Reports Server (NTRS)
Long, Jason M.; Lane, John E.; Metzger, Philip T.
2008-01-01
A previously developed mathematical model is amended to more accurately incorporate the effects of lift and drag on single dust particles in order to predict their behavior in the wake of high velocity gas flow. The model utilizes output from a CFD or DSMC simulation of exhaust from a rocket nozzle hot gas jet. An extension of the Saffman equation for lift based on the research of McLaughlin (1991) and Mei (1992) is used, while an equation for the Magnus force modeled after the work of Oesterle (1994) and Tsuji et al (1985) is applied. A relationship for drag utilizing a particle shape factor (phi = 0.8) is taken from the work of Haider and Levenspiel (1989) for application to non-spherical particle dynamics. The drag equation is further adjusted to account for rarefaction and compressibility effects in rarefied and high Mach number flows according to the work of Davies (1945) and Loth (2007) respectively. Simulations using a more accurate model with the correction factor (Epsilon = 0.8 in a 20% particle concentration gas flow) given by Richardson and Zaki (1954) and Rowe (1961) show that particles have lower ejection angles than those that were previously calculated. This is more prevalent in smaller particles, which are shown through velocity and trajectory comparison to be more influenced by the flow of the surrounding gas. It is shown that particles are more affected by minor changes to drag forces than larger adjustments to lift forces, demanding a closer analysis of the shape and behavior of lunar dust particles and the composition of the surrounding gas flow.
Code Analysis and Refactoring with Clang Tools, Version 0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Timothy M.
2016-12-23
Code Analysis and Refactoring with Clang Tools is a small set of example code that demonstrates techniques for applying tools distributed with the open source Clang compiler. Examples include analyzing where variables are used and replacing old data structures with standard structures.
Hypercube matrix computation task
NASA Technical Reports Server (NTRS)
Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.
1988-01-01
A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).
Evaluation of the DRAGON code for VHTR design analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division
2006-01-12
This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by themore » IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.« less
Green, Nancy
2005-04-01
We developed a Bayesian network coding scheme for annotating biomedical content in layperson-oriented clinical genetics documents. The coding scheme supports the representation of probabilistic and causal relationships among concepts in this domain, at a high enough level of abstraction to capture commonalities among genetic processes and their relationship to health. We are using the coding scheme to annotate a corpus of genetic counseling patient letters as part of the requirements analysis and knowledge acquisition phase of a natural language generation project. This paper describes the coding scheme and presents an evaluation of intercoder reliability for its tag set. In addition to giving examples of use of the coding scheme for analysis of discourse and linguistic features in this genre, we suggest other uses for it in analysis of layperson-oriented text and dialogue in medical communication.
Sports Stars: Analyzing the Performance of Astronomers at Visualization-based Discovery
NASA Astrophysics Data System (ADS)
Fluke, C. J.; Parrington, L.; Hegarty, S.; MacMahon, C.; Morgan, S.; Hassan, A. H.; Kilborn, V. A.
2017-05-01
In this data-rich era of astronomy, there is a growing reliance on automated techniques to discover new knowledge. The role of the astronomer may change from being a discoverer to being a confirmer. But what do astronomers actually look at when they distinguish between “sources” and “noise?” What are the differences between novice and expert astronomers when it comes to visual-based discovery? Can we identify elite talent or coach astronomers to maximize their potential for discovery? By looking to the field of sports performance analysis, we consider an established, domain-wide approach, where the expertise of the viewer (i.e., a member of the coaching team) plays a crucial role in identifying and determining the subtle features of gameplay that provide a winning advantage. As an initial case study, we investigate whether the SportsCode performance analysis software can be used to understand and document how an experienced Hi astronomer makes discoveries in spectral data cubes. We find that the process of timeline-based coding can be applied to spectral cube data by mapping spectral channels to frames within a movie. SportsCode provides a range of easy to use methods for annotation, including feature-based codes and labels, text annotations associated with codes, and image-based drawing. The outputs, including instance movies that are uniquely associated with coded events, provide the basis for a training program or team-based analysis that could be used in unison with discipline specific analysis software. In this coordinated approach to visualization and analysis, SportsCode can act as a visual notebook, recording the insight and decisions in partnership with established analysis methods. Alternatively, in situ annotation and coding of features would be a valuable addition to existing and future visualization and analysis packages.
Mal-Xtract: Hidden Code Extraction using Memory Analysis
NASA Astrophysics Data System (ADS)
Lim, Charles; Syailendra Kotualubun, Yohanes; Suryadi; Ramli, Kalamullah
2017-01-01
Software packer has been used effectively to hide the original code inside a binary executable, making it more difficult for existing signature based anti malware software to detect malicious code inside the executable. A new method of written and rewritten memory section is introduced to to detect the exact end time of unpacking routine and extract original code from packed binary executable using Memory Analysis running in an software emulated environment. Our experiment results show that at least 97% of the original code from the various binary executable packed with different software packers could be extracted. The proposed method has also been successfully extracted hidden code from recent malware family samples.
Interactive Finite Elements for General Engine Dynamics Analysis
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1984-01-01
General nonlinear finite element codes were adapted for the purpose of analyzing the dynamics of gas turbine engines. In particular, this adaptation required the development of a squeeze-film damper element software package and its implantation into a representative current generation code. The ADINA code was selected because of prior use of it and familiarity with its internal structure and logic. This objective was met and the results indicate that such use of general purpose codes is viable alternative to specialized codes for general dynamics analysis of engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, R.; Jones, J.R.
1997-07-01
Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation toolsmore » is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.« less
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1988-01-01
During the period December 1, 1987 through May 31, 1988, progress was made in the following areas: construction of Multi-Dimensional Bandwidth Efficient Trellis Codes with MPSK modulation; performance analysis of Bandwidth Efficient Trellis Coded Modulation schemes; and performance analysis of Bandwidth Efficient Trellis Codes on Fading Channels.
Modeling of rolling element bearing mechanics. Computer program user's manual
NASA Technical Reports Server (NTRS)
Greenhill, Lyn M.; Merchant, David H.
1994-01-01
This report provides the user's manual for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings, duplex angular contact ball bearings, and cylindrical roller bearings. The model includes the defects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program, and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. This report addresses input instructions for and features of the computer codes. A companion report addresses the theoretical basis for the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
Sandia Engineering Analysis Code Access System v. 2.0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjaardema, Gregory D.
The Sandia Engineering Analysis Code Access System (SEACAS) is a suite of preprocessing, post processing, translation, visualization, and utility applications supporting finite element analysis software using the Exodus database file format.
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Walton, Owen
2015-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MACGMC composite material analysis code. The resulting code is called FEAMACCARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMACCARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMACCARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai
2015-12-01
Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.
Superimposed Code Theoretic Analysis of DNA Codes and DNA Computing
2008-01-01
complements of one another and the DNA duplex formed is a Watson - Crick (WC) duplex. However, there are many instances when the formation of non-WC...that the user’s requirements for probe selection are met based on the Watson - Crick probe locality within a target. The second type, called...AFRL-RI-RS-TR-2007-288 Final Technical Report January 2008 SUPERIMPOSED CODE THEORETIC ANALYSIS OF DNA CODES AND DNA COMPUTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki
A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integratedmore » into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.« less
NASA Technical Reports Server (NTRS)
Stoll, Frederick
1993-01-01
The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic composite structures such as stiffened panels. The code can model in-plane axial loading, transverse pressure loading, and constant through-the-thickness thermal loading, and can account for shape imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA are used in NLPAN as global functions for representing displacements in the nonlinear regime. While the NLPAN analysis is approximate in nature, it is computationally economical in comparison with finite-element analysis, and is thus suitable for use in preliminary design and design optimization. A comprehensive description of the theoretical approach of NLPAN is provided. A discussion of some operational considerations for the NLPAN code is included. NLPAN is applied to several test problems in order to demonstrate new program capabilities, and to assess the accuracy of the code in modeling various types of loading and response. User instructions for the NLPAN computer program are provided, including a detailed description of the input requirements and example input files for two stiffened-panel configurations.
CRITICA: coding region identification tool invoking comparative analysis
NASA Technical Reports Server (NTRS)
Badger, J. H.; Olsen, G. J.; Woese, C. R. (Principal Investigator)
1999-01-01
Gene recognition is essential to understanding existing and future DNA sequence data. CRITICA (Coding Region Identification Tool Invoking Comparative Analysis) is a suite of programs for identifying likely protein-coding sequences in DNA by combining comparative analysis of DNA sequences with more common noncomparative methods. In the comparative component of the analysis, regions of DNA are aligned with related sequences from the DNA databases; if the translation of the aligned sequences has greater amino acid identity than expected for the observed percentage nucleotide identity, this is interpreted as evidence for coding. CRITICA also incorporates noncomparative information derived from the relative frequencies of hexanucleotides in coding frames versus other contexts (i.e., dicodon bias). The dicodon usage information is derived by iterative analysis of the data, such that CRITICA is not dependent on the existence or accuracy of coding sequence annotations in the databases. This independence makes the method particularly well suited for the analysis of novel genomes. CRITICA was tested by analyzing the available Salmonella typhimurium DNA sequences. Its predictions were compared with the DNA sequence annotations and with the predictions of GenMark. CRITICA proved to be more accurate than GenMark, and moreover, many of its predictions that would seem to be errors instead reflect problems in the sequence databases. The source code of CRITICA is freely available by anonymous FTP (rdp.life.uiuc.edu in/pub/critica) and on the World Wide Web (http:/(/)rdpwww.life.uiuc.edu).
Verification of a Viscous Computational Aeroacoustics Code using External Verification Analysis
NASA Technical Reports Server (NTRS)
Ingraham, Daniel; Hixon, Ray
2015-01-01
The External Verification Analysis approach to code verification is extended to solve the three-dimensional Navier-Stokes equations with constant properties, and is used to verify a high-order computational aeroacoustics (CAA) code. After a brief review of the relevant literature, the details of the EVA approach are presented and compared to the similar Method of Manufactured Solutions (MMS). Pseudocode representations of EVA's algorithms are included, along with the recurrence relations needed to construct the EVA solution. The code verification results show that EVA was able to convincingly verify a high-order, viscous CAA code without the addition of MMS-style source terms, or any other modifications to the code.
Verification of a Viscous Computational Aeroacoustics Code Using External Verification Analysis
NASA Technical Reports Server (NTRS)
Ingraham, Daniel; Hixon, Ray
2015-01-01
The External Verification Analysis approach to code verification is extended to solve the three-dimensional Navier-Stokes equations with constant properties, and is used to verify a high-order computational aeroacoustics (CAA) code. After a brief review of the relevant literature, the details of the EVA approach are presented and compared to the similar Method of Manufactured Solutions (MMS). Pseudocode representations of EVA's algorithms are included, along with the recurrence relations needed to construct the EVA solution. The code verification results show that EVA was able to convincingly verify a high-order, viscous CAA code without the addition of MMS-style source terms, or any other modifications to the code.
Dependency graph for code analysis on emerging architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shashkov, Mikhail Jurievich; Lipnikov, Konstantin
Direct acyclic dependency (DAG) graph is becoming the standard for modern multi-physics codes.The ideal DAG is the true block-scheme of a multi-physics code. Therefore, it is the convenient object for insitu analysis of the cost of computations and algorithmic bottlenecks related to statistical frequent data motion and dymanical machine state.
Automatic Coding of Dialogue Acts in Collaboration Protocols
ERIC Educational Resources Information Center
Erkens, Gijsbert; Janssen, Jeroen
2008-01-01
Although protocol analysis can be an important tool for researchers to investigate the process of collaboration and communication, the use of this method of analysis can be time consuming. Hence, an automatic coding procedure for coding dialogue acts was developed. This procedure helps to determine the communicative function of messages in online…
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1992-01-01
Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.
Finite element analysis of inviscid subsonic boattail flow
NASA Technical Reports Server (NTRS)
Chima, R. V.; Gerhart, P. M.
1981-01-01
A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.
PASCO: Structural panel analysis and sizing code: Users manual - Revised
NASA Technical Reports Server (NTRS)
Anderson, M. S.; Stroud, W. J.; Durling, B. J.; Hennessy, K. W.
1981-01-01
A computer code denoted PASCO is described for analyzing and sizing uniaxially stiffened composite panels. Buckling and vibration analyses are carried out with a linked plate analysis computer code denoted VIPASA, which is included in PASCO. Sizing is based on nonlinear mathematical programming techniques and employs a computer code denoted CONMIN, also included in PASCO. Design requirements considered are initial buckling, material strength, stiffness and vibration frequency. A user's manual for PASCO is presented.
Rankin, Carl Robert; Theodorou, Evangelos; Law, Ivy Ka Man; Rowe, Lorraine; Kokkotou, Efi; Pekow, Joel; Wang, Jiafang; Martin, Martin G; Pothoulakis, Charalabos; Padua, David Miguel
2018-06-28
Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend towards improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and non-coding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 non-coding RNAs that were differentially expressed in either mouse model. Surprisingly, only three non-coding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and non-coding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD.
A CFD/CSD Interaction Methodology for Aircraft Wings
NASA Technical Reports Server (NTRS)
Bhardwaj, Manoj K.
1997-01-01
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).
Development of Safety Analysis Code System of Beam Transport and Core for Accelerator Driven System
NASA Astrophysics Data System (ADS)
Aizawa, Naoto; Iwasaki, Tomohiko
2014-06-01
Safety analysis code system of beam transport and core for accelerator driven system (ADS) is developed for the analyses of beam transients such as the change of the shape and position of incident beam. The code system consists of the beam transport analysis part and the core analysis part. TRACE 3-D is employed in the beam transport analysis part, and the shape and incident position of beam at the target are calculated. In the core analysis part, the neutronics, thermo-hydraulics and cladding failure analyses are performed by the use of ADS dynamic calculation code ADSE on the basis of the external source database calculated by PHITS and the cross section database calculated by SRAC, and the programs of the cladding failure analysis for thermoelastic and creep. By the use of the code system, beam transient analyses are performed for the ADS proposed by Japan Atomic Energy Agency. As a result, the rapid increase of the cladding temperature happens and the plastic deformation is caused in several seconds. In addition, the cladding is evaluated to be failed by creep within a hundred seconds. These results have shown that the beam transients have caused a cladding failure.
EBT reactor systems analysis and cost code: description and users guide (Version 1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoro, R.T.; Uckan, N.A.; Barnes, J.M.
1984-06-01
An ELMO Bumpy Torus (EBT) reactor systems analysis and cost code that incorporates the most recent advances in EBT physics has been written. The code determines a set of reactors that fall within an allowed operating window determined from the coupling of ring and core plasma properties and the self-consistent treatment of the coupled ring-core stability and power balance requirements. The essential elements of the systems analysis and cost code are described, along with the calculational sequences leading to the specification of the reactor options and their associated costs. The input parameters, the constraints imposed upon them, and the operatingmore » range over which the code provides valid results are discussed. A sample problem and the interpretation of the results are also presented.« less
ERIC Educational Resources Information Center
Hau, Goh Bak; Siraj, Saedah; Alias, Norlidah; Rauf, Rose Amnah Abd.; Zakaria, Abd. Razak; Darusalam, Ghazali
2013-01-01
This study provides a content analysis of selected articles in the field of QR code and its application in educational context that were published in journals and proceedings of international conferences and workshops from 2006 to 2011. These articles were cross analysed by published years, journal, and research topics. Further analysis was…
Computer codes developed and under development at Lewis
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1992-01-01
The objective of this summary is to provide a brief description of: (1) codes developed or under development at LeRC; and (2) the development status of IPACS with some typical early results. The computer codes that have been developed and/or are under development at LeRC are listed in the accompanying charts. This list includes: (1) the code acronym; (2) select physics descriptors; (3) current enhancements; and (4) present (9/91) code status with respect to its availability and documentation. The computer codes list is grouped by related functions such as: (1) composite mechanics; (2) composite structures; (3) integrated and 3-D analysis; (4) structural tailoring; and (5) probabilistic structural analysis. These codes provide a broad computational simulation infrastructure (technology base-readiness) for assessing the structural integrity/durability/reliability of propulsion systems. These codes serve two other very important functions: they provide an effective means of technology transfer; and they constitute a depository of corporate memory.
Improvements in the MGA Code Provide Flexibility and Better Error Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhter, W D; Kerr, J
2005-05-26
The Multi-Group Analysis (MGA) code is widely used to determine nondestructively the relative isotopic abundances of plutonium by gamma-ray spectrometry. MGA users have expressed concern about the lack of flexibility and transparency in the code. Users often have to ask the code developers for modifications to the code to accommodate new measurement situations, such as additional peaks being present in the plutonium spectrum or expected peaks being absent. We are testing several new improvements to a prototype, general gamma-ray isotopic analysis tool with the intent of either revising or replacing the MGA code. These improvements will give the user themore » ability to modify, add, or delete the gamma- and x-ray energies and branching intensities used by the code in determining a more precise gain and in the determination of the relative detection efficiency. We have also fully integrated the determination of the relative isotopic abundances with the determination of the relative detection efficiency to provide a more accurate determination of the errors in the relative isotopic abundances. We provide details in this paper on these improvements and a comparison of results obtained with current versions of the MGA code.« less
NASA Technical Reports Server (NTRS)
Cheng, H. K.; Wong, Eric Y.; Dogra, V. K.
1991-01-01
Grad's thirteen-moment equations are applied to the flow behind a bow shock under the formalism of a thin shock layer. Comparison of this version of the theory with Direct Simulation Monte Carlo calculations of flows about a flat plate at finite attack angle has lent support to the approach as a useful extension of the continuum model for studying translational nonequilibrium in the shock layer. This paper reassesses the physical basis and limitations of the development with additional calculations and comparisons. The streamline correlation principle, which allows transformation of the 13-moment based system to one based on the Navier-Stokes equations, is extended to a three-dimensional formulation. The development yields a strip theory for planar lifting surfaces at finite incidences. Examples reveal that the lift-to-drag ratio is little influenced by planform geometry and varies with altitudes according to a 'bridging function' determined by correlated two-dimensional calculations.
NASA Astrophysics Data System (ADS)
Brykina, I. G.; Rogov, B. V.; Semenov, I. L.; Tirskiy, G. A.
2011-05-01
Super- and hypersonic rarefied gas flow over blunt bodies is investigated by using asymptotically correct viscous shock layer (VSL) model with effective boundary conditions and thin viscous shock layer model. Correct shock and wall conditions for VSL are proposed with taking into account terms due to the curvature which are significant at low Reynolds number. These conditions improve original Davis's VSL model [1]. Numerical calculation of Krook equation [2] is carried out to verify continuum results. Continuum numerical and asymptotic solutions are compared with kinetic solution, free-molecule flow solution and with DSMC solutions [3, 4, 5] over a wide range of free-stream Knudsen number Kn∞. It is shown that taking into account terms with shock and surface curvatures have a pronounced effect on skin friction and heat-transfer in transitional flow regime. Using the asymptotically correct VSL model with effective boundary conditions significantly extends the range of its applicability to higher Kn∞ numbers.
Simulating Irregular Source Geometries for Ionian Plumes
NASA Astrophysics Data System (ADS)
McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.
2011-05-01
Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.
Three-dimensional implementation of the Low Diffusion method for continuum flow simulations
NASA Astrophysics Data System (ADS)
Mirza, A.; Nizenkov, P.; Pfeiffer, M.; Fasoulas, S.
2017-11-01
Concepts of a particle-based continuum method have existed for many years. The ultimate goal is to couple such a method with the Direct Simulation Monte Carlo (DSMC) in order to bridge the gap of numerical tools in the treatment of the transitional flow regime between near-equilibrium and rarefied gas flows. For this purpose, the Low Diffusion (LD) method, introduced first by Burt and Boyd, offers a promising solution. In this paper, the LD method is revisited and the implementation in a modern particle solver named PICLas is given. The modifications of the LD routines enable three-dimensional continuum flow simulations. The implementation is successfully verified through a series of test cases: simple stationary shock, oblique shock simulation and thermal Couette flow. Additionally, the capability of this method is demonstrated by the simulation of a hypersonic nitrogen flow around a 70°-blunted cone. Overall results are in very good agreement with experimental data. Finally, the scalability of PICLas using LD on a high performance cluster is presented.
NASA Astrophysics Data System (ADS)
Puranik, Bhalchandra; Watvisave, Deepak; Bhandarkar, Upendra
2016-11-01
The interaction of a shock with a density interface is observed in several technological applications such as supersonic combustion, inertial confinement fusion, and shock-induced fragmentation of kidney and gall-stones. The central physical process in this interaction is the mechanism of the Richtmyer-Meshkov Instability (RMI). The specific situation where the density interface is initially an isolated spherical or cylindrical gas bubble presents a relatively simple geometry that exhibits all the essential RMI processes such as reflected and refracted shocks, secondary instabilities, turbulence and mixing of the species. If the incident shocks are strong, the calorically imperfect nature needs to be modelled. In the present work, we have carried out simulations of the shock-bubble interaction using the DSMC method for such situations. Specifically, an investigation of the shock-bubble interaction with diatomic gases involving rotational and vibrational excitations at high temperatures is performed, and the effects of such high temperature phenomena will be presented.
The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme
NASA Astrophysics Data System (ADS)
Wang, Rui-Jie; Xu, Kun
2012-08-01
Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carried out for a wide range of wave oscillating frequencies. The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency. The simulation covers the flow regime from the continuum to free molecule one. The treatment of the oscillating wall boundary condition and the methods for evaluating the absorption coefficient and sound wave speed are presented in detail. The simulation results from the UGKS are compared to the Navier-Stokes solutions, the direct simulation Monte Carlo (DSMC) simulation, and experimental measurements. Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32. The current study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.
Experimental and Numerical Study of Nozzle Plume Impingement on Spacecraft Surfaces
NASA Astrophysics Data System (ADS)
Ketsdever, A. D.; Lilly, T. C.; Gimelshein, S. F.; Alexeenko, A. A.
2005-05-01
An experimental and numerical effort was undertaken to assess the effects of a cold gas (To=300K) nozzle plume impinging on a simulated spacecraft surface. The nozzle flow impingement is investigated experimentally using a nano-Newton resolution force balance and numerically using the Direct Simulation Monte Carlo (DSMC) numerical technique. The Reynolds number range investigated in this study is from 0.5 to approximately 900 using helium and nitrogen propellants. The thrust produced by the nozzle was first assessed on a force balance to provide a baseline case. Subsequently, an aluminum plate was attached to the same force balance at various angles from 0° (parallel to the plume flow) to 10°. For low Reynolds number helium flow, a 16.5% decrease in thrust was measured for the plate at 0° relative to the free plume expansion case. For low Reynolds number nitrogen flow, the difference was found to be 12%. The thrust degradation was found to decrease at higher Reynolds numbers and larger plate angles.
Thermally induced gas flows in ratchet channels with diffuse and specular boundaries
Shahabi, Vahid; Baier, Tobias; Roohi, Ehsan; Hardt, Steffen
2017-01-01
A net gas flow can be induced in the gap between periodically structured surfaces held at fixed but different temperatures when the reflection symmetry along the channel axis is broken. Such a situation arises when one surface features a ratchet structure and can be augmented by altering the boundary conditions on different parts of this surface, with some regions reflecting specularly and others diffusely. In order to investigate the physical mechanisms inducing the flow in this configuration at various Knudsen numbers and geometric configurations, direct simulation Monte Carlo (DSMC) simulations are employed using transient adaptive subcells for collision partner selection. At large Knudsen numbers the results compare favorably with analytical expressions, while for small Knudsen numbers a qualitative explanation for the flow in the strong temperature inhomogeneity at the tips of the ratchet is provided. A detailed investigation of the performance for various ratchet geometries suggests optimum working conditions for a Knudsen pump based on this mechanism. PMID:28128309
A Computer Program for Flow-Log Analysis of Single Holes (FLASH)
Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.
2011-01-01
A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.
Barriers to Early Detection of Breast Cancer Among African American Females Over Age of 55
2005-02-01
used for data analysis. NUDIST , software for qualitative data analysis will be used for systematic coding. All transcripts, as well as interviewer notes...will be coded in NUDIST . Dr. Smith and Mr. Worts will jointly develop the NUDIST coding system. Each of them will separately code each transcript and...already provided training in NUDIST to Dr. Smith and Mr. Worts. All interviews will be conducted by the Principal Investigator for this study who is
Development and application of structural dynamics analysis capabilities
NASA Technical Reports Server (NTRS)
Heinemann, Klaus W.; Hozaki, Shig
1994-01-01
Extensive research activities were performed in the area of multidisciplinary modeling and simulation of aerospace vehicles that are relevant to NASA Dryden Flight Research Facility. The efforts involved theoretical development, computer coding, and debugging of the STARS code. New solution procedures were developed in such areas as structures, CFD, and graphics, among others. Furthermore, systems-oriented codes were developed for rendering the code truly multidisciplinary and rather automated in nature. Also, work was performed in pre- and post-processing of engineering analysis data.
Simplified diagnostic coding sheet for computerized data storage and analysis in ophthalmology.
Tauber, J; Lahav, M
1987-11-01
A review of currently-available diagnostic coding systems revealed that most are either too abbreviated or too detailed. We have compiled a simplified diagnostic coding sheet based on the International Coding and Diagnosis (ICD-9), which is both complete and easy to use in a general practice. The information is transferred to a computer, which uses the relevant (ICD-9) diagnoses as database and can be retrieved later for display of patients' problems or analysis of clinical data.
Teaching, Morality, and Responsibility: A Structuralist Analysis of a Teachers' Code of Conduct
ERIC Educational Resources Information Center
Shortt, Damien; Hallett, Fiona; Spendlove, David; Hardy, Graham; Barton, Amanda
2012-01-01
In this paper we conduct a Structuralist analysis of the General Teaching Council for England's "Code of Conduct and Practice for Registered Teachers" in order to reveal how teachers are required to fulfil an apparently impossible social role. The GTCE's "Code," we argue, may be seen as an attempt by a government agency to…
New Tool Released for Engine-Airframe Blade-Out Structural Simulations
NASA Technical Reports Server (NTRS)
Lawrence, Charles
2004-01-01
Researchers at the NASA Glenn Research Center have enhanced a general-purpose finite element code, NASTRAN, for engine-airframe structural simulations during steady-state and transient operating conditions. For steady-state simulations, the code can predict critical operating speeds, natural modes of vibration, and forced response (e.g., cabin noise and component fatigue). The code can be used to perform static analysis to predict engine-airframe response and component stresses due to maneuver loads. For transient response, the simulation code can be used to predict response due to bladeoff events and subsequent engine shutdown and windmilling conditions. In addition, the code can be used as a pretest analysis tool to predict the results of the bladeout test required for FAA certification of new and derivative aircraft engines. Before the present analysis code was developed, all the major aircraft engine and airframe manufacturers in the United States and overseas were performing similar types of analyses to ensure the structural integrity of engine-airframe systems. Although there were many similarities among the analysis procedures, each manufacturer was developing and maintaining its own structural analysis capabilities independently. This situation led to high software development and maintenance costs, complications with manufacturers exchanging models and results, and limitations in predicting the structural response to the desired degree of accuracy. An industry-NASA team was formed to overcome these problems by developing a common analysis tool that would satisfy all the structural analysis needs of the industry and that would be available and supported by a commercial software vendor so that the team members would be relieved of maintenance and development responsibilities. Input from all the team members was used to ensure that everyone's requirements were satisfied and that the best technology was incorporated into the code. Furthermore, because the code would be distributed by a commercial software vendor, it would be more readily available to engine and airframe manufacturers, as well as to nonaircraft companies that did not previously have access to this capability.
National Combustion Code Parallel Performance Enhancements
NASA Technical Reports Server (NTRS)
Quealy, Angela; Benyo, Theresa (Technical Monitor)
2002-01-01
The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. The unstructured grid, reacting flow code uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC code to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This report describes recent parallel processing modifications to NCC that have improved the parallel scalability of the code, enabling a two hour turnaround for a 1.3 million element fully reacting combustion simulation on an SGI Origin 2000.
NASA Astrophysics Data System (ADS)
Sikder, Somali; Ghosh, Shila
2018-02-01
This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.
Analysis of Phenix end-of-life natural convection test with the MARS-LMR code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, H. Y.; Ha, K. S.; Lee, K. L.
The end-of-life test of Phenix reactor performed by the CEA provided an opportunity to have reliable and valuable test data for the validation and verification of a SFR system analysis code. KAERI joined this international program for the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main objectives of this study were to evaluate the capability of existing SFR system analysis code MARS-LMR and to identify any limitation of the code. The analysis was performed in three stages: pre-test analysis, blind posttest analysis, and final post-test analysis. In the pre-test analysis, the design conditionsmore » provided by the CEA were used to obtain a prediction of the test. The blind post-test analysis was based on the test conditions measured during the tests but the test results were not provided from the CEA. The final post-test analysis was performed to predict the test results as accurate as possible by improving the previous modeling of the test. Based on the pre-test analysis and blind test analysis, the modeling for heat structures in the hot pool and cold pool, steel structures in the core, heat loss from roof and vessel, and the flow path at core outlet were reinforced in the final analysis. The results of the final post-test analysis could be characterized into three different phases. In the early phase, the MARS-LMR simulated the heat-up process correctly due to the enhanced heat structure modeling. In the mid phase before the opening of SG casing, the code reproduced the decrease of core outlet temperature successfully. Finally, in the later phase the increase of heat removal by the opening of the SG opening was well predicted with the MARS-LMR code. (authors)« less
Performance Analysis of Hybrid ARQ Protocols in a Slotted Code Division Multiple-Access Network
1989-08-01
Convolutional Codes . in Proc Int. Conf. Commun., 21.4.1-21.4.5, 1987. [27] J. Hagenauer. Rate Compatible Punctured Convolutional Codes . in Proc Int. Conf...achieved by using a low rate (r = 0.5), high constraint length (e.g., 32) punctured convolutional code . Code puncturing provides for a variable rate code ...investigated the use of convolutional codes in Type II Hybrid ARQ protocols. The error
Development of the Off-line Analysis Code for GODDESS
NASA Astrophysics Data System (ADS)
Garland, Heather; Cizewski, Jolie; Lepailleur, Alex; Walters, David; Pain, Steve; Smith, Karl
2016-09-01
Determining (n, γ) cross sections on unstable nuclei is important for understanding the r-process that is theorized to occur in supernovae and neutron-star mergers. However, (n, γ) reactions are difficult to measure directly because of the short lifetime of the involved neutron rich nuclei. A possible surrogate for the (n, γ) reaction is the (d,p γ) reaction; the measurement of these reactions in inverse kinematics is part of the scope of GODDESS - Gammasphere ORRUBA (Oak Ridge Rutgers University Barrel Array): Dual Detectors for Experimental Structure Studies. The development of an accurate and efficient off-line analysis code for GODDESS experiments is not only essential, but also provides a unique opportunity to create an analysis code designed specifically for transfer reaction experiments. The off-line analysis code has been developed to produce histograms from the binary data file to determine how to best sort events. Recent developments in the off-line analysis code will be presented as well as details on the energy and position calibrations for the ORRUBA detectors. This work is supported in part by the U.S. Department of Energy and National Science Foundation.
Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction
ERIC Educational Resources Information Center
Reisslein, Jana; Johnson, Amy M.; Reisslein, Martin
2015-01-01
Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study…
Maximum likelihood decoding analysis of accumulate-repeat-accumulate codes
NASA Technical Reports Server (NTRS)
Abbasfar, A.; Divsalar, D.; Yao, K.
2004-01-01
In this paper, the performance of the repeat-accumulate codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. Some simple codes are shown that perform very close to Shannon limit with maximum likelihood decoding.
Response surface method in geotechnical/structural analysis, phase 1
NASA Astrophysics Data System (ADS)
Wong, F. S.
1981-02-01
In the response surface approach, an approximating function is fit to a long running computer code based on a limited number of code calculations. The approximating function, called the response surface, is then used to replace the code in subsequent repetitive computations required in a statistical analysis. The procedure of the response surface development and feasibility of the method are shown using a sample problem in slop stability which is based on data from centrifuge experiments of model soil slopes and involves five random soil parameters. It is shown that a response surface can be constructed based on as few as four code calculations and that the response surface is computationally extremely efficient compared to the code calculation. Potential applications of this research include probabilistic analysis of dynamic, complex, nonlinear soil/structure systems such as slope stability, liquefaction, and nuclear reactor safety.
Moderate Deviation Analysis for Classical Communication over Quantum Channels
NASA Astrophysics Data System (ADS)
Chubb, Christopher T.; Tan, Vincent Y. F.; Tomamichel, Marco
2017-11-01
We analyse families of codes for classical data transmission over quantum channels that have both a vanishing probability of error and a code rate approaching capacity as the code length increases. To characterise the fundamental tradeoff between decoding error, code rate and code length for such codes we introduce a quantum generalisation of the moderate deviation analysis proposed by Altŭg and Wagner as well as Polyanskiy and Verdú. We derive such a tradeoff for classical-quantum (as well as image-additive) channels in terms of the channel capacity and the channel dispersion, giving further evidence that the latter quantity characterises the necessary backoff from capacity when transmitting finite blocks of classical data. To derive these results we also study asymmetric binary quantum hypothesis testing in the moderate deviations regime. Due to the central importance of the latter task, we expect that our techniques will find further applications in the analysis of other quantum information processing tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arndt, S.A.
1997-07-01
The real-time reactor simulation field is currently at a crossroads in terms of the capability to perform real-time analysis using the most sophisticated computer codes. Current generation safety analysis codes are being modified to replace simplified codes that were specifically designed to meet the competing requirement for real-time applications. The next generation of thermo-hydraulic codes will need to have included in their specifications the specific requirement for use in a real-time environment. Use of the codes in real-time applications imposes much stricter requirements on robustness, reliability and repeatability than do design and analysis applications. In addition, the need for codemore » use by a variety of users is a critical issue for real-time users, trainers and emergency planners who currently use real-time simulation, and PRA practitioners who will increasingly use real-time simulation for evaluating PRA success criteria in near real-time to validate PRA results for specific configurations and plant system unavailabilities.« less
Colour cyclic code for Brillouin distributed sensors
NASA Astrophysics Data System (ADS)
Le Floch, Sébastien; Sauser, Florian; Llera, Miguel; Rochat, Etienne
2015-09-01
For the first time, a colour cyclic coding (CCC) is theoretically and experimentally demonstrated for Brillouin optical time-domain analysis (BOTDA) distributed sensors. Compared to traditional intensity-modulated cyclic codes, the code presents an additional gain of √2 while keeping the same number of sequences as for a colour coding. A comparison with a standard BOTDA sensor is realized and validates the theoretical coding gain.
Design Analysis of SNS Target StationBiological Shielding Monoligh with Proton Power Uprate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekar, Kursat B.; Ibrahim, Ahmad M.
2017-05-01
This report documents the analysis of the dose rate in the experiment area outside the Spallation Neutron Source (SNS) target station shielding monolith with proton beam energy of 1.3 GeV. The analysis implemented a coupled three dimensional (3D)/two dimensional (2D) approach that used both the Monte Carlo N-Particle Extended (MCNPX) 3D Monte Carlo code and the Discrete Ordinates Transport (DORT) two dimensional deterministic code. The analysis with proton beam energy of 1.3 GeV showed that the dose rate in continuously occupied areas on the lateral surface outside the SNS target station shielding monolith is less than 0.25 mrem/h, which compliesmore » with the SNS facility design objective. However, the methods and codes used in this analysis are out of date and unsupported, and the 2D approximation of the target shielding monolith does not accurately represent the geometry. We recommend that this analysis is updated with modern codes and libraries such as ADVANTG or SHIFT. These codes have demonstrated very high efficiency in performing full 3D radiation shielding analyses of similar and even more difficult problems.« less
Airfoil Vibration Dampers program
NASA Technical Reports Server (NTRS)
Cook, Robert M.
1991-01-01
The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.
Oh, Chang Seok; Lee, Soong Deok; Kim, Yi-Suk; Shin, Dong Hoon
2015-01-01
Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for sequence analysis of mtDNA control region. By the study on Joseon skeleton samples, we know that mtDNA haplogroup determined by coding region SNP markers successfully falls within the same haplogroup that sequence analysis on control region can assign. Considering that ancient samples in previous studies make no small number of errors in control region mtDNA sequencing, coding region SNP analysis can be used as good complimentary to the conventional haplogroup determination, especially of archaeological human bone samples buried underground over long periods. PMID:26345190
Visual Computing Environment Workshop
NASA Technical Reports Server (NTRS)
Lawrence, Charles (Compiler)
1998-01-01
The Visual Computing Environment (VCE) is a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesselinov, Velimir; O'Malley, Daniel; Lin, Youzuo
2016-07-01
Mads.jl (Model analysis and decision support in Julia) is a code that streamlines the process of using data and models for analysis and decision support. It is based on another open-source code developed at LANL and written in C/C++ (MADS; http://mads.lanl.gov; LA-CC-11- 035). Mads.jl can work with external models of arbitrary complexity as well as built-in models of flow and transport in porous media. It enables a number of data- and model-based analyses including model calibration, sensitivity analysis, uncertainty quantification, and decision analysis. The code also can use a series of alternative adaptive computational techniques for Bayesian sampling, Monte Carlo,more » and Bayesian Information-Gap Decision Theory. The code is implemented in the Julia programming language, and has high-performance (parallel) and memory management capabilities. The code uses a series of third party modules developed by others. The code development will also include contributions to the existing third party modules written in Julia; this contributions will be important for the efficient implementation of the algorithm used by Mads.jl. The code also uses a series of LANL developed modules that are developed by Dan O'Malley; these modules will be also a part of the Mads.jl release. Mads.jl will be released under GPL V3 license. The code will be distributed as a Git repo at gitlab.com and github.com. Mads.jl manual and documentation will be posted at madsjulia.lanl.gov.« less
Development of Web Interfaces for Analysis Codes
NASA Astrophysics Data System (ADS)
Emoto, M.; Watanabe, T.; Funaba, H.; Murakami, S.; Nagayama, Y.; Kawahata, K.
Several codes have been developed to analyze plasma physics. However, most of them are developed to run on supercomputers. Therefore, users who typically use personal computers (PCs) find it difficult to use these codes. In order to facilitate the widespread use of these codes, a user-friendly interface is required. The authors propose Web interfaces for these codes. To demonstrate the usefulness of this approach, the authors developed Web interfaces for two analysis codes. One of them is for FIT developed by Murakami. This code is used to analyze the NBI heat deposition, etc. Because it requires electron density profiles, electron temperatures, and ion temperatures as polynomial expressions, those unfamiliar with the experiments find it difficult to use this code, especially visitors from other institutes. The second one is for visualizing the lines of force in the LHD (large helical device) developed by Watanabe. This code is used to analyze the interference caused by the lines of force resulting from the various structures installed in the vacuum vessel of the LHD. This code runs on PCs; however, it requires that the necessary parameters be edited manually. Using these Web interfaces, users can execute these codes interactively.
Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation
NASA Technical Reports Server (NTRS)
Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.
2000-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.
TOOKUIL: A case study in user interface development for safety code application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, D.L.; Harkins, C.K.; Hoole, J.G.
1997-07-01
Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interfacemore » named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.« less
NASA Technical Reports Server (NTRS)
Lou, John; Ferraro, Robert; Farrara, John; Mechoso, Carlos
1996-01-01
An analysis is presented of several factors influencing the performance of a parallel implementation of the UCLA atmospheric general circulation model (AGCM) on massively parallel computer systems. Several modificaitons to the original parallel AGCM code aimed at improving its numerical efficiency, interprocessor communication cost, load-balance and issues affecting single-node code performance are discussed.
ERIC Educational Resources Information Center
Lehane, Teresa
2017-01-01
Regardless of the differing shades of neo-liberalism, successive governments have claimed to champion the cause of "special educational needs and/or disability" (SEND) through official Codes of Practice in 1994, 2001 and 2015. This analysis and comparison of the three Codes of Practice aims to contribute to the debate by exploring…
The Evolution of a Coding Schema in a Paced Program of Research
ERIC Educational Resources Information Center
Winters, Charlene A.; Cudney, Shirley; Sullivan, Therese
2010-01-01
A major task involved in the management, analysis, and integration of qualitative data is the development of a coding schema to facilitate the analytic process. Described in this paper is the evolution of a coding schema that was used in the analysis of qualitative data generated from online forums of middle-aged women with chronic conditions who…
Java Source Code Analysis for API Migration to Embedded Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, Victor; McCoy, James A.; Guerrero, Jonathan
Embedded systems form an integral part of our technological infrastructure and oftentimes play a complex and critical role within larger systems. From the perspective of reliability, security, and safety, strong arguments can be made favoring the use of Java over C in such systems. In part, this argument is based on the assumption that suitable subsets of Java’s APIs and extension libraries are available to embedded software developers. In practice, a number of Java-based embedded processors do not support the full features of the JVM. For such processors, source code migration is a mechanism by which key abstractions offered bymore » APIs and extension libraries can made available to embedded software developers. The analysis required for Java source code-level library migration is based on the ability to correctly resolve element references to their corresponding element declarations. A key challenge in this setting is how to perform analysis for incomplete source-code bases (e.g., subsets of libraries) from which types and packages have been omitted. This article formalizes an approach that can be used to extend code bases targeted for migration in such a manner that the threats associated the analysis of incomplete code bases are eliminated.« less
Iterative categorization (IC): a systematic technique for analysing qualitative data
2016-01-01
Abstract The processes of analysing qualitative data, particularly the stage between coding and publication, are often vague and/or poorly explained within addiction science and research more broadly. A simple but rigorous and transparent technique for analysing qualitative textual data, developed within the field of addiction, is described. The technique, iterative categorization (IC), is suitable for use with inductive and deductive codes and can support a range of common analytical approaches, e.g. thematic analysis, Framework, constant comparison, analytical induction, content analysis, conversational analysis, discourse analysis, interpretative phenomenological analysis and narrative analysis. Once the data have been coded, the only software required is a standard word processing package. Worked examples are provided. PMID:26806155
ERIC Educational Resources Information Center
Putten, Jim Vander; Nolen, Amanda L.
2010-01-01
This study compared qualitative research results obtained by manual constant comparative analysis with results obtained by computer software analysis of the same data. An investigated about issues of trustworthiness and accuracy ensued. Results indicated that the inductive constant comparative data analysis generated 51 codes and two coding levels…
An investigation of error characteristics and coding performance
NASA Technical Reports Server (NTRS)
Ebel, William J.; Ingels, Frank M.
1993-01-01
The first year's effort on NASA Grant NAG5-2006 was an investigation to characterize typical errors resulting from the EOS dorn link. The analysis methods developed for this effort were used on test data from a March 1992 White Sands Terminal Test. The effectiveness of a concatenated coding scheme of a Reed Solomon outer code and a convolutional inner code versus a Reed Solomon only code scheme has been investigated as well as the effectiveness of a Periodic Convolutional Interleaver in dispersing errors of certain types. The work effort consisted of development of software that allows simulation studies with the appropriate coding schemes plus either simulated data with errors or actual data with errors. The software program is entitled Communication Link Error Analysis (CLEAN) and models downlink errors, forward error correcting schemes, and interleavers.
Incorporating Manual and Autonomous Code Generation
NASA Technical Reports Server (NTRS)
McComas, David
1998-01-01
Code can be generated manually or using code-generated software tools, but how do you interpret the two? This article looks at a design methodology that combines object-oriented design with autonomic code generation for attitude control flight software. Recent improvements in space flight computers are allowing software engineers to spend more time engineering the applications software. The application developed was the attitude control flight software for an astronomical satellite called the Microwave Anisotropy Probe (MAP). The MAP flight system is being designed, developed, and integrated at NASA's Goddard Space Flight Center. The MAP controls engineers are using Integrated Systems Inc.'s MATRIXx for their controls analysis. In addition to providing a graphical analysis for an environment, MATRIXx includes an autonomic code generation facility called AutoCode. This article examines the forces that shaped the final design and describes three highlights of the design process: (1) Defining the manual to autonomic code interface; (2) Applying object-oriented design to the manual flight code; (3) Implementing the object-oriented design in C.
NASA Astrophysics Data System (ADS)
Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf
2016-11-01
This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picard, Richard Roy; Bhat, Kabekode Ghanasham
2017-07-18
We examine sensitivity analysis and uncertainty quantification for molecular dynamics simulation. Extreme (large or small) output values for the LAMMPS code often occur at the boundaries of input regions, and uncertainties in those boundary values are overlooked by common SA methods. Similarly, input values for which code outputs are consistent with calibration data can also occur near boundaries. Upon applying approaches in the literature for imprecise probabilities (IPs), much more realistic results are obtained than for the complacent application of standard SA and code calibration.
Space shuttle main engine numerical modeling code modifications and analysis
NASA Technical Reports Server (NTRS)
Ziebarth, John P.
1988-01-01
The user of computational fluid dynamics (CFD) codes must be concerned with the accuracy and efficiency of the codes if they are to be used for timely design and analysis of complicated three-dimensional fluid flow configurations. A brief discussion of how accuracy and efficiency effect the CFD solution process is given. A more detailed discussion of how efficiency can be enhanced by using a few Cray Research Inc. utilities to address vectorization is presented and these utilities are applied to a three-dimensional Navier-Stokes CFD code (INS3D).
Lebeau, Jean-Pierre; Cadwallader, Jean-Sébastien; Vaillant-Roussel, Hélène; Pouchain, Denis; Yaouanc, Virginie; Aubin-Auger, Isabelle; Mercier, Alain; Rusch, Emmanuel; Remmen, Roy; Vermeire, Etienne; Hendrickx, Kristin
2016-01-01
Objective To construct a typology of general practitioners’ (GPs) responses regarding their justification of therapeutic inertia in cardiovascular primary prevention for high-risk patients with hypertension. Design Empirically grounded construction of typology. Types were defined by attributes derived from the qualitative analysis of GPs’ reported reasons for inaction. Participants 256 GPs randomised in the intervention group of a cluster randomised controlled trial. Setting GPs members of 23 French Regional Colleges of Teachers in General Practice, included in the EffectS of a multifaceted intervention on CArdiovascular risk factors in high-risk hyPErtensive patients (ESCAPE) trial. Data collection and analysis The database consisted of 2638 written responses given by the GPs to an open-ended question asking for the reasons why drug treatment was not changed as suggested by the national guidelines. All answers were coded using constant comparison analysis. A matrix analysis of codes per GP allowed the construction of a response typology, where types were defined by codes as attributes. Initial coding and definition of types were performed independently by two teams. Results Initial coding resulted in a list of 69 codes in the final codebook, representing 4764 coded references in the question responses. A typology including seven types was constructed. 100 GPs were allocated to one and only one of these types, while 25 GPs did not provide enough data to allow classification. Types (numbers of GPs allocated) were: ‘optimists’ (28), ‘negotiators’ (20), ‘checkers’ (15), ‘contextualisers’ (13), ‘cautious’ (11), ‘rounders’ (8) and ‘scientists’ (5). For the 36 GPs that provided 50 or more coded references, analysis of the code evolution over time and across patients showed a consistent belonging to the initial type for any given GP. Conclusion This typology could provide GPs with some insight into their general ways of considering changes in the treatment/management of cardiovascular risk factors and guide design of specific physician-centred interventions to reduce inappropriate inaction. Trial registration number NCT00348855. PMID:27178974
Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.
2008-01-01
Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.
Statistical properties of DNA sequences
NASA Technical Reports Server (NTRS)
Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.
1995-01-01
We review evidence supporting the idea that the DNA sequence in genes containing non-coding regions is correlated, and that the correlation is remarkably long range--indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationarity" feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33301 coding and 29453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.
Transient dynamics capability at Sandia National Laboratories
NASA Technical Reports Server (NTRS)
Attaway, Steven W.; Biffle, Johnny H.; Sjaardema, G. D.; Heinstein, M. W.; Schoof, L. A.
1993-01-01
A brief overview of the transient dynamics capabilities at Sandia National Laboratories, with an emphasis on recent new developments and current research is presented. In addition, the Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS), which is a collection of structural and thermal codes and utilities used by analysts at SNL, is described. The SEACAS system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, Unix shell scripts for execution, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 190 days of CPU time were used by SEACAS codes on jobs running from a few seconds up to two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard PH-UX, Digital Equipment Ultrix, and Sun SunOS. An overview of SEACAS, including a short description of the codes in the system, are presented. Abstracts and references for the codes are listed at the end of the report.
McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H
2017-08-31
Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that may be unreliable and fail to capture the relationship between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records (EHR) for 10845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes are included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p<1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than for single phenome-wide diagnostic codes, and incorporation of less strongly-loading diagnostic codes enhanced association. This strategy provides a more efficient means of phenome-wide association in biobanks with coded clinical data.
McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H
2017-01-01
Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that can be unreliable and fail to capture relationships between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records for 10,845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted a genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes were included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p < 1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than single phenome-wide diagnostic codes, and incorporation of less strongly loading diagnostic codes enhanced association. This strategy provides a more efficient means of identifying phenome-wide associations in biobanks with coded clinical data. PMID:28861588
DRG coding practice: a nationwide hospital survey in Thailand.
Pongpirul, Krit; Walker, Damian G; Rahman, Hafizur; Robinson, Courtland
2011-10-31
Diagnosis Related Group (DRG) payment is preferred by healthcare reform in various countries but its implementation in resource-limited countries has not been fully explored. This study was aimed (1) to compare the characteristics of hospitals in Thailand that were audited with those that were not and (2) to develop a simplified scale to measure hospital coding practice. A questionnaire survey was conducted of 920 hospitals in the Summary and Coding Audit Database (SCAD hospitals, all of which were audited in 2008 because of suspicious reports of possible DRG miscoding); the questionnaire also included 390 non-SCAD hospitals. The questionnaire asked about general demographics of the hospitals, hospital coding structure and process, and also included a set of 63 opinion-oriented items on the current hospital coding practice. Descriptive statistics and exploratory factor analysis (EFA) were used for data analysis. SCAD and Non-SCAD hospitals were different in many aspects, especially the number of medical statisticians, experience of medical statisticians and physicians, as well as number of certified coders. Factor analysis revealed a simplified 3-factor, 20-item model to assess hospital coding practice and classify hospital intention. Hospital providers should not be assumed capable of producing high quality DRG codes, especially in resource-limited settings.
Upgrades of Two Computer Codes for Analysis of Turbomachinery
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.; Liou, Meng-Sing
2005-01-01
Major upgrades have been made in two of the programs reported in "ive Computer Codes for Analysis of Turbomachinery". The affected programs are: Swift -- a code for three-dimensional (3D) multiblock analysis; and TCGRID, which generates a 3D grid used with Swift. Originally utilizing only a central-differencing scheme for numerical solution, Swift was augmented by addition of two upwind schemes that give greater accuracy but take more computing time. Other improvements in Swift include addition of a shear-stress-transport turbulence model for better prediction of adverse pressure gradients, addition of an H-grid capability for flexibility in modeling flows in pumps and ducts, and modification to enable simultaneous modeling of hub and tip clearances. Improvements in TCGRID include modifications to enable generation of grids for more complicated flow paths and addition of an option to generate grids compatible with the ADPAC code used at NASA and in industry. For both codes, new test cases were developed and documentation was updated. Both codes were converted to Fortran 90, with dynamic memory allocation. Both codes were also modified for ease of use in both UNIX and Windows operating systems.
Computer Code for Transportation Network Design and Analysis
DOT National Transportation Integrated Search
1977-01-01
This document describes the results of research into the application of the mathematical programming technique of decomposition to practical transportation network problems. A computer code called Catnap (for Control Analysis Transportation Network A...
Automated Detection and Analysis of Interplanetary Shocks with Real-Time Application
NASA Astrophysics Data System (ADS)
Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.
2006-12-01
The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. Our goal is to provide an automated code that finds and analyzes interplanetary shocks as they occur for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. Although these codes can be automated in a reasonable manner to yield solutions not far from those obtained by user-directed interactive analysis, event detection presents an added obstacle and the first step in a fully automated analysis. We present a fully automated Rankine-Hugoniot analysis code that can scan the ACE science data, find shock candidates, analyze the events, obtain solutions in good agreement with those derived from interactive applications, and dismiss false positive shock candidates on the basis of the conservation equations. The intent is to make this code available to NOAA for use in real-time space weather applications. The code has the added advantage of being able to scan spacecraft data sets to provide shock solutions for use outside real-time applications and can easily be applied to science-quality data sets from other missions. Use of the code for this purpose will also be explored.
NASA Technical Reports Server (NTRS)
Bittker, David A.
1996-01-01
A generalized version of the NASA Lewis general kinetics code, LSENS, is described. The new code allows the use of global reactions as well as molecular processes in a chemical mechanism. The code also incorporates the capability of performing sensitivity analysis calculations for a perfectly stirred reactor rapidly and conveniently at the same time that the main kinetics calculations are being done. The GLSENS code has been extensively tested and has been found to be accurate and efficient. Nine example problems are presented and complete user instructions are given for the new capabilities. This report is to be used in conjunction with the documentation for the original LSENS code.
Combined coding and delay-throughput analysis for fading channels of mobile satellite communications
NASA Technical Reports Server (NTRS)
Wang, C. C.; Yan, Tsun-Yee
1986-01-01
This paper presents the analysis of using the punctured convolutional code with Viterbi decoding to improve communications reliability. The punctured code rate is optimized so that the average delay is minimized. The coding gain in terms of the message delay is also defined. Since using punctured convolutional code with interleaving is still inadequate to combat the severe fading for short packets, the use of multiple copies of assignment and acknowledgment packets is suggested. The performance on the average end-to-end delay of this protocol is analyzed. It is shown that a replication of three copies for both assignment packets and acknowledgment packets is optimum for the cases considered.
NASA Technical Reports Server (NTRS)
White, P. R.; Little, R. R.
1985-01-01
A research effort was undertaken to develop personal computer based software for vibrational analysis. The software was developed to analytically determine the natural frequencies and mode shapes for the uncoupled lateral vibrations of the blade and counterweight assemblies used in a single bladed wind turbine. The uncoupled vibration analysis was performed in both the flapwise and chordwise directions for static rotor conditions. The effects of rotation on the uncoupled flapwise vibration of the blade and counterweight assemblies were evaluated for various rotor speeds up to 90 rpm. The theory, used in the vibration analysis codes, is based on a lumped mass formulation for the blade and counterweight assemblies. The codes are general so that other designs can be readily analyzed. The input for the codes is generally interactive to facilitate usage. The output of the codes is both tabular and graphical. Listings of the codes are provided. Predicted natural frequencies of the first several modes show reasonable agreement with experimental results. The analysis codes were originally developed on a DEC PDP 11/34 minicomputer and then downloaded and modified to run on an ITT XTRA personal computer. Studies conducted to evaluate the efficiency of running the programs on a personal computer as compared with the minicomputer indicated that, with the proper combination of hardware and software options, the efficiency of using a personal computer exceeds that of a minicomputer.
ERIC Educational Resources Information Center
Knowlton, Marie; Wetzel, Robin
2006-01-01
This study compared the length of text in English Braille American Edition, the Nemeth code, and the computer braille code with the Unified English Braille Code (UEBC)--also known as Unified English Braille (UEB). The findings indicate that differences in the length of text are dependent on the type of material that is transcribed and the grade…
Permanence analysis of a concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.; Kasami, T.
1983-01-01
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed.
Digital microarray analysis for digital artifact genomics
NASA Astrophysics Data System (ADS)
Jaenisch, Holger; Handley, James; Williams, Deborah
2013-06-01
We implement a Spatial Voting (SV) based analogy of microarray analysis for digital gene marker identification in malware code sections. We examine a famous set of malware formally analyzed by Mandiant and code named Advanced Persistent Threat (APT1). APT1 is a Chinese organization formed with specific intent to infiltrate and exploit US resources. Manidant provided a detailed behavior and sting analysis report for the 288 malware samples available. We performed an independent analysis using a new alternative to the traditional dynamic analysis and static analysis we call Spatial Analysis (SA). We perform unsupervised SA on the APT1 originating malware code sections and report our findings. We also show the results of SA performed on some members of the families associated by Manidant. We conclude that SV based SA is a practical fast alternative to dynamics analysis and static analysis.
On the Use of Statistics in Design and the Implications for Deterministic Computer Experiments
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.
1997-01-01
Perhaps the most prevalent use of statistics in engineering design is through Taguchi's parameter and robust design -- using orthogonal arrays to compute signal-to-noise ratios in a process of design improvement. In our view, however, there is an equally exciting use of statistics in design that could become just as prevalent: it is the concept of metamodeling whereby statistical models are built to approximate detailed computer analysis codes. Although computers continue to get faster, analysis codes always seem to keep pace so that their computational time remains non-trivial. Through metamodeling, approximations of these codes are built that are orders of magnitude cheaper to run. These metamodels can then be linked to optimization routines for fast analysis, or they can serve as a bridge for integrating analysis codes across different domains. In this paper we first review metamodeling techniques that encompass design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We discuss their existing applications in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of metamodeling techniques in given situations and how common pitfalls can be avoided.
Committed to the Honor Code: An Investment Model Analysis of Academic Integrity
ERIC Educational Resources Information Center
Dix, Emily L.; Emery, Lydia F.; Le, Benjamin
2014-01-01
Educators worldwide face challenges surrounding academic integrity. The development of honor codes can promote academic integrity, but understanding how and why honor codes affect behavior is critical to their successful implementation. To date, research has not examined how students' "relationship" to an honor code predicts…
One Speaker, Two Languages. Cross-Disciplinary Perspectives on Code-Switching.
ERIC Educational Resources Information Center
Milroy, Lesley, Ed.; Muysken, Pieter, Ed.
Fifteen articles review code-switching in the four major areas: policy implications in specific institutional and community settings; perspectives of social theory of code-switching as a form of speech behavior in particular social contexts; the grammatical analysis of code-switching, including factors that constrain switching even within a…
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.
1996-01-01
This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.
Probabilistic structural analysis methods for select space propulsion system components
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Cruse, T. A.
1989-01-01
The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.
Optical Surface Analysis Code (OSAC). 7.0
NASA Technical Reports Server (NTRS)
Glenn, P.
1998-01-01
The purpose of this modification to the Optical Surface Analysis Code (OSAC) is to upgrade the PSF program to allow the user to get proper diffracted energy normalization even when deliberately obscuring rays with internal obscurations.
LSENS, The NASA Lewis Kinetics and Sensitivity Analysis Code
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
2000-01-01
A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS (the NASA Lewis kinetics and sensitivity analysis code), are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include: static system; steady, one-dimensional, inviscid flow; incident-shock initiated reaction in a shock tube; and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method (LSODE, the Livermore Solver for Ordinary Differential Equations), which works efficiently for the extremes of very fast and very slow reactions, is used to solve the "stiff" ordinary differential equation systems that arise in chemical kinetics. For static reactions, the code uses the decoupled direct method to calculate sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters. Solution methods for the equilibrium and post-shock conditions and for perfectly stirred reactor problems are either adapted from or based on the procedures built into the NASA code CEA (Chemical Equilibrium and Applications).
Main steam line break accident simulation of APR1400 using the model of ATLAS facility
NASA Astrophysics Data System (ADS)
Ekariansyah, A. S.; Deswandri; Sunaryo, Geni R.
2018-02-01
A main steam line break simulation for APR1400 as an advanced design of PWR has been performed using the RELAP5 code. The simulation was conducted in a model of thermal-hydraulic test facility called as ATLAS, which represents a scaled down facility of the APR1400 design. The main steam line break event is described in a open-access safety report document, in which initial conditions and assumptionsfor the analysis were utilized in performing the simulation and analysis of the selected parameter. The objective of this work was to conduct a benchmark activities by comparing the simulation results of the CESEC-III code as a conservative approach code with the results of RELAP5 as a best-estimate code. Based on the simulation results, a general similarity in the behavior of selected parameters was observed between the two codes. However the degree of accuracy still needs further research an analysis by comparing with the other best-estimate code. Uncertainties arising from the ATLAS model should be minimized by taking into account much more specific data in developing the APR1400 model.
Full core analysis of IRIS reactor by using MCNPX.
Amin, E A; Bashter, I I; Hassan, Nabil M; Mustafa, S S
2016-07-01
This paper describes neutronic analysis for fresh fuelled IRIS (International Reactor Innovative and Secure) reactor by MCNPX code. The analysis included criticality calculations, radial power and axial power distribution, nuclear peaking factor and axial offset percent at the beginning of fuel cycle. The effective multiplication factor obtained by MCNPX code is compared with previous calculations by HELIOS/NESTLE, CASMO/SIMULATE, modified CORD-2 nodal calculations and SAS2H/KENO-V code systems. It is found that k-eff value obtained by MCNPX is closer to CORD-2 value. The radial and axial powers are compared with other published results carried out using SAS2H/KENO-V code. Moreover, the WIMS-D5 code is used for studying the effect of enriched boron in form of ZrB2 on the effective multiplication factor (K-eff) of the fuel pin. In this part of calculation, K-eff is calculated at different concentrations of Boron-10 in mg/cm at different stages of burnup of unit cell. The results of this part are compared with published results performed by HELIOS code. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of SMA Hybrid Composite Structures using Commercial Codes
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Patel, Hemant D.
2004-01-01
A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.
Thermodynamic Analysis of the Combustion of Metallic Materials
NASA Technical Reports Server (NTRS)
Wilson, D. Bruce; Stoltzfus, Joel M.
2000-01-01
Two types of computer codes are available to assist in the thermodynamic analysis of metallic materials combustion. One type of code calculates phase equilibrium data and is represented by CALPHAD. The other type of code calculates chemical reaction by the Gordon-McBride code. The first has seen significant application for alloy-phase diagrams, but only recently has it been considered for oxidation systems. The Gordon-McBride code has been applied to the combustion of metallic materials. Both codes are limited by their treatment of non-ideal solutions and the fact they are limited to treating volatile and gaseous species as ideal. This paper examines the significance of these limitations for combustion of metallic materials. In addition, the applicability of linear-free energy relationships for solid-phase oxidation and their possible extension to liquid-phase systems is examined.
Schütz, U; Reichel, H; Dreinhöfer, K
2007-01-01
We introduce a grouping system for clinical practice which allows the separation of DRG coding in specific orthopaedic groups based on anatomic regions, operative procedures, therapeutic interventions and morbidity equivalent diagnosis groups. With this, a differentiated aim-oriented analysis of illustrated internal DRG data becomes possible. The group-specific difference of the coding quality between the DRG groups following primary coding by the orthopaedic surgeon and final coding by the medical controlling is analysed. In a consecutive series of 1600 patients parallel documentation and group-specific comparison of the relevant DRG parameters were carried out in every case after primary and final coding. Analysing the group-specific share in the additional CaseMix coding, the group "spine surgery" dominated, closely followed by the groups "arthroplasty" and "surgery due to infection, tumours, diabetes". Altogether, additional cost-weight-relevant coding was necessary most frequently in the latter group (84%), followed by group "spine surgery" (65%). In DRGs representing conservative orthopaedic treatment documented procedures had nearly no influence on the cost weight. The introduced system of case group analysis in internal DRG documentation can lead to the detection of specific problems in primary coding and cost-weight relevant changes of the case mix. As an instrument for internal process control in the orthopaedic field, it can serve as a communicative interface between an economically oriented classification of the hospital performance and a specific problem solution of the medical staff involved in the department management.
1983-09-01
6ENFRAL. ELECTROMAGNETIC MODEL FOR THE ANALYSIS OF COMPLEX SYSTEMS **%(GEMA CS) Computer Code Documentation ii( Version 3 ). A the BDM Corporation Dr...ANALYSIS FnlTcnclRpr F COMPLEX SYSTEM (GmCS) February 81 - July 83- I TR CODE DOCUMENTATION (Version 3 ) 6.PROMN N.REPORT NUMBER 5. CONTRACT ORGAT97...the ti and t2 directions on the source patch. 3 . METHOD: The electric field at a segment observation point due to the source patch j is given by 1-- lnA
Transient Ejector Analysis (TEA) code user's guide
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1993-01-01
A FORTRAN computer program for the semi analytic prediction of unsteady thrust augmenting ejector performance has been developed, based on a theoretical analysis for ejectors. That analysis blends classic self-similar turbulent jet descriptions with control-volume mixing region elements. Division of the ejector into an inlet, diffuser, and mixing region allowed flexibility in the modeling of the physics for each region. In particular, the inlet and diffuser analyses are simplified by a quasi-steady-analysis, justified by the assumption that pressure is the forcing function in those regions. Only the mixing region is assumed to be dominated by viscous effects. The present work provides an overview of the code structure, a description of the required input and output data file formats, and the results for a test case. Since there are limitations to the code for applications outside the bounds of the test case, the user should consider TEA as a research code (not as a production code), designed specifically as an implementation of the proposed ejector theory. Program error flags are discussed, and some diagnostic routines are presented.
Classification of breast tissue in mammograms using efficient coding.
Costa, Daniel D; Campos, Lúcio F; Barros, Allan K
2011-06-24
Female breast cancer is the major cause of death by cancer in western countries. Efforts in Computer Vision have been made in order to improve the diagnostic accuracy by radiologists. Some methods of lesion diagnosis in mammogram images were developed based in the technique of principal component analysis which has been used in efficient coding of signals and 2D Gabor wavelets used for computer vision applications and modeling biological vision. In this work, we present a methodology that uses efficient coding along with linear discriminant analysis to distinguish between mass and non-mass from 5090 region of interest from mammograms. The results show that the best rates of success reached with Gabor wavelets and principal component analysis were 85.28% and 87.28%, respectively. In comparison, the model of efficient coding presented here reached up to 90.07%. Altogether, the results presented demonstrate that independent component analysis performed successfully the efficient coding in order to discriminate mass from non-mass tissues. In addition, we have observed that LDA with ICA bases showed high predictive performance for some datasets and thus provide significant support for a more detailed clinical investigation.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion systems components
NASA Technical Reports Server (NTRS)
1991-01-01
Summarized here is the technical effort and computer code developed during the five year duration of the program for probabilistic structural analysis methods. The summary includes a brief description of the computer code manuals and a detailed description of code validation demonstration cases for random vibrations of a discharge duct, probabilistic material nonlinearities of a liquid oxygen post, and probabilistic buckling of a transfer tube liner.
HART-II: Prediction of Blade-Vortex Interaction Loading
2003-09-01
14:30 (2) Improvement of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5...of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5) Aeroelastic Stability Analysis of...of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5) Aeroelastic Stability Analysis of
Safe, Multiphase Bounds Check Elimination in Java
2010-01-28
production of mobile code from source code, JIT compilation in the virtual ma- chine, and application code execution. The code producer uses...invariants, and inequality constraint analysis) to identify and prove redundancy of bounds checks. During class-loading and JIT compilation, the virtual...unoptimized code if the speculated invariants do not hold. The combined effect of the multiple phases is to shift the effort as- sociated with bounds
CELFE/NASTRAN Code for the Analysis of Structures Subjected to High Velocity Impact
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1978-01-01
CELFE (Coupled Eulerian Lagrangian Finite Element)/NASTRAN Code three-dimensional finite element code has the capability for analyzing of structures subjected to high velocity impact. The local response is predicted by CELFE and, for large problems, the far-field impact response is predicted by NASTRAN. The coupling of the CELFE code with NASTRAN (CELFE/NASTRAN code) and the application of the code to selected three-dimensional high velocity impact problems are described.
Structural design, analysis, and code evaluation of an odd-shaped pressure vessel
NASA Astrophysics Data System (ADS)
Rezvani, M. A.; Ziada, H. H.
1992-12-01
An effort to design, analyze, and evaluate a rectangular pressure vessel is described. Normally pressure vessels are designed in circular or spherical shapes to prevent stress concentrations. In this case, because of operational limitations, the choice of vessels was limited to a rectangular pressure box with a removable cover plate. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code is used as a guideline for pressure containments whose width or depth exceeds 15.24 cm (6.0 in.) and where pressures will exceed 103.4 KPa (15.0 lbf/in(sup 2)). This evaluation used Section 8 of this Code, hereafter referred to as the Code. The dimensions and working pressure of the subject vessel fall within the pressure vessel category of the Code. The Code design guidelines and rules do not directly apply to this vessel. Therefore, finite-element methodology was used to analyze the pressure vessel, and the Code then was used in qualifying the vessel to be stamped to the Code. Section 8, Division 1 of the Code was used for evaluation. This action was justified by selecting a material for which fatigue damage would not be a concern. The stress analysis results were then checked against the Code, and the thicknesses adjusted to satisfy Code requirements. Although not directly applicable, the Code design formulas for rectangular vessels were also considered and presented.
ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite
2010-01-01
Background Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light") versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks. Results Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded cleavable crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks. Conclusion The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: http://www.creativemolecules.com/CM_Software.htm PMID:20109223
Evaluation of the finite element fuel rod analysis code (FRANCO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.; Feltus, M.A.
1994-12-31
Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C. C.
The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.
1991-01-01
Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.
Toward Intelligent Software Defect Detection
NASA Technical Reports Server (NTRS)
Benson, Markland J.
2011-01-01
Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.
Multiphysics Code Demonstrated for Propulsion Applications
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Melis, Matthew E.
1998-01-01
The utility of multidisciplinary analysis tools for aeropropulsion applications is being investigated at the NASA Lewis Research Center. The goal of this project is to apply Spectrum, a multiphysics code developed by Centric Engineering Systems, Inc., to simulate multidisciplinary effects in turbomachinery components. Many engineering problems today involve detailed computer analyses to predict the thermal, aerodynamic, and structural response of a mechanical system as it undergoes service loading. Analysis of aerospace structures generally requires attention in all three disciplinary areas to adequately predict component service behavior, and in many cases, the results from one discipline substantially affect the outcome of the other two. There are numerous computer codes currently available in the engineering community to perform such analyses in each of these disciplines. Many of these codes are developed and used in-house by a given organization, and many are commercially available. However, few, if any, of these codes are designed specifically for multidisciplinary analyses. The Spectrum code has been developed for performing fully coupled fluid, thermal, and structural analyses on a mechanical system with a single simulation that accounts for all simultaneous interactions, thus eliminating the requirement for running a large number of sequential, separate, disciplinary analyses. The Spectrum code has a true multiphysics analysis capability, which improves analysis efficiency as well as accuracy. Centric Engineering, Inc., working with a team of Lewis and AlliedSignal Engines engineers, has been evaluating Spectrum for a variety of propulsion applications including disk quenching, drum cavity flow, aeromechanical simulations, and a centrifugal compressor flow simulation.
Learning to Analyze and Code Accounting Transactions in Interactive Mode.
ERIC Educational Resources Information Center
Bentz, William F.; Ambler, Eric E.
An interactive computer-assisted instructional (CAI) system, called CODE, is used to teach transactional analysis, or coding, in elementary accounting. The first major component of CODE is TEACH, a program which controls student input and output. Following the statement of a financial position on a cathode ray tube, TEACH describes an event to…
Porcupine: A visual pipeline tool for neuroimaging analysis
Snoek, Lukas; Knapen, Tomas
2018-01-01
The field of neuroimaging is rapidly adopting a more reproducible approach to data acquisition and analysis. Data structures and formats are being standardised and data analyses are getting more automated. However, as data analysis becomes more complicated, researchers often have to write longer analysis scripts, spanning different tools across multiple programming languages. This makes it more difficult to share or recreate code, reducing the reproducibility of the analysis. We present a tool, Porcupine, that constructs one’s analysis visually and automatically produces analysis code. The graphical representation improves understanding of the performed analysis, while retaining the flexibility of modifying the produced code manually to custom needs. Not only does Porcupine produce the analysis code, it also creates a shareable environment for running the code in the form of a Docker image. Together, this forms a reproducible way of constructing, visualising and sharing one’s analysis. Currently, Porcupine links to Nipype functionalities, which in turn accesses most standard neuroimaging analysis tools. Our goal is to release researchers from the constraints of specific implementation details, thereby freeing them to think about novel and creative ways to solve a given problem. Porcupine improves the overview researchers have of their processing pipelines, and facilitates both the development and communication of their work. This will reduce the threshold at which less expert users can generate reusable pipelines. With Porcupine, we bridge the gap between a conceptual and an implementational level of analysis and make it easier for researchers to create reproducible and shareable science. We provide a wide range of examples and documentation, as well as installer files for all platforms on our website: https://timvanmourik.github.io/Porcupine. Porcupine is free, open source, and released under the GNU General Public License v3.0. PMID:29746461
Recent improvements of reactor physics codes in MHI
NASA Astrophysics Data System (ADS)
Kosaka, Shinya; Yamaji, Kazuya; Kirimura, Kazuki; Kamiyama, Yohei; Matsumoto, Hideki
2015-12-01
This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO's Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipated transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
1994-01-01
A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.
Recent improvements of reactor physics codes in MHI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Shinya, E-mail: shinya-kosaka@mhi.co.jp; Yamaji, Kazuya; Kirimura, Kazuki
2015-12-31
This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO’s Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipatedmore » transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.« less
NASA Technical Reports Server (NTRS)
Millwater, Harry; Riha, David
1996-01-01
The NESSUS probabilistic analysis computer program has been developed with a built-in finite element analysis program NESSUS/FEM. However, the NESSUS/FEM program is specialized for engine structures and may not contain sufficient features for other applications. In addition, users often become well acquainted with a particular finite element code and want to use that code for probabilistic structural analysis. For these reasons, this work was undertaken to develop an interface between NESSUS and NASTRAN such that NASTRAN can be used for the finite element analysis and NESSUS can be used for the probabilistic analysis. In addition, NESSUS was restructured such that other finite element codes could be more easily coupled with NESSUS. NESSUS has been enhanced such that NESSUS will modify the NASTRAN input deck for a given set of random variables, run NASTRAN and read the NASTRAN result. The coordination between the two codes is handled automatically. The work described here was implemented within NESSUS 6.2 which was delivered to NASA in September 1995. The code runs on Unix machines: Cray, HP, Sun, SGI and IBM. The new capabilities have been implemented such that a user familiar with NESSUS using NESSUS/FEM and NASTRAN can immediately use NESSUS with NASTRAN. In other words, the interface with NASTRAN has been implemented in an analogous manner to the interface with NESSUS/FEM. Only finite element specific input has been changed. This manual is written as an addendum to the existing NESSUS 6.2 manuals. We assume users have access to NESSUS manuals and are familiar with the operation of NESSUS including probabilistic finite element analysis. Update pages to the NESSUS PFEM manual are contained in Appendix E. The finite element features of the code and the probalistic analysis capabilities are summarized.
A study of transonic aerodynamic analysis methods for use with a hypersonic aircraft synthesis code
NASA Technical Reports Server (NTRS)
Sandlin, Doral R.; Davis, Paul Christopher
1992-01-01
A means of performing routine transonic lift, drag, and moment analyses on hypersonic all-body and wing-body configurations were studied. The analysis method is to be used in conjunction with the Hypersonic Vehicle Optimization Code (HAVOC). A review of existing techniques is presented, after which three methods, chosen to represent a spectrum of capabilities, are tested and the results are compared with experimental data. The three methods consist of a wave drag code, a full potential code, and a Navier-Stokes code. The wave drag code, representing the empirical approach, has very fast CPU times, but very limited and sporadic results. The full potential code provides results which compare favorably to the wind tunnel data, but with a dramatic increase in computational time. Even more extreme is the Navier-Stokes code, which provides the most favorable and complete results, but with a very large turnaround time. The full potential code, TRANAIR, is used for additional analyses, because of the superior results it can provide over empirical and semi-empirical methods, and because of its automated grid generation. TRANAIR analyses include an all body hypersonic cruise configuration and an oblique flying wing supersonic transport.
Fuel burnup analysis for IRIS reactor using MCNPX and WIMS-D5 codes
NASA Astrophysics Data System (ADS)
Amin, E. A.; Bashter, I. I.; Hassan, Nabil M.; Mustafa, S. S.
2017-02-01
International Reactor Innovative and Secure (IRIS) reactor is a compact power reactor designed with especial features. It contains Integral Fuel Burnable Absorber (IFBA). The core is heterogeneous both axially and radially. This work provides the full core burn up analysis for IRIS reactor using MCNPX and WIMDS-D5 codes. Criticality calculations, radial and axial power distributions and nuclear peaking factor at the different stages of burnup were studied. Effective multiplication factor values for the core were estimated by coupling MCNPX code with WIMS-D5 code and compared with SAS2H/KENO-V code values at different stages of burnup. The two calculation codes show good agreement and correlation. The values of radial and axial powers for the full core were also compared with published results given by SAS2H/KENO-V code (at the beginning and end of reactor operation). The behavior of both radial and axial power distribution is quiet similar to the other data published by SAS2H/KENO-V code. The peaking factor values estimated in the present work are close to its values calculated by SAS2H/KENO-V code.
Yurko, Joseph P.; Buongiorno, Jacopo; Youngblood, Robert
2015-05-28
System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator) construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here withmore » Markov Chain Monte Carlo (MCMC) sampling feasible. This study uses Gaussian Process (GP) based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP) model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.« less
DRG coding practice: a nationwide hospital survey in Thailand
2011-01-01
Background Diagnosis Related Group (DRG) payment is preferred by healthcare reform in various countries but its implementation in resource-limited countries has not been fully explored. Objectives This study was aimed (1) to compare the characteristics of hospitals in Thailand that were audited with those that were not and (2) to develop a simplified scale to measure hospital coding practice. Methods A questionnaire survey was conducted of 920 hospitals in the Summary and Coding Audit Database (SCAD hospitals, all of which were audited in 2008 because of suspicious reports of possible DRG miscoding); the questionnaire also included 390 non-SCAD hospitals. The questionnaire asked about general demographics of the hospitals, hospital coding structure and process, and also included a set of 63 opinion-oriented items on the current hospital coding practice. Descriptive statistics and exploratory factor analysis (EFA) were used for data analysis. Results SCAD and Non-SCAD hospitals were different in many aspects, especially the number of medical statisticians, experience of medical statisticians and physicians, as well as number of certified coders. Factor analysis revealed a simplified 3-factor, 20-item model to assess hospital coding practice and classify hospital intention. Conclusion Hospital providers should not be assumed capable of producing high quality DRG codes, especially in resource-limited settings. PMID:22040256
Adaptive Nodal Transport Methods for Reactor Transient Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Downar; E. Lewis
2005-08-31
Develop methods for adaptively treating the angular, spatial, and time dependence of the neutron flux in reactor transient analysis. These methods were demonstrated in the DOE transport nodal code VARIANT and the US NRC spatial kinetics code, PARCS.
Aerodynamic Analysis of the M33 Projectile Using the CFX Code
2011-12-01
is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) The M33 projectile has been analyzed using the ANSYS CFX code that is based...analyzed using the ANSYS CFX code that is based on the numerical solution of the full Navier-Stokes equations. Simulation data were obtained...using the CFX code. The ANSYS - CFX code is a commercial CFD program used to simulate fluid flow in a variety of applications such as gas turbine
VIC: A Computer Analysis of Verbal Interaction Category Systems.
ERIC Educational Resources Information Center
Kline, John A.; And Others
VIC is a computer program for the analysis of verbal interaction category systems, especially the Flanders interaction analysis system. The observer codes verbal behavior on coding sheets for later machine scoring. A matrix is produced by the program showing the number and percentages of times that a particular cell describes classroom behavior.…
Iterative categorization (IC): a systematic technique for analysing qualitative data.
Neale, Joanne
2016-06-01
The processes of analysing qualitative data, particularly the stage between coding and publication, are often vague and/or poorly explained within addiction science and research more broadly. A simple but rigorous and transparent technique for analysing qualitative textual data, developed within the field of addiction, is described. The technique, iterative categorization (IC), is suitable for use with inductive and deductive codes and can support a range of common analytical approaches, e.g. thematic analysis, Framework, constant comparison, analytical induction, content analysis, conversational analysis, discourse analysis, interpretative phenomenological analysis and narrative analysis. Once the data have been coded, the only software required is a standard word processing package. Worked examples are provided. © 2016 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.
Rosen, Lisa M.; Liu, Tao; Merchant, Roland C.
2016-01-01
BACKGROUND Blood and body fluid exposures are frequently evaluated in emergency departments (EDs). However, efficient and effective methods for estimating their incidence are not yet established. OBJECTIVE Evaluate the efficiency and accuracy of estimating statewide ED visits for blood or body fluid exposures using International Classification of Diseases, Ninth Revision (ICD-9), code searches. DESIGN Secondary analysis of a database of ED visits for blood or body fluid exposure. SETTING EDs of 11 civilian hospitals throughout Rhode Island from January 1, 1995, through June 30, 2001. PATIENTS Patients presenting to the ED for possible blood or body fluid exposure were included, as determined by prespecified ICD-9 codes. METHODS Positive predictive values (PPVs) were estimated to determine the ability of 10 ICD-9 codes to distinguish ED visits for blood or body fluid exposure from ED visits that were not for blood or body fluid exposure. Recursive partitioning was used to identify an optimal subset of ICD-9 codes for this purpose. Random-effects logistic regression modeling was used to examine variations in ICD-9 coding practices and styles across hospitals. Cluster analysis was used to assess whether the choice of ICD-9 codes was similar across hospitals. RESULTS The PPV for the original 10 ICD-9 codes was 74.4% (95% confidence interval [CI], 73.2%–75.7%), whereas the recursive partitioning analysis identified a subset of 5 ICD-9 codes with a PPV of 89.9% (95% CI, 88.9%–90.8%) and a misclassification rate of 10.1%. The ability, efficiency, and use of the ICD-9 codes to distinguish types of ED visits varied across hospitals. CONCLUSIONS Although an accurate subset of ICD-9 codes could be identified, variations across hospitals related to hospital coding style, efficiency, and accuracy greatly affected estimates of the number of ED visits for blood or body fluid exposure. PMID:22561713
ERIC Educational Resources Information Center
Supiani
2016-01-01
This research aims to describe the use of language code applied by the participants and to find out the factors influencing the choice of language codes. This research is qualitative research that describe the use of language code in the cross married couples. The data are taken from the discourses about language code phenomena dealing with the…
A Flexible and Non-instrusive Approach for Computing Complex Structural Coverage Metrics
NASA Technical Reports Server (NTRS)
Whalen, Michael W.; Person, Suzette J.; Rungta, Neha; Staats, Matt; Grijincu, Daniela
2015-01-01
Software analysis tools and techniques often leverage structural code coverage information to reason about the dynamic behavior of software. Existing techniques instrument the code with the required structural obligations and then monitor the execution of the compiled code to report coverage. Instrumentation based approaches often incur considerable runtime overhead for complex structural coverage metrics such as Modified Condition/Decision (MC/DC). Code instrumentation, in general, has to be approached with great care to ensure it does not modify the behavior of the original code. Furthermore, instrumented code cannot be used in conjunction with other analyses that reason about the structure and semantics of the code under test. In this work, we introduce a non-intrusive preprocessing approach for computing structural coverage information. It uses a static partial evaluation of the decisions in the source code and a source-to-bytecode mapping to generate the information necessary to efficiently track structural coverage metrics during execution. Our technique is flexible; the results of the preprocessing can be used by a variety of coverage-driven software analysis tasks, including automated analyses that are not possible for instrumented code. Experimental results in the context of symbolic execution show the efficiency and flexibility of our nonintrusive approach for computing code coverage information
Techniques for the analysis of data from coded-mask X-ray telescopes
NASA Technical Reports Server (NTRS)
Skinner, G. K.; Ponman, T. J.; Hammersley, A. P.; Eyles, C. J.
1987-01-01
Several techniques useful in the analysis of data from coded-mask telescopes are presented. Methods of handling changes in the instrument pointing direction are reviewed and ways of using FFT techniques to do the deconvolution considered. Emphasis is on techniques for optimally-coded systems, but it is shown that the range of systems included in this class can be extended through the new concept of 'partial cycle averaging'.
Analysis of a Distributed Pulse Power System Using a Circuit Analysis Code
1979-06-01
dose rate was then integrated to give a number that could be compared with measure- ments made using thermal luminescent dosimeters ( TLD ’ s). Since...NM 8 7117 AND THE BDM CORPORATION, ALBUQUERQUE, NM 87106 Abstract A sophisticated computer code (SCEPTRE), used to analyze electronic circuits...computer code (SCEPTRE), used to analyze electronic circuits, was used to evaluate the performance of a large flash X-ray machine. This device was
Three-Dimensional Numerical Analyses of Earth Penetration Dynamics
1979-01-31
Lagrangian formulation based on the HEMP method and has been adapted and validated for treatment of normal-incidence (axisymmetric) impact and...code, is a detailed analysis of the structural response of the EPW. This analysis is generated using a nonlinear dynamic, elastic- plastic finite element...based on the HEMP scheme. Thus, the code has the same material modeling capabilities and abilities to track large scale motion found in the WAVE-L code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adrian Miron; Joshua Valentine; John Christenson
2009-10-01
The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFCmore » codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.« less
Exclusively visual analysis of classroom group interactions
NASA Astrophysics Data System (ADS)
Tucker, Laura; Scherr, Rachel E.; Zickler, Todd; Mazur, Eric
2016-12-01
Large-scale audiovisual data that measure group learning are time consuming to collect and analyze. As an initial step towards scaling qualitative classroom observation, we qualitatively coded classroom video using an established coding scheme with and without its audio cues. We find that interrater reliability is as high when using visual data only—without audio—as when using both visual and audio data to code. Also, interrater reliability is high when comparing use of visual and audio data to visual-only data. We see a small bias to code interactions as group discussion when visual and audio data are used compared with video-only data. This work establishes that meaningful educational observation can be made through visual information alone. Further, it suggests that after initial work to create a coding scheme and validate it in each environment, computer-automated visual coding could drastically increase the breadth of qualitative studies and allow for meaningful educational analysis on a far greater scale.
Adaptive distributed source coding.
Varodayan, David; Lin, Yao-Chung; Girod, Bernd
2012-05-01
We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.
NASA Technical Reports Server (NTRS)
Steinke, Ronald J.
1989-01-01
The Rai ROTOR1 code for two-dimensional, unsteady viscous flow analysis was applied to a supersonic throughflow fan stage design. The axial Mach number for this fan design increases from 2.0 at the inlet to 2.9 at the outlet. The Rai code uses overlapped O- and H-grids that are appropriately packed. The Rai code was run on a Cray XMP computer; then data postprocessing and graphics were performed to obtain detailed insight into the stage flow. The large rotor wakes uniformly traversed the rotor-stator interface and dispersed as they passed through the stator passage. Only weak blade shock losses were computerd, which supports the design goals. High viscous effects caused large blade wakes and a low fan efficiency. Rai code flow predictions were essentially steady for the rotor, and they compared well with Chima rotor viscous code predictions based on a C-grid of similar density.
FY17 Status Report on NEAMS Neutronics Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. H.; Jung, Y. S.; Smith, M. A.
2017-09-30
Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less
Frequency- and Time-Domain Methods in Soil-Structure Interaction Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolisetti, Chandrakanth; Whittaker, Andrew S.; Coleman, Justin L.
2015-06-01
Soil-structure interaction (SSI) analysis in the nuclear industry is currently performed using linear codes that function in the frequency domain. There is a consensus that these frequency-domain codes give reasonably accurate results for low-intensity ground motions that result in almost linear response. For higher intensity ground motions, which may result in nonlinear response in the soil, structure or at the vicinity of the foundation, the adequacy of frequency-domain codes is unproven. Nonlinear analysis, which is only possible in the time domain, is theoretically more appropriate in such cases. These methods are available but are rarely used due to the largemore » computational requirements and a lack of experience with analysts and regulators. This paper presents an assessment of the linear frequency-domain code, SASSI, which is widely used in the nuclear industry, and the time-domain commercial finite-element code, LS-DYNA, for SSI analysis. The assessment involves benchmarking the SSI analysis procedure in LS-DYNA against SASSI for linearly elastic models. After affirming that SASSI and LS-DYNA result in almost identical responses for these models, they are used to perform nonlinear SSI analyses of two structures founded on soft soil. An examination of the results shows that, in spite of using identical material properties, the predictions of frequency- and time-domain codes are significantly different in the presence of nonlinear behavior such as gapping and sliding of the foundation.« less
Sweeney, Angela; Greenwood, Kathryn E; Williams, Sally; Wykes, Til; Rose, Diana S
2013-12-01
Health research is frequently conducted in multi-disciplinary teams, with these teams increasingly including service user researchers. Whilst it is common for service user researchers to be involved in data collection--most typically interviewing other service users--it is less common for service user researchers to be involved in data analysis and interpretation. This means that a unique and significant perspective on the data is absent. This study aims to use an empirical report of a study on Cognitive Behavioural Therapy for psychosis (CBTp) to demonstrate the value of multiple coding in enabling service users voices to be heard in team-based qualitative data analysis. The CBTp study employed multiple coding to analyse service users' discussions of CBT for psychosis (CBTp) from the perspectives of a service user researcher, clinical researcher and psychology assistant. Multiple coding was selected to enable multiple perspectives to analyse and interpret data, to understand and explore differences and to build multi-disciplinary consensus. Multiple coding enabled the team to understand where our views were commensurate and incommensurate and to discuss and debate differences. Through the process of multiple coding, we were able to build strong consensus about the data from multiple perspectives, including that of the service user researcher. Multiple coding is an important method for understanding and exploring multiple perspectives on data and building team consensus. This can be contrasted with inter-rater reliability which is only appropriate in limited circumstances. We conclude that multiple coding is an appropriate and important means of hearing service users' voices in qualitative data analysis. © 2012 John Wiley & Sons Ltd.
Modeling of rolling element bearing mechanics. Theoretical manual
NASA Technical Reports Server (NTRS)
Merchant, David H.; Greenhill, Lyn M.
1994-01-01
This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
RTE: A computer code for Rocket Thermal Evaluation
NASA Technical Reports Server (NTRS)
Naraghi, Mohammad H. N.
1995-01-01
The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket engines. The input to the code consists of the composition of fuel/oxidant mixture and flow rates, chamber pressure, coolant temperature and pressure. dimensions of the engine, materials and the number of nodes in different parts of the engine. The code allows for temperature variation in axial, radial and circumferential directions. By implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the user to incorporate a non-equilibrium model or an energy release model for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer module for the hot-gas-side heat flux calculations.
Spatial transform coding of color images.
NASA Technical Reports Server (NTRS)
Pratt, W. K.
1971-01-01
The application of the transform-coding concept to the coding of color images represented by three primary color planes of data is discussed. The principles of spatial transform coding are reviewed and the merits of various methods of color-image representation are examined. A performance analysis is presented for the color-image transform-coding system. Results of a computer simulation of the coding system are also given. It is shown that, by transform coding, the chrominance content of a color image can be coded with an average of 1.0 bits per element or less without serious degradation. If luminance coding is also employed, the average rate reduces to about 2.0 bits per element or less.
A transonic-small-disturbance wing design methodology
NASA Technical Reports Server (NTRS)
Phillips, Pamela S.; Waggoner, Edgar G.; Campbell, Richard L.
1988-01-01
An automated transonic design code has been developed which modifies an initial airfoil or wing in order to generate a specified pressure distribution. The design method uses an iterative approach that alternates between a potential-flow analysis and a design algorithm that relates changes in surface pressure to changes in geometry. The analysis code solves an extended small-disturbance potential-flow equation and can model a fuselage, pylons, nacelles, and a winglet in addition to the wing. A two-dimensional option is available for airfoil analysis and design. Several two- and three-dimensional test cases illustrate the capabilities of the design code.
Modeling and Analysis of Actinide Diffusion Behavior in Irradiated Metal Fuel
NASA Astrophysics Data System (ADS)
Edelmann, Paul G.
There have been numerous attempts to model fast reactor fuel behavior in the last 40 years. The US currently does not have a fully reliable tool to simulate the behavior of metal fuels in fast reactors. The experimental database necessary to validate the codes is also very limited. The DOE-sponsored Advanced Fuels Campaign (AFC) has performed various experiments that are ready for analysis. Current metal fuel performance codes are either not available to the AFC or have limitations and deficiencies in predicting AFC fuel performance. A modified version of a new fuel performance code, FEAST-Metal , was employed in this investigation with useful results. This work explores the modeling and analysis of AFC metallic fuels using FEAST-Metal, particularly in the area of constituent actinide diffusion behavior. The FEAST-Metal code calculations for this work were conducted at Los Alamos National Laboratory (LANL) in support of on-going activities related to sensitivity analysis of fuel performance codes. A sensitivity analysis of FEAST-Metal was completed to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. A modification was made to the FEAST-Metal constituent redistribution model to enable accommodation of newer AFC metal fuel compositions with verified results. Applicability of this modified model for sodium fast reactor metal fuel design is demonstrated.
Automatic Generation of Algorithms for the Statistical Analysis of Planetary Nebulae Images
NASA Technical Reports Server (NTRS)
Fischer, Bernd
2004-01-01
Analyzing data sets collected in experiments or by observations is a Core scientific activity. Typically, experimentd and observational data are &aught with uncertainty, and the analysis is based on a statistical model of the conjectured underlying processes, The large data volumes collected by modern instruments make computer support indispensible for this. Consequently, scientists spend significant amounts of their time with the development and refinement of the data analysis programs. AutoBayes [GF+02, FS03] is a fully automatic synthesis system for generating statistical data analysis programs. Externally, it looks like a compiler: it takes an abstract problem specification and translates it into executable code. Its input is a concise description of a data analysis problem in the form of a statistical model as shown in Figure 1; its output is optimized and fully documented C/C++ code which can be linked dynamically into the Matlab and Octave environments. Internally, however, it is quite different: AutoBayes derives a customized algorithm implementing the given model using a schema-based process, and then further refines and optimizes the algorithm into code. A schema is a parameterized code template with associated semantic constraints which define and restrict the template s applicability. The schema parameters are instantiated in a problem-specific way during synthesis as AutoBayes checks the constraints against the original model or, recursively, against emerging sub-problems. AutoBayes schema library contains problem decomposition operators (which are justified by theorems in a formal logic in the domain of Bayesian networks) as well as machine learning algorithms (e.g., EM, k-Means) and nu- meric optimization methods (e.g., Nelder-Mead simplex, conjugate gradient). AutoBayes augments this schema-based approach by symbolic computation to derive closed-form solutions whenever possible. This is a major advantage over other statistical data analysis systems which use numerical approximations even in cases where closed-form solutions exist. AutoBayes is implemented in Prolog and comprises approximately 75.000 lines of code. In this paper, we take one typical scientific data analysis problem-analyzing planetary nebulae images taken by the Hubble Space Telescope-and show how AutoBayes can be used to automate the implementation of the necessary anal- ysis programs. We initially follow the analysis described by Knuth and Hajian [KHO2] and use AutoBayes to derive code for the published models. We show the details of the code derivation process, including the symbolic computations and automatic integration of library procedures, and compare the results of the automatically generated and manually implemented code. We then go beyond the original analysis and use AutoBayes to derive code for a simple image segmentation procedure based on a mixture model which can be used to automate a manual preproceesing step. Finally, we combine the original approach with the simple segmentation which yields a more detailed analysis. This also demonstrates that AutoBayes makes it easy to combine different aspects of data analysis.
Unfiltered Talk--A Challenge to Categories.
ERIC Educational Resources Information Center
McCormick, Kay
A study investigated how and why code switching and mixing occurs between English and Afrikaans in a region of South Africa. In District Six, non-standard Afrikaans seems to be a mixed code, and it is unclear whether non-standard English is a mixed code. Consequently, it is unclear when codes are being switched or mixed. The analysis looks at…
Lorio, Morgan; Martinson, Melissa; Ferrara, Lisa
2016-01-01
Minimally invasive sacroiliac joint arthrodesis ("MI SIJ fusion") received a Category I CPT ® code (27279) effective January 1, 2015 and was assigned a work relative value unit ("RVU") of 9.03. The International Society for the Advancement of Spine Surgery ("ISASS") conducted a study consisting of a Rasch analysis of two separate surveys of surgeons to assess the accuracy of the assigned work RVU. A survey was developed and sent to ninety-three ISASS surgeon committee members. Respondents were asked to compare CPT ® 27279 to ten other comparator CPT ® codes reflective of common spine surgeries. The survey presented each comparator CPT ® code with its code descriptor as well as the description of CPT ® 27279 and asked respondents to indicate whether CPT ® 27279 was greater, equal, or less in terms of work effort than the comparator code. A second survey was sent to 557 U.S.-based spine surgeon members of ISASS and 241 spine surgeon members of the Society for Minimally Invasive Spine Surgery ("SMISS"). The design of the second survey mirrored that of the first survey except for the use of a broader set of comparator CPT ® codes (27 vs. 10). Using the work RVUs of the comparator codes, a Rasch analysis was performed to estimate the relative difficulty of CPT ® 27279, after which the work RVU of CPT ® 27279 was estimated by regression analysis. Twenty surgeons responded to the first survey and thirty-four surgeons responded to the second survey. The results of the regression analysis of the first survey indicate a work RVU for CPT ® 27279 of 14.36 and the results of the regression analysis of the second survey indicate a work RVU for CPT ® 27279 of 14.1. The Rasch analysis indicates that the current work RVU assigned to CPT ® 27279 is undervalued at 9.03. Averaging the results of the regression analyses of the two surveys indicates a work RVU for CPT ® 27279 of 14.23.
Thermospheric density and satellite drag modeling
NASA Astrophysics Data System (ADS)
Mehta, Piyush Mukesh
The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and GRACE satellites. Moving toward accurate atmospheric models and absolute densities requires physics based models for CD. Closed-form solutions of CD have been developed and exist for a handful of simple geometries (flat plate, sphere, and cylinder). However, for complex geometries, the Direct Simulation Monte Carlo (DSMC) method is an important tool for developing CD models. DSMC is computationally intensive and real-time simulations for CD are not feasible. Therefore, parameterized models for CD are required. Modeling CD for an RSO requires knowledge of the gas-surface interaction (GSI) that defines the manner in which the atmospheric particles exchange momentum and energy with the surface. The momentum and energy exchange is further influenced by likely adsorption of atomic oxygen that may partially or completely cover the surface. An important parameter that characterizes the GSI is the energy accommodation coefficient, α. An innovative and state-of-the-art technique of developing parameterized drag coefficient models is presented and validated using the GRACE satellite. The effect of gas-surface interactions on physical drag coefficients is examined. An attempt to reveal the nature of gas-surface interactions at altitudes above 500 km is made using the STELLA satellite. A model that can accurately estimate CD has the potential to: (i) reduce the sources of uncertainty in the drag model, (ii) improve density estimates by resolving time-varying biases and moving toward absolute densities, and (iii) increase data sources for density estimation by allowing for the use of a wide range of RSOs as information sources. Results from this work have the potential to significantly improve the accuracy of conjunction analysis and SSA.
Progressive Failure And Life Prediction of Ceramic and Textile Composites
NASA Technical Reports Server (NTRS)
Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.
1998-01-01
An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.
Wang, Longxin; Fu, Dian; Qiu, Yongbin; Xing, Xiaoxiao; Xu, Feng; Han, Conghui; Xu, Xiaofeng; Wei, Zhifeng; Zhang, Zhengyu; Ge, Jingping; Cheng, Wen; Xie, Hai-Long
2014-07-10
To understand lncRNAs expression profiling and their potential functions in bladder cancer, we investigated the lncRNA and coding RNA expression on human bladder cancer and normal bladder tissues. Bioinformatic analysis revealed thousands of significantly differentially expressed lncRNAs and coding mRNA in bladder cancer relative to normal bladder tissue. Co-expression analysis revealed that 50% of lncRNAs and coding RNAs expressed in the same direction. A subset of lncRNAs might be involved in mTOR signaling, p53 signaling, cancer pathways. Our study provides a large scale of co-expression between lncRNA and coding RNAs in bladder cancer cells and lays biological basis for further investigation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Utilization of recently developed codes for high power Brayton and Rankine cycle power systems
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
1993-01-01
Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.
PCC Framework for Program-Generators
NASA Technical Reports Server (NTRS)
Kong, Soonho; Choi, Wontae; Yi, Kwangkeun
2009-01-01
In this paper, we propose a proof-carrying code framework for program-generators. The enabling technique is abstract parsing, a static string analysis technique, which is used as a component for generating and validating certificates. Our framework provides an efficient solution for certifying program-generators whose safety properties are expressed in terms of the grammar representing the generated program. The fixed-point solution of the analysis is generated and attached with the program-generator on the code producer side. The consumer receives the code with a fixed-point solution and validates that the received fixed point is indeed a fixed point of the received code. This validation can be done in a single pass.
NASA Astrophysics Data System (ADS)
York, B. J.; Sinha, N.; Dash, S. M.; Hosangadi, A.; Kenzakowski, D. C.; Lee, R. A.
1992-07-01
The analysis of steady and transient aerodynamic/propulsive/plume flowfield interactions utilizing several state-of-the-art computer codes (PARCH, CRAFT, and SCHAFT) is discussed. These codes have been extended to include advanced turbulence models, generalized thermochemistry, and multiphase nonequilibrium capabilities. Several specialized versions of these codes have been developed for specific applications. This paper presents a brief overview of these codes followed by selected cases demonstrating steady and transient analyses of conventional as well as advanced missile systems. Areas requiring upgrades include turbulence modeling in a highly compressible environment and the treatment of particulates in general. Recent progress in these areas are highlighted.
Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.
1991-01-01
The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.
NASA Technical Reports Server (NTRS)
Rathjen, K. A.
1977-01-01
A digital computer code CAVE (Conduction Analysis Via Eigenvalues), which finds application in the analysis of two dimensional transient heating of hypersonic vehicles is described. The CAVE is written in FORTRAN 4 and is operational on both IBM 360-67 and CDC 6600 computers. The method of solution is a hybrid analytical numerical technique that is inherently stable permitting large time steps even with the best of conductors having the finest of mesh size. The aerodynamic heating boundary conditions are calculated by the code based on the input flight trajectory or can optionally be calculated external to the code and then entered as input data. The code computes the network conduction and convection links, as well as capacitance values, given basic geometrical and mesh sizes, for four generations (leading edges, cooled panels, X-24C structure and slabs). Input and output formats are presented and explained. Sample problems are included. A brief summary of the hybrid analytical-numerical technique, which utilizes eigenvalues (thermal frequencies) and eigenvectors (thermal mode vectors) is given along with aerodynamic heating equations that have been incorporated in the code and flow charts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Berry, R. A.; Martineau, R. C.
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s and TRACE’s capabilities and extends their analysis capabilities for all reactor system simulation scenarios. The RELAP-7 codemore » utilizes the well-posed 7-equation two-phase flow model for compressible two-phase flow. Closure models used in the TRACE code has been reviewed and selected to reflect the progress made during the past decades and provide a basis for the colure correlations implemented in the RELAP-7 code. This document provides a summary on the closure correlations that are currently implemented in the RELAP-7 code. The closure correlations include sub-grid models that describe interactions between the fluids and the flow channel, and interactions between the two phases.« less
NASA Astrophysics Data System (ADS)
Hori, T.; Agata, R.; Ichimura, T.; Fujita, K.; Yamaguchi, T.; Takahashi, N.
2017-12-01
Recently, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. For construct a system for monitoring and forecasting, it is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate inter-face and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Unstructured FE non-linear seismic wave simulation code has been developed. This achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. A high fidelity FEM simulation code with mesh generator has also been developed to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. This code has been improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, waveform inversion code for modeling 3D crustal structure has been developed, and the high-fidelity FEM code has been improved to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. We are developing the methods for forecasting the slip velocity variation on the plate interface. Although the prototype is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model. Furthermore, large-scale simulation codes for monitoring are being implemented on the GPU clusters and analysis tools are developing to include other functions such as examination in model errors.
Concurrent electromagnetic scattering analysis
NASA Technical Reports Server (NTRS)
Patterson, Jean E.; Cwik, Tom; Ferraro, Robert D.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Parker, Jay
1989-01-01
The computational power of the hypercube parallel computing architecture is applied to the solution of large-scale electromagnetic scattering and radiation problems. Three analysis codes have been implemented. A Hypercube Electromagnetic Interactive Analysis Workstation was developed to aid in the design and analysis of metallic structures such as antennas and to facilitate the use of these analysis codes. The workstation provides a general user environment for specification of the structure to be analyzed and graphical representations of the results.
An Object Oriented Analysis Method for Ada and Embedded Systems
1989-12-01
expansion of the paradligm from the coding anld desiningactivities into the earlier activity of reurmnsalyi.Ts hpl, begins by discussing the application of...response time: 0.1 seconds.I Step le: Identify Known Restrictions on the Software.I " The cruise control system object code must fit within 16K of mem- orv...application of object-oriented techniques to the coding and desigll phases of the life cycle, as well as various approaches to requirements analysis. 3
Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi
1996-01-01
Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.
Developing and Implementing the Data Mining Algorithms in RAVEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Ramazan Sonat; Maljovec, Daniel Patrick; Alfonsi, Andrea
The RAVEN code is becoming a comprehensive tool to perform probabilistic risk assessment, uncertainty quantification, and verification and validation. The RAVEN code is being developed to support many programs and to provide a set of methodologies and algorithms for advanced analysis. Scientific computer codes can generate enormous amounts of data. To post-process and analyze such data might, in some cases, take longer than the initial software runtime. Data mining algorithms/methods help in recognizing and understanding patterns in the data, and thus discover knowledge in databases. The methodologies used in the dynamic probabilistic risk assessment or in uncertainty and error quantificationmore » analysis couple system/physics codes with simulation controller codes, such as RAVEN. RAVEN introduces both deterministic and stochastic elements into the simulation while the system/physics code model the dynamics deterministically. A typical analysis is performed by sampling values of a set of parameter values. A major challenge in using dynamic probabilistic risk assessment or uncertainty and error quantification analysis for a complex system is to analyze the large number of scenarios generated. Data mining techniques are typically used to better organize and understand data, i.e. recognizing patterns in the data. This report focuses on development and implementation of Application Programming Interfaces (APIs) for different data mining algorithms, and the application of these algorithms to different databases.« less
Hu, Junjie; Liu, Fei; Ju, Huangxian
2015-04-21
A peptide-encoded microplate was proposed for MALDI-TOF mass spectrometric (MS) analysis of protease activity. The peptide codes were designed to contain a coding region and the substrate of protease for enzymatic cleavage, respectively, and an internal standard method was proposed for the MS quantitation of the cleavage products of these peptide codes. Upon the cleavage reaction in the presence of target proteases, the coding regions were released from the microplate, which were directly quantitated by using corresponding peptides with one-amino acid difference as the internal standards. The coding region could be used as the unique "Protease ID" for the identification of corresponding protease, and the amount of the cleavage product was used for protease activity analysis. Using trypsin and chymotrypsin as the model proteases to verify the multiplex protease assay, the designed "Trypsin ID" and "Chymotrypsin ID" occurred at m/z 761.6 and 711.6. The logarithm value of the intensity ratio of "Protease ID" to internal standard was proportional to trypsin and chymotrypsin concentration in a range from 5.0 to 500 and 10 to 500 nM, respectively. The detection limits for trypsin and chymotrypsin were 2.3 and 5.2 nM, respectively. The peptide-encoded microplate showed good selectivity. This proposed method provided a powerful tool for convenient identification and activity analysis of multiplex proteases.
Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo
2012-01-01
In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.
Code Pulse: Software Assurance (SWA) Visual Analytics for Dynamic Analysis of Code
2014-09-01
31 4.5.1 Market Analysis...competitive market analysis to assess the tool potential. The final transition targets were selected and expressed along with our research on the topic...public release milestones. Details of our testing methodology is in our Software Test Plan deliv- erable, CP- STP -0001. A summary of this approach is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.
2011-03-01
This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repositorymore » designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.« less
Automatic generation of user material subroutines for biomechanical growth analysis.
Young, Jonathan M; Yao, Jiang; Ramasubramanian, Ashok; Taber, Larry A; Perucchio, Renato
2010-10-01
The analysis of the biomechanics of growth and remodeling in soft tissues requires the formulation of specialized pseudoelastic constitutive relations. The nonlinear finite element analysis package ABAQUS allows the user to implement such specialized material responses through the coding of a user material subroutine called UMAT. However, hand coding UMAT subroutines is a challenge even for simple pseudoelastic materials and requires substantial time to debug and test the code. To resolve this issue, we develop an automatic UMAT code generation procedure for pseudoelastic materials using the symbolic mathematics package MATHEMATICA and extend the UMAT generator to include continuum growth. The performance of the automatically coded UMAT is tested by simulating the stress-stretch response of a material defined by a Fung-orthotropic strain energy function, subject to uniaxial stretching, equibiaxial stretching, and simple shear in ABAQUS. The MATHEMATICA UMAT generator is then extended to include continuum growth by adding a growth subroutine to the automatically generated UMAT. The MATHEMATICA UMAT generator correctly derives the variables required in the UMAT code, quickly providing a ready-to-use UMAT. In turn, the UMAT accurately simulates the pseudoelastic response. In order to test the growth UMAT, we simulate the growth-based bending of a bilayered bar with differing fiber directions in a nongrowing passive layer. The anisotropic passive layer, being topologically tied to the growing isotropic layer, causes the bending bar to twist laterally. The results of simulations demonstrate the validity of the automatically coded UMAT, used in both standardized tests of hyperelastic materials and for a biomechanical growth analysis.
NOAA/DOE CWP structural analysis package. [CWPFLY, CWPEXT, COTEC, and XOTEC codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pompa, J.A.; Lunz, D.F.
1979-09-01
The theoretical development and computer code user's manual for analysis of the Ocean Thermal Energy Conversion (OTEC) plant cold water pipe (CWP) are presented. The analysis of the CWP includes coupled platform/CWP loadngs and dynamic responses. This report with the exception of the Introduction and Appendix F was orginally published as Hydronautics, Inc., Technical Report No. 7825-2 (by Barr, Chang, and Thasanatorn) in November 1978. A detailed theoretical development of the equations describing the coupled platform/CWP system and preliminary validation efforts are described. The appendices encompass a complete user's manual, describing the inputs, outputs and operation of the four componentmore » programs, and detail changes and updates implemented since the original release of the code by Hydronautics. The code itself is available through NOAA's Office of Ocean Technology and Engineering Services.« less
Free wake analysis of hover performance using a new influence coefficient method
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Bliss, Donald B.; Ong, Ching Cho; Ching, Cho Ong
1990-01-01
A new approach to the prediction of helicopter rotor performance using a free wake analysis was developed. This new method uses a relaxation process that does not suffer from the convergence problems associated with previous time marching simulations. This wake relaxation procedure was coupled to a vortex-lattice, lifting surface loads analysis to produce a novel, self contained performance prediction code: EHPIC (Evaluation of Helicopter Performance using Influence Coefficients). The major technical features of the EHPIC code are described and a substantial amount of background information on the capabilities and proper operation of the code is supplied. Sample problems were undertaken to demonstrate the robustness and flexibility of the basic approach. Also, a performance correlation study was carried out to establish the breadth of applicability of the code, with very favorable results.
Solov'ev, V V; Kel', A E; Kolchanov, N A
1989-01-01
The factors, determining the presence of inverted and symmetrical repeats in genes coding for globular proteins, have been analysed. An interesting property of genetical code has been revealed in the analysis of symmetrical repeats: the pairs of symmetrical codons corresponded to pairs of amino acids with mostly similar physical-chemical parameters. This property may explain the presence of symmetrical repeats and palindromes only in genes coding for beta-structural proteins-polypeptides, where amino acids with similar physical-chemical properties occupy symmetrical positions. A stochastic model of evolution of polynucleotide sequences has been used for analysis of inverted repeats. The modelling demonstrated that only limiting of sequences (uneven frequencies of used codons) is enough for arising of nonrandom inverted repeats in genes.
User's manual for the Heat Pipe Space Radiator design and analysis Code (HEPSPARC)
NASA Technical Reports Server (NTRS)
Hainley, Donald C.
1991-01-01
A heat pipe space radiatior code (HEPSPARC), was written for the NASA Lewis Research Center and is used for the design and analysis of a radiator that is constructed from a pumped fluid loop that transfers heat to the evaporative section of heat pipes. This manual is designed to familiarize the user with this new code and to serve as a reference for its use. This manual documents the completed work and is intended to be the first step towards verification of the HEPSPARC code. Details are furnished to provide a description of all the requirements and variables used in the design and analysis of a combined pumped loop/heat pipe radiator system. A description of the subroutines used in the program is furnished for those interested in understanding its detailed workings.
Booth, Chelsea L
2014-09-01
The Research Prioritization Task Force of the National Action Alliance for Suicide Prevention conducted a stakeholder survey including 716 respondents from 49 U.S. states and 18 foreign countries. To conduct a qualitative analysis on responses from individuals representing four main stakeholder groups: attempt and loss survivors, researchers, providers, and policy/administrators. This article focuses on a qualitative analysis of the early-round, open-ended responses collected in a modified online Delphi process, and, as an illustration of the research method, focuses on analysis of respondents' views of the role of life and emotional skills in suicide prevention. Content analysis was performed using both inductive and deductive code and category development and systematic qualitative methods. After the inductive coding was completed, the same data set was re-coded using the 12 Aspirational Goals (AGs) identified by the Delphi process. Codes and thematic categories produced from the inductive coding process were, in some cases, very similar or identical to the 12 AGs (i.e., those dealing with risk and protective factors, provider training, preventing reattempts, and stigma). Other codes highlighted areas that were not identified as important in the Delphi process (e.g., cultural/social factors of suicide, substance use). Qualitative and mixed-methods research are essential to the future of suicide prevention work. By design, qualitative research is explorative and appropriate for complex, culturally embedded social issues such as suicide. Such research can be used to generate hypotheses for testing and, as in this analysis, illuminate areas that would be missed in an approach that imposed predetermined categories on data. Published by Elsevier Inc.
Maximum likelihood decoding analysis of Accumulate-Repeat-Accumulate Codes
NASA Technical Reports Server (NTRS)
Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung
2004-01-01
Repeat-Accumulate (RA) codes are the simplest turbo-like codes that achieve good performance. However, they cannot compete with Turbo codes or low-density parity check codes (LDPC) as far as performance is concerned. The Accumulate Repeat Accumulate (ARA) codes, as a subclass of LDPC codes, are obtained by adding a pre-coder in front of RA codes with puncturing where an accumulator is chosen as a precoder. These codes not only are very simple, but also achieve excellent performance with iterative decoding. In this paper, the performance of these codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. The weight distribution of some simple ARA codes is obtained, and through existing tightest bounds we have shown the ML SNR threshold of ARA codes approaches very closely to the performance of random codes. We have shown that the use of precoder improves the SNR threshold but interleaving gain remains unchanged with respect to RA code with puncturing.
FPCAS3D User's guide: A three dimensional full potential aeroelastic program, version 1
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.
1995-01-01
The FPCAS3D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady three-dimensional full potential equation which is solved for a blade row. The structural analysis is based on a finite-element model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS3D code. A complete description of the input data is provided in this report. In addition, six examples, including inputs and outputs, are provided.
FPCAS2D user's guide, version 1.0
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.
1994-01-01
The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.
NASA Astrophysics Data System (ADS)
Marschall, R.; Su, C. C.; Liao, Y.; Thomas, N.; Wu, J. S.; Altwegg, K.; Sierks, H.; Ip, W.-H.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Lai, I. L.; Rubin, M.; Skorov, Y.; Jorda, L.; Preusker, F.; Scholten, F.; Gicquel, A.; Gracia-Berná, A.; Naletto, G.
2015-10-01
The physics of the outflow above the surface of comets is somewhat complex. Ice sublimating into vacuum forms a non-equilibrium boundary layer, the "Knudsen layer" (Kn-layer), with a scale height of #20 mean free paths. If the production rate is low, the Kn-layer becomes infinitely thick and the velocity distribution function (VDF) remains strongly non-Maxwellian. Thus our preferred method for gas dynamics simulations of the coma is Direct Simulation Monte Carlo DSMC. Here we report on the first results of models of the outflow from the Rosetta target, comet67P/Churyumov-Gerasimenko (C-G). Our aims are to (1) determine the gas flow-field of H2O and CO2 in the innermost coma and compare the results to the in-situ measurements of the ROSINA/COPS instrument (2) produce artificial images of the dust brightnesses that can be compared to the OSIRIS cameras. The comparison with ROSINA/COPS and OSIRIS data help to constrain the initial conditions of the simulations and thus yield information on the surface processes.
Preliminary studies on the planetary entry to Jupiter by aerocapture technique
NASA Astrophysics Data System (ADS)
Aso, Shigeru; Yasaka, Tetsuo; Hirayama, Hiroshi; Poetro, Ridanto Eko; Hatta, Shinji
2006-10-01
Preliminary studies on the planetary entry to Jupiter by aerocapture technique are studied in order to complete technological challenges to deliver scientific probe with low cost and smaller mass of the spacecraft to Jupiter. Jupiter aerocapture corridor determination based on maximum deceleration limit of 5g (lower corridor) and aerocapture capability (upper corridor) at Jupiter are carefully considered and calculated. The results show about 1700 m/s of saving velocity due to aerocapture could be possible in some cases for the spacecraft to be captured by Jovian gravitational field. However, the results also show that Jovian aerocapture is not available in some cases. Hence, careful selection is needed to realize Jovian aerocapture. Also the numerical simulation of aerodynamic heating to the spacecraft has been conducted. DSMC method is used for the simulation of flow fields around the spacecraft. The transient changes of drag due to Jovian atmosphere and total heat loads to the spacecraft are obtained. The results show that the estimated heat loads could be within allowable amount heat load when some ablation heat shield technique is applied.
Preliminary studies on the planetary entry to Jupiter by aerocapture technique
NASA Astrophysics Data System (ADS)
Aso, Shigeru; Yasaka, Tetsuo; Hirayama, Hiroshi; Eko Poetro, Ridanto; Hatta, Shinji
2003-11-01
Preliminary studies on the planetary entry to Jupiter by aerocapture technique are studied in order to complete technological challenges to deliver scientific probe with low cost and smaller mass of the spacecraft to Jupiter. Jupiter aerocapture corridor determination based on maximum deceleration limit of 5g (lower corridor) and aerocapture capability (upper corridor) at Jupiter are carefully considered and calculated. The results show about 1700 m/s of saving velocity due to aerocapture could be possible in some cases for the spacecraft to be captured by Jovian gravitational field. However, the results also show that Jovian aerocapture is not available in some cases. Hence, careful selection is needed to realise Jovian aerocapture. Also the numerical simulation of aerodynamic heating to the spacecraft has been conducted. DSMC method is used for the simulation of flow fields around the spacecraft. The transient changes of drag due to Jovian atmosphere and total heat loads to the spacecraft are obtained. The results show the estimated heat loads could be within allowable amount heat load when some ablation heat shield technique is applied.
Search strategy in a complex and dynamic environment (the Indian Ocean case)
NASA Astrophysics Data System (ADS)
Loire, Sophie; Arbabi, Hassan; Clary, Patrick; Ivic, Stefan; Crnjaric-Zic, Nelida; Macesic, Senka; Crnkovic, Bojan; Mezic, Igor; UCSB Team; Rijeka Team
2014-11-01
The disappearance of Malaysia Airlines Flight 370 (MH370) in the early morning hours of 8 March 2014 has exposed the disconcerting lack of efficient methods for identifying where to look and how to look for missing objects in a complex and dynamic environment. The search area for plane debris is a remote part of the Indian Ocean. Searches, of the lawnmower type, have been unsuccessful so far. Lagrangian kinematics of mesoscale features are visible in hypergraph maps of the Indian Ocean surface currents. Without a precise knowledge of the crash site, these maps give an estimate of the time evolution of any initial distribution of plane debris and permits the design of a search strategy. The Dynamic Spectral Multiscale Coverage search algorithm is modified to search a spatial distribution of targets that is evolving with time following the dynamic of ocean surface currents. Trajectories are generated for multiple search agents such that their spatial coverage converges to the target distribution. Central to this DSMC algorithm is a metric for the ergodicity.
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Lewis, Mark
2010-01-01
A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.
Direct Simulation Monte Carlo Investigation of Noncontinuum Couette Flow
NASA Astrophysics Data System (ADS)
Torczynski, J. R.; Gallis, M. A.
2009-11-01
The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is used to study noncontinuum effects in Couette flow. The walls have equal temperatures and equal accommodation coefficients but unequal tangential velocities. Simulations are performed for near-free-molecular to near-continuum gas pressures with accommodation coefficients of 0.25, 0.5, and 1. Ten gases are examined: argon, helium, nitrogen, sea-level air, and six Inverse-Power-Law (IPL) gases with viscosity temperature exponents of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, as represented by the Variable Soft Sphere (VSS) interaction. In all cases, the wall shear stress is proportional to the slip velocity. The momentum transfer coefficient relating these two quantities can be accurately correlated in terms of the Knudsen number based on the wall separation. The two dimensionless parameters in the correlation are similar for all gases examined. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Simulation Approach for Microscale Noncontinuum Gas-Phase Heat Transfer
NASA Astrophysics Data System (ADS)
Torczynski, J. R.; Gallis, M. A.
2008-11-01
In microscale thermal actuators, gas-phase heat transfer from the heated beams to the adjacent unheated substrate is often the main energy-loss mechanism. Since the beam-substrate gap is comparable to the molecular mean free path, noncontinuum gas effects are important. A simulation approach is presented in which gas-phase heat transfer is described by Fourier's law in the bulk gas and by a wall boundary condition that equates the normal heat flux to the product of the gas-solid temperature difference and a heat transfer coefficient. The dimensionless parameters in this heat transfer coefficient are determined by comparison to Direct Simulation Monte Carlo (DSMC) results for heat transfer from beams of rectangular cross section to the substrate at free-molecular to near-continuum gas pressures. This simulation approach produces reasonably accurate gas-phase heat-transfer results for wide ranges of beam geometries and gas pressures. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Abramov, Rafail V.
2018-06-01
For the gas near a solid planar wall, we propose a scaling formula for the mean free path of a molecule as a function of the distance from the wall, under the assumption of a uniform distribution of the incident directions of the molecular free flight. We subsequently impose the same scaling onto the viscosity of the gas near the wall and compute the Navier-Stokes solution of the velocity of a shear flow parallel to the wall. Under the simplifying assumption of constant temperature of the gas, the velocity profile becomes an explicit nonlinear function of the distance from the wall and exhibits a Knudsen boundary layer near the wall. To verify the validity of the obtained formula, we perform the Direct Simulation Monte Carlo computations for the shear flow of argon and nitrogen at normal density and temperature. We find excellent agreement between our velocity approximation and the computed DSMC velocity profiles both within the Knudsen boundary layer and away from it.