Low-Profile, Dual-Wavelength, Dual-Polarized Antenna
NASA Technical Reports Server (NTRS)
Carswell, James R.
2010-01-01
A single-aperture, low-profile antenna design has been developed that supports dual-polarization and simultaneous operation at two wavelengths. It realizes multiple beams in the elevation plane, and supports radiometric, radar, and conical scanning applications. This antenna consists of multiple azimuth sticks, with each stick being a multilayer, hybrid design. Each stick forms the h-plane pattern of the C and Ku-band vertically and horizontally polarized antenna beams. By combining several azimuth sticks together, the elevation beam is formed. With a separate transceiver for each stick, the transmit phase and amplitude of each stick can be controlled to synthesize a beam at a specific incidence angle and to realize a particular side-lobe pattern. By changing the transmit phase distribution through the transceivers, the transmit antenna beam can be steered to different incidence angles. By controlling the amplitude distribution, different side lobe patterns and efficiencies can be realized. The receive beams are formed using digital beam synthesis techniques, resulting in very little loss in the receive path, thus enabling a very-low loss receive antenna to support passive measurements.
Analysis of a generalized dual reflector antenna system using physical optics
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Lagin, Alan R.
1992-01-01
Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.
Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams.
Bai, Xu-Dong; Liang, Xian-Ling; Sun, Yun-Tao; Hu, Peng-Cheng; Yao, Yu; Wang, Kun; Geng, Jun-Ping; Jin, Rong-Hong
2017-01-10
Recently, vortex beam carrying orbital angular momentum (OAM) for radio communications has attracted much attention for its potential of transmitting multiple signals simultaneously at the same frequency, which can be used to increase the channel capacity. However, most of the methods for getting multi-mode OAM radio beams are of complicated structure and very high cost. This paper provides an effective solution of generating dual circularly-polarized (CP) dual-mode OAM beams. The antenna consists of four dual-CP elements which are sequentially rotated 90 degrees in the clockwise direction. Different from all previous published research relating to OAM generation by phased arrays, the four elements are fed with the same phase for both left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP). The dual-mode operation for OAM is achieved through the opposite phase differences generated for LHCP and RHCP, when the dual-CP elements are sequentially rotated in the clockwise direction. The measured results coincide well with the simulated ones, which verified the effectiveness of the proposed design.
Goos-Hänchen-like shift in biased silicene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Bang-Shan; Wang, Yu, E-mail: ywang@semi.ac.cn; Lou, Yi-Yi
2016-04-28
We have theoretically studied the Goos-Hänchen-like shift of spinor-unpolarized beams tunneling through various gate-biased silicene nanostructures. Following the stationary-phase method, lateral displacement in single-, dual-, and multiple-gated silicene systems has been systematically demonstrated. It is shown for simple single-gated silicene that lateral displacement can be generally enhanced by Fabry-Perot interference, and near the transition point turning on the evanescent mode a very large lateral shift could be observed. For the dual-gated structure, we have also shown the crucial role of localized modes like quantum well states in enhancing the beam lateral displacement, while for the multiple gate-biased systems the resultingmore » superlattice subbands are also favorable for lateral displacement enhancement. Importantly, including the degeneracy-broken mechanisms such as gate-field and magnetic modulations, a fully spinor-resolved beam can be distinguished from the rest counterparts by aligning the incident beam with a proper spinor-resolved transition point, localized state, and subband, all of which can be flexibly modulated via electric means, offering the very desirable strategies to achieve the fully spinor-polarized beam for functional electronic applications.« less
Design of dual multiple aperture devices for dynamical fluence field modulated CT.
Mathews, Aswin John; Tilley, Steven; Gang, Grace; Kawamoto, Satomi; Zbijewski, Wojciech; Siewerdsen, Jeffrey H; Levinson, Reuven; Webster Stayman, J
2016-07-01
A Multiple Aperture Device (MAD) is a novel x-ray beam modulator that uses binary filtration on a fine scale to spatially modulate an x-ray beam. Using two MADs in series enables a large variety of fluence profiles by shifting the MADS relative to each other. This work details the design and control of dual MADs for a specific class of desired fluence patterns. Specifically, models of MAD operation are integrated into a best fit objective followed by CMA-ES optimization. To illustrate this framework we demonstrate the design process for an abdominal phantom with the goal of uniform detected signal. Achievable fluence profiles show good agreement with target fluence profiles, and the ability to flatten projections when a phantom is scanned is demonstrated. Simulated data reconstruction using traditional tube current modulation (TCM) and MAD filtering with TCM are investigated with the dual MAD system demonstrating more uniformity in noise and illustrating the potential for dose reduction under a maximum noise level constraint.
Satellite communication antenna technology
NASA Technical Reports Server (NTRS)
Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)
1983-01-01
A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.
Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning
NASA Technical Reports Server (NTRS)
Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)
2007-01-01
Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.
Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi
2014-02-07
Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.
NASA Astrophysics Data System (ADS)
Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi
2014-02-01
Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.
Multiple ion beam irradiation for the study of radiation damage in materials
NASA Astrophysics Data System (ADS)
Taller, Stephen; Woodley, David; Getto, Elizabeth; Monterrosa, Anthony M.; Jiao, Zhijie; Toader, Ovidiu; Naab, Fabian; Kubley, Thomas; Dwaraknath, Shyam; Was, Gary S.
2017-12-01
The effects of transmutation produced helium and hydrogen must be included in ion irradiation experiments to emulate the microstructure of reactor irradiated materials. Descriptions of the criteria and systems necessary for multiple ion beam irradiation are presented and validated experimentally. A calculation methodology was developed to quantify the spatial distribution, implantation depth and amount of energy-degraded and implanted light ions when using a thin foil rotating energy degrader during multi-ion beam irradiation. A dual ion implantation using 1.34 MeV Fe+ ions and energy-degraded D+ ions was conducted on single crystal silicon to benchmark the dosimetry used for multi-ion beam irradiations. Secondary Ion Mass Spectroscopy (SIMS) analysis showed good agreement with calculations of the peak implantation depth and the total amount of iron and deuterium implanted. The results establish the capability to quantify the ion fluence from both heavy ion beams and energy-degraded light ion beams for the purpose of using multi-ion beam irradiations to emulate reactor irradiated microstructures.
Off-road axle detection sensor (ORADS) : executive summary, April 2001.
DOT National Transportation Integrated Search
2001-04-01
Spectra Research has developed a non-intrusive lane monitoring sensor which can be used to measure and classify vehicular traffic over multiple lane roadways. This sensor employs dual beam laser radar (LADAR) that accurately measures location and pas...
Off-road axle detection sensor (ORADS) : final report, April 2001.
DOT National Transportation Integrated Search
2001-04-01
Spectra Research has developed a non-intrusive lane monitoring sensor which can be used to measure and classify vehicular traffic over multiple lane roadways. This sensor employs dual beam laser radar (LADAR) that accurately measures location and pas...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ning; Ghebremedhin, Abiel; Patyal, Baldev, E-mail: bpatyal@llu.eduss
Purpose: To check the accuracy of a gantry equipped with dual x-ray imagers and a robotic patient positioner for proton radiotherapy, and to evaluate the accuracy and feasibility of single-beam registration using the robotic positioner. Methods: One of the proton treatment rooms at their institution was upgraded to include a robotic patient positioner (couch) with 6 degrees of freedom and dual orthogonal kilovoltage x-ray imaging panels. The wander of the proton beam central axis, the wander of the beamline, and the orthogonal image panel crosswires from the gantry isocenter were measured for different gantry angles. The couch movement accuracy andmore » couch wander from the gantry isocenter were measured for couch loadings of 50–300 lb with couch rotations from 0° to ±90°. The combined accuracy of the gantry, couch, and imagers was checked using a custom-made 30 × 30 × 30 cm{sup 3} Styrofoam phantom with beekleys embedded in it. A treatment in this room can be set up and registered at a setup field location, then moved precisely to any other treatment location without requiring additional image registration. The accuracy of the single-beam registration strategy was checked for treatments containing multiple beams with different combinations of gantry angles, couch yaws, and beam locations. Results: The proton beam central axis wander from the gantry isocenter was within 0.5 mm with gantry rotations in both clockwise (CW) and counterclockwise (CCW) directions. The maximum wander of the beamline and orthogonal imager crosswire centers from the gantry isocenter were within 0.5 and 0.8 mm, respectively, with the gantry rotations in CW and CCW directions. Vertical and horizontal couch wanders from the gantry isocenter were within 0.4 and 1.3 mm, respectively, for couch yaw from 0° to ±90°. For a treatment with multiple beams with different gantry angles, couch yaws, and beam locations, the measured displacements of treatment beam locations from the one based on the initial setup beam registered at the gantry at 0°/180° and couch yaw at 0° were within 1.5 mm in three translations and 0.5° in three rotations for a 200 lb couch loading. Conclusions: Results demonstrate that the gantry equipped with a robotic patient positioner and dual imaging panels satisfies treatment requirements for proton radiotherapy. The combined accuracy of the gantry, couch, and imagers allows a patient to be registered at one setup position and then moved precisely to another treatment position by commanding the robotic patient positioner and delivering treatment without requiring additional image registration.« less
Multi-Wavelength, Multi-Beam, and Polarization-Sensitive Laser Transmitter for Surface Mapping
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Ramos-Izquierdo, Luis; Harding, David; Huss, Tim
2011-01-01
A multi-beam, multi-color, polarized laser transmitter has been developed for mapping applications. It uses commercial off-the-shelf components for a lowcost approach for a ruggedized laser suitable for field deployment. The laser transmitter design is capable of delivering dual wavelengths, multiple beams on each wavelength with equal (or variable) intensities per beam, and a welldefined state of polarization. This laser transmitter has been flown on several airborne campaigns for the Slope Imaging Multi-Polarization Photon Counting Lidar (SIMPL) instrument, and at the time of this reporting is at a technology readiness level of between 5 and 6. The laser is a 1,064-nm microchip high-repetition-rate laser emitting energy of about 8 microjoules per pulse. The beam was frequency-doubled to 532 nm using a KTP (KTiOPO4) nonlinear crystal [other nonlinear crystals such as LBO (LiB3O5) or periodically poled lithium niobiate can be used as well, depending on the conversion efficiency requirements], and the conversion efficiency was approximately 30 percent. The KTP was under temperature control using a thermoelectric cooler and a feedback monitoring thermistor. The dual-wavelength beams were then spectrally separated and each color went through its own optical path, which consisted of a beam-shaping lens, quarterwave plate (QWP), and a birefringent crystal (in this case, a calcite crystal, but others such as vanadate can be used). The QWP and calcite crystal set was used to convert the laser beams from a linearly polarized state to circularly polarized light, which when injected into a calcite crystal, will spatially separate the circularly polarized light into the two linear polarized components. The spatial separation of the two linearly polarized components is determined by the length of the crystal. A second set of QWP and calcite then further separated the two beams into four. Additional sets of QWP and calcite can be used to further split the beams into multiple orders of two. The spatially separated beams had alternating linearly polarization states; a half-wave plate (HWP) array was then made to rotate the alternating states of A multi-beam, multi-color, polarized laser transmitter has been developed for mapping applications. It uses commercial off-the-shelf components for a lowcost approach for a ruggedized laser suitable for field deployment. The laser transmitter design is capable of delivering dual wavelengths, multiple beams on each wavelength with equal (or variable) intensities per beam, and a welldefined state of polarization. This laser transmitter has been flown on several airborne campaigns for the Slope Imaging Multi-Polarization Photon Counting Lidar (SIMPL) instrument, and at the time of this reporting is at a technology readiness level of between 5 and 6. The laser is a 1,064-nm microchip high-repetition-rate laser emitting energy of about 8 microjoules per pulse. The beam was frequency-doubled to 532 nm using a KTP (KTiOPO4) nonlinear crystal [other nonlinear crystals such as LBO (LiB3O5) or periodically poled lithium niobiate can be used as well, depending on the conversion efficiency requirements], and the conversion efficiency was approximately 30 percent. The KTP was under temperature control using a thermoelectric cooler and a feedback monitoring thermistor. The dual-wavelength beams were then spectrally separated and each color went through its own optical path, which consisted of a beam-shaping lens, quarterwave plate (QWP), and a birefringent crystal (in this case, a calcite crystal, but others such as vanadate can be used). The QWP and calcite crystal set was used to convert the laser beams from a linearly polarized state to circularly polarized light, which when injected into a calcite crystal, will spatially separate the circularly polarized light into the two linear polarized components. The spatial separation of the two linearly polarized components is determined by the length of the crystal. A cond set of QWP and calcite then further separated the two beams into four. Additional sets of QWP and calcite can be used to further split the beams into multiple orders of two. The spatially separated beams had alternating linearly polarization states; a half-wave plate (HWP) array was then made to rotate the alternating states of
2006-06-01
Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M... Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M. Thériault... Polarisation measurement with a dual beam interferometer (CATSI) - Exploratory results and preliminary phenomenological analysis. ECR 2004-372. DRDC Valcartier
NASA Technical Reports Server (NTRS)
Birn, J.; Chandler, M.; Moore, T.; Runov, A.
2017-01-01
Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in relation to magnetotail reconnection and dipolarization events, focusing on distributions at and near the plasma sheet boundary layer (PSBL). Simulated distributions right at the boundary are characterized by a single earthward beam, as discussed earlier. However, farther inside, the distributions consist of multiple beams parallel and antiparallel to the magnetic field, remarkably similar to recent Magnetospheric Multiscale observations. The simulations provide insight into the mechanisms: the lowest earthward beam results from direct acceleration at an earthward propagating dipolarization front (DF), with a return beam at somewhat higher energy. A higher-energy earthward beam results from dual acceleration, first near the reconnection site and then at the DF, again with a corresponding return beam resulting from mirroring closer to Earth. Multiple acceleration at the X line or the propagating DF with intermediate bounces may produce even higher-energy beams. Particles contributing to the lower energy beams are found to originate from the PSBL with thermal source energies, increasing with increasing beam energy. In contrast, the highest-energy beams consist mostly of particles that have entered the acceleration region via cross-tail drift with source energies in the suprathermal range.
NASA Astrophysics Data System (ADS)
Birn, J.; Chandler, M.; Moore, T.; Runov, A.
2017-08-01
Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in relation to magnetotail reconnection and dipolarization events, focusing on distributions at and near the plasma sheet boundary layer (PSBL). Simulated distributions right at the boundary are characterized by a single earthward beam, as discussed earlier. However, farther inside, the distributions consist of multiple beams parallel and antiparallel to the magnetic field, remarkably similar to recent Magnetospheric Multiscale observations. The simulations provide insight into the mechanisms: the lowest earthward beam results from direct acceleration at an earthward propagating dipolarization front (DF), with a return beam at somewhat higher energy. A higher-energy earthward beam results from dual acceleration, first near the reconnection site and then at the DF, again with a corresponding return beam resulting from mirroring closer to Earth. Multiple acceleration at the X line or the propagating DF with intermediate bounces may produce even higher-energy beams. Particles contributing to the lower energy beams are found to originate from the PSBL with thermal source energies, increasing with increasing beam energy. In contrast, the highest-energy beams consist mostly of particles that have entered the acceleration region via cross-tail drift with source energies in the suprathermal range.
Dual-wavelength quantum cascade laser for trace gas spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jágerská, J.; Tuzson, B.; Mangold, M.
2014-10-20
We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.
Dual energy scanning beam laminographic x-radiography
Majewski, Stanislaw; Wojcik, Randolph F.
1998-01-01
A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.
Dual energy scanning beam laminographic x-radiography
Majewski, S.; Wojcik, R.F.
1998-04-21
A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.
NASA Technical Reports Server (NTRS)
Schmidt, R. F.
1979-01-01
The fundamental definition of beam efficiency, given in terms of a far field radiation pattern, was used to develop alternative definitions which improve accuracy, reduce the amount of calculation required, and isolate the separate factors composing beam efficiency. Well-known definitions of aperture efficiency were introduced successively to simplify the denominator of the fundamental definition. The superposition of complex vector spillover and backscattered fields was examined, and beam efficiency analysis in terms of power patterns was carried out. An extension from single to dual reflector geometries was included. It is noted that the alternative definitions are advantageous in the mathematical simulation of a radiometer system, and are not intended for the measurements discipline where fields have merged and therefore lost their identity.
NASA Astrophysics Data System (ADS)
Cianciara, Aleksander J.; Anderson, Christopher J.; Chen, Xuelei; Chen, Zhiping; Geng, Jingchao; Li, Jixia; Liu, Chao; Liu, Tao; Lu, Wing; Peterson, Jeffrey B.; Shi, Huli; Steffel, Catherine N.; Stebbins, Albert; Stucky, Thomas; Sun, Shijie; Timbie, Peter T.; Wang, Yougang; Wu, Fengquan; Zhang, Juyong
A wide bandwidth, dual polarized, modified four-square antenna is presented as a feed antenna for radio astronomical measurements. A linear array of these antennas is used as a line-feed for cylindrical reflectors for Tianlai, a radio interferometer designed for 21cm intensity mapping. Simulations of the feed antenna beam patterns and scattering parameters are compared to experimental results at multiple frequencies across the 650-1420MHz range. Simulations of the beam patterns of the combined feed array/reflector are presented as well.
SU-E-T-25: Real Time Simulator for Designing Electron Dual Scattering Foil Systems.
Carver, R; Hogstrom, K; Price, M; Leblanc, J; Harris, G
2012-06-01
To create a user friendly, accurate, real time computer simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator should allow for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator consists of an analytical algorithm for calculating electron fluence and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with a refined Moliere formalism for scattering powers. The simulator also estimates central-axis x-ray dose contamination from the dual foil system. Once the geometry of the beamline is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scattering foil material and Gaussian shape (thickness and sigma), and beam energy. The beam profile and x-ray contamination are displayed in real time. The simulator was tuned by comparison of off-axis electron fluence profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV and using present foils on the Elekta radiotherapy accelerator, the simulator profiles agreed to within 2% of MC profiles from within 20 cm of the central axis. The x-ray contamination predictions matched measured data to within 0.6%. The calculation time was approximately 100 ms using a single processor, which allows for real-time variation of foil parameters using sliding bars. A real time dual scattering foil system simulator has been developed. The tool has been useful in a project to redesign an electron dual scattering foil system for one of our radiotherapy accelerators. The simulator has also been useful as an instructional tool for our medical physics graduate students. © 2012 American Association of Physicists in Medicine.
A dual frequency microstrip antenna for Ka band
NASA Technical Reports Server (NTRS)
Lee, R. Q.; Baddour, M. F.
1985-01-01
For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.
A numerical simulation of machining glass by dual CO 2-laser beams
NASA Astrophysics Data System (ADS)
Jiao, Junke; Wang, Xinbing
2008-03-01
In the flat panel display (FPD) industry, lasers may be used to cut glass plates. In order to reduce the possibility of fracture in the process of cutting glass by lasers, the thermal stress has to be less than the critical rupture strength. In this paper, a dual-laser-beam method is proposed, where an off-focus CO 2-laser beam was used to preheat the glass sample to reduce the thermal gradients and a focused CO 2-laser beam was used to machine the glass. The distribution of the thermal stress and the temperature was simulated by using finite element analysis software, Ansys. The thermal stress was studied both when the glass sample was machined by a single CO 2-laser beam and by dual CO 2-laser beams. It was concluded that the thermal stress can be reduced by means of the dual-laser-beam method.
Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures
NASA Astrophysics Data System (ADS)
Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa
2015-06-01
In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.
Dual beam optical interferometer
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
2003-01-01
A dual beam interferometer device is disclosed that enables moving an optics module in a direction, which changes the path lengths of two beams of light. The two beams reflect off a surface of an object and generate different speckle patterns detected by an element, such as a camera. The camera detects a characteristic of the surface.
NASA Astrophysics Data System (ADS)
Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.
2013-11-01
We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.
NASA Astrophysics Data System (ADS)
Zhao, Wanqin; Wang, Wenjun; Mei, Xuesong; Jiang, Gedong; Liu, Bin
2014-06-01
Investigations on the morphological features of holes and grooves ablated on the surface of stainless steel using the picosecond dual-wavelength laser system with different powers combinations are presented based on the scarce researches on morphology of dual-wavelength laser ablation. The experimental results show the profiles of holes ablated by the visible beam appear V-shaped while those for the near-infrared have large openings and display U-shaped, which are independent of the ablation mechanism of ultrafast laser. For the dual-wavelength beam (a combination of visible beam and near-infrared), the holes resemble sunflower-like structures and have smoother ring patterns on the bottom. In general, the holes ablated by the dual-wavelength beam appear to have much flatter bottoms, linearly sloped side-walls and spinodal structures between the bottoms of the holes and the side-walls. Furthermore, through judiciously combining the powers of the dual-wavelength beam, high-quality grooves could be obtained with a flat worm-like structure at the bottom surface and less resolidified melt ejection edges. This study provides insight into optimizing ultrafast laser micromachining in order to obtain desired morphology.
[Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].
Liu, Yi-xuan; Yan, Chang-xiang
2015-07-01
Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers.
Loffroy, Romaric; Lin, MingDe; Yenokyan, Gayane; Rao, Pramod P.; Bhagat, Nikhil; Noordhoek, Niels; Radaelli, Alessandro; Blijd, Järl; Liapi, Eleni
2013-01-01
Purpose: To investigate whether C-arm dual-phase cone-beam computed tomography (CT) performed during transcatheter arterial chemoembolization (TACE) with doxorubicin-eluting beads can help predict tumor response at 1-month follow-up in patients with hepatocellular carcinoma (HCC). Materials and Methods: This prospective study was compliant with HIPAA and approved by the institutional review board and animal care and use committee. Analysis was performed retrospectively on 50 targeted HCC lesions in 29 patients (16 men, 13 women; mean age, 61.9 years ± 10.7) treated with TACE with drug-eluting beads. Magnetic resonance (MR) imaging was performed at baseline and 1 month after TACE. Dual-phase cone-beam CT was performed before and after TACE. Tumor enhancement at dual-phase cone-beam CT in early arterial and delayed venous phases was assessed retrospectively with blinding to MR findings. Tumor response at MR imaging was assessed according to European Association for the Study of the Liver (EASL) guidelines. Two patients were excluded from analysis because dual-phase cone-beam CT scans were not interpretable. Logistic regression models for correlated data were used to compare changes in tumor enhancement between modalities. The radiation dose with dual-phase cone-beam CT was measured in one pig. Results: At 1-month MR imaging follow-up, complete and/or partial tumor response was seen in 74% and 76% of lesions in the arterial and venous phases, respectively. Paired t tests used to compare images obtained before and after TACE showed a significant reduction in tumor enhancement with both modalities (P < .0001). The decrease in tumor enhancement seen with dual-phase cone-beam CT after TACE showed a linear correlation with MR findings. Estimated correlation coefficients were excellent for first (R = 0.89) and second (R = 0.82) phases. A significant relationship between tumor enhancement at cone-beam CT after TACE and complete and/or partial tumor response at MR imaging was found for arterial (odds ratio, 0.95; 95% confidence interval [CI]: 0.91, 0.99; P = .023) and venous (odds ratio, 0.96; 95% CI: 0.93, 0.99; P = .035) phases with the multivariate logistic regression model. Radiation dose for two dual-phase cone-beam CT scans was 3.08 mSv. Conclusion: Intraprocedural C-arm dual-phase cone-beam CT can be used immediately after TACE with doxorubicin-eluting beads to predict HCC tumor response at 1-month MR imaging follow-up. © RSNA, 2012 PMID:23143027
Simultaneous CARS and Interferometric Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Grinstead, Keith D., Jr.; Tedder, Sarah; Cutler, Andrew D.
2006-01-01
This paper reports for the first time the combination of a dual-pump coherent anti-Stokes Raman scattering system with an interferometric Rayleigh scattering system (CARS - IRS) to provide time-resolved simultaneous measurement of multiple properties in combustion flows. The system uses spectrally narrow green (seeded Nd:YAG at 532 nm) and yellow (552.9 nm) pump beams and a spectrally-broad red (607 nm) beam as the Stokes beam. A spectrometer and a planar Fabry-Perot interferometer used in the imaging mode are used to record the spectrally broad CARS spectra and the spontaneous Rayleigh scattering spectra, respectively. Time-resolved simultaneous measurement of temperature, absolute mole fractions of N2, O2, and H2, and two components of velocity in a Hencken burner flame were performed to demonstrate the technique.
Delayed Shutters For Dual-Beam Molecular Epitaxy
NASA Technical Reports Server (NTRS)
Grunthaner, Frank J.; Liu, John L.; Hancock, Bruce
1989-01-01
System of shutters for dual-molecular-beam epitaxy apparatus delays start of one beam with respect to another. Used in pulsed-beam equipment for deposition of low-dislocation layers of InAs on GaAs substrates, system delays application of arsenic beam with respect to indium beam to assure proper stoichiometric proportions on newly forming InAs surface. Reflectance high-energy electron diffraction (RHEED) instrument used to monitor condition of evolving surface of deposit. RHEED signal used to time pulsing of molecular beams in way that minimizes density of defects and holds lattice constant of InAs to that of GaAs substrate.
Multiple off-axis acoustic vortices generated by dual coaxial vortex beams
NASA Astrophysics Data System (ADS)
Li, Wen; Dai, Si-Jie; Ma, Qing-Yu; Guo, Ge-Pu; Ding, He-Ping
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11474166 and 11604156), the Science and Technology Cooperation Projects of People’s Republic of China-Romania (Grant No. 42-23), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161013), the Postdoctoral Science Foundation of China (Grant No. 2016M591874), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
NASA Astrophysics Data System (ADS)
Almeida, Isabel P.; Schyns, Lotte E. J. R.; Vaniqui, Ana; van der Heyden, Brent; Dedes, George; Resch, Andreas F.; Kamp, Florian; Zindler, Jaap D.; Parodi, Katia; Landry, Guillaume; Verhaegen, Frank
2018-06-01
Proton beam ranges derived from dual-energy computed tomography (DECT) images from a dual-spiral radiotherapy (RT)-specific CT scanner were assessed using Monte Carlo (MC) dose calculations. Images from a dual-source and a twin-beam DECT scanner were also used to establish a comparison to the RT-specific scanner. Proton ranges extracted from conventional single-energy CT (SECT) were additionally performed to benchmark against literature values. Using two phantoms, a DECT methodology was tested as input for GEANT4 MC proton dose calculations. Proton ranges were calculated for different mono-energetic proton beams irradiating both phantoms; the results were compared to the ground truth based on the phantom compositions. The same methodology was applied in a head-and-neck cancer patient using both SECT and dual-spiral DECT scans from the RT-specific scanner. A pencil-beam-scanning plan was designed, which was subsequently optimized by MC dose calculations, and differences in proton range for the different image-based simulations were assessed. For phantoms, the DECT method yielded overall better material segmentation with >86% of the voxel correctly assigned for the dual-spiral and dual-source scanners, but only 64% for a twin-beam scanner. For the calibration phantom, the dual-spiral scanner yielded range errors below 1.2 mm (0.6% of range), like the errors yielded by the dual-source scanner (<1.1 mm, <0.5%). With the validation phantom, the dual-spiral scanner yielded errors below 0.8 mm (0.9%), whereas SECT yielded errors up to 1.6 mm (2%). For the patient case, where the absolute truth was missing, proton range differences between DECT and SECT were on average in ‑1.2 ± 1.2 mm (‑0.5% ± 0.5%). MC dose calculations were successfully performed on DECT images, where the dual-spiral scanner resulted in media segmentation and range accuracy as good as the dual-source CT. In the patient, the various methods showed relevant range differences.
Multi-functional angiographic OFDI using frequency-multiplexed dual-beam illumination
Kim, SunHee; Park, Taejin; Jang, Sun-Joo; Nam, Ahhyun S.; Vakoc, Benjamin J.; Oh, Wang-Yuhl
2015-01-01
Detection of blood flow inside the tissue sample can be achieved by measuring the local change of complex signal over time in angiographic optical coherence tomography (OCT). In conventional angiographic OCT, the transverse displacement of the imaging beam during the time interval between a pair of OCT signal measurements must be significantly reduced to minimize the noise due to the beam scanning-induced phase decorrelation at the expense of the imaging speed. Recent introduction of dual-beam scan method either using polarization encoding or two identical imaging systems in spectral-domain (SD) OCT scheme shows potential for high-sensitivity vasculature imaging without suffering from spurious phase noise caused by the beam scanning-induced spatial decorrelation. In this paper, we present multi-functional angiographic optical frequency domain imaging (OFDI) using frequency-multiplexed dual-beam illumination. This frequency multiplexing scheme, utilizing unique features of OFDI, provides spatially separated dual imaging beams occupying distinct electrical frequency bands that can be demultiplexed in the frequency domain processing. We demonstrate the 3D multi-functional imaging of the normal mouse skin in the dorsal skin fold chamber visualizing distinct layer structures from the intensity imaging, information about mechanical integrity from the polarization-sensitive imaging, and depth-resolved microvasculature from the angiographic imaging that are simultaneously acquired and automatically co-registered. PMID:25968731
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
Dual-beam skin friction interferometer
NASA Technical Reports Server (NTRS)
Monson, D. J. (Inventor)
1981-01-01
A portable dual-laser beam interferometer is described that nonintrusively measures skin friction by monitoring the thickness change of an oil film at two locations while said oil film is subjected to shear stress. An interferometer flat is utilized to develop the two beams. Light detectors sense the beam reflections from the oil film and the surface thereunder. The signals from the detectors are recorded so that the number of interference fringes produced over a given time span may be counted.
Prior image constrained image reconstruction in emerging computed tomography applications
NASA Astrophysics Data System (ADS)
Brunner, Stephen T.
Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation dose efficiency improvement in multi-energy photon-counting CT, and can mitigate scatter-induced shading artifacts in cone-beam CT in full-fan and half-fan modes.
Kim, Moonkeun; Lee, Sang-Kyun; Yang, Yil Suk; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho
2013-12-01
We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested.
Performance evaluation of nonlinear energy harvesting with magnetically coupled dual beams
NASA Astrophysics Data System (ADS)
Lan, Chunbo; Tang, Lihua; Qin, Weiyang
2017-04-01
To enhance the output power and broaden the operation bandwidth of vibration energy harvesters (VEH), nonlinear two degree-of-freedom (DOF) energy harvesters have attracted wide attention recently. In this paper, we investigate the performance of a nonlinear VEH with magnetically coupled dual beams and compare it with the typical Duffing-type VEH to find the advantages and drawbacks of this nonlinear 2-DOF VEH. First, based on the lumped parameter model, the characteristics of potential energy shapes and static equilibriums are analyzed. It is noted that the dual beam configuration is much easy to be transformed from a mono-stable state into a bi-stable state when the repulsive magnet force increases. Based on the equilibrium positions and different kinds of nonlinearities, four nonlinearity regimes are determined. Second, the performance of 1-DOF and 2-DOF configurations are compared respectively in these four nonlinearity regimes by simulating the forward sweep responses of these two nonlinear VEHs under different acceleration levels. Several meaningful conclusions are obtained. First, the main alternative to enlarge the operation bandwidth for dual-beam configuration is chaotic oscillation, in which two beams jump between two stable positions chaotically. However, the large-amplitude periodic oscillations, such as inter-well oscillation, cannot take place in both piezoelectric and parasitic beams at the same time. Generally speaking, both of the magnetically coupled dual-beam energy harvester and Duffingtype energy harvester, have their own advantages and disadvantages, while given a large enough base excitation, the maximum voltages of these two systems are almost the same in all these four regimes.
Efficient two-stage dual-beam noncollinear optical parametric amplifier
NASA Astrophysics Data System (ADS)
Cheng, Yu-Hsiang; Gao, Frank Y.; Poulin, Peter R.; Nelson, Keith A.
2018-06-01
We have constructed a noncollinear optical parametric amplifier with two signal beams amplified in the same nonlinear crystal. This dual-beam design is more energy-efficient than operating two amplifiers in parallel. The cross-talk between two beams has been characterized and discussed. We have also added a second amplification stage to enhance the output of one of the arms, which is then frequency-doubled for ultraviolet generation. This single device provides two tunable sources for ultrafast spectroscopy in the ultraviolet and visible region.
NASA Astrophysics Data System (ADS)
Shi, Zheng; Yuan, Jialei; Zhang, Shuai; Liu, Yuhuai; Wang, Yongjin
2017-10-01
We propose a wafer-level procedure for the fabrication of 1.5-mm-diameter dual functioning InGaN/GaN multiple-quantum-well (MQW) diodes on a GaN-on-silicon platform for transferrable optoelectronics. Nitride semiconductor materials are grown on (111) silicon substrates with intermediate Al-composition step-graded buffer layers, and membrane-type MQW-diode architectures are obtained by a combination of silicon removal and III-nitride film backside thinning. Suspended MQW-diodes are directly transferred from silicon to foreign substrates such as metal, glass and polyethylene terephthalate by mechanically breaking the support beams. The transferred MQW-diodes display strong electroluminescence under current injection and photodetection under light irradiation. Interestingly, they demonstrate a simultaneous light-emitting light-detecting function, endowing the 1.5-mm-diameter MQW-diode with the capability of producing transferrable optoelectronics for adjustable displays, wearable optical sensors, multifunctional energy harvesting, flexible light communication and monolithic photonic circuit.
Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm.
Wu, Bo; Jiang, Peipei; Yang, Dingzhong; Chen, Tao; Kong, Jian; Shen, Yonghang
2009-04-13
We report a compact diode-laser pumped Nd:GdVO(4) laser with stable dual-wavelength output at 1063 nm and 1065 nm simultaneously. Two types of resonant cavity configurations were presented to support the stable dual-wavelength operation of the laser. Using a polarization beam splitter(PBS) included T-shaped cavity, we obtained a total power output over 5 W in two orthogonal polarized beam directions with 4 W in sigma polarization (1065.5 nm) and 1 W in pi polarization (1063.1 nm). By combining a half-wave-plate with the PBS in the laser cavity, a new configuration favoring one beam direction dual-wavelength output with same polarization direction was realized. A phenomenon of further line splitting was observed in both 1065 nm and 1063 nm.
Dual-beam manually-actuated distortion-corrected imaging (DMDI) with micromotor catheters.
Lee, Anthony M D; Hohert, Geoffrey; Angkiriwang, Patricia T; MacAulay, Calum; Lane, Pierre
2017-09-04
We present a new paradigm for performing two-dimensional scanning called dual-beam manually-actuated distortion-corrected imaging (DMDI). DMDI operates by imaging the same object with two spatially-separated beams that are being mechanically scanned rapidly in one dimension with slower manual actuation along a second dimension. Registration of common features between the two imaging channels allows remapping of the images to correct for distortions due to manual actuation. We demonstrate DMDI using a 4.7 mm OD rotationally scanning dual-beam micromotor catheter (DBMC). The DBMC requires a simple, one-time calibration of the beam paths by imaging a patterned phantom. DMDI allows for distortion correction of non-uniform axial speed and rotational motion of the DBMC. We show the utility of this technique by demonstrating en face OCT image distortion correction of a manually-scanned checkerboard phantom and fingerprint scan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xiaopin; Yang, Ziqiang; Shi, Zongjun
A novel backward wave oscillator (BWO) based on a hole-grating slow wave structure is proposed as a dual sheet beam millimeter wave radiation source. In this paper, we focus on the output characteristics of a 0.14 THz hole-grating BWO. The output characteristics of the hole-grating BWO, the conventional single-beam grating BWO, and the dual-beam grating BWO are contrasted in detail. 3-D particle-in-cell results indicate that the hole-grating slow wave structure can help to increase the maximum output power as well as lower the operating current density. Meanwhile, the hole-grating BWO shows good insensitivity to the differences between two sheet electronmore » beams. These characteristics make the hole-grating BWO feasible to be a stable millimeter wave radiation source with higher output power.« less
Dual-wavelength vortex beam with high stability in a diode-pumped Yb:CaGdAlO4 laser
NASA Astrophysics Data System (ADS)
Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali
2018-05-01
We present a stable dual-wavelength vortex beam carrying orbital angular momentum (OAM) with two spectral peaks separated by a few terahertz in a diode-pumped Yb:CaGdAlO4 (CALGO) laser. The dual-wavelength spectrum is controlled by the pump power and off-axis loss in a laser resonator, arising from the broad emission bandwidth of Yb:CALGO. The OAM beam is obtained by a pair of cylindrical lenses serving as a π/2 convertor for high-order Hermite–Gaussian modes. The stability is verified by the fact that a 1\\hbar OAM beam with two spectral peaks at 1046.1 nm and 1057.2 nm (3.01 THz interval) can steadily operate for more than 3 h. It has great potential for scaling the application of OAM beams in terahertz spectroscopy, high-resolution interferometry, and so on.
Light-sheet microscopy by confocal line scanning of dual-Bessel beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin
Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as manymore » photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.« less
Light-sheet microscopy by confocal line scanning of dual-Bessel beams
Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin; ...
2016-10-25
Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as manymore » photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.« less
Experimental results of use of triple-energy X-ray beam with K-edge filter in multi-energy imaging
NASA Astrophysics Data System (ADS)
Kim, D.; Lee, S.; Jeon, P.-H.
2016-04-01
Multi-energy imaging is useful for contrast enhancement of lesions, quantitative analysis of specific materials and material separation in the human body. Generally, dual-energy methods are applied to discriminating two materials, but this method cannot discriminate more than two materials. Photon-counting detectors provide spectral information from polyenergetic X-rays using multiple energy bins. In this work, we developed triple-energy X-ray beams using a filter with K-edge energy and applied them experimentally. The energy spectra of triple-energy X-ray beams were assessed by using a spectrometer. The designed triple-energy X-ray beams were validated by measuring quantitative evaluations with mean energy ratio (MER), contrast variation ratio (CVR) and exposure efficiency (EE). Then, triple-energy X-ray beams were used to extract density map of three materials, iodine (I), aluminum (Al) and polymethyl methacrylate (PMMA). The results of the thickness density maps obtained with the developed triple-energy X-ray beams were compared to those acquired using the photon-counting method. As a result, it was found experimentally that the proposed triple-energy X-ray beam technique can separate the three materials as well as the photon-counting method.
High harmonic terahertz confocal gyrotron with nonuniform electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Wenjie; Guan, Xiaotong; Yan, Yang
2016-01-15
The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.
Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W
2011-12-01
The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.
Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.
Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong
2016-04-04
A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.
Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers
NASA Astrophysics Data System (ADS)
Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.
2016-03-01
We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.
SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, X; Elder, E; Roper, J
2015-06-15
Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less
NASA Astrophysics Data System (ADS)
Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang
2018-06-01
In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.
Improved atom number with a dual color magneto—optical trap
NASA Astrophysics Data System (ADS)
Cao, Qiang; Luo, Xin-Yu; Gao, Kui-Yi; Wang, Xiao-Rui; Chen, Dong-Min; Wang, Ru-Quan
2012-04-01
We demonstrate a novel dual color magneto—optical trap (MOT), which uses two sets of overlapping laser beams to cool and trap 87Rb atoms. The volume of cold cloud in the dual color MOT is strongly dependent on the frequency difference of the laser beams and can be significantly larger than that in the normal MOT with single frequency MOT beams. Our experiment shows that the dual color MOT has the same loading rate as the normal MOT, but much longer loading time, leading to threefold increase in the number of trapped atoms. This indicates that the larger number is caused by reduced light induced loss. The dual color MOT is very useful in experiments where both high vacuum level and large atom number are required, such as single chamber quantum memory and Bose—Einstein condensation (BEC) experiments. Compared to the popular dark spontaneous-force optical trap (dark SPOT) technique, our approach is technically simpler and more suitable to low power laser systems.
Pardue, R.M.; Williams, R.R.
1980-09-12
A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.
Pardue, Robert M.; Williams, Richard R.
1982-01-01
A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.
Dual axis translation apparatus and system for translating an optical beam and related method
Cassidy, Kelly
1991-01-01
A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.
Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding
NASA Astrophysics Data System (ADS)
Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong
2018-01-01
Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.
Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration
NASA Astrophysics Data System (ADS)
Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan
2014-03-01
Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.
Dual ion beam assisted deposition of biaxially textured template layers
Groves, James R.; Arendt, Paul N.; Hammond, Robert H.
2005-05-31
The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.
Dual fiber microprobe for mapping elemental distributions in biological cells
Martin, Rodger C [Powell, TN; Martin, Madhavi Z [Powell, TN
2007-07-31
Laser-induced breakdown spectroscopy (LIBS) is applied on a microscale for in situ elemental analysis and spatial mapping in biological cells. A high power laser beam is focused onto a cell surface using a dual branching optical fiber probe for optical excitation of the cell constituents. Dual spectrometers and ICCD detectors capture the emission spectra from the excited cell(s). Repeated probing or repositioning of the laser beam with respect to the cell can provide 2-D or 3-D mapping of the cell.
Dual ion beam processed diamondlike films for industrial applications
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Kussmaul, M. T.; Banks, B. A.; Sovey, J. S.
1991-01-01
Single and dual beam ion source systems are used to generate amorphous diamondlike carbon (DLC) films, which were evaluated for a variety of applications including protective coatings on transmitting materials, power electronics as insulated gates and corrosion resistant barriers. A list of the desirable properties of DLC films along with potential applications are presented.
Reconfigurable dual-band metamaterial antenna based on liquid crystals
NASA Astrophysics Data System (ADS)
Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Wu, Qun
2018-05-01
In this paper, a novel reconfigurable dual-band metamaterial antenna with a continuous beam that is electrically steered in backward to forward directions is first proposed by employing a liquid crystal (LC)-loaded tunable extended composite right-/left-handed (E-CRLH) transmission line (TL). The frequency-dependent property of the E-CRLH TL is analyzed and a compact unit cell based on the nematic LC is proposed to realize the tunable dual band characteristics. The phase constant of the proposed unit cell can be dynamically continuously tuned from negative to positive values in two operating bands by changing the bias voltage of the loaded LC material. A resulting dual band fixed-frequency beam steering property has been predicted by numerical simulations and experimentally verified. The measured results show that the fabricated reconfigurable antenna features an electrically controlled continuous beam steering from backward ‑16° to forward +13° at 7.2 GHz and backward ‑9° to forward +17° at 9.4 GHz, respectively. This electrically controlled beam steering range turns out to be competitive with the previously reported single band reconfigurable antennas. Besides, the measured and simulated results of the proposed reconfigurable dual-band metamaterial antenna are in good agreement.
Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, Dino; Oddershede, Lene B., E-mail: oddershede@nbi.dk; Reihani, S. Nader S.
2014-05-15
In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of themore » trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts.« less
Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source
Chandler, David W; Strecker, Kevin E
2014-04-01
In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.
A Conceptual Design of Omni-Directional Receiving Dual-Beam Laser Engine
NASA Astrophysics Data System (ADS)
Tang, Zhiping; Zhang, Qinghong
2010-05-01
The laser engine design is one of the key issues for laser propulsion technology. A concept of Omni-Directional Receiving Dual-Beam Laser Engine (ODLE) together with its configuration design is proposed in this paper. The ODLE is noted for its features as follows: First, the optical system is completely separated from the thrust system, the incident laser beams are reflected into the thrust chamber by the optics only twice, so the beam energy loss is small. Second, the optical system can be adjusted in all direction to track the incident laser beams, ensuring its wide applications in various kinds of launching trajectories. Third, the adoption of the dual-beam single-or double-engine configuration can reduce 50% of the power requirement for each laser, and a smooth laser relay can be carried out if needed during the launching process. The paper has proposed 2 launch plans into the LEO with the ODLE: the plane trajectory and the conic spiral trajectory. The simulated results indicate that the transmission distance of laser beams for the conic spiral trajectory is far less than that of the plane trajectory. As a result, it can reduce significantly the divergence and energy loss of laser beams, and is also of advantage for the measurement and control operation during the launch process.
Comparison of VMAT and IMRT strategies for cervical cancer patients using automated planning.
Sharfo, Abdul Wahab M; Voet, Peter W J; Breedveld, Sebastiaan; Mens, Jan Willem M; Hoogeman, Mischa S; Heijmen, Ben J M
2015-03-01
In a published study on cervical cancer, 5-beam IMRT was inferior to single arc VMAT. Here we compare 9, 12, and 20 beam IMRT with single and dual arc VMAT. For each of 10 patients, automated plan generation with the in-house Erasmus-iCycle optimizer was used to assist an expert planner in generating the five plans with the clinical TPS. For each patient, all plans were clinically acceptable with a high and similar PTV coverage. OAR sparing increased when going from 9 to 12 to 20 IMRT beams, and from single to dual arc VMAT. For all patients, 12 and 20 beam IMRT were superior to single and dual arc VMAT, with substantial variations in gain among the study patients. As expected, delivery of VMAT plans was significantly faster than delivery of IMRT plans. Often reported increased plan quality for VMAT compared to IMRT has not been observed for cervical cancer. Twenty and 12 beam IMRT plans had a higher quality than single and dual arc VMAT. For individual patients, the optimal delivery technique depends on a complex trade-off between plan quality and treatment time that may change with introduction of faster delivery systems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Naqwi, Amir A.; Durst, Franz
1993-07-01
Dual-beam laser measuring techniques are now being used, not only for velocimetry, but also for simultaneous measurements of particle size and velocity in particulate two-phase flows. However, certain details of these optical techniques, such as the effect of Gaussian beam profiles on the accuracy of the measurements, need to be further explored. To implement innovative improvements, a general analytic framework is needed in which performances of various dual-beam instruments could be quantitatively studied and compared. For this purpose, the analysis of light scattering in a generalized dual-wave system is presented in this paper. The present simulation model provides a basis for studying effects of nonplanar beam structures of incident waves, taking into account arbitrary modes of polarization. A polarizer is included in the receiving optics as well. The peculiar aspects of numerical integration of scattered light over circular, rectangular, and truncated circular apertures are also considered.
NASA Astrophysics Data System (ADS)
Mongeon, R. J.
1984-11-01
The beam of a laser radar is moved over the field of view by means of a pair of scanner/trackers arranged in cascade along the laser beam. One of the scanner/trackers operates at high speed, with high resolution and a wide field and is located in the demagnified portion of the laser beam. The two scanner/trackers complement each other to achieve high speed, high resolution scanning as well as tracking of moving targets. A beam steering telescope for an airborne laser radar which incorporates the novel dual mode scanner/tracker is also shown. The other scanner/tracker operates at low speed with low resolution and a wide field and is located in the magnified portion of the laser beam.
Multiple scattering theory for total skin electron beam design.
Antolak, J A; Hogstrom, K R
1998-06-01
The purpose of this manuscript is to describe a method for designing a broad beam of electrons suitable for total skin electron irradiation (TSEI). A theoretical model of a TSEI beam from a linear accelerator with a dual scattering system has been developed. The model uses Fermi-Eyges theory to predict the planar fluence of the electron beam after it has passed through various materials between the source and the treatment plane, which includes scattering foils, monitor chamber, air, and a plastic diffusing plate. Unique to this model is its accounting for removal of the tails of the electron beam profile as it passes through the primary x-ray jaws. A method for calculating the planar fluence profile for an obliquely incident beam is also described. Off-axis beam profiles and percentage depth doses are measured with ion chambers, film, and thermoluminescent dosimeters (TLD). The measured data show that the theoretical model can accurately predict beam energy and planar fluence of the electron beam at normal and oblique incidence. The agreement at oblique angles is not quite as good but is sufficiently accurate to be of predictive value when deciding on the optimal angles for the clinical TSEI beams. The advantage of our calculational approach for designing a TSEI beam is that many different beam configurations can be tested without having to perform time-consuming measurements. Suboptimal configurations can be quickly dismissed, and the predicted optimal solution should be very close to satisfying the clinical specifications.
NASA Astrophysics Data System (ADS)
Allen, Mark G.; Carleton, Karen L.; Davis, Steven J.; Kessler, William J.; Otis, Charles E.; Palombo, Daniel A.; Sonnenfroh, David M.
1995-06-01
A dual-beam detection strategy with automatic balancing is described for ultrasensitive spectroscopy. Absorbances of 2 \\times 10-7 Hz-1/2 in free-space configurations and 5 \\times 10-6 Hz -1/2 in fiber-coupled configurations are demonstrated. With the dual-beam technique, atmospherically broadened absorption transitions may be resolved with InGaAsP, AlGaAs, and AlGaInP single-longitudinal-mode diode lasers. Applications to trace measurements of NO2 , O2, and H2O are described by the use of simple, inexpensive laser and detector systems. Small signal gain measurements on optically pumped I2 with a sensitivity of 10-5 are also reported.
Amako, Jun; Shinozaki, Yu
2016-07-11
We report on a dual-wavelength diffractive beam splitter designed for use in parallel laser processing. This novel optical element generates two beam arrays of different wavelengths and allows their overlap at the process points on a workpiece. To design the deep surface-relief profile of a splitter using a simulated annealing algorithm, we introduce a heuristic but practical scheme to determine the maximum depth and the number of quantization levels. The designed corrugations were fabricated in a photoresist by maskless grayscale exposure using a high-resolution spatial light modulator. We characterized the photoresist splitter, thereby validating the proposed beam-splitting concept.
Dual-domain point diffraction interferometer
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2000-01-01
A hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI is provided. The dual-domain PS/PDI combines the separate noise-suppression capabilities of the widely-used phase-shifting and Fourier-transform fringe pattern analysis methods. The dual-domain PS/PDI relies on both a more restrictive implementation of the image plane PS/PDI mask and a new analysis method to be applied to the interferograms generated and recorded by the modified PS/PDI. The more restrictive PS/PDI mask guarantees the elimination of spatial-frequency crosstalk between the signal and the scattered-light noise arising from scattered-reference-light interfering with the test beam. The new dual-domain analysis method is then used to eliminate scattered-light noise arising from both the scattered-reference-light interfering with the test beam and the scattered-reference-light interfering with the "true" pinhole-diffracted reference light. The dual-domain analysis method has also been demonstrated to provide performance enhancement when using the non-optimized standard PS/PDI design. The dual-domain PS/PDI is essentially a three-tiered filtering system composed of lowpass spatial-filtering the test-beam electric field using the more restrictive PS/PDI mask, bandpass spatial-filtering the individual interferogram irradiance frames making up the phase-shifting series, and bandpass temporal-filtering the phase-shifting series as a whole.
Dual-function beam splitter of a subwavelength fused-silica grating.
Feng, Jijun; Zhou, Changhe; Zheng, Jiangjun; Cao, Hongchao; Lv, Peng
2009-05-10
We present the design and fabrication of a novel dual-function subwavelength fused-silica grating that can be used as a polarization-selective beam splitter. For TM polarization, the grating can be used as a two-port beam splitter at a wavelength of 1550 nm with a total diffraction efficiency of 98%. For TE polarization, the grating can function as a high-efficiency grating, and the diffraction efficiency of the -1st order is 95% under Littrow mounting. This dual-function grating design is based on a simplified modal method. By using the rigorous coupled-wave analysis, the optimum grating parameters can be determined. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in agreement with the theoretical values.
Real-time simulator for designing electron dual scattering foil systems.
Carver, Robert L; Hogstrom, Kenneth R; Price, Michael J; LeBlanc, Justin D; Pitcher, Garrett M
2014-11-08
The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system parameters have on a relative dose profile. This work also demonstrates a method for using the simulator as a design tool for creating custom dual scattering foil systems in the clinical range of beam energies (6-20 MeV).
Tang, Shiwei; Cai, Tong; Wang, Guang-Ming; Liang, Jian-Gang; Li, Xike; Yu, Jiancheng
2018-04-23
Vortex beam is believed to be an effective way to extend communication capacity, but available efforts suffer from the issues of complex configurations, fixed operation mode as well as low efficiency. Here, we propose a general strategy to design dual-modes vortex beam generator by using metasurfaces with polarization-dependent transmission and reflection properties. Combining the focusing and vortex functionalities, we design/fabricate a type of compact dual-modes vortex beam generator operating at both reflection/transmission sides of the system. Experimental results demonstrate that the designed metadevice can switch freely and independently between the reflective vortex with topological charge m 1 = 2 and transmissive vortex with m 2 = 1. Moreover, the metadevice exhibits very high efficiencies of 91% and 85% for the reflective and transmissive case respectively. Our findings open a door for multifunctional metadevices with high performances, which indicate wide applications in modern integration-optics and wireless communication systems.
Dual-view-zone tabletop 3D display system based on integral imaging.
He, Min-Yang; Zhang, Han-Le; Deng, Huan; Li, Xiao-Wei; Li, Da-Hai; Wang, Qiong-Hua
2018-02-01
In this paper, we propose a dual-view-zone tabletop 3D display system based on integral imaging by using a multiplexed holographic optical element (MHOE) that has the optical properties of two sets of microlens arrays. The MHOE is recorded by a reference beam using the single-exposure method. The reference beam records the wavefronts of a microlens array from two different directions. Thus, when the display beam is projected on the MHOE, two wavefronts with the different directions will be rebuilt and the 3D virtual images can be reconstructed in two viewing zones. The MHOE has angle and wavelength selectivity. Under the conditions of the matched wavelength and the angle of the display beam, the diffraction efficiency of the MHOE is greatest. Because the unmatched light just passes through the MHOE, the MHOE has the advantage of a see-through display. The experimental results confirm the feasibility of the dual-view-zone tabletop 3D display system.
NASA Astrophysics Data System (ADS)
Zhang, Jing-Yi; Ming, Min; Jiang, Yuan-Ze; Duan, Hui-Zong; Yeh, Hsien-Chi
2018-06-01
Laser link acquisition is a key technology for inter-satellite laser ranging and laser communication. In this paper, we present an acquisition scheme based on the differential power sensing method with dual-way scanning, which will be used in the next-generation gravity measurement mission proposed in China, called Space Advanced Gravity Measurements (SAGM). In this scheme, the laser beams emitted from two satellites are power-modulated at different frequencies to enable the signals of the two beams to be measured distinguishably, and their corresponding pointing angles are determined by using the differential power sensing method. As the master laser beam and the slave laser beam are decoupled, the dual-way scanning method, in which the laser beams of both the master and the slave satellites scan uncertainty cones simultaneously and independently, can be used, instead of the commonly used single-way scanning method, in which the laser beam of one satellite scans and that of the other one stares. Therefore, the acquisition time is reduced significantly. Numerical simulation and experiments of the acquisition process are performed using the design parameters of the SAGM mission. The results show that the average acquisition time is less than 10 s for a scanning range of 1-mrad radius with a success rate of more than 99%.
Scanning wind-vector scatterometers with two pencil beams
NASA Technical Reports Server (NTRS)
Kirimoto, T.; Moore, R. K.
1984-01-01
A scanning pencil-beam scatterometer for ocean windvector determination has potential advantages over the fan-beam systems used and proposed heretofore. The pencil beam permits use of lower transmitter power, and at the same time allows concurrent use of the reflector by a radiometer to correct for atmospheric attenuation and other radiometers for other purposes. The use of dual beams based on the same scanning reflector permits four looks at each cell on the surface, thereby improving accuracy and allowing alias removal. Simulation results for a spaceborne dual-beam scanning scatterometer with a 1-watt radiated power at an orbital altitude of 900 km is described. Two novel algorithms for removing the aliases in the windvector are described, in addition to an adaptation of the conventional maximum likelihood algorithm. The new algorithms are more effective at alias removal than the conventional one. Measurement errors for the wind speed, assuming perfect alias removal, were found to be less than 10%.
Multi-Point Interferometric Rayleigh Scattering using Dual-Pass Light Recirculation
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Cutler, Andrew D.
2008-01-01
This paper describes for the first time an interferometric Rayleigh scattering system using dual-pass light recirculation (IRS-LR) capable of simultaneously measuring at multiple points two orthogonal components of flow velocity in combustion flows using single shot laser probing. An additional optical path containing the interferometer input mirror, a quarter-wave plate, a polarization dependent beam combiner, and a high reflectivity mirror partially recirculates the light that is rejected by the interferometer. Temporally- and spatially-resolved acquisitions of Rayleigh spectra in a large-scale combustion-heated supersonic axi-symmetric jet were performed to demonstrate the technique. Recirculating of Rayleigh scattered light increases the number of photons analyzed by the system up to a factor of 1.8 compared with previous configurations. This is equivalent to performing measurements with less laser energy or performing measurements with the previous system in gas flows at higher temperatures.
Dual energy approach for cone beam artifacts correction
NASA Astrophysics Data System (ADS)
Han, Chulhee; Choi, Shinkook; Lee, Changwoo; Baek, Jongduk
2017-03-01
Cone beam computed tomography systems generate 3D volumetric images, which provide further morphological information compared to radiography and tomosynthesis systems. However, reconstructed images by FDK algorithm contain cone beam artifacts when a cone angle is large. To reduce the cone beam artifacts, two-pass algorithm has been proposed. The two-pass algorithm considers the cone beam artifacts are mainly caused by high density materials, and proposes an effective method to estimate error images (i.e., cone beam artifacts images) by the high density materials. While this approach is simple and effective with a small cone angle (i.e., 5 - 7 degree), the correction performance is degraded as the cone angle increases. In this work, we propose a new method to reduce the cone beam artifacts using a dual energy technique. The basic idea of the proposed method is to estimate the error images generated by the high density materials more reliably. To do this, projection data of the high density materials are extracted from dual energy CT projection data using a material decomposition technique, and then reconstructed by iterative reconstruction using total-variation regularization. The reconstructed high density materials are used to estimate the error images from the original FDK images. The performance of the proposed method is compared with the two-pass algorithm using root mean square errors. The results show that the proposed method reduces the cone beam artifacts more effectively, especially with a large cone angle.
Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap.
Solmaz, Mehmet E; Biswas, Roshni; Sankhagowit, Shalene; Thompson, James R; Mejia, Camilo A; Malmstadt, Noah; Povinelli, Michelle L
2012-10-01
We have integrated a dual-beam optical trap into a microfluidic platform and used it to study membrane mechanics in giant unilamellar vesicles (GUVs). We demonstrate the trapping and stretching of GUVs and characterize the membrane response to a step stress. We then measure area strain as a function of applied stress to extract the bending modulus of the lipid bilayer in the low-tension regime.
Otsuka, Kenju; Chu, Shu-Chun
2013-05-01
We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.
Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation
NASA Astrophysics Data System (ADS)
Bourgeois, E.; Londero, E.; Buczak, K.; Hruby, J.; Gulka, M.; Balasubramaniam, Y.; Wachter, G.; Stursa, J.; Dobes, K.; Aumayr, F.; Trupke, M.; Gali, A.; Nesladek, M.
2017-01-01
The core issue for the implementation of NV center qubit technology is a sensitive readout of the NV spin state. We present here a detailed theoretical and experimental study of NV center photoionization processes, used as a basis for the design of a dual-beam photoelectric method for the detection of NV magnetic resonances (PDMR). This scheme, based on NV one-photon ionization, is significantly more efficient than the previously reported single-beam excitation scheme. We demonstrate this technique on small ensembles of ˜10 shallow NVs implanted in electronic grade diamond (a relevant material for quantum technology), on which we achieve a cw magnetic resonance contrast of 9%—three times enhanced compared to previous work. The dual-beam PDMR scheme allows independent control of the photoionization rate and spin magnetic resonance contrast. Under a similar excitation, we obtain a significantly higher photocurrent, and thus an improved signal-to-noise ratio, compared to single-beam PDMR. Finally, this scheme is predicted to enhance magnetic resonance contrast in the case of samples with a high proportion of substitutional nitrogen defects, and could therefore enable the photoelectric readout of single NV spins.
Theoretical study of a dual harmonic system and its application to the CSNS/RCS
NASA Astrophysics Data System (ADS)
Yuan, Yao-Shuo; Wang, Na; Xu, Shou-Yan; Yuan, Yue; Wang, Sheng
2015-12-01
Dual harmonic systems have been widely used in high intensity proton synchrotrons to suppress the space charge effect, as well as reduce the beam loss. To investigate the longitudinal beam dynamics in a dual rf system, the potential well, the sub-buckets in the bunch and the multi-solutions of the phase equation are studied theoretically in this paper. Based on these theoretical studies, optimization of bunching factor and rf voltage waveform are made for the dual harmonic rf system in the upgrade phase of the China Spallation Neutron Source Rapid Cycling Synchrotron (CSNS/RCS). In the optimization process, the simulation with space charge effect is done using a newly developed code, C-SCSIM. Supported by National Natural Science Foundation of China (11175193)
Kloepper, Laura N; Nachtigall, Paul E; Quintos, Christopher; Vlachos, Stephanie A
2012-01-01
Recent studies indicate some odontocetes may produce echolocation beams with a dual-lobed vertical structure. The shape of the odontocete echolocation beam was further investigated in a false killer whale performing an echolocation discrimination task. Clicks were recorded with an array of 16 hydrophones and frequency-dependent amplitude plots were constructed to assess beam shape. The majority of the echolocation clicks were single-lobed in structure with most energy located between 20 and 80 kHz. These data indicate the false killer whale does not produce a dual-lobed structure, as has been shown in bottlenose dolphins, which may be a function of lowered frequencies in the emitted signal due to hearing loss. © 2012 Acoustical Society of America.
NASA Astrophysics Data System (ADS)
Stolov, Andrei A.; Warych, Edward T.; Smith, William P.; Fournier, Paula L.; Hokansson, Adam S.; Li, Jie; Allen, R. Steve
2014-02-01
Optical fibers and terminations were subjected to different sterilization techniques, including multiple autoclaving and treatments with peracetic acid, E-beam and UV radiation. Effects of different sterilization techniques on key optical and mechanical properties of the fibers and the terminations were revealed. The primary attention was given to behavior of the coatings on the fibers and adhesives used in the terminations in harsh sterilization environments. The optical fibers with following four coating/buffer types were investigated: (i) dual acrylate, (ii) polyimide, (iii) silicone/PEEK and (iv) fluoroacrylate hard cladding/ETFE.
1991-12-31
AD-A252 218 The Deposition of Multicomponent Films for Electrooptic Applications via a Computer Controlled Dual Ion Beam Sputtering System ONR...6 3 2. Deposition of Electrooptic Thin Films ................................... 11 3. High Resolution Imaging of Twin and Antiphase...Domain Boundaries in Perovskite KNbO3 Thin Films .......... 30 4. Microstructural Characterization of the Epitaxial3 (111) KNbO3 on (0001) Sapphire
Optical levitation particle delivery system for a dual beam fiber optic trap.
Gauthier, R C; Frangioudakis, A
2000-01-01
We combine a radiation-pressure-based levitation system with a dual fiber, laser trapping system to demonstrate the potential of delivering single particles into the fiber trap. The forces versus position and the trajectory of the particle subjected to the laser beams are examined with an enhanced ray optics model. A sequence of video images taken from the experimental apparatus demonstrates the principle of particle delivery, trapping, and further manipulation.
Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap
Solmaz, Mehmet E.; Biswas, Roshni; Sankhagowit, Shalene; Thompson, James R.; Mejia, Camilo A.; Malmstadt, Noah; Povinelli, Michelle L.
2012-01-01
We have integrated a dual-beam optical trap into a microfluidic platform and used it to study membrane mechanics in giant unilamellar vesicles (GUVs). We demonstrate the trapping and stretching of GUVs and characterize the membrane response to a step stress. We then measure area strain as a function of applied stress to extract the bending modulus of the lipid bilayer in the low-tension regime. PMID:23082284
Elastic and inelastic scattering of 134Xe beams on C2D4 targets measured with GODDESS
NASA Astrophysics Data System (ADS)
Sims, Harrison; Cizewski, Jolie; Lapailleur, Alex; Garland, Heather; Xination, Dai; Pain, Steven; Hall, Matthew; Goddess Collaboration
2017-09-01
The GODDESS (Gammasphere-ORRUBA: Dual Detector for Experimental Structure Studies) coupling of the ORRUBA charged-particle array with Gammasphere is designed to enable high-resolution particle-gamma measurements in inverse kinematics with radioactive beams. The high resolution and coverage of GODDESS allows for multiple reaction channels to be studied simultaneously. For the stable-beam commissioning of GODDESS, the 134Xe(d,p γ)135Xe reaction was measured using a beam of 134Xe at 8 MeV/A, delivered by the ATLAS facility at Argonne National Laboratory. The beam impinged on an 800 μg/cm2 C2D4 target, and charged particles were detected in the GODDESS silicon array between 15 and 165 degrees. Coincident gamma rays were measured with Gammasphere, with 10 % efficiency at 1.3 MeV. In the detectors downstream of the target, elastically- and inelastically-scattered target ions (deuterium and carbon) were detected, populating the ground and low-lying excited states in 134Xe. An overview of GODDESS will be presented, along with the analysis of the downstream data, including the differential scattering cross sections and population of collective states in 134Xe. Work supported in part by the U.S. D.O.E. and National Science Foundation.
Dual behavior of caustic optical beams facing obstacles
NASA Astrophysics Data System (ADS)
Vaveliuk, Pablo; Martínez-Matos, Óscar; Ren, Yu-Xuan; Lu, Rong-De
2017-06-01
A full propagation analysis on both fold-type and cusp-type caustic optical beams under various setups of obstructions is theoretically and experimentally performed. It is demonstrated that the self-healing property of caustic optical beams that include the famous Airy beam is a quite relative property. In fact, fold-type and cusp-type beams cannot only behave as self-healing beams by blocking the main intensity peak, but also behave as self-breaking ones in a nonintuitive manner: by blocking a lateral side of the beam without touching the central intensity peak. The regeneration and rupture processes of caustic beams follow a nonlocal propagation dynamic unlike the other conventional beams. Moreover, deep differences between fold and cusp caustic beams are pointed out once facing certain obstructions. The cusp-caustic beam can be broken down by the obstacle placed in a dark zone outside the caustic region, while the fold-type one remains unaltered. This beam rupture confirms the key role of a hidden propagating field in the shadow region for cusp beams that coexist with the evanescent one. The obtained results cast down the established idea that the Airy beam is a robust self-healing beam since any caustic beam can behave in a dual manner depending on the obstruction location. These facts open up different perspectives for the applications in which the self-healing properties of the beam are relevant.
NASA Technical Reports Server (NTRS)
Ramins, P.; Fox, T. A.
1980-01-01
An axisymmetric, multistage, depressed collector of fixed geometric design was evaluated in conjunction with an octave bandwidth, dual mode traveling wave tube (TWT). The TWT was operated over a wide range of conditions to simulate different applications. The collector performance was optimized (within the constraint of fixed geometric design) over the range of TWT operating conditions covered. For operation of the TWT in the linear, low distortion range, 90 percent and greater collector efficiencies were obtained leading to TWT overall efficiencies of 20 to 35 percent, as compared with 2 to 5 percent with an undepressed collector. With collectors of this efficiency and minimized beam interception losses, it becomes practical to design dual mode TWT's such that the low mode can represent operation well below saturation. Consequently, the required pulse up in beam current can be reduced or eliminated, and this mitigates beam control and dual mode TWT circuit design problems. For operation of the dual mode TWT at saturation, average collector efficiencies in excess of 85 percent were obtained for both the low and high modes across an octave bandwidth, leading to a three to fourfold increase in the TWT overall efficiency.
Holographic leaky-wave metasurfaces for dual-sensor imaging.
Li, Yun Bo; Li, Lian Lin; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun
2015-12-10
Metasurfaces have huge potentials to develop new type imaging systems due to their abilities of controlling electromagnetic waves. Here, we propose a new method for dual-sensor imaging based on cross-like holographic leaky-wave metasurfaces which are composed of hybrid isotropic and anisotropic surface impedance textures. The holographic leaky-wave radiations are generated by special impedance modulations of surface waves excited by the sensor ports. For one independent sensor, the main leaky-wave radiation beam can be scanned by frequency in one-dimensional space, while the frequency scanning in the orthogonal spatial dimension is accomplished by the other sensor. Thus, for a probed object, the imaging plane can be illuminated adequately to obtain the two-dimensional backward scattered fields by the dual-sensor for reconstructing the object. The relativity of beams under different frequencies is very low due to the frequency-scanning beam performance rather than the random beam radiations operated by frequency, and the multi-illuminations with low relativity are very appropriate for multi-mode imaging method with high resolution and anti- noise. Good reconstruction results are given to validate the proposed imaging method.
NASA Astrophysics Data System (ADS)
Shanmugharaj, A. M.; Bhowmick, Anil K.
2004-01-01
The rheological properties of styrene-butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s -1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayler, E; Charpentier, P; Micaily, B
2015-06-15
Purpose The purpose of this work is to publish beam data from Elekta Synergy(R) linear accelerators with Agility(TM) MLC for total skin electron beam (TSEB) therapy using the HDRE1 (High Dose Rate Electron 6MeV) energy. Method & Materials The optimal gantry angles for TSEB were determined using ion chamber measurements along a vertical profile at 450cm SSD. After gantry angles were chosen, field uniformity was measured over the entire treatment area. Uniformity was measured with and without the patient support device, allowing the dosimetric effect of the support device to be determined. Beam output and PDD were measured at themore » calibration point (450cm SSD) for a dual beam using a parallel plate chamber in solid water. These measurements were repeated with the chamber and phantom rotated about the patient isocenter at various angles, in order to measure the contribution from oblique beams. This technique provides a precise measurement of the treatment skin dose (TSD). Lastly, ion chamber measurements were verified by film and diodes. Results The optimal gantry angle for 450 cm SSD was determined to be 90±16°. This achieved uniformity better than 96% on the vertical axis, and 92% along the horizontal axis. HDRE1 was calibrated to deliver 10 cGy/MU at standard geometry (100 cm SSD, 1.2 cm depth). Thus at TSEB geometry (450 cm SSD, 0.1 cm depth) the output of the AP dual field was measured to be 0.35 cGy/MU. The TSD of a 20 cm radius cylinder for six (equally, 60° spaced) dual fields was measured to be 1.19 cGy/MU. Percent Depth Dose data for the AP dual field and TSD are shown in Figure 2. Conclusion This paper provides a modern procedure for commissioning TSEB therapy on a linear accelerator, and clinical beam data for the Elekta Synergy(R) with Agility(TM) MLC.« less
Advanced microwave radiometer antenna system study
NASA Technical Reports Server (NTRS)
Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.
1976-01-01
The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.
Two-dimensional frequency scanning from a metasurface-based Fabry–Pérot resonant cavity
NASA Astrophysics Data System (ADS)
Yang, Pei; Yang, Rui
2018-06-01
A spatial angular filtering metasurface is introduced into a Fabry–Pérot (FP) resonant cavity design for the frequency scanning performance in this paper. More specifically, asymmetrical unit cells printed on the metasurface enable the radiation energy to move in different directions as the frequency changes, and the released emissions, meanwhile, are split into dual-beams from the initial pencil beam. We continue to implement a patch array to provide excitation with the aim of achieving scanned beams in another dimension, and the proposed design ultimately demonstrates a two-dimensional dual-beam scanning performance with 42° and 9° scanning angles respectively in two dimensions of the coordinate system over a frequency range from 10.50 GHz–11.25 GHz. The proposed technique, by integrating a spatial angular filtering metasurface with a patch array feed to generate steerable beams, should offer an efficient way to fulfill FP resonant cavities with reconfigurable radiation.
Dual laser optical system and method for studying fluid flow
NASA Technical Reports Server (NTRS)
Owen, R. B.; Witherow, W. K. (Inventor)
1983-01-01
A dual laser optical system and method is disclosed for visualization of phenomena in transport substances which induce refractive index gradients such as fluid flow and pressure and temperature gradients in fluids and gases. Two images representing mutually perpendicular components of refractive index gradients may be viewed simultaneously on screen. Two lasers having wave lengths in the visible range but separated by about 1000 angstroms are utilized to provide beams which are collimated into a beam containing components of the different wave lengths. The collimated beam is passed through a test volume of the transparent substance. The collimated beam is then separated into components of the different wave lengths and focused onto a pair of knife edges arranged mutually perpendicular to produce and project images onto the screen.
Measurement of ultrasonic fields in transparent media using a scanning differential interferometer
NASA Technical Reports Server (NTRS)
Dockery, G. D.; Claus, R. O.
1983-01-01
An experimental system for the detection of three dimensional acoustic fields in optically transparent media using a dual beam differential interferometer is described. In this system, two coherent, parallel, focused laser beams are passed through the specimen and the interference fringe pattern which results when these beams are combined shifts linearly by an amount which is related to the optical pathlength difference between the two beams. It is shown that for small signals, the detector output is directly proportional to the amplitude of the acoustic field integrated along the optical beam path through the specimen. A water tank and motorized optical platform were constructed to allow these dual beams to be scanned through an ultrasonic field generated by a piezoelectric transducer at various distances from the transducer. Scan data for the near, Fresnel, and far zones of a uniform, circular transducer are presented and an algorithm for constructing the radial field profile from this integrated optical data, assuming cylindrical symmetry, is described.
Transverse beam motion on the second axis of the dual axis radiographic hydrodynamic test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caporaso, G J; Chen, Y J; Fawley, W M
1999-03-23
The accelerator on the second-axis of the Dual-Axis Radiographic Hydrodynamic Test (DARHT-II) facility will generate a 20 MeV, 2-4 kA, 2 µs long electron beam with an energy variation {<=} ± 0.5%. Four short current pulses with various lengths will be selected out of this 2 µs long current pulse and delivered to an x-ray converter target. The DARHT-II radiographic resolution requires these electron pulses to be focused to sub-millimeter spots on Bremsstrahlung targets with peak-to-peak transverse beam motion less than a few hundred microns. We have modeled the transverse beam motion, including the beam breakup instability, corkscrew motion, transversemore » resistive wall instability and beam induced transverse deflection in the kicker system, from the DARHT-II injector exit to the x-ray converter target. Simulations show that the transverse motion at the x-ray converters satisfies the DARHT-II radiographic requirements.« less
NASA Astrophysics Data System (ADS)
Zink, Frank Edward
The detection and classification of pulmonary nodules is of great interest in chest radiography. Nodules are often indicative of primary cancer, and their detection is particularly important in asymptomatic patients. The ability to classify nodules as calcified or non-calcified is important because calcification is a positive indicator that the nodule is benign. Dual-energy methods offer the potential to improve both the detection and classification of nodules by allowing the formation of material-selective images. Tissue-selective images can improve detection by virtue of the elimination of obscuring rib structure. Bone -selective images are essentially calcium images, allowing classification of the nodule. A dual-energy technique is introduced which uses a computed radiography system to acquire dual-energy chest radiographs in a single-exposure. All aspects of the dual-energy technique are described, with particular emphasis on scatter-correction, beam-hardening correction, and noise-reduction algorithms. The adaptive noise-reduction algorithm employed improves material-selective signal-to-noise ratio by up to a factor of seven with minimal sacrifice in selectivity. A clinical comparison study is described, undertaken to compare the dual-energy technique to conventional chest radiography for the tasks of nodule detection and classification. Observer performance data were collected using the Free Response Observer Characteristic (FROC) method and the bi-normal Alternative FROC (AFROC) performance model. Results of the comparison study, analyzed using two common multiple observer statistical models, showed that the dual-energy technique was superior to conventional chest radiography for detection of nodules at a statistically significant level (p < .05). Discussion of the comparison study emphasizes the unique combination of data collection and analysis techniques employed, as well as the limitations of comparison techniques in the larger context of technology assessment.
SU-F-I-06: Evaluation of Imaging Dose for Modulation Layer Based Dual Energy Cone-Beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Eunbin; Ahn, SoHyun; Cho, Samju
Purpose: Dual energy cone beam CT system is finding a variety of promising applications in diagnostic CT, both in imaging of endogenous materials and exogenous materials across a range of body sites. Dual energy cone beam CT system to suggest in this study acquire image by rotating 360 degree with half of the X-ray window covered using copper modulation layer. In the region that covered by modulation layer absorb the low energy X-ray by modulation layer. Relative high energy X-ray passes through the layer and contributes to image reconstruction. Dose evaluation should be carried out in order to utilize suchmore » an imaging acquirement technology for clinical use. Methods: For evaluating imaging dose of modulation layer based dual energy cone beam CT system, Prototype cone beam CT that configured X-ray tube (D054SB, Toshiba, Japan) and detector (PaxScan 2520V, Varian Medical Systems, Palo Alto, CA) is used. A range of 0.5–2.0 mm thickness of modulation layer is implemented in Monte Carlo simulation (MCNPX, ver. 2.6.0, Los Alamos National Laboratory, USA) with half of X-ray window covered. In-house phantom using in this study that has 3 cylindrical phantoms configured water, Teflon air with PMMA covered for verifying the comparability the various material in human body and is implemented in Monte Carlo simulation. The actual dose with 2.0 mm copper covered half of X-ray window is measured using Gafchromic EBT3 film with 5.0 mm bolus for compared with simulative dose. Results: Dose in phantom reduced 33% by copper modulation layer of 2.0 mm. Scattering dose occurred in modulation layer by Compton scattering effect is 0.04% of overall dose. Conclusion: Modulation layer of that based dual energy cone beam CT has not influence on unnecessary scatter dose. This study was supported by the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission.« less
Preliminary experimental investigation of a complex dual-band high power microwave source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Li, Yangmei; Li, Zhiqiang
2015-10-15
In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by themore » dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.« less
Preliminary experimental investigation of a complex dual-band high power microwave source.
Zhang, Xiaoping; Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang
2015-10-01
In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.
Theoretical model of an optothermal microactuator directly driven by laser beams
NASA Astrophysics Data System (ADS)
Han, Xu; Zhang, Haijun; Xu, Rui; Wang, Shuying; Qin, Chun
2015-07-01
This paper proposes a novel method of optothermal microactuation based on single and dual laser beams (spots). The theoretical model of the optothermal temperature distribution of an expansion arm is established and simulated, indicating that the maximum temperature of the arm irradiated by dual laser spots, at the same laser power level, is much lower than that irradiated by one single spot, and thus the risk of burning out and damaging the optothermal microactuator (OTMA) can be effectively avoided. To verify the presented method, a 750 μm long OTMA with a 100 μm wide expansion arm is designed and microfabricated, and single/dual laser beams with a wavelength of 650 nm are adopted to carry out experiments. The experimental results showed that the optothermal deflection of the OTMA under the irradiation of dual laser spots is larger than that under the irradiation of a single spot with the same power, which is in accordance with theoretical prediction. This method of optothermal microactuation may expand the practical applications of microactuators, which serve as critical units in micromechanical devices and micro-opto-electro-mechanical systems (MOEMS).
NASA Technical Reports Server (NTRS)
Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.
1993-01-01
Amorphous diamond-like carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance, frictional, and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.
NASA Technical Reports Server (NTRS)
Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.
1993-01-01
Amorphous diamondlike carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance and frictional and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.
Suspended liquid particle disturbance on laser-induced blast wave and low density distribution
NASA Astrophysics Data System (ADS)
Ukai, Takahiro; Zare-Behtash, Hossein; Kontis, Konstantinos
2017-12-01
The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Aichao; Li, Ping, E-mail: liping@cqu.edu.cn; Wen, Yumei
2014-06-15
A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density atmore » 170–206 Hz.« less
Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap
NASA Astrophysics Data System (ADS)
Fu, Zhenhai; She, Xuan; Li, Nan; Hu, Huizhu
2018-06-01
The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse laser beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.
NASA Astrophysics Data System (ADS)
Ma, Guolong; Li, Liqun; Chen, Yanbin
2017-06-01
Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.
A Monochromatic, Aberration-Corrected, Dual-Beam Low Energy Electron Microscope
Mankos, Marian; Shadman, Khashayar
2013-01-01
The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. PMID:23582636
Retrieval of Urban Boundary Layer Structures from Doppler Lidar Data. Part I: Accuracy Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Quanxin; Lin, Ching Long; Calhoun, Ron
2008-01-01
Two coherent Doppler lidars from the US Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City. The dual lidar data are used to evaluate the accuracy of the four-dimensional variational data assimilation (4DVAR) method and identify the coherent flow structures in the urban boundary layer. The objectives of the study are three-fold. The first objective is to examine the effect of eddy viscosity models on the quality of retrieved velocity data. The second objective is to determine the fidelity of single-lidar 4DVAR and evaluatemore » the difference between single- and dual-lidar retrievals. The third objective is to correlate the retrieved flow structures with the ground building data. It is found that the approach of treating eddy viscosity as part of control variables yields better results than the approach of prescribing viscosity. The ARL single-lidar 4DVAR is able to retrieve radial velocity fields with an accuracy of 98% in the along-beam direction and 80-90% in the cross-beam direction. For the dual-lidar 4DVAR, the accuracy of retrieved radial velocity in the ARL cross-beam direction improves to 90-94%. By using the dual-lidar retrieved data as a reference, the single-lidar 4DVAR is able to recover fluctuating velocity fields with 70-80% accuracy in the along-beam direction and 60-70% accuracy in the cross-beam direction. Large-scale convective roll structures are found in the vicinity of downtown airpark and parks. Vortical structures are identified near the business district. Strong updrafts and downdrafts are also found above a cluster of restaurants.« less
Ratcliff, Erin L.; Veneman, P. Alex; Simmonds, Adam; Zacher, Brian; Huebner, Daniel
2010-01-01
We present a simple chip-based refractometer with a central organic light emitting diode (OLED) light source and two opposed organic photovoltaic (OPV) detectors on an internal reflection element (IRE) substrate, creating a true dual-beam sensor platform. For first-generation platforms, we demonstrate the use of a single heterojunction OLED based on electroluminescence emission from an Alq3/TPD heterojunction (tris-(8-hydroxyquinoline)aluminum/N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine) and light detection with planar heterojunction pentacene/C60 OPVs. The sensor utilizes the considerable fraction of emitted light from conventional thin film OLEDs that is coupled into guided modes in the IRE instead of into the forward (display) direction. A ray-optics description is used to describe light throughput and efficiency-limiting factors for light coupling from the OLED into the substrate modes, light traversing through the IRE substrate, and light coupling into the OPV detectors. The arrangement of the OLED at the center of the chip provides for two sensing regions, a “sample” and “reference” channel, with detection of light by independent OPV detectors. This configuration allows for normalization of the sensor response against fluctuations in OLED light output, stability, and local fluctuations (temperature) which might influence sensor response. The dual beam configuration permits significantly enhanced sensitivity to refractive index changes relative to single-beam protocols, and is easily integrated into a field-portable instrumentation package. Changes in refractive index (ΔR.I.) between 10−2 and 10−3 R.I. units could be detected for single channel operation, with sensitivity increased to ΔR.I. ≈ 10−4 units when the dual beam configuration is employed. PMID:20218580
A monochromatic, aberration-corrected, dual-beam low energy electron microscope.
Mankos, Marian; Shadman, Khashayar
2013-07-01
The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tallant, D. R.; Jungst, R. G.
1981-04-01
A dual base diode laser spectrometer was constructed using off axis reflective optics. The spectrometer was amplitude modulated for direct absorption measurements or frequency modulated to obtain derivative spectra. The spectrometer had: high throughput; was easy to operate and align; provided good dual beam compensation; and had no evidence of the interference effects that were observed in diode laser spectrometers using refractive optics. Unpurged, using second derivative techniques, the instrument measured 108 parts per million CO (10/cm absorption cell, atmospheric pressure broadened) with good signal/noise. With the replacement of marginal instrumental components, the signal/noise was substantially increased. This instrument was developed to monitor the evolution of decomposition gases in sealed containers of small volume at atmospheric pressure.
VEGAS: VErsatile GBT Astronomical Spectrometer
NASA Astrophysics Data System (ADS)
Bussa, Srikanth; VEGAS Development Team
2012-01-01
The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.
Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy
NASA Astrophysics Data System (ADS)
Kapsalidis, Filippos; Shahmohammadi, Mehran; Süess, Martin J.; Wolf, Johanna M.; Gini, Emilio; Beck, Mattias; Hundt, Morten; Tuzson, Béla; Emmenegger, Lukas; Faist, Jérôme
2018-06-01
We report on the design, fabrication, and performance of dual-wavelength distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at several wavelengths in the mid-infrared (mid-IR) spectrum. In this work, two new designs are presented: for the first one, called "Neighbour" DFB, two single-mode DFB QCLs are fabricated next to each other, with minimal lateral distance, to allow efficient beam-coupling into multi-pass gas cells. In addition, the minimal distance allows either laser to be used as an integrated heater for the other, allowing to extend the tuning range of its neighbour without any electrical cross-talk. For the second design, the Vernier effect was used to realize a switchable DFB laser, with two target wavelengths which are distant by about 300 cm^{-1}. These devices are promising laser sources for Tunable Diode Laser Absorption Spectroscopy applications targeting simultaneous detection of multiple gasses, with distant spectral features, in compact and mobile setups.
Optima HD Imax: Molecular Implant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tieger, D. R.; Splinter, P. R.; Hsieh, T. J.
2008-11-03
Molecular implantation offers semiconductor device manufacturers multiple advantages over traditional high current ion implanters. The dose multiplication due to implanting more than one atom per molecule and the transport of beams at higher energies relative to the effective particle energies result in significant throughput enhancements without risk of energy contamination. The Optima HD Imax is introduced with molecular implant capability and the ability to reach up to 4.2 keV effective {sup 11}B from octadecaborane (B{sub 18}H{sub 22}). The ion source and beamline are optimized for molecular species ionization and transport. The beamline is coupled to the Optima HD mechanically scannedmore » endstation. The use of spot beam technology with ionized molecules maximizes the throughput potential and produces uniform implants with fast setup time and with superior angle control. The implanter architecture is designed to run multiple molecular species; for example, in addition to B{sub 18}H{sub 22} the system is capable of implanting carbon molecules for strain engineering and shallow junction engineering. Source lifetime data and typical operating conditions are described both for high dose, memory applications such as dual poly gate as well as lower energy implants for source drain extension and contact implants. Throughputs have been achieved in excess of 50 wafers per hour at doses up to 1x10{sup 16} ions/cm{sup 2} and for energies as low as 1 keV.« less
Drive Beam Shaping and Witness Bunch Generation for the Plasma Wakefield Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, R. J.; Frederico, J.; Hogan, M. J.
2010-11-04
High transformer ratio operation of the plasma wake field accelerator requires a tailored drive beam current profile followed by a short witness bunch. We discuss techniques for generating the requisite dual bunches and for obtaining the desired drive beam profile, with emphasis on the FACET experiment at SLAC National Accelerator Laboratory.
Demonstration of self-truncated ionization injection for GeV electron beams
Mirzaie, M.; Li, S.; Zeng, M.; Hafz, N. A. M.; Chen, M.; Li, G. Y.; Zhu, Q. J.; Liao, H.; Sokollik, T.; Liu, F.; Ma, Y. Y.; Chen, L.M.; Sheng, Z. M.; Zhang, J.
2015-01-01
Ionization-induced injection mechanism was introduced in 2010 to reduce the laser intensity threshold for controllable electron trapping in laser wakefield accelerators (LWFA). However, usually it generates electron beams with continuous energy spectra. Subsequently, a dual-stage target separating the injection and acceleration processes was regarded as essential to achieve narrow energy-spread electron beams by ionization injection. Recently, we numerically proposed a self-truncation scenario of the ionization injection process based upon overshooting of the laser-focusing in plasma which can reduce the electron injection length down to a few hundred micrometers, leading to accelerated beams with extremely low energy-spread in a single-stage. Here, using 100 TW-class laser pulses we report experimental observations of this injection scenario in centimeter-long plasma leading to the generation of narrow energy-spread GeV electron beams, demonstrating its robustness and scalability. Compared with the self-injection and dual-stage schemes, the self-truncated ionization injection generates higher-quality electron beams at lower intensities and densities, and is therefore promising for practical applications. PMID:26423136
Design of a high-efficiency seven-port beam splitter using a dual duty cycle grating structure.
Wen, Fung Jacky; Chung, Po Sheun
2011-07-01
In this paper, we propose a compact seven-port beam splitter which is constructed using only a single-layer high-density grating with a dual duty cycle structure. The properties of this grating are investigated by a simplified modal method. The diffraction efficiency can be achieved around 10% more than conventional Dammann gratings while the uniformity can still be maintained at less than 1%. The effect of deviations from the design parameters on the performance of the grating is also presented.
Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun
2016-04-10
We report a diode-pumped continuous-wave simultaneous dual-wavelength Nd:LSO laser at 1059 and 1067 nm. By employing a specially coated output coupler with relatively high transmissions at high-gain emission lines of 1075 and 1079 nm, the two low-gain emission lines, 1059 and 1067 nm, can be achieved, for the first time to our knowledge, with maximum output power of 1.27 W and slope efficiency of about 29.2%. The output power is only limited by the available pump power. Output beam quality is also measured to be about 1.19 and 1.21 of the beam propagation factors in the x and y directions, respectively.
ANALYSIS OF SEEING-INDUCED POLARIZATION CROSS-TALK AND MODULATION SCHEME PERFORMANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casini, R.; De Wijn, A. G.; Judge, P. G.
2012-09-20
We analyze the generation of polarization cross-talk in Stokes polarimeters by atmospheric seeing, and its effects on the noise statistics of spectropolarimetric measurements for both single-beam and dual-beam instruments. We investigate the time evolution of seeing-induced correlations between different states of one modulation cycle and compare the response to these correlations of two popular polarization modulation schemes in a dual-beam system. Extension of the formalism to encompass an arbitrary number of modulation cycles enables us to compare our results with earlier work. Even though we discuss examples pertinent to solar physics, the general treatment of the subject and its fundamentalmore » results might be useful to a wider community.« less
NASA Astrophysics Data System (ADS)
Merten, Jonathan; Johnson, Bruce
2018-01-01
A new dual-beam atomic absorption technique is applied to laser-induced plasmas. The technique uses an optical parametric oscillator pseudocontinuum, producing emission that is both wider than the absorption line profile, but narrow enough to allow the use of an echelle spectrograph without order sorting. The dual-beam-in space implementation makes the technique immune to nonspecific attenuation of the probe beam and the structure of the pseudocontinuum. The potential for plasma diagnostics is demonstrated with spatially and temporally resolved measurements of magnesium metastable and lithium ground state optical depths in a laser-induced plasma under reduced pressure conditions. The lithium measurements further demonstrate the technique's potential for isotope ratio measurements.
NASA Astrophysics Data System (ADS)
Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.
2016-05-01
Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.
Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.
2016-03-03
Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less
Multi-species trace gas analysis with dual-wavelength quantum cascade laser
NASA Astrophysics Data System (ADS)
Jágerská, Jana; Tuzson, Béla; Looser, Herbert; Jouy, Pierre; Hugi, Andreas; Mangold, Markus; Soltic, Patrik; Faist, Jérôme; Emmenegger, Lukas
2015-04-01
Simultaneous detection of multiple gas species using mid-IR laser spectroscopy is highly appealing for a large variety of applications ranging from air quality monitoring, medical breath analysis to industrial process control. However, state-of-the-art distributed-feedback (DFB) mid-IR lasers are usually tunable only within a narrow spectral range, which generally leads to one-laser-one-compound measurement strategy. Thus, multi-species detection involves several lasers and elaborate beam combining solutions [1]. This makes them bulky, costly, and highly sensitive to optical alignment, which limits their field deployment. In this paper, we explore an alternative measurement concept based on a dual-wavelength quantum cascade laser (DW-QCL) [2]. Such a laser can emit at two spectrally distinct wavelengths using a succession of two DFB gratings with different periodicities and a common waveguide to produce one output beam. The laser design was optimized for NOx measurements and correspondingly emits single-mode at 5.26 and 6.25 μm. Electrical separation of the respective laser sections makes it possible to address each wavelength independently. Thereby, it is possible to detect NO and NO2 species with one laser using the same optical path, without any beam combining optics, i.e. in a compact and cost-efficient single-path optical setup. Operated in a time-division multiplexed mode, the spectrometer reaches detection limits at 100 s averaging of 0.5 and 1.5 ppb for NO2 and NO, respectively. The performance of the system was validated against the well-established chemiluminescence detection while measuring the NOx emissions on an automotive test-bench, as well as monitoring the pollution at a suburban site. [1] B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, 'Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,' Atmospheric Measurement Techniques 6, 927-936 (2013). [2] J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, 'Dual-wavelength quantum cascade laser for trace gas spectroscopy,' Applied Physics Letters 105, 161109-161109-4 (2014).
A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique
Men, Kuo; Dai, Jian-Rong; Li, Ming-Hui; Chen, Xin-Yuan; Zhang, Ke; Tian, Yuan; Huang, Peng; Xu, Ying-Jie
2015-01-01
Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation. PMID:26346510
NASA Tech Briefs, January 2008
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Induction Charge Detector with Multiple Sensing Stages; Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors; Robot Electronics Architecture; Optimized Geometry for Superconducting Sensing Coils; Sensing a Changing Chemical Mixture Using an Electronic Nose; Inertial Orientation Trackers with Drift Compensation; Microstrip Yagi Antenna with Dual Aperture-Coupled Feed; Patterned Ferroelectric Films for Tunable Microwave Devices; Micron-Accurate Laser Fresnel-Diffraction Ranging System; Efficient G(sup 4)FET-Based Logic Circuits; Web-Enabled Optoelectronic Particle-Fallout Monitor; SiO2/TiO2 Composite for Removing Hg from Combustion Exhaust; Lightweight Tanks for Storing Liquefied Natural Gas; Hybrid Wound Filaments for Greater Resistance to Impacts; Making High-Tensile-Strength Amalgam Components; Bonding by Hydroxide-Catalyzed Hydration and Dehydration; Balanced Flow Meters without Moving Parts; Deflection-Compensating Beam for Use inside a Cylinder; Four-Point-Latching Microactuator; Curved Piezoelectric Actuators for Stretching Optical Fibers; Tunable Optical Assembly with Vibration Dampening; Passive Porous Treatment for Reducing Flap Side-Edge Noise; Cylindrical Piezoelectric Fiber Composite Actuators; Patterning of Indium Tin Oxide Films; Gimballed Shoulders for Friction Stir Welding; Improved Thermal Modulator for Gas Chromatography; Nuclear-Spin Gyroscope Based on an Atomic Co-Magnetometer; Utilizing Ion-Mobility Data to Estimate Molecular Masses; Optical Displacement Sensor for Sub-Hertz Applications; Polarization/Spatial Combining of Laser-Diode Pump Beams; Spatial Combining of Laser-Diode Beams for Pumping an NPRO; Algorithm Optimally Orders Forward-Chaining Inference Rules; Project Integration Architecture; High Power Amplifier and Power Supply; Estimating Mixing Heights Using Microwave Temperature Profiler; and Multiple-Cone Sunshade for a Spaceborne Telescope.
Semiconductor etching by hyperthermal neutral beams
NASA Technical Reports Server (NTRS)
Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)
1999-01-01
An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.
Subsurface examination of a foliar biofilm using scanning electron- and focused-ion-beam microscopy
USDA-ARS?s Scientific Manuscript database
The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB is capable of removing small cross sections to view the subsurface features and may be s...
Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes
NASA Astrophysics Data System (ADS)
Teng, Yan; Sun, Jun; Chen, Changhua; Shao, Hao
2013-07-01
This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO) by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inner cathode can be alleviated effectively and dual annular beams with the same kinetic energy can be explosively emitted in parallel. The coaxial reflector can enhance the conversion efficiency by improving the premodulation of the beams. The electron dump on the inner conductor ensures that the electron beams continue to provide kinetic energy to the microwave output until they vanish. Particle-in-cell (PIC) simulation results show that generation can be enhanced up to an output power level of 3.63 GW and conversion efficiency of 45% at 8.97 GHz under a diode voltage of 659 kV and current of 12.27 kA. The conversion efficiency remains above 40% and the output frequency variation is less than 100 MHz over a voltage range of more than 150 kV. Also, the application of the coaxial dual annular cathodes means that the diode impedance is matched to that of the transmission line of the accelerators. This impedance matching can effectively eliminate power reflection at the diode, and thus increase the energy efficiency of the entire system.
A dual-beam spectropluviometer concept
NASA Astrophysics Data System (ADS)
Delahaye, J.-Y.; Barthès, L.; Golé, P.; Lavergnat, J.; Vinson, J. P.
2006-08-01
SummaryA dual beam spectropluviometer (DBS) measuring the equivalent diameter D, the fall velocity V and the time T of arrival of particles is presented. Its main advantage over previous optical disdrometers is the whole measurement range of atmospheric precipitating particles near the ground. In the bottom part of the size range, 0.1 mm has been the smallest observable diameter. The means for obtaining such results are (i) two uniform infrared beams of rectangular cross-section 2 mm in height, 40 mm in width and 250 mm in length, with a 2 mm vertical gap in-between, (ii) a dual 16-bit analog to digital converter, (iii) a dedicated program for extracting the three parameters in real time by computing the signal slopes and determining the correlation between both channels used in this first version of the instrument, (iv) various means for reducing spurious detections caused by splashing, vibration and sunlight. Laboratory tests and typical rain measurements are shown. The DBS is particularly suited for extensive atmospheric and radio propagation research applications where the smallest drops were not correctly estimated in the distributions because of the lack of appropriate measurement devices.
The New Dual-beam Spectropluviometer Concept
NASA Astrophysics Data System (ADS)
Delahaye, J. Y.; Barthes, L.; Golé, P.; Lavergnat, J.; Vinson, J. P.
A Dual Beam Spectropluviometer (DBS) measuring the equivalent diameter D, the vertical velocity V and the time T of arrival of particles is presented. Its main advan- tage over previous optical disdrometers is the extensive measurement range of atmo- spheric precipitations near ground. In particular, 0.15 mm diameter particles can be observed in quiet laboratory conditions and 0.2 mm is the smallest diameter observed in the outdoor turbulent air velocity field. The means for obtaining such results are (i) two uniform beams of rectangular cross-section 2 mm in height, 40 mm in width and 250 mm in length, with a 2 mm vertical gap, (ii) a dual 16-bit analog to digital converter, (iii) a dedicated program for extracting the 3 parameters in real time by computing the signal slopes and determining the correlation between both channels, (iii) various means for reducing splashing and vibration. Laboratory tests and typical rain measurements are shown. The DBS is particularly suited for extensive atmospheric and radio propagation research applications where the smallest drops were not correctly estimated in the distributions because of the lack of appropriate measurement devices.
Skin Friction Measurements by a Dual-Laser-Beam Interferometer Technique
NASA Technical Reports Server (NTRS)
Monson, D. J.; Higuchi, H.
1981-01-01
A portable dual-laser-beam interferometer that nonintrusively measures skin friction by monitoring the thickness change of an oil film subject to shear stress is described. The method is an advance over past versions in that the troublesome and error-introducing need to measure the distance to the oil leading edge and the starting time for the oil flow has been eliminated. The validity of the method was verified by measuring oil viscosity in the laboratory, and then using those results to measure skin friction beneath the turbulent boundary layer in a low speed wind tunnel. The dual-laser-beam skin friction measurements are compared with Preston tube measurements, with mean velocity profile data in a "law-of-the-well" coordinate system, and with computations based on turbulent boundary-layer theory. Excellent agreement is found in all cases. (This validation and the aforementioned improvements appear to make the present form of the instrument usable to measure skin friction reliably and nonintrusively in a wide range of flow situations in which previous methods are not practical.)
Summary from Working Group on Multiple Beams and Funneling
NASA Technical Reports Server (NTRS)
Wangler, T. P.
1985-01-01
The working group on Multiple Beams and Funneling discussed various topics related to multiple beams and funneling, including (1) design considerations for multiple-beam accelerators; (2) scaling of current, emittance, and brightness for multiple-beam systems; (3) funneling lines using either discrete components or a radiofrequency quadrupole (RFQ) funneling structure; and (4) alternatives to funneling.
A balancing act: physical balance, through arousal, influences size perception.
Geuss, Michael N; Stefanucci, Jeanine K; de Benedictis-Kessner, Justin; Stevens, Nicholas R
2010-10-01
Previous research has demonstrated that manipulating vision influences balance. Here, we question whether manipulating balance can influence vision and how it may influence vision--specifically, the perception of width. In Experiment 1, participants estimated the width of beams while balanced and unbalanced. When unbalanced, participants judged the widths to be smaller. One possible explanation is that unbalanced participants did not view the stimulus as long as when balanced because they were focused on remaining balanced. In Experiment 2, we tested this notion by limiting viewing time. Experiment 2 replicated the findings of Experiment 1, but viewing time had no effect on width judgments. In Experiment 3, participants' level of arousal was manipulated, because the balancing task likely produced arousal. While jogging, participants judged the beams to be smaller. In Experiment 4, participants completed another arousing task (counting backward by sevens) that did not involve movement. Again, participants judged the beams to be smaller when aroused. Experiment 5A raised participants' level of arousal before estimating the board widths (to control for potential dual-task effects) and showed that heightened arousal still influenced perceived width of the boards. Collectively, heightened levels of arousal, caused by multiple manipulations (including balance), influenced perceived width.
Samei, Ehsan; Saunders, Robert S.
2014-01-01
Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523,776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 μm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 μm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual-energy breast tomosynthesis can be performed optimally at 49 kVp with alternative copper and tin filters, with reconstruction following weighted subtraction. The optimum technique provides best visibility of iodine against structured breast background in dual-energy contrast-enhanced breast tomosynthesis. PMID:21908902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadava, G; Imai, Y; Hsieh, J
2014-06-15
Purpose: Quantitative accuracy of Iodine Hounsfield Unit (HU) in conventional single-kVp scanning is susceptible to beam-hardening effect. Dual-energy CT has unique capabilities of quantification using monochromatic CT images, but this scanning mode requires the availability of the state-of-the-art CT scanner and, therefore, is limited in routine clinical practice. Purpose of this work was to develop a beam-hardening-correction (BHC) for single-kVp CT that can linearize Iodine projections at any nominal energy, apply this approach to study Iodine response with respect to keV, and compare with dual-energy based monochromatic images obtained from material-decomposition using 80kVp and 140kVp. Methods: Tissue characterization phantoms (Gammexmore » Inc.), containing solid-Iodine inserts of different concentrations, were scanned using GE multi-slice CT scanner at 80, 100, 120, and 140 kVp. A model-based BHC algorithm was developed where Iodine was estimated using re-projection of image volume and corrected through an iterative process. In the correction, the re-projected Iodine was linearized using a polynomial mapping between monochromatic path-lengths at various nominal energies (40 to 140 keV) and physically modeled polychromatic path-lengths. The beam-hardening-corrected 80kVp and 140kVp images (linearized approximately at effective energy of the beam) were used for dual-energy material-decomposition in Water-Iodine basis-pair followed by generation of monochromatic images. Characterization of Iodine HU and noise in the images obtained from singlekVp with BHC at various nominal keV, and corresponding dual-energy monochromatic images, was carried out. Results: Iodine HU vs. keV response from single-kVp with BHC and dual-energy monochromatic images were found to be very similar, indicating that single-kVp data may be used to create material specific monochromatic equivalent using modelbased projection linearization. Conclusion: This approach may enable quantification of Iodine contrast enhancement and potential reduction in injected contrast without using dual-energy scanning. However, in general, dual-energy scanning has unique value in material characterization and quantification, and its value cannot be discounted. GE Healthcare Employee.« less
Khan, Saba N; Chatterjee, Sudip K; Chaudhuri, Partha Roy
2015-02-20
We report here the controlled generation of a linearly polarized first-order azimuthally asymmetric beam (F-AAB) in a dual-mode fiber (DMF) by appropriate superposition of selectively excited zeroth-order vector modes that are doughnut-shaped azimuthally symmetric beams (D-ASBs). We first demonstrate continually switching polarization mode structures having an identical two-lobe intensity profile (i.e., intra-F-AAB conversion). Then, under a distinct launching state, we generate mode structures progressively toggling between the doughnut-shaped profile and two-lobe pattern having dissimilar polarization orientations (i.e., F-AAB to D-ASB conversion). Interestingly, a decentralized elliptical Gaussian beam possessing homogenous spatial polarization is obtained by enhancing the contribution of the fundamental mode (HE11/LP01) in selectively excited F-AAB. A smoothly varying azimuth of the input beam in this situation resulted in redistribution of transverse energy procuring a unique and exciting unconventional two-grain T-polarized beam having mutually orthogonal state of polarization (SOP). All of the above three were achieved under a given set of launching conditions (tilt/offset) of a Gaussian mode (TEM00) devised with changing SOP of the input beam. A strong modulation in the output beam characteristics was also observed with the variation in propagation distance (for a fixed input SOP) owing to the large difference in propagation constants of the participating modes (LP01 and one of the F-AABs). Finally, this particular study led to a design for a low-cost highly sensitive strain measuring device based on tracking the centroid movement of the output intensity pattern. Each of our experimentally observed intensity/polarization distributions is theoretically mapped on a one-to-one basis considering a linear superposition of appropriately excited LP basis modes of the waveguide toward a complete understanding of the polarization and mode propagation in the dual-mode structure.
Dual beam optical system for pulsed laser ablation film deposition
Mashburn, D.N.
1996-09-24
A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.
Dual beam optical system for pulsed laser ablation film deposition
Mashburn, Douglas N.
1996-01-01
A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target.
Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission
NASA Technical Reports Server (NTRS)
Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.
2002-01-01
We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.
Conical Refraction: new observations and a dual cone model.
Sokolovskii, G S; Carnegie, D J; Kalkandjiev, T K; Rafailov, E U
2013-05-06
We propose a paraxial dual-cone model of conical refraction involving the interference of two cones of light behind the exit face of the crystal. The supporting experiment is based on beam selecting elements breaking down the conically refracted beam into two separate hollow cones which are symmetrical with one another. The shape of these cones of light is a product of a 'competition' between the divergence caused by the conical refraction and the convergence due to the focusing by the lens. The developed mathematical description of the conical refraction demonstrates an excellent agreement with experiment.
Wide-beam sensors for controlling dual-delay systems
NASA Astrophysics Data System (ADS)
Edwards, J. B.; Twemlow, J. K.
1982-09-01
A class of dual delay feedback systems of open loop transfer function G(s) = k exp(-Xs)/l - exp(-Ws) is shown to be unstable if ratio X/W is noninteger. By means of z-transform techniques it is shown that, by using a feedback transducer that senses over a substantial distance either side of its central axis, closed-loop stability may be restored. Such transducers, termed widebeam sensors, include transmission, backscatter and natural radiation types as well as electromechanical conveyor belt weighers. Designing transducers for very narrow beams may not be desirable from the overall system viewpoint.
Liquid crystal emulsion micro-droplet WGM resonators
NASA Astrophysics Data System (ADS)
Ježek, Jan; Pilát, Zdeněk.; Brzobohatý, Oto; Jonáš, Alexandr; Aas, Mehdi; Kiraz, Alper; Zemánek, Pavel
2014-12-01
We introduce tunable optofluidic microlasers based on optically stretched or thermally modified, dye-doped emulsion droplets of liquid crystals (LC) confined in a dual-beam optical trap. Droplets were created in microfluidic chips or by shaking. Optically trapped microdroplets emulsified in water and stained with fluorescent dye act as an active ultrahigh-Q optical resonant cavity hosting whispering gallery modes (WGMs). Tuning of the laser emission wavelength was achieved by a controlled deformation of the droplet shape using light-induced forces generated by dual-beam optical trap and by thermal changing of the order in the LC.
Dual beam translator for use in Laser Doppler anemometry
Brudnoy, David M.
1987-01-01
A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.
Dual beam translator for use in Laser Doppler anemometry
Brudnoy, D.M.
1984-04-12
A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.
NASA Astrophysics Data System (ADS)
Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua
2017-02-01
Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.
NASA Astrophysics Data System (ADS)
Yu, Shixing; Li, Long; Shi, Guangming
2016-08-01
A metasurface, which is composed of printed cross-dipole elements with different arm lengths, is designed, fabricated, and experimentally demonstrated to generate orbital angular momentum (OAM) vortex waves of dual polarizations and dual modes in the radio frequency domain simultaneously. The prototype of a practical metasurface is fabricated and measured to validate the results of theoretical analysis and design at 5.8 GHz. Numerical and experimental results verify that vortex waves with dual OAM modes and dual polarizations can be flexibly generated by using a reflective metasurface. The proposed method paves a way to generate diverse OAM vortex waves for radio frequency and microwave wireless communication applications.
NASA Astrophysics Data System (ADS)
Ye, Hu; Chen, Changhua; Ning, Hui; Tan, Weibing; Teng, Yan; Shi, Yanchao; Wu, Ping; Song, Zhimin; Cao, Yibing; Du, Zhaoyu
2015-12-01
This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use of the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed.
A simulation study of a dual-plate in-room PET system for dose verification in carbon ion therapy
NASA Astrophysics Data System (ADS)
Chen, Ze; Hu, Zheng-Guo; Chen, Jin-Da; Zhang, Xiu-Ling; Guo, Zhong-Yan; Xiao, Guo-Qing; Sun, Zhi-Yu; Huang, Wen-Xue; Wang, Jian-Song
2014-08-01
During carbon ion therapy, lots of positron emitters such as 11C, 15O, 10C are generated in irradiated tissues by nuclear reactions, and can be used to track the carbon beam in the tissue by a positron emission tomography (PET) scanner. In this study, an dual-plate in-room PET scanner has been designed and evaluated based on the GATE simulation platform to monitor patient dose in carbon ion therapy. The dual-plate PET is designed to avoid interference with the carbon beamline and with patient positioning. Its performance was compared with that of four-head and full-ring PET scanners. The dual-plate, four-head and full-ring PET scanners consisted of 30, 60, 60 detector modules, respectively, with a 36 cm distance between directly opposite detector modules for dose deposition measurements. Each detector module consisted of a 24×24 array of 2 mm×2 mm×18 mm LYSO pixels coupled to a Hamamatsu H8500 PMT. To estimate the production yield of positron emitters, a 10 cm×15 cm×15 cm cuboid PMMA phantom was irradiated with 172, 200, 250 MeV/u 12C beams. 3D images of the activity distribution measured by the three types of scanner are produced by an iterative reconstruction algorithm. By comparing the longitudinal profile of positron emitters along the carbon beam path, it is indicated that use of the dual-plate PET scanner is feasible for monitoring the dose distribution in carbon ion therapy.
Spectral line polarimetry with a channeled polarimeter.
van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U
2014-07-01
Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.
Ion beam and plasma methods of producing diamondlike carbon films
NASA Technical Reports Server (NTRS)
Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.
1988-01-01
A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.
Quantification of breast density with dual energy mammography: A simulation study
Ducote, Justin L.; Molloi, Sabee
2008-01-01
Breast density, the percentage of glandular breast tissue, has been identified as an important yet underutilized risk factor in the development of breast cancer. A quantitative method to measure breast density with dual energy imaging was investigated using a computer simulation model. Two configurations to measure breast density were evaluated: the usage of monoenergetic beams and an ideal detector, and the usage of polyenergetic beams with spectra from a tungsten anode x-ray tube with a detector modeled after a digital mammography system. The simulation model calculated the mean glandular dose necessary to quantify the variability of breast density to within 1∕3%. The breast was modeled as a semicircle 10 cm in radius with equal homogenous thicknesses of adipose and glandular tissues. Breast thicknesses were considered in the range of 2–10 cm and energies in the range of 10–150 keV for the two monoenergetic beams, and 20–150 kVp for spectra with a tungsten anode x-ray tube. For a 4.2 cm breast thickness, the required mean glandular doses were 0.183 μGy for two monoenergetic beams at 19 and 71 keV, and 9.85 μGy for two polyenergetic spectra from a tungsten anode at 32 and 96 kVp with beam filtrations of 50 μm Rh and 300 μm Cu for the low and high energy beams, respectively. The results suggest that for either configuration, breast density can be precisely measured with dual energy imaging requiring only a small amount of additional dose to the breast. The possibility of using a standard screening mammogram as the low energy image is also discussed. PMID:19175100
Compact reflection holographic recording system with high angle multiplexing
NASA Astrophysics Data System (ADS)
Kanayasu, Mayumi; Yamada, Takehumi; Takekawa, Shunsuke; Akieda, Kensuke; Goto, Akiyo; Yamamoto, Manabu
2011-02-01
Holographic memory systems have been widely researched since 1963. However, the size of the drives required and the deterioration of reconstructed data resulting from shrinkage of the medium have made practical use of a hologram memory difficult. In light of this, we propose a novel holographic recording/reconstructing system: a dual-reference beam reflection system that is smaller than conventional systems such as the off-axis or co-axis types, and which is expected to increase the number of multiplexing in angle multiplexed recording. In this multiplex recording system, two laser beams are used as reference beams, and the recorded data are reconstructed stably, even if there is shrinkage of the recording medium. In this paper, a reflection holographic memory system is explained in detail. In addition, the change in angle selectivity resulting from shrinkage of the medium is analyzed using the laminated film three-dimensional simulation method. As a result, we demonstrate that a dual-reference beam multiplex recording system is effective in reducing the influence of medium shrinkage.
Dual Ion Species Plasma Expansion from Isotopically Layered Cryogenic Targets
NASA Astrophysics Data System (ADS)
Scott, G. G.; Carroll, D. C.; Astbury, S.; Clarke, R. J.; Hernandez-Gomez, C.; King, M.; Alejo, A.; Arteaga, I. Y.; Dance, R. J.; Higginson, A.; Hook, S.; Liao, G.; Liu, H.; Mirfayzi, S. R.; Rusby, D. R.; Selwood, M. P.; Spindloe, C.; Tolley, M. K.; Wagner, F.; Zemaityte, E.; Borghesi, M.; Kar, S.; Li, Y.; Roth, M.; McKenna, P.; Neely, D.
2018-05-01
A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer-thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modeling shows that by controlling the deuterium layer thickness, a composite H+/D+ ion beam can be produced by target normal sheath acceleration (TNSA), with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modeling shows that a (4.3 ±0.7 ) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9°. Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4 ±0.7 ) MeV per nucleon was measured in a cone of half angle 7°-9°, while maintaining a significant TNSA proton component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddu, S; Sun, B; Grantham, K
2016-06-15
Purpose: Proton therapy (PT) delivery is complex and extremely dynamic. Therefore, quality assurance testing is vital, but highly time-consuming. We have developed a High-Speed Scintillation-Camera-System (HS-SCS) for simultaneously measuring multiple beam characteristics. Methods: High-speed camera was placed in a light-tight housing and dual-layer neutron shield. HS-SCS is synchronized with a synchrocyclotron to capture individual proton-beam-pulses (PBPs) at ∼504 frames/sec. The PBPs from synchrocyclotron trigger the HS-SCS to open its shutter for programmed exposure-time. Light emissions within 30×30×5cm3 plastic-scintillator (BC-408) were captured by a CCD-camera as individual images revealing dose-deposition in a 2D-plane with a resolution of 0.7mm for range andmore » SOBP measurements and 1.67mm for profiles. The CCD response as well as signal to noise ratio (SNR) was characterized for varying exposure times, gains for different light intensities using a TV-Optoliner system. Software tools were developed to analyze ∼5000 images to extract different beam parameters. Quenching correction-factors were established by comparing scintillation Bragg-Peaks with water scanned ionization-chamber measurements. Quenching corrected Bragg-peaks were integrated to ascertain proton-beam range (PBR), width of Spared-Out-Bragg-Peak (MOD) and distal.« less
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
ERIC Educational Resources Information Center
Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen
2016-01-01
Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends. The…
NASA Astrophysics Data System (ADS)
Jaillon, Franck; Makita, Shuichi; Yasuno, Yoshiaki
2012-03-01
Ability of a new version of one-micrometer dual-beam optical coherence angiography (OCA) based on Doppler optical coherence tomography (OCT), is demonstrated for choroidal vasculature imaging. A particular feature of this system is the adjustable time delay between two probe beams. This allows changing the measurable velocity range of moving constituents such as blood without alteration of the scanning protocol. Since choroidal vasculature is made of vessels having blood flows with different velocities, this technique provides a way of discriminating vessels according to the velocity range of their inner flow. An example of choroid imaging of a normal emmetropic eye is here given. It is shown that combining images acquired with different velocity ranges provides an enhanced vasculature representation. This method may be then useful for pathological choroid characterization.
Cloud Thickness from Offbeam Returns (THOR) Validation Campaign on NASA's P3B Over the ARM/SGP
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)
2002-01-01
Physical thickness of a cloud layer, sometimes multiple cloud layers, is a crucial controller of solar heating of the Earth- atmosphere system, which drives the convective processes that produce storm systems. Yet clouds of average optical thickness are opaque to conventional lidar, so their thickness is well estimated only by combining a lidar above and another below cloud, or a radar and lidar on the same side, dual facilities not widely available. Here we report initial observations of a new airborne multiple field of view lidar, capable of determining physical thickness of cloud layers from time signatures of off-beam returns from a I kHz micropulse lidar at 540 rim. For a single layer, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. This halo method requires cloud optical thickness exceeding 2, and improves with cloud thickness, thus complimenting conventional lidar, which cannot penetrate thick clouds. Results are presented from March 25, 2002, when THOR flew a butterfly pattern over the ARM site at 8.3 km, above a thin ice cloud at 5 km, and a thick boundary-layer stratus deck with top at 1.3 km, as shown by THOR channel 1, and a base at about 0.3 km as shown by the ground-based MPL. Additional information is included in the original extended abstract.
NASA Astrophysics Data System (ADS)
Lawton, Penelope F.; Saunter, Christopher D.; Girkin, John M.
2014-03-01
Since their invention by Ashkin optical tweezers have demonstrated their ability and versatility as a non-invasive tool for micromanipulation. One of the most useful additions to the basic optical tweezers system is micro-Raman spectroscopy, which permits highly sensitive analysis of single cells or particles. We report on the development of a dual laser system combining two spatial light modulators to holographically manipulate multiple traps (at 1064nm) whilst undertaking Raman spectroscopy using a 532nm laser. We can thus simultaneously trap multiple particles and record their Raman spectra, without perturbing the trapping system. The dual beam system is built around micro-fluidic channels where crystallisation of calcium carbonate occurs on polymethylmethacrylate (PMMA) beads. The setup is designed to simulate at a microscopic level the reactions that occur on items in a dishwasher, where permanent filming of calcium carbonate on drinking glasses is a problem. Our system allows us to monitor crystal growth on trapped particles in which the Raman spectrum and changes in movement of the bead are recorded. Due to the expected low level of crystallisation on the bead surfaces this allows us to obtain results quickly and with high sensitivity. The long term goal is to study the development of filming on samples in-situ with the microfl.uidic system acting as a model dishwasher.
Xin, Zhaowei; Wei, Dong; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng
2018-02-19
Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.
Dual Diagnosis - Multiple Languages
... National Library of Medicine Comorbidity or dual diagnosis - Opioid addiction, part 9 - English PDF Comorbidity or dual diagnosis - Opioid addiction, part 9 - español (Spanish) PDF Comorbidity or dual ...
PRIMA: study for a dual-beam instrument for the VLT Interferometer
NASA Astrophysics Data System (ADS)
Quirrenbach, Andreas; Coudé du Foresto, Vincent; Daigne, Gerard; Hofmann, Karl H.; Hofmann, Reiner; Lattanzi, Mario; Osterbart, R.; Le Poole, Rudolf S.; Queloz, Didier; Vakili, Farrokh
1998-07-01
PRIMA is a conceptual study for a single-baseline dual-feed instrument for the very large telescope interferometer, which is under construction by the European Southern Observatory on Cerro Paranal in Chile. The goals of PRIMA include narrow-angle astrometry with a precision of 10 (mu) as over an arc of 10 inches, and imaging of faint sources with the full sensitivity of the 8m telescopes in the VLT array. Key scientific programs that can be carried out with PRIMA in imaging mode include observations of active galactic nuclei, the Galactic Center, stars, and circumstellar matter. Scientific drivers for the astrometry are searches for planets and low-mass stellar companions, binary stars, dynamics of clusters, and parallaxes. We list the main performance requirements for PRIMA, present system architectures for the dual-beam system, and discuss limitations of the interferometric field-of-view.
Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Daniel; Hansen, Clifford W.
Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less
Wu, Rongli; Watanabe, Yoshiyuki; Satoh, Kazuhiko; Liao, Yen-Peng; Takahashi, Hiroto; Tanaka, Hisashi; Tomiyama, Noriyuki
2018-05-21
The aim of this study was to quantitatively compare the reduction in beam hardening artifact (BHA) and variance in computed tomography (CT) numbers of virtual monochromatic energy (VME) images obtained with 3 dual-energy computed tomography (DECT) systems at a given radiation dose. Five different iodine concentrations were scanned using dual-energy and single-energy (120 kVp) modes. The BHA and CT number variance were evaluated. For higher iodine concentrations, 40 and 80 mgI/mL, BHA on VME imaging was significantly decreased when the energy was higher than 50 keV (P = 0.003) and 60 keV (P < 0.001) for GE, higher than 80 keV (P < 0.001) and 70 keV (P = 0.002) for Siemens, and higher than 40 keV (P < 0.001) and 60 keV (P < 0.001) for Toshiba, compared with single-energy CT imaging. Virtual monochromatic energy imaging can decrease BHA and improve CT number accuracy in different dual-energy computed tomography systems, depending on energy levels and iodine concentrations.
Scanning properties of large dual-shaped offset and symmetric reflector antennas
NASA Astrophysics Data System (ADS)
Galindo-Israel, Victor; Veruttipong, Watt; Norrod, Roger D.; Imbriale, William A.
1992-04-01
Several characteristics of dual offset (DOSR) and symmetric shaped reflectors are examined. Among these is the amelioration of the added cost of manufacturing a shaped reflector antenna, particularly a doubly curved surface for the DOSR, if adjustable panels, which may be necessary for correction of gravity and wind distortions, are also used for improving gain by shaping. The scanning properties of shaped reflectors, both offset and circularly symmetric, are examined and compared to conic section scanning characteristics. Scanning of the pencil beam is obtained by lateral and axial translation of a single point-source feed. The feed is kept pointed toward the center of the subreflector. The effects of power spillover and aperture phase error as a function of beam scanning is examined for several different types of large reflector designs including DOSR, circularly symmetric large f/D and smaller f/D dual reflector antenna systems. It is graphically illustrated that the Abbe-sine condition for improving scanning of an optical system cannot, inherently, be satisfied in a dual-shaped reflector system shaped for high gain and low feed spillover.
Separating and combining single-mode and multimode optical beams
Ruggiero, Anthony J; Masquelier, Donald A; Cooke, Jeffery B; Kallman, Jeffery S
2013-11-12
Techniques for combining initially separate single mode and multimode optical beams into a single "Dual Mode" fiber optic have been developed. Bi-directional propagation of two beams that are differentiated only by their mode profiles (i.e., wavefront conditions) is provided. The beams can be different wavelengths and or contain different modulation information but still share a common aperture. This method allows the use of conventional micro optics and hybrid photonic packaging techniques to produce small rugged packages suitable for use in industrial or military environments.
A dual-wavelength light-emitting diode based detector for flow-injection analysis process analysers.
Huang, J; Liu, H; Tan, A; Xu, J; Zhao, X
1992-06-01
In this paper, a small dual-wavelength light-emitting diode (LED) based detector for FIA process analysers is designed. The detector's optical parts include a flow cell, a dual-wavelength LED and a photodiode. Neither mirrors nor lenses are used. The optical paths for the different light beams are almost the same, distinguishing it from previously reported LED based detectors. The detector's electronic components, including a signal amplifier, an A/D and D/A converter, and an Intel 8031 single-chip microcomputer, are integrated on one small board. In order to obtain response signals of approximate intensity for the two colours, the D/A converter and a multiplexer are used to adjust the emission intensity of the two colours respectively. Under microcomputer control, light beams are rapidly electronically modulated. Therefore, dark current and intensity of the light beams are measured almost simultaneously; as a result, the effect of drift is negligible. While a solution of absorbance 0.875 was measured repeatedly, an RSD (relative standard deviation) of 0.24% could be reached. Furthermore, such a detector with a red/yellow LED has been coupled with the FIA technique for the determination of 10(-6)M levels of cobalt.
Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction
NASA Technical Reports Server (NTRS)
Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Yen, S. Y.; Napel, S.
2000-01-01
This paper presents a new reconstruction algorithm for both single- and dual-energy computed tomography (CT) imaging. By incorporating the polychromatic characteristics of the X-ray beam into the reconstruction process, the algorithm is capable of eliminating beam hardening artifacts. The single energy version of the algorithm assumes that each voxel in the scan field can be expressed as a mixture of two known substances, for example, a mixture of trabecular bone and marrow, or a mixture of fat and flesh. These assumptions are easily satisfied in a quantitative computed tomography (QCT) setting. We have compared our algorithm to three commonly used single-energy correction techniques. Experimental results show that our algorithm is much more robust and accurate. We have also shown that QCT measurements obtained using our algorithm are five times more accurate than that from current QCT systems (using calibration). The dual-energy mode does not require any prior knowledge of the object in the scan field, and can be used to estimate the attenuation coefficient function of unknown materials. We have tested the dual-energy setup to obtain an accurate estimate for the attenuation coefficient function of K2 HPO4 solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Hu; Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024
2015-12-15
This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use ofmore » the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed.« less
Bowman, Wesley A; Robar, James L; Sattarivand, Mike
2017-03-01
Stereoscopic x-ray image guided radiotherapy for lung tumors is often hindered by bone overlap and limited soft-tissue contrast. This study aims to evaluate the feasibility of dual-energy imaging techniques and to optimize parameters of the ExacTrac stereoscopic imaging system to enhance soft-tissue imaging for application to lung stereotactic body radiation therapy. Simulated spectra and a physical lung phantom were used to optimize filter material, thickness, tube potentials, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number range (3-83) based on a metric defined to separate spectra of high and low-energies. Both energies used the same filter due to time constraints of imaging in the presence of respiratory motion. The lung phantom contained bone, soft tissue, and tumor mimicking materials, and it was imaged with a filter thickness in the range of (0-0.7) mm and a kVp range of (60-80) for low energy and (120,140) for high energy. Optimal dual-energy weighting factors were obtained when the bone to soft-tissue contrast-to-noise ratio (CNR) was minimized. Optimal filter thickness and tube potential were achieved by maximizing tumor-to-background CNR. Using the optimized parameters, dual-energy images of an anthropomorphic Rando phantom with a spherical tumor mimicking material inserted in his lung were acquired and evaluated for bone subtraction and tumor contrast. Imaging dose was measured using the dual-energy technique with and without beam filtration and matched to that of a clinical conventional single energy technique. Tin was the material of choice for beam filtering providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-weighted image in the lung phantom was obtained using 0.2 mm tin and (140, 60) kVp pair. Dual-energy images of the Rando phantom with the tin filter had noticeable improvement in bone elimination, tumor contrast, and noise content when compared to dual-energy imaging with no filtration. The surface dose was 0.52 mGy per each stereoscopic view for both clinical single energy technique and the dual-energy technique in both cases of with and without the tin filter. Dual-energy soft-tissue imaging is feasible without additional imaging dose using the ExacTrac stereoscopic imaging system with optimized acquisition parameters and no beam filtration. Addition of a single tin filter for both the high and low energies has noticeable improvements on dual-energy imaging with optimized parameters. Clinical implementation of a dual-energy technique on ExacTrac stereoscopic imaging could improve lung tumor visibility. © 2017 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Gayda, John (Technical Monitor); Lemsky, Joe
2004-01-01
NASA dual microstructure heat treatment technology previously demonstrated on single forging heat treat batches of a generic disk shape was successfully demonstrated on a multiple disk batch of a production shape component. A group of four Rolls-Royce Corporation 3rd Stage AE2100 forgings produced from alloy ME209 were successfully dual microstructure heat treated as a single heat treat batch. The forgings responded uniformly as evidenced by part-to-part consistent thermocouple recordings and resultant macrostructures, and from ultrasonic examination. Multiple disk DMHT processing offers a low cost alternative to other published dual microstructure processing techniques.
Vibration localization in dual-span, axially moving beams. Part I: Formulation and results
NASA Astrophysics Data System (ADS)
Al-Jawi, A. A. N.; Pierre, C.; Ulsoy, A. G.
1995-01-01
An investigation of the vibration localization phenomenon in dual-span, axially moving beams is presented. The effects of a tension difference among the spans, also referred to as disorder, on the natural modes of free vibration are studied in terms of inter-span coupling and transport speed. The equations governing the transverse vibration of the two-span, axially moving beam are derived through Hamilton's principle and solution methods are developed. Results demonstrate that normal mode localizationindeed occurs for both stationary and translating disordered two-span beams, especially for small inter-span coupling. The occurrence of localization is characterized by a peak deflection much greater in one span than in the other. In the stationary disordered case, localization becomes more pronounced as inter-span coupling decreases, i.e., as the span axial tension increases. In the axially moving disordered case, the transport speed has a significant influence on localization and, generally speaking, localization becomes stronger with increasing speed. For a moving beam with identical spans, the two loci of each pair of natural frequencies may exhibit one or more crossing(s) (depending on the value of tension) when plotted against the axial transport speed. These crossings become veerings when the beam is disordered, and localization is strongest at those speeds at which the eigenvalue veerings occur.
Design of short-range terahertz wave passive detecting system
NASA Astrophysics Data System (ADS)
Zhang, Chao; Lou, Guowei; Zhu, Li; Qian, Songsong; Li, Ting
2016-09-01
Based on the study of radiation and transmission characteristics on THz waveband, a short-range passive detecting system is designed. The scheme originated from microwave passive detecting system. A prototype was developed following the design of key components including antennas and a harmonic mixer. The system operated at 0.36 THz. A dual-beam Cassegrain antenna was adopted for receiving signals which radiated by object and background. Local oscillator signal was generated by frequency multiplication. Harmonic mixing is adopted for reducing local oscillator signal frequency required by half. Superheterodyne technology is employed for signal acquisition. The system implemented easily. Tests and measurements were taken, which showed that the scheme was feasible and the performance of the prototype system met the design requirements.
NASA Astrophysics Data System (ADS)
Ramm, Daniel
2018-02-01
Three dimensional dosimetry by optical CT readout of radiosensitive gels or solids has previously been indicated as a solution for measurement of radiotherapy 3D dose distributions. The clinical uptake of these dosimetry methods has been limited, partly due to impracticalities of the optical readout such as the expertise and labour required for refractive index fluid matching. In this work a fast laser beam optical CT scanner is described, featuring fluid-less and dual wavelength operation. A second laser with a different wavelength is used to provide an alternative reference scan to the commonly used pre-irradiation scan. Transmission data for both wavelengths is effectively acquired simultaneously, giving a single scan process. Together with the elimination of refractive index fluid matching issues, scanning practicality is substantially improved. Image quality and quantitative accuracy were assessed for both dual and single wavelength methods. The dual wavelength scan technique gave improvements in uniformity of reconstructed optical attenuation coefficients in the sample 3D volume. This was due to a reduction of artefacts caused by scan to scan changes. Optical attenuation measurement accuracy was similar for both dual and single wavelength modes of operation. These results established the basis for further work on dosimetric performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yangmei; Zhang, Xiaoping, E-mail: plinafly@163.com; Zhang, Jiande
2014-10-15
The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675 kV and the guiding magnetic field is 0.8 T, a combined microwave with an average power of about 4.0 GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diodemore » voltage range from 675 kV to 755 kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720 kV/cm, which is relatively low corresponding to an output power of 4.0 GW. The stable combined output suggests the probability of long-pulse operation for the combined source.« less
Barty, Christopher P.J.
2013-02-05
A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.
Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali
2018-01-15
A dual-off-axis pumping scheme is presented to generate wavelength-tunable high-order Hermite-Gaussian (HG) modes in Yb:CaGdAlO 4 lasers. The mode and wavelength can be actively controlled by the off-axis displacements and pump power. The purities of the output HG modes are quantified by intensity distributions and the measured M 2 values. The highest order reaches m=15 for stable HG m,0 mode, and wavelength-tunable width is about 10 nm. Moreover, through externally converting the HG m,0 modes, the vortex beams carrying orbital angular momentum (OAM) with a large OAM-tunable range from ±1ℏ to ±15ℏ are produced. This work is effective for largely scaling the spectral and OAM tunable ranges of optical vortex beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lew, Bartosz; Roukema, Boudewijn F., E-mail: blew@astro.uni.torun.pl, E-mail: boud@astro.uni.torun.pl
2016-11-01
Systematic effects in dual-beam, differential, radio observations of extended objects are discussed in the context of the One Centimeter Receiver Array (OCRA). We use simulated samples of Sunyaev-Zel'dovich (SZ) galaxy clusters at low ( z < 0.4) and intermediate (0.4 < z < 1.0) redshifts to study the implications of operating at a single frequency (30 GHz) on the accuracy of extracting SZ flux densities and of reconstructing comptonization parameters with OCRA. We analyze dependences on cluster mass, redshift, observation strategy, and telescope pointing accuracy. Using Planck data to make primary cosmic microwave background (CMB) templates, we test the feasibilitymore » of mitigating CMB confusion effects in observations of SZ profiles at angular scales larger than the separation of the receiver beams.« less
High range free space optic transmission using new dual diffuser modulation technique
NASA Astrophysics Data System (ADS)
Rahman, A. K.; Julai, N.; Jusoh, M.; Rashidi, C. B. M.; Aljunid, S. A.; Anuar, M. S.; Talib, M. F.; Zamhari, Nurdiani; Sahari, S. k.; Tamrin, K. F.; Jong, Rudiyanto P.; Zaidel, D. N. A.; Mohtadzar, N. A. A.; Sharip, M. R. M.; Samat, Y. S.
2017-11-01
Free space optical communication fsoc is vulnerable with fluctuating atmospheric. This paper focus analyzes the finding of new technique dual diffuser modulation (ddm) to mitigate the atmospheric turbulence effect. The performance of fsoc under the presence of atmospheric turbulence will cause the laser beam keens to (a) beam wander, (b) beam spreading and (c) scintillation. The most deteriorate the fsoc is scintillation where it affected the wavefront cause to fluctuating signal and ultimately receiver can turn into saturate or loss signal. Ddm approach enhances the detecting bit `1' and bit `0' and improves the power received to combat with turbulence effect. The performance focus on signal-to-noise (snr) and bit error rate (ber) where the numerical result shows that the ddm technique able to improves the range where estimated approximately 40% improvement under weak turbulence and 80% under strong turbulence.
Vortex Airy beams directly generated via liquid crystal q-Airy-plates
NASA Astrophysics Data System (ADS)
Wei, Bing-Yan; Liu, Sheng; Chen, Peng; Qi, Shu-Xia; Zhang, Yi; Hu, Wei; Lu, Yan-Qing; Zhao, Jian-Lin
2018-03-01
Liquid crystal q-Airy-plates with director distributions integrated by q-plates and polarization Airy masks are proposed and demonstrated via the photoalignment technique. Single/dual vortex Airy beams of opposite topological charges and orthogonal circular polarizations are directly generated with polarization-controllable characteristic. The singular phase of the vortex part is verified by both astigmatic transformation and digital holography. The trajectory of vortex Airy beams is investigated, manifesting separate propagation dynamics of optical vortices and Airy beams. Meanwhile, Airy beams still keep their intrinsic transverse acceleration, self-healing, and nondiffraction features. This work provides a versatile candidate for generating high-quality vortex Airy beams.
Use of a compact range approach to evaluate rf and dual-mode missiles
NASA Astrophysics Data System (ADS)
Willis, Kenneth E.; Weiss, Yosef
2000-07-01
This paper describes a hardware-in-the-loop (HWIL) system developed for testing Radio Frequency (RF), Infra-Red (IR), and Dual-Mode missile seekers. The system consists of a unique hydraulic five-axis (three seeker axes plus two target axes) Flight Motion Table (FMT), an off-axis parabolic reflector, and electronics required to generate the signals to the RF feeds. RF energy that simulates the target is fed into the reflector from three orthogonal feeds mounted on the inner target axis, at the focal point area of the parabolic reflector. The parabolic reflector, together with the three RF feeds (the Compact Range), effectively produces a far-field image of the target. Both FMT target axis motion and electronic control of the RF beams (deflection) modify the simulated line-of-sight target angles. Multiple targets, glint, multi-path, ECM, and clutter can be introduced electronically. To evaluate dual-mode seekers, the center section of the parabolic reflector is replaced with an IR- transparent, but RF-reflective section. An IR scene projector mounts to the FMT target axes, with its image focused on the intersection of the FMT seeker axes. The system eliminates the need for a large anechoic chamber and 'Target Wall' or target motion system used with conventional HWIL systems. This reduces acquisition and operating costs of the facility.
Vertical intensity modulation for improved radiographic penetration and reduced exclusion zone
NASA Astrophysics Data System (ADS)
Bendahan, J.; Langeveld, W. G. J.; Bharadwaj, V.; Amann, J.; Limborg, C.; Nosochkov, Y.
2016-09-01
In the present work, a method to direct the X-ray beam in real time to the desired locations in the cargo to increase penetration and reduce exclusion zone is presented. Cargo scanners employ high energy X-rays to produce radiographic images of the cargo. Most new scanners employ dual-energy to produce, in addition to attenuation maps, atomic number information in order to facilitate the detection of contraband. The electron beam producing the bremsstrahlung X-ray beam is usually directed approximately to the center of the container, concentrating the highest X-ray intensity to that area. Other parts of the container are exposed to lower radiation levels due to the large drop-off of the bremsstrahlung radiation intensity as a function of angle, especially for high energies (>6 MV). This results in lower penetration in these areas, requiring higher power sources that increase the dose and exclusion zone. The capability to modulate the X-ray source intensity on a pulse-by-pulse basis to deliver only as much radiation as required to the cargo has been reported previously. This method is, however, controlled by the most attenuating part of the inspected slice, resulting in excessive radiation to other areas of the cargo. A method to direct a dual-energy beam has been developed to provide a more precisely controlled level of required radiation to highly attenuating areas. The present method is based on steering the dual-energy electron beam using magnetic components on a pulse-to-pulse basis to a fixed location on the X-ray production target, but incident at different angles so as to direct the maximum intensity of the produced bremsstrahlung to the desired locations. The details of the technique and subsystem and simulation results are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
... Basic Impulse Level 4. Dual/Multiple-Voltage Primary Windings 5. Dual/Multiple-Voltage Secondary Windings 6. Loading B. Technological Feasibility 1. General 2. Maximum Technologically Feasible Levels C...
Defense Small Business Innovation Research Program (SBIR). Abstracts of Phase 2 Awards. 1986
1986-01-01
MEASUREMENT CONCEPTS INC ARMY 41 HWY 34 SOUTH - COLTS TOWNE PLAZA COLTS NECK, NJ 07722 CONTRACT NUMBER: DR EDWARD COLLET TITLE: DIGITAL REFRACTOMETRY OF...BEAM DIGITAL REFRACTOMETRY . BY FOLLOWING A DUAL-BEAM CONFIGURATION WE SHOW THAT IT IS POSSIBLE TO OVERCOME 1) THE OPTICAL SOURCE FLUCTUATIONS, 2) THE
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor)
2006-01-01
An optical component especially suited for common path heterodyne interferometry comprises a symmetric dual-periscope configuration. Each periscope is substantially identical to the other with regard to certain design aspects. The resulting design is an optical component that is highly stable with variations in temperature and angular deviations.
Implementation of focused ion beam (FIB) system in characterization of nuclear fuels and materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Aitkaliyeva; J. W. Madden; B. D. Miller
2014-10-01
Beginning in 2007, a program was established at the Idaho National Laboratory to update key capabilities enabling microstructural and micro-chemical characterization of highly irradiated and/or radiologically contaminated nuclear fuels and materials at scales that previously had not been achieved for these types of materials. Such materials typically cannot be contact handled and pose unique hazards to instrument operators, facilities, and associated personnel. One of the first instruments to be acquired was a Dual Beam focused ion beam (FIB)-scanning electron microscope (SEM) to support preparation of transmission electron microscopy and atom probe tomography samples. Over the ensuing years, techniques have beenmore » developed and operational experience gained that has enabled significant advancement in the ability to characterize a variety of fuel types including metallic, ceramic, and coated particle fuels, obtaining insights into in-reactor degradation phenomena not obtainable by any other means. The following article describes insights gained, challenges encountered, and provides examples of unique results obtained in adapting Dual Beam FIB technology to nuclear fuels characterization.« less
Dove prism based rotating dual beam bidirectional Doppler OCT
Blatter, Cedric; Coquoz, Séverine; Grajciar, Branislav; Singh, Amardeep S. G.; Bonesi, Marco; Werkmeister, René M.; Schmetterer, Leopold; Leitgeb, Rainer A.
2013-01-01
Traditional Doppler OCT is highly sensitive to motion artifacts due to the dependence on the Doppler angle. This limits its accuracy in clinical practice. To overcome this limitation, we use a bidirectional dual beam technique equipped with a novel rotating scanning scheme employing a Dove prism. The volume is probed from two distinct illumination directions with variable controlled incidence plane, allowing for reconstruction of the true flow velocity at arbitrary vessel orientations. The principle is implemented with Swept Source OCT at 1060nm with 100,000 A-Scans/s. We apply the system to resolve pulsatile retinal absolute blood velocity by performing segment scans around the optic nerve head and circumpapillary scan time series. PMID:23847742
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.
2007-01-01
This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).
Dual-beam laser autofocusing system based on liquid lens
NASA Astrophysics Data System (ADS)
Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing
2017-02-01
A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme ;Time-sharing focus, fast conversion; is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.
NASA Astrophysics Data System (ADS)
Durry, Georges; Pouchet, Ivan; Amarouche, Nadir; Danguy, Théodore; Megie, Gerard
2000-10-01
A dual-beam detector is used to measure atmospheric trace species by differential absorption spectroscopy with commercial near-infrared InGaAs laser diodes. It is implemented on the Spectrom tre Diodes Laser Accordables, a balloonborne tunable diode laser spectrometer devoted to the in situ monitoring of CH 4 and H 2 O. The dual-beam detector is made of simple analogical subtractor circuits combined with InGaAs photodiodes. The detection strategy consists in taking the balanced analogical difference between the reference and the sample signals detected at the input and the output of an open optical multipass cell to apply the full dynamic range of the measurements (16 digits) to the weak molecular absorption information. The obtained sensitivity approaches the shot-noise limit. With a 56-m optical cell, the detection limit obtained when the spectra is recorded within 8 ms is 10 4 (expressed in absorbance units). The design and performances of both a simple substractor and an upgraded feedback substractor circuit are discussed with regard to atmospheric in situ CH 4 absorption spectra measured in the 1.653- m region. Mixing ratios are obtained from the absorption spectra by application of a nonlinear least-squares fit to the full molecular line shape in conjunction with in situ P and T measurements.
Sawtooth-wave prebuncher with dual-gaps in Linac injector for HIRFL-SSC
NASA Astrophysics Data System (ADS)
Zhang, Xiaohu; Yuan, Youjin; Xia, Jiawen; Yin, Xuejun; Jin, Peng; Xu, Zhe; Du, Heng; Li, Zhongshan; Qiao, Jian; Wang, Kedong
2018-01-01
An RFQ structure is normally composed of radial matcher, shaper, gentle buncher and accelerator section with changing cell geometry. Bunching is started in the shaper, and adiabatic bunching is done in gentle buncher section. The beam preforms from DC beam to bunch beam through the RFQ and the longitudinal emittance for the ions linacs is defined initially in the RFQ, in which the beam bunch has been shaped. In the present SSC-Linac injector, an RFQ has been designed to accelerate the continuous beam from 3.728 keV/u to 143 keV/u. The heavy ions beam is injected into the SSC (Separated Sector Cyclotron) with the kinetic energy of 1.025 MeV/u after four IH DTLs. The rf frequency of the SSC is 13.417 MHz, and the frequency of the heavy ions RFQ is set to four times of the rf frequency of the SSC. In order to increase the longitudinal capture efficiency of the SSC and suppress the longitudinal emittance at the exit of RFQ, an external MHB (Multi-Harmonics Buncher) is proposed in front of the RFQ. The fundamental frequency of the MHB is the same as the rf frequency of the cyclotron. The scheme of dual-gaps prebuncher with the sawtooth waveform is firstly carried out through multi-harmonics synthetic technology. The multi-particle beam dynamic simulations of the MHB have been done by the BEAMPATH code.
Focal-Plane Imaging of Crossed Beams in Nonlinear Optics Experiments
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Herring, G. C.
2007-01-01
An application of focal-plane imaging that can be used as a real time diagnostic of beam crossing in various optical techniques is reported. We discuss two specific versions and demonstrate the capability of maximizing system performance with an example in a combined dual-pump coherent anti-Stokes Raman scattering interferometric Rayleigh scattering experiment (CARS-IRS). We find that this imaging diagnostic significantly reduces beam alignment time and loss of CARS-IRS signals due to inadvertent misalignments.
Development of Technology for Image-Guided Proton Therapy
2011-10-01
testing proton RBE in the Penn proton beam facility Assemble equipment and develop data analysis software Install and test tablet PCs...production Use dual-energy CT and MRI to determine the composition of materials Year 4 ending 9/30/2011 Measurement of RBE for protons using the...Penn proton beam facility Measure LET for scattered and scanned beams Enter forms on tablet PCs Phase 5 Scope of Work Year 1 ending 9
The impact of manual threshold selection in medical additive manufacturing.
van Eijnatten, Maureen; Koivisto, Juha; Karhu, Kalle; Forouzanfar, Tymour; Wolff, Jan
2017-04-01
Medical additive manufacturing requires standard tessellation language (STL) models. Such models are commonly derived from computed tomography (CT) images using thresholding. Threshold selection can be performed manually or automatically. The aim of this study was to assess the impact of manual and default threshold selection on the reliability and accuracy of skull STL models using different CT technologies. One female and one male human cadaver head were imaged using multi-detector row CT, dual-energy CT, and two cone-beam CT scanners. Four medical engineers manually thresholded the bony structures on all CT images. The lowest and highest selected mean threshold values and the default threshold value were used to generate skull STL models. Geometric variations between all manually thresholded STL models were calculated. Furthermore, in order to calculate the accuracy of the manually and default thresholded STL models, all STL models were superimposed on an optical scan of the dry female and male skulls ("gold standard"). The intra- and inter-observer variability of the manual threshold selection was good (intra-class correlation coefficients >0.9). All engineers selected grey values closer to soft tissue to compensate for bone voids. Geometric variations between the manually thresholded STL models were 0.13 mm (multi-detector row CT), 0.59 mm (dual-energy CT), and 0.55 mm (cone-beam CT). All STL models demonstrated inaccuracies ranging from -0.8 to +1.1 mm (multi-detector row CT), -0.7 to +2.0 mm (dual-energy CT), and -2.3 to +4.8 mm (cone-beam CT). This study demonstrates that manual threshold selection results in better STL models than default thresholding. The use of dual-energy CT and cone-beam CT technology in its present form does not deliver reliable or accurate STL models for medical additive manufacturing. New approaches are required that are based on pattern recognition and machine learning algorithms.
NASA Astrophysics Data System (ADS)
Yang, Deshan; Li, H. Harold; Goddu, S. Murty; Tan, Jun
2014-10-01
Onboard cone-beam CT (CBCT) has been widely used in image guided radiation therapy. However, the longitudinal coverage is only 15.5 cm in the pelvis scan mode. As a result, a single CBCT scan cannot cover the planning target volume in the longitudinal direction for over 80% of the patients. The common approach is to use double- or multiple-circular scans and then combine multiple CBCT volumes after reconstruction. However it raises concerns regarding doubled imaging dose at the imaging beam junctions due to beam divergence. In this work, we present a new method, DSCS (Dual Scan with Complementary Shifts), to address the CBCT coverage problem using a pair of complementary circular scans. In DSCS, two circular scans were performed at 39.5 cm apart longitudinally. In the superior scan, the detector panel was offset by 16 cm to the left, 15 cm to the inferior. In the inferior scan, the detector panel was shifted 16 cm to the right and 15 cm to the superior. The effective imaging volume is 39.5 cm longitudinally with a 45 cm lateral field-of-view (FOV). Half beam blocks were used to confine the imaging radiation inside the volume of interest. A new image reconstruction algorithm was developed, based on the Feldkamp-Davis-Kress cone-beam CT reconstruction algorithm, to support the DSCS scanning geometry. Digital phantom simulations were performed to demonstrate the feasibility of DSCS. Physical phantom studies were performed using an anthropomorphic phantom on a commercial onboard CBCT system. With basic scattering corrections, the reconstruction results were acceptable. Other issues, including the discrepancy in couch vertical at different couch longitudinal positions, and the inaccuracy in couch table longitudinal movement, were manually corrected during the reconstruction process. In conclusion, the phantom studies showed that, using DSCS, a 39.5 cm longitudinal coverage with a 45 cm FOV was accomplished. The efficiency of imaging dose usage was near 100%. This proposed method could be potentially useful for image guidance and subsequent treatment plan adaptation.
Design of two-DMD based zoom MW and LW dual-band IRSP using pixel fusion
NASA Astrophysics Data System (ADS)
Pan, Yue; Xu, Xiping; Qiao, Yang
2018-06-01
In order to test the anti-jamming ability of mid-wave infrared (MWIR) and long-wave infrared (LWIR) dual-band imaging system, a zoom mid-wave (MW) and long-wave (LW) dual-band infrared scene projector (IRSP) based on two-digital micro-mirror device (DMD) was designed by using a projection method of pixel fusion. Two illumination systems, which illuminate the two DMDs directly with Kohler telecentric beam respectively, were combined with projection system by a spatial layout way. The distances of projection entrance pupil and illumination exit pupil were also analyzed separately. MWIR and LWIR virtual scenes were generated respectively by two DMDs and fused by a dichroic beam combiner (DBC), resulting in two radiation distributions in projected image. The optical performance of each component was evaluated by ray tracing simulations. Apparent temperature and image contrast were demonstrated by imaging experiments. On the basis of test and simulation results, the aberrations of optical system were well corrected, and the quality of projected image meets test requirements.
Quasi two-dimensional astigmatic solitons in soft chiral metastructures
NASA Astrophysics Data System (ADS)
Laudyn, Urszula A.; Jung, Paweł S.; Karpierz, Mirosław A.; Assanto, Gaetano
2016-03-01
We investigate a non-homogeneous layered structure encompassing dual spatial dispersion: continuous diffraction in one transverse dimension and discrete diffraction in the orthogonal one. Such dual diffraction can be balanced out by one and the same nonlinear response, giving rise to light self-confinement into astigmatic spatial solitons: self-focusing can compensate for the spreading of a bell-shaped beam, leading to quasi-2D solitary wavepackets which result from 1D transverse self-localization combined with a discrete soliton. We demonstrate such intensity-dependent beam trapping in chiral soft matter, exhibiting one-dimensional discrete diffraction along the helical axis and one-dimensional continuous diffraction in the orthogonal plane. In nematic liquid crystals with suitable birefringence and chiral arrangement, the reorientational nonlinearity is shown to support bell-shaped solitary waves with simple astigmatism dependent on the medium birefringence as well as on the dual diffraction of the input wavepacket. The observations are in agreement with a nonlinear nonlocal model for the all-optical response.
Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues
Leigh, Steven Y.; Chen, Ye; Liu, Jonathan T.C.
2014-01-01
A strategy is presented to enable optical-sectioning microscopy with improved contrast and imaging depth using low-power (0.5 - 1 mW) diode laser illumination. This technology combines the inherent strengths of focal-modulation microscopy and dual-axis confocal (DAC) microscopy for rejecting out-of-focus and multiply scattered background light in tissues. The DAC architecture is unique in that it utilizes an intersecting pair of illumination and collection beams to improve the spatial-filtering and optical-sectioning performance of confocal microscopy while focal modulation selectively ‘labels’ in-focus signals via amplitude modulation. Simulations indicate that modulating the spatial alignment of dual-axis beams at a frequency f generates signals from the focal volume of the microscope that are modulated at 2f with minimal modulation of background signals, thus providing nearly an order-of-magnitude improvement in optical-sectioning contrast compared to DAC microscopy alone. Experiments show that 2f lock-in detection enhances contrast and imaging depth within scattering phantoms and fresh tissues. PMID:24940534
NASA Astrophysics Data System (ADS)
Wu, Lei; Xie, Huikai
2008-02-01
This paper reports the design, fabrication and measurements of a dual-reflective, single-crystal silicon based micromirror that can perform full circumferential scanning (FCS) for endoscopic optical coherence tomography (EOCT). In the proposed FCS-EOCT probe, two optical fibers are used to deliver light beams to either surface of the micromirror, which can rotate +/-45° (or 90°) and thus a 180° optical scanning is obtained from each mirror surface, resulting in full circumferential scans. A novel surface- and bulk-combined micromachining process based on SOI wafers is developed for fabricating the dual reflective micromirror. The single-crystal-silicon device layer of SOI wafers is used for mirror flatness, and Al is coated on both sides for high reflectivity. With one light beam delivered to each mirror surface, full 360° scans have been observed. Other measured data include the resonant frequency: 328Hz, radius of curvatures: - 124 mm (front surface) and 127 mm (back surface), and the reflectances: 81.3% (front surface) and 79.0% (back surface).
Microwave-excited ultrasound and thermoacoustic dual imaging
NASA Astrophysics Data System (ADS)
Ding, Wenzheng; Ji, Zhong; Xing, Da
2017-05-01
We designed a microwave-excited ultrasound (MUI) and thermoacoustic dual imaging system. Under the pulsed microwave excitation, the piezoelectric transducer used for thermoacoustic signal detection will also emit a highly directional ultrasonic beam based on the inverse piezoelectric effect. With this beam, the ultrasonic transmitter circuitry of the traditional ultrasound imaging (TUI) system can be replaced by a microwave source. In other words, TUI can be fully integrated into the thermoacoustic imaging system by sharing the microwave excitation source and the transducer. Moreover, the signals of the two imaging modalities do not interfere with each other due to the existence of the sound path difference, so that MUI can be performed simultaneously with microwave-induced thermoacoustic imaging. In the study, the performance characteristics and imaging capabilities of this hybrid system are demonstrated. The results indicate that our design provides one easy method for low-cost platform integration and has the potential to offer a clinically useful dual-modality tool for the detection of accurate diseases.
Field mappers for laser material processing
NASA Astrophysics Data System (ADS)
Blair, Paul; Currie, Matthew; Trela, Natalia; Baker, Howard J.; Murphy, Eoin; Walker, Duncan; McBride, Roy
2016-03-01
The native shape of the single-mode laser beam used for high power material processing applications is circular with a Gaussian intensity profile. Manufacturers are now demanding the ability to transform the intensity profile and shape to be compatible with a new generation of advanced processing applications that require much higher precision and control. We describe the design, fabrication and application of a dual-optic, beam-shaping system for single-mode laser sources, that transforms a Gaussian laser beam by remapping - hence field mapping - the intensity profile to create a wide variety of spot shapes including discs, donuts, XY separable and rotationally symmetric. The pair of optics transform the intensity distribution and subsequently flatten the phase of the beam, with spot sizes and depth of focus close to that of a diffraction limited beam. The field mapping approach to beam-shaping is a refractive solution that does not add speckle to the beam, making it ideal for use with single mode laser sources, moving beyond the limits of conventional field mapping in terms of spot size and achievable shapes. We describe a manufacturing process for refractive optics in fused silica that uses a freeform direct-write process that is especially suited for the fabrication of this type of freeform optic. The beam-shaper described above was manufactured in conventional UV-fused silica using this process. The fabrication process generates a smooth surface (<1nm RMS), leading to laser damage thresholds of greater than 100J/cm2, which is well matched to high power laser sources. Experimental verification of the dual-optic filed mapper is presented.
Multiple-beam propagation in an Anderson localized optical fiber.
Karbasi, Salman; Koch, Karl W; Mafi, Arash
2013-01-14
We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers that can be used for practical beam-multiplexing applications.
Implementation of a Digital Signal Processing Subsystem for a Long Wavelength Array Station
NASA Technical Reports Server (NTRS)
Soriano, Melissa; Navarro, Robert; D'Addario, Larry; Sigman, Elliott; Wang, Douglas
2011-01-01
This paper describes the implementation of a Digital Signal Processing (DP) subsystem for a single Long Wavelength Array (LWA) station.12 The LWA is a radio telescope that will consist of many phased array stations. Each LWA station consists of 256 pairs of dipole-like antennas operating over the 10-88 MHz frequency range. The Digital Signal Processing subsystem digitizes up to 260 dual-polarization signals at 196 MHz from the LWA Analog Receiver, adjusts the delay and amplitude of each signal, and forms four independent beams. Coarse delay is implemented using a first-in-first-out buffer and fine delay is implemented using a finite impulse response filter. Amplitude adjustment and polarization corrections are implemented using a 2x2 matrix multiplication
Dual task cost of walking is related to fall risk in persons with multiple sclerosis.
Wajda, Douglas A; Motl, Robert W; Sosnoff, Jacob J
2013-12-15
Persons with multiple sclerosis (MS) commonly have walking and cognitive impairments. While walking with a simultaneous cognitive task, persons with MS experience a greater decline in walking performance than healthy controls. This change in performance is termed dual task cost or dual task interference and has been associated with fall risk in older adults. We examined whether dual task cost during walking was related to fall risk in persons with MS. Thirty-three ambulatory persons with MS performed walking tasks with and without a concurrent cognitive task (dual task condition) as well as underwent a fall risk assessment. Dual task cost was operationalized as the percent change in velocity from normal walking conditions to dual task walking conditions. Fall risk was quantified using the Physiological Profile Assessment. A Spearman correlation analysis revealed a significant positive correlation between dual task cost of walking velocity and fall risk as well as dual task cost of stride length and fall risk. Overall, the findings indicate that dual task cost is associated with fall risk and may be an important target for falls prevention strategies. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yaoyu; Li, Xiangping; Gu, Min, E-mail: mgu@swin.edu.au
2014-12-29
We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way formore » realizing functional nanostructures.« less
Design considerations for the beam-waveguide retrofit of a ground antenna station
NASA Technical Reports Server (NTRS)
Veruttipong, T.; Withington, J.; Galindo-Israel, V.; Imbriale, W.; Bathker, D.
1986-01-01
Retrofitting an antenna that was originally designed without a beam waveguide introduces special difficulties because it is desirable to minimize alteration of the original mechanical truss work and to image the actual feed without distortion at the focal point of the dual-shaped reflector. To obtain an acceptable image, certain Geometrical Optics (GO) design criteria are followed as closely as possible. The problems associated with applying these design criteria to a 34-meter dual-shaped DSN (Deep Space Network) antenna are discussed. The use of various diffraction analysis techniques in the design process is also discussed. GTD and FFT algorithms are particularly necessary at the higher frequencies, while Physical Optics and Spherical Wave Expansions proved necessary at the lower frequencies.
Rodriguez-Granillo, Gaston A; Carrascosa, Patricia; Cipriano, Silvina; de Zan, Macarena; Deviggiano, Alejandro; Capunay, Carlos; Cury, Ricardo C
2015-01-01
The assessment of myocardial perfusion using single-energy (SE) imaging is influenced by beam-hardening artifacts (BHA). We sought to explore the ability of dual-energy (DE) imaging to attenuate the presence of BHA. Myocardial signal density (SD) was evaluated in 2240 myocardial segments (112 for each energy level) and in 320 American Heart Association segments among the SE group. Compared to DE reconstructions at the best energy level, SE acquisitions showed no significant differences overall regarding myocardial SD or signal-to-noise ratio. The segments most commonly affected by BHA showed significantly lower myocardial SD at the lowest energy levels, progressively normalizing at higher energy levels. Copyright © 2015 Elsevier Inc. All rights reserved.
Double passing the Kitt Peak 1-m Fourier transform spectrometer
NASA Technical Reports Server (NTRS)
Jennings, D. E.; Hubbard, R.; Brault, J. W.
1985-01-01
Attention is given to a simple technique for performing the conversion of the Kitt Peak 1-m Fourier transform spectrometer's dual input/output optical configuration to a double pass configuration that improves spectral resolution by a factor of 2. The modification is made by placing a flat mirror in the output beam from each cat's eye, retroreflecting the beams back through the cat's eyes to the first beam splitter. A single detector is placed at the second input port, which then becomes the instrument's output.
NASA Astrophysics Data System (ADS)
Pantelić, Dejan V.; Grujić, Dušan Ž.; Vasiljević, Darko M.
2014-12-01
We describe a method for dual-view biomechanical strain measurements of highly asymmetrical biological objects, like teeth or bones. By using a spherical mirror, we were able to simultaneously record a digital hologram of the object itself and the mirror image of its (otherwise invisible) rear side. A single laser beam was sufficient to illuminate both sides of the object, and to provide a reference beam. As a result, the system was mechanically very stable, enabling long exposure times (up to 2 min) without the need for vibration isolation. The setup is simple to construct and adjust, and can be used to interferometrically observe any object that is smaller than the mirror diameter. Parallel data processing on a CUDA-enabled (compute unified device architecture) graphics card was used to reconstruct digital holograms and to further correct image distortion. We used the setup to measure the deformation of a tooth due to mastication forces. The finite-element method was used to compare experimental results and theoretical predictions.
Dual-ion-beam deposition of carbon films with diamond-like properties
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Swec, D. M.; Angus, J. C.
1985-01-01
A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.
Dual ion beam deposition of carbon films with diamondlike properties
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Swec, D. M.; Angus, J. C.
1984-01-01
A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Anil Kumar; Supe, Sanjay S.; Anantha, N.
2015-01-15
Accuracy of dose delivery at low monitor unit setting is studied for a dual photon energy linear accelerator. Dose delivered per MU is found to be constant for both the photon beams for MU settings above 30. For lower MUs there is definite deviation from the calibrated value and the error is found to be increasing as fewer MUs are set for dose delivery. This dose/MU ratio at low MU setting is found to be dose-rate dependent, showing an increasing trend with pulse repetition frequency (PRF). Also, the dosimetric ratio is observed to be mode dependent; its value for anmore » 18 MV beam is almost double that observed in the case of a 6 MV beam at very low MU setting. The magnitude of this error should be determined for each energy so that appropriate corrections can be applied if very low MUs are to be used.« less
Dual beam organic depth profiling using large argon cluster ion beams
Holzweber, M; Shard, AG; Jungnickel, H; Luch, A; Unger, WES
2014-01-01
Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. PMID:25892830
Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; González, Santiago; Robles, Víctor; DeFelipe, Javier; Larrañaga, Pedro; Bielza, Concha
2014-01-01
In the cerebral cortex, most synapses are found in the neuropil, but relatively little is known about their 3-dimensional organization. Using an automated dual-beam electron microscope that combines focused ion beam milling and scanning electron microscopy, we have been able to obtain 10 three-dimensional samples with an average volume of 180 µm3 from the neuropil of layer III of the young rat somatosensory cortex (hindlimb representation). We have used specific software tools to fully reconstruct 1695 synaptic junctions present in these samples and to accurately quantify the number of synapses per unit volume. These tools also allowed us to determine synapse position and to analyze their spatial distribution using spatial statistical methods. Our results indicate that the distribution of synaptic junctions in the neuropil is nearly random, only constrained by the fact that synapses cannot overlap in space. A theoretical model based on random sequential absorption, which closely reproduces the actual distribution of synapses, is also presented. PMID:23365213
Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; González, Santiago; Robles, Víctor; Defelipe, Javier; Larrañaga, Pedro; Bielza, Concha
2014-06-01
In the cerebral cortex, most synapses are found in the neuropil, but relatively little is known about their 3-dimensional organization. Using an automated dual-beam electron microscope that combines focused ion beam milling and scanning electron microscopy, we have been able to obtain 10 three-dimensional samples with an average volume of 180 µm(3) from the neuropil of layer III of the young rat somatosensory cortex (hindlimb representation). We have used specific software tools to fully reconstruct 1695 synaptic junctions present in these samples and to accurately quantify the number of synapses per unit volume. These tools also allowed us to determine synapse position and to analyze their spatial distribution using spatial statistical methods. Our results indicate that the distribution of synaptic junctions in the neuropil is nearly random, only constrained by the fact that synapses cannot overlap in space. A theoretical model based on random sequential absorption, which closely reproduces the actual distribution of synapses, is also presented.
Pantelić, Dejan V; Grujić, Dušan Ž; Vasiljević, Darko M
2014-12-01
We describe a method for dual-view biomechanical strain measurements of highly asymmetrical biological objects, like teeth or bones. By using a spherical mirror, we were able to simultaneously record a digital hologram of the object itself and the mirror image of its (otherwise invisible) rear side. A single laser beam was sufficient to illuminate both sides of the object, and to provide a reference beam. As a result, the system was mechanically very stable, enabling long exposure times (up to 2 min) without the need for vibration isolation. The setup is simple to construct and adjust, and can be used to interferometrically observe any object that is smaller than the mirror diameter. Parallel data processing on a CUDA-enabled (compute unified device architecture) graphics card was used to reconstruct digital holograms and to further correct image distortion. We used the setup to measure the deformation of a tooth due to mastication forces. The finite-element method was used to compare experimental results and theoretical predictions.
Initial application of a dual-sweep streak camera to the Duke storage ring OK-4 source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A.H.; Yang, B.X.; Litvinenko, V.
1997-08-01
The visible and UV spontaneous emission radiation (SER) from the Duke OK-4 wiggler has been used with a Hamamatsu C5680 dual-sweep streak camera to characterize the stored electron beams. Particle beam energies of 270 and 500 MeV in the Duke storage ring were used in this initial application with the OK-4 adjusted to generate wavelengths from 500 nm to near 200 nm. The OK-4 magnetic system with its 68 periods provided a much stronger radiation source than a nearby bending magnet source point. Sensitivity to single-bunch, single-turn SER was shown down to 4 {mu}A beam current at {lambda} = 450more » nm. The capability of seeing second passes in the FEL resonator at a wavelength near 200 nm was used to assess the cavity length versus orbit length. These tests (besides supporting preparation for UV-visible SR FEL startups) are also relevant to possible diagnostics techniques for single-pass FEL prototype facilities.« less
Wang, Sen; Wang, Xinke; Zhang, Yan
2017-10-02
Based on the amplitude and phase modulation of subwavelength slits, a metasurface which can simultaneously generate Airy beam for surface plasmon polaritons (SPPs) and transmitted wave is presented. Interestingly, by changing the handedness of circularly polarized light, the position of SPPs Airy beam can be switched to the left or right side of the metasurface, while the field distribution and the position of the Airy beam for transmitted wave are not affected. The nondiffracting, self-bending and self-healing properties of the generated Airy beams are analyzed as well. In addition, abruptly autofocusing of SPPs and transmitted wave are demonstrated by interfering two Airy beams. The dual functionality and chirality features of the metasurface can provide more freedoms in the potential applications of Airy beams.
Parameterized reduced order models from a single mesh using hyper-dual numbers
NASA Astrophysics Data System (ADS)
Brake, M. R. W.; Fike, J. A.; Topping, S. D.
2016-06-01
In order to assess the predicted performance of a manufactured system, analysts must consider random variations (both geometric and material) in the development of a model, instead of a single deterministic model of an idealized geometry with idealized material properties. The incorporation of random geometric variations, however, potentially could necessitate the development of thousands of nearly identical solid geometries that must be meshed and separately analyzed, which would require an impractical number of man-hours to complete. This research advances a recent approach to uncertainty quantification by developing parameterized reduced order models. These parameterizations are based upon Taylor series expansions of the system's matrices about the ideal geometry, and a component mode synthesis representation for each linear substructure is used to form an efficient basis with which to study the system. The numerical derivatives required for the Taylor series expansions are obtained via hyper-dual numbers, and are compared to parameterized models constructed with finite difference formulations. The advantage of using hyper-dual numbers is two-fold: accuracy of the derivatives to machine precision, and the need to only generate a single mesh of the system of interest. The theory is applied to a stepped beam system in order to demonstrate proof of concept. The results demonstrate that the hyper-dual number multivariate parameterization of geometric variations, which largely are neglected in the literature, are accurate for both sensitivity and optimization studies. As model and mesh generation can constitute the greatest expense of time in analyzing a system, the foundation to create a parameterized reduced order model based off of a single mesh is expected to reduce dramatically the necessary time to analyze multiple realizations of a component's possible geometry.
Dual-Energy CT: New Horizon in Medical Imaging
Goo, Jin Mo
2017-01-01
Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector. PMID:28670151
NASA Astrophysics Data System (ADS)
Yang, Ping; Yang, Ruo fu; Shen, Feng; Ao, Mingwu; Jiang, Wenhan
2009-05-01
Coherent combination is one of the most promising ways to realize high power laser output. A three- laser-beam coherent combination system based on adaptive optics (AO) technique has been set up in our laboratory. In this system, three 1064nm laser beams are placed side-by-side and compressed by two reflective mirrors. An active segmented deformable mirror (DM) is used to compensate the optical path difference (OPD) among three laser beams. The beams are overlapped onto a 2900Hz CCD camera to form an interference pattern while the peak intensity of the interference pattern is taken as the cost function to optimize by a stochastic parallel gradient descent (SPGD) algorithm. SPGD algorithm is realized on a RT-Linux dual-core industrial computer. A series of experiments have been accomplished and experimental results show that both static distorted aberrations in the beams and active distorted aberrations (which are brought in by a hot iron and the frequency is about 5Hz) can be compensated successfully when the gain coefficients and the perturbation amplitude of SPGD are chosed appropriately, thereby three beams can be well combined. For controlling the phase of fiber lasers, the phase characteristics of beams passing through Yb-doped dual-clad fiber amplifier are measured by means of investigating the interference pattern under different output power through experiments. The frequency of phase fluctuation is evaluated through analyzing the fluctuation of power within a 90um aperture of far-field focal spot. Experimental results show that the phase fluctuation frequencies of laser beam transmitted through fiber amplifier are mainly in the range of 100~1500Hz. As a result, to control the phase fluctuation of beams passing through fiber amplifier, the bandwidth of any potential phase control scheme must be greater than 1.5 kilohertz.
A dual-polarized broadband planar antenna and channelizing filter bank for millimeter wavelengths
NASA Astrophysics Data System (ADS)
O'Brient, Roger; Ade, Peter; Arnold, Kam; Edwards, Jennifer; Engargiola, Greg; Holzapfel, William L.; Lee, Adrian T.; Myers, Michael J.; Quealy, Erin; Rebeiz, Gabriel; Richards, Paul; Suzuki, Aritoki
2013-02-01
We describe the design, fabrication, and testing of a broadband log-periodic antenna coupled to multiple cryogenic bolometers. This detector architecture, optimized here for astrophysical observations, simultaneously receives two linear polarizations with two octaves of bandwidth at millimeter wavelengths. The broad bandwidth signal received by the antenna is divided into sub-bands with integrated in-line frequency-selective filters. We demonstrate two such filter banks: a diplexer with two sub-bands and a log-periodic channelizer with seven contiguous sub-bands. These detectors have receiver efficiencies of 20%-40% and percent level polarization isolation. Superconducting transition-edge sensor bolometers detect the power in each sub-band and polarization. We demonstrate circularly symmetric beam patterns, high polarization isolation, accurately positioned bands, and high optical efficiency. The pixel design is applicable to astronomical observations of intensity and polarization at millimeter through sub-millimeter wavelengths. As compared with an imaging array of pixels measuring only one band, simultaneous measurements of multiple bands in each pixel has the potential to result in a higher signal-to-noise measurement while also providing spectral information. This development facilitates compact systems with high mapping speeds for observations that require information in multiple frequency bands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Shuai; Hu, Peng-Cheng, E-mail: hupc@hit.edu.cn; Ding, Xue-Mei, E-mail: X.M.Ding@outlook.com
A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibrationmore » show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.« less
Biomimetic surface structuring using cylindrical vector femtosecond laser beams
NASA Astrophysics Data System (ADS)
Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel
2017-03-01
We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.
Beam transport results on the multi-beam MABE accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, P.D.; Alexander, J.A.; Hasti, D.E.
1985-10-01
MABE is a multistage, electron beam linear accelerator. The accelerator has been operated in single beam (60 kA, 7 Mev) and multiple beam configurations. This paper deals with the multiple beam configuration in which typically nine approx. = 25 kA injected beams are transported through three accelerating gaps. Experimental results from the machine are discussed, including problems encountered and proposed solutions to those problems.
TU-E-BRB-08: Dual Gated Volumetric Modulated Arc Therapy.
Wu, J; Fahimian, B; Wu, H; Xing, L
2012-06-01
Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging treatment modality for Stereotactic Body Radiotherapy (SBRT). However, gating significantly prolongs treatment time. In order to enhance treatment efficiency, a novel dual gated VMAT, in which dynamic arc deliveries are executed sequentially in alternating exhale and inhale phases, is proposed and evaluated experimentally. The essence of dual gated VMAT is to take advantage of the natural pauses that occur at inspiration and exhalation by alternatively delivering the dose at the two phases, instead of the exhale window only. The arc deliveries at the two phases are realized by rotating gantry forward at the exhale window and backward at the inhale in an alternative fashion. Custom XML scripts were developed in Varian's TrueBeam STx Developer Mode to enable dual gated VMAT delivery. RapidArc plans for a lung case were generated for both inhale and exhale phases. The two plans were then combined into a dual gated arc by interleaving the arc treatment nodes of the two RapidArc plans. The dual gated plan was delivered in the development mode of TrueBeam LINAC onto a motion phantom and the delivery was measured by using pinpoint chamber/film/diode array (delta 4). The measured dose distribution was compared with that computed using Eclipse AAA algorithm. The treatment delivery time was recorded and compared with the corresponding single gated plans. Relative to the corresponding single gated delivery, it was found that treatment time efficiency was improved by 95.5% for the case studied here. Pinpoint chamber absolute dose measurement agreed the calculation to within 0.7%. Diode chamber array measurements revealed that 97.5% of measurement points of dual gated RapidArc delivery passed the 3% and 3mm gamma-test criterion. A dual gated VMAT treatment has been developed and implemented successfully with nearly doubled treatment delivery efficiency. © 2012 American Association of Physicists in Medicine.
DeWitt, Nancy T.; Reich, Christopher D.; Smith, Christopher G.; Reynolds, Billy J.
2014-01-01
A team of scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, collected 92 line-kilometers of dual-frequency single-beam bathymetry data in the tidal creeks, bayous, and coastal areas near Weeks Bay, southwest Louisiana. Limited bathymetry data exist for these tidally and meteorologically influenced shallow-water estuarine environments. In order to reduce the present knowledge gap, the objectives of this study were to (1) develop methods for regional inland bathymetry mapping and monitoring, (2) test inland bathymetry mapping system in pilot locations for integrating multiple elevation (aerial and terrestrial lidar) and bathymetry datasets, (3) implement inland bathymetry mapping and monitoring in highly focused sites, and (4) evaluate changes in bathymetry and channel-fill sediment storage using these methods. This report contains single-beam bathymetric data collected between January 14 and 18, 2013. Data were collected from the RV Mako (5-meter vessel) in water depths that ranged from This report serves as an archive of processed bathymetry data. Geographic information system data provided in this document include a 10-meter cell-size interpolated gridded bathymetry surface, and trackline maps. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata. Do not use these data for navigational purposes.
Momeni, Ali; Rouhi, Kasra; Rajabalipanah, Hamid; Abdolali, Ali
2018-04-18
Inspired by the information theory, a new concept of re-programmable encrypted graphene-based coding metasurfaces was investigated at terahertz frequencies. A channel-coding function was proposed to convolutionally record an arbitrary information message onto unrecognizable but recoverable parity beams generated by a phase-encrypted coding metasurface. A single graphene-based reflective cell with dual-mode biasing voltages was designed to act as "0" and "1" meta-atoms, providing broadband opposite reflection phases. By exploiting graphene tunability, the proposed scheme enabled an unprecedented degree of freedom in the real-time mapping of information messages onto multiple parity beams which could not be damaged, altered, and reverse-engineered. Various encryption types such as mirroring, anomalous reflection, multi-beam generation, and scattering diffusion can be dynamically attained via our multifunctional metasurface. Besides, contrary to conventional time-consuming and optimization-based methods, this paper convincingly offers a fast, straightforward, and efficient design of diffusion metasurfaces of arbitrarily large size. Rigorous full-wave simulations corroborated the results where the phase-encrypted metasurfaces exhibited a polarization-insensitive reflectivity less than -10 dB over a broadband frequency range from 1 THz to 1.7 THz. This work reveals new opportunities for the extension of re-programmable THz-coding metasurfaces and may be of interest for reflection-type security systems, computational imaging, and camouflage technology.
Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe
2015-12-01
Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Regular dual-energy imaging was able to increase tracking accuracy in left-right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. This study has highlighted the influence of patient anatomy on the success rate of real-time markerless tumor tracking using dual-energy imaging. Additionally, the importance of the spectral separation of the imaging beams used to generate the dual-energy images has been shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon
2015-12-15
Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated bymore » weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of patient anatomy on the success rate of real-time markerless tumor tracking using dual-energy imaging. Additionally, the importance of the spectral separation of the imaging beams used to generate the dual-energy images has been shown.« less
Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng
2016-09-19
Dual-comb lasers simultaneously generating asynchronous ultrashort pulses could be an intriguing alternative to the current dual-laser comb source. When generated through a common light path, the low common-mode noises and good coherence between the pulse trains could be realized. Here we demonstrate the completely common-path, unidirectional dual-comb lasing using a carbon nanotube saturable absorber with additional pulse narrowing and broadening mechanisms. The interactions between multiple soliton formation mechanisms result in bifurcation into unusual two-pulse states with pulses of four-fold bandwidth difference and tens-of-Hz repetition rate difference. Coherence between the pulses is verified by the asynchronous cross-sampling and dual-comb spectroscopy measurements.
NASA Astrophysics Data System (ADS)
Adrich, Przemysław
2016-05-01
In Part I of this work a new method for designing dual foil electron beam forming systems was introduced. In this method, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of system performance in function of its parameters. At each point of the scan, Monte Carlo method is used to calculate the off-axis dose profile in water taking into account detailed and complete geometry of the system. The new method, while being computationally intensive, minimizes the involvement of the designer. In this Part II paper, feasibility of practical implementation of the new method is demonstrated. For this, a prototype software tools were developed and applied to solve a real life design problem. It is demonstrated that system optimization can be completed within few hours time using rather moderate computing resources. It is also demonstrated that, perhaps for the first time, the designer can gain deep insight into system behavior, such that the construction can be simultaneously optimized in respect to a number of functional characteristics besides the flatness of the off-axis dose profile. In the presented example, the system is optimized in respect to both, flatness of the off-axis dose profile and the beam transmission. A number of practical issues related to application of the new method as well as its possible extensions are discussed.
Dual-wavelength photothermal optical coherence tomography for blood oxygen saturation measurement
NASA Astrophysics Data System (ADS)
Yin, Biwei; Kuranov, Roman V.; McElroy, Austin B.; Milner, Thomas E.
2013-03-01
We report design and demonstration of a dual wavelength photothermal (DWP) optical coherence tomography (OCT) system for imaging of a phantom microvessel and measurement of hemoglobin oxygen saturation (SO2) level. The DWP-OCT system contains a swept-source (SS) two-beam phase-sensitive (PhS) OCT system (1060 nm) and two intensity modulated photothermal excitation lasers (770 nm and 800 nm). The PhS-OCT probe beam (1060 nm) and photothermal excitation beams are combined into one single-mode optical fiber. A galvanometer based two-dimensional achromatic scanning system is designed to provide 14 μm lateral resolution for the PhS-OCT probe beam (1060 nm) and 13 μm lateral resolution for photothermal excitation beams. DWP-OCT system's sensitivity is 102 dB, axial resolution is 13 μm in tissue and uses a real-time digital dispersion compensation algorithm. Noise floor for optical pathlength measurements is 300 pm in the signal frequency range (380-400 Hz) of photothermal modulation frequencies. Blood SO2 level is calculated from measured optical pathlength (op) signal in a 300 μm diameter microvessel phantom introduced by the two photothermal excitation beams. En-face and B-scan images of a phantom microvessel are recorded, and six blood samples' SO2 levels are measured using DWP-OCT and compared with values provided by a commercial blood oximeter. A mathematical model indicates thermal diffusion introduces a systematic artifact that over-estimates SO2 values and is consistent with measured data.
Multiple tobacco product use among US adolescents and young adults
Soneji, Samir; Sargent, James; Tanski, Susanne
2016-01-01
Objective To assess the extent to which multiple tobacco product use among adolescents and young adults falls outside current Food and Drug Administration (FDA) regulatory authority. Methods We conducted a web-based survey of 1596 16–26-year-olds to assess use of 11 types of tobacco products. We ascertained current (past 30 days) tobacco product use among 927 respondents who ever used tobacco. Combustible tobacco products included cigarettes, cigars (little filtered, cigarillos, premium) and hookah; non-combustible tobacco products included chew, dip, dissolvables, e-cigarettes, snuff and snus. We then fitted an ordinal logistic regression model to assess demographic and behavioural associations with higher levels of current tobacco product use (single, dual and multiple product use). Results Among 448 current tobacco users, 54% were single product users, 25% dual users and 21% multiple users. The largest single use category was cigarettes (49%), followed by hookah (23%), little filtered cigars (17%) and e-cigarettes (5%). Most dual and multiple product users smoked cigarettes, along with little filtered cigars, hookah and e-cigarettes. Forty-six per cent of current single, 84% of dual and 85% of multiple tobacco product users consumed a tobacco product outside FDA regulatory authority. In multivariable analysis, the adjusted risk of multiple tobacco use was higher for males, first use of a non-combustible tobacco product, high sensation seeking respondents and declined for each additional year of age that tobacco initiation was delayed. Conclusions Nearly half of current adolescent and young adult tobacco users in this study engaged in dual and multiple tobacco product use; the majority of them used products that fall outside current FDA regulatory authority. This study supports FDA deeming of these products and their incorporation into the national media campaign to address youth tobacco use. PMID:25361744
Room scatter effects in Total Skin Electron Irradiation: Monte Carlo simulation study.
Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Raquel
2017-01-01
Total Skin Electron Irradiation (TSEI) is a complex technique which usually involves the use of large electron fields and the dual-field approach. In this situation, many electrons scattered from the treatment room floor are produced. However, no investigations of the effect of scattered electrons in TSEI treatments have been reported. The purpose of this work was to study the contribution of floor scattered electrons to skin dose during TSEI treatment using Monte Carlo (MC) simulations. All MC simulations were performed with the EGSnrc code. Influence of beam energy, dual-field angle, and floor material on the contribution of floor scatter was investigated. Spectrum of the scattered electrons was calculated. Measurements of dose profile were performed in order to verify MC calculations. Floor scatter dependency on the floor material was observed (at 20 cm from the floor, scatter contribution was about 21%, 18%, 15%, and 12% for iron, concrete, PVC, and water, respectively). Although total dose profiles exhibited slight variation as functions of beam energy and dual-field angle, no dependence of the floor scatter contribution on the beam energy or dual-field angle was found. The spectrum of the scattered electrons was almost uniform between a few hundred KeV to 4 MeV, and then decreased linearly to 6 MeV. For the TSEI technique, dose contribution due to the electrons scattered from the room floor may be clinically significant and should be taken into account during design and commissioning phases. MC calculations can be used for this task. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Design of a large dual polarized Ku band reflectarray for space borne radar altimeter
NASA Technical Reports Server (NTRS)
Hodges, Richard E.; Zawadzki, Mark
2004-01-01
We describe the design of a large dual-beam, dual polarized reflectarray designed for a space-based radar altimeter. This application requires a 2.16 X 0.35 m aperture that can be folded for launch stowage. Low mass and >50% efficiency are also required. A reflectarray antenna offers the best approach but also presents unique technical challenges since a reflectarry has never been used in a space based radar application. In what follows, we describe the design, analysis and measurements of a breadboard test array built to demonstrate the reflectarray concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osin, D.; Schindler, T., E-mail: dosin@trialphaenergy.com
2016-11-15
A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can bemore » used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.« less
NASA Astrophysics Data System (ADS)
Adrich, Przemysław
2016-05-01
In Part I of this work existing methods and problems in dual foil electron beam forming system design are presented. On this basis, a new method of designing these systems is introduced. The motivation behind this work is to eliminate the shortcomings of the existing design methods and improve overall efficiency of the dual foil design process. The existing methods are based on approximate analytical models applied in an unrealistically simplified geometry. Designing a dual foil system with these methods is a rather labor intensive task as corrections to account for the effects not included in the analytical models have to be calculated separately and accounted for in an iterative procedure. To eliminate these drawbacks, the new design method is based entirely on Monte Carlo modeling in a realistic geometry and using physics models that include all relevant processes. In our approach, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of the system performance in function of parameters of the foils. The new method, while being computationally intensive, minimizes the involvement of the designer and considerably shortens the overall design time. The results are of high quality as all the relevant physics and geometry details are naturally accounted for. To demonstrate the feasibility of practical implementation of the new method, specialized software tools were developed and applied to solve a real life design problem, as described in Part II of this work.
NASA Astrophysics Data System (ADS)
Gravity Collaboration; Abuter, R.; Accardo, M.; Amorim, A.; Anugu, N.; Ávila, G.; Azouaoui, N.; Benisty, M.; Berger, J. P.; Blind, N.; Bonnet, H.; Bourget, P.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cassaing, F.; Chapron, F.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; de Wit, W.; de Zeeuw, P. T.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; Dexter, J.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Fédou, P.; Finger, G.; Garcia, P.; Garcia Dabo, C. E.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Gonte, F.; Gordo, P.; Grould, M.; Grözinger, U.; Guieu, S.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haussmann, F.; Henning, Th.; Hippler, S.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Klein, R.; Kok, Y.; Kolb, J.; Kulas, M.; Lacour, S.; Lapeyrère, V.; Lazareff, B.; Le Bouquin, J.-B.; Lèna, P.; Lenzen, R.; Lévêque, S.; Lippa, M.; Magnard, Y.; Mehrgan, L.; Mellein, M.; Mérand, A.; Moreno-Ventas, J.; Moulin, T.; Müller, E.; Müller, F.; Neumann, U.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Plewa, P. M.; Popovic, D.; Rabien, S.; Ramírez, A.; Ramos, J.; Rau, C.; Riquelme, M.; Rohloff, R.-R.; Rousset, G.; Sanchez-Bermudez, J.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Spyromilio, J.; Straubmeier, C.; Sturm, E.; Suarez, M.; Tristram, K. R. W.; Ventura, N.; Vincent, F.; Waisberg, I.; Wank, I.; Weber, J.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yazici, S.; Ziegler, D.; Zins, G.
2017-06-01
GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.
WE-E-18C-01: Multi-Energy CT: Current Status and Recent Innovations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelc, N; McCollough, C; Yu, L
2014-06-15
Conventional computed tomography (CT) uses a single polychromatic x-ray spectrum and energy integrating detectors, and produces images whose contrast depends on the effective attenuation coefficient of the broad spectrum beam. This can introduce errors from beam hardening and does not produce the optimal contrast-to-noise ratio. In addition, multiple materials can have the same effective attenuation coefficient, causing different materials to be indistinguishable in conventional CT images. If transmission measurements at two or more energies are obtained, even with polychromatic beams, more specific information about the object can be obtained. If the object does not contain materials with k-edges in themore » spectrum, the x-ray attenuation can be well-approximated by a linear combination of two processes (photoelectric absorption and Compton scattering) or, equivalently, two basis materials. For such cases, two spectral measurements suffice, although additional measurements can provide higher precision. If K-edge materials are present, additional spectral measurements can allow these materials to be isolated. Current commercial implementations use varied approaches, including two sources operating a different kVp, one source whose kVp is rapidly switched in a single scan, and a dual layer detector that can provide spectral information in every reading. Processing of the spectral information can be performed in the raw data domain or in the image domain. The process of calculating the amount of the two basis functions implicitly corrects for beam hardening and therefore can lead to improvements in quantitative accuracy. Information can be extracted to provide material specific information beyond that of conventional CT. This additional information has been shown to be important in several clinical applications, and can also lead to more efficient clinical protocols. Recent innovations in x-ray sources, detectors, and systems have made multi-energy CT much more practical and improved its performance. In addition, this is a very active area of research and further improvements are expected through further technological improvements. Learning Objectives: Basic principles of multi-energy CT Current implementations of mutli-energy CT Data and image analysis methods in multi-energy CT Current clinical applications of dual energy CT5. recent innovations and anticipated advances in multi-energy CT.« less
NASA Astrophysics Data System (ADS)
Das, Mangal; Kumar, Amitesh; Singh, Rohit; Than Htay, Myo; Mukherjee, Shaibal
2018-02-01
Single synaptic device with inherent learning and memory functions is demonstrated based on a forming-free amorphous Y2O3 (yttria) memristor fabricated by dual ion beam sputtering system. Synaptic functions such as nonlinear transmission characteristics, long-term plasticity, short-term plasticity and ‘learning behavior (LB)’ are achieved using a single synaptic device based on cost-effective metal-insulator-semiconductor (MIS) structure. An ‘LB’ function is demonstrated, for the first time in the literature, for a yttria based memristor, which bears a resemblance to certain memory functions of biological systems. The realization of key synaptic functions in a cost-effective MIS structure would promote much cheaper synapse for artificial neural network.
Huff, Alison; Melton, Charles N; Hirst, Linda S; Sharping, Jay E
2015-10-01
A dual-beam optical trap is used to trap and manipulate dielectric particles. When the refractive index of these particles is comparable to that of the surrounding medium, equilibrium trapping locations within the system shift from stable to unstable depending on fiber separation and particle size. This is due to to the relationship between gradient and scattering forces. We experimentally and computationally study the transitions between stable and unstable trapping of poly(methyl methacrylate) beads for a range of parameters relevant to experimental setups involving giant unilamellar vesicles. We present stability maps for various fiber separations and particle sizes, and find that careful attention to particle size and configuration is necessary to obtain reproducible quantitative results for soft matter stretching experiments.
Huff, Alison; Melton, Charles N.; Hirst, Linda S.; Sharping, Jay E.
2015-01-01
A dual-beam optical trap is used to trap and manipulate dielectric particles. When the refractive index of these particles is comparable to that of the surrounding medium, equilibrium trapping locations within the system shift from stable to unstable depending on fiber separation and particle size. This is due to to the relationship between gradient and scattering forces. We experimentally and computationally study the transitions between stable and unstable trapping of poly(methyl methacrylate) beads for a range of parameters relevant to experimental setups involving giant unilamellar vesicles. We present stability maps for various fiber separations and particle sizes, and find that careful attention to particle size and configuration is necessary to obtain reproducible quantitative results for soft matter stretching experiments. PMID:26504632
NASA Astrophysics Data System (ADS)
Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki
2018-03-01
We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (<0.29 nm) and was used as a single-wavelength source. A volume Bragg grating was used as an output coupler for the external-cavity DFB laser to output another stable wavelength beam with a narrow bandwidth of 0.27 nm. A frequency difference for dual-wavelength operation of 0.88 THz was achieved and an output power of up to 415 mW was obtained. The external-cavity DFB laser showed a stable dual-wavelength operation over the practical current and temperature ranges.
A design of a high speed dual spectrometer by single line scan camera
NASA Astrophysics Data System (ADS)
Palawong, Kunakorn; Meemon, Panomsak
2018-03-01
A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.
Broadband Venetian-Blind Polarizer With Dual Vanes
NASA Technical Reports Server (NTRS)
Conroy, Bruce L.; Hoppe, Daniel J.
1995-01-01
Improved venetian-blind polarizer features optimized tandem, two-layer vane configuration reducing undesired reflections and deformation of radiation pattern below those of prior single-layer vane configuration. Consists of number of thin, parallel metal strips placed in path of propagating radio-frequency beam. Offers simple way to convert polarization from linear to circular or from circular to linear. Particularly useful for beam-wave-guide applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thariyan, Mathew P.; Ananthanarayanan, Vijaykumar; Bhuiyan, Aizaz H.
2010-07-15
Dual-pump coherent anti-Stokes Raman scattering (CARS) is used to measure temperature and species profiles in representative non-premixed and partially-premixed CH{sub 4}/O{sub 2}/N{sub 2} flames. A new laser system has been developed to generate a tunable single-frequency beam for the second pump beam in the dual-pump N{sub 2}-CO{sub 2} CARS process. The second harmonic output ({proportional_to}532 nm) from an injection-seeded Nd:YAG laser is used as one of the narrowband pump beams. The second single-longitudinal-mode pump beam centered near 561 nm is generated using an injection-seeded optical parametric oscillator, consisting of two non-linear {beta}-BBO crystals, pumped using the third harmonic output ({proportional_to}355more » nm) of the same Nd:YAG laser. A broadband dye laser (BBDL), pumped using the second harmonic output of an unseeded Nd:YAG laser, is employed to produce the Stokes beam centered near 607 nm with full-width-at-half-maximum of {proportional_to}250 cm{sup -1}. The three beams are focused between two opposing nozzles of a counter-flow burner facility to measure temperature and major species concentrations in a variety of CH{sub 4}/O{sub 2}/N{sub 2} non-premixed and partially-premixed flames stabilized at a global strain rate of 20 s{sup -1} at atmospheric-pressure. For the non-premixed flames, excellent agreement is observed between the measured profiles of temperature and CO{sub 2}/N{sub 2} concentration ratios with those calculated using an opposed-flow flame code with detailed chemistry and molecular transport submodels. For partially-premixed flames, with the rich side premixing level beyond the stable premixed flame limit, the calculations overestimate the distance between the premixed and the non-premixed flamefronts. Consequently, the calculated temperatures near the rich, premixed flame are higher than those measured. Accurate prediction of the distance between the premixed and the non-premixed flames provides an interesting challenge for future computations. (author)« less
Saito, Masatoshi
2009-08-01
Dual-energy computed tomography (DECT) has the potential for measuring electron density distribution in a human body to predict the range of particle beams for treatment planning in proton or heavy-ion radiotherapy. However, thus far, a practical dual-energy method that can be used to precisely determine electron density for treatment planning in particle radiotherapy has not been developed. In this article, another DECT technique involving a balanced filter method using a conventional x-ray tube is described. For the spectral optimization of DECT using balanced filters, the author calculates beam-hardening error and air kerma required to achieve a desired noise level in electron density and effective atomic number images of a cylindrical water phantom with 50 cm diameter. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimized parameters were applied to cases with different phantom diameters ranging from 5 to 50 cm for the calculations. The author predicts that the optimal combination of tube voltages would be 80 and 140 kV with Tb/Hf and Bi/Mo filter pairs for the 50-cm-diameter water phantom. When a single phantom calibration at a diameter of 25 cm was employed to cover all phantom sizes, maximum absolute beam-hardening errors were 0.3% and 0.03% for electron density and effective atomic number, respectively, over a range of diameters of the water phantom. The beam-hardening errors were 1/10 or less as compared to those obtained by conventional DECT, although the dose was twice that of the conventional DECT case. From the viewpoint of beam hardening and the tube-loading efficiency, the present DECT using balanced filters would be significantly more effective in measuring the electron density than the conventional DECT. Nevertheless, further developments of low-exposure imaging technology should be necessary as well as x-ray tubes with higher outputs to apply DECT coupled with the balanced filter method for clinical use.
Emittance Growth in the DARHT-II Linear Induction Accelerator
NASA Astrophysics Data System (ADS)
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; McCuistian, B. Trent; Mostrom, Christopher B.; Schulze, Martin E.; Thoma, Carsten H.
2017-11-01
The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. Some of the possible causes for the emittance growth in the DARHT LIA have been investigated using particle-in-cell (PIC) codes, and are discussed in this article. The results suggest that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.
Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control.
Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi S; Luk, Ting S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S
2015-08-12
We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.
A Novel Low Energy Electron Microscope for DNA Sequencing and Surface Analysis
Mankos, M.; Shadman, K.; Persson, H.H.J.; N’Diaye, A.T.; Schmid, A.K.; Davis, R.W.
2014-01-01
Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of individual DNA bases in a sequence. PMID:24524867
A novel low energy electron microscope for DNA sequencing and surface analysis.
Mankos, M; Shadman, K; Persson, H H J; N'Diaye, A T; Schmid, A K; Davis, R W
2014-10-01
Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of individual DNA bases in a sequence. Copyright © 2014 Elsevier B.V. All rights reserved.
A novel low energy electron microscope for DNA sequencing and surface analysis
Mankos, M.; Shadman, K.; Persson, H. H. J.; ...
2014-01-31
Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts.more » The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Finally, experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of individual DNA bases in a sequence.« less
Multi-pixel high-resolution three-dimensional imaging radar
NASA Technical Reports Server (NTRS)
Cooper, Ken B. (Inventor); Dengler, Robert J. (Inventor); Siegel, Peter H. (Inventor); Chattopadhyay, Goutam (Inventor); Ward, John S. (Inventor); Juan, Nuria Llombart (Inventor); Bryllert, Tomas E. (Inventor); Mehdi, Imran (Inventor); Tarsala, Jan A. (Inventor)
2012-01-01
A three-dimensional imaging radar operating at high frequency e.g., 670 GHz radar using low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform, is disclosed that operates with a multiplexed beam to obtain range information simultaneously on multiple pixels of a target. A source transmit beam may be divided by a hybrid coupler into multiple transmit beams multiplexed together and directed to be reflected off a target and return as a single receive beam which is demultiplexed and processed to reveal range information of separate pixels of the target associated with each transmit beam simultaneously. The multiple transmit beams may be developed with appropriate optics to be temporally and spatially differentiated before being directed to the target. Temporal differentiation corresponds to a different intermediate frequencies separating the range information of the multiple pixels. Collinear transmit beams having differentiated polarizations may also be implemented.
Cikirikcioglu, Mustafa; Cikirikcioglu, Y Banu; Khabiri, Ebrahim; Djebaili, M Karim; Kalangos, Afksendiyos; Walpoth, Beat H
2006-01-01
Intra-operative flow measurement during coronary or peripheral bypass operations is helpful for ruling out technical failures and for prediction of complication and patency rates. Preclinical validation of the flowmeters is required in order to rely on the intra-operatively measured results. The aim of this study is to evaluate a new "dual beam Doppler" blood flowmeter before clinical application and to compare it with the established "transit time flow measure-ment" technique in an artificial circuit. Measurements were performed in an experimental flow model using pig blood and pig arteries. Three different flowmeters were used: Quantix OR (dual beam doppler flowmeter), CardioMed (transit time flowmeter), and Transonic (transit time flowmeter). Three validation tests were performed to assess correlation, precision, and repeatability of devices. (1) Correlation and agreement analysis was performed with various flow amounts (10-350 mL/min) (n = 160). (2) Device reproducibility and measurement stability were tested with a constant flow (flow amount = 300 mL/min) (n = 30). (3) A user accuracy test (intra- and inter-observer variability) was performed by 5 different observers with a constant flow (flow amount = 205 mL/min) (n = 75). Time collected true flow was used as a reference method in all steps and all tests were performed in a blind manner. Results are shown as mean values +/- standard deviations. Pear-son's correlation and Bland-Altman plot analyses were used to compare measurements. The mean flow was 167 +/- 98 mL/min for true flow and 162 +/- 94 mL/min, 165 +/- 94 mL/min, and 166 +/- 100 mL/min for Quantix OR, CardioMed, and Transonic, respectively. Correlation coefficients between Quantix OR, Medi-Stim, Transonic, and time collected true flow were over 0.98 (P = .01). Most of the measured results ( > 90%) were between +/- 1.96 SD agreement limits in Bland and Altman plot analysis. All devices showed good results in the reproducibility test. During the user accuracy test, larger variance changes were observed between intra- and inter-observer results with the dual beam Doppler flowmeter compared to the 2 used transit time flowmeters when used for single sided vessel access without stabilization device (available from the manufacturer). All 3 tested flowmeters showed an excellent correlation to the true flow in an artificial circuit and the accuracy of the tested devices was within agreement limits. Reproducibility of all devices was good and linear. The new dual beam Doppler flow measurement technique compares favorably to the classic transit time method. Clinical use may depend on operator, location, and condition, thus more studies may be required to ensure uniform results using the currently available blood flow measurement devices.
Catadioptric optics for laser Doppler velocimeter applications
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.
1989-01-01
This paper examines the adaptation of low-cost Schmidt-Cassegrain astronomical telescopes to perform the laser-beam-focusing and scattered-light collection tasks associated with dual-beam laser Doppler velocimetry. A generic telescope design is analyzed using ray-tracing methods and Gaussian beam-propagation theory. A straightforward modification procedure to convert from infinite to near unity conjugate-ratio operation with very low residual aberration is identified and tested with a 200-mm-aperture telescope modified for f/10 operation. Performance data for this modified telescope configuration are near the diffraction limit and agree well with predictions.
Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovino, F. A.; Larciprete, M. C.; Belardini, A.
2009-06-22
We investigated noncollinear second harmonic generation form zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and eventually, its angular tilt, with respect to the surface normal.
Zhang, Z X; Xu, Z W; Zhang, L
2012-11-19
We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.
Experimental Performance of the NRL 8-Beam, 4-Cavity Multiple-Beam Klystron
NASA Astrophysics Data System (ADS)
Abe, D. K.; Pershing, D. E.; Nguyen, K. T.; Wood, F. N.; Myers, R. E.; Eisen, E. L.; Cusick, M.; Levush, B.
2006-01-01
Multiple-beam amplifiers (MBAs) represent a device technology with the potential to produce high-power, efficient amplifiers with relatively wide bandwidths that are compact, low-weight, low-noise, and operate at reduced voltages relative to comparable single-beam devices. To better understand the device physics and technical issues involved in the design, fabrication, and operation of these devices, the U.S. Naval Research Laboratory (NRL) has an on-going program to develop high peak power (> 600 kW) multiple-beam klystrons (MBKs) operating in S-band (˜3.3 GHz).
Better dual-task processing in simultaneous interpreters
Strobach, Tilo; Becker, Maxi; Schubert, Torsten; Kühn, Simone
2015-01-01
Simultaneous interpreting (SI) is a highly complex activity and requires the performance and coordination of multiple, simultaneous tasks: analysis and understanding of the discourse in a first language, reformulating linguistic material, storing of intermediate processing steps, and language production in a second language among others. It is, however, an open issue whether persons with experience in SI possess superior skills in coordination of multiple tasks and whether they are able to transfer these skills to lab-based dual-task situations. Within the present study, we set out to explore whether interpreting experience is associated with related higher-order executive functioning in the context of dual-task situations of the Psychological Refractory Period (PRP) type. In this PRP situation, we found faster reactions times in participants with experience in simultaneous interpretation in contrast to control participants without such experience. Thus, simultaneous interpreters possess superior skills in coordination of multiple tasks in lab-based dual-task situations. PMID:26528232
Improved Dual-Polarized Microstrip Antenna
NASA Technical Reports Server (NTRS)
Huang, John
1993-01-01
Dual-polarized microstrip antenna features microstrip transmission-line feeds arranged in such configuration that cross-polarized components of radiation relatively low and degree of isolation between feed ports relatively high. V and H feed ports offset from midpoints of feed lines to obtain required opposite phases at feed-point connections to microstrip patches. Two independent beams of same frequency with electric fields polarized orthogonally to each other transmitted or received via antenna. Improved design saves space.
Jangda, Abdul Qadir; Hussein, Sherali
2012-05-01
In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility.
Large-Signal Code TESLA: Current Status and Recent Development
2008-04-01
K.Eppley, J.J.Petillo, “ High - power four cavity S - band multiple- beam klystron design”, IEEE Trans. Plasma Sci. , vol. 32, pp. 1119-1135, June 2004. 4...advances in the development of the large-signal code TESLA, mainly used for the modeling of high - power single- beam and multiple-beam klystron ...amplifiers. Keywords: large-signal code; multiple-beam klystrons ; serial and parallel versions. Introduction The optimization and design of new high power
Noise estimation of beam position monitors at RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, X.; Bai, M.; Lee, S. Y.
2014-02-10
Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable opticsmore » measurement and beam dynamics analysis based on turn-by-turn data.« less
Ion Beam Characterization of a NEXT Multi-Thruster Array Plume
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Foster, John E.; Patterson, Michael J.; Diaz, Esther M.; Van Noord, Jonathan L.; McEwen, Heather K.
2006-01-01
Three operational, engineering model, 7-kW ion thrusters and one instrumented, dormant thruster were installed in a cluster array in a large vacuum facility at NASA Glenn Research Center. A series of engineering demonstration tests were performed to evaluate the system performance impacts of operating various multiple-thruster configurations in an array. A suite of diagnostics was installed to investigate multiple-thruster operation impact on thruster performance and life, thermal interactions, and alternative system modes and architectures. The ion beam characterization included measuring ion current density profiles and ion energy distribution with Faraday probes and retarding potential analyzers, respectively. This report focuses on the ion beam characterization during single thruster operation, multiple thruster operation, various neutralizer configurations, and thruster gimbal articulation. Comparison of beam profiles collected during single and multiple thruster operation demonstrated the utility of superimposing single engine beam profiles to predict multi-thruster beam profiles. High energy ions were detected in the region 45 off the thruster axis, independent of thruster power, number of operating thrusters, and facility background pressure, which indicated that the most probable ion energy was not effected by multiple-thruster operation. There were no significant changes to the beam profiles collected during alternate thruster-neutralizer configurations, therefore supporting the viability of alternative system configuration options. Articulation of one thruster shifted its beam profile, whereas the beam profile of a stationary thruster nearby did not change, indicating there were no beam interactions which was consistent with the behavior of a collisionless beam expansion.
Review Of E-Beam Electrical Test Techniques
NASA Astrophysics Data System (ADS)
Hohn, Fritz J.
1987-09-01
Electron beams as a viable technique for contactless testing of electrical functions and electrical integrity of different active devices in VLSI-chips has been demonstrated over the past years. This method of testing electronic networks, most widely used in the laboratory environment, is based on an electron probe which is deflected from point to point in the network. A current of secondary electrons emitted in response to the impingement of the electron probe is converted to a signal indicating the presence of a voltage or varying potential at the different points. Voltage contrast, electron beam induced current, dual potential approach, stroboscopic techniques and other methods have been developed and are used to detect different functional failures in devices. Besides the VLSI application, the contactless testing of three dimensional conductor networks of a 10cm x 10cm x .8cm multilayer ceramic module poses a different and new application for the electron beam test technique. A dual potential electron beam test system allows to generate electron beam induced voltage contrast. The same system at a different potential is used to detect this voltage contrast over the large area without moving the substrate and thus test for the electrical integrity of the networks. Less attention in most of the applications has been paid to the electron optical environment, mostly SEM's were upgraded or converted to do the job of a "voltage contrast" machine. This by no means will satisfy all requirements and more thoughts have to be given to aspects such as: low voltage electron guns: thermal emitter, Schottky emitter, field emitter, low voltage electron optics, two lens systems, different means of detection, signal processing - storage and others. This paper will review available E-beam test techniques, specific applications and some critical components.
Chen, Ye; Liu, Jonathan T C
2013-06-01
Dual-axis confocal (DAC) microscopy has been found to exhibit superior rejection of out-of-focus and multiply scattered background light compared to conventional single-axis confocal microscopy. DAC microscopes rely on the use of separated illumination and collection beam paths that focus and intersect at a single focal volume (voxel) within tissue. While it is generally recognized that the resolution and contrast of a DAC microscope depends on both the crossing angle of the DAC beams, 2θ, and the focusing numerical aperture of the individual beams, α, a detailed study to investigate these dependencies has not been performed. Contrast and resolution are considered as two main criteria to assess the performance of a point-scanned DAC microscope (DAC-PS) and a line-scanned DAC microscope (DAC-LS) as a function of θ and α. The contrast and resolution of these designs are evaluated by Monte-Carlo scattering simulations and diffraction theory calculations, respectively. These results can be used for guiding the optimal designs of DAC-PS and DAC-LS microscopes.
Skin friction measurements by a new nonintrusive double-laser-beam oil viscosity balance technique
NASA Technical Reports Server (NTRS)
Monson, D. J.; Higuchi, H.
1980-01-01
A portable dual-laser-beam interferometer that nonintrusively measures skin friction by monitoring the thickness change of an oil film subject to shear stress is described. The method is an advance over past versions in that the troublesome and error-introducing need to measure the distance to the oil leading edge and the starting time for the oil flow has been eliminated. The validity of the method was verified by measuring oil viscosity in the laboratory, and then using those results to measure skin friction beneath the turbulent boundary layer in a low-speed wind tunnel. The dual-laser-beam skin friction measurements are compared with Preston tube measurements, with mean velocity profile data in a 'law-of-the-wall' coordinate system, and with computations based on turbulent boundary-layer theory. Excellent agreement is found in all cases. This validation and the aforementioned improvements appear to make the present form of the instrument usable to measure skin friction reliably and nonintrusively in a wide range of flow situations in which previous methods are not practical.
In vivo real-time rectal wall dosimetry for prostate radiotherapy
Hardcastle, Nicholas; Cutajar, Dean L.; Metcalfe, Peter E.; Lerch, Michael L. F.; Perevertaylo, Vladimir L.; Tomé, Wolfgang A.; Rosenfeld, Anatoly B.
2010-01-01
Rectal balloons are used in external beam prostate radiotherapy to provide reproducible anatomy and rectal dose reductions. This is an investigation into the combination of a MOSFET radiation detector with a rectal balloon for real time in vivo rectal wall dosimetry. The MOSFET used in the study is a radiation detector that provides a water equivalent depth of measurement of 70μm. Two MOSFETs were combined in a face-to-face orientation. The reproducibility, sensitivity and angular dependence were measured for the dual MOSFET in a 6MV photon beam. The dual MOSFET was combined with a rectal balloon and irradiated with hypothetical prostate treatments in a phantom. The anterior rectal wall dose was measured in real time and compared with the planning system calculated dose. The dual MOSFET showed angular dependence within ± 2.5% in the azimuth and +2.5%/-4% in the polar axes. When compared with an ion chamber measurement in a phantom, the dual MOSFET agreed within 2.5% for a range of radiation path lengths and incident angles. The dual MOSFET had reproducible sensitivity for fraction sizes of 2-10Gy. For the hypothetical prostate treatments the measured anterior rectal wall dose was 2.6% and 3.2% lower than the calculated dose for 3DCRT and IMRT plans. This was expected due to limitations of the dose calculation method used at the balloon cavity interface. A dual MOSFET combined with a commercial rectal balloon was shown to provide reproducible measurements of the anterior rectal wall dose in real time. The measured anterior rectal wall dose agreed with the expected dose from the treatment plan for 3DCRT and IMRT plans. The dual MOSFET could be read out in real time during the irradiation, providing capability for real time dose monitoring of the rectal wall dose during treatment. PMID:20571209
Turbine blade tip clearance measurements using skewed dual optical beams of tip timing
NASA Astrophysics Data System (ADS)
Ye, De-chao; Duan, Fa-jie; Guo, Hao-tian; Li, Yangzong; Wang, Kai
2011-12-01
Optimization and active control of the clearance between turbine blades and case of the engine is identified, especially in aerospace community, as a key technology to increase engine efficiency, reduce fuel consumption and emissions and increase service life .However, the tip clearance varies during different operating conditions. Thus a reliable non-contact and online detection system is essential and ultimately used to close the tip clearance control loop. This paper described a fiber optical clearance measuring system applying skewed dual optical beams to detect the traverse time of passing blades. Two beams were specially designed with an outward angle of 18 degree and the beam spot diameters are less than 100μm within 0-4mm working range to achieve high signal-to-noise and high sensitivity. It could be theoretically analyzed that the measuring accuracy is not compromised by degradation of signal intensity caused by any number of environmental conditions such as light source instability, contamination and blade tip imperfection. Experimental tests were undertaken to achieve a high resolution of 10µm in the rotational speed range 2000-18000RPM and a measurement accuracy of 15μm, indicating that the system is capable of providing accurate and reliable data for active clearance control (ACC).
Biomimetic surface structuring using cylindrical vector femtosecond laser beams
Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel
2017-01-01
We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications. PMID:28327611
Adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope
NASA Astrophysics Data System (ADS)
Ma, Haotong; Hu, Haojun; Xie, Wenke; Zhao, Haichuan; Xu, Xiaojun; Chen, Jinbao
2013-08-01
We demonstrate the adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope based on the stochastic parallel gradient descent (SPGD) algorithm and dual phase only liquid crystal spatial light modulators (LC-SLMs). Adaptive pre-compensation the wavefront of projected laser beam at the transmitter telescope is chosen to improve the power coupling efficiency. One phase only LC-SLM adaptively optimizes phase distribution of the projected laser beam and the other generates turbulence phase screen. The intensity distributions of the dark hollow beam after passing through the turbulent atmosphere with and without adaptive beam shaping are analyzed in detail. The influence of propagation distance and aperture size of the Cassegrain-telescope on coupling efficiency are investigated theoretically and experimentally. These studies show that the power coupling can be significantly improved by adaptive beam shaping. The technique can be used in optical communication, deep space optical communication and relay mirror.
Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.
Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y
2018-03-08
Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.
1999-01-01
We report the generation of up to 0.7 mW of narrow-linewidth (<60-MHz) radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).
Dehghany, M; Michaelian, K H
2012-06-01
Quantum cascade laser-based instrumentation for dual beam photoacoustic (PA) spectroscopy is described in this article. Experimental equipment includes a 4.55 μm (2141-2265 cm(-1)) continuous wave external cavity quantum cascade laser (EC-QCL), two gas-microphone PA cells, and two lock-in amplifiers. Correction for the time and wavenumber dependence of the laser output is effected through real-time division of the PA signals derived from the sample and reference channels. Source-compensated mid-infrared absorption spectra of carbon black powder and aromatic hydrocarbon solids were obtained to confirm the reliability of the method. Absorption maxima in the EC-QCL PA spectra of hydrocarbons are better defined than those in Fourier transform infrared spectra acquired under similar conditions, enabling the detection of several previously unknown bands.
Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel
NASA Astrophysics Data System (ADS)
Mohammadpour, Masoud; Yazdian, Nima; Yang, Guang; Wang, Hui-Ping; Carlson, Blair; Kovacevic, Radovan
2018-01-01
In this investigation, the joining of two types of galvanized steel and Al6022 aluminum alloy in a coach peel configuration was carried out using a laser welding-brazing process in dual-beam mode. The feasibility of this method to obtain a sound and uniform brazed bead with high surface quality at a high welding speed was investigated by employing AlSi12 as a consumable material. The effects of alloying elements on the thickness of intermetallic compound (IMC) produced at the interface of steel and aluminum, surface roughness, edge straightness and the tensile strength of the resultant joint were studied. The comprehensive study was conducted on the microstructure of joints by means of a scanning electron microscopy and EDS. Results showed that a dual-beam laser shape and high scanning speed could control the thickness of IMC as thin as 3 μm and alter the failure location from the steel-brazed interface toward the Al-brazed interface. The numerical simulation of thermal regime was conducted by the Finite Element Method (FEM), and simulation results were validated through comparative experimental data. FEM thermal modeling evidenced that the peak temperatures at the Al-steel interface were around the critical temperature range of 700-900 °C that is required for the highest growth rate of IMC. However, the time duration that the molten pool was placed inside this temperature range was less than 1 s, and this duration was too short for diffusion-control based IMC growth.
Dual FOV infrared lens design with the laser common aperture optics
NASA Astrophysics Data System (ADS)
Chang, Wei-jun; Zhang, Xuan-zhi; Luan, Ya-dong; Zhang, Bo
2015-02-01
With the demand of autonomous precision guidance of air defense missile, the system scheme of the IR imaging/Ladar dual-mode seeker with a common aperture was proposed, and the optical system used in was designed. The system had a common receiving aperture, and its structure was very compact, so it could meet the requirement for the miniaturization of the seeker. Besides, it also could meet the demands of a wide field of view for searching target, and the demands for accurately recognizing and tracking the target at the same time. In order to increase the narrow FOV tracking performance, the dual FOV infrared optical used the zooming mode which some components flip in or out the optical system to firm the target signal. The dual FOV optics are divided into the zooming part, with dual variable focal length, and the reimaging part which was chosen in such a way to minimize the objective lens while maintaining 100% cold shield efficiency. The final infrared optics including 4°×3°(NFOV) and 16°×12°(WFOV) was designed. The NFOV lens composed of two common IR/Ladar lens, three relay lens, a beam splitter and two reflective fold mirrors, while WFOV lens increased two lens such as Germanium and Silicon. The common IR/Ladar lens ZnS and ZnSe could refractive the IR optics and Laser optics. The beam splitter which refractived IR optics and reflected Laser optics was located in the middle of Germanium and Silicon. The designed optical system had good image quality, and fulfilled the performance requirement of seeker system.
NASA Astrophysics Data System (ADS)
Saunders, R.; Samei, E.; Badea, C.; Yuan, H.; Ghaghada, K.; Qi, Y.; Hedlund, L. W.; Mukundan, S.
2008-03-01
Dual-energy contrast-enhanced breast tomosynthesis has been proposed as a technique to improve the detection of early-stage cancer in young, high-risk women. This study focused on optimizing this technique using computer simulations. The computer simulation used analytical calculations to optimize the signal difference to noise ratio (SdNR) of resulting images from such a technique at constant dose. The optimization included the optimal radiographic technique, optimal distribution of dose between the two single-energy projection images, and the optimal weighting factor for the dual energy subtraction. Importantly, the SdNR included both anatomical and quantum noise sources, as dual energy imaging reduces anatomical noise at the expense of increases in quantum noise. Assuming a tungsten anode, the maximum SdNR at constant dose was achieved for a high energy beam at 49 kVp with 92.5 μm copper filtration and a low energy beam at 49 kVp with 95 μm tin filtration. These analytical calculations were followed by Monte Carlo simulations that included the effects of scattered radiation and detector properties. Finally, the feasibility of this technique was tested in a small animal imaging experiment using a novel iodinated liposomal contrast agent. The results illustrated the utility of dual energy imaging and determined the optimal acquisition parameters for this technique. This work was supported in part by grants from the Komen Foundation (PDF55806), the Cancer Research and Prevention Foundation, and the NIH (NCI R21 CA124584-01). CIVM is a NCRR/NCI National Resource under P41-05959/U24-CA092656.
Wide field-of-view dual-band multispectral muzzle flash detection
NASA Astrophysics Data System (ADS)
Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.
2013-06-01
Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.
Monjezi, Saeideh; Negahban, Hossein; Tajali, Shirin; Yadollahpour, Nava; Majdinasab, Nastaran
2017-02-01
To investigate the effects of dual-task balance training on postural performance in patients with multiple sclerosis as compared with single-task balance training. Double-blind, pretest-posttest, randomized controlled pilot trial. Local Multiple Sclerosis Society. A total of 47 patients were randomly assigned to two equal groups labeled as single-task training and dual-task training groups. All patients received supervised balance training sessions, 3 times per week for 4 weeks. The patients in the single-task group performed balance activities, alone. However, patients in dual-task group practiced balance activities while simultaneously performing cognitive tasks. The 10-Meter Walk Test and Timed Up-and-Go under single-task and dual-task conditions, in addition to Activities-specific Balance Confidence, Berg Balance Scale, and Functional Gait Assessment were assessed pre-, and post intervention and also 6-weeks after the end of intervention. Only 38 patients completed the treatment plan. There was no difference in the amount of improvement seen between the two study groups. In both groups there was a significant effect of time for dual-10 Meter Walk Test (F 1, 36 =11.33, p=0.002) and dual-Timed Up-and-Go (F 1, 36 =14.27, p=0.001) but not for their single-tasks. Moreover, there was a significant effect of time for Activities-specific Balance Confidence, Berg Balance Scale, and Functional Gait Assessment ( P<0.01). This pilot study did not show more benefits from undertaking dual-task training than single-task training. A power analysis showed 71 patients per group would be needed to determine whether there was a clinically relevant difference for dual-task gait speed between the groups.
A Dual-Beam Irradiation Facility for a Novel Hybrid Cancer Therapy
NASA Astrophysics Data System (ADS)
Sabchevski, Svilen Petrov; Idehara, Toshitaka; Ishiyama, Shintaro; Miyoshi, Norio; Tatsukawa, Toshiaki
2013-01-01
In this paper we present the main ideas and discuss both the feasibility and the conceptual design of a novel hybrid technique and equipment for an experimental cancer therapy based on the simultaneous and/or sequential application of two beams, namely a beam of neutrons and a CW (continuous wave) or intermittent sub-terahertz wave beam produced by a gyrotron for treatment of cancerous tumors. The main simulation tools for the development of the computer aided design (CAD) of the prospective experimental facility for clinical trials and study of such new medical technology are briefly reviewed. Some tasks for a further continuation of this feasibility analysis are formulated as well.
NASA Astrophysics Data System (ADS)
Petrovic, K.
2015-10-01
Light emitting electron beam generated in a vacuum chamber is used as a medium for visualizing Jupiter's electromagnetic radiation. Dual dipole array antenna is receiving HF radio signals that are next amplified to radiate a strong electromagnetic field capable of influencing the propagation of electron beam in plasma. Installation aims to provide a platform for observing the characteristics of light emitting beam in 3D, as opposed to the experiments with cathode ray tubes in 2-dimensional television screens. Gas giant 'speaking' to us by radio waves bends the light in the tube, allowing us to see and hear the messages of Jupiter - God of light and sky.
Statistical spatial properties of speckle patterns generated by multiple laser beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Cain, A.; Sajer, J. M.; Riazuelo, G.
2011-08-15
This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as wellmore » as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.« less
NASA Astrophysics Data System (ADS)
Veryovkin, I. V.; Calaway, W. F.; Tripa, C. E.; Pellin, M. J.; Burnett, D. S.
2005-12-01
A new secondary neutral mass spectrometry (SNMS) instrument implementing laser post ionization (LPI) of ion sputtered and laser desorbed neutral species has been developed and constructed for the specific purpose of quantitative analysis of metallic elements at ultra trace levels in solar wind collector samples returned to Earth by the Genesis Discovery mission. The first LPI SNMS measurements are focusing on determining Al, Ca, Cr, and Mg in these samples. These measurements provide the first concentration and isotopic abundances determinations for several key metallic elements and also elucidate possible fractionation effects between the photosphere and the solar wind compositions. It is now documented that Genesis samples suffered surface contamination both during flight and during the breach of the Sample Return Capsule when it crashed. Since accurate quantitative analysis is compromised by sample contamination, several features have been built into the new LPI SNMS instrument to mitigate this difficulty. A normally-incident, low-energy (<500 eV) ion beam combined with a keV energy ion beam and a desorbing laser beam (both microfocused) enables dual beam analyses. The low-energy ion beam can be used to remove surface contaminant by sputtering with minimum ion beam mixing. This low-energy beam also will be used to perform ion beam milling, while either the microfocused ion or laser beam probes the solar wind elemental compositions as a function of sample depth. Because of the high depth resolution of dual beam analyses, such depth profiles clearly distinguish between surface contaminants and solar wind implanted atoms. In addition, in-situ optical and electron beam imaging for observing and avoiding particulates and scratches on solar wind sample surfaces is incorporated in the new LPI SNMS instrument to further reduce quantification problems. The current status of instrument tests and analyses will be presented. This work is supported by the U. S. Department of Energy, BES-Materials Sciences, under Contract W-31-109-ENG-38, and by NASA under Work Orders W-19,895 and W-10,091.
Multiple tobacco product use among US adolescents and young adults.
Soneji, Samir; Sargent, James; Tanski, Susanne
2016-03-01
To assess the extent to which multiple tobacco product use among adolescents and young adults falls outside current Food and Drug Administration (FDA) regulatory authority. We conducted a web-based survey of 1596 16-26-year-olds to assess use of 11 types of tobacco products. We ascertained current (past 30 days) tobacco product use among 927 respondents who ever used tobacco. Combustible tobacco products included cigarettes, cigars (little filtered, cigarillos, premium) and hookah; non-combustible tobacco products included chew, dip, dissolvables, e-cigarettes, snuff and snus. We then fitted an ordinal logistic regression model to assess demographic and behavioural associations with higher levels of current tobacco product use (single, dual and multiple product use). Among 448 current tobacco users, 54% were single product users, 25% dual users and 21% multiple users. The largest single use category was cigarettes (49%), followed by hookah (23%), little filtered cigars (17%) and e-cigarettes (5%). Most dual and multiple product users smoked cigarettes, along with little filtered cigars, hookah and e-cigarettes. Forty-six per cent of current single, 84% of dual and 85% of multiple tobacco product users consumed a tobacco product outside FDA regulatory authority. In multivariable analysis, the adjusted risk of multiple tobacco use was higher for males, first use of a non-combustible tobacco product, high sensation seeking respondents and declined for each additional year of age that tobacco initiation was delayed. Nearly half of current adolescent and young adult tobacco users in this study engaged in dual and multiple tobacco product use; the majority of them used products that fall outside current FDA regulatory authority. This study supports FDA deeming of these products and their incorporation into the national media campaign to address youth tobacco use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi
2017-01-01
A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148
Design, development, and testing of the DCT Cassegrain instrument support assembly
NASA Astrophysics Data System (ADS)
Bida, Thomas A.; Dunham, Edward W.; Nye, Ralph A.; Chylek, Tomas; Oliver, Richard C.
2012-09-01
The 4.3m Discovery Channel Telescope delivers an f/6.1 unvignetted 0.5° field to its RC focal plane. In order to support guiding, wavefront sensing, and instrument installations, a Cassegrain instrument support assembly has been developed which includes a facility guider and wavefront sensor package (GWAVES) and multiple interfaces for instrumentation. A 2-element, all-spherical, fused-silica corrector compensates for field curvature and astigmatism over the 0.5° FOV, while reducing ghost pupil reflections to minimal levels. Dual roving GWAVES camera probes pick off stars in the outer annulus of the corrected field, providing simultaneous guiding and wavefront sensing for telescope operations. The instrument cube supports 5 co-mounted instruments with rapid feed selection via deployable fold mirrors. The corrected beam passes through a dual filter wheel before imaging with the 6K x 6K single CCD of the Large Monolithic Imager (LMI). We describe key development strategies for the DCT Cassegrain instrument assembly and GWAVES, including construction of a prime focus test assembly with wavefront sensor utilized in fall 2011 to begin characterization of the DCT primary mirror support. We also report on 2012 on-sky test results of wavefront sensing, guiding, and imaging with the integrated Cassegrain cube.
14 CFR 23.511 - Ground load; unsymmetrical loads on multiple-wheel units.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CATEGORY AIRPLANES Structure Ground Loads § 23.511 Ground load; unsymmetrical loads on multiple-wheel units... coefficient of friction of 0.8 applied to the main gear and its supporting structure. (b) Unequal tire loads... distribution, to the dual wheels and tires in each dual wheel landing gear unit. (c) Deflated tire loads. For...
Optical pulse synthesis using brillouin selective sideband amplification
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2002-01-01
Techniques for producing optical pulses based on Brillouin selective sideband amplification by using a common modulation control signal to modulate both a signal beam to produce multiple sideband signals and a single pump beam to produce multiple pump beams.
A dual cone-beam CT system for image guided radiotherapy: initial performance characterization.
Li, Hao; Giles, William; Bowsher, James; Yin, Fang-Fang
2013-02-01
The purpose of this study is to evaluate the performance of a recently developed benchtop dual cone-beam computed tomography (CBCT) system with two orthogonally placed tube∕detector sets. The benchtop dual CBCT system consists of two orthogonally placed 40 × 30 cm flat-panel detectors and two conventional x-ray tubes with two individual high-voltage generators sharing the same rotational axis. The x-ray source to detector distance is 150 cm and x-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200° of rotation. The dual CBCT system utilized 110° of projection data from one detector and 90° from the other while the two individual single CBCTs utilized 200° data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum, and CT number linearity. The uniformities, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems. Compared to single CBCT, the dual CBCT presented: (1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125, and 150 kVp); (2) comparable or slightly better contrast (0∼25 HU) for low-contrast objects and comparable contrast for high-contrast objects; (3) comparable spatial resolution; (4) comparable CT number linearity with R(2) ≥ 0.99 for all four tested energies; (5) lower noise power spectrum in magnitude. Dual CBCT images of the skull phantom and the ham demonstrated both high-contrast resolution and good soft-tissue contrast. The performance of a benchtop dual CBCT imaging system has been characterized and is comparable to that of a single CBCT.
Non-deterministic quantum CNOT gate with double encoding
NASA Astrophysics Data System (ADS)
Gueddana, Amor; Attia, Moez; Chatta, Rihab
2013-09-01
We define an Asymmetric Partially Polarizing Beam Splitter (APPBS) to be a linear optical component having different reflectivity (transmittance) coefficients, on the upper and the lower arms, for horizontally and vertically Polarized incident photons. Our CNOT model is composed by two APPBSs, one Half Wave Plate (HWP), two Polarizing Beam Splitters (PBSs), a Beam Splitter (BS) and a -phase rotator for specific wavelength. Control qubit operates with dual rail encoding while target qubit is based on polarization encoding. To perform CNOT operation in 4/27 of the cases, input and target incoming photons are injected with different wavelengths.
Improved Efficiency Type II Second Harmonic Generation
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Walsh, Brian M.; Reichle, Donald J., Jr.
2009-01-01
Second harmonic efficiency is limited by lateral and temporal separation of the ordinary and extraordinary components of the fundamental. A mode locked dual beam laser demonstrated these effects and a novel method to minimize them.
Finite-element 3D simulation tools for high-current relativistic electron beams
NASA Astrophysics Data System (ADS)
Humphries, Stanley; Ekdahl, Carl
2002-08-01
The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.
Terahertz Radiometer for Outer Planet and Moon Atmospheres (TROPA)
NASA Technical Reports Server (NTRS)
Schlecht, E. T.; Jamnejad, V.; Jarnot, R. F.; Raffanti, R.; Lin, R.
2012-01-01
We are developing a prototype instrument platform to demonstrate the feasibility of a wideband spectrometer for planetary applications under a three-year NASA research program. This development focuses on three specific areas needing advancement. First, the terahertz portion consists of an optical bench with dual heterodyne Schottky-mixer based receivers, one for each band. The beams entering the horns of the two receivers are de-multiplexed from the input beam by a polarizing beam splitter. The blocks containing the 560 and 1200 GHz mixer are more highly integrated than previous space instruments to reduce mass and volume. The receivers take a fundamental pump frequency near 30 GHz and multiply up to the submillimeter range. Second, a rapid-tuning, low-phase noise, and low-power 33 GHz range LO synthesizer is being prototyped. The low phase noise requirement is needed because of the factor of 36 multiplication to reach 1200 GHz, giving a requirement that the integrated phase noise from 100 kHz up be less than 0.6 degrees. The synthesizer will require about 6 watts. Finally, we are developing an advanced polyphase filter back-end spectrum analyzer with a bandwidth of 750 MHz, and power consumption of about 3 Watts and 4096 channels. This system is based on a simple three-chip architecture, having a commercial 1.5 GS/s analog-to-digital converter, an ASIC to do the filtering and an advanced FPGA for data processing and control.
An Investigation of the Physical Properties of Erupting Solar Prominences, Phase II
2014-12-30
and in two orthogonal states of polarization. It performs full-Stokes spectro- polarimetry , using Hanlé effect polarization measurements to infer the...is slow relative to the turbulence timescale for atmosphere seeing, and the ESF does not have a seeing-correction system, dual-beam polarimetry is...beam polarimetry in removing seeing-induced polarization cross- talk is completely lost. This is because there is no guarantee the slit will sample the
Dual and multiple diagnosis among substance using runaway youth.
Slesnick, Natasha; Prestopnik, Jillian
2005-01-01
Although research on runaway and homeless youth is increasing, relatively little is known about the diagnostic profile of runaway adolescents. The current study examined patterns of psychiatric dual and multiple diagnosis among a sample (N=226) of treatment-engaged substance-abusing youth (ages 13 to 17) who were residing at a runaway shelter. As part of a larger treatment outcome study, the youths' psychiatric status was assessed using the DSM-IV based computerized diagnostic interview schedule for children [CDISC; (1)]. The majority of the youth in our sample met criteria for dual or multiple diagnosis (60%) with many having more than one substance-use diagnosis (56%). The severity of mental-health and substance-use problems in this sample of substance-abusing runaways suggests the need for continued development of comprehensive services. The range and intensity of diagnoses seen indicates a need for greater focus on treatment development and strategies to address their multiple areas of risk.
Inertial fusion energy target injection, tracking, and beam pointing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petzoldt, Ronald Wayne
1995-03-07
Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s 2 if the fuel temperature is less than 17 K. A 0.1 μm thick dual membrane will allow nearly 2,000 m/s 2 acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration.more » Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.« less
Yang, M; Zhu, X R; Park, PC; Titt, Uwe; Mohan, R; Virshup, G; Clayton, J; Dong, L
2012-01-01
The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0–3.4%, primarily because soft tissue is the dominant tissue type in human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield Numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction. PMID:22678123
Megavoltage cargo radiography with dual energy material decomposition
NASA Astrophysics Data System (ADS)
Shikhaliev, Polad M.
2018-02-01
Megavoltage (MV) radiography has important applications in imaging large cargos for detecting illicit materials. A useful feature of MV radiography is the possibility of decomposing and quantifying materials with different atomic numbers. This can be achieved by imaging cargo at two different X-ray energies, or dual energy (DE) radiography. The performance of both single energy and DE radiography depends on beam energy, beam filtration, radiation dose, object size, and object content. The purpose of this work was to perform comprehensive qualitative and quantitative investigations of the image quality in MV radiography depending on the above parameters. A digital phantom was designed including Fe background with thicknesses of 2cm, 6cm, and 18cm, and materials samples of Polyethylene, Fe, Pb, and U. The single energy images were generated at x-ray beam energies 3.5MV, 6MV, and 9MV. The DE material decomposed images were generated using interlaced low and high energy beams 3.5/6MV and 6/9MV. The X-ray beams were filtered by low-Z (Polyethylene) and high-Z (Pb) filters with variable thicknesses. The radiation output of the accelerator was kept constant for all beam energies. The image quality metrics was signal-to-noise ratio (SNR) of the particular sample over a particular background. It was found that the SNR depends on the above parameters in a complex way, but can be optimized by selecting a particular set of parameters. For some imaging setups increased filter thicknesses, while strongly absorbing the beams, increased the SNR of material decomposed images. Beam hardening due to polyenergetic x-ray spectra resulted in material decomposition errors, but this could be addressed using region of interest decomposition. It was shown that it is not feasible to separate the materials with close atomic numbers using the DE method. Particularly, Pb and U were difficult to decompose, at least at the dose levels allowed by radiation source and safety requirements.
CT cardiac imaging: evolution from 2D to 3D backprojection
NASA Astrophysics Data System (ADS)
Tang, Xiangyang; Pan, Tinsu; Sasaki, Kosuke
2004-04-01
The state-of-the-art multiple detector-row CT, which usually employs fan beam reconstruction algorithms by approximating a cone beam geometry into a fan beam geometry, has been well recognized as an important modality for cardiac imaging. At present, the multiple detector-row CT is evolving into volumetric CT, in which cone beam reconstruction algorithms are needed to combat cone beam artifacts caused by large cone angle. An ECG-gated cardiac cone beam reconstruction algorithm based upon the so-called semi-CB geometry is implemented in this study. To get the highest temporal resolution, only the projection data corresponding to 180° plus the cone angle are row-wise rebinned into the semi-CB geometry for three-dimensional reconstruction. Data extrapolation is utilized to extend the z-coverage of the ECG-gated cardiac cone beam reconstruction algorithm approaching the edge of a CT detector. A helical body phantom is used to evaluate the ECG-gated cone beam reconstruction algorithm"s z-coverage and capability of suppressing cone beam artifacts. Furthermore, two sets of cardiac data scanned by a multiple detector-row CT scanner at 16 x 1.25 (mm) and normalized pitch 0.275 and 0.3 respectively are used to evaluate the ECG-gated CB reconstruction algorithm"s imaging performance. As a reference, the images reconstructed by a fan beam reconstruction algorithm for multiple detector-row CT are also presented. The qualitative evaluation shows that, the ECG-gated cone beam reconstruction algorithm outperforms its fan beam counterpart from the perspective of cone beam artifact suppression and z-coverage while the temporal resolution is well maintained. Consequently, the scan speed can be increased to reduce the contrast agent amount and injection time, improve the patient comfort and x-ray dose efficiency. Based up on the comparison, it is believed that, with the transition of multiple detector-row CT into volumetric CT, ECG-gated cone beam reconstruction algorithms will provide better image quality for CT cardiac applications.
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.
2014-09-01
A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.
NASA Astrophysics Data System (ADS)
Baur, Jeffery W.; Slinker, Keith; Kondash, Corey
2017-04-01
Understanding the shear strain, viscoelastic response, and onset of damage within bonded composites is critical to their design, processing, and reliability. This presentation will discuss the multidisciplinary research conducted which led to the conception, development, and demonstration of two methods for measuring the shear within a bonded joint - dualplane digital image correlation (DIC) and a micro-cantilever shear sensor. The dual plane DIC method was developed to measure the strain field on opposing sides of a transparent single-lap joint in order to spatially quantify the joint shear strain. The sensor consists of a single glass fiber cantilever beam with a radially-grown forest of carbon nanotubes (CNTs) within a capillary pore. When the fiber is deflected, the internal radial CNT array is compressed against an electrode within the pore and the corresponding decrease in electrical resistance is correlated with the external loading. When this small, simple, and low-cost sensor was integrated within a composite bonded joint and cycled in tension, the onset of damage prior to joint failure was observed. In a second sample configuration, both the dual plane DIC and the hair sensor detected viscoplastic changes in the strain of the sample in response to continued loading.
NASA Astrophysics Data System (ADS)
Alberti, Stefano; Genoud, Jérémy; Goodman, Timothy; Hogge, Jean-Philippe; Porte, Laurie; Silva, Miguel; Tran, Trach-Minh; Tran, Minh-Quang; Avramidis, Konstantinos; Pagonakis, Ioannis; Jin, Jianbo; Illy, Stefan; Gantenbein, Gerd; Jelonnek, John; Thumm, Manfred; Bin, William; Bruschi, Alex; Garavaglia, Saul; Moro, Alessandro; Kasparek, Walter; Legrand, François; Perial, Etienne; Rozier, Yoan; Cismondi, Fabio; Doelman, Niek
2017-10-01
The upgrade of the EC-system of the TCV tokamak has entered in its realization phase and is part of a broader upgrade of TCV. The MW-class dual-frequency gyrotrons (84 or 126GHz/2s/1MW) are presently being manufactured by Thales Electron Devices with the first gyrotron foreseen to be delivered at SPC by the end of 2017. In parallel to the gyrotron development, for extending the level of operational flexibility of the TCV EC-system the integration of the dual-frequency gyrotrons adds a significant complexity in the evacuated 63.5mm-diameter HE11 transmission line system connected to the various TCV low-field side and top launchers. As discussed in [1], an important part of the present TCV-upgrade consists in inserting a modular closed divertor chamber. This will have an impact on the X3 top-launcher which will have to be reduced in size. For using the new compact launcher we are considering employing a Fast Directional Switch (FADIS), combining the two 1MW/126GHz/2s rf-beams into a single 2MW rf-beam.
NASA Astrophysics Data System (ADS)
Chu, Shu-Chun
2008-07-01
This study proposes a systematic method of selecting excitations of part of Ince-Gaussian modes (IGMs) and a three-lens configuration for generating multiple vortex beams with forced IGMs in the model of laser-diode (LD)-pumped solid-state lasers. Simply changing the lateral off-axis position of the tight pump beam focus on the laser crystal can produce the desired multiple optical vortex beam from the laser in a well-controlled manner using a proposed astigmatic mode converter assembled into one body with the laser cavity.
Moberlychan, Warren J
2009-06-03
Focused ion beam (FIB) tools have become a mainstay for processing and metrology of small structures. In order to expand the understanding of an ion impinging a surface (Sigmund sputtering theory) to our processing of small structures, the significance of 3D boundary conditions must be realized. We consider ion erosion for patterning/lithography, and optimize yields using the angle of incidence and chemical enhancement, but we find that the critical 3D parameters are aspect ratio and redeposition. We consider focused ion beam sputtering for micromachining small holes through membranes, but we find that the critical 3D considerations are implantation and redeposition. We consider ion beam self-assembly of nanostructures, but we find that control of the redeposition by ion and/or electron beams enables the growth of nanostructures and picostructures.
Transmission beam characteristics of a Risso's dolphin (Grampus griseus).
Smith, Adam B; Kloepper, Laura N; Yang, Wei-Cheng; Huang, Wan-Hsiu; Jen, I-Fan; Rideout, Brendan P; Nachtigall, Paul E
2016-01-01
The echolocation system of the Risso's dolphin (Grampus griseus) remains poorly studied compared to other odontocete species. In this study, echolocation signals were recorded from a stationary Risso's dolphin with an array of 16 hydrophones and the two-dimensional beam shape was explored using frequency-dependent amplitude plots. Click source parameters were similar to those already described for this species. Centroid frequency of click signals increased with increasing sound pressure level, while the beamwidth decreased with increasing center frequency. Analysis revealed primarily single-lobed, and occasionally vertically dual-lobed, beam shapes. Overall beam directivity was found to be greater than that of the harbor porpoise, bottlenose dolphin, and a false killer whale. The relationship between frequency content, beam directivity, and head size for this Risso's dolphin deviated from the trend described for other species. These are the first reported measurements of echolocation beam shape and directivity in G. griseus.
Development of inorganic resists for electron beam lithography: Novel materials and simulations
NASA Astrophysics Data System (ADS)
Jeyakumar, Augustin
Electron beam lithography is gaining widespread utilization as the semiconductor industry progresses towards both advanced optical and non-optical lithographic technologies for high resolution patterning. The current resist technologies are based on organic systems that are imaged most commonly through chain scission, networking, or a chemically amplified polarity change in the material. Alternative resists based on inorganic systems were developed and characterized in this research for high resolution electron beam lithography and their interactions with incident electrons were investigated using Monte Carlo simulations. A novel inorganic resist imaging scheme was developed using metal-organic precursors which decompose to form metal oxides upon electron beam irradiation that can serve as inorganic hard masks for hybrid bilayer inorganic-organic imaging systems and also as directly patternable high resolution metal oxide structures. The electron beam imaging properties of these metal-organic materials were correlated to the precursor structure by studying effects such as interactions between high atomic number species and the incident electrons. Optimal single and multicomponent precursors were designed for utilization as viable inorganic resist materials for sub-50nm patterning in electron beam lithography. The electron beam imaging characteristics of the most widely used inorganic resist material, hydrogen silsesquioxane (HSQ), was also enhanced using a dual processing imaging approach with thermal curing as well as a sensitizer catalyzed imaging approach. The interaction between incident electrons and the high atomic number species contained in these inorganic resists was also studied using Monte Carlo simulations. The resolution attainable using inorganic systems as compared to organic systems can be greater for accelerating voltages greater than 50 keV due to minimized lateral scattering in the high density inorganic systems. The effects of loading nanoparticles in an electron beam resist was also investigated using a newly developed hybrid Monte Carlo approach that accounts for multiple components in a solid film. The resolution of the nanocomposite resist process was found to degrade with increasing nanoparticle loading. Finally, the electron beam patterning of self-assembled monolayers, which were found to primarily utilize backscattered electrons from the high atomic number substrate materials to form images, was also investigated and characterized. It was found that backscattered electrons limit the resolution attainable at low incident electron energies.
α-Actinin/titin interaction: A dynamic and mechanically stable cluster of bonds in the muscle Z-disk
Grison, Marco; Merkel, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina; Rief, Matthias
2017-01-01
Stable anchoring of titin within the muscle Z-disk is essential for preserving muscle integrity during passive stretching. One of the main candidates for anchoring titin in the Z-disk is the actin cross-linker α-actinin. The calmodulin-like domain of α-actinin binds to the Z-repeats of titin. However, the mechanical and kinetic properties of this important interaction are still unknown. Here, we use a dual-beam optical tweezers assay to study the mechanics of this interaction at the single-molecule level. A single interaction of α-actinin and titin turns out to be surprisingly weak if force is applied. Depending on the direction of force application, the unbinding forces can more than triple. Our results suggest a model where multiple α-actinin/Z-repeat interactions cooperate to ensure long-term stable titin anchoring while allowing the individual components to exchange dynamically. PMID:28096424
Grison, Marco; Merkel, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina; Rief, Matthias
2017-01-31
Stable anchoring of titin within the muscle Z-disk is essential for preserving muscle integrity during passive stretching. One of the main candidates for anchoring titin in the Z-disk is the actin cross-linker α-actinin. The calmodulin-like domain of α-actinin binds to the Z-repeats of titin. However, the mechanical and kinetic properties of this important interaction are still unknown. Here, we use a dual-beam optical tweezers assay to study the mechanics of this interaction at the single-molecule level. A single interaction of α-actinin and titin turns out to be surprisingly weak if force is applied. Depending on the direction of force application, the unbinding forces can more than triple. Our results suggest a model where multiple α-actinin/Z-repeat interactions cooperate to ensure long-term stable titin anchoring while allowing the individual components to exchange dynamically.
Qian, Zhaosheng; Shan, Xiaoyue; Chai, Lujing; Chen, Jianrong; Feng, Hui
2014-12-01
Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual-color GQD-based probes and CNTs and subsequently self-recognition between DNA probes and targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024
2015-03-16
A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.
Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît
2016-01-01
A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826
Butchard-MacDonald, Emma; Paul, Lorna; Evans, Jonathan J
2018-03-01
People with relapsing remitting multiple sclerosis (PwRRMS) suffer disproportionate decrements in gait under dual-task conditions, when walking and a cognitive task are combined. There has been much less investigation of the impact of cognitive demands on balance. This study investigated whether: (1) PwRRMS show disproportionate decrements in postural stability under dual-task conditions compared to healthy controls, and (2) dual-task decrements are associated with everyday dual-tasking difficulties. The impact of mood, fatigue, and disease severity on dual-tasking was also examined. A total of 34 PwRRMS and 34 matched controls completed cognitive (digit span) and balance (movement of center of pressure on Biosway on stable and unstable surfaces) tasks under single- and dual-task conditions. Everyday dual-tasking was measured using the Dual-Tasking Questionnaire. Mood was measured by the Hospital Anxiety & Depression Scale. Fatigue was measured via the Modified Fatigue Index Scale. No differences in age, gender, years of education, estimated pre-morbid IQ, or baseline digit span between groups. Compared with controls, PwRRMS showed significantly greater decrement in postural stability under dual-task conditions on an unstable surface (p=.007), but not a stable surface (p=.679). Balance decrement scores were not correlated with everyday dual-tasking difficulties or fatigue. Stable surface balance decrement scores were significantly associated with levels of anxiety (rho=0.527; p=.001) and depression (rho=0.451; p=.007). RRMS causes dual-tasking difficulties, impacting balance under challenging conditions, which may contribute to increased risk of gait difficulties and falls. The relationship between anxiety/depression and dual-task decrement suggests that emotional factors may be contributing to dual-task difficulties. (JINS, 2018, 24, 247-258).
Beam splitter used in dual filming technique
NASA Technical Reports Server (NTRS)
Zeldin, S.
1966-01-01
Tubular tee is intersected at its junction by a reflecting/transmitting mirror angled to provide two images of an object for simultaneous photographing from two positions. This method is used when space and focal conditions are limited.
NASA Astrophysics Data System (ADS)
Pisarev, Vladimir S.; Odintsev, I.; Balalov, V.; Apalkov, A.
2003-05-01
Sophisticated technique for reliable quantitative deriving residual stress values from initial experimental data, which are inherent in combined implementing the hole drilling method with both holographic and speckle interferometry, is described in detail. The approach developed includes both possible ways of obtaining initial experimental information. The first of them consists of recording a set of required interference fringe patterns, which are resulted from residual stress energy release after through hole drilling, in two orthogonal directions that coincide with principal strain directions. The second way is obtaining a series of interrelated fringe patterns when a direction of either observation in reflection hologram interferometry or dual-beam illumination in speckle interferometry lies arbitrary with respect to definite principal strain direction. A set of the most typical both actual and analogous reference fringe patterns, which are related to both reflection hologram and dual-beam speckle interferometry, are presented.
On the dual-cone nature of the conical refraction phenomenon.
Turpin, A; Loiko, Yu; Kalkandjiev, T K; Tomizawa, H; Mompart, J
2015-04-15
In conical refraction (CR), a focused Gaussian input beam passing through a biaxial crystal and parallel to one of the optic axes is transformed into a pair of concentric bright rings split by a dark (Poggendorff) ring at the focal plane. Here, we show the generation of a CR transverse pattern that does not present the Poggendorff fine splitting at the focal plane, i.e., it forms a single light ring. This light ring is generated from a nonhomogeneously polarized input light beam obtained by using a spatially inhomogeneous polarizer that mimics the characteristic CR polarization distribution. This polarizer allows modulating the relative intensity between the two CR light cones in accordance with the recently proposed dual-cone model of the CR phenomenon. We show that the absence of interfering rings at the focal plane is caused by the selection of one of the two CR cones.
Turbine blade tip clearance measurement using a skewed dual-beam fiber optic sensor
NASA Astrophysics Data System (ADS)
Ye, De-chao; Duan, Fa-jie; Guo, Hao-tian; Li, Yangzong; Wang, Kai
2012-08-01
Optimization and active control of the tip clearance of turbine blades has been identified as a key to improve fuel efficiency, reduce emission, and increase service life of the engine. However, reliable and real-time tip clearance measurement is difficult due to the adverse environmental conditions that are typically found in a turbine. We describe a dual-beam fiber optic measurement system that can measure the tip timing and tip clearance simultaneously. Because the tip timing information is used to calculate the tip clearance, the method is insensitive to the signal intensity variation caused by fluctuations in environmental conditions such as light source instability, contamination, and blade tip imperfection. The system was calibrated and tested using experimental rotors. The test results indicated a high resolution of 4.5 μm and measurement accuracy of ±20 μm over the rotation speed range of 2000 to 10,000 rpm.
The Microstructure of RR1000 Nickel-Base Superalloy: The FIB-SEM Dual-Beam Approach
NASA Astrophysics Data System (ADS)
Croxall, S. A.; Hardy, M. C.; Stone, H. J.; Midgley, P. A.
Nickel-base superalloys are aerospace materials that exhibit exceptional mechanical properties and corrosion resistance at very high temperatures. RR1000 is used in discs in gas turbine engines, where temperatures reach in excess of 650°C with high mechanical stresses. Study of the microstructure at the micron and sub-micron level has conventionally been undertaken using scanning electron microscope images, often meaning the underlying 3D microstructure can be inferred only with additional knowledge. Using a dual-beam workstation, we are able to interrogate directly the 3D microstructure using a serial sectioning approach. The 3D data set, typically (10µm)3 in volume, reveals microstructural detail with lateral resolution of circa 8nm and a depth resolution dictated by the slice thickness, typically 50nm. Morphological and volumetric analysis of the 3D reconstruction of RR1000 superalloy reveals microstructural details hitherto unseen.
Ultrashort polarization splitter based on dual-core photonic crystal fibers with gold wire
NASA Astrophysics Data System (ADS)
Xu, Qiang; Zhao, Ya; Xia, Houping; Lin, Shebao; Zhang, Yani
2018-04-01
An ultrashort polarization splitter based on dual-core photonic crystal fibers with gold wire has been proposed. Based on the beam propagation method with anisotropic perfectly matched layers, its polarization splitter coupling length, coupling length ratio, extinction ratio (ER), and bandwidth are numerically investigated. When the gold thread is filled in the fiber, the surface of the gold wire will produce the surface plasmon polaritons, which has certain influence on the beam propagation. A polarization splitter with shorter length and greater working bandwidth can be obtained by filling the gold wire. Numerical results demonstrate that the polarization splitter possesses extremely the length of 290 μm and high ER of -56.5 dB at the wavelength of 1.55 μm. Moreover, the polarization splitter is proposed to achieve ER better than -10 dB and a bandwidth of 19.2 nm.
Commissioning of the Dual-Beam Imaging Polarimeter for the University of Hawaii 88 inch Telescope
NASA Astrophysics Data System (ADS)
Masiero, Joseph; Hodapp, Klaus; Harrington, Dave; Lin, Haosheng
2007-10-01
In this paper we present the design, calibration method, and initial results of the Dual-Beam Imaging Polarimeter (DBIP). This new instrument is designed to measure the optical polarization properties of point sources, in particular, Main Belt asteroids. This instrument interfaces between the Tek 2048×2048 camera and the University of Hawaii's 88 inch telescope and is available for facility use. Using DBIP we are able to measure linear polarization with a 1 σ Poisson signal noise of 0.03% per measurement and a systematic error of order 0.06%+/-0.02%. In addition, we discuss measurements of the polarization of the asteroid 16 Psyche that were taken as part of the instrument commissioning. We confirm Psyche's negative polarization of -1.037%+/-0.006% but find no significant modulation of the signal with rotation above the 0.05% polarization level.
Monitoring and guidance of HIFU beams with dual-mode ultrasound arrays.
Ballard, John R; Casper, Andrew J; Ebbini, Emad S
2009-01-01
We present experimental results illustrating the unique advantages of dual-mode array (DMUA) systems in monitoring and guidance of high intensity focused ultrasound (HIFU) lesion formation. DMUAs offer a unique paradigm in image-guided surgery; one in which images obtained using the same therapeutic transducer provide feedback for: 1) refocusing the array in the presence of strongly scattering objects, e.g. the ribs, 2) temperature change at the intended location of the HIFU focus, and 3) changes in the echogenicity of the tissue in response to therapeutic HIFU. These forms of feedback have been demonstrated in vitro in preparation for the design and implementation of a real-time system for imaging and therapy with DMUAs. The results clearly demonstrate that DMUA image feedback is spatially accurate and provide sufficient spatial and contrast resolution for identification of high contrast objects like the ribs and significant blood vessels in the path of the HIFU beam.
NASA Astrophysics Data System (ADS)
Liao, Wenlin; Dai, Yi-Fan; Nie, Xutao; Nie, Xuqing; Xu, Mingjin
2017-12-01
Ion beam sputtering (IBS) possesses strong surface nanostructuring behaviors, where dual microscopic phenomenon can be aroused to induce the formation of ultrasmooth surfaces or regular nanostructures. Low-energy IBS of fused silica surfaces is investigated to discuss the formation mechanism and the regulation of the IBS-induced nanostructures. The research results indicate that these microscopic phenomena can be attributed to the interaction of the IBS-induced surface roughening and smoothing effects, and the interaction process strongly depends on the sputtering conditions. Alternatively, ultrasmooth surface or regular nanostructure can be selectively generated through the regulation of the nanostructuring process, and the features of the generated nanostructures, such as amplitude and period, also can be regulated. Consequently, two different technology aims of nanofabrication, including nanometer-scale and nanometer-precision fabrication, can be realized, respectively. These dual microscopic mechanisms distinguish IBS as a promising nanometer manufacturing technology for the optical surfaces.
Treatment vault shielding for a flattening filter-free medical linear accelerator
NASA Astrophysics Data System (ADS)
Kry, Stephen F.; Howell, Rebecca M.; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N.
2009-03-01
The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m3 less concrete to shield the single-energy linac and 36 m3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.
Treatment vault shielding for a flattening filter-free medical linear accelerator.
Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N
2009-03-07
The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m(3) less concrete to shield the single-energy linac and 36 m(3) less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.
Multiple-Zone Diffractive Optic Element for Laser Ranging Applications
NASA Technical Reports Server (NTRS)
Ramos-Izquierdo, Luis A.
2011-01-01
A diffractive optic element (DOE) can be used as a beam splitter to generate multiple laser beams from a single input laser beam. This technology has been recently used in LRO s Lunar Orbiter Laser Altimeter (LOLA) instrument to generate five laser beams that measure the lunar topography from a 50-km nominal mapping orbit (see figure). An extension of this approach is to use a multiple-zone DOE to allow a laser altimeter instrument to operate over a wider range of distances. In particular, a multiple-zone DOE could be used for applications that require both mapping and landing on a planetary body. In this case, the laser altimeter operating range would need to extend from several hundred kilometers down to a few meters. The innovator was recently involved in an investigation how to modify the LOLA instrument for the OSIRIS asteroid mapping and sample return mission. One approach is to replace the DOE in the LOLA laser beam expander assembly with a multiple-zone DOE that would allow for the simultaneous illumination of the asteroid with mapping and landing laser beams. The proposed OSIRIS multiple-zone DOE would generate the same LOLA five-beam output pattern for high-altitude topographic mapping, but would simultaneously generate a wide divergence angle beam using a small portion of the total laser energy for the approach and landing portion of the mission. Only a few percent of the total laser energy is required for approach and landing operations as the return signal increases as the inverse square of the ranging height. A wide divergence beam could be implemented by making the center of the DOE a diffractive or refractive negative lens. The beam energy and beam divergence characteristics of a multiple-zone DOE could be easily tailored to meet the requirements of other missions that require laser ranging data. Current single-zone DOE lithographic manufacturing techniques could also be used to fabricate a multiple-zone DOE by masking the different DOE zones during the manufacturing process, and the same space-compatible DOE substrates (fused silica, sapphire) that are used on standard DOE s could be used for multiple- zone DOE s. DOEs are an elegant and cost-effective optical design option for spacebased laser altimeters that require multiple output laser beams. The use of multiple-zone DOEs would allow for the design and optimization of a laser altimeter instrument required to operate over a large range of target distances, such as those designed to both map and land on a planetary body. In addition to space-based laser altimeters, this technology could find applications in military or commercial unmanned aerial vehicles (UAVs) that fly at an altitude of several kilometers and need to land. It is also conceivable that variations of this approach could be used in land-based applications such as collision avoidance and robotic control of cars, trains, and ships.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-23
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-01
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation. PMID:28112234
Polarization-independent silicon metadevices for efficient optical wavefront control
Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; ...
2015-07-20
In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less
Polarization-independent silicon metadevices for efficient optical wavefront control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph
In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less
Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John
2012-04-01
The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.
Dual-resolution dose assessments for proton beamlet using MCNPX 2.6.0
NASA Astrophysics Data System (ADS)
Chao, T. C.; Wei, S. C.; Wu, S. W.; Tung, C. J.; Tu, S. J.; Cheng, H. W.; Lee, C. C.
2015-11-01
The purpose of this study is to access proton dose distribution in dual resolution phantoms using MCNPX 2.6.0. The dual resolution phantom uses higher resolution in Bragg peak, area near large dose gradient, or heterogeneous interface and lower resolution in the rest. MCNPX 2.6.0 was installed in Ubuntu 10.04 with MPI for parallel computing. FMesh1 tallies were utilized to record the energy deposition which is a special designed tally for voxel phantoms that converts dose deposition from fluence. 60 and 120 MeV narrow proton beam were incident into Coarse, Dual and Fine resolution phantoms with pure water, water-bone-water and water-air-water setups. The doses in coarse resolution phantoms are underestimated owing to partial volume effect. The dose distributions in dual or high resolution phantoms agreed well with each other and dual resolution phantoms were at least 10 times more efficient than fine resolution one. Because the secondary particle range is much longer in air than in water, the dose of low density region may be under-estimated if the resolution or calculation grid is not small enough.
A new method of carboxyhaemoglobin determination.
Sanderson, J H; Sotheran, M F; Stattersfield, J P
1978-01-01
A quick and accurate method of determining the concentration of carboxyhaemoglobin (COHb) in blood has been developed. The method uses a dual wavelength double beam spectrophotometer in the 1st derivative mode, linked to a digital voltmeter (DVM), with the two beams set 3 nm apart around an isobestic point of reduced haemoglobin (Hbred) and carboxyhaemoglobin at 579 nm. The 1st derivative mode measures the slope, and this slope is proportional to the concentration of COHb. PMID:629892
Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna
NASA Technical Reports Server (NTRS)
duToit, Cornelis
2014-01-01
A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each pair of elements: three apertures coupling to the patch elements were placed along the two symmetry lines of the antenna element pair. Two apertures were used in tandem to excite two of the stacked patch elements for one polarization; the other was used to excite one element from one side and the other element from the other side, opposite in phase, taking care of the remaining polarization. The apertures narrow down to a small gap where they are excited by a crossing microstrip line to prevent any asymmetrical excitation of the two sides of the aperture gap, minimizing port-to-port coupling. Using patches that are non-planar leads to higher mechanical rigidity and smaller patch sizes to fit into the available space. Aperture coupling minimizes direct metal-to-metal connections. Using an aperture coupling feed mechanism results in a feed network for two antenna elements with a total of three feed points, plus one simple in-phase combiner to reduce it to two ports. It greatly reduces the complexity of the alternative, but more conventional, way of feeding a pair of two dual-polarized elements with high port isolation.
Measurements from a Compact Cost-Effective Beamline for the THC14 PET Cyclotron
NASA Astrophysics Data System (ADS)
Dehnel, M. P.; Theroux, J.; Christensen, T.; Stewart, T. M.; Roeder, M.; Sirot, P.; Fasse, D.; Brasile, J. P.; Raoult, F.; Buckley, K.
2009-03-01
The THC14 PET Cyclotron produced by THALES specifies two compact cost-effective beamlines for high current PET radioisotope production. The design and development of the beamline system was reported previously in NIM B 261 (2007) pp 809-812. This paper describes the successful testing of this compact beamline at the first installation. A series of measurement data are presented starting from low current scintillator image data, higher current beam diagnostic data (baffles, collimators, targets) and finally a simultaneous dual beam run on Faraday Cups. The beamline system has proven to be a flexible and valuable tool for optimizing high current beam intensity distribution on target in a well-instrumented manner. This ability to tailor the beam characteristics for the target is particularly important as high power targets are developed which can handle very high beam currents.
NASA Astrophysics Data System (ADS)
Li, Ruixiao; Li, Kun; Zhao, Changming
2018-01-01
Coherent dual-frequency Lidar (CDFL) is a new development of Lidar which dramatically enhances the ability to decrease the influence of atmospheric interference by using dual-frequency laser to measure the range and velocity with high precision. Based on the nature of CDFL signals, we propose to apply the multiple signal classification (MUSIC) algorithm in place of the fast Fourier transform (FFT) to estimate the phase differences in dual-frequency Lidar. In the presence of Gaussian white noise, the simulation results show that the signal peaks are more evident when using MUSIC algorithm instead of FFT in condition of low signal-noise-ratio (SNR), which helps to improve the precision of detection on range and velocity, especially for the long distance measurement systems.
Dual-pulse laser ignition of ethylene-air mixtures in a supersonic combustor.
Yang, Leichao; An, Bin; Liang, Jianhan; Li, Xipeng; Wang, Zhenguo
2018-04-02
To reduce the energy of an individual laser pulse, dual-pulse laser ignitions (LIs) at various pulse intervals were investigated in a Mach 2.92 scramjet engine fueled with ethylene. For comparison, experiments on a single-pulse LI were also performed. Schlieren visualization and high-speed photography were employed to observe the ignition processes simultaneously. The results indicate that the energy of an individual laser pulse can be reduced by half via a dual-pulse LI method as compared with a single-pulse LI with the same total energy. The reduction of the individual laser pulse energy degrades the requirements on the laser source and the beam delivery system, which facilitates the practical application of LI in hypersonic vehicles. A pulse interval shorter than 40 μs is suggested for dual-pulse LI in the present study. Because of the intense heat loss and radical dissipation in high-speed flows, the pulse interval for dual-pulse LI should be short enough to narrow the spatial distribution of the initial flame kernel.
NASA Astrophysics Data System (ADS)
Gupta, Sakshi; Ahmad, Azeem; Gambhir, Vijayeta; Reddy, Martha N.; Mehta, Dalip S.
2015-08-01
In a typical Raman based sensor, a single laser beam is used for exciting the sample and the backscattered or forward scattered light is collected using collection optics and is analyzed by a spectrometer. We have investigated that by means of exciting the sample with multiple beams, i.e., by dividing the same input power of the single beam into two or three or more beams and exciting the sample from different angles, the Raman signal enhances significantly. Due to the presence of multiple beams passing through the same volume of the sample, an interference pattern is formed and the volume of interaction of excitation beams with the sample increases. By means of this geometry, the enhancement in the Raman signal is observed and it was found that the signal strength increases linearly with the increase in number of excitation beams. Experimental results of this scheme for excitation of the samples are reported for explosive detection at a standoff distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boatner, Lynn A; Neal, John S; Blackston, Matthew A
2012-01-01
A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6LiF or 10B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected rather than having half of the products absorbed in the wall of a conventional tube type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimummore » neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6LiF converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6LiF and 10B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.« less
Study of the transverse beam motion in the DARHT Phase II accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu-Jiuan; Fawley, W M; Houck, T L
1998-08-20
The accelerator for the second-axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will accelerate a 4-kA, 3-MeV, 2--µs long electron current pulse to 20 MeV. The energy variation of the beam within the flat-top portion of the current pulse is (plus or equal to) 0.5%. The performance of the DARHT Phase II radiographic machine requires the transverse beam motion to be much less than the beam spot size which is about 1.5 mm diameter on the x-ray converter. In general, the leading causes of the transverse beam motion in an accelerator are the beam breakup instability (BBU) andmore » the corkscrew motion. We have modeled the transverse beam motion in the DARHT Phase II accelerator with various magnetic tunes and accelerator cell configurations by using the BREAKUP code. The predicted sensitivity of corkscrew motion and BBU growth to different tuning algorithms will be presented.« less
Cavity nucleation and growth in dual beam irradiated 316L industrial austenitic stainless steel
NASA Astrophysics Data System (ADS)
Jublot-Leclerc, S.; Li, X.; Legras, L.; Fortuna, F.; Gentils, A.
2017-10-01
Thin foils of 316L were simultaneously ion irradiated and He implanted in situ in a Transmission Electron Microscope at elevated temperatures. The resulting microstructure is carefully investigated in comparison with previous single ion irradiation experiments with a focus on the nucleation and growth of cavities. Helium is found to strongly enhance the nucleation of cavities in dual beam experiments. On the contrary, it does not induce more nucleation when implanted consecutively to an in situ ion irradiation but rather the growth of cavities by absorption at existing cavities, which shows the importance of synergistic effects and He injection mode on the microstructural changes. In both dual beam and single beam experiments, the characteristics of the populations of cavities, either stabilized by He or O atoms, are in qualitative agreement with the predictions of rate theory models for cavity growth. The evolutions of cavity population as a function of irradiation conditions can be reasonably well explained by the concept of relative sink strength of cavities and dislocations and the resulting partitioning of defects at sinks, or conversely recombination when either of the sinks dominates. The dislocations whose presence is a prerequisite to cavity growth in rate theory models are not observed in all studied conditions. In this case, the net influx of vacancies to cavities necessary to their growth and conversion to voids is believed to result from free surface effects, and possibly also segregation of elements close to the cavity surface. In any studied condition, the measured swelling is low, which is ascribed to the dilution of gaseous atoms among a high density of cavities as well as a high rate of point defect recombination and loss at traps. This high rate of recombination enhanced when dislocations are absent appears to result in the formation of overpressurized He bubbles.
Zhou, Bo; Wen, Di; Nye, Katelyn; Gilkeson, Robert C; Eck, Brendan; Jordan, David; Wilson, David L
2017-10-01
We have demonstrated the ability to identify coronary calcium, a reliable biomarker of coronary artery disease, using nongated, 2-shot, dual energy (DE) chest x-ray imaging. Here we will use digital simulations, backed up by measurements, to characterize DE calcium signals and the role of potential confounds such as beam hardening, x-ray scatter, cardiac motion, and pulmonary artery pulsation. For the DE calcium signal, we will consider quantification, as compared to CT calcium score, and visualization. We created stylized and anatomical digital 3D phantoms including heart, lung, coronary calcium, spine, ribs, pulmonary artery, and adipose. We simulated high and low kVp x-ray acquisitions with x-ray spectra, energy dependent attenuation, scatter, ideal detector, and automatic exposure control (AEC). Phantoms allowed us to vary adipose thickness, cardiac motion, etc. We used specialized dual energy coronary calcium (DECC) processing that includes corrections for scatter and beam hardening. Beam hardening over a wide range of adipose thickness (0-30 cm) reduced the change in intensity of a coronary artery calcification (ΔI CAC ) by < 3% in DECC images. Scatter correction errors of ±50% affected the calcium signal (ΔI CAC ) in DECC images ±9%. If a simulated pulmonary artery fills with blood between exposures, it can give rise to a residual signal in DECC images, explaining pulmonary artery visibility in some clinical images. Residual misregistration can be mostly compensated by integrating signals in an enlarged region encompassing registration artifacts. DECC calcium score compared favorably to CT mass and volume scores over a number of phantom perturbations. Simulations indicate that proper DECC processing can faithfully recover coronary calcium signals. Beam hardening, errors in scatter estimation, cardiac motion, calcium residual misregistration etc., are all manageable. Simulations are valuable as we continue to optimize DE coronary calcium image processing and quantitative analysis. © 2017 American Association of Physicists in Medicine.
Dynamic analysis of trapping and escaping in dual beam optical trap
NASA Astrophysics Data System (ADS)
Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu
2016-10-01
In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.
The Re-Intensification of Typhoon Sinlaku (2008)
2010-06-01
Tropical Cyclones, TCS-08, T- PARC , Extratropical Transition, Airborne Dual Doppler Radar , ELDORA, Axisymmetrization, Mesoscale Vortices, Mesoscale...observed by multiple aircraft as part of the TCS-08 and T- PARC field programs. Airborne dual-Doppler radar , dropwindsondes, and flight-level...typhoon southwest of Japan. The evolution of the tropical cyclone (TC) structure was observed by multiple aircraft as part of the TCS-08 and T- PARC
Lin, Kuang-Wei; Hall, Timothy L; Xu, Zhen; Cain, Charles A
2015-08-01
When histotripsy pulses shorter than 2 cycles are applied, the formation of a dense bubble cloud relies only on the applied peak negative pressure (p-) exceeding the "intrinsic threshold" of the medium (absolute value of 26-30 MPa in most soft tissues). It has been found that a sub-threshold high-frequency probe pulse (3 MHz) can be enabled by a sub-threshold low-frequency pump pulse (500 kHz) where the sum exceeds the intrinsic threshold, thus generating lesion-producing dense bubble clouds ("dual-beam histotripsy"). Here, the feasibility of using an imaging transducer to provide the high-frequency probe pulse in the dual-beam histotripsy approach is investigated. More specifically, an ATL L7-4 imaging transducer (Philips Healthcare, Andover, MA, USA), pulsed by a V-1 Data Acquisition System (Verasonics, Redmond, WA, USA), was used to generate the high-frequency probe pulses. The low-frequency pump pulses were generated by a 20-element 345-kHz array transducer, driven by a custom high-voltage pulser. These dual-beam histotripsy pulses were applied to red blood cell tissue-mimicking phantoms at a pulse repetition frequency of 1 Hz, and optical imaging was used to visualize bubble clouds and lesions generated in the red blood cell phantoms. The results indicated that dense bubble clouds (and resulting lesions) were generated when the p- of the sub-threshold pump and probe pulses combined constructively to exceed the intrinsic threshold. The average size of the smallest reproducible lesions using the imaging probe pulse enabled by the sub-threshold pump pulse was 0.7 × 1.7 mm, whereas that using the supra-threshold pump pulse alone was 1.4 × 3.7 mm. When the imaging transducer was steered laterally, bubble clouds and lesions were steered correspondingly until the combined p- no longer exceeded the intrinsic threshold. These results were also validated with ex vivo porcine liver experiments. Using an imaging transducer for dual-beam histotripsy can have two advantages: (i) lesion steering can be achieved using the steering of the imaging transducer (implemented with the beamformer of the accompanying programmable ultrasound system), and (ii) treatment can be simultaneously monitored when the imaging transducer is used in conjunction with an ultrasound imaging system. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Lin, Kuang-Wei; Hall, Timothy L.; Xu, Zhen; Cain, Charles A.
2015-01-01
When applying histotripsy pulses shorter than 2 cycles, the formation of a dense bubble cloud only relies on the applied peak negative pressure (p-) exceeding the “intrinsic threshold” of the medium (absolute value of 26 – 30 MPa in most soft tissue). A previous study conducted by our research group showed that a sub-threshold high-frequency probe pulse (3 MHz) can be enabled by a sub-threshold low-frequency pump pulse (500 kHz) where the sum exceeds the intrinsic threshold, thus generating lesion-producing dense bubble clouds (“dual-beam histotripsy”). This paper investigates the feasibility of using an imaging transducer to provide the high-frequency probe pulse in the dual-beam histotripsy approach. More specifically, an ATL L7–4 imaging transducer, pulsed by a Verasonics V-1 Data Acquisition System, was used to generate the high-frequency probe pulses. The low-frequency pump pulses were generated by a 20-element 345 kHz array transducer, driven by a custom high voltage pulser. These dual-beam histotripsy pulses were applied to red-blood-cell (RBC) tissue-mimicking phantoms at a pulse repetition frequency of 1 Hz, and optical imaging was used to visualize bubble clouds and lesions generated in the RBC phantoms. The results showed that dense bubble clouds (and resulting lesions) were generated when the p- of the sub-threshold pump and probe pulses combined constructively to exceed the intrinsic threshold. The average size of the smallest reproducible lesions using the imaging probe pulse enabled by the sub-threshold pump pulse was 0.7 × 1.7 mm while that using the supra-threshold pump pulse alone was 1.4 × 3.7 mm. When the imaging transducer was steered laterally, bubble clouds and lesions were steered correspondingly until the combined p- no longer exceeded the intrinsic threshold. These results were also validated with ex vivo porcine liver experiments. Using an imaging transducer for dual-beam histotripsy can have two advantages, 1) lesion steering can be achieved using the steering of the imaging transducer (implemented with the beamformer of the accompanying programmable ultrasound system) and 2) treatment can be simultaneously monitored when the imaging transducer is used in conjunction with an ultrasound imaging system. PMID:25929995
NASA Astrophysics Data System (ADS)
Seo, Junyeong; Sung, Youngchul
2018-06-01
In this paper, an efficient transmit beam design and user scheduling method is proposed for multi-user (MU) multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) downlink, based on Pareto-optimality. The proposed beam design and user scheduling method groups simultaneously-served users into multiple clusters with practical two users in each cluster, and then applies spatical zeroforcing (ZF) across clusters to control inter-cluster interference (ICI) and Pareto-optimal beam design with successive interference cancellation (SIC) to two users in each cluster to remove interference to strong users and leverage signal-to-interference-plus-noise ratios (SINRs) of interference-experiencing weak users. The proposed method has flexibility to control the rates of strong and weak users and numerical results show that the proposed method yields good performance.
Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu
2010-12-01
To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.
Bandwidth Extension of an S-band, Fundamental-Mode Eight-Beam Klystron
2006-04-01
Extension of an S - band , Fundamental-Mode Eight-Beam Klystron Khanh T. Nguyen Beam-Wave Research, Inc. Bethesda, MD 20814 Dean E. Pershing ATK Mission...of a five-cavity, approximately 18 cm downstream from the center of the broadband, high - power multiple-beam klystron (MBK) first gap - the logical...the circuit generates >550 kW across the band with a peak power of more than 600 kW at -3.27 Keywords: Multiple-beam klystron ; MBK; bandwidth GHz. The 1
The Dual Participants: A High Risk Drinking Driver Target Group.
ERIC Educational Resources Information Center
Kline, Michael V.; And Others
1988-01-01
Studied dual participants (N=2,525), multiple offender drinking driver program participants who also attend non-drinking driver alcohol treatment programs. Findings support need for drinking driver programs to be aware of high risk dual participants and for alcohol-related treatment programs to provide drinking and driving education to all dual…
NASA Astrophysics Data System (ADS)
Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng
2016-09-01
Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.
Topological charge algebra of optical vortices in nonlinear interactions.
Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V
2015-12-28
We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.
Optical detection of tracer species in strongly scattering media.
Brauser, Eric M; Rose, Peter E; McLennan, John D; Bartl, Michael H
2015-03-01
A combination of optical absorption and scattering is used to detect tracer species in a strongly scattering medium. An optical setup was developed, consisting of a dual-beam scattering detection scheme in which sample scattering beam overlaps with the characteristic absorption feature of quantum dot tracer species, while the reference scattering beam is outside any absorption features of the tracer. This scheme was successfully tested in engineered breakthrough tests typical of wastewater and subsurface fluid analysis, as well as in batch analysis of oil and gas reservoir fluids and biological samples. Tracers were detected even under highly scattering conditions, conditions in which conventional absorption or fluorescence methods failed.
Simulation results of corkscrew motion in DARHT-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, K. D.; Ekdahl, C. A.; Chen, Y. J.
2003-01-01
DARHT-II, the second axis of the Dual-Axis Radiographic Hydrodynamics Test Facility, is being commissioned. DARHT-II is a linear induction accelerator producing 2-microsecond electron beam pulses at 20 MeV and 2 kA. These 2-microsecond pulses will be chopped into four short pulses to produce time resolved x-ray images. Radiographic application requires the DARHT-II beam to have excellent beam quality, and it is important to study various beam effects that may cause quality degradation of a DARHT-II beam. One of the beam dynamic effects under study is 'corkscrew' motion. For corkscrew motion, the beam centroid is deflected off axis due to misalignmentsmore » of the solenoid magnets. The deflection depends on the beam energy variation, which is expected to vary by {+-}0.5% during the 'flat-top' part of a beam pulse. Such chromatic aberration will result in broadening of beam spot size. In this paper, we will report simulation results of our study of corkscrew motion in DARHT-II. Sensitivities of beam spot size to various accelerator parameters and the strategy for minimizing corkscrew motion will be described. Measured magnet misalignment is used in the simulation.« less
Adaptive lesion formation using dual mode ultrasound array system
NASA Astrophysics Data System (ADS)
Liu, Dalong; Casper, Andrew; Haritonova, Alyona; Ebbini, Emad S.
2017-03-01
We present the results from an ultrasound-guided focused ultrasound platform designed to perform real-time monitoring and control of lesion formation. Real-time signal processing of echogenicity changes during lesion formation allows for identification of signature events indicative of tissue damage. The detection of these events triggers the cessation or the reduction of the exposure (intensity and/or time) to prevent overexposure. A dual mode ultrasound array (DMUA) is used for forming single- and multiple-focus patterns in a variety of tissues. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems providing instantaneous, spatially-accurate feedback on lesion formation dynamics. The beamformed RF data has been shown to have high sensitivity and specificity to tissue changes during lesion formation, including in vivo. In particular, the beamformed echo data from the DMUA is very sensitive to cavitation activity in response to HIFU in a variety of modes, e.g. boiling cavitation. This form of feedback is characterized by sudden increase in echogenicity that could occur within milliseconds of the application of HIFU (see http://youtu.be/No2wh-ceTLs for an example). The real-time beamforming and signal processing allowing the adaptive control of lesion formation is enabled by a high performance GPU platform (response time within 10 msec). We present results from a series of experiments in bovine cardiac tissue demonstrating the robustness and increased speed of volumetric lesion formation for a range of clinically-relevant exposures. Gross histology demonstrate clearly that adaptive lesion formation results in tissue damage consistent with the size of the focal spot and the raster scan in 3 dimensions. In contrast, uncontrolled volumetric lesions exhibit significant pre-focal buildup due to excessive exposure from multiple full-exposure HIFU shots. Stopping or reducing the HIFU exposure upon the detection of such an events has been shown to produce precisely controlled lesions with no evidence of overexposure even when fast raster scan of volumetric HIFU lesion is attempted. We also show that the DMUA beamformed echo data is capable of detecting underexposure condition at the target location, e.g. due to the obstruction of the HIFU beam resulting from cavitation activity in the path of the beam. The results clearly demonstrate the advantage of adaptive lesion formation in reducing the treatment time while confining the tissue damage to the target volume.
Chang, Suyon; Han, Kyunghwa; Youn, Jong-Chan; Im, Dong Jin; Kim, Jin Young; Suh, Young Joo; Hong, Yoo Jin; Hur, Jin; Kim, Young Jin; Choi, Byoung Wook; Lee, Hye-Jeong
2018-05-01
Purpose To investigate the diagnostic utility of dual-energy computed tomography (CT)-based monochromatic imaging for myocardial delayed enhancement (MDE) assessment in patients with cardiomyopathy. Materials and Methods The institutional review board approved this prospective study, and informed consent was obtained from all participants who were enrolled in the study. Forty patients (27 men and 13 women; mean age, 56 years ± 15 [standard deviation]; age range, 22-81 years) with cardiomyopathy underwent cardiac magnetic resonance (MR) imaging and dual-energy CT. Conventional (120-kV) and monochromatic (60-, 70-, and 80-keV) images were reconstructed from the dual-energy CT acquisition. Subjective quality score, contrast-to-noise ratio (CNR), and beam-hardening artifacts were compared pairwise with the Friedman test at post hoc analysis. With cardiac MR imaging as the reference standard, diagnostic performance of dual-energy CT in MDE detection and its predictive ability for pattern classification were compared pairwise by using logistic regression analysis with the generalized estimating equation in a per-segment analysis. The Bland-Altman method was used to find agreement between cardiac MR imaging and CT in MDE quantification. Results Among the monochromatic images, 70-keV CT images resulted in higher subjective quality (mean score, 3.38 ± 0.54 vs 3.15 ± 0.43; P = .0067), higher CNR (mean, 4.26 ± 1.38 vs 3.93 ± 1.33; P = .0047), and a lower value for beam-hardening artifacts (mean, 3.47 ± 1.56 vs 4.15 ± 1.67; P < .0001) when compared with conventional CT. When compared with conventional CT, 70-keV CT showed improved diagnostic performance for MDE detection (sensitivity, 94.6% vs 90.4% [P = .0032]; specificity, 96.0% vs 94.0% [P = .0031]; and accuracy, 95.6% vs 92.7% [P < .0001]) and improved predictive ability for pattern classification (subendocardial, 91.5% vs 84.3% [P = .0111]; epicardial, 94.3% vs 73.5% [P = .0001]; transmural, 93.0% vs 77.7% [P = .0018]; mesocardial, 85.4% vs 69.2% [P = .0047]; and patchy. 84.4% vs 78.4% [P = .1514]). For MDE quantification, 70-keV CT showed a small bias 0.1534% (95% limits of agreement: -4.7013, 5.0080). Conclusion Dual-energy CT-based 70-keV monochromatic images improve MDE assessment in patients with cardiomyopathy via improved image quality and CNR and reduced beam-hardening artifacts when compared with conventional CT images. © RSNA, 2017 Online supplemental material is available for this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rosenfield, J; Dong, X
2016-06-15
Purpose: Rotational total skin electron irradiation (RTSEI) is used in the treatment of cutaneous T-cell lymphoma. Due to inter-film uniformity variations the dosimetry measurement of a large electron beam of a very low energy is challenging. This work provides a method to improve the accuracy of flatness and symmetry for a very large treatment field of low electron energy used in dual beam RTSEI. Methods: RTSEI is delivered by dual angles field a gantry of ±20 degrees of 270 to cover the upper and the lower halves of the patient body with acceptable beam uniformity. The field size is inmore » the order of 230cm in vertical height and 120 cm in horizontal width and beam energy is a degraded 6 MeV (6 mm of PMMA spoiler). We utilized parallel plate chambers, Gafchromic films and OSLDs as a measuring devices for absolute dose, B-Factor, stationary and rotational percent depth dose and beam uniformity. To reduce inter-film dosimetric variation we introduced a new specific correction method to analyze beam uniformity. This correction method uses some image processing techniques combining film value before and after radiation dose to compensate the inter-variation dose response differences among films. Results: Stationary and rotational depth of dose demonstrated that the Rp is 2 cm for rotational and the maximum dose is shifted toward the surface (3mm). The dosimetry for the phantom showed that dose uniformity reduced to 3.01% for the vertical flatness and 2.35% for horizontal flatness after correction thus achieving better flatness and uniformity. The absolute dose readings of calibrated films after our correction matched with the readings from OSLD. Conclusion: The proposed correction method for Gafchromic films will be a useful tool to correct inter-film dosimetric variation for the future clinical film dosimetry verification in very large fields, allowing the optimizations of other parameters.« less
NASA Astrophysics Data System (ADS)
Zhang, Changyu; Wang, Runyu; Cheng, Longhuai; Li, Bingjie; Xi, Zhen; Yi, Long
2016-07-01
Hydrogen sulfide (H2S) is an important signalling molecule with multiple biological functions. The reported H2S fluorescent probes are majorly based on redox or nucleophilic reactions. The combination usage of both redox and nucleophilic reactions could improve the probe’s selectivity, sensitivity and stability. Herein we report a new dual-reactable probe with yellow turn-on fluorescence for H2S detection. The sensing mechanism of the dual-reactable probe was based on thiolysis of NBD (7-nitro-1,2,3-benzoxadiazole) amine (a nucleophilic reaction) and reduction of azide to amine (a redox reaction). Compared with its corresponding single-reactable probes, the dual-reactable probe has higher selectivity and fluorescence turn-on fold with magnitude of multiplication from that of each single-reactable probe. The highly selective and sensitive properties enabled the dual-reactable probe as a useful tool for efficiently sensing H2S in aqueous buffer and in living cells.
2014-04-03
reinforcements as well as nature of matrix reinforcement interface.2,8 In situ MMCs exhibit thermodynamic stability, good inter- facial bonding, and uniform...of these Ni-Ti-C composites. A dual-beam workstation (FEI Nova NanoSEM) equipped with a focused ion beam column employing a Gallium (Ga) liquid metal...commercially available solution thermodynamic models (PANDATTM from Compu- Therm), are shown in Fig. 5 a–d. The points corre- sponding to the Ni-17Ti-17C
Multibeam antenna study, phase 1
NASA Technical Reports Server (NTRS)
Bellamy, J. L.
1972-01-01
A multibeam antenna concept was developed for providing spot beam coverage of the contiguous 48 states. The selection of a suitable antenna concept for the multibeam application and an experimental evaluation of the antenna concept selected are described. The final analysis indicates that the preferred concept is a dual-antenna, circular artificial dielectric lens. A description of the analytical methods is provided, as well as a discussion of the absolute requirements placed on the antenna concepts. Finally, a comparative analysis of reflector antenna off-axis beam performance is presented.
Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
1989-01-01
The performance of twin injection seeded Nd:YAG lasers is compared with the performance of an argon-ion laser for recording dual-reference-beam holograms in AGFA 8E56 emulsion. Optical heterodyning is used to measure interference, and the results are expressed in terms of heterodyning signal level and intensity signal-to-noise. The Nd:YAG laser system is to be used for optical inspections of structures for cracks, defects, gas leaks, and structural changes.
Dual differential interferometer for measurements of broadband surface acoustic waves
NASA Technical Reports Server (NTRS)
Turner, T. M.; Claus, R. O.
1981-01-01
A simple duel interferometer which uses two pairs of orthogonally polarized optical beams to measure both the amplitude and direction of propagation of broadband ultrasonic surface waves is described. Each pair of focused laser probe beams is used in a separate wideband differential interferometer to independently detect the component of surface wave motion along one direction on the surface. By combining the two output signals corresponding to both components, the two dimensional surface profile and its variation as a function of time is determined.
Optimizing the G/T ratio of the DSS-13 34-meter beam-waveguide antenna
NASA Technical Reports Server (NTRS)
Esquivel, M. S.
1992-01-01
Calculations using Physical Optics computer software were done to optimize the gain-to-noise temperature (G/T) ratio of DSS-13, the DSN's 34-m beam-waveguide antenna, at X-band for operation with the ultra-low-noise amplifier maser system. A better G/T value was obtained by using a 24.2-dB far-field-gain smooth-wall dual-mode horn than by using the standard X-band 22.5-dB-gain corrugated horn.
Hirayama, Shusuke; Matsuura, Taeko; Ueda, Hideaki; Fujii, Yusuke; Fujii, Takaaki; Takao, Seishin; Miyamoto, Naoki; Shimizu, Shinichi; Fujimoto, Rintaro; Umegaki, Kikuo; Shirato, Hiroki
2018-05-22
To evaluate the biological effects of proton beams as part of daily clinical routine, fast and accurate calculation of dose-averaged linear energy transfer (LET d ) is required. In this study, we have developed the analytical LET d calculation method based on the pencil-beam algorithm (PBA) considering the off-axis enhancement by secondary protons. This algorithm (PBA-dLET) was then validated using Monte Carlo simulation (MCS) results. In PBA-dLET, LET values were assigned separately for each individual dose kernel based on the PBA. For the dose kernel, we employed a triple Gaussian model which consists of the primary component (protons that undergo the multiple Coulomb scattering) and the halo component (protons that undergo inelastic, nonelastic and elastic nuclear reaction); the primary and halo components were represented by a single Gaussian and the sum of two Gaussian distributions, respectively. Although the previous analytical approaches assumed a constant LET d value for the lateral distribution of a pencil beam, the actual LET d increases away from the beam axis, because there are more scattered and therefore lower energy protons with higher stopping powers. To reflect this LET d behavior, we have assumed that the LETs of primary and halo components can take different values (LET p and LET halo ), which vary only along the depth direction. The values of dual-LET kernels were determined such that the PBA-dLET reproduced the MCS-generated LET d distribution in both small and large fields. These values were generated at intervals of 1 mm in depth for 96 energies from 70.2 to 220 MeV and collected in the look-up table. Finally, we compared the LET d distributions and mean LET d (LET d,mean ) values of targets and organs at risk between PBA-dLET and MCS. Both homogeneous phantom and patient geometries (prostate, liver, and lung cases) were used to validate the present method. In the homogeneous phantom, the LET d profiles obtained by the dual-LET kernels agree well with the MCS results except for the low-dose region in the lateral penumbra, where the actual dose was below 10% of the maximum dose. In the patient geometry, the LET d profiles calculated with the developed method reproduces MCS with the similar accuracy as in the homogeneous phantom. The maximum differences in LET d,mean for each structure between the PBA-dLET and the MCS were 0.06 keV/μm in homogeneous phantoms and 0.08 keV/μm in patient geometries under all tested conditions, respectively. We confirmed that the dual-LET-kernel model well reproduced the MCS, not only in the homogeneous phantom but also in complex patient geometries. The accuracy of the LET d was largely improved from the single-LET-kernel model, especially at the lateral penumbra. The model is expected to be useful, especially for proper recognition of the risk of side effects when the target is next to critical organs. © 2018 American Association of Physicists in Medicine.
Suppressing beam-centroid motion in a long-pulse linear induction accelerator
NASA Astrophysics Data System (ADS)
Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.
2011-12-01
The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.
ERIC Educational Resources Information Center
Granados, Nadia Regina
2015-01-01
Through a Communities of Practice Network Analysis, this research illustrates the ways in which dual language graduates participate in multiple, varied, and overlapping communities of practice across time. Findings highlight that the dual language school as a shared community of practice represents a critical and formative part of participants'…
NASA Astrophysics Data System (ADS)
Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki
2012-12-01
A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.
Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators
Zhang, Shukui; Wilson, Guy
2014-09-23
An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.
Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.
Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas
2013-03-01
The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used in the reconstruction process. The concept of assessing temporal resolution by means of the data employed for reconstruction can nicely be extended from single-source to dual-source CT. However, for advanced (possibly nonlinear iterative) reconstruction algorithms the examined approach fails to deliver accurate results. New methods and measures to assess the temporal resolution of CT images need to be developed to be able to accurately compare the performance of such algorithms.
Quantifying Spot Size Reduction of a 1.8 kA Electron Beam for Flash Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burris-Mog, Trevor John; Moir, David C.
The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittancemore » and solenoid aberrations are also presented.« less
NASA Astrophysics Data System (ADS)
Akbarzadeh Khorshidi, Majid; Shariati, Mahmoud
2016-04-01
This paper presents a new investigation for propagation of stress wave in a nanobeam based on modified couple stress theory. Using Euler-Bernoulli beam theory, Timoshenko beam theory, and Reddy beam theory, the effect of shear deformation is investigated. This nonclassical model contains a material length scale parameter to capture the size effect and the Poisson effect is incorporated in the current model. Governing equations of motion are obtained by Hamilton's principle and solved explicitly. This solution leads to obtain two phase velocities for shear deformable beams in different directions. Effects of shear deformation, material length scale parameter, and Poisson's ratio on the behavior of these phase velocities are investigated and discussed. The results also show a dual behavior for phase velocities against Poisson's ratio.
Electron beam throughput from raster to imaging
NASA Astrophysics Data System (ADS)
Zywno, Marek
2016-12-01
Two architectures of electron beam tools are presented: single beam MEBES Exara designed and built by Etec Systems for mask writing, and the Reflected E-Beam Lithography tool (REBL), designed and built by KLA-Tencor under a DARPA Agreement No. HR0011-07-9-0007. Both tools have implemented technologies not used before to achieve their goals. The MEBES X, renamed Exara for marketing purposes, used an air bearing stage running in vacuum to achieve smooth continuous scanning. The REBL used 2 dimensional imaging to distribute charge to a 4k pixel swath to achieve writing times on the order of 1 wafer per hour, scalable to throughput approaching optical projection tools. Three stage architectures were designed for continuous scanning of wafers: linear maglev, rotary maglev, and dual linear maglev.
Quantifying Spot Size Reduction of a 1.8 kA Electron Beam for Flash Radiography
Burris-Mog, Trevor John; Moir, David C.
2018-03-14
The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittancemore » and solenoid aberrations are also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drees, A.; Biscardi, C.; Curcio, T.
2015-01-07
The protection of the RHIC experimental detectors from damage due to beam hitting close upstream elements in cases of abort kicker prefires requires some dedicated precautionary measures with two general options: to bring the beam close to a limiting aperture (i.e. the beam pipe wall), as far upstream of the detector components as possible or, alternatively, to bring a limiting aperture close to the circulating beam. During the FY 2014 RHIC Heavy Ion run the first option was chosen because of the limited time available for preparation before the start of the run. For future runs the second option, inmore » this case the installation of dual-sided movable masks, is preferred. The installation of the masks, one per ring, is planned before the start of the FY 2015 run.« less
Time delay spectrum conditioner
Greiner, Norman R.
1980-01-01
A device for delaying specified frequencies of a multiple frequency laser beam. The device separates the multiple frequency beam into a series of spatially separated single frequency beams. The propagation distance of the single frequency beam is subsequently altered to provide the desired delay for each specific frequency. Focusing reflectors can be utilized to provide a simple but nonadjustable system or, flat reflectors with collimating and focusing optics can be utilized to provide an adjustable system.
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)
1992-01-01
A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.
NOTE: Blood irradiation with accelerator produced electron beams
NASA Astrophysics Data System (ADS)
Butson, M. J.; Cheung, T.; Yu, P. K. N.; Stokes, M. J.
2000-11-01
Blood and blood products are irradiated with gamma rays to reduce the risk of graft versus host disease (GVHD). A simple technique using electron beams produced by a medical linear accelerator has been studied to evaluate irradiation of blood and blood products. Variations in applied doses for a single field 20 MeV electron beam are measured in a phantom study. Doses have been verified with ionization chambers and commercial diode detectors. Results show that the blood product volume can be given a relatively homogeneous dose to within 6% using 20 MeV electrons without the need to rotate the blood bags or the beam entry point. The irradiation process takes approximately 6.5 minutes for 30 Gy applied dose to complete as opposed to 12 minutes for a dual field x-ray field irradiation at our centre. Electron beams can be used to satisfactorily irradiate blood and blood products in a minimal amount of time.
A Study of Multiplicities in Hadronic Interactions (in Spanish)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrada Tristan, Nora Patricia; /San Luis Potosi U.
Using data from the SELEX (Fermilab E781) experiment obtained with a minimum-bias trigger, we study multiplicity and angular distributions of secondary particles produced in interactions in the experimental targets. We observe interactions of {Sigma}{sup -}, proton, {pi}{sup -}, and {pi}{sup +}, at beam momenta between 250 GeV/c and 650 GeV/c, in copper, polyethylene, graphite, and beryllium targets. We show that the multiplicity and angular distributions for meson and baryon beams at the same momentum are identical. We also show that the mean multiplicity increases with beam momentum, and presents only small variations with the target material.
Multiple pinhole collimator based X-ray luminescence computed tomography
Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing
2016-01-01
X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686
Goverover, Y; Sandroff, B M; DeLuca, J
2018-04-01
To (1) examine and compare dual-task performance in patients with multiple sclerosis (MS) and healthy controls (HCs) using mathematical problem-solving questions that included an everyday competence component while performing an upper extremity fine motor task; and (2) examine whether difficulties in dual-task performance are associated with problems in performing an everyday internet task. Pilot study, mixed-design with both a within and between subjects' factor. A nonprofit rehabilitation research institution and the community. Participants (N=38) included persons with MS (n=19) and HCs (n=19) who were recruited from a nonprofit rehabilitation research institution and from the community. Not applicable. Participant were presented with 2 testing conditions: (1) solving mathematical everyday problems or placing bolts into divots (single-task condition); and (2) solving problems while putting bolts into divots (dual-task condition). Additionally, participants were required to perform a test of everyday internet competence. As expected, dual-task performance was significantly worse than either of the single-task tasks (ie, number of bolts into divots or correct answers, and time to answer the questions). Cognitive but not motor dual-task cost was associated with worse performance in activities of everyday internet tasks. Cognitive dual-task cost is significantly associated with worse performance of everyday technology. This was not observed in the motor dual-task cost. The implications of dual-task costs on everyday activity are discussed. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rabbani, Muhammad Saqib; Ghafouri-Shiraz, Hooshang
2017-05-01
In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24-65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of a 31-year-old man have been accurately detected from various distances ranging from 5 to 200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna operation, the signal is transmitted and received with the same antenna, whereas in dual-antenna operation, two identical antennas are employed, one for signal transmission and the other for reception. It has been found that in case of the single-antenna operation, the accuracy of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer distance. On the other hand, it has also been seen that the visual results are more obvious with higher gain antennas when the radar beam is confined just on the subject's body area.
Fan-beam intensity modulated proton therapy.
Hill, Patrick; Westerly, David; Mackie, Thomas
2013-11-01
This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems. Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2006-06-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2004-09-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27'x 27') UB/VRI optimized mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6\\arcmin\\ field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4'x 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench beam combiner with visible and near-infrared imagers utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC/NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2008-07-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5' × 0.5') imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
14 CFR 23.511 - Ground load; unsymmetrical loads on multiple-wheel units.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER... distribution, to the dual wheels and tires in each dual wheel landing gear unit. (c) Deflated tire loads. For...
Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings.
Oliver, James B; Kupinski, Pete; Rigatti, Amy L; Schmid, Ansgar W; Lambropoulos, John C; Papernov, Semyon; Kozlov, Alexei; Spaulding, John; Sadowski, Daniel; Chrzan, Z Roman; Hand, Robert D; Gibson, Desmond R; Brinkley, Ian; Placido, Frank
2011-03-20
Plasma-assisted electron-beam evaporation leads to changes in the crystallinity, density, and stresses of thin films. A dual-source plasma system provides stress control of large-aperture, high-fluence coatings used in vacuum for substrates 1m in aperture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbareschi, Daniele; et al.
We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less
AMBER: a PIC slice code for DARHT
NASA Astrophysics Data System (ADS)
Vay, Jean-Luc; Fawley, William
1999-11-01
The accelerator for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will produce a 4-kA, 20-MeV, 2-μ s output electron beam with a design goal of less than 1000 π mm-mrad normalized transverse emittance and less than 0.5-mm beam centroid motion. In order to study the beam dynamics throughout the accelerator, we have developed a slice Particle-In-Cell code named AMBER, in which the beam is modeled as a time-steady flow, subject to self, as well as external, electrostatic and magnetostatic fields. The code follows the evolution of a slice of the beam as it propagates through the DARHT accelerator lattice, modeled as an assembly of pipes, solenoids and gaps. In particular, we have paid careful attention to non-paraxial phenomena that can contribute to nonlinear forces and possible emittance growth. We will present the model and the numerical techniques implemented, as well as some test cases and some preliminary results obtained when studying emittance growth during the beam propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, S; Hildebrand, K; Ahmad, S
Purpose: Intensity modulated arc beams have been newly reported for treating multiple brain metastases. The purpose of this study was to determine the variations in the normal brain doses with increasing number of arc beams for multiple brain metastases treatments via the TrueBeam Rapidarc system (Varian Oncology, Palo Alto, CA). Methods: A patient case with 12 metastatic brain lesions previously treated on the Leksell Gamma Knife Perfexion (GK) was used for the study. All lesions and organs at risk were contoured by a senior radiation oncologist and treatment plans for a subset of 3, 6, 9 and all 12 targetsmore » were developed for the TrueBeam Rapidarc system via 3 to 7 intensity modulated arc-beams with each target covered by at least 99% of the prescribed dose of 20 Gy. The peripheral normal brain isodose volumes as well as the total beam-on time were analyzed with increasing number of arc beams for these targets. Results: All intensisty modulated arc-beam plans produced efficient treatment delivery with the beam-on time averaging 0.6–1.5 min per lesion at an output of 1200 MU/min. With increasing number of arc beams, the peripheral normal brain isodose volumes such as the 12-Gy isodose line enclosed normal brain tissue volumes were on average decreased by 6%, 11%, 18%, and 28% for the 3-, 6-, 9-, 12-target treatment plans respectively. The lowest normal brain isodose volumes were consistently found for the 7-arc treatment plans for all the cases. Conclusion: With nearly identical beam-on times, the peripheral normal brain dose was notably decreased when the total number of intensity modulated arc beams was increased when treating multiple brain metastases. Dr Sahgal and Dr Ma are currently serving on the board of international society of stereotactic radiosurgery.« less
Comments on shielding for dual energy accelerators.
Rossi, M C; Lincoln, H M; Quarin, D J; Zwicker, R D
2008-06-01
Determination of shielding requirements for medical linear accelerators has been greatly facilitated by the publication of the National Council on Radiation Protection and Measurements (NCRP) latest guidelines on this subject in NCRP Report No. 151. In the present report the authors review their own recent experience with patient treatments on conventional dual energy linear accelerators to examine the various input parameters needed to follow the NCRP guidelines. Some discussion is included of workloads, occupancy, use factors, and field size, with the effects of intensity modulated radiotherapy (IMRT) treatments included. Studies of collimator settings showed average values of 13.1 x 16.2 cm2 for 6 MV and 14.1 x 16.8 cm2 for 18 MV conventional ports, and corresponding average unblocked areas of 228 and 254 cm2, respectively. With an average of 77% of the field area unblocked, this gives a mean irradiated area of 196 cm2 for the 18 MV beam, which dominates shielding considerations for most dual energy machines. Assuming conservatively small room dimensions, a gantry bin angle of 18 degrees was found to represent a reasonable unit for tabulation of use factors. For conventional 18 MV treatments it was found that the usual treatment angles of 0, 90, 180, and 270 degrees were still favored, and use factors of 0.25 represent reasonable estimates for these beams. As expected, the IMRT fields (all at 6 MV) showed a high degree of gantry angle randomization, with no bin having a use factor in excess of 0.10. It is concluded that unless a significant number of patients are treated with high energy IMRT, the traditional use factors of 0.25 are appropriate for the dominant high energy beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.
1985-01-01
The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less
Hughes, Jacob B.; Hightower, Joseph E.
2015-01-01
Riverine hydroacoustic techniques are an effective method for evaluating abundance of upstream migrating anadromous fishes. To use these methods in the Roanoke River, North Carolina, at a wide site with uneven bottom topography, we used a combination of split-beam sonar and dual-frequency identification sonar (DIDSON) deployments. We aimed a split-beam sonar horizontally to monitor midchannel and near-bottom zones continuously over the 3-month spring monitoring periods in 2010 and 2011. The DIDSON was rotated between seven cross-channel locations (using a vertical aim) and nearshore regions (using horizontal aims). Vertical deployment addressed blind spots in split-beam coverage along the bottom and provided reliable information about the cross-channel and vertical distributions of upstream migrants. Using a Bayesian framework, we modeled sonar counts within four cross-channel strata and apportioned counts by species using species proportions from boat electrofishing and gill netting. Modeled estimates (95% credible intervals [CIs]) of total upstream migrants in 2010 and 2011 were 2.5 million (95% CI, 2.4–2.6 million) and 3.6 million (95% CI, 3.4–3.9 million), respectively. Results indicated that upstream migrants are extremely shore- and bottom-oriented, suggesting nearshore DIDSON monitoring improved the accuracy and precision of our estimates. This monitoring protocol and model may be widely applicable to river systems regardless of their cross-sectional width or profile.
Experimental studies of 7-cell dual axis asymmetric cavity for energy recovery linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konoplev, Ivan V.; Metodiev, K.; Lancaster, A. J.
High average current, transportable energy recovery linacs (ERLs) can be very attractive tools for a number of applications including next generation high-luminosity, compact light sources. Conventional ERLs are based on an electron beam circulating through the same set of rf cavity cells. This leads to an accumulation of high-order modes inside the cavity cells, resulting in the development of a beam breakup (BBU) instability, unless the beam current is kept below the BBU start current. This limits the maximum current which can be transported through the ERL and hence the intensity of the photon beam generated. It has recently beenmore » proposed that splitting the accelerating and decelerating stages, tuning them separately and coupling them via a resonance coupler can increase the BBU start current. The paper presents the first experimental rf studies of a dual axis 7-cell asymmetric cavity and confirms the properties predicted by the theoretical model. The field structures of the symmetric and asymmetric modes are measured and good agreement with the numerical predictions is demonstrated. The operating mode field flatness was also measured and discussed. A novel approach based on the coupled mode (Fano-like) model has been developed for the description of the cavity eigenmode spectrum and good agreement between analytical theory, numerical predictions and experimental data is shown. Finally, numerical and experimental results observed are analyzed, discussed and a good agreement between theory and experiment is demonstrated.« less
Experimental studies of 7-cell dual axis asymmetric cavity for energy recovery linac
Konoplev, Ivan V.; Metodiev, K.; Lancaster, A. J.; ...
2017-10-10
High average current, transportable energy recovery linacs (ERLs) can be very attractive tools for a number of applications including next generation high-luminosity, compact light sources. Conventional ERLs are based on an electron beam circulating through the same set of rf cavity cells. This leads to an accumulation of high-order modes inside the cavity cells, resulting in the development of a beam breakup (BBU) instability, unless the beam current is kept below the BBU start current. This limits the maximum current which can be transported through the ERL and hence the intensity of the photon beam generated. It has recently beenmore » proposed that splitting the accelerating and decelerating stages, tuning them separately and coupling them via a resonance coupler can increase the BBU start current. The paper presents the first experimental rf studies of a dual axis 7-cell asymmetric cavity and confirms the properties predicted by the theoretical model. The field structures of the symmetric and asymmetric modes are measured and good agreement with the numerical predictions is demonstrated. The operating mode field flatness was also measured and discussed. A novel approach based on the coupled mode (Fano-like) model has been developed for the description of the cavity eigenmode spectrum and good agreement between analytical theory, numerical predictions and experimental data is shown. Finally, numerical and experimental results observed are analyzed, discussed and a good agreement between theory and experiment is demonstrated.« less
An active locking mechanism for assembling 3D micro structures
NASA Astrophysics Data System (ADS)
Zhang, Ping; Mayyas, Mohammad; Lee, Woo Ho; Popa, Dan; Shiakolas, Panos; Stephanou, Harry; Chiao, J. C.
2007-01-01
Microassembly is an enabling technology to build 3D microsystems consisting of microparts made of different materials and processes. Multiple microparts can be connected together to construct complicated in-plane and out-of-plane microsystems by using compliant mechanical structures such as micro hinges and snap fasteners. This paper presents design, fabrication, and assembly of an active locking mechanism that provides mechanical and electrical interconnections between mating microparts. The active locking mechanism is composed of thermally actuated Chevron beams and sockets. Assembly by means of an active locking mechanism offers more flexibility in designing microgrippers as it reduces or minimizes mating force, which is one of the main reasons causing fractures in a microgripper during microassembly operation. Microgrippers, microparts, and active locking mechanisms were fabricated on a silicon substrate using the deep reactive ion etching (DRIE) processes with 100-um thick silicon on insulator (SOI) wafers. A precision robotic assembly platform with a dual microscope vision system was used to automate the manipulation and assembly processes of microparts. The assembly sequence includes (1) tether breaking and picking up of a micropart by using an electrothermally actuated microgripper, (2) opening of a socket area for zero-force insertion, (3) a series of translation and rotation of a mating micropart to align it onto the socket, (4) insertion of a micropart into the socket, and (5) deactivation and releasing of locking fingers. As a result, the micropart was held vertically to the substrate and locked by the compliance of Chevron beams. Microparts were successfully assembled using the active locking mechanism and the measured normal angle was 89.2°. This active locking mechanism provides mechanical and electrical interconnections, and it can potentially be used to implement a reconfigurable microrobot that requires complex assembly of multiple links and joints.
Iacobellis, Francesca; Ierardi, Anna M; Mazzei, Maria A; Magenta Biasina, Alberto; Carrafiello, Gianpaolo; Nicola, Refky; Scaglione, Mariano
2016-01-01
Acute vascular injuries are the second most common cause of fatalities in patients with multiple traumatic injuries; thus, prompt identification and management is essential for patient survival. Over the past few years, multidetector CT (MDCT) using dual-phase scanning protocol has become the imaging modality of choice in high-energy deceleration traumas. The objective of this article was to review the role of dual-phase MDCT in the identification and management of acute vascular injuries, particularly in the chest and abdomen following multiple traumatic injuries. In addition, this article will provide examples of MDCT features of acute vascular injuries with correlative surgical and interventional findings.
Comparison study of image quality and effective dose in dual energy chest digital tomosynthesis
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Choi, Sunghoon; Lee, Haenghwa; Kim, Dohyeon; Choi, Seungyeon; Kim, Hee-Joung
2018-07-01
The present study aimed to introduce a recently developed digital tomosynthesis system for the chest and describe the procedure for acquiring dual energy bone decomposed tomosynthesis images. Various beam quality and reconstruction algorithms were evaluated for acquiring dual energy chest digital tomosynthesis (CDT) images and the effective dose was calculated with ion chamber and Monte Carlo simulations. The results demonstrated that dual energy CDT improved visualization of the lung field by eliminating the bony structures. In addition, qualitative and quantitative image quality of dual energy CDT using iterative reconstruction was better than that with filtered backprojection (FBP) algorithm. The contrast-to-noise ratio and figure of merit values of dual energy CDT acquired with iterative reconstruction were three times better than those acquired with FBP reconstruction. The difference in the image quality according to the acquisition conditions was not noticeable, but the effective dose was significantly affected by the acquisition condition. The high energy acquisition condition using 130 kVp recorded a relatively high effective dose. We conclude that dual energy CDT has the potential to compensate for major problems in CDT due to decomposed bony structures, which induce significant artifacts. Although there are many variables in the clinical practice, our results regarding reconstruction algorithms and acquisition conditions may be used as the basis for clinical use of dual energy CDT imaging.
Beam-splitter switches based on zenithal bistable liquid-crystal gratings.
Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E
2014-10-01
The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.
Effects of Laser Frequency and Multiple Beams on Hot Electron Generation in Fast Ignition
NASA Astrophysics Data System (ADS)
Royle, Ryan B.
Inertial confinement fusion (ICF) is one approach to harnessing fusion power for the purpose of energy production in which a small deuterium-tritium capsule is imploded to about a thousand times solid density with ultra-intense lasers. In the fast ignition (FI) scheme, a picosecond petawatt laser pulse is used to deposit ˜10 kJ of energy in ˜10 ps into a small hot-spot at the periphery of the compressed core, igniting a fusion burn wave. FI promises a much higher energy gain over the conventional central hot-spot ignition scheme in which ignition is achieved through compression alone. Sufficient energy coupling between ignition laser and implosion core is critical for the feasibility of the FI scheme. Laser-core energy coupling is mediated by hot electrons which absorb laser energy near the critical density and propagate to the dense core, depositing their energy primarily through collisions. The hot electron energy distribution plays a large role in achieving efficient energy coupling since electrons with energy much greater than a few MeV will only deposit a small fraction of their energy into the hot-spot region due to reduced collisional cross section. It is understood that it may be necessary to use the second or third harmonic of the 1.05 mum Nd glass laser to reduce the average hot electron energy closer to the few-MeV range. Also, it is likely that multiple ignition beams will be used to achieve the required intensities. In this study, 2D particle-in-cell simulations are used to examine the effects of frequency doubling and tripling of a 1 mum laser as well as effects of using various dual-beam configurations. While the hot-electron energy spectrum is indeed shifted closer to the few-MeV range for higher frequency beams, the overall energy absorption is reduced, canceling the gain from higher efficiency. For a fixed total laser input energy, we find that the amount of hot electron energy able to be deposited into the core hot-spot is fairly insensitive to the laser configuration used. Our results hint that the more important issue at hand may be divergence and transport of the hot electrons, which tend to spray into 2pi radians due to instabilities and current filamentation present in the laser-plasma interaction region.
Multiple Hierarchies and Organizational Control
ERIC Educational Resources Information Center
Evans, Peter B.
1975-01-01
Uses a control-loss model to explore the effects of multiple channels in formal organizations, and presents an argument for the superior control properties of dual hierarchies. Two variant forms of multiple hierarchies are considered. (Author)
Norcross, J; Van Loan, M D
2004-01-01
Background: Pencil beam dual energy x ray absorptiometry (DXA) has been shown to provide valid estimates of body fat (%BF), but DXA fan beam technology has not been adequately tested to determine its validity. Objective: To compare %BF estimated from fan beam DXA with %BF determined using two and three compartment (2C, 3C) models. Methods: Men (n = 25) and women (n = 31), aged 18–41 years, participated in the study. Body density, from hydrostatic weighing, was used in the 2C estimate of %BF; DXA was used to determine bone mineral content (BMC) for the 3C estimate of %BF calculated using body density and BMC (3CBMC). DXA was also used to determine %BF. Analysis of variance was used to test for significant differences in %BF between sexes and among methods. Results: Women were significantly shorter, weighed less, had less fat free mass, and a higher %BF than men. No significant differences were found among methods (2C, 3CBMC, DXA) for determination of %BF in either sex. Although not significant, Bland-Altman plots showed that DXA gave higher values for %BF than the 2C and 3CBMC methods. Conclusion: DXA determination of %BF was not different from that of the 2C and 3CBMC models in this group of young adults. However, to validate fan beam DXA fully as a method for body composition assessment in a wide range of individuals and populations, comparisons are needed that use a 4C model with a measure of total body water and BMC. PMID:15273189
Generation of multiple Bessel beams for a biophotonics workstation.
Cizmár, T; Kollárová, V; Tsampoula, X; Gunn-Moore, F; Sibbett, W; Bouchal, Z; Dholakia, K
2008-09-01
We present a simple method using an axicon and spatial light modulator to create multiple parallel Bessel beams and precisely control their individual positions in three dimensions. This technique is tested as an alternative to classical holographic beam shaping commonly used now in optical tweezers. Various applications of precise control of multiple Bessel beams are demonstrated within a single microscope giving rise to new methods for three-dimensional positional control of trapped particles or active sorting of micro-objects as well as "focus-free" photoporation of living cells. Overall this concept is termed a 'biophotonics workstation' where users may readily trap, sort and porate material using Bessel light modes in a microscope.
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.; Manuilov, A. S.; Petrov, V. S.; Klyushnikov, G. N.; Chernov, S. V.
2017-06-01
The influence of the current neutralization process, the phase mixing of the trajectories of electrons and multiple Coulomb scattering of electrons beam on the atoms of the background medium on the spatial increment of the growth of sausage instability of a relativistic electron beam propagating in ohmic plasma channel has been considered. It has been shown that the amplification of the current neutralization leads to a significant increase in this instability, and phase mixing and the process of multiple scattering of electrons beam on the atoms of the background medium are the stabilizing factor.
Spectroscopic Classifications of PSN J20372558+6607115 with Lick 3-m Reflector
NASA Astrophysics Data System (ADS)
Foley, R. J.; Zheng, W.; Filippenko, A. V.; van Dyk, S. D.
2015-03-01
We report the classifications of PSN J20372558+6607115 (discovered by K. Shima and announced on the CBAT TOCP) from a spectrum obtained with the Kast dual-beam spectrograph on the Lick 3-m Shane telescope on 2015 March 26 UT.
Dual circularly polarized broadside beam antenna based on metasurfaces
NASA Astrophysics Data System (ADS)
Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Teniente, J.; Iriarte, J. C.; Gonzalo, R.; Maci, S.
2018-02-01
Design details of a Ku band metasurface (MTS) antenna with dual circularly polarized (CP) broadside radiation is shown in this work. By means of the surface impedance tensor modulation, synchronized propagation of two transversal magnetic (TM) and transverse electric (TE) surface waves (SWs) is ensured in the structure, which contribute to the radiation in broadside direction by the generation of a CP leaky wave. The structure is implemented by elliptical subwavelength metallic elements with a cross-shaped aperture in the center, printed on top of a thin substrate with high permittivity (AD1000 with a thickness of λ0/17). For the experimental validation, the MTS prototype has been excited employing an orthomode transducer composed by a metallic stepped septum inside an air-filled waveguide. Two orthogonal TE11 modes excited with ±90° phase shift in the feed couple with the TM and TE SWs supported by the MTS and generate RHCP or LHCP broadside beam. Experimental results are compared with the simulation predictions. Finally, conclusions are drawn.
NASA Technical Reports Server (NTRS)
Ramins, Peter; Force, Dale A.; Kosmahl, Henry G.
1987-01-01
A computational procedure for the design of traveling-wave-tube(TWT)/refocuser/multistage depressed collector (MDC) systems was used to design a short, permanent-magnet refocusing system and a highly efficient MDC for a medium-power, dual-mode, 4.8- to 9.6-GHz TWT. The computations were carried out with advanced, multidimensional computer programs which model the electron beam and follow the trajectories of representative charges from the radiofrequency (RF) input of the TWT, through the slow-wave structure and refocusing section, to their points of impact in the depressed collector. Secondary emission losses in the MDC were treated semiquantitatively by injecting representative secondary-electron-emission current into the MDA analysis at the point of impact of each primary beam. A comparison of computed and measured TWT and MDC performance showed very good agreement. The electrodes of the MDC were fabricated from a particluar form of isptropic graphite that was selected for its low secondary electron yield, ease of machinability, and vacuum properties.
Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS
NASA Astrophysics Data System (ADS)
Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo
2014-01-01
The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.
NASA Technical Reports Server (NTRS)
1979-01-01
A preliminary engineering model of ionospheric interactions with the pilot beam was established and used to demonstrate that the dual frequency baseline pilot beam system might not be viable in the presence of an unstable transmission path. Alternate approaches to remove this difficulty are described. Although ionospheric fluctuations will not significantly degrade beam pointing or raise the sidelobe levels, they will reduce transmission efficiency by upwards of 25%. Mitigating strategies to substantially reduce this effect are proposed. Based on the Klystron noise spectrum, the pilot beam transmitter power was determined as a function of frequency offset from the power beam carrier frequency. The RFI from the pilot beam, on the ground and at geosynchronous orbit is shown. Noise levels on the earth's surface due to the SPS are presented as a function of frequency and the number of SPS systems. Analysis of the communication subsystem indicates that a standard telemetry line of 1.544 MB/s would satisfy both voice and data link requirements. Additional links would be required for TV and radio transmissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn
2015-12-07
In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less
High-Average Power Broadband 18-Beam Klystron Circuit and Collector Designs
2008-04-01
high -average power S - band multiple-beam klystron are presented. The klystron will be powered by the recently completed 41.6 A, 42...al., “ High - power Four-cavity S - band multiple-beam klystron design,” IEEE Trans. Plasma Science, vol. 33, pp. 1119-1135, April 2005. [3] D.K Abe, et...APR 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE High -average Power Broadband 18-beam
Efficient Dual Head Nd:YAG 100mJ Oscillator for Remote Sensing
NASA Technical Reports Server (NTRS)
Coyle, Donald B.; Stysley, Paul R.; Kay, Richard b.; Poulios, Demetrios
2007-01-01
A diode pumped, Nd:YAG laser producing 100 mJ Q-switched pulses and employing a dual-pump head scheme in an unstable resonator configuration is described. Each head contains a side pumped zig-zag slab and four 6-bar QCW 808 nm diodes arrays which are de-rated 23%. Denoting 'z' as the lasing axis, the pump directions were along the x-axis in one head and the y-axis in the other, producing a circularized thermal lens, more typical in laser rod-based cavities. The dual head design's effective thermal lens is now corrected with a proper HR mirror curvature selection. This laser has demonstrated over 100 mJ output with high optical efficiency (24%), good TEM(sub 00) beam quality, and high pointing stability.
NASA Astrophysics Data System (ADS)
Baker, Kevin; Yu, Zhaoning; Ebert, Matthew; Sun, Yuan; Saffman, Mark
2016-05-01
One of the outstanding challenges facing neutral atom qubit approaches to quantum computation is suppression of crosstalk between proximal qubits due to scattered light that is generated during optical pumping and measurement operations. We have recently proposed a dual species approach to solving this challenge whereby computational qubits encoded in Cs atoms are entangled with Rb atoms via an interspecies Rydberg interaction. The quantum state of a Cs atom can then be readout by measuring the state of a Rb atom. The difference in resonant wavelengths of the two species effectively suppresses crosstalk. We will present progress towards experimental demonstration of dual species entanglement using Rb and Cs atoms cotrapped in a single beam optical trap. Work supported by the ARL CDQI.
Mankos, Marian; Shadman, Khashayar; N'diaye, Alpha T; Schmid, Andreas K; Persson, Henrik H J; Davis, Ronald W
2012-11-01
Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel imaging technique aimed at high resolution imaging of macromolecules, nanoparticles, and surfaces. MAD-LEEM combines three innovative electron-optical concepts in a single tool: a monochromator, a mirror aberration corrector, and dual electron beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector is needed to achieve subnanometer resolution at landing energies of a few hundred electronvolts. The dual flood illumination approach eliminates charging effects generated when a conventional, single-beam LEEM is used to image insulating specimens. The low landing energy of electrons in the range of 0 to a few hundred electronvolts is also critical for avoiding radiation damage, as high energy electrons with kilo-electron-volt kinetic energies cause irreversible damage to many specimens, in particular biological molecules. The performance of the key electron-optical components of MAD-LEEM, the aberration corrector combined with the objective lens and a magnetic beam separator, was simulated. Initial results indicate that an electrostatic electron mirror has negative spherical and chromatic aberration coefficients that can be tuned over a large parameter range. The negative aberrations generated by the electron mirror can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies and provide a path to achieving subnanometer spatial resolution. First experimental results on characterizing DNA molecules immobilized on Au substrates in a LEEM are presented. Images obtained in a spin-polarized LEEM demonstrate that high contrast is achievable at low electron energies in the range of 1-10 eV and show that small changes in landing energy have a strong impact on the achievable contrast. The MAD-LEEM approach promises to significantly improve the performance of a LEEM for a wide range of applications in the biosciences, material sciences, and nanotechnology where nanometer scale resolution and analytical capabilities are required. In particular, the microscope has the potential of delivering images of unlabeled DNA strands with nucleotide-specific contrast. This simplifies specimen preparation and significantly eases the computational complexity needed to assemble the DNA sequence from individual reads.
Mankos, Marian; Shadman, Khashayar; N'Diaye, Alpha T.; Schmid, Andreas K.; Persson, Henrik H. J.; Davis, Ronald W.
2012-01-01
Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel imaging technique aimed at high resolution imaging of macromolecules, nanoparticles, and surfaces. MAD-LEEM combines three innovative electron–optical concepts in a single tool: a monochromator, a mirror aberration corrector, and dual electron beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector is needed to achieve subnanometer resolution at landing energies of a few hundred electronvolts. The dual flood illumination approach eliminates charging effects generated when a conventional, single-beam LEEM is used to image insulating specimens. The low landing energy of electrons in the range of 0 to a few hundred electronvolts is also critical for avoiding radiation damage, as high energy electrons with kilo-electron-volt kinetic energies cause irreversible damage to many specimens, in particular biological molecules. The performance of the key electron–optical components of MAD-LEEM, the aberration corrector combined with the objective lens and a magnetic beam separator, was simulated. Initial results indicate that an electrostatic electron mirror has negative spherical and chromatic aberration coefficients that can be tuned over a large parameter range. The negative aberrations generated by the electron mirror can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies and provide a path to achieving subnanometer spatial resolution. First experimental results on characterizing DNA molecules immobilized on Au substrates in a LEEM are presented. Images obtained in a spin-polarized LEEM demonstrate that high contrast is achievable at low electron energies in the range of 1–10 eV and show that small changes in landing energy have a strong impact on the achievable contrast. The MAD-LEEM approach promises to significantly improve the performance of a LEEM for a wide range of applications in the biosciences, material sciences, and nanotechnology where nanometer scale resolution and analytical capabilities are required. In particular, the microscope has the potential of delivering images of unlabeled DNA strands with nucleotide-specific contrast. This simplifies specimen preparation and significantly eases the computational complexity needed to assemble the DNA sequence from individual reads. PMID:23847748
Relativistic-electron-beam/target interaction in plasma channels
NASA Astrophysics Data System (ADS)
Halbleib, J. A., Sr.; Wright, T. P.
1980-08-01
A model describing the transport of relativistic electron beams in plasma channels and their subsequent interaction with solid targets is developed and applied to single-beam and multiple-beam configurations. For single beams the targets consist of planar tantalum foils and, in some cases, cusp fields on the transmission side of the foils are employed to improve beam/target coupling efficiency. In the multi-beam configurations, several beams are arranged in wagon-wheel fashion so as to converge upon cylindrical targets, consisting of either hollow tantalum or solid graphite cylinders, located at the hub. For 0.3-cm beam radii that are less than or equal to the channel radii, mean specific power depositions up to about 17 TW/g per MA of injected beam current are obtained for single beams; 12-beam results are typically an order-of-magnitude less. The corresponding enhancements are up to five times the collisional stopping power for either single or multiple beams. Substantial improvement is predicted for the multi-beam interaction should future channel technology permit transport at higher current densities in smaller channels.
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
Ekdahl, Carl
2017-05-01
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
Conical Refraction Bottle Beams for Entrapment of Absorbing Droplets.
Esseling, Michael; Alpmann, Christina; Schnelle, Jens; Meissner, Robert; Denz, Cornelia
2018-03-22
Conical refraction (CR) optical bottle beams for photophoretic trapping of airborne absorbing droplets are introduced and experimentally demonstrated. CR describes the circular split-up of unpolarised light propagating along an optical axis in a biaxial crystal. The diverging and converging cones lend themselves to the construction of optical bottle beams with flexible entry points. The interaction of single inkjet droplets with an open or partly open bottle beam is shown implementing high-speed video microscopy in a dual-view configuration. Perpendicular image planes are visualized on a single camera chip to characterize the integral three-dimensional movement dynamics of droplets. We demonstrate how a partly opened optical bottle transversely confines liquid objects. Furthermore we observe and analyse transverse oscillations of absorbing droplets as they hit the inner walls and simultaneously measure both transverse and axial velocity components.
Design of a novel multi channel photonic crystal fiber polarization beam splitter
NASA Astrophysics Data System (ADS)
Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun
2017-10-01
A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.
Beam breakup in an advanced linear induction accelerator
Ekdahl, Carl August; Coleman, Joshua Eugene; McCuistian, Brian Trent
2016-07-01
Two linear induction accelerators (LIAs) have been in operation for a number of years at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. A new multipulse LIA is being developed. We have computationally investigated the beam breakup (BBU) instability in this advanced LIA. In particular, we have explored the consequences of the choice of beam injector energy and the grouping of LIA cells. We find that within the limited range of options presently under consideration for the LIA architecture, there is little adverse effect on the BBU growth. The computational tool that we used for this investigation wasmore » the beam dynamics code linear accelerator model for DARHT (LAMDA). In conclusion, to confirm that LAMDA was appropriate for this task, we first validated it through comparisons with the experimental BBU data acquired on the DARHT accelerators.« less
Emittance Growth in the DARHT-II Linear Induction Accelerator
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; ...
2017-10-03
The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less
Displacement sensor based on intra-cavity tuning of dual-frequency gas laser
NASA Astrophysics Data System (ADS)
Niu, Haisha; Niu, Yanxiong; Liu, Ning; Li, Jiyang
2018-01-01
A nanometer-resolution displacement measurement instrument based on tunable cavity frequency-splitting method is presented. One beam is split into two orthogonally polarized beams when anisotropic element inserted in the cavity. The two beams with fixed frequency difference are modulated by the movement of the reflection mirror. The changing law of the power tuning curves between the total output and the two orthogonally polarized beams is researched, and a method splitting one tuning cycle to four equal parts is proposed based on the changing law, each part corresponds to one-eighth wavelength of displacement. A laser feedback interferometer (LFI) and piezoelectric ceramic are series connected to the sensor head to calibrate the displacement that less than one-eighth wavelength. The displacement sensor achieves to afford measurement range of 20mm with resolution of 6.93nm.
Emittance Growth in the DARHT-II Linear Induction Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.
The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less
Gait initiation time is associated with the risk of multiple falls-A population-based study.
Callisaya, Michele L; Blizzard, Leigh; Martin, Kara; Srikanth, Velandai K
2016-09-01
In a population-based study of older people to examine whether 1) overall gait initiation (GI) time or its components are associated with falls and 2) GI under dual-task is a stronger predictor of falls risk than under single-task. Participants aged 60-85 years were randomly selected from the electoral roll. GI was obtained with a force platform under both single and dual-task conditions. Falls were ascertained prospectively over a 12-month period. Log multinomial regression was used to examine the association between GI time (total and its components) and risk of single and multiple falls. Age, sex and physiological and cognitive falls risk factors were considered as confounders. The mean age of the sample (n=124) was 71.0 (SD 6.8) years and 58.9% (n=73) were male. Over 12 months 21.8% (n=27) of participants reported a single fall and 16.1% (n=20) reported multiple falls. Slower overall GI time under both single (RR all per 100ms 1.28, 95%CI 1.03, 1.58) and dual-task (RR 1.14, 95%CI 1.02, 1.27) was associated with increased risk of multiple, but not single falls (p<0.05). Multiple falls were also associated with slower time to first lateral movement under single-task (RR 1.90 95%CI 0.59, 1.51) and swing time under dual-task condition (RR 1.44 95%CI 1.08, 1.94). Slower GI time is associated with the risk of multiple falls independent of other risk factors, suggesting it could be used as part of a comprehensive falls assessment. Time to the first lateral movement under single-task may be the best measures of this risk. Copyright © 2016 Elsevier B.V. All rights reserved.
Annular beam with segmented phase gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Shubo; Wu, Liang; Tao, Shaohua, E-mail: eshtao@csu.edu.cn
2016-08-15
An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owingmore » to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.« less
Sheikh, Mumtaz; Riza, Nabeel A
2010-06-01
To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring standard Gaussian beam parameters, the analyzer can also be used to measure the M(2) beam propagation parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed analyzer are successfully conducted for a 633 nm laser beam. Given the all-digital nature of the DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed analyzer versus prior art promises better repeatability, speed, and reliability.
Ashmore, John; Gilson, Lucy
2015-01-19
'Dual practice', or multiple job holding, generally involves public sector-based health workers taking additional work in the private sector. This form of the practice is purported to help retain public health care workers in low and middle-income countries' public sectors through additional wage incentives. There has been little conceptual or empirical development of the relationship between dual practice and retention. This article helps begin to fill this gap, drawing on empirical evidence from a qualitative study focusing on South African specialists. Fifty-one repeat, in-depth interviews were carried out with 28 doctors (predominantly specialists) with more than one job, in one public and one private urban hospital. Findings suggest dual practice can impact both positively and negatively on specialists' intention to stay in the public sector. This is through multiple conceptual channels including those previously identified in the literature such as dual practice acting as a 'stepping stone' to private practice by reducing migration costs. Dual practice can also lead specialists to re-evaluate how they compare public and private jobs, and to overworking which can expedite decisions on whether to stay in the public sector or leave. Numerous respondents undertook dual practice without official permission. The idea that dual practice helps retain public specialists in South Africa may be overstated. Yet banning the practice may be ineffective, given many undertake it without permission in any case. Regulation should be better enforced to ensure dual practice is not abused. The conceptual framework developed in this article could form a basis for further qualitative and quantitative inquiry.
Cognitive pitfall! Videogame players are not immune to dual-task costs.
Donohue, Sarah E; James, Brittany; Eslick, Andrea N; Mitroff, Stephen R
2012-07-01
With modern technological advances, we often find ourselves dividing our attention between multiple tasks. While this may seem a productive way to live, our attentional capacity is limited, and this yields costs in one or more of the many tasks that we try to do. Some people believe that they are immune to the costs of multitasking and commonly engage in potentially dangerous behavior, such as driving while talking on the phone. But are some groups of individuals indeed immune to dual-task costs? This study examines whether avid action videogame players, who have been shown to have heightened attentional capacities, are particularly adept multitaskers. Participants completed three visually demanding experimental paradigms (a driving videogame, a multiple-object-tracking task, and a visual search), with and without answering unrelated questions via a speakerphone (i.e., with and without a dual-task component). All of the participants, videogame players and nonvideogame players alike, performed worse while engaging in the additional dual task for all three paradigms. This suggests that extensive videogame experience may not offer immunity from dual-task costs.
Scaling device for photographic images
NASA Technical Reports Server (NTRS)
Rivera, Jorge E. (Inventor); Youngquist, Robert C. (Inventor); Cox, Robert B. (Inventor); Haskell, William D. (Inventor); Stevenson, Charles G. (Inventor)
2005-01-01
A scaling device projects a known optical pattern into the field of view of a camera, which can be employed as a reference scale in a resulting photograph of a remote object, for example. The device comprises an optical beam projector that projects two or more spaced, parallel optical beams onto a surface of a remotely located object to be photographed. The resulting beam spots or lines on the object are spaced from one another by a known, predetermined distance. As a result, the size of other objects or features in the photograph can be determined through comparison of their size to the known distance between the beam spots. Preferably, the device is a small, battery-powered device that can be attached to a camera and employs one or more laser light sources and associated optics to generate the parallel light beams. In a first embodiment of the invention, a single laser light source is employed, but multiple parallel beams are generated thereby through use of beam splitting optics. In another embodiment, multiple individual laser light sources are employed that are mounted in the device parallel to one another to generate the multiple parallel beams.
The Next Generation Airborne Polarimetric Doppler Radar
NASA Astrophysics Data System (ADS)
Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.
2013-04-01
NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130 aircraft in its fleet for airborne atmospheric measurements, including dropsonde, and in situ sampling and remote sensing of clouds, chemistry and aerosols. Therefore, the addition of a precipitation radar to the NSF/NCAR C-130 platform will produce transformational change in its mission. This new design can be cloned for C-130s operated by a number of agencies, including NOAA and the Air Force hurricane reconnaissance fleet. This paper presents a possible configuration of a novel, airborne phased array radar (APAR) to be installed on the NSF/NCAR C-130 aircraft with improved spatial resolution and polarimetric capability to meet or exceed that of ELDORA. The preliminary design, an update of the APAR project, and a future plan will be presented. References: Bell, M. M. , M. T. Montgomery, 2008: Observed Structure, Evolution, and Potential Intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September. Monthly Weather Review, Vol. 136, Issue 6, pp. 2023-2046. Hildebrand, P. H., W.-C. Lee, C. A. Walther, C. Frush, M. Randall, E. Loew, R. Neitzel, R. Parsons, J. Testud, F. Baudin, and A. LeCornec, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High resolution observations from TOGA COARE. Bull. Amer. Metoro. Soc., 77, 213-232 Howard B. Bluestein, Roger M. Wakimoto, 2003: Mobile Radar Observations of Severe Convective Storms re Convective Storms. Meteorological Monographs, Vol. 30, Issue 52, pp. 105-105. Montgomery, M. T., M. M. Bell, S. D. Aberson, M. L. Black, 2006: Hurricane Isabel (2003): New Insights into the Physics of Intense Storms. Part I: Mean Vortex Structure and Maximum Intensity Estimates. Bull. of the American Meteorl. Soc., Vol. 87, Issue 10, pp. 1335-1347.
Video Guidance Sensor System With Integrated Rangefinding
NASA Technical Reports Server (NTRS)
Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Howard, Richard T. (Inventor); Roe, Fred Davis, Jr. (Inventor); Bell, Joseph L. (Inventor)
2006-01-01
A video guidance sensor system for use, p.g., in automated docking of a chase vehicle with a target vehicle. The system includes an integrated rangefinder sub-system that uses time of flight measurements to measure range. The rangefinder sub-system includes a pair of matched photodetectors for respectively detecting an output laser beam and return laser beam, a buffer memory for storing the photodetector outputs, and a digitizer connected to the buffer memory and including dual amplifiers and analog-to-digital converters. A digital signal processor processes the digitized output to produce a range measurement.
Method and apparatus for distinguishing actual sparse events from sparse event false alarms
Spalding, Richard E.; Grotbeck, Carter L.
2000-01-01
Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.
Optimizing the G/T ratio of the DSS-13 34-meter beam-waveguide antenna
NASA Technical Reports Server (NTRS)
Esquivel, M. S.
1992-01-01
Calculations using Physical Optics computer software were done to optimize the gain-to-noise-temperature (G/T) ratio of Deep Space Station (DSS)-13, the Deep Space Network's (DSN's) 34-m beam-waveguide antenna, at X-band for operation with the ultra-low-noise amplifier maser system. A better G/T value was obtained by using a 24.2-dB far-field-gain smooth-wall dual-mode horn than by using the standard X-band 22.5-dB-gain corrugated horn.
Producing carbon stripper foils containing boron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, J. O. Jr.
2012-12-19
Parameters being actively tested by the accelerator community for the purpose of extending carbon stripper foil lifetimes in fast ion beams include methods of deposition, parting agents, mounting techniques, support (fork) materials, and inclusion of alloying elements, particularly boron. Specialized production apparatus is required for either sequential deposition or co-deposition of boron in carbon foils. A dual-use vacuum evaporator for arc evaporation of carbon and electron-beam evaporation of boron and other materials has been built for such development. Production of both carbon and boron foils has begun and improvements are in progress.
Laser-plasma interactions in direct-drive ignition plasmas
NASA Astrophysics Data System (ADS)
Froula, D. H.; Michel, D. T.; Igumenshchev, I. V.; Hu, S. X.; Yaakobi, B.; Myatt, J. F.; Edgell, D. H.; Follett, R.; Glebov, V. Yu; Goncharov, V. N.; Kessler, T. J.; Maximov, A. V.; Radha, P. B.; Sangster, T. C.; Seka, W.; Short, R. W.; Solodov, A. A.; Sorce, C.; Stoeckl, C.
2012-12-01
Direct-drive ignition is most susceptible to multiple-beam laser-plasma instabilities, as the single-beam intensities are low (Is ˜ 1014 W cm-2) and the electron temperature in the underdense plasma is high (Te ≃ 3.5 keV). Cross-beam energy transfer is driven by multiple laser beams and can significantly reduce the hydrodynamic efficiency in direct-drive experiments on OMEGA (Boehly et al 1997 Opt. Commun. 133 495). Reducing the radii of the laser beams significantly increases the hydrodynamic efficiency at the cost of an increase in the low-mode modulations. Initial 2D hydrodynamic simulations indicate that zooming, transitioning the laser-beam radius prior to the main drive, does not increase low-mode nonuniformities. The combination of zooming and dynamic bandwidth reduction will provide a 30% effective increase in the drive energy on OMEGA direct-drive implosions. It was shown that two-plasmon decay (TPD) can be driven by multiple laser beams and both planar and spherical experiments were performed to study the hot electrons generated by TPD. The fraction of laser energy converted to hot electrons scales with the hot-electron temperature for all geometries and over a wide range of intensities. At ignition-relevant intensities, the fraction of laser energy converted to hot electrons is measured to decrease by an order of magnitude when the ablator material is changed from carbon-hydrogen to aluminum. The TPD results are compared with a multiple-beam linear theory and a nonlinear Zakharov model.
Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)
NASA Technical Reports Server (NTRS)
Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.
2015-01-01
This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).
Nasu, Yusuke; Mizuno, Takayuki; Kasahara, Ryoichi; Saida, Takashi
2011-12-12
To extend the operation wavelength range of dual-polarization optical hybrids (DPOH), we propose a highly symmetrical interferometer design for a polarization beam splitter and an optical hybrid to reduce temperature and wavelength dependence. The design successfully decreases this dependence, and a fabricated DPOH with silica-based planar lightwave circuits provides temperature-insensitive performance with a polarization extinction ratio of over 25 dB and phase errors of less than 3 degrees over the entire C- and L-bands. © 2011 Optical Society of America
Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki
2010-07-05
We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.
Performance of the HIMAC beam control system using multiple-energy synchrotron operation
NASA Astrophysics Data System (ADS)
Mizushima, K.; Furukawa, T.; Iwata, Y.; Hara, Y.; Saotome, N.; Saraya, Y.; Tansho, R.; Sato, S.; Fujimoto, T.; Shirai, T.; Noda, K.
2017-09-01
Multiple-energy synchrotron operation was developed to realize fast 3D scanning irradiation for carbon-ion radiotherapy. This type of operation can output various carbon-ion beams with different energies in a single synchrotron cycle. The beam control system used in this kind of operation was developed to quickly provide the beam energy and intensity required from the irradiation control system. The performance of the system was verified by experimental tests. The system could output beams of 197 different energies in 63 s. The beam intensity could be controlled for all the output beams without large ripples or overshooting. The experimental test of irradiation for prostate cancer treatment was also successfully performed, and the test results proved that our system can greatly reduce the irradiation time.
Maritime Adaptive Optics Beam Control
2010-09-01
Liquid Crystal LMS Least Mean Square MIMO Multiple- Input Multiple-Output MMDM Micromachined Membrane Deformable Mirror MSE Mean Square Error...determine how the beam is distorted, a control computer to calculate the correction to be applied, and a corrective element, usually a deformable mirror ...during this research, an overview of the system modification is provided here. Using additional mirrors and reflecting the beam to and from an
Coupling of Multiple Coulomb Scattering with Energy Loss and Straggling in HZETRN
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Wilson, John W.; Walker, Steven A.; Tweed, John
2007-01-01
The new version of the HZETRN deterministic transport code based on Green's function methods, and the incorporation of ground-based laboratory boundary conditions, has lead to the development of analytical and numerical procedures to include off-axis dispersion of primary ion beams due to small-angle multiple Coulomb scattering. In this paper we present the theoretical formulation and computational procedures to compute ion beam broadening and a methodology towards achieving a self-consistent approach to coupling multiple scattering interactions with ionization energy loss and straggling. Our initial benchmark case is a 60 MeV proton beam on muscle tissue, for which we can compare various attributes of beam broadening with Monte Carlo simulations reported in the open literature.
Anguita, Jaime A; Neifeld, Mark A; Vasic, Bane V
2007-09-10
By means of numerical simulations we analyze the statistical properties of the power fluctuations induced by the incoherent superposition of multiple transmitted laser beams in a terrestrial free-space optical communication link. The measured signals arising from different transmitted optical beams are found to be statistically correlated. This channel correlation increases with receiver aperture and propagation distance. We find a simple scaling rule for the spatial correlation coefficient in terms of the propagation distance and we are able to predict the scintillation reduction in previously reported experiments with good accuracy. We propose an approximation to the probability density function of the received power of a spatially correlated multiple-beam system in terms of the parameters of the single-channel gamma-gamma function. A bit-error-rate evaluation is also presented to demonstrate the improvement of a multibeam system over its single-beam counterpart.
Ogura, Yusuke; Shirai, Nobuhiro; Tanida, Jun
2002-09-20
An optical levitation and translation method for a microscopic particle by use of the resultant force induced by multiple light beams is studied. We show dependence of the radiation pressure force on the illuminating distribution by numerical calculation, and we find that the strongest axial force is obtained by a specific spacing period of illuminating beams. Extending the optical manipulation technique by means of vertical-cavity surface-emitting laser (VCSEL) array sources [Appl. Opt. 40, 5430 (2001)], we are the first, to our knowledge, to demonstrate levitation of a particle and its translation while levitated by using a VCSEL array. The vertical position of the target particle can be controlled in a range of a few tens of micrometers with an accuracy of 2 microm or less. The analytical and experimental results suggest that use of multiple beams is an effective method to levitate a particle with low total illumination power. Some issues on the manipulation method that uses multiple beams are discussed.
NASA Astrophysics Data System (ADS)
Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi
2018-04-01
The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.
Laser Cladding of TiAl Intermetallic Alloy on Ti6Al4V -Process Optimization and Properties
NASA Astrophysics Data System (ADS)
Cárcel, B.; Serrano, A.; Zambrano, J.; Amigó, V.; Cárcel, A. C.
In order to improve Ti6Al4V high-temperature resistance and its tribological properties, the deposition of TiAl intermetallic (Ti-48Al-2Cr-2Nb) coating on a Ti6Al4V substrate by coaxial laser cladding has been investigated. Laser cladding by powder injection is an emerging laser material processing technique that allows the deposition of thick protective coatings on substrates,using a high power laser beam as heat source. Laser cladding is a multiple-parameter-dependent process. The main process parameters involved (laser power, powder feeding rate, scanning speed and preheating temperature) has been optimized. The microstructure and geometrical quantities (clad area and dilution) of the coating was characterized by optical microscopy and scanning electron microscopy (SEM). In addition the cooling rate of the clad during the process was measured by a dual-color pyrometer. This result has been related to defectology and mechanical coating properties.
GLRS-R 2-colour retroreflector target design and predicted performance
NASA Astrophysics Data System (ADS)
Lund, Glenn
The retroreflector ground target design for the GLRS-R spaceborne dual wavelength laser ranging system is described. The passive design flows down from the requirements of high station autonomy, high global field of view, little or no multiple pulse returns, and adequate optical cross section for most ranging geometries. The solution makes use of five hollow cube corner retroreflectors of which one points to the zenith and the remaining four are inclined from the vertical at uniform azimuthal spacings. The need for large retroreflectors is expected to generate narrow diffraction lobes. A good compromise solution is found by spoiling just one of the retroereflector dihedral angles from 90 deg, thus generating two symmetrically oriented diffraction lobes in the return beam. The required spoil angles are found to have little dependance on ground target latitude. Various link budget analyses are presented. They show the influence of such factors as point ahead optimization, turbulence, ranging angle, atmospheric visibility, and ground target thermal deformations.
Liu, Shiau-Hua; Dosher, Barbara Anne; Lu, Zhong-Lin
2009-06-01
Multiple attributes of a single-object are often processed more easily than attributes of different objects-a phenomenon associated with object attention. Here we investigate the influence of two factors, judgment frames and judgment precision, on dual-object report deficits as an index of object attention. [Han, S., Dosher, B., & Lu, Z.-L. (2003). Object attention revisited: Identifying mechanisms and boundary conditions. Psychological Science, 14, 598-604] predicted that consistency of the frame for judgments about two separate objects could reduce or eliminate the expression of object attention limitations. The current studies examine the effects of judgment frames and of task precision in orientation identification and find that dual-object report deficits within one feature are indeed affected modestly by the congruency of the judgments and more substantially by the required precision of judgments. The observed dual-object deficits affected contrast thresholds for incongruent frame conditions and for high precision judgments and reduce psychometric asymptotes. These dual-object deficits reflect a combined effect of multiplicative noise and external noise exclusion in dual-object conditions, both related to the effects of attention on the tuning of perceptual templates. These results have implications for modification of object attention theory, for understanding limitations on concurrent tasks.
Kim, Jongki; Jeong, Yoonseob; Lee, Sejin; Ha, Woosung; Shin, Jeon-Soo; Oh, Kyunghwan
2012-02-15
Highly efficient Bessel-like beam generation was achieved based on a new all-fiber method that implements Fourier transformation of a micro annular aperture along a concatenated composite optical fiber. The beam showed unique characteristics of tilted washboard optical potential in the transverse plane and sustained a nondiffracting length over 400 μm along the axial direction. Optical trapping of multiple dielectric particles and living Jurkat cells were successfully demonstrated along the axial direction of the beam in the water.
Low-energy ion beam-based deposition of gallium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasquez, M. R., E-mail: mrvasquez@coe.upd.edu.ph; Wada, M.
2016-02-15
An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substratemore » was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.« less
A dual-beam actinic light source for photosynthesis research
NASA Technical Reports Server (NTRS)
Margozzi, A. P.; Henderson, M. E.
1972-01-01
Simulation of photosynthetic process in plants is accomplished by using two separate and identical optical channels that provide independently adjustable wavelengths (filters), shutter sequencing, and control intensity of illumination. In addition to experiments using electron paramagnetic resonance spectroscopy, system may be applicable to other types of research in photosynthetic field.
Dual Beam Doppler Optical Coherence Angiography
NASA Astrophysics Data System (ADS)
Yasuno, Yoshiaki; Makita, Shuichi; Jaillon, Franck
The ocular vasculature and circulation play a crucial role in the development of several eye diseases including glaucoma [1], diabetic retinopathy [2], and exudative macular diseases [3]. Modalities that are capable of investigating the ocular vasculature and circulation are important for both understanding the mechanisms of the diseases and diagnosing these diseases.
Laser-scanning techniques for rapid ballistics identification
NASA Technical Reports Server (NTRS)
Woodburgy, R. C.; Nakich, R. B.
1974-01-01
Two different laser-scanning methods may be utilized. In each case scanned cylindrical bullet surface is displayed ""unwrapped'' on oscilloscope screen. Bullets are compared by photographing each display and superimposing negatives of two images. With some modifications bullets can be scanned and compared by superimposing images on screen of dual-beam oscilloscope.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2012-09-01
An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
Multiple acousto-optic q-switch
Deason, Vance A.
1993-01-01
An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.
Multiple acousto-optic q-switch
Deason, Vance A.
1993-12-07
An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.
NASA Technical Reports Server (NTRS)
Malachowski, M. J.
1990-01-01
Laser beam positioning and beam rider modules were incorporated into the long hollow flexible segment of an articulated robot manipulator (ARM). Using a single laser beam, the system determined the position of the distal ARM endtip, with millimetric precision, in six degrees of freedom, at distances of up to 10 meters. Preliminary designs, using space rated technology for the critical systems, of a two segmented physical ARM, with a single and a dual degree of freedom articulation, were developed, prototyped, and tested. To control the positioning of the physical ARM, an indirect adaptive controller, which used the mismatch between the position of the laser beam under static and dynamic conditions, was devised. To predict the behavior of the system and test the concept, a computer simulation model was constructed. A hierarchical artificially intelligent real time ADA operating system program structure was created. The software was designed for implementation on a dedicated VME bus based Intel 80386 administered parallel processing multi-tasking computer system.
Direct measurement of the image displacement instability in a linear induction accelerator
NASA Astrophysics Data System (ADS)
Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.
2017-06-01
The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.
Direct measurement of the image displacement instability in a linear induction accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.
The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, itmore » appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. Finally, this becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.« less
Direct measurement of the image displacement instability in a linear induction accelerator
Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.
2017-06-19
The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, itmore » appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. Finally, this becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.« less
Vibration and stability control of smart composite rotating shaft
NASA Astrophysics Data System (ADS)
Song, Ohseop; Jeong, Nam-Heui; Librescu, Liviu I.
2000-06-01
A dual approach based on both the structural tailoring and piezoelectric strain actuation, aimed at controlling the free vibration of rotating circular shaft subjected to axial forces is presented in this paper. Due to involvement in these systems of gyroscopic forces and, consequently of the possible occurrence of the divergence and flutter instabilities, implementation of the dual control methodology shows a high degree of efficiency toward postponement of the occurrence of these instabilities. The structural model of the shaft as considered in this paper is based on an advanced thin-walled beam that includes the effects of transverse shear, anisotropy of constituent materials, rotary inertias, etc. The displayed results reveal the synergistic implications of the application of this dual technology toward enhancing the dynamic response characteristics of these systems and expanding the domain of stability.
NASA Technical Reports Server (NTRS)
Hussein, Z.; Rahmat-Samii, Y.; Kellogg, K.
1997-01-01
This paper presents the design and performance evaluation of a lightweight, composite material, elliptical-aperture, parabolic-reflector antenna. The performance characterization is obtained using the cylindrical near-field measurement facility at JPL as shown. The reflector has been designed and calibrated for the SeaWinds spaceborne scatterometer instrument. The instrument operates at Ku-band and is designed to accurately measure wind speed and direction over Earth's ocean surface. The SeaWinds antenna design requires two linearly polarized independent beams pointed at 40 deg.and 46 deg. from nadir as shown. The inner beam, pointed at 40 deg. from nadir, is horizontally polarized with 1.6 in x 1.8 in required beamwidths in the elevation and azimuth planes, respectively. The outer beam, pointed at 46 deg. from nadir, is vertically polarized with 1.4 in x 1.7 in required beamwidths. Noteworthy, the reflector boresight axis is pointed at 43 deg. from nadir. Both beams are required to have the first sidelobe level below -15 dB relative to the peak of the beam.
A dual-polarized and reconfigurable reflectarray for generation of vortex radio waves
NASA Astrophysics Data System (ADS)
Li, Chen-Chen; Wu, Lin-Sheng; Yin, Wen-Yan
2018-05-01
Electromagnetic (EM) waves with orbital angular momentum (OAM) provide a new degree of freedom for channel multiplexing to improve the capacity of wireless communication. For OAM-based systems, it is important to design specific configurations to generate vortex radios. In this paper, a reconfigurable reflectarray antenna is proposed with independent control of dual polarizations. A reflective cell is proposed by properly assigning the variable capacitances of four varactors, which are placed between metal square rings of each unit. The varactors of each unit are divided into two groups and the capacitance value of each group controls the reflection phase for a single linear polarization. By using the equivalent circuit model, the reflective units and array can be designed efficiently. Smooth phase variation and good reflection efficiency are achieved. Then, the reflectarray is set into sectors and a simple phase-shifting surface model is used to generate vortex beam. Each sector is realized with reflective units satisfying desired reflection phases for different modes. This kind of OAM-generating method can reduce the required variation range of reflection phase and provide more choices for a specific OAM mode combination with dual polarization, which is helpful to reduce mutual coupling between the two linear polarizations. Finally, full-wave simulations show that the 0, ±1, ±2 modes of vortex beam are successfully generated at 3.5 GHz with arbitrary combination in dual-polarization, which is also supported by OAM modes purity and reflection efficiency analysis. Therefore, in our design, the reconfigurable OAM and spin angular momentum (SAM), related with polarization, can be utilized simultaneously and independently for high-capacity wireless communication.
Measurement and simulation for a complementary imaging with the neutron and X-ray beams
NASA Astrophysics Data System (ADS)
Hara, Kaoru Y.; Sato, Hirotaka; Kamiyama, Takashi; Shinohara, Takenao
2017-09-01
By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.
Development of a compact filament-discharge multi-cusp H- ion source.
Jia, XianLu; Zhang, TianJue; Zheng, Xia; Qin, JiuChang
2012-02-01
A 14 MeV medical cyclotron with the external ion source has been designed and is being constructed at China Institute of Atomic Energy. The H(-) ion will be accelerated by this machine and the proton beam will be extracted by carbon strippers in dual opposite direction. The compact multi-cusp H(-) ion source has been developed for the cyclotron. The 79.5 mm long ion source is 48 mm in diameter, which is consisting of a special shape filament, ten columns of permanent magnets providing a multi-cusp field, and a three-electrode extraction system. So far, the 3 mA∕25 keV H(-) beam with an emittance of 0.3 π mm mrad has been obtained from the ion source. The paper gives the design details and the beam test results. Further experimental study is under way and an extracted beam of 5 mA is expected.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2010-07-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27 × 27) mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4 × 4) imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5 × 0.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support. Over the past two years the LBC and the first LUCIFER instrument have been brought into routine scientific operation and MODS1 commissioning is set to begin in the fall of 2010.
Wong, John; Armour, Elwood; Kazanzides, Peter; Iordachita, Iulian; Tryggestad, Erik; Deng, Hua; Matinfar, Mohammad; Kennedy, Christopher; Liu, Zejian; Chan, Timothy; Gray, Owen; Verhaegen, Frank; McNutt, Todd; Ford, Eric; DeWeese, Theodore L.
2008-01-01
Purpose To demonstrate the CT imaging, conformal irradiation and treatment planning capabilities of a small animal radiation research platform (SARRP). Methods The SARRP employs a dual-focal spot, constant voltage x-ray source mounted on a gantry with a source-to-isocenter distance of 35 cm. Gantry rotation is limited to 120° from vertical. Eighty to 100 kVp x-rays from the smaller 0.4 mm focal spot are used for imaging. Both 0.4 mm and 3.0 mm focal spots operate at 225 kVp for irradiation. Robotic translate/rotate stages are used to position the animal. Cone-beam (CB) CT imaging is achieved by rotating the horizontal animal between the stationary x-ray source and a flat-panel detector. Radiation beams range from 0.5 mm in diameter to (60 × 60) mm2. Dosimetry is measured with radio-chromic films. Monte Carlo dose calculations are employed for treatment planning. The combination of gantry and robotic stage motions facilitate conformal irradiation. Results The SARRP spans 3 ft × 4 ft × 6 ft (WxLxH). Depending on filtration, the isocenter dose outputs at 1 cm depth in water range from 22 to 375 cGy/min from the smallest to the largest radiation fields. The 20% to 80% dose fall-off spans 0.16 mm. CBCT with (0.6 × 0.6 × 0.6) mm3 voxel resolution is acquired with less than 1 cGy. Treatment planning is performed at sub-mm resolution. Conclusions The capability of the SARRP to deliver highly focal beams to multiple animal model systems provides new research opportunities that more realistically bridge laboratory research and clinical translation. PMID:18640502
NASA Astrophysics Data System (ADS)
Wang, H.; Jing, X. J.
2017-07-01
This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.
Development of guidelines for triple left and dual right-turn lanes : technical report.
DOT National Transportation Integrated Search
2011-07-01
Left- or right-turn lanes at intersections improve safety and operations by separating turning and through vehicles. At intersections : with heavy turning demand, it may be necessary to provide multiple turn lanes. Triple left-turn (TLT) and dual rig...
Ubiquitous health monitoring system for multiple users using a ZigBee and WLAN dual-network.
Cha, Yong Dae; Yoon, Gilwon
2009-11-01
A ubiquitous health monitoring system for multiple users was developed based on a ZigBee and wireless local area network (WLAN) dual-network. A compact biosignal monitoring unit (BMU) for measuring electrocardiogram (ECG), photoplethysmogram (PPG), and temperature was also developed. A single 8-bit microcontroller operated the BMU including most of digital filtering and wireless communication. The BMU with its case was reduced to 55 x 35 x 15 mm and 33 g. In routine use, vital signs of 6 bytes/sec (heart rate, temperature, pulse transit time) per each user were transmitted through a ZigBee module even though all the real-time data were recorded in a secure digital memory of the BMU. In an emergency or when need arises, a channel of a particular user was switched to another ZigBee module, called the emergency module, that sent all ECG and PPG waveforms in real time. Each emergency ZigBee module handled up to a few users. Data from multiple users were wirelessly received by the ZigBee receiver modules in a controller called ZigBee-WLAN gateway, where the ZigBee modules were connected to a WLAN module. This WLAN module sent all data wirelessly to a monitoring center. Operating the dual modes of ZigBee/WLAN utilized an advantage of ZigBee by handling multiple users with minimum power consumption, and overcame the ZigBee limitation of low data rate. This dual-network system for LAN is economically competitive and reliable.
Crewe, Albert V.
2000-01-01
Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.
Li, Zhaoyang; Kurita, Takashi; Miyanaga, Noriaki
2017-10-20
Zigzag and non-zigzag beam waist shifts in a multiple-pass zigzag slab amplifier are investigated based on the propagation of a Gaussian beam. Different incident angles in the zigzag and non-zigzag planes would introduce a direction-dependent waist-shift-difference, which distorts the beam quality in both the near- and far-fields. The theoretical model and analytical expressions of this phenomenon are presented, and intensity distributions in the two orthogonal planes are simulated and compared. A geometrical optics compensation method by a beam with 90° rotation is proposed, which not only could correct the direction-dependent waist-shift-difference but also possibly average the traditional thermally induced wavefront-distortion-difference between the horizontal and vertical beam directions.
Combining module based on coherent polarization beam combining.
Yang, Yan; Geng, Chao; Li, Feng; Li, Xinyang
2017-03-01
A multiaperture receiver with a phased array is an effective approach to overcome the effect of the random optical disturbance in coherent free-space laser communications, in which one of the key technologies is how to efficiently combine the multiple laser beams received by the phased array antenna. A combining module based on coherent polarization beam combining (CPBC), which can combine multiple laser beams to one laser beam with high combining efficiency and output a linearly polarized beam, is proposed in this paper. The principle of the combining module is introduced, the coherent polarization combining efficiency of CPBC is analyzed, and the performance of the combining module is evaluated. Moreover, the feasibility and the expansibility of the proposed combining module are validated in experiments of CPBC based on active phase-locking.
NASA Astrophysics Data System (ADS)
Ghulam, A.
2011-12-01
DInSAR is a solid technique to estimate land subsidence and rebound using phase information from multiple SAR acquisitions over the same location from the same orbits, but from a slightly different observing geometry. However, temporal decorrelation and atmospheric effects are often a challenge to the accuracy of the DInSAR measurements. Such uncertainties may be overcome using time series interferogram stacking, e.g., permanent scatterer interferometry (Ferretti, et al., 2000, 2001). However, it requires large number of image collections. In this paper, interferometric synthetic aperture radar (InSAR) data pairs from the Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor onboard Advanced Land Observing Satellite (ALOS) are used to measure seasonal and annual land surface deformation over Saint Louis, Missouri. The datasets cover four years of time period spanning from 2006 to 2010. With the limited data coverage that is not suitable for permanent scatterer interferometry, the paper demonstrates the efficacy of dual pair interferometry from both fine-beam single polarization mode and dual-pol polarimetric images and short baseline interferometry (SBAS) approach (Berardino, et al., 2002) with an estimation accuracy comparable to differential global position systems (DGPS). We also present the impact of using assumed phase-stable ground control points versus GPS base stations for orbital refinement and phase unwrapping on overall measurement accuracy by comparing the deformation results from DInSAR and Polarimetric InSAR with DGPS base stations and ground truthing.
Opioid Abuse and Addiction - Multiple Languages
... Opioid addiction, part 8 - español (Spanish) MP4 Healthy Roads Media Comorbidity or dual diagnosis - Opioid addiction, part 9 - English PDF Comorbidity or ... addiction, part 9 - English MP4 Comorbidity or dual diagnosis - Opioid ... MP4 Healthy Roads Media Pregnancy and opioids - Opioid addiction, part 10 - ...
NASA Astrophysics Data System (ADS)
Bai, Zhen; Zhang, Jun; Zhong, Huihuang
2016-04-01
An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM01. The existence of TM01 mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Zhen; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang
2016-04-15
An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM{sub 01}. The existence of TM{sub 01} mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension ofmore » coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.« less
Bustamante, Carlos; Chemla, Yann R; Moffitt, Jeffrey R
2009-10-01
Optical traps or "optical tweezers" have become an indispensable tool in understanding fundamental biological processes. Using our design, a dual-trap optical tweezers with differential detection, we can detect length changes to a DNA molecule tethering the trapped beads of 1 bp. By forming two traps from the same laser and maximizing the common optical paths of the two trapping beams, we decouple the instrument from many sources of environmental and instrumental noise that typically limit spatial resolution. The performance of a high-resolution instrument--the formation of strong traps, the minimization of background signals from trap movements, or the mitigation of the axial coupling, for example--can be greatly improved through careful alignment. This procedure, which is described in this article, starts from the laser and advances through the instrument, component by component. Alignment is complicated by the fact that the trapping light is in the near infrared (NIR) spectrum. Standard infrared viewing cards are commonly used to locate the beam, but unfortunately, bleach quickly. As an alternative, we use an IR-viewing charge-coupled device (CCD) camera equipped with a C-mount telephoto lens and display its image on a monitor. By visualizing the scattered light on a pair of irises of identical height separated by >12 in., the beam direction can be set very accurately along a fixed axis.
Advanced Precipitation Radar Antenna to Measure Rainfall From Space
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen
2008-01-01
To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds reduces the complexity from "NxN" transmit/receive (T/R) modules of a conventional planar-phased array to just "N" T/R modules. The antenna uses T/R modules with electronic phase-shifters for beam steering. The offset reflector does not provide poor cross-polarization like a double- curved offset reflector would, and it allows the wide scan angle in one plane required by the mission. Also, the cylindrical reflector with two linear array feeds provides dual-frequency performance with a single, shared aperture. The aperture comprises a reflective surface with a focal length of 1.89 m and is made from aluminized Kapton film. The reflective surface is of uniform thickness in the range of a few thousandths of an inch and is attached to the chain-link support structure via an adjustable suspension system. The film aperture rolls up, together with the chain-link structure, for launch and can be deployed in space by the deployment of the chain-link structure.
NASA Technical Reports Server (NTRS)
Chen, C. C.; Franklin, C. F.
1980-01-01
The frequency reuse capability is demonstrated for a Ku-band multiple beam antenna which provides contiguous low sidelobe spot beams for point-to-point communications between any two points within the continental United States (CONUS), or regional coverage beams for direct broadcast systems. A spot beam antenna in the 14/21 GHz band which provides contiguous overlapping beams covering CONUS and two discrete beams covering Hawaii and Alaska were designed, developed, and tested. Two reflector antennas are required for providing contiguous coverage of CONUS. Each is comprised of one offset parabolic reflector, one flat polarization diplexer, and two separate planar array feeds. This antenna system provides contiguous spot beam coverage of CONUS, utilizing 15 beams. Also designed, developed and demonstrated was a shaped contoured beam antenna system which provides contiguous four time zone coverage of CONUS from a single offset parabolic reflector incorporating one flat polarization diplexer and two separate planar array feeds. The beams which illuminate the eastern time zone and the mountain time zone are horizontally polarized, while the beams which illuminate the central time zone and the pacific time zone are vertically polarized. Frequency reuse is achieved by amplitude and polarization isolation.
Optimal dual-fuel propulsion for minimum inert weight or minimum fuel cost
NASA Technical Reports Server (NTRS)
Martin, J. A.
1973-01-01
An analytical investigation of single-stage vehicles with multiple propulsion phases has been conducted with the phasing optimized to minimize a general cost function. Some results are presented for linearized sizing relationships which indicate that single-stage-to-orbit, dual-fuel rocket vehicles can have lower inert weight than similar single-fuel rocket vehicles and that the advantage of dual-fuel vehicles can be increased if a dual-fuel engine is developed. The results also indicate that the optimum split can vary considerably with the choice of cost function to be minimized.
Improved Skin Friction Interferometer
NASA Technical Reports Server (NTRS)
Westphal, R. V.; Bachalo, W. D.; Houser, M. H.
1986-01-01
An improved system for measuring aerodynamic skin friction which uses a dual-laser-beam oil-film interferometer was developed. Improvements in the optical hardware provided equal signal characteristics for each beam and reduced the cost and complexity of the system by replacing polarization rotation by a mirrored prism for separation of the two signals. An automated, objective, data-reduction procedure was implemented to eliminate tedious manual manipulation of the interferometry data records. The present system was intended for use in two-dimensional, incompressible flows over a smooth, level surface without pressure gradient, but the improvements discussed are not limited to this application.
Fleischer, Guy W.; Argyle, R.L.; Nester, R.T.; Dawson, J.J.
2002-01-01
The use of rubber-compound windows for fisheries acoustics must consider operating frequency and ambient water temperatures. Signal attenuation by the rubber becomes pronounced with increased frequency and decreased temperature. Based on our results, a 420 k Hz system could be expected to lose up to 3-4 dB in colder water through a 5.1-cm thick rubber diaphragm. At 120 k Hz, signal loss was negligible and would undoubtedly also be inconsequential for even lower frequencies used in fisheries applications (e.g., 70, 38 k Hz).
NASA Astrophysics Data System (ADS)
Cortes-Medellin, German; Parshley, Stephen; Campbell, Donald B.; Warnick, Karl F.; Jeffs, Brian D.; Ganesh, Rajagopalan
2016-08-01
This paper presents the current concept design for ALPACA (Advanced L-Band Phased Array Camera for Arecibo) an L-Band cryo-phased array instrument proposed for the 305 m radio telescope of Arecibo. It includes the cryogenically cooled front-end with 160 low noise amplifiers, a RF-over-fiber signal transport and a digital beam former with an instantaneous bandwidth of 312.5 MHz per channel. The camera will digitally form 40 simultaneous beams inside the available field of view of the Arecibo telescope optics, with an expected system temperature goal of 30 K.
Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, T. I.; Yoo, Y. J.; You, Y. S.
2014-07-28
We demonstrate high-field (>8 MV/cm) terahertz generation at a high-repetition-rate (1 kHz) via two-color laser filamentation. Here, we use a cryogenically cooled femtosecond laser amplifier capable of producing 30 fs, 15 mJ pulses at 1 kHz as a driver, along with a combination of a thin dual-wavelength half-waveplate and a Brewster-angled silicon window to enhance terahertz generation and transmission. We also introduce a cost-effective, uncooled microbolometer camera for real-time terahertz beam profiling with two different modes.
Bone geometry, structure and mineral distribution using Dual energy X ray Absorptiometry (DXA)
NASA Technical Reports Server (NTRS)
Whalen, Robert; Cleek, Tammy
1993-01-01
Dual energy x-ray absorptiometry (DXA) is currently the most widely used method of analyzing regional and whole body changes in bone mineral content (BMC) and areal (g/sq cm) bone mineral density (BMD). However, BMC and BMD do not provide direct measures of long bone geometry, structure, or strength nor do regional measurements detect localized changes in other regions of the same bone. The capabilities of DXA can be enhanced significantly by special processing of pixel BMC data which yields cross-sectional geometric and structural information. We have extended this method of analysis in order to develop non-uniform structural beam models of long bones.
Establishment and analysis of coupled dynamic model for dual-mass silicon micro-gyroscope
NASA Astrophysics Data System (ADS)
Wang, Zhanghui; Qiu, Anping; Shi, Qin; Zhang, Taoyuan
2017-12-01
This paper presents a coupled dynamic model for a dual-mass silicon micro-gyroscope (DMSG). It can quantitatively analyze the influence of left-right stiffness difference on the natural frequencies, modal matrix and modal coupling coefficient of the DMSG. The analytic results are verified by using the finite element method (FEM) simulation. The model shows that with the left-right stiffness difference of 1%, the modal coupling coefficient is 12% in the driving direction and 31% in the sensing direction. It also shows that in order to achieve good separation, the stiffness of base beam should be small enough in both the driving and sensing direction.
En-face Flying Spot OCT/Ophthalmoscope
NASA Astrophysics Data System (ADS)
Rosen, Richard B.; Garcia, Patricia; Podoleanu, Adrian Gh.; Cucu, Radu; Dobre, George; Trifanov, Irina; van Velthoven, Mirjam E. J.; de Smet, Marc D.; Rogers, John A.; Hathaway, Mark; Pedro, Justin; Weitz, Rishard
This is a review of a technique for high-resolution imaging of the eye that allows multiple sample sectioning perspectives with different axial resolutions. The technique involves the flying spot approach employed in confocal scanning laser ophthalmoscopy which is extended to OCT imaging via time domain en face fast lateral scanning. The ability of imaging with multiple axial resolutions stimulated the development of the dual en face OCT-confocal imaging technology. Dual imaging also allows various other imaging combinations, such as OCT with confocal microscopy for imaging the eye anterior segment and OCT with fluorescence angiography imaging.
Dual-scale topology optoelectronic processor.
Marsden, G C; Krishnamoorthy, A V; Esener, S C; Lee, S H
1991-12-15
The dual-scale topology optoelectronic processor (D-STOP) is a parallel optoelectronic architecture for matrix algebraic processing. The architecture can be used for matrix-vector multiplication and two types of vector outer product. The computations are performed electronically, which allows multiplication and summation concepts in linear algebra to be generalized to various nonlinear or symbolic operations. This generalization permits the application of D-STOP to many computational problems. The architecture uses a minimum number of optical transmitters, which thereby reduces fabrication requirements while maintaining area-efficient electronics. The necessary optical interconnections are space invariant, minimizing space-bandwidth requirements.
Grzelakowski, Krzysztof P
2016-05-01
Since its introduction the importance of complementary k||-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800eV electron beam from an "in-lens" electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered kǁ-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Studies of lipid vesicle mechanics using an optical fiber dual-beam trap
NASA Astrophysics Data System (ADS)
Pinon, Tessa M.; Hirst, Linda S.; Sharping, Jay E.
2011-03-01
Fiber-based optical traps can be used for manipulating micron-sized dielectric particles such as microspheres and biological cells. Here we study the mechanics of giant unilamellar vesicles (GUVs) which are held and stretched by light forces in a fiber-based dual-beam optical trap. Our GUVs are suspended in a buffer solution and encapsulate various concentrations and molecular weights of poly(ethylene glycol) (PEG) polymer yielding a range of refractive index contrasts and trapping conditions. We find that we can trap GUVs in solution with index contrasts of less than 0.01. We explore the mechanical response of the GUV membrane to a range of forces which are proportional to laser power and refractive index contrast. Our trapping system is a compact and inexpensive platform and trapping is viewed in real time under a microscope. We hypothesize that forces within the high-tension regime will induce a linear response in vesicle surface area. This project sets the stage for membrane mechanics and lipid phase change studies. Grant: NSF award #DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol in the Cell Membrane.''
NASA Astrophysics Data System (ADS)
Kouadri-Henni, Afia; Malard, Benoit
2018-05-01
This study aimed at characterizing the residual stresses (RS) distribution of a Dual Phase Steel (DP600) undergoing a Laser Beam Welding (LBW) with two different laser parameters. The RS in the ferritic phase have been experimentally determined by the use of the neutrons diffraction technique. The results confirmed a gradient of RS among different zones both on the top and below surfaces but also through the thickness of the fusion zone. Low compressive stresses were observed in the Base Metal (BM) close to the Heat Affected Zone (HAZ) whereas high tensile stresses were observed in the Fusion Zone (FZ). Numerical results showed a difference in the RS distribution depending on the model used. In the end, it appears that the high temperature gradient, specific to the laser beam, is the main factor governing the RS. Our results suggest as well that the approach regarding the RS should consider not only the temperature but also process parameters. When comparing simulation results with experimental data, the values converge well in some zones, in particular the FZ and the others less.
A retrospective on hydroacoustic assessment of fish passage in Alaskan rivers
NASA Astrophysics Data System (ADS)
Burwen, Debby; Fleischman, Steve; Maxwell, Suzanne; Pfisterer, Carl
2005-04-01
The Alaska Department of Fish and Game (ADFG) has enumerated fish stocks in rivers for over 30 years using a variety of acoustic technologies including single-, dual-, and split-beam sonar. Most recently, ADFG has evaluated a relatively new sonar technology at several sites in Alaska to determine its applicability to counting migrating fish in rivers. The new system, called a Dual frequency IDentification SONar (DIDSON), is a high-definition imaging sonar designed and manufactured by the University of Washington's Applied Physics Lab for military applications such as diver detection and underwater mine identification. Results from experiments conducted in 2002-2004 indicate that DIDSON provides significant improvements in our ability to detect, track, and determine the direction of travel of migrating fish in rivers. One of the most powerful uses of the DIDSON has been to combine its camera-like images of fish swimming behavior with corresponding split-beam data. These linked datasets have allowed us to evaluate the effects of fish orientation and swimming behavior on echo shape parameters that have proven useful in the classification of certain fish species.