Sample records for dual continuum model

  1. LOW ACTIVATION JOINING OF SIC/SIC COMPOSITES FOR FUSION APPLICATIONS: MODELING DUAL-PHASE MICROSTRUCTURES AND DISSIMILAR MATERIAL JOINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.

    2016-03-31

    Finite element continuum damage models (FE-CDM) have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including results from dual-phase models and from cracked joint models.

  2. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Thermomechanical Modeling of Dual-Phase Microstructures and Dissimilar Material Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2016-09-30

    Finite element (FE) continuum damage mechanics (CDM) models have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including preliminary thermomechanical analyses of cracked joints and implementation of dual-phase damage models.

  3. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Ho, C.K.; Glass, RJ.

    1996-09-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon infiltration of water observed in the experiment was subsequently modeled using measured Fran Ridgemore » fracture frequencies, and a specified fracture aperture of 285 {micro}m. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, al fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies.« less

  4. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Ho, C.K.; Glass, R.J.

    1996-01-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon filtration of water observed in the experiment was subsequently modeled using measured Fran Ridgemore » fracture frequencies, and a specified fracture aperture of 285 {mu}m. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, minimal fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies.« less

  5. Numerical simulation of freshwater/seawater interaction in a dual-permeability karst system with conduits: the development of discrete-continuum VDFST-CFP model

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill

    2016-04-01

    Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow

  6. Phenomenology of TeV little string theory from holography.

    PubMed

    Antoniadis, Ignatios; Arvanitaki, Asimina; Dimopoulos, Savas; Giveon, Amit

    2012-02-24

    We study the graviton phenomenology of TeV little string theory by exploiting its holographic gravity dual five-dimensional theory. This dual corresponds to a linear dilaton background with a large bulk that constrains the standard model fields on the boundary of space. The linear dilaton geometry produces a unique Kaluza-Klein graviton spectrum that exhibits a ~TeV mass gap followed by a near continuum of narrow resonances that are separated from each other by only ~30 GeV. Resonant production of these particles at the LHC is the signature of this framework that distinguishes it from large extra dimensions, where the Kaluza-Klein states are almost a continuum with no mass gap, and warped models, where the states are separated by a TeV.

  7. Dual number algebra method for Green's function derivatives in 3D magneto-electro-elasticity

    NASA Astrophysics Data System (ADS)

    Dziatkiewicz, Grzegorz

    2018-01-01

    The Green functions are the basic elements of the boundary element method. To obtain the boundary integral formulation the Green function and its derivative should be known for the considered differential operator. Today the interesting group of materials are electronic composites. The special case of the electronic composite is the magnetoelectroelastic continuum. The mentioned continuum is a model of the piezoelectric-piezomagnetic composites. The anisotropy of their physical properties makes the problem of Green's function determination very difficult. For that reason Green's functions for the magnetoelectroelastic continuum are not known in the closed form and numerical methods should be applied to determine such Green's functions. These means that the problem of the accurate and simply determination of Green's function derivatives is even harder. Therefore in the present work the dual number algebra method is applied to calculate numerically the derivatives of 3D Green's functions for the magnetoelectroelastic materials. The introduced method is independent on the step size and it can be treated as a special case of the automatic differentiation method. Therefore, the dual number algebra method can be applied as a tool for checking the accuracy of the well-known finite difference schemes.

  8. Beyond Inhibition: A Dual-Process Perspective to Renew the Exploration of Binge Drinking

    PubMed Central

    Lannoy, Séverine; Billieux, Joël; Maurage, Pierre

    2014-01-01

    Binge drinking is a widespread alcohol-consumption pattern in youth and is linked to cognitive consequences, mostly for executive functions. However, other crucial factors remain less explored in binge drinking and notably the emotional-automatic processes. Dual-process model postulates that addictive disorders are not only due to impaired reflective system (involved in deliberate behaviors), but rather to an imbalance between under-activated reflective system and over-activated affective-automatic one (involved in impulsive behaviors). This proposal has been confirmed in alcohol-dependence, but has not been tested in binge drinking. The observation of comparable impairments in binge drinking and alcohol-dependence led to the “continuum hypothesis,” suggesting similar deficits across different alcohol-related disorders. In this perspective, applying the dual-process model to binge drinking might renew the understanding of this continuum hypothesis. A three-axes research agenda will be proposed, exploring: (1) the affective-automatic system in binge drinking; (2) the systems’ interactions and imbalance in binge drinking; (3) the evolution of this imbalance in the transition between binge drinking and alcohol-dependence. PMID:24926251

  9. Variational analysis of the coupling between a geometrically exact Cosserat rod and an elastic continuum

    NASA Astrophysics Data System (ADS)

    Sander, Oliver; Schiela, Anton

    2014-12-01

    We formulate the static mechanical coupling of a geometrically exact Cosserat rod to a nonlinearly elastic continuum. In this setting, appropriate coupling conditions have to connect a one-dimensional model with director variables to a three-dimensional model without directors. Two alternative coupling conditions are proposed, which correspond to two different configuration trace spaces. For both, we show existence of solutions of the coupled problems, using the direct method of the calculus of variations. From the first-order optimality conditions, we also derive the corresponding conditions for the dual variables. These are then interpreted in mechanical terms.

  10. More Than a Feeling? An Empirical Analysis of the Dual-Continua Model on a National Sample of Lesbian, Gay, and Bisexual Identified Canadians.

    PubMed

    Peter, Tracey

    2017-08-11

    The goal of the study is to investigate whether positive mental health complements mental illness within a theoretically informed (the dual-continua model) and psychometrically tested (the Mental Health Continuum-Short Form) framework. National-level, population-based data from the 2012 Canadian Community Health Survey on Mental Health (CCHS-MH) was used, with comparisons between sexual minority and heterosexual adults. Results show that gay, lesbian, and bisexual Canadians have substantially lower rates of positive mental health and are more likely to have been diagnosed with a mental illness, with the disparities between health and illness being the most pronounced among lesbians and bisexual females. Results show considerable support for the dual-continua model, which posits that the absence of health does not automatically translate into the presence of illness, and vice versa. Suggestions are made for practitioners and researchers toward the use of the dual-continua model as a surveillance tool, especially among sexual minority individuals.

  11. PRELIMINARY PROGRESS IN THE DEVELOPMENT OF DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS: DUAL-PHASE FINITE ELEMENT DAMAGE MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.

    The objective of this study is to develop a finite element continuum damage model suitable for modeling deformation, cracking, and crack bridging for W-Cu, W-Ni-Fe, and other ductile phase toughened W-composites, or more generally, any multi-phase composite structure where two or more phases undergo cooperative deformation in a composite system.

  12. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In addition to the VE-3D model, we explore simplifications of the rock matrix domain by using sugar-cube and matchstick conceptualizations and develop VE-dual porosity and VE-matchstick models. These vertically-integrated dual-permeability and dual-porosity models provide a range of computationally efficient tools to model CO2 storage in fractured saline aquifers.

  13. The Dual-channel Extreme Ultraviolet Continuum Experiment: Sounding Rocket EUV Observations of Local B Stars to Determine Their Potential for Supplying Intergalactic Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Erickson, Nicholas; Green, James C.; France, Kevin; Stocke, John T.; Nell, Nicholas

    2018-06-01

    We describe the scientific motivation and technical development of the Dual-channel Extreme Ultraviolet Continuum Experiment (DEUCE). DEUCE is a sounding rocket payload designed to obtain the first flux-calibrated spectra of two nearby B stars in the EUV 650-1150Å bandpass. This measurement will help in understanding the ionizing flux output of hot B stars, calibrating stellar models and commenting on the potential contribution of such stars to reionization. DEUCE consists of a grazing incidence Wolter II telescope, a normal incidence holographic grating, and the largest (8” x 8”) microchannel plate detector ever flown in space, covering the 650-1150Å band in medium and low resolution channels. DEUCE will launch on December 1, 2018 as NASA/CU sounding rocket mission 36.331 UG, observing Epsilon Canis Majoris, a B2 II star.

  14. Analysis of Plume Impingement Effects from Orion Crew Service Module Dual Reaction Control System Engine Firings

    NASA Technical Reports Server (NTRS)

    Prisbell, Andrew; Marichalar, J.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects on the Orion Crew Service Module (CSM) were analyzed for various dual Reaction Control System (RCS) engine firings and various configurations of the solar arrays. The study was performed using a decoupled computational fluid dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) approach. This approach included a single jet plume solution for the R1E RCS engine computed with the General Aerodynamic Simulation Program (GASP) CFD code. The CFD solution was used to create an inflow surface for the DSMC solution based on the Bird continuum breakdown parameter. The DSMC solution was then used to model the dual RCS plume impingement effects on the entire CSM geometry with deployed solar arrays. However, because the continuum breakdown parameter of 0.5 could not be achieved due to geometrical constraints and because high resolution in the plume shock interaction region is desired, a focused DSMC simulation modeling only the plumes and the shock interaction region was performed. This high resolution intermediate solution was then used as the inflow to the larger DSMC solution to obtain plume impingement heating, forces, and moments on the CSM and the solar arrays for a total of 21 cases that were analyzed. The results of these simulations were used to populate the Orion CSM Aerothermal Database.

  15. Continuum modes of nonlocal field theories

    NASA Astrophysics Data System (ADS)

    Saravani, Mehdi

    2018-04-01

    We study a class of nonlocal Lorentzian quantum field theories, where the d’Alembertian operator \\Box is replaced by a non-analytic function of the d’Alembertian, f(\\Box) . This is inspired by the causal set program where such an evolution arises as the continuum limit of a wave equation on causal sets. The spectrum of these theories contains a continuum of massive excitations. This is perhaps the most important feature which leads to distinct/interesting phenomenology. In this paper, we study properties of the continuum massive modes in depth. We derive the path integral formulation of these theories. Meanwhile, this derivation introduces a dual picture in terms of local fields which clearly shows how continuum massive modes of the nonlocal field interact. As an example, we calculate the leading order modification to the Casimir force of a pair of parallel planes. The dual picture formulation opens the way for future developments in the study of nonlocal field theories using tools already available in local quantum field theories.

  16. PACE-90 water and solute transport calculations for 0.01, 0.1, and 0. 5 mm/yr infiltration into Yucca Mountain; Yucca Mountain Site Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.

    1991-12-01

    Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time ofmore » solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium.« less

  17. A Risk-Continuum Categorization of Product Use Among US Youth Tobacco Users

    PubMed Central

    El-Toukhy, Sherine

    2016-01-01

    Introduction: To examine prevalence and correlates of five mutually exclusive tobacco-use patterns among US youth tobacco users. Methods: A nationally representative sample of tobacco users (N = 3202, 9–17 years) was classified into five product-use patterns. Weighted multinominal and multivariate logistic regression models were used to examine prevalence of product-use patterns by gender, race and ethnicity, and grade level; and associations between product-use patterns and perceived accessibility of tobacco products, exposure and receptivity to pro-tobacco marketing, social benefits of smoking, and tobacco-associated risks. Results: Dual use (ie, use of two product categories) was the most prevalent pattern (30.5%), followed by non-cigarette combustible only (26.7%), polytobacco (ie, use of three product categories; 17.5%), cigarette only (14.9%), and noncombustible only (10.4%) use. Product-use patterns differed by gender, race, and ethnicity. Compared to cigarette only users, dual and polytobacco users were more likely to be exposed to and be receptive to pro-tobacco marketing, and were less likely to acknowledge tobacco-use related risks (Ps < .05). Conclusions: Curbing tobacco use warrants research on users of more than one tobacco-product categories according to the risk-continuum categorization. Implications: We present a risk-continuum categorization of product-use patterns among tobacco users not older than 17 years. We classify tobacco users into five mutually exclusive product-use patterns: cigarette only users, non-cigarette combustible only users, noncombustible only users, dual use, and polytobacco use. This categorization overcomes limitations in current literature on tobacco-use patterns, which include exclusion of certain products (eg, e-cigarettes) and product-use patterns (eg, exclusive users of non-cigarette products), and inconsistent classification of tobacco users. It is parsimonious yet complex enough to retain differential characteristics of sub-tobacco users based on number (single, dual, polytobacco) and categories (cigarettes, non-cigarette combustibles, noncombustibles) of tobacco products consumed. PMID:26764258

  18. Modeling reactive transport processes in fractured rock using the time domain random walk approach within a dual-porosity framework

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.

    2017-12-01

    Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.

  19. Thermodynamically consistent model of brittle oil shales under overpressure

    NASA Astrophysics Data System (ADS)

    Izvekov, Oleg

    2016-04-01

    The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.

  20. Inhibition of the renin-angiotensin-aldosterone system: is there room for dual blockade in the cardiorenal continuum?

    PubMed

    Volpe, Massimo; Danser, A H Jan; Menard, Joël; Waeber, Bernard; Mueller, Dominik N; Maggioni, Aldo P; Ruilope, Luis M

    2012-04-01

    Antagonism of renin-angiotensin-aldosterone system is exerted through angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, renin inhibitors and mineralocorticoid receptor antagonists. These drugs have been successfully tested in numerous trials and in different clinical settings. The original indications of renin-angiotensin-aldosterone system blockers have progressively expanded from the advanced stages to the earlier stages of cardiorenal continuum. To optimize the degree of blockade of renin-angiotensin-aldosterone system, dose uptitrations of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists or the use of a dual blockade, initially identified with the combination of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists, have been proposed. The data from the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET) study do not support this specific dual blockade approach. However, the dual blockade of angiotensin-converting enzyme inhibitors/angiotensin receptor antagonists with direct renin inhibitors is currently under investigation while that based on an aldosterone blocker with any of the previous three drugs requires more evidence beyond heart failure. In this review, we revisited potential advantages of dual blockade of renin-angiotensin-aldosterone system in arterial hypertension and diabetes.

  1. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  2. A Risk-Continuum Categorization of Product Use Among US Youth Tobacco Users.

    PubMed

    El-Toukhy, Sherine; Choi, Kelvin

    2016-07-01

    To examine prevalence and correlates of five mutually exclusive tobacco-use patterns among US youth tobacco users. A nationally representative sample of tobacco users (N = 3202, 9-17 years) was classified into five product-use patterns. Weighted multinominal and multivariate logistic regression models were used to examine prevalence of product-use patterns by gender, race and ethnicity, and grade level; and associations between product-use patterns and perceived accessibility of tobacco products, exposure and receptivity to pro-tobacco marketing, social benefits of smoking, and tobacco-associated risks. Dual use (ie, use of two product categories) was the most prevalent pattern (30.5%), followed by non-cigarette combustible only (26.7%), polytobacco (ie, use of three product categories; 17.5%), cigarette only (14.9%), and noncombustible only (10.4%) use. Product-use patterns differed by gender, race, and ethnicity. Compared to cigarette only users, dual and polytobacco users were more likely to be exposed to and be receptive to pro-tobacco marketing, and were less likely to acknowledge tobacco-use related risks (Ps < .05). Curbing tobacco use warrants research on users of more than one tobacco-product categories according to the risk-continuum categorization. We present a risk-continuum categorization of product-use patterns among tobacco users not older than 17 years. We classify tobacco users into five mutually exclusive product-use patterns: cigarette only users, non-cigarette combustible only users, noncombustible only users, dual use, and polytobacco use. This categorization overcomes limitations in current literature on tobacco-use patterns, which include exclusion of certain products (eg, e-cigarettes) and product-use patterns (eg, exclusive users of non-cigarette products), and inconsistent classification of tobacco users. It is parsimonious yet complex enough to retain differential characteristics of sub-tobacco users based on number (single, dual, polytobacco) and categories (cigarettes, non-cigarette combustibles, noncombustibles) of tobacco products consumed. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Imbedded-Fracture Formulation of THMC Processes in Fractured Media

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Tsai, C. H.; Sung, R.

    2016-12-01

    Fractured media consist of porous materials and fracture networks. There exist four approaches to mathematically formulating THMC (Thermal-Hydrology-Mechanics-Chemistry) processes models in the system: (1) Equivalent Porous Media, (2) Dual Porosity or Dual Continuum, (3) Heterogeneous Media, and (4) Discrete Fracture Network. The first approach cannot explicitly explore the interactions between porous materials and fracture networks. The second approach introduces too many extra parameters (namely, exchange coefficients) between two media. The third approach may make the problems too stiff because the order of material heterogeneity may be too much. The fourth approach ignore the interaction between porous materials and fracture networks. This talk presents an alternative approach in which fracture networks are modeled with a lower dimension than the surrounding porous materials. Theoretical derivation of mathematical formulations will be given. An example will be illustrated to show the feasibility of this approach.

  4. Spectral line polarimetry with a channeled polarimeter.

    PubMed

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  5. Continuum limit of electrostatic gyrokinetic absolute equilibrium

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Zhou

    2012-06-01

    Electrostatic gyrokinetic absolute equilibria with continuum velocity field are obtained through the partition function and through the Green function of the functional integral. The new results justify and explain the prescription for quantization/discretization or taking the continuum limit of velocity. The mistakes in the Appendix D of our earlier work [J.-Z. Zhu and G. W. Hammett, Phys. Plasmas 17, 122307 (2010)] are explained and corrected. If the lattice spacing for discretizing velocity is big enough, all the invariants could concentrate at the lowest Fourier modes in a negative-temperature state, which might indicate a possible variation of the dual cascade picture in 2D plasma turbulence.

  6. Dual structure in the charge excitation spectrum of electron-doped cuprates

    NASA Astrophysics Data System (ADS)

    Bejas, Matías; Yamase, Hiroyuki; Greco, Andrés

    2017-12-01

    Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments for electron-doped cuprates, we study the charge excitation spectrum in a layered t -J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the exchange term (J term), whereas high-energy charge excitations are due to usual on-site charge fluctuations and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations.

  7. A national survey of the primary and acute care pediatric nurse practitioner educational preparation.

    PubMed

    Hawkins-Walsh, Elizabeth; Berg, Mary; Docherty, Sharron; Lindeke, Linda; Gaylord, Nan; Osborn, Kristen

    2011-01-01

    The past decade has been marked by a gradual expansion of the traditional primary care role of the pediatric nurse practitioner (PNP) into practice arenas that call for more acute and critical care of children. The purpose of the study was to explore the educational programming needs of dual (combined) track PNP programs that prepare graduates to provide care to children and adolescents across the continuum of health and illness. A two-phase, exploratory, mixed method design was utilized. An electronic survey was completed by 65% of PNP program directors in the country. Semi-structured telephone interviews were conducted with hospital-based PNPs who were practicing in roles that met a range of health care needs across the primary and acute care continuum. Primary care and acute care programs have more common than unique elements, and the vast majority of clinical competencies are common to both types of program. Only three competencies appear to be unique to acute care programs. The Association of Faculties of Pediatric Nurse Practitioner Programs should utilize existing evidence and develop guidelines for dual PNP programs that focus on the provision of care to children across a wide continuum of health and illness. Copyright © 2011 National Association of Pediatric Nurse Practitioners. Published by Mosby, Inc. All rights reserved.

  8. Investigation of Dual Active Nuclei, Outflows, Shock-heated Gas, and Young Star Clusters in Markarian 266

    NASA Astrophysics Data System (ADS)

    Mazzarella, J. M.; Iwasawa, K.; Vavilkin, T.; Armus, L.; Kim, D.-C.; Bothun, G.; Evans, A. S.; Spoon, H. W. W.; Haan, S.; Howell, J. H.; Lord, S.; Marshall, J. A.; Ishida, C. M.; Xu, C. K.; Petric, A.; Sanders, D. B.; Surace, J. A.; Appleton, P.; Chan, B. H. P.; Frayer, D. T.; Inami, H.; Khachikian, E. Ye.; Madore, B. F.; Privon, G. C.; Sturm, E.; U, Vivian; Veilleux, S.

    2012-11-01

    Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the luminous infrared galaxy (LIRG) merger Markarian 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both companions are more luminous than L* galaxies and they are inferred to each contain a ≈2.5 × 108 M ⊙ black hole. Although the nuclei have an observed hard X-ray flux ratio of fX (NE)/fX (SW) = 6.4, Mrk 266 SW is likely the primary source of a bright Fe Kα line detected from the system, consistent with the reflection-dominated X-ray spectrum of a heavily obscured active galactic nucleus (AGN). Optical knots embedded in an arc with aligned radio continuum radiation, combined with luminous H2 line emission, provide evidence for a radiative bow shock in an AGN-driven outflow surrounding the NE nucleus. A soft X-ray emission feature modeled as shock-heated plasma with T ~ 107 K is cospatial with radio continuum emission between the galaxies. Mid-infrared diagnostics provide mixed results, but overall suggest a composite system with roughly equal contributions of AGN and starburst radiation powering the bolometric luminosity. Approximately 120 star clusters have been detected, with most having estimated ages less than 50 Myr. Detection of 24 μm emission aligned with soft X-rays, radio continuum, and ionized gas emission extending ~34'' (20 kpc) north of the galaxies is interpreted as ~2 × 107 M ⊙ of dust entrained in an outflowing superwind. At optical wavelengths this Northern Loop region is resolved into a fragmented morphology indicative of Rayleigh-Taylor instabilities in an expanding shell of ionized gas. Mrk 266 demonstrates that the dust "blow-out" phase can begin in a LIRG well before the galaxies fully coalesce during a subsequent ultraluminous infrared galaxy (ULIRG) phase, and rapid gas consumption in luminous dual AGNs with kiloparsec-scale separations early in the merger process may explain the paucity of detected binary QSOs (with parsec-scale orbital separations) in spectroscopic surveys. An evolutionary sequence is proposed representing a progression from dual to binary AGNs, accompanied by an increase in observed Lx /L ir ratios by over two orders of magnitude.

  9. The Dual Function of "usted:" Forms of Address in Bogota, Colombia.

    ERIC Educational Resources Information Center

    Uber, Diane Ringer

    1985-01-01

    Shows that "usted" has two functions: showing lack of solidarity and showing extreme solidarity, with "tu" falling somewhere in between on the continuum. Discusses the increasing use of "tu," especially among younger people, and presents some possible reasons for this. (SED)

  10. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  11. Thermodynamic Analysis of Dual-Mode Scramjet Engine Operation and Performance

    NASA Technical Reports Server (NTRS)

    Riggins, David; Tacket, Regan; Taylor, Trent; Auslender, Aaron

    2006-01-01

    Recent analytical advances in understanding the performance continuum (the thermodynamic spectrum) for air-breathing engines based on fundamental second-law considerations have clarified scramjet and ramjet operation, performance, and characteristics. Second-law based analysis is extended specifically in this work to clarify and describe the performance characteristics for dual-mode scramjet operation in the mid-speed range of flight Mach 4 to 7. This is done by a fundamental investigation of the complex but predictable interplay between heat release and irreversibilities in such an engine; results demonstrate the flow and performance character of the dual mode regime and of dual mode transition behavior. Both analytical and computational (multi-dimensional CFD) studies of sample dual-mode flow-fields are performed in order to demonstrate the second-law capability and performance and operability issues. The impact of the dual-mode regime is found to be characterized by decreasing overall irreversibility with increasing heat release, within the operability limits of the system.

  12. Lattice QCD phase diagram in and away from the strong coupling limit.

    PubMed

    de Forcrand, Ph; Langelage, J; Philipsen, O; Unger, W

    2014-10-10

    We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the μ-T phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated at next-to-leading order.

  13. Two-point functions in a holographic Kondo model

    NASA Astrophysics Data System (ADS)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.

    2017-03-01

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i< O >2, which is characteristic of a Kondo resonance.

  14. Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.

    A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. Thismore » model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.« less

  15. Modeling Ductile-Phase Toughened Tungsten for Plasma-Facing Materials: Progress in Damage Finite Element Analysis of the Tungsten-Copper Bend Bar Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    The objective of this study is to investigate the deformation behavior of ductile phase toughened W-composites such as W-Cu and W-Ni-Fe by means of a multiscale finite element model that involves a microstructural dual-phase model where the constituent phases (i.e., W, Cu, Ni-Fe) are finely discretized and are described by a continuum damage model. Such a model is suitable for modeling deformation, cracking, and crack bridging for W-Cu, W-Ni-Fe, and other ductile phase toughened W-composites, or more generally, any multi-phase composite structure where two or more phases undergo cooperative deformation in a composite system. Our current work focuses on simulatingmore » the response and damage development of the W-Cu specimen subjected to three-point bending.« less

  16. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints

    NASA Astrophysics Data System (ADS)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2018-02-01

    The microcracking mechanisms responsible for Ti3SiC2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments are investigated in detail. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti3SiC2 and SiC phases. The behaviors of SiC and Ti3SiC2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504-515. This CDM model describes microcracking damage in brittle ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti3SiC2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti3SiC2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti3SiC2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. These predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.

  17. Reactive transport modeling in fractured rock: A state-of-the-science review

    NASA Astrophysics Data System (ADS)

    MacQuarrie, Kerry T. B.; Mayer, K. Ulrich

    2005-10-01

    The field of reactive transport modeling has expanded significantly in the past two decades and has assisted in resolving many issues in Earth Sciences. Numerical models allow for detailed examination of coupled transport and reactions, or more general investigation of controlling processes over geologic time scales. Reactive transport models serve to provide guidance in field data collection and, in particular, enable researchers to link modeling and hydrogeochemical studies. In this state-of-science review, the key objectives were to examine the applicability of reactive transport codes for exploring issues of redox stability to depths of several hundreds of meters in sparsely fractured crystalline rock, with a focus on the Canadian Shield setting. A conceptual model of oxygen ingress and redox buffering, within a Shield environment at time and space scales relevant to nuclear waste repository performance, is developed through a review of previous research. This conceptual model describes geochemical and biological processes and mechanisms materially important to understanding redox buffering capacity and radionuclide mobility in the far-field. Consistent with this model, reactive transport codes should ideally be capable of simulating the effects of changing recharge water compositions as a result of long-term climate change, and fracture-matrix interactions that may govern water-rock interaction. Other aspects influencing the suitability of reactive transport codes include the treatment of various reaction and transport time scales, the ability to apply equilibrium or kinetic formulations simultaneously, the need to capture feedback between water-rock interactions and porosity-permeability changes, and the representation of fractured crystalline rock environments as discrete fracture or dual continuum media. A review of modern multicomponent reactive transport codes indicates a relatively high-level of maturity. Within the Yucca Mountain nuclear waste disposal program, reactive transport codes of varying complexity have been applied to investigate the migration of radionuclides and the geochemical evolution of host rock around the planned disposal facility. Through appropriate near- and far-field application of dual continuum codes, this example demonstrates how reactive transport models have been applied to assist in constraining historic water infiltration rates, interpreting the sealing of flow paths due to mineral precipitation, and investigating post-closure geochemical monitoring strategies. Natural analogue modeling studies, although few in number, are also of key importance as they allow the comparison of model results with hydrogeochemical and paleohydrogeological data over geologic time scales.

  18. Continuum modeling of large lattice structures: Status and projections

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Mikulas, Martin M., Jr.

    1988-01-01

    The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.

  19. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    We investigate the microcracking mechanisms responsible for Ti 3SiC 2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments in detail. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti 3SiC 2 and SiC phases. The behaviors of SiC and Ti 3SiC 2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504–515. This CDM model describes microcracking damage in brittlemore » ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti 3SiC 2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti 3SiC 2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti 3SiC 2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. Our predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.« less

  20. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints

    DOE PAGES

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2017-12-05

    We investigate the microcracking mechanisms responsible for Ti 3SiC 2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments in detail. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti 3SiC 2 and SiC phases. The behaviors of SiC and Ti 3SiC 2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504–515. This CDM model describes microcracking damage in brittlemore » ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti 3SiC 2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti 3SiC 2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti 3SiC 2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. Our predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.« less

  1. The Effect of Feature Complexity in Spanish Spelling in Grades 1-3

    ERIC Educational Resources Information Center

    Ford, Karen L.; Invernizzi, Marcia; Huang, Francis L.

    2014-01-01

    The current study explored a possible continuum of spelling features that children receiving literacy instruction in Spanish might be expected to master in Grades 1-3. We administered a developmental spelling inventory representing nine distinct Spanish spelling features to 864 students in bilingual and dual language schools across the U.S.…

  2. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; Huang, H.; Deo, M.

    2016-03-01

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less

  3. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Zhou; H. Huang; M. Deo

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less

  4. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models.

    PubMed

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R

    2016-09-01

    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  6. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Thermal and Irradiation-induced Swelling Effects on Integrity of Ti3SiC2/SiC Joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    This work developed a continuum damage mechanics model that incorporates thermal expansion combined with irradiation-induced swelling effects to study the origin of cracking observed in recent irradiation experiments. Micromechanical modeling using an Eshelby-Mori-Tanaka approach was used to compute the thermoelastic properties of the Ti3SiC2/SiC joint needed for the model. In addition, a microstructural dual-phase Ti3SiC2/SiC model was developed to determine irradiation-induced swelling of the composite joint at a given temperature resulting from differential swelling of SiC and the Ti3SiC2 MAX phase. Three cases for the miniature torsion hourglass (THG) specimens containing a Ti3SiC2/SiC joint were analyzed corresponding to three irradiationmore » temperatures: 800oC, 500oC, and 400oC.« less

  7. Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bing; Tan, K. T., E-mail: ktan@uakron.edu

    2016-08-21

    Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted andmore » mathematically controlled, which extends the design concept of unidirectional transmission devices.« less

  8. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  9. Noise Propagation and Uncertainty Quantification in Hybrid Multiphysics Models: Initiation and Reaction Propagation in Energetic Materials

    DTIC Science & Technology

    2016-05-23

    general model for heterogeneous granular media under compaction and (ii) the lack of a reliable multiscale discrete -to-continuum framework for...dynamics. These include a continuum- discrete model of heat dissipation/diffusion and a continuum- discrete model of compaction of a granular material with...the lack of a general model for het- erogeneous granular media under compac- tion and (ii) the lack of a reliable multi- scale discrete -to-continuum

  10. Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model

    NASA Astrophysics Data System (ADS)

    Vila, J.; Fernández-Sáez, J.; Zaera, R.

    2018-04-01

    In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.

  11. How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts.

    PubMed

    Hedenstierna, Sofia; Halldin, Peter

    2008-04-15

    A finite element (FE) model of the human neck with incorporated continuum or discrete muscles was used to simulate experimental impacts in rear, frontal, and lateral directions. The aim of this study was to determine how a continuum muscle model influences the impact behavior of a FE human neck model compared with a discrete muscle model. Most FE neck models used for impact analysis today include a spring element musculature and are limited to discrete geometries and nodal output results. A solid-element muscle model was thought to improve the behavior of the model by adding properties such as tissue inertia and compressive stiffness and by improving the geometry. It would also predict the strain distribution within the continuum elements. A passive continuum muscle model with nonlinear viscoelastic materials was incorporated into the KTH neck model together with active spring muscles and used in impact simulations. The resulting head and vertebral kinematics was compared with the results from a discrete muscle model as well as volunteer corridors. The muscle strain prediction was compared between the 2 muscle models. The head and vertebral kinematics were within the volunteer corridors for both models when activated. The continuum model behaved more stiffly than the discrete model and needed less active force to fit the experimental results. The largest difference was seen in the rear impact. The strain predicted by the continuum model was lower than for the discrete model. The continuum muscle model stiffened the response of the KTH neck model compared with a discrete model, and the strain prediction in the muscles was improved.

  12. Behavior change in a student with a dual diagnosis of deafness and pervasive developmental disorder: a case study.

    PubMed

    Easterbrooks, Susan R; Handley, C Michele

    The broad term pervasive developmental disorder (PPD) describes a set of symptoms that occur along a continuum of severity; these symptoms are often referred to as autism spectrum disorders (ASDs). Little is known about the incidence and prevalence of ASDs among students who are deaf or hard of hearing (DHH). Teachers of DHH students, who must work with individuals with dual diagnoses, are at a loss for guidance from the literature. The authors review the literature on ASDs (also referred to as PDD) within the DHH population, provide results of a single-subject study to reduce PDD-type behaviors in a child with hearing loss, and argue that teachers of students who are DHH must learn about practices associated with applied behavior analysis as an tool for intervening therapeutically with children with dual diagnoses of hearing loss plus an ASD.

  13. Infinite-Dimensional Symmetry Algebras as a Help Toward Solutions of the Self-Dual Field Equations with One Killing Vector

    NASA Astrophysics Data System (ADS)

    Finley, Daniel; McIver, John K.

    2002-12-01

    The sDiff(2) Toda equation determines all self-dual, vacuum solutions of the Einstein field equations with one rotational Killing vector. Some history of the searches for non-trivial solutions is given, including those that begin with the limit as n → ∞ of the An Toda lattice equations. That approach is applied here to the known prolongation structure for the Toda lattice, hoping to use Bäcklund transformations to generate new solutions. Although this attempt has not yet succeeded, new faithful (tangent-vector) realizations of A∞ are described, and a direct approach via the continuum Lie algebras of Saveliev and Leznov is given.

  14. Behavior Change in a Student with a Dual Diagnosis of Deafness and Pervasive Development Disorder: A Case Study

    ERIC Educational Resources Information Center

    Easterbrooks, S. R.; Handley, C. M.

    2005-01-01

    The broad term "pervasive developmental disorder" (PPD) describes a set of symptoms that occur along a continuum of severity; these symptoms are often referred to as "autism spectrum disorders" (ASDs). Little is known about the incidence and prevalence of ASDs among students who are deaf or hard of hearing (DHH). Teachers of DHH students, who must…

  15. Joint Use of ERT, Tracer, and Numerical Techniques to Image Preferential Flow Paths in a Fractured Granite Aquifer

    NASA Astrophysics Data System (ADS)

    Sanaga, S.; Vijay, S.; Kbvn, P.; Peddinti, S. R.; P S L, S.

    2017-12-01

    Fractured geologic media poses formidable challenges to hydrogeologists due of the strenuous mapping of fracture-matrix system and quantification of flow and transport processes. In this research, we demonstrated the efficacy of tracer-ERT studies coupled with numerical simulations to delineate preferential flow paths in a fractured granite aquifer of Deccan traps in India. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well located inside the IIT Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. Dynamic changes in sub-surface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements (R2=0.74). Fracture geometry and hydraulic properties derived from ERT and pumping tests were then used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that a dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by decrease in RMSE from 199 mg/l to 65 mg/l). A sensitivity analysis of the model parameters reveals that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations. Keywords: saline tracer, ERT, fractured granite, groundwater, preferential flow, numerical simulation

  16. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  17. Prediction of Size Effects in Notched Laminates Using Continuum Damage Mechanics

    NASA Technical Reports Server (NTRS)

    Camanho, D. P.; Maimi, P.; Davila, C. G.

    2007-01-01

    This paper examines the use of a continuum damage model to predict strength and size effects in notched carbon-epoxy laminates. The effects of size and the development of a fracture process zone before final failure are identified in an experimental program. The continuum damage model is described and the resulting predictions of size effects are compared with alternative approaches: the point stress and the inherent flaw models, the Linear-Elastic Fracture Mechanics approach, and the strength of materials approach. The results indicate that the continuum damage model is the most accurate technique to predict size effects in composites. Furthermore, the continuum damage model does not require any calibration and it is applicable to general geometries and boundary conditions.

  18. A spiral model of musical decision-making.

    PubMed

    Bangert, Daniel; Schubert, Emery; Fabian, Dorottya

    2014-01-01

    This paper describes a model of how musicians make decisions about performing notated music. The model builds on psychological theories of decision-making and was developed from empirical studies of Western art music performance that aimed to identify intuitive and deliberate processes of decision-making, a distinction consistent with dual-process theories of cognition. The model proposes that the proportion of intuitive (Type 1) and deliberate (Type 2) decision-making processes changes with increasing expertise and conceptualizes this change as movement along a continually narrowing upward spiral where the primary axis signifies principal decision-making type and the vertical axis marks level of expertise. The model is intended to have implications for the development of expertise as described in two main phases. The first is movement from a primarily intuitive approach in the early stages of learning toward greater deliberation as analytical techniques are applied during practice. The second phase occurs as deliberate decisions gradually become automatic (procedural), increasing the role of intuitive processes. As a performer examines more issues or reconsiders decisions, the spiral motion toward the deliberate side and back to the intuitive is repeated indefinitely. With increasing expertise, the spiral tightens to signify greater control over decision type selection. The model draws on existing theories, particularly Evans' (2011) Intervention Model of dual-process theories, Cognitive Continuum Theory Hammond et al. (1987), Hammond (2007), Baylor's (2001) U-shaped model for the development of intuition by level of expertise. By theorizing how musical decision-making operates over time and with increasing expertise, this model could be used as a framework for future research in music performance studies and performance science more generally.

  19. A spiral model of musical decision-making

    PubMed Central

    Bangert, Daniel; Schubert, Emery; Fabian, Dorottya

    2014-01-01

    This paper describes a model of how musicians make decisions about performing notated music. The model builds on psychological theories of decision-making and was developed from empirical studies of Western art music performance that aimed to identify intuitive and deliberate processes of decision-making, a distinction consistent with dual-process theories of cognition. The model proposes that the proportion of intuitive (Type 1) and deliberate (Type 2) decision-making processes changes with increasing expertise and conceptualizes this change as movement along a continually narrowing upward spiral where the primary axis signifies principal decision-making type and the vertical axis marks level of expertise. The model is intended to have implications for the development of expertise as described in two main phases. The first is movement from a primarily intuitive approach in the early stages of learning toward greater deliberation as analytical techniques are applied during practice. The second phase occurs as deliberate decisions gradually become automatic (procedural), increasing the role of intuitive processes. As a performer examines more issues or reconsiders decisions, the spiral motion toward the deliberate side and back to the intuitive is repeated indefinitely. With increasing expertise, the spiral tightens to signify greater control over decision type selection. The model draws on existing theories, particularly Evans’ (2011) Intervention Model of dual-process theories, Cognitive Continuum Theory Hammond et al. (1987), Hammond (2007), Baylor’s (2001) U-shaped model for the development of intuition by level of expertise. By theorizing how musical decision-making operates over time and with increasing expertise, this model could be used as a framework for future research in music performance studies and performance science more generally. PMID:24795673

  20. Polarization and angle insensitive dual-band bandpass frequency selective surface using all-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Xu, Zhuo; Qu, Shaobo

    2016-04-01

    In this paper, we demonstrate a dual-band bandpass all-dielectric frequency selective surface (FSS), the building elements of which are high-permittivity ceramic particles rather than metallic patterns. With proper structural design and parameter adjustment, the resonant frequency can be tuned at will. Dual-band bandpass response can be realized due to the coupling between electric and magnetic resonances. As an example, a dual-band bandpass FSS is designed in Ku band, which is composed of two-dimensional periodic arrays of complementary quatrefoil structures (CQS) cut from dielectric plates. Moreover, cylindrical dielectric resonators are introduced and placed in the center of each CQS to broaden the bandwidth and to sharpen the cut-off frequency. Theoretical analysis shows that the bandpass response arises from impedance matching caused by electric and magnetic resonances. In addition, effective electromagnetic parameters and dynamic field distributions are presented to explain the mechanism of impedance matching. The proposed FSS has the merits of polarization independence, stable transmission, and sharp roll-off frequency. The method can also be used to design all-dielectric FSSs with continuum structures at other frequencies.

  1. Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow

    NASA Astrophysics Data System (ADS)

    Holman, Timothy D.; Boyd, Iain D.

    2011-02-01

    This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.

  2. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research?

    PubMed Central

    Cook, J L; Rio, E; Purdam, C R; Docking, S I

    2016-01-01

    The pathogenesis of tendinopathy and the primary biological change in the tendon that precipitates pathology have generated several pathoaetiological models in the literature. The continuum model of tendon pathology, proposed in 2009, synthesised clinical and laboratory-based research to guide treatment choices for the clinical presentations of tendinopathy. While the continuum has been cited extensively in the literature, its clinical utility has yet to be fully elucidated. The continuum model proposed a model for staging tendinopathy based on the changes and distribution of disorganisation within the tendon. However, classifying tendinopathy based on structure in what is primarily a pain condition has been challenged. The interplay between structure, pain and function is not yet fully understood, which has partly contributed to the complex clinical picture of tendinopathy. Here we revisit and assess the merit of the continuum model in the context of new evidence. We (1) summarise new evidence in tendinopathy research in the context of the continuum, (2) discuss tendon pain and the relevance of a model based on structure and (3) describe relevant clinical elements (pain, function and structure) to begin to build a better understanding of the condition. Our goal is that the continuum model may help guide targeted treatments and improved patient outcomes. PMID:27127294

  3. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictionsmore » about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.« less

  4. Laser continuum source atomic absorption spectroscopy: Measuring the ground state with nanosecond resolution in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Merten, Jonathan; Johnson, Bruce

    2018-01-01

    A new dual-beam atomic absorption technique is applied to laser-induced plasmas. The technique uses an optical parametric oscillator pseudocontinuum, producing emission that is both wider than the absorption line profile, but narrow enough to allow the use of an echelle spectrograph without order sorting. The dual-beam-in space implementation makes the technique immune to nonspecific attenuation of the probe beam and the structure of the pseudocontinuum. The potential for plasma diagnostics is demonstrated with spatially and temporally resolved measurements of magnesium metastable and lithium ground state optical depths in a laser-induced plasma under reduced pressure conditions. The lithium measurements further demonstrate the technique's potential for isotope ratio measurements.

  5. Field investigation into unsaturated flow and transport in a fault: Model analyses

    USGS Publications Warehouse

    Liu, H.-H.; Salve, R.; Wang, J.-S.; Bodvarsson, G.S.; Hudson, D.

    2004-01-01

    Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model. ?? 2004 Published by Elsevier B.V.

  6. NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)

    1994-01-01

    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.

  7. The significance of turbulent flow representation in single-continuum models

    USGS Publications Warehouse

    Reimann, T.; Rehrl, C.; Shoemaker, W.B.; Geyer, T.; Birk, S.

    2011-01-01

    Karst aquifers exhibit highly conductive features caused from rock dissolution processes. Flow within these structures can become turbulent and therefore can be expressed by nonlinear gradient functions. One way to account for these effects is by coupling a continuum model with a conduit network. Alternatively, turbulent flow can be considered by adapting the hydraulic conductivity within the continuum model. Consequently, the significance of turbulent flow on the dynamic behavior of karst springs is investigated by an enhanced single-continuum model that results in conduit-type flow in continuum cells (CTFC). The single-continuum approach CTFC represents laminar and turbulent flow as well as more complex hybrid models that require additional programming and numerical efforts. A parameter study is conducted to investigate the effects of turbulent flow on the response of karst springs to recharge events using the new CTFC approach, existing hybrid models, and MODFLOW-2005. Results reflect the importance of representing (1) turbulent flow in karst conduits and (2) the exchange between conduits and continuum cells. More specifically, laminar models overestimate maximum spring discharge and underestimate hydraulic gradients within the conduit. It follows that aquifer properties inferred from spring hydrographs are potentially impaired by ignoring flow effects due to turbulence. The exchange factor used for hybrid models is necessary to account for the scale dependency between hydraulic properties of the matrix continuum and conduits. This functionality, which is not included in CTFC, can be mimicked by appropriate use of the Horizontal Flow Barrier package for MODFLOW. Copyright 2011 by the American Geophysical Union.

  8. Application of Mortar Coupling in Multiscale Modelling of Coupled Flow, Transport, and Biofilm Growth in Porous Media

    NASA Astrophysics Data System (ADS)

    Laleian, A.; Valocchi, A. J.; Werth, C. J.

    2017-12-01

    Multiscale models of reactive transport in porous media are capable of capturing complex pore-scale processes while leveraging the efficiency of continuum-scale models. In particular, porosity changes caused by biofilm development yield complex feedbacks between transport and reaction that are difficult to quantify at the continuum scale. Pore-scale models, needed to accurately resolve these dynamics, are often impractical for applications due to their computational cost. To address this challenge, we are developing a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled with a mortar method providing continuity at interfaces. We explore two decompositions of coupled pore-scale and continuum-scale regions to study biofilm growth in a transverse mixing zone. In the first decomposition, all reaction is confined to a pore-scale region extending the transverse mixing zone length. Only solute transport occurs in the surrounding continuum-scale regions. Relative to a fully pore-scale result, we find the multiscale model with this decomposition has a reduced run time and consistent result in terms of biofilm growth and solute utilization. In the second decomposition, reaction occurs in both an up-gradient pore-scale region and a down-gradient continuum-scale region. To quantify clogging, the continuum-scale model implements empirical relations between porosity and continuum-scale parameters, such as permeability and the transverse dispersion coefficient. Solutes are sufficiently mixed at the end of the pore-scale region, such that the initial reaction rate is accurately computed using averaged concentrations in the continuum-scale region. Relative to a fully pore-scale result, we find accuracy of biomass growth in the multiscale model with this decomposition improves as the interface between pore-scale and continuum-scale regions moves downgradient where transverse mixing is more fully developed. Also, this decomposition poses additional challenges with respect to mortar coupling. We explore these challenges and potential solutions. While recent work has demonstrated growing interest in multiscale models, further development is needed for their application to field-scale subsurface contaminant transport and remediation.

  9. Gait assessment in mild cognitive impairment and Alzheimer's disease: the effect of dual-task challenges across the cognitive spectrum.

    PubMed

    Muir, Susan W; Speechley, Mark; Wells, Jennie; Borrie, Michael; Gopaul, Karen; Montero-Odasso, Manuel

    2012-01-01

    Gait impairment is a prominent falls risk factor and a prevalent feature among older adults with cognitive impairment. However, there is a lack of comparative studies on gait performance and fall risk covering the continuum from normal cognition through mild cognitive impairment (MCI) to Alzheimer's disease (AD). We evaluated gait performance and the response to dual-task challenges in older adults with AD, MCI and normal cognition without a history of falls. We hypothesized that, in older people without history of falls, gait performance will deteriorate across the cognitive spectrum with changes being more evident under dual-tasking. Gait was assessed using an electronic walkway under single and three dual-tasks conditions. Gait velocity and stride time variability were not significantly different between the three groups under the single-task condition. By contrast, significant differences of decreasing velocity (p<0.0001), increasing stride time (p=0.0057) and increasing stride time variability (p=0.0037) were found under dual-task testing for people with MCI and AD. Less automatic and more complex dual-task tests, such as naming animals and serial subtraction by sevens from 100, created the greatest deterioration of gait performance. Gait changes under dual-tasking for the MCI and AD groups were statistically different from the cognitively normal controls. Dual-task assessment exposed gait impairments not obvious under a single-task test condition and may facilitate falls risk identification in cognitively impaired persons without a history of falls. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2017-12-01

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely resolved (e.g., molecular dynamics) and coarse-grained (e.g., continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 084115 (2016)], simulated using a particle-based continuum method known as smoothed dissipative particle dynamics. An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.

  11. Applicability of the Continuum-Shell Theories to the Mechanics of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Harik, V. M.; Gates, T. S.; Nemeth, M. P.

    2002-01-01

    Validity of the assumptions relating the applicability of continuum shell theories to the global mechanical behavior of carbon nanotubes is examined. The present study focuses on providing a basis that can be used to qualitatively assess the appropriateness of continuum-shell models for nanotubes. To address the effect of nanotube structure on their deformation, all nanotube geometries are divided into four major classes that require distinct models. Criteria for the applicability of continuum models are presented. The key parameters that control the buckling strains and deformation modes of these classes of nanotubes are determined. In an analogy with continuum mechanics, mechanical laws of geometric similitude are presented. A parametric map is constructed for a variety of nanotube geometries as a guide for the applicability of different models. The continuum assumptions made in representing a nanotube as a homogeneous thin shell are analyzed to identify possible limitations of applying shell theories and using their bifurcation-buckling equations at the nano-scale.

  12. Considerations for the Development of a Substance-Related Care and Prevention Continuum Model

    PubMed Central

    Perlman, David C.; Jordan, Ashly E.

    2017-01-01

    There are significant gaps in the identification and engagement in care and prevention services of people who use illicit substances. Care continuum models have proven to be useful tools in the evaluation of care for HIV and other conditions; numerous issues in substance-related care and prevention resemble those identified in other continua models. Systems of care for substance misuse and substance use disorders (SUDs) can be viewed as consisting of a prevention and care continuum, reflecting incidence and prevalence of substance misuse and SUDs, screening and identification, medical and psychosocial evaluation for treatment, engagement in evidence-based treatment, treatment retention, relapse prevention, timeliness of step completion, and measures of overall and substance use-related specific morbidity and mortality. Care and prevention continuum models could potentially be applied at program, local, regional, state, and national levels. We discuss important lessons that can be drawn from applications of continuum models in other fields. The development and use of a substance-related care and prevention continuum may yield significant patient care, program evaluation and improvement, and population-level benefits. PMID:28770195

  13. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  14. The realization of Majorana fermions in Kitaev Quantum Spin Lattice

    NASA Astrophysics Data System (ADS)

    Do, Seung-Hwan; Park, Sang-Youn; Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi; Kwon, Y. S.; Adroja, D. T.; Voneshen, D.; Park, J.-H.; Choi, Kwang-Yong; Ji, Sungdae

    The Kitaev honeycomb lattice is envisioned as an ideal host for Majorana fermions that are created out of the spin liquid background. Combining specific heat and neutron scattering experiments with theoretical calculations, here, we establish a hitherto unparalleled spin fractionalization to two species of Majorana fermions in the Kitaev material α-RuCl3. The specific heat data unveil a two-stage release of magnetic entropy by (R/2)ln2 and the T-linear dependence at intermediate temperatures. Our inelastic neutron scattering measurements further corroborate two distinct characters of fractionalized excitations: an Y-like, dispersive, magnetic continuum at higher energies and a dispersionless excitation at low energies around the Brillouin zone center. These dual features are well described by a Ferromagnetic Kitaev model, providing a smoking gun proof of the itinerant and localized Majorana fermions emergent in Kitaev magnets.

  15. Hybrid plasma modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Matthew Morgan; DeChant, Lawrence Justin.; Piekos, Edward Stanley

    2009-02-01

    This report summarizes the work completed during FY2007 and FY2008 for the LDRD project ''Hybrid Plasma Modeling''. The goal of this project was to develop hybrid methods to model plasmas across the non-continuum-to-continuum collisionality spectrum. The primary methodology to span these regimes was to couple a kinetic method (e.g., Particle-In-Cell) in the non-continuum regions to a continuum PDE-based method (e.g., finite differences) in continuum regions. The interface between the two would be adjusted dynamically ased on statistical sampling of the kinetic results. Although originally a three-year project, it became clear during the second year (FY2008) that there were not sufficientmore » resources to complete the project and it was terminated mid-year.« less

  16. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    PubMed

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  17. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yong; LaBolle, Eric; Reeves, Donald M

    2012-07-01

    Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the currentmore » dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other continuum to the mass in the current continuum. Numerical examples show that this method is limited to certain ranges of parameters, due to an intrinsic assumption of an equilibrium concentration profile in the matrix blocks in building the transfer probability. Subsequently, this method fails in describing mass transfer for parameter combinations that violate this assumption, including small diffusion coefficients (i.e., the free-water molecular diffusion coefficient 1×10-11 meter2/second), relatively large fracture spacings (such as meter), and/or relatively large matrix retardation coefficients (i.e., ). These “outliers” in parameter range are common in UGTA applications. To address the above limitations, we then developed a Direct Numerical Simulation (DNS)-Reflective method. The novel DNS-Reflective method can directly track the particle dynamics across the fracture/matrix interface using a random walk, without any empirical assumptions. This advantage should make the DNS-Reflective method feasible for a wide range of parameters. Numerical tests of the DNS-Reflective, however, show that the method is computationally very demanding, since the time step must be very small to resolve particle transfer between fractures and matrix blocks. To improve the computational efficiency of the DNS approach, we then adopted Roubinet et al.’s method [2009], which uses first passage time distributions to simulate dual-domain mass transfer. The DNS-Roubinet method was found to be computationally more efficient than the DNS-Reflective method. It matches the analytical solution for the whole range of major parameters (including diffusion coefficient and fracture aperture values that are considered “outliers” for Liu et al.’s transfer probability method [2000]) for a single fracture system. The DNS-Roubinet method, however, has its own disadvantage: for a parallel fracture system, the truncation of the first passage time distribution creates apparent errors when the fracture spacing is small, and thus it tends to erroneously predict breakthrough curves (BTCs) for the parallel fracture system. Finally, we adopted the transient range approach proposed by Pan and Bodvarsson [2002] in RWHet. In this method, particle transfer between fractures and matrix blocks can be resolved without using very small time steps. It does not use any truncation of the first passage time distribution for particles. Hence it does not have the limitation identified above for the DNS-Reflective method and the DNS-Roubinet method. Numerical results were checked against analytical solutions, and also compared to DCPTV2.0 [Pan, 2002]. This version of RWHet (called RWHet-Pan&Bodvarsson in this report) can accurately capture contaminant transport in fractured porous media for a full range of parameters without any practical or theoretical limitations.« less

  18. Applications of Artificial Neural Networks in Structural Engineering with Emphasis on Continuum Models

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Liu, Youhua

    1998-01-01

    The use of continuum models for the analysis of discrete built-up complex aerospace structures is an attractive idea especially at the conceptual and preliminary design stages. But the diversity of available continuum models and hard-to-use qualities of these models have prevented them from finding wide applications. In this regard, Artificial Neural Networks (ANN or NN) may have a great potential as these networks are universal approximators that can realize any continuous mapping, and can provide general mechanisms for building models from data whose input-output relationship can be highly nonlinear. The ultimate aim of the present work is to be able to build high fidelity continuum models for complex aerospace structures using the ANN. As a first step, the concepts and features of ANN are familiarized through the MATLAB NN Toolbox by simulating some representative mapping examples, including some problems in structural engineering. Then some further aspects and lessons learned about the NN training are discussed, including the performances of Feed-Forward and Radial Basis Function NN when dealing with noise-polluted data and the technique of cross-validation. Finally, as an example of using NN in continuum models, a lattice structure with repeating cells is represented by a continuum beam whose properties are provided by neural networks.

  19. Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model.

    PubMed

    Setoodeh, A R; Farahmand, H

    2018-01-24

    In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress-stretch and density of strain-stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.

  20. A methodology for quadrilateral finite element mesh coarsening

    DOE PAGES

    Staten, Matthew L.; Benzley, Steven; Scott, Michael

    2008-03-27

    High fidelity finite element modeling of continuum mechanics problems often requires using all quadrilateral or all hexahedral meshes. The efficiency of such models is often dependent upon the ability to adapt a mesh to the physics of the phenomena. Adapting a mesh requires the ability to both refine and/or coarsen the mesh. The algorithms available to refine and coarsen triangular and tetrahedral meshes are very robust and efficient. However, the ability to locally and conformally refine or coarsen all quadrilateral and all hexahedral meshes presents many difficulties. Some research has been done on localized conformal refinement of quadrilateral and hexahedralmore » meshes. However, little work has been done on localized conformal coarsening of quadrilateral and hexahedral meshes. A general method which provides both localized conformal coarsening and refinement for quadrilateral meshes is presented in this paper. This method is based on restructuring the mesh with simplex manipulations to the dual of the mesh. Finally, this method appears to be extensible to hexahedral meshes in three dimensions.« less

  1. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    DOE PAGES

    Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott

    2017-12-21

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less

  2. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less

  3. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands

    NASA Astrophysics Data System (ADS)

    Serov, E. A.; Odintsova, T. A.; Tretyakov, M. Yu.; Semenov, V. E.

    2017-05-01

    Analysis of the continuum absorption in water vapor at room temperature within the purely rotational and fundamental ro-vibrational bands shows that a significant part (up to a half) of the observed absorption cannot be explained within the framework of the existing concepts of the continuum. Neither of the two most prominent mechanisms of continuum originating, namely, the far wings of monomer lines and the dimers, cannot reproduce the currently available experimental data adequately. We propose a new approach to developing a physically based model of the continuum. It is demonstrated that water dimers and wings of monomer lines may contribute equally to the continuum within the bands, and their contribution should be taken into account in the continuum model. We propose a physical mechanism giving missing justification for the super-Lorentzian behavior of the intermediate line wing. The qualitative validation of the proposed approach is given on the basis of a simple empirical model. The obtained results are directly indicative of the necessity to reconsider the existing line wing theory and can guide this consideration.

  4. A continuum theory for multicomponent chromatography modeling.

    PubMed

    Pfister, David; Morbidelli, Massimo; Nicoud, Roger-Marc

    2016-05-13

    A continuum theory is proposed for modeling multicomponent chromatographic systems under linear conditions. The model is based on the description of complex mixtures, possibly involving tens or hundreds of solutes, by a continuum. The present approach is shown to be very efficient when dealing with a large number of similar components presenting close elution behaviors and whose individual analytical characterization is impossible. Moreover, approximating complex mixtures by continuous distributions of solutes reduces the required number of model parameters to the few ones specific to the characterization of the selected continuous distributions. Therefore, in the frame of the continuum theory, the simulation of large multicomponent systems gets simplified and the computational effectiveness of the chromatographic model is thus dramatically improved. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION

    PubMed Central

    Finch, Craig; Clarke, Thomas; Hickman, James J.

    2012-01-01

    Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices. PMID:23729843

  6. Continuum limit and symmetries of the periodic gℓ(1|1) spin chain

    NASA Astrophysics Data System (ADS)

    Gainutdinov, A. M.; Read, N.; Saleur, H.

    2013-06-01

    This paper is the first in a series devoted to the study of logarithmic conformal field theories (LCFT) in the bulk. Building on earlier work in the boundary case, our general strategy consists in analyzing the algebraic properties of lattice regularizations (quantum spin chains) of these theories. In the boundary case, a crucial step was the identification of the space of states as a bimodule over the Temperley-Lieb (TL) algebra and the quantum group Uqsℓ(2). The extension of this analysis in the bulk case involves considerable difficulties, since the Uqsℓ(2) symmetry is partly lost, while the TL algebra is replaced by a much richer version (the Jones-Temperley-Lieb — JTL — algebra). Even the simplest case of the gℓ(1|1) spin chain — corresponding to the c=-2 symplectic fermions theory in the continuum limit — presents very rich aspects, which we will discuss in several papers. In this first work, we focus on the symmetries of the spin chain, that is, the centralizer of the JTL algebra in the alternating tensor product of the gℓ(1|1) fundamental representation and its dual. We prove that this centralizer is only a subalgebra of Uqsℓ(2) at q=i that we dub Uqoddsℓ(2). We then begin the analysis of the continuum limit of the JTL algebra: using general arguments about the regularization of the stress-energy tensor, we identify families of JTL elements going over to the Virasoro generators Ln,L in the continuum limit. We then discuss the sℓ(2) symmetry of the (continuum limit) symplectic fermions theory from the lattice and JTL point of view. The analysis of the spin chain as a bimodule over Uqoddsℓ(2) and JTLN is discussed in the second paper of this series.

  7. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities

    PubMed Central

    Bardhan, Jaydeep P.

    2014-01-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics. PMID:25505358

  8. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities.

    PubMed

    Bardhan, Jaydeep P

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  9. Gradient models in molecular biophysics: progress, challenges, opportunities

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g., molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding nonlocal dielectric response. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain, and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost 40 years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The review concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  10. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapol, Peter; Bourg, Ian; Criscenti, Louise Jacqueline

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers,more » classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.« less

  11. Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

    DOE PAGES

    Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; ...

    2015-11-16

    Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

  12. Nanoindentation of virus capsids in a molecular model

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Robbins, Mark O.

    2010-01-01

    A molecular-level model is used to study the mechanical response of empty cowpea chlorotic mottle virus (CCMV) and cowpea mosaic virus (CPMV) capsids. The model is based on the native structure of the proteins that constitute the capsids and is described in terms of the Cα atoms. Nanoindentation by a large tip is modeled as compression between parallel plates. Plots of the compressive force versus plate separation for CCMV are qualitatively consistent with continuum models and experiments, showing an elastic region followed by an irreversible drop in force. The mechanical response of CPMV has not been studied, but the molecular model predicts an order of magnitude higher stiffness and a much shorter elastic region than for CCMV. These large changes result from small structural changes that increase the number of bonds by only 30% and would be difficult to capture in continuum models. Direct comparison of local deformations in continuum and molecular models of CCMV shows that the molecular model undergoes a gradual symmetry breaking rotation and accommodates more strain near the walls than the continuum model. The irreversible drop in force at small separations is associated with rupturing nearly all of the bonds between capsid proteins in the molecular model, while a buckling transition is observed in continuum models.

  13. Continuum model of tensile fracture of metal melts and its application to a problem of high-current electron irradiation of metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Alexander E., E-mail: mayer@csu.ru, E-mail: mayer.al.evg@gmail.com; Mayer, Polina N.

    2015-07-21

    A continuum model of the metal melt fracture is formulated on the basis of the continuum mechanics and theory of metastable liquid. A character of temperature and strain rate dependences of the tensile strength that is predicted by the continuum model is verified, and parameters of the model are fitted with the use of the results of the molecular dynamics simulations for ultra-high strain rates (≥1–10/ns). A comparison with experimental data from literature is also presented for Al and Ni melts. Using the continuum model, the dynamic tensile strength of initially uniform melts of Al, Cu, Ni, Fe, Ti, andmore » Pb within a wide range of strain rates (from 1–10/ms to 100/ns) and temperatures (from melting temperature up to 70–80% of critical temperature) is calculated. The model is applied to numerical investigation of a problem of the high-current electron irradiation of Al, Cu, and Fe targets.« less

  14. Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Wang, Jun

    2012-10-01

    The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.

  15. The Use of Dual Task Paradigms in Memory Research: A Methodological Assessment and an Evaluation of Effort as a Measure of Levels of Processing.

    DTIC Science & Technology

    1982-03-01

    sustained monitoring tasks. Human Factors, 1979, 21, 647-653. Craik , F. I. M., & Lockhart , R. Levels of processing : A framework for memory research...original levels approach to human memory ( Craik & Lockhart , 1972) contended that verbal stimuli could be classified along a continuum ranging from...AND AN EVALUATION OF EFFORT AS A MEASURr OF LEVELS OF PROCESSING Arthur D. Fisk, William L. Derrick, and Walter Schneider REPORT HARL-ONR-8105 E. C

  16. Water Flow in Karst Aquifer Considering Dynamically Variable Saturation Conduit

    NASA Astrophysics Data System (ADS)

    Tan, Chaoqun; Hu, Bill X.

    2017-04-01

    The karst system is generally conceptualized as dual-porosity system, which is characterized by low conductivity and high storage continuum matrix and high conductivity and quick flow conduit networks. And so far, a common numerical model for simulating flow in karst aquifer is MODFLOW2005-CFP, which is released by USGS in 2008. However, the steady-state approach for conduit flow in CFP is physically impractical when simulating very dynamic hydraulics with variable saturation conduit. So, we adopt the method proposed by Reimann et al. (2011) to improve current model, in which Saint-Venant equations are used to model the flow in conduit. Considering the actual background that the conduit is very big and varies along flow path and the Dirichlet boundary varies with rainfall in our study area in Southwest China, we further investigate the influence of conduit diameter and outflow boundary on numerical model. And we also analyze the hydraulic process in multi-precipitation events. We find that the numerical model here corresponds well with CFP for saturated conduit, and it could depict the interaction between matrix and conduit during very dynamic hydraulics pretty well compare with CFP.

  17. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Kazuue, E-mail: kfujita@crl.hpk.co.jp; Hitaka, Masahiro; Ito, Akio

    2015-06-22

    We report the performance of room temperature terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers with a dual-upper-state (DAU) active region. DAU active region design is theoretically expected to produce larger optical nonlinearity for terahertz difference-frequency generation, compared to the active region designs of the bound-to-continuum type used previously. Fabricated buried heterostructure devices with a two-section buried distributed feedback grating and the waveguide designed for Cherenkov difference-frequency phase-matching scheme operate in two single-mode mid-infrared wavelengths at 10.7 μm and 9.7 μm and produce terahertz output at 2.9 THz with mid-infrared to terahertz conversion efficiency of 0.8 mW/W{sup 2}more » at room temperature.« less

  18. Application of Discrete Fracture Modeling and Upscaling Techniques to Complex Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Lapene, A.; Pauget, L.

    2012-12-01

    During the last decade, an important effort has been made to improve data acquisition (seismic and borehole imaging) and workflow for reservoir characterization which has greatly benefited the description of fractured reservoirs. However, the geological models resulting from the interpretations need to be validated or calibrated against dynamic data. Flow modeling in fractured reservoirs remains a challenge due to the difficulty of representing mass transfers at different heterogeneity scales. The majority of the existing approaches are based on dual continuum representation where the fracture network and the matrix are represented separately and their interactions are modeled using transfer functions. These models are usually based on idealized representation of the fracture distribution which makes the integration of real data difficult. In recent years, due to increases in computer power, discrete fracture modeling techniques (DFM) are becoming popular. In these techniques the fractures are represented explicitly allowing the direct use of data. In this work we consider the DFM technique developed by Karimi-Fard et al. [1] which is based on an unstructured finite-volume discretization. The mass flux between two adjacent control-volumes is evaluated using an optimized two-point flux approximation. The result of the discretization is a list of control-volumes with the associated pore-volumes and positions, and a list of connections with the associated transmissibilities. Fracture intersections are simplified using a connectivity transformation which contributes considerably to the efficiency of the methodology. In addition, the method is designed for general purpose simulators and any connectivity based simulator can be used for flow simulations. The DFM technique is either used standalone or as part of an upscaling technique. The upscaling techniques are required for large reservoirs where the explicit representation of all fractures and faults is not possible. Karimi-Fard et al. [2] have developed an upscaling technique based on DFM representation. The original version of this technique was developed to construct a dual-porosity model from a discrete fracture description. This technique has been extended and generalized so it can be applied to a wide range of problems from reservoirs with a few or no fracture to highly fractured reservoirs. In this work, we present the application of these techniques to two three-dimensional fractured reservoirs constructed using real data. The first model contains more than 600 medium and large scale fractures. The fractures are not always connected which requires a general modeling technique. The reservoir has 50 wells (injectors and producers) and water flooding simulations are performed. The second test case is a larger reservoir with sparsely distributed faults. Single-phase simulations are performed with 5 producing wells. [1] Karimi-Fard M., Durlofsky L.J., and Aziz K. 2004. An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE Journal, 9(2): 227-236. [2] Karimi-Fard M., Gong B., and Durlofsky L.J. 2006. Generation of coarse-scale continuum flow models from detailed fracture characterizations. Water Resources Research, 42(10): W10423.

  19. Translational research: understanding the continuum from bench to bedside.

    PubMed

    Drolet, Brian C; Lorenzi, Nancy M

    2011-01-01

    The process of translating basic scientific discoveries to clinical applications, and ultimately to public health improvements, has emerged as an important, but difficult, objective in biomedical research. The process is best described as a "translation continuum" because various resources and actions are involved in this progression of knowledge, which advances discoveries from the bench to the bedside. The current model of this continuum focuses primarily on translational research, which is merely one component of the overall translation process. This approach is ineffective. A revised model to address the entire continuum would provide a methodology to identify and describe all translational activities (eg, implementation, adoption translational research, etc) as well their place within the continuum. This manuscript reviews and synthesizes the literature to provide an overview of the current terminology and model for translation. A modification of the existing model is proposed to create a framework called the Biomedical Research Translation Continuum, which defines the translation process and describes the progression of knowledge from laboratory to health gains. This framework clarifies translation for readers who have not followed the evolving and complicated models currently described. Authors and researchers may use the continuum to understand and describe their research better as well as the translational activities within a conceptual framework. Additionally, the framework may increase the advancement of knowledge by refining discussions of translation and allowing more precise identification of barriers to progress. Copyright © 2011 Mosby, Inc. All rights reserved.

  20. A Comparison of Coarse-Grained and Continuum Models for Membrane Bending in Lipid Bilayer Fusion Pores

    PubMed Central

    Yoo, Jejoong; Jackson, Meyer B.; Cui, Qiang

    2013-01-01

    To establish the validity of continuum mechanics models quantitatively for the analysis of membrane remodeling processes, we compare the shape and energies of the membrane fusion pore predicted by coarse-grained (MARTINI) and continuum mechanics models. The results at these distinct levels of resolution give surprisingly consistent descriptions for the shape of the fusion pore, and the deviation between the continuum and coarse-grained models becomes notable only when the radius of curvature approaches the thickness of a monolayer. Although slow relaxation beyond microseconds is observed in different perturbative simulations, the key structural features (e.g., dimension and shape of the fusion pore near the pore center) are consistent among independent simulations. These observations provide solid support for the use of coarse-grained and continuum models in the analysis of membrane remodeling. The combined coarse-grained and continuum analysis confirms the recent prediction of continuum models that the fusion pore is a metastable structure and that its optimal shape is neither toroidal nor catenoidal. Moreover, our results help reveal a new, to our knowledge, bowing feature in which the bilayers close to the pore axis separate more from one another than those at greater distances from the pore axis; bowing helps reduce the curvature and therefore stabilizes the fusion pore structure. The spread of the bilayer deformations over distances of hundreds of nanometers and the substantial reduction in energy of fusion pore formation provided by this spread indicate that membrane fusion can be enhanced by allowing a larger area of membrane to participate and be deformed. PMID:23442963

  1. Fast and slow thinking in distressing delusions: A review of the literature and implications for targeted therapy.

    PubMed

    Ward, Thomas; Garety, Philippa A

    2017-09-16

    The recent literature on reasoning biases in psychosis and delusions is reviewed. The state-of-the-art knowledge from systematic reviews and meta-analyses on the evidence for jumping to conclusions is briefly summarised, before a fuller discussion of the more recent empirical literature on belief flexibility as applied to delusions. The methodology and evidence in relation to studies of belief flexibility and the Bias Against Disconfirmatory Evidence (BADE) across the delusional continuum will be critically appraised, and implications drawn for improving cognitive therapy. It will be proposed that dual process models of reasoning, which Kahneman (Kahneman, 2011) popularised as 'fast and slow thinking', provide a useful theoretical framework for integrating further research and informing clinical practice. The emergence of therapies which specifically target fast and slow thinking in people with distressing delusions will be described. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. A Commodity Computing Cluster

    NASA Astrophysics Data System (ADS)

    Teuben, P. J.; Wolfire, M. G.; Pound, M. W.; Mundy, L. G.

    We have assembled a cluster of Intel-Pentium based PCs running Linux to compute a large set of Photodissociation Region (PDR) and Dust Continuum models. For various reasons the cluster is heterogeneous, currently ranging from a single Pentium-II 333 MHz to dual Pentium-III 450 MHz CPU machines. Although this will be sufficient for our ``embarrassingly parallelizable problem'' it may present some challenges for as yet unplanned future use. In addition the cluster was used to construct a MIRIAD benchmark, and compared to equivalent Ultra-Sparc based workstations. Currently the cluster consists of 8 machines, 14 CPUs, 50GB of disk-space, and a total peak speed of 5.83 GHz, or about 1.5 Gflops. The total cost of this cluster has been about $12,000, including all cabling, networking equipment, rack, and a CD-R backup system. The URL for this project is http://dustem.astro.umd.edu.

  3. Stochastic Ground Water Flow Simulation with a Fracture Zone Continuum Model

    USGS Publications Warehouse

    Langevin, C.D.

    2003-01-01

    A method is presented for incorporating the hydraulic effects of vertical fracture zones into two-dimensional cell-based continuum models of ground water flow and particle tracking. High hydraulic conductivity features are used in the model to represent fracture zones. For fracture zones that are not coincident with model rows or columns, an adjustment is required for the hydraulic conductivity value entered into the model cells to compensate for the longer flowpath through the model grid. A similar adjustment is also required for simulated travel times through model cells. A travel time error of less than 8% can occur for particles moving through fractures with certain orientations. The fracture zone continuum model uses stochastically generated fracture zone networks and Monte Carlo analysis to quantify uncertainties with simulated advective travel times. An approach is also presented for converting an equivalent continuum model into a fracture zone continuum model by establishing the contribution of matrix block transmissivity to the bulk transmissivity of the aquifer. The methods are used for a case study in west-central Florida to quantify advective travel times from a potential wetland rehydration site to a municipal supply wellfield. Uncertainties in advective travel times are assumed to result from the presence of vertical fracture zones, commonly observed on aerial photographs as photolineaments.

  4. Ranges of Applicability for the Continuum-beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams?

    NASA Technical Reports Server (NTRS)

    Harik, Vasyl Michael; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Ranges of validity for the continuum-beam model, the length-scale effects and continuum assumptions are analyzed in the framework of scaling analysis of NT structure. Two coupled criteria for the applicability of the continuum model are presented. Scaling analysis of NT buckling and geometric parameters (e.g., diameter and length) is carried out to determine the key non-dimensional parameters that control the buckling strains and modes of NT buckling. A model applicability map, which represents two classes of NTs, is constructed in the space of non-dimensional parameters. In an analogy with continuum mechanics, a mechanical law of geometric similitude is presented for two classes of beam-like NTs having different geometries. Expressions for the critical buckling loads and strains are tailored for the distinct groups of NTs and compared with the data provided by the molecular dynamics simulations. Implications for molecular dynamics simulations and the NT-based scanning probes are discussed.

  5. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-05-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  6. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-04-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  7. Micropolar continuum modelling of bi-dimensional tetrachiral lattices

    PubMed Central

    Chen, Y.; Liu, X. N.; Hu, G. K.; Sun, Q. P.; Zheng, Q. S.

    2014-01-01

    The in-plane behaviour of tetrachiral lattices should be characterized by bi-dimensional orthotropic material owing to the existence of two orthogonal axes of rotational symmetry. Moreover, the constitutive model must also represent the chirality inherent in the lattices. To this end, a bi-dimensional orthotropic chiral micropolar model is developed based on the theory of irreducible orthogonal tensor decomposition. The obtained constitutive tensors display a hierarchy structure depending on the symmetry of the underlying microstructure. Eight additional material constants, in addition to five for the hemitropic case, are introduced to characterize the anisotropy under Z2 invariance. The developed continuum model is then applied to a tetrachiral lattice, and the material constants of the continuum model are analytically derived by a homogenization process. By comparing with numerical simulations for the discrete lattice, it is found that the proposed continuum model can correctly characterize the static and wave properties of the tetrachiral lattice. PMID:24808754

  8. A continuum model for pressure-flow relationship in human pulmonary circulation.

    PubMed

    Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T

    2011-06-01

    A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.

  9. Dynamical discrete/continuum linear response shells theory of solvation: convergence test for NH4+ and OH- ions in water solution using DFT and DFTB methods.

    PubMed

    de Lima, Guilherme Ferreira; Duarte, Hélio Anderson; Pliego, Josefredo R

    2010-12-09

    A new dynamical discrete/continuum solvation model was tested for NH(4)(+) and OH(-) ions in water solvent. The method is similar to continuum solvation models in a sense that the linear response approximation is used. However, different from pure continuum models, explicit solvent molecules are included in the inner shell, which allows adequate treatment of specific solute-solvent interactions present in the first solvation shell, the main drawback of continuum models. Molecular dynamics calculations coupled with SCC-DFTB method are used to generate the configurations of the solute in a box with 64 water molecules, while the interaction energies are calculated at the DFT level. We have tested the convergence of the method using a variable number of explicit water molecules and it was found that even a small number of waters (as low as 14) are able to produce converged values. Our results also point out that the Born model, often used for long-range correction, is not reliable and our method should be applied for more accurate calculations.

  10. Mathematics for understanding disease.

    PubMed

    Bies, R R; Gastonguay, M R; Schwartz, S L

    2008-06-01

    The application of mathematical models to reflect the organization and activity of biological systems can be viewed as a continuum of purpose. The far left of the continuum is solely the prediction of biological parameter values, wherein an understanding of the underlying biological processes is irrelevant to the purpose. At the far right of the continuum are mathematical models, the purposes of which are a precise understanding of those biological processes. No models in present use fall at either end of the continuum. Without question, however, the emphasis in regards to purpose has been on prediction, e.g., clinical trial simulation and empirical disease progression modeling. Clearly the model that ultimately incorporates a universal understanding of biological organization will also precisely predict biological events, giving the continuum the logical form of a tautology. Currently that goal lies at an immeasurable distance. Nonetheless, the motive here is to urge movement in the direction of that goal. The distance traveled toward understanding naturally depends upon the nature of the scientific question posed with respect to comprehending and/or predicting a particular disease process. A move toward mathematical models implies a move away from static empirical modeling and toward models that focus on systems biology, wherein modeling entails the systematic study of the complex pattern of organization inherent in biological systems.

  11. Moving Contact Lines: Linking Molecular Dynamics and Continuum-Scale Modeling.

    PubMed

    Smith, Edward R; Theodorakis, Panagiotis E; Craster, Richard V; Matar, Omar K

    2018-05-17

    Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide a link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which governs the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modeling and highlight the opportunities for future developments in this area.

  12. Solar radio continuum storms and a breathing magnetic field model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.

  13. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation.

    PubMed

    Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D

    2011-11-01

    There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.

  14. Models of collective cell spreading with variable cell aspect ratio: a motivation for degenerate diffusion models.

    PubMed

    Simpson, Matthew J; Baker, Ruth E; McCue, Scott W

    2011-02-01

    Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multiscale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (PME). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the PME to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.

  15. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  16. Reply to "Comment on 'Hydrodynamics of fractal continuum flow' and 'Map of fluid flow in fractal porous medium into fractal continuum flow'".

    PubMed

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2013-11-01

    The aim of this Reply is to elucidate the difference between the fractal continuum models used in the preceding Comment and the models of fractal continuum flow which were put forward in our previous articles [Phys. Rev. E 85, 025302(R) (2012); 85, 056314 (2012)]. In this way, some drawbacks of the former models are highlighted. Specifically, inconsistencies in the definitions of the fractal derivative, the Jacobian of transformation, the displacement vector, and angular momentum are revealed. The proper forms of the Reynolds' transport theorem and angular momentum principle for the fractal continuum are reaffirmed in a more illustrative manner. Consequently, we emphasize that in the absence of any internal angular momentum, body couples, and couple stresses, the Cauchy stress tensor in the fractal continuum should be symmetric. Furthermore, we stress that the approach based on the Cartesian product measured and used in the preceding Comment cannot be employed to study the path-connected fractals, such as a flow in a fractally permeable medium. Thus, all statements of our previous works remain unchallenged.

  17. Time-Resolved Properties and Global Trends in dMe Flares from Simultaneous Photometry and Spectra

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.

    We present a homogeneous survey of near-ultraviolet (NUV) /optical line and continuum emission during twenty M dwarf flares with simultaneous, high cadence photometry and spectra. These data were obtained to study the white-light continuum components to the blue and red of the Balmer jump to break the degeneracy with fitting emission mechanisms to broadband colors and to provide constraints for radiative-hydrodynamic flare models that seek to reproduce the white-light flare emission. The main results from the continuum analysis are the following: 1) the detection of Balmer continuum (in emission) that is present during all flares, with a wide range of relative contribution to the continuum flux in the NUV; 2) a blue continuum at the peak of the photometry that is linear with wavelength from λ = 4000 - 4800Å, matched by the spectral shape of hot, blackbody emission with typical temperatures of 10 000 - 12 000 K; 3) a redder continuum apparent at wavelengths longer than Hβ; this continuum becomes relatively more important to the energy budget during the late gradual phase. The hot blackbody component and redder continuum component (which we call "the conundruum") have been detected in previous UBVR colorimetry studies of flares. With spectra, one can compare the properties and detailed timings of all three components. Using time-resolved spectra during the rise phase of three flares, we calculate the speed of an expanding flare region assuming a simple geometry; the speeds are found to be ~5- 10 km s-1 and 50 - 120 km s -1, which are strikingly consistent with the speeds at which two-ribbon flares develop on the Sun. The main results from the emission line analysis are 1) the presentation of the "time-decrement", a relation between the timescales of the Balmer series; 2) a Neupert-like relation between Ca \\pcy K and the blackbody continuum, and 3) the detection of absorption wings in the Hydrogen Balmer lines during times of peak continuum emission, indicative of hot-star spectra forming during the flare. A byproduct of this study is a new method for deriving absolute fluxes during M dwarf flare observations obtained from narrow-slit spectra or during variable weather conditions. This technique allows us to analyze the spectra and photometry independently of one another, in order to connect the spectral properties to the rise, peak, and decay phases of broadband light curve morphology. We classify the light curve morphology according to an "impulsiveness index" and find that the fast (impulsive) flares have less Balmer continuum at peak emission than the slow (gradual) flares. In the gradual phase, the energy budget of the flare spectrum during almost all flares has a larger contribution from the Hydrogen Balmer component than in the impulsive phase, suggesting that the heating and cooling processes evolve over the course of a flare. We find that, in general, the evolution of the hot blackbody is rapid, and that the blackbody temperature decreases to ~8000 K in the gradual phase. The Balmer continuum evolves more slowly than the blackbody ¨C similar to the higher order Balmer lines but faster than the lower order Balmer lines. The height of the Balmer jump increases during the gradual decay phase. We model the Balmer continuum emission using the RHD F11 model spectrum from Allred et al. (2006), but we discuss several important systematic uncertainties in relating the apparent amount of Balmer continuum to a given RHD beam model. Good fits to the shape of the RHD F11 model spectrum are not obtained at peak times, in contrast to the gradual phase. We model the blackbody component using model hot star atmospheres from Castelli & Kurucz (2004) in order to account for the effects of flux redistribution in the flare atmosphere. This modeling is motivated by observations during a secondary flare in the decay phase of a megaflare, when the newly formed flare spectrum resembled that of Vega with the Balmer continuum and lines in absorption. We model this continuum phenomenologically with the RH code using hot spots placed at high column mass in the M dwarf quiescent atmosphere; a superposition of hot spot models and the RHD model are used to explain the anti-correlation in the apparent amount of Balmer continuum in emission and the U-band light curve. We attempt to reproduce the blackbody component in self-consistent 1D radiative hydrodynamic flare models using the RADYN code. We simulate the flare using a solar-type nonthermal electron beam heating function with a total energy flux of 1012 ergs cm-2 s-1 (F12) for a duration of 5 seconds and a subsequent gradual phase. Although there is a larger amount of NUV backwarming at log mc/(1g cm-2)~0 than in the F11 model, the resulting flare continuum shape is similar to the F11 model spectrum with a larger Balmer jump and a much redder spectral shape than is seen in the observations. We do not find evidence of white-light emitting chromospheric condensations, in contrast to the previous F12 model of Livshits et al. (1981). We discuss future avenues for RHD modeling in order to produce a hot blackbody component, including the treatment of nonthermal protons in M dwarf flares.

  18. THE BINARY BLACK HOLE MODEL FOR MRK 231 BITES THE DUST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighly, Karen M.; Terndrup, Donald M.; Gallagher, Sarah C.

    2016-09-20

    Mrk 231 is a nearby quasar with an unusually red near-UV-to-optical continuum, generally explained as heavy reddening by dust. Yan et al. proposed that Mrk 231 is a milliparsec black hole binary with little intrinsic reddening. We show that if the observed FUV continuum is intrinsic, as assumed by Yan et al., it fails by a factor of about 100 in powering the observed strength of the near-infrared emission lines and the thermal near and mid-infrared continuum. In contrast, the line and continuum strengths are typical for a reddened AGN spectral energy distribution (SED). We find that the He i*/Pmore » β ratio is sensitive to the SED for a one-zone model. If this sensitivity is maintained in general broadline region models, then this ratio may prove a useful diagnostic for heavily reddened quasars. Analysis of archival Hubble Space Telescope STIS and Faint Object Camera data revealed evidence that the far-UV continuum emission is resolved on size scales of ∼40 pc. The lack of broad absorption lines in the far-UV continuum might be explained if it were not coincident with the central engine. One possibility is that it is the central engine continuum reflected from the receding wind on the far side of the quasar.« less

  19. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  20. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE PAGES

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.; ...

    2018-05-23

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  1. Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Min; Wang, Jun

    A random stock price model based on the multi-continuum percolation system is developed to investigate the nonlinear dynamics of stock price volatility duration, in an attempt to explain various statistical facts found in financial data, and have a deeper understanding of mechanisms in the financial market. The continuum percolation system is usually referred to be a random coverage process or a Boolean model, it is a member of a class of statistical physics systems. In this paper, the multi-continuum percolation (with different values of radius) is employed to model and reproduce the dispersal of information among the investors. To testify the rationality of the proposed model, the nonlinear analyses of return volatility duration series are preformed by multifractal detrending moving average analysis and Zipf analysis. The comparison empirical results indicate the similar nonlinear behaviors for the proposed model and the actual Chinese stock market.

  2. Bipotential continuum models for granular mechanics

    NASA Astrophysics Data System (ADS)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  3. Improvements in continuum modeling for biomolecular systems

    NASA Astrophysics Data System (ADS)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  4. A note on the discrete approach for generalized continuum models

    NASA Astrophysics Data System (ADS)

    Kalampakas, Antonios; Aifantis, Elias C.

    2014-12-01

    Generalized continuum theories for materials and processes have been introduced in order to account in a phenomenological manner for microstructural effects. Their drawback mainly rests in the determination of the extra phenomenological coefficients through experiments and simulations. It is shown here that a graphical representation of the local topology describing deformation models can be used to deduce restrictions on the phenomenological coefficients of the gradient elasticity continuum theories.

  5. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    PubMed Central

    Yan, Zhi; Jiang, Liying

    2017-01-01

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861

  6. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    PubMed

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  7. Peridynamics with LAMMPS : a user guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehoucq, Richard B.; Silling, Stewart Andrew; Seleson, Pablo

    Peridynamics is a nonlocal extension of classical continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamics model. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized within LAMMPS. An example problem is also included.

  8. Outdoor Program Models: Placing Cooperative Adventure and Adventure Education Models on the Continuum.

    ERIC Educational Resources Information Center

    Guthrie, Steven P.

    In two articles on outdoor programming models, Watters distinguished four models on a continuum ranging from the common adventure model, with minimal organizational structure and leadership control, to the guide service model, in which leaders are autocratic and trips are highly structured. Club programs and instructional programs were in between,…

  9. Simulation and theory of spontaneous TAE frequency sweeping

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Berk, H. L.

    2012-09-01

    A simulation model, based on the linear tip model of Rosenbluth, Berk and Van Dam (RBV), is developed to study frequency sweeping of toroidal Alfvén eigenmodes (TAEs). The time response of the background wave in the RBV model is given by a Volterra integral equation. This model captures the properties of TAE waves both in the gap and in the continuum. The simulation shows that phase space structures form spontaneously at frequencies close to the linearly predicted frequency, due to resonant particle-wave interactions and background dissipation. The frequency sweeping signals are found to chirp towards the upper and lower continua. However, the chirping signals penetrate only the lower continuum, whereupon the frequency chirps and mode amplitude increases in synchronism to produce an explosive solution. An adiabatic theory describing the evolution of a chirping signal is developed which replicates the chirping dynamics of the simulation in the lower continuum. This theory predicts that a decaying chirping signal will terminate at the upper continuum though in the numerical simulation the hole disintegrates before the upper continuum is reached.

  10. Spin waves, vortices, fermions, and duality in the Ising and Baxter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogilvie, M.C.

    1981-10-15

    Field-theoretic methods are applied to a number of two-dimensional lattice models with Abelian symmetry groups. It is shown, using a vortex+spin-wave decomposition, that the Z/sub p/-Villain models are related to a class of continuum field theories with analogous duality properties. Fermion operators for these field theories are discussed. In the case of the Ising model, the vortices and spin-waves conspire to produce a free, massive Majorana field theory in the continuum limit. The continuum limit of the Baxter model is also studied, and the recent results of Kadanoff and Brown are rederived and extended.

  11. Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.

    PubMed

    Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi

    2018-05-10

    Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.

  12. On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale

    NASA Astrophysics Data System (ADS)

    Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S. M.; Nieken, U.

    2016-04-01

    The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting dynamics of interfaces and contact lines on the continuum scale, appropriate formulations must be developed. While the Continuum Surface Force (CSF) model is well-engineered for the description of interfaces, there is still a lack of treatment of contact lines, which are defined by the intersection of an ending fluid interface and a solid boundary surface. In our approach we use a balance equation for the contact line and extend the Navier-Stokes equations in analogy to the extension of a two-phase interface in the CSF model. Since this model depicts a physically motivated approach on the continuum scale, no fitting parameters are introduced and the deterministic description leads to a dynamical evolution of the system. As verification of our theory, we show a Smoothed Particle Hydrodynamics (SPH) model and simulate the evolution of droplet shapes and their corresponding contact angles.

  13. Hydration and conformational equilibria of simple hydrophobic and amphiphilic solutes.

    PubMed Central

    Ashbaugh, H S; Kaler, E W; Paulaitis, M E

    1998-01-01

    We consider whether the continuum model of hydration optimized to reproduce vacuum-to-water transfer free energies simultaneously describes the hydration free energy contributions to conformational equilibria of the same solutes in water. To this end, transfer and conformational free energies of idealized hydrophobic and amphiphilic solutes in water are calculated from explicit water simulations and compared to continuum model predictions. As benchmark hydrophobic solutes, we examine the hydration of linear alkanes from methane through hexane. Amphiphilic solutes were created by adding a charge of +/-1e to a terminal methyl group of butane. We find that phenomenological continuum parameters fit to transfer free energies are significantly different from those fit to conformational free energies of our model solutes. This difference is attributed to continuum model parameters that depend on solute conformation in water, and leads to effective values for the free energy/surface area coefficient and Born radii that best describe conformational equilibrium. In light of these results, we believe that continuum models of hydration optimized to fit transfer free energies do not accurately capture the balance between hydrophobic and electrostatic contributions that determines the solute conformational state in aqueous solution. PMID:9675177

  14. Application of ERT, Saline Tracer and Numerical Studies to Delineate Preferential Paths in Fractured Granites.

    PubMed

    Sreeparvathy, Vijay; Kambhammettu, B V N P; Peddinti, Srinivasa Rao; Sarada, P S L

    2018-03-22

    Accurate quantification of in situ heterogeneity and flow processes through fractured geologic media remains elusive for hydrogeologists due to the complexity in fracture characterization and its multiscale behavior. In this research, we demonstrated the efficacy of tracer-electrical resistivity tomography (ERT) experiments combined with numerical simulations to characterize heterogeneity and delineate preferential flow paths in a fractured granite aquifer. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well (IW) located inside the Indian Institute of Technology Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. ERT data quality was improved by considering stacking, reciprocal measurements, resolution indicators, and geophysical logs. Dynamic changes in subsurface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. Temporal changes in electrical resistivity and tracer concentration were monitored along the vertical in an observation well located at 48 m to the east of the IW. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements. Fracture geometry and hydraulic properties derived from ERT and pumping tests were further used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by a decrease in RMSE from 199 to 65 mg/L). A sensitivity analysis on model simulations conclude that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations. © 2018, National Ground Water Association.

  15. Effect of nonlinearity in hybrid kinetic Monte Carlo-continuum models.

    PubMed

    Balter, Ariel; Lin, Guang; Tartakovsky, Alexandre M

    2012-01-01

    Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a kinetic Monte Carlo (KMC) model for a surface to a finite-difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition-dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition-dissolution model including competitive adsorption, which leads to a nonlinear rate, and show that in this case the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.

  16. Effect of Nonlinearity in Hybrid Kinetic Monte Carlo-Continuum Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balter, Ariel I.; Lin, Guang; Tartakovsky, Alexandre M.

    2012-04-23

    Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a KMC model for a surface to a finite difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and also show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition/dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition/dissolution model including competitive adsorption, which leadsmore » to a nonlinear rate, and show that, in this case, the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.« less

  17. Passing waves from atomistic to continuum

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping

    2018-02-01

    Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

  18. Explicitly Representing the Solvation Shell in Continuum Solvent Calculations

    PubMed Central

    Svendsen, Hallvard F.; Merz, Kenneth M.

    2009-01-01

    A method is presented to explicitly represent the first solvation shell in continuum solvation calculations. Initial solvation shell geometries were generated with classical molecular dynamics simulations. Clusters consisting of solute and 5 solvent molecules were fully relaxed in quantum mechanical calculations. The free energy of solvation of the solute was calculated from the free energy of formation of the cluster and the solvation free energy of the cluster calculated with continuum solvation models. The method has been implemented with two continuum solvation models, a Poisson-Boltzmann model and the IEF-PCM model. Calculations were carried out for a set of 60 ionic species. Implemented with the Poisson-Boltzmann model the method gave an unsigned average error of 2.1 kcal/mol and a RMSD of 2.6 kcal/mol for anions, for cations the unsigned average error was 2.8 kcal/mol and the RMSD 3.9 kcal/mol. Similar results were obtained with the IEF-PCM model. PMID:19425558

  19. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kiabek

    2015-06-01

    We consider the ignition of a high-pressure gamma-phase of an explosive crystal of RDX which forms during overdriven shock initiation. Molecular dynamics (MD), with first-principles based or reactive force field based molecular potentials, provides a description of the chemistry as an extremely complex reaction network. The results of the molecular simulation is analyzed by sorting molecular product fragments into high and low molecular groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation, that has a single temperature and stress state for the mixture is used to represent the same RDX material and its chemistry. Each component in the continuum model has a corresponding Gibbs continuum potential, that are in turn inferred from molecular MD informed equation of state libraries such as CHEETAH, or are directly simulated by Monte Carlo MD simulations. Information about transport, kinetic rates and diffusion are derived from the MD simulation and the growth of a reactive hot spot in the RDX is studied with both simulations that mirror the other results to provide an essential, continuum/atomistic link. Supported by N000014-12-1-0555, subaward-36561937 (ONR).

  20. Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing.

    PubMed

    Case, Jennifer C; White, Edward L; SunSpiral, Vytas; Kramer-Bottiglio, Rebecca

    2018-02-01

    Continuum manipulators offer many advantages compared to their rigid-linked counterparts, such as increased degrees of freedom and workspace volume. Inspired by biological systems, such as elephant trunks and octopus tentacles, many continuum manipulators are made of multiple segments that allow large-scale deformations to be distributed throughout the body. Most continuum manipulators currently control each segment individually. For example, a planar cable-driven system is typically controlled by a pair of cables for each segment, which implies two actuators per segment. In this article, we demonstrate how highly coupled crossing cable configurations can reduce both actuator count and actuator torque requirements in a planar continuum manipulator, while maintaining workspace reachability and manipulability. We achieve highly coupled actuation by allowing cables to cross through the manipulator to create new cable configurations. We further derive an analytical model to predict the underactuated manipulator workspace and experimentally verify the model accuracy with a physical system. We use this model to compare crossing cable configurations to the traditional cable configuration using workspace performance metrics. Our work here focuses on a simplified planar robot, both in simulation and in hardware, with the goal of extending this to spiraling-cable configurations on full 3D continuum robots in future work.

  1. Discrete and continuum modelling of soil cutting

    NASA Astrophysics Data System (ADS)

    Coetzee, C. J.

    2014-12-01

    Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.

  2. Mirrored continuum and molecular scale simulations of the ignition of high-pressure phases of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kibaek; Stewart, D. Scott, E-mail: santc@illinois.edu, E-mail: dss@illinois.edu; Joshi, Kaushik

    2016-05-14

    We present a mirrored atomistic and continuum framework that is used to describe the ignition of energetic materials, and a high-pressure phase of RDX in particular. The continuum formulation uses meaningful averages of thermodynamic properties obtained from the atomistic simulation and a simplification of enormously complex reaction kinetics. In particular, components are identified based on molecular weight bin averages and our methodology assumes that both the averaged atomistic and continuum simulations are represented on the same time and length scales. The atomistic simulations of thermally initiated ignition of RDX are performed using reactive molecular dynamics (RMD). The continuum model ismore » based on multi-component thermodynamics and uses a kinetics scheme that describes observed chemical changes of the averaged atomistic simulations. Thus the mirrored continuum simulations mimic the rapid change in pressure, temperature, and average molecular weight of species in the reactive mixture. This mirroring enables a new technique to simplify the chemistry obtained from reactive MD simulations while retaining the observed features and spatial and temporal scales from both the RMD and continuum model. The primary benefit of this approach is a potentially powerful, but familiar way to interpret the atomistic simulations and understand the chemical events and reaction rates. The approach is quite general and thus can provide a way to model chemistry based on atomistic simulations and extend the reach of those simulations.« less

  3. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots.

    PubMed

    Hannan, Michael W; Walker, Ian D

    2003-02-01

    Traditionally, robot manipulators have been a simple arrangement of a small number of serially connected links and actuated joints. Though these manipulators prove to be very effective for many tasks, they are not without their limitations, due mainly to their lack of maneuverability or total degrees of freedom. Continuum style (i.e., continuous "back-bone") robots, on the other hand, exhibit a wide range of maneuverability, and can have a large number of degrees of freedom. The motion of continuum style robots is generated through the bending of the robot over a given section; unlike traditional robots where the motion occurs in discrete locations, i.e., joints. The motion of continuum manipulators is often compared to that of biological manipulators such as trunks and tentacles. These continuum style robots can achieve motions that could only be obtainable by a conventionally designed robot with many more degrees of freedom. In this paper we present a detailed formulation and explanation of a novel kinematic model for continuum style robots. The design, construction, and implementation of our continuum style robot called the elephant trunk manipulator is presented. Experimental results are then provided to verify the legitimacy of our model when applied to our physical manipulator. We also provide a set of obstacle avoidance experiments that help to exhibit the practical implementation of both our manipulator and our kinematic model. c2003 Wiley Periodicals, Inc.

  4. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots

    NASA Technical Reports Server (NTRS)

    Hannan, Michael W.; Walker, Ian D.

    2003-01-01

    Traditionally, robot manipulators have been a simple arrangement of a small number of serially connected links and actuated joints. Though these manipulators prove to be very effective for many tasks, they are not without their limitations, due mainly to their lack of maneuverability or total degrees of freedom. Continuum style (i.e., continuous "back-bone") robots, on the other hand, exhibit a wide range of maneuverability, and can have a large number of degrees of freedom. The motion of continuum style robots is generated through the bending of the robot over a given section; unlike traditional robots where the motion occurs in discrete locations, i.e., joints. The motion of continuum manipulators is often compared to that of biological manipulators such as trunks and tentacles. These continuum style robots can achieve motions that could only be obtainable by a conventionally designed robot with many more degrees of freedom. In this paper we present a detailed formulation and explanation of a novel kinematic model for continuum style robots. The design, construction, and implementation of our continuum style robot called the elephant trunk manipulator is presented. Experimental results are then provided to verify the legitimacy of our model when applied to our physical manipulator. We also provide a set of obstacle avoidance experiments that help to exhibit the practical implementation of both our manipulator and our kinematic model. c2003 Wiley Periodicals, Inc.

  5. Pathophysiological Progression Model for Selected Toxicological Endpoints

    EPA Science Inventory

    The existing continuum paradigms are effective models to organize toxicological data associated with endpoints used in human health assessments. A compendium of endpoints characterized along a pathophysiological continuum would serve to: weigh the relative importance of effects o...

  6. Continuum Modeling and Control of Large Nonuniform Wireless Networks via Nonlinear Partial Differential Equations

    DOE PAGES

    Zhang, Yang; Chong, Edwin K. P.; Hannig, Jan; ...

    2013-01-01

    We inmore » troduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N , the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.« less

  7. On the influence of pseudoelastic material behaviour in planar shape-memory tubular continuum structures

    NASA Astrophysics Data System (ADS)

    Greiner-Petter, Christoph; Sattel, Thomas

    2017-12-01

    For planar tubular continuum structures based on precurved shape memory alloy tubes a beam model with respect to the pseudoelastic material behaviour of NiTi is derived. Thereunto a constitutive material law respecting tension-compression asymmetry as well as hysteresis is used. The beam model is then employed to calculate equilibrium curvatures of concentric tube assemblies without clearance between the tubes. In a second step, the influence of clearance is approximated to account for non-concentric tube assemblies. These elastokinematic results are integrated into a purely kinematic model to describe the cannula path under the presence of material hysteresis and clearance. Finally a photogrammetric measurement system is used to track the path of an exemplary two-tube continuum structure to examine the accuracy of the proposed model. It is shown that material hysteresis leads to a hysteresis phenomena in the path of the tubular continuum structure.

  8. Modes of interconnected lattice trusses using continuum models, part 1

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    This represents a continuing systematic attempt to explore the use of continuum models--in contrast to the Finite Element Models currently universally in use--to develop feedback control laws for stability enhancement of structures, particularly large structures, for deployment in space. We shall show that for the control objective, continuum models do offer unique advantages. It must be admitted of course that developing continuum models for arbitrary structures is no easy task. In this paper we take advantage of the special nature of current Large Space Structures--typified by the NASA-LaRC Evolutionary Model which will be our main concern--which consists of interconnected orthogonal lattice trusses each with identical bays. Using an equivalent one-dimensional Timoshenko beam model, we develop an almost complete continuum model for the evolutionary structure. We do this in stages, beginning only with the main bus as flexible and then going on to make all the appendages also flexible-except for the antenna structure. Based on these models we proceed to develop formulas for mode frequencies and shapes. These are shown to be the roots of the determinant of a matrix of small dimension compared with mode calculations using Finite Element Models, even though the matrix involves transcendental functions. The formulas allow us to study asymptotic properties of the modes and how they evolve as we increase the number of bodies which are treated as flexible. The asymptotics, in fact, become simpler.

  9. Continuum Thinking and the Contexts of Personal Information Management

    ERIC Educational Resources Information Center

    Huvila, Isto; Eriksen, Jon; Häusner, Eva-Maria; Jansson, Ina-Maria

    2014-01-01

    Introduction: Recent personal information management literature has underlined the significance of the contextuality of personal information and its use. The present article discusses the applicability of the records continuum model and its generalisation, continuum thinking, as a theoretical framework for explicating the overlap and evolution of…

  10. Understanding the medical marriage: physicians and their partners share strategies for success.

    PubMed

    Perlman, Rachel L; Ross, Paula T; Lypson, Monica L

    2015-01-01

    Physicians and their spouses experience challenges to their relationships, some of which are shared with the general population and others of which are unique to the field of medicine. Trainees and junior faculty members remain curious about how they will balance their careers alongside marriage and family obligations. This study explores the challenges and strengths of dual- and single-physician relationships. In 2009, using appreciative inquiry as a theoretical framework, the authors conducted in-depth qualitative interviews with 25 individuals: 12 women and 13 men; 10 from dual-physician and 15 from single-physician relationships. A phenomenological analytic approach was used to arrive at the final themes. Four themes emerged during the interviews: "We rely on mutual support in our relationships," "We recognize the important roles of each family member," "We have shared values," and "We acknowledge the benefit of being a physician to our relationships." These findings illustrate that physicians identify strategies to navigate the difficult aspects of their lives. Learn ing from others' best practices can assist in managing personal relationships and work-life balance. These data can also be useful when counseling physicians on successful relationship strategies. As systems are developed that improve wellness and focus on role models for work-life balance, it will be important for this topic to be integrated into formal curricula across the continuum of medical education.

  11. Intermittency measurement in two-dimensional bacterial turbulence

    NASA Astrophysics Data System (ADS)

    Qiu, Xiang; Ding, Long; Huang, Yongxiang; Chen, Ming; Lu, Zhiming; Liu, Yulu; Zhou, Quan

    2016-06-01

    In this paper, an experimental velocity database of a bacterial collective motion, e.g., Bacillus subtilis, in turbulent phase with volume filling fraction 84 % provided by Professor Goldstein at Cambridge University (UK), was analyzed to emphasize the scaling behavior of this active turbulence system. This was accomplished by performing a Hilbert-based methodology analysis to retrieve the scaling property without the β -limitation. A dual-power-law behavior separated by the viscosity scale ℓν was observed for the q th -order Hilbert moment Lq(k ) . This dual-power-law belongs to an inverse-cascade since the scaling range is above the injection scale R , e.g., the bacterial body length. The measured scaling exponents ζ (q ) of both the small-scale (k >kν ) and large-scale (k

  12. A new computational approach to simulate pattern formation in Paenibacillus dendritiformis bacterial colonies

    NASA Astrophysics Data System (ADS)

    Tucker, Laura Jane

    Under the harsh conditions of limited nutrient and hard growth surface, Paenibacillus dendritiformis in agar plates form two classes of patterns (morphotypes). The first class, called the dendritic morphotype, has radially directed branches. The second class, called the chiral morphotype, exhibits uniform handedness. The dendritic morphotype has been modeled successfully using a continuum model on a regular lattice; however, a suitable computational approach was not known to solve a continuum chiral model. This work details a new computational approach to solving the chiral continuum model of pattern formation in P. dendritiformis. The approach utilizes a random computational lattice and new methods for calculating certain derivative terms found in the model.

  13. Landau-Zener transitions and Dykhne formula in a simple continuum model

    NASA Astrophysics Data System (ADS)

    Dunham, Yujin; Garmon, Savannah

    The Landau-Zener model describing the interaction between two linearly driven discrete levels is useful in describing many simple dynamical systems; however, no system is completely isolated from the surrounding environment. Here we examine a generalizations of the original Landau-Zener model to study simple environmental influences. We consider a model in which one of the discrete levels is replaced with a energy continuum, in which we find that the survival probability for the initially occupied diabatic level is unaffected by the presence of the continuum. This result can be predicted by assuming that each step in the evolution for the diabatic state evolves independently according to the Landau-Zener formula, even in the continuum limit. We also show that, at least for the simplest model, this result can also be predicted with the natural generalization of the Dykhne formula for open systems. We also observe dissipation as the non-escape probability from the discrete levels is no longer equal to one.

  14. Continuum mesoscopic framework for multiple interacting species and processes on multiple site types and/or crystallographic planes.

    PubMed

    Chatterjee, Abhijit; Vlachos, Dionisios G

    2007-07-21

    While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.

  15. Modeling thermal and irradiation-induced swelling effects on the integrity of Ti 3 SiC 2 /SiC joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    Previously, results for CVD-SiC joints created using solid state displacement reactions to form a dual-phase SiC/MAX phase irradiated at 800°C and 5 dpa indicated some extent of cracking in the joint and along the CVD-SiC/joint interface. This paper elucidates the origin of cracking by thermomechanical modeling combined with irradiation-induced swelling effects using a continuum damage approach with support of micromechanical modeling. Three irradiation temperatures (400°C, 500°C and 800°C) are considered assuming experimental irradiation doses in a range leading to saturation swelling in SiC. The analyses indicate that a SiC/MAX joint heated to 400°C fails during irradiation-induced swelling at this temperaturemore » while it experiences some damage after being heated to 500°C and irradiated at the same temperature. However, it fails during cooling from 500°C to room temperature. The joint experiences minor damage when heated to and irradiated at 800°C but does not fail after cooling. The prediction agrees with the experimental findings available for this case.« less

  16. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery.

    PubMed

    Qi, Fei; Ju, Feng; Bai, Dong Ming; Chen, Bai

    2018-02-01

    For the outstanding compliance and dexterity of continuum robot, it is increasingly used in minimally invasive surgery. The wide workspace, high dexterity and strong payload capacity are essential to the continuum robot. In this article, we investigate the workspace of a cable-driven continuum robot that we proposed. The influence of section number on the workspace is discussed when robot is operated in narrow environment. Meanwhile, the structural parameters of this continuum robot are optimized to achieve better kinematic performance. Moreover, an indicator based on the dexterous solid angle for evaluating the dexterity of robot is introduced and the distal end dexterity is compared for the three-section continuum robot with different range of variables. Results imply that the wider range of variables achieve the better dexterity. Finally, the static model of robot based on the principle of virtual work is derived to analyze the relationship between the bending shape deformation and the driven force. The simulations and experiments for plane and spatial motions are conducted to validate the feasibility of model, respectively. Results of this article can contribute to the real-time control and movement and can be a design reference for cable-driven continuum robot.

  17. Mathematical and Computational Aspects of Multiscale Materials Modeling, Mathematics-Numerical analysis, Section II.A.a.3.4, Conference and symposia organization II.A.2.a

    DTIC Science & Technology

    2015-02-04

    dislocation dynamics models ( DDD ), continuum representations). Coupling of these models is difficult. Coupling of atomistics and DDD models has been...explored to some extent, but the coupling between DDD and continuum models of the evolution of large populations of dislocations is essentially unexplored

  18. Continuum theory of edge states of topological insulators: variational principle and boundary conditions.

    PubMed

    Medhi, Amal; Shenoy, Vijay B

    2012-09-05

    We develop a continuum theory to model low energy excitations of a generic four-band time reversal invariant electronic system with boundaries. We propose a variational energy functional for the wavefunctions which allows us to derive natural boundary conditions valid for such systems. Our formulation is particularly suited for developing a continuum theory of the protected edge/surface excitations of topological insulators both in two and three dimensions. By a detailed comparison of our analytical formulation with tight binding calculations of ribbons of topological insulators modelled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian, we show that the continuum theory with a natural boundary condition provides an appropriate description of the low energy physics.

  19. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.

    PubMed

    Ptashnik, Igor V; McPheat, Robert A; Shine, Keith P; Smith, Kevin M; Williams, R Gary

    2012-06-13

    For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called 'windows') was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H(2)O--H(2)O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H(2)O--N(2) bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000-2000 cm(-1)). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m(-2) (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer-Tobin-Clough-Kneizys-Davies) foreign-continuum model.

  20. Quantifying sampling noise and parametric uncertainty in atomistic-to-continuum simulations using surrogate models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salloum, Maher N.; Sargsyan, Khachik; Jones, Reese E.

    2015-08-11

    We present a methodology to assess the predictive fidelity of multiscale simulations by incorporating uncertainty in the information exchanged between the components of an atomistic-to-continuum simulation. We account for both the uncertainty due to finite sampling in molecular dynamics (MD) simulations and the uncertainty in the physical parameters of the model. Using Bayesian inference, we represent the expensive atomistic component by a surrogate model that relates the long-term output of the atomistic simulation to its uncertain inputs. We then present algorithms to solve for the variables exchanged across the atomistic-continuum interface in terms of polynomial chaos expansions (PCEs). We alsomore » consider a simple Couette flow where velocities are exchanged between the atomistic and continuum components, while accounting for uncertainty in the atomistic model parameters and the continuum boundary conditions. Results show convergence of the coupling algorithm at a reasonable number of iterations. As a result, the uncertainty in the obtained variables significantly depends on the amount of data sampled from the MD simulations and on the width of the time averaging window used in the MD simulations.« less

  1. A comparison of FE beam and continuum elements for typical nitinol stent geometries

    NASA Astrophysics Data System (ADS)

    Ballew, Wesley; Seelecke, Stefan

    2009-03-01

    With interest in improved efficiency and a more complete description of the SMA material, this paper compares finite element (FE) simulations of typical stent geometries using two different constitutive models and two different element types. Typically, continuum elements are used for the simulation of stents, for example the commercial FE software ANSYS offers a continuum element based on Auricchio's SMA model. Almost every stent geometry, however, is made up of long and slender components and can be modeled more efficiently, in the computational sense, with beam elements. Using the ANSYS user programmable material feature, we implement the free energy based SMA model developed by Mueller and Seelecke into the ANSYS beam element 188. Convergence behavior for both, beam and continuum formulations, is studied in terms of element and layer number, respectively. This is systematically illustrated first for the case of a straight cantilever beam under end loading, and subsequently for a section of a z-bend wire, a typical stent sub-geometry. It is shown that the computation times for the beam element are reduced to only one third of those of the continuum element, while both formulations display a comparable force/displacement response.

  2. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.

    PubMed

    Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico

    2017-12-08

    In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Electrophysiological Signature of Remember-Know Is Confounded with Memory Strength and Cannot Be Interpreted as Evidence for Dual-process Theory of Recognition.

    PubMed

    Brezis, Noam; Bronfman, Zohar Z; Yovel, Galit; Goshen-Gottstein, Yonatan

    2017-02-01

    The quantity and nature of the processes underlying recognition memory remains an open question. A majority of behavioral, neuropsychological, and brain studies have suggested that recognition memory is supported by two dissociable processes: recollection and familiarity. It has been conversely argued, however, that recollection and familiarity map onto a single continuum of mnemonic strength and hence that recognition memory is mediated by a single process. Previous electrophysiological studies found marked dissociations between recollection and familiarity, which have been widely held as corroborating the dual-process account. However, it remains unknown whether a strength interpretation can likewise apply for these findings. Here we describe an ERP study, using a modified remember-know (RK) procedure, which allowed us to control for mnemonic strength. We find that ERPs of high and low mnemonic strength mimicked the electrophysiological distinction between R and K responses, in a lateral positive component (LPC), 500-1000 msec poststimulus onset. Critically, when contrasting strength with RK experience, by comparing weak R to strong K responses, the electrophysiological signal mapped onto strength, not onto subjective RK experience. Invoking the LPC as support for dual-process accounts may, therefore, be amiss.

  4. Development of a multiaxial viscoelastoplastic continuum damage model for asphalt mixtures.

    DOT National Transportation Integrated Search

    2009-09-01

    This report highlights findings from the FHWA DTFH61-05-H-00019 project, which focused on the development of the multiaxial viscoelastoplastic continuum damage model for asphalt concrete in both compression and tension. Asphalt concrete pavement, one...

  5. Sensitivity of the Properties of Ruthenium “Blue Dimer” to Method, Basis Set, and Continuum Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkanlar, Abdullah; Clark, Aurora E.

    2012-05-23

    The ruthenium “blue dimer” [(bpy)2RuIIIOH2]2O4+ is best known as the first well-defined molecular catalyst for water oxidation. It has been subject to numerous computational studies primarily employing density functional theory. However, those studies have been limited in the functionals, basis sets, and continuum models employed. The controversy in the calculated electronic structure and the reaction energetics of this catalyst highlights the necessity of benchmark calculations that explore the role of density functionals, basis sets, and continuum models upon the essential features of blue-dimer reactivity. In this paper, we report Kohn-Sham complete basis set (KS-CBS) limit extrapolations of the electronic structuremore » of “blue dimer” using GGA (BPW91 and BP86), hybrid-GGA (B3LYP), and meta-GGA (M06-L) density functionals. The dependence of solvation free energy corrections on the different cavity types (UFF, UA0, UAHF, UAKS, Bondi, and Pauling) within polarizable and conductor-like polarizable continuum model has also been investigated. The most common basis sets of double-zeta quality are shown to yield results close to the KS-CBS limit; however, large variations are observed in the reaction energetics as a function of density functional and continuum cavity model employed.« less

  6. Modal kinematics for multisection continuum arms.

    PubMed

    Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G

    2015-05-13

    This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.

  7. Addressing the theoretical and clinical advantages of combination therapy with inhibitors of the renin-angiotensin-aldosterone system: antihypertensive effects and benefits beyond BP control.

    PubMed

    Ferrario, Carlos M

    2010-02-27

    This article reviews the importance of the renin-angiotensin-aldosterone system (RAAS) in the cardiometabolic continuum; presents the pros and cons of dual RAAS blockade with angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs); and examines the theoretical and practical benefits supporting the use of direct renin inhibitors (DRIs) in combination with ACEIs or ARBs. The author reviewed the literature for key publications related to the biochemical physiology of the RAAS and the pharmacodynamic effects of ACEIs, ARBs, and DRIs, with a particular focus on dual RAAS blockade with these drug classes. Although ACEI/ARB combination therapy produces modest improvement in BP, it has not resulted in the major improvements predicted given the importance of the RAAS across the cardiorenal disease continuum. This may reflect the fact that RAAS blockade with ACEIs and/or ARBs leads to exacerbated renin release through loss of negative-feedback inhibition, as well as ACE/aldosterone escape through RAAS and non-RAAS-mediated mechanisms. Plasma renin activity (PRA) is an independent predictor of morbidity and mortality, even for patients receiving ACEIs and ARBs. When used alone or in combination with ACEIs and ARBs, the DRI aliskiren effectively reduces PRA. Reductions in BP are greater with these combinations, relative to the individual components alone. It is possible that aliskiren plus either an ACEI or ARB may provide greater RAAS blockade than monotherapy with ACEIs or ARBs, and lead to additive improvement in BP and clinically important outcomes. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments.

    PubMed

    Baskaran, Arvind; Ratsch, Christian; Smereka, Peter

    2015-12-01

    Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic model to achieve even qualitatively correct behavior.

  9. The NOD3 software package: A graphical user interface-supported reduction package for single-dish radio continuum and polarisation observations

    NASA Astrophysics Data System (ADS)

    Müller, Peter; Krause, Marita; Beck, Rainer; Schmidt, Philip

    2017-10-01

    Context. The venerable NOD2 data reduction software package for single-dish radio continuum observations, which was developed for use at the 100-m Effelsberg radio telescope, has been successfully applied over many decades. Modern computing facilities, however, call for a new design. Aims: We aim to develop an interactive software tool with a graphical user interface for the reduction of single-dish radio continuum maps. We make a special effort to reduce the distortions along the scanning direction (scanning effects) by combining maps scanned in orthogonal directions or dual- or multiple-horn observations that need to be processed in a restoration procedure. The package should also process polarisation data and offer the possibility to include special tasks written by the individual user. Methods: Based on the ideas of the NOD2 package we developed NOD3, which includes all necessary tasks from the raw maps to the final maps in total intensity and linear polarisation. Furthermore, plot routines and several methods for map analysis are available. The NOD3 package is written in Python, which allows the extension of the package via additional tasks. The required data format for the input maps is FITS. Results: The NOD3 package is a sophisticated tool to process and analyse maps from single-dish observations that are affected by scanning effects from clouds, receiver instabilities, or radio-frequency interference. The "basket-weaving" tool combines orthogonally scanned maps into a final map that is almost free of scanning effects. The new restoration tool for dual-beam observations reduces the noise by a factor of about two compared to the NOD2 version. Combining single-dish with interferometer data in the map plane ensures the full recovery of the total flux density. Conclusions: This software package is available under the open source license GPL for free use at other single-dish radio telescopes of the astronomical community. The NOD3 package is designed to be extendable to multi-channel data represented by data cubes in Stokes I, Q, and U.

  10. Comparing a discrete and continuum model of the intestinal crypt

    PubMed Central

    Murray, Philip J.; Walter, Alex; Fletcher, Alex G.; Edwards, Carina M.; Tindall, Marcus J.; Maini, Philip K.

    2011-01-01

    The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalisations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts. PMID:21411869

  11. Mind the Gap: A Semicontinuum Model for Discrete Electrical Propagation in Cardiac Tissue.

    PubMed

    Costa, Caroline Mendonca; Silva, Pedro Andre Arroyo; dos Santos, Rodrigo Weber

    2016-04-01

    Electrical propagation in cardiac tissue is a discrete or discontinuous phenomenon that reflects the complexity of the anatomical structures and their organization in the heart, such as myocytes, gap junctions, microvessels, and extracellular matrix, just to name a few. Discrete models or microscopic and discontinuous models are, so far, the best options to accurately study how structural properties of cardiac tissue influence electrical propagation. These models are, however, inappropriate in the context of large scale simulations, which have been traditionally performed by the use of continuum and macroscopic models, such as the monodomain and the bidomain models. However, continuum models may fail to reproduce many important physiological and physiopathological aspects of cardiac electrophysiology, for instance, those related to slow conduction. In this study, we develop a new mathematical model that combines characteristics of both continuum and discrete models. The new model was evaluated in scenarios of low gap-junctional coupling, where slow conduction is observed, and was able to reproduce conduction block, increase of the maximum upstroke velocity and of the repolarization dispersion. None of these features can be captured by continuum models. In addition, the model overcomes a great disadvantage of discrete models, as it allows variation of the spatial resolution within a certain range.

  12. Monolayers of hard rods on planar substrates. II. Growth

    NASA Astrophysics Data System (ADS)

    Klopotek, M.; Hansen-Goos, H.; Dixit, M.; Schilling, T.; Schreiber, F.; Oettel, M.

    2017-02-01

    Growth of hard-rod monolayers via deposition is studied in a lattice model using rods with discrete orientations and in a continuum model with hard spherocylinders. The lattice model is treated with kinetic Monte Carlo simulations and dynamic density functional theory while the continuum model is studied by dynamic Monte Carlo simulations equivalent to diffusive dynamics. The evolution of nematic order (excess of upright particles, "standing-up" transition) is an entropic effect and is mainly governed by the equilibrium solution, rendering a continuous transition [Paper I, M. Oettel et al., J. Chem. Phys. 145, 074902 (2016)]. Strong non-equilibrium effects (e.g., a noticeable dependence on the ratio of rates for translational and rotational moves) are found for attractive substrate potentials favoring lying rods. Results from the lattice and the continuum models agree qualitatively if the relevant characteristic times for diffusion, relaxation of nematic order, and deposition are matched properly. Applicability of these monolayer results to multilayer growth is discussed for a continuum-model realization in three dimensions where spherocylinders are deposited continuously onto a substrate via diffusion.

  13. Calculating pKa values for substituted phenols and hydration energies for other compounds with the first-order Fuzzy-Border continuum solvation model

    PubMed Central

    Sharma, Ity; Kaminski, George A.

    2012-01-01

    We have computed pKa values for eleven substituted phenol compounds using the continuum Fuzzy-Border (FB) solvation model. Hydration energies for 40 other compounds, including alkanes, alkenes, alkynes, ketones, amines, alcohols, ethers, aromatics, amides, heterocycles, thiols, sulfides and acids have been calculated. The overall average unsigned error in the calculated acidity constant values was equal to 0.41 pH units and the average error in the solvation energies was 0.076 kcal/mol. We have also reproduced pKa values of propanoic and butanoic acids within ca. 0.1 pH units from the experimental values by fitting the solvation parameters for carboxylate ion carbon and oxygen atoms. The FB model combines two distinguishing features. First, it limits the amount of noise which is common in numerical treatment of continuum solvation models by using fixed-position grid points. Second, it employs either second- or first-order approximation for the solvent polarization, depending on a particular implementation. These approximations are similar to those used for solute and explicit solvent fast polarization treatment which we developed previously. This article describes results of employing the first-order technique. This approximation places the presented methodology between the Generalized Born and Poisson-Boltzmann continuum solvation models with respect to their accuracy of reproducing the many-body effects in modeling a continuum solvent. PMID:22815192

  14. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G.; Qiao, Rui

    2014-07-01

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.

  15. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions.

    PubMed

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-07-16

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.

  16. Creating a Simple Single Computational Approach to Modeling Rarefied and Continuum Flow About Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goldstein, David B.; Varghese, Philip L.

    1997-01-01

    We proposed to create a single computational code incorporating methods that can model both rarefied and continuum flow to enable the efficient simulation of flow about space craft and high altitude hypersonic aerospace vehicles. The code was to use a single grid structure that permits a smooth transition between the continuum and rarefied portions of the flow. Developing an appropriate computational boundary between the two regions represented a major challenge. The primary approach chosen involves coupling a four-speed Lattice Boltzmann model for the continuum flow with the DSMC method in the rarefied regime. We also explored the possibility of using a standard finite difference Navier Stokes solver for the continuum flow. With the resulting code we will ultimately investigate three-dimensional plume impingement effects, a subject of critical importance to NASA and related to the work of Drs. Forrest Lumpkin, Steve Fitzgerald and Jay Le Beau at Johnson Space Center. Below is a brief background on the project and a summary of the results as of the end of the grant.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate andmore » transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.« less

  18. On the continuum mechanics approach for the analysis of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chaudhry, M. S.; Czekanski, A.

    2016-04-01

    Today carbon nanotubes have found various applications in structural, thermal and almost every field of engineering. Carbon nanotubes provide great strength, stiffness resilience properties. Evaluating the structural behavior of nanoscale materials is an important task. In order to understand the materialistic behavior of nanotubes, atomistic models provide a basis for continuum mechanics modelling. Although the properties of bulk materials are consistent with the size and depends mainly on the material but the properties when we are in Nano-range, continuously change with the size. Such models start from the modelling of interatomic interaction. Modelling and simulation has advantage of cost saving when compared with the experiments. So in this project our aim is to use a continuum mechanics model of carbon nanotubes from atomistic perspective and analyses some structural behaviors of nanotubes. It is generally recognized that mechanical properties of nanotubes are dependent upon their structural details. The properties of nanotubes vary with the varying with the interatomic distance, angular orientation, radius of the tube and many such parameters. Based on such models one can analyses the variation of young's modulus, strength, deformation behavior, vibration behavior and thermal behavior. In this study some of the structural behaviors of the nanotubes are analyzed with the help of continuum mechanics models. Using the properties derived from the molecular mechanics model a Finite Element Analysis of carbon nanotubes is performed and results are verified. This study provides the insight on continuum mechanics modelling of nanotubes and hence the scope to study the effect of various parameters on some structural behavior of nanotubes.

  19. Airborne and satellite remote sensing of the mid-infrared water vapour continuum.

    PubMed

    Newman, Stuart M; Green, Paul D; Ptashnik, Igor V; Gardiner, Tom D; Coleman, Marc D; McPheat, Robert A; Smith, Kevin M

    2012-06-13

    Remote sensing of the atmosphere from space plays an increasingly important role in weather forecasting. Exploiting observations from the latest generation of weather satellites relies on an accurate knowledge of fundamental spectroscopy, including the water vapour continuum absorption. Field campaigns involving the Facility for Airborne Atmospheric Measurements research aircraft have collected a comprehensive dataset, comprising remotely sensed infrared radiance observations collocated with accurate measurements of the temperature and humidity structure of the atmosphere. These field measurements have been used to validate the strength of the infrared water vapour continuum in comparison with the latest laboratory measurements. The recent substantial changes to self-continuum coefficients in the widely used MT_CKD (Mlawer-Tobin-Clough-Kneizys-Davies) model between 2400 and 3200 cm(-1) are shown to be appropriate and in agreement with field measurements. Results for the foreign continuum in the 1300-2000 cm(-1) band suggest a weak temperature dependence that is not currently included in atmospheric models. A one-dimensional variational retrieval experiment is performed that shows a small positive benefit from using new laboratory-derived continuum coefficients for humidity retrievals.

  20. Continuum-Kinetic Models and Numerical Methods for Multiphase Applications

    NASA Astrophysics Data System (ADS)

    Nault, Isaac Michael

    This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.

  1. Simple Estimators for the Simple Latent Class Mastery Testing Model. Twente Educational Memorandum No. 19.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    Latent class models for mastery testing differ from continuum models in that they do not postulate a latent mastery continuum but conceive mastery and non-mastery as two latent classes, each characterized by different probabilities of success. Several researchers use a simple latent class model that is basically a simultaneous application of the…

  2. Polarizable Force Fields and Polarizable Continuum Model: A Fluctuating Charges/PCM Approach. 1. Theory and Implementation.

    PubMed

    Lipparini, Filippo; Barone, Vincenzo

    2011-11-08

    We present a combined fluctuating charges-polarizable continuum model approach to describe molecules in solution. Both static and dynamic approaches are discussed: analytical first and second derivatives are shown as well as an extended lagrangian for molecular dynamics simluations. In particular, we use the polarizable continuum model to provide nonperiodic boundary conditions for molecular dynamics simulations of aqueous solutions. The extended lagrangian method is extensively discussed, with specific reference to the fluctuating charge model, from a numerical point of view by means of several examples, and a rationalization of the behavior found is presented. Several prototypical applications are shown, especially regarding solvation of ions and polar molecules in water.

  3. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.

    PubMed

    Rausch, M K; Karniadakis, G E; Humphrey, J D

    2017-02-01

    Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues.

  4. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach

    PubMed Central

    Rausch, M. K.; Karniadakis, G. E.; Humphrey, J. D.

    2016-01-01

    Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues. PMID:27538848

  5. Continuum of Medical Education in Obstetrics and Gynecology.

    ERIC Educational Resources Information Center

    Dohner, Charles W.; Hunter, Charles A., Jr.

    1980-01-01

    Over the past eight years the obstetric and gynecology specialty has applied a system model of instructional planning to the continuum of medical education. The systems model of needs identification, preassessment, instructional objectives, instructional materials, learning experiences; and evaluation techniques directly related to objectives was…

  6. Issues and Methods for Standard-Setting.

    ERIC Educational Resources Information Center

    Hambleton, Ronald K.; And Others

    Issues involved in standard setting along with methods for standard setting are reviewed, with specific reference to their relevance for criterion referenced testing. Definitions are given of continuum and state models, and traditional and normative standard setting procedures. Since continuum models are considered more appropriate for criterion…

  7. Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients.

    PubMed

    Li, Hui

    2009-11-14

    Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S(0)-->S(1) excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.

  8. Experimental verification of a progressive damage model for composite laminates based on continuum damage mechanics. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Coats, Timothy William

    1994-01-01

    Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.

  9. Self-consistent continuum solvation for optical absorption of complex molecular systems in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timrov, Iurii; Biancardi, Alessandro; Andreussi, Oliviero

    2015-01-21

    We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a recently proposed Lanczos-based technique, or selected excitation energies, using the Casida equation, without having to ever compute any unoccupied molecular orbitals. The latter is conceptually similar to the polarizable continuum model and offers the further advantages of allowing an easy computation of atomic forces via the Hellmann-Feynman theorem andmore » a ready implementation in periodic-boundary conditions. The new method has been implemented using pseudopotentials and plane-wave basis sets, benchmarked against polarizable continuum model calculations on 4-aminophthalimide, alizarin, and cyanin and made available through the QUANTUM ESPRESSO distribution of open-source codes.« less

  10. Continuum Mean-Field Theories for Molecular Fluids, and Their Validity at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hanna, C. B.; Peyronel, F.; MacDougall, C.; Marangoni, A.; Pink, D. A.; AFMNet-NCE Collaboration

    2011-03-01

    We present a calculation of the physical properties of solid triglyceride particles dispersed in an oil phase, using atomic- scale molecular dynamics. Significant equilibrium density oscillations in the oil appear when the interparticle distance, d , becomes sufficiently small, with a global minimum in the free energy found at d ~ 1.4 nm. We compare the simulation values of the Hamaker coefficient with those of models which assume that the oil is a homogeneous continuum: (i) Lifshitz theory, (ii) the Fractal Model, and (iii) a Lennard-Jones 6-12 potential model. The last-named yields a minimum in the free energy at d ~ 0.26 nm. We conclude that, at the nanoscale, continuum Lifshitz theory and other continuum mean-field theories based on the assumption of homogeneous fluid density can lead to erroneous conclusions. CBH supported by NSF DMR-0906618. DAP supported by NSERC. This work supported by AFMNet-NCE.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onić, D.; Urošević, D.; Leahy, D., E-mail: donic@matf.bg.ac.rs

    Recent observations of the microwave sky, by space telescopes such as the Wilkinson Microwave Anisotropy Probe and Planck , have opened a new window into the analysis of continuum emission from supernova remnants (SNRs). In this paper, different emission models that can explain the characteristic shape of currently known integrated radio/microwave continuum spectrum of the Galactic SNR IC 443 are tested and discussed. In particular, the possibility is emphasized that the slight bump in the integrated continuum of this remnant around 20–70 GHz is genuine and that it can be explained by the contribution of an additional emission mechanism suchmore » as spinning dust. We find that adding a spinning dust component to the emission model improves the fit of the integrated spectrum of this SNR while at the same time preserving the physically probable parameter values. Finally, models that include the high-frequency synchrotron bending of the IC 443 radio to microwave continuum are favored.« less

  12. Computational Implementation of a Thermodynamically Based Work Potential Model For Progressive Microdamage and Transverse Cracking in Fiber-Reinforced Laminates

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.

    2012-01-01

    A continuum-level, dual internal state variable, thermodynamically based, work potential model, Schapery Theory, is used capture the effects of two matrix damage mechanisms in a fiber-reinforced laminated composite: microdamage and transverse cracking. Matrix microdamage accrues primarily in the form of shear microcracks between the fibers of the composite. Whereas, larger transverse matrix cracks typically span the thickness of a lamina and run parallel to the fibers. Schapery Theory uses the energy potential required to advance structural changes, associated with the damage mechanisms, to govern damage growth through a set of internal state variables. These state variables are used to quantify the stiffness degradation resulting from damage growth. The transverse and shear stiffness of the lamina are related to the internal state variables through a set of measurable damage functions. Additionally, the damage variables for a given strain state can be calculated from a set of evolution equations. These evolution equations and damage functions are implemented into the finite element method and used to govern the constitutive response of the material points in the model. Additionally, an axial failure criterion is included in the model. The response of a center-notched, buffer strip-stiffened panel subjected to uniaxial tension is investigated and results are compared to experiment.

  13. Glueballs on the baryonic branch of Klebanov-Strassler: dimensional deconstruction and a light scalar particle

    NASA Astrophysics Data System (ADS)

    Elander, Daniel; Piai, Maurizio

    2017-06-01

    Within gauge/gravity duality, we compute the scalar and tensor mass spectrum in the boundary theory defined by the five-dimensional sigma-model coupled to gravity obtained by constraining to eight scalars the truncation on T 1,1 that corresponds to the Papadopoulos-Tseytlin (PT) ansatz. We study fluctuations around the 1-parameter family of backgrounds that lift to the baryonic branch of the Klebanov-Strassler (KS) system, and interpolates between the KS background and the Maldacena-Nunez one (CVMN). We adopt a gauge invariant formalism in the treatment of the fluctuations that we interpret as states of the dual theory. The tensor spectrum interpolates between the discrete spectrum of the KS background and the continuum spectrum of the CVMN background, in particular showing the emergence of a finite energy range containing a dense set of states, as expected from dimensional deconstruction. The scalar spectrum shows analogous features, and in addition it contains one state that becomes parametrically light far from the origin along the baryonic branch.

  14. A continuum-based structural modeling approach for cellulose nanocrystals (CNCs)

    Treesearch

    Mehdi Shishehbor; Fernando L. Dri; Robert J. Moon; Pablo D. Zavattieri

    2018-01-01

    We present a continuum-based structural model to study the mechanical behavior of cel- lulose nanocrystals (CNCs), and analyze the effect of bonded and non-bonded interactions on the mechanical properties under various loading conditions. In particular, this model assumes the uncoupling between the bonded and non-bonded interactions and their be- havior is obtained...

  15. Peridynamics with LAMMPS : a user guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehoucq, Richard B.; Silling, Stewart Andrew; Plimpton, Steven James

    2008-01-01

    Peridynamics is a nonlocal formulation of continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamic model. This document details the implementation of a discrete peridynamic model within the LAMMPS molecular dynamic code. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized, and overviews the LAMMPS implementation. A nontrivial example problem is also included.

  16. Nonword Reading: Comparing Dual-Route Cascaded and Connectionist Dual-Process Models with Human Data

    ERIC Educational Resources Information Center

    Pritchard, Stephen C.; Coltheart, Max; Palethorpe, Sallyanne; Castles, Anne

    2012-01-01

    Two prominent dual-route computational models of reading aloud are the dual-route cascaded (DRC) model, and the connectionist dual-process plus (CDP+) model. While sharing similarly designed lexical routes, the two models differ greatly in their respective nonlexical route architecture, such that they often differ on nonword pronunciation. Neither…

  17. Applications of discrete element method in modeling of grain postharvest operations

    USDA-ARS?s Scientific Manuscript database

    Grain kernels are finite and discrete materials. Although flowing grain can behave like a continuum fluid at times, the discontinuous behavior exhibited by grain kernels cannot be simulated solely with conventional continuum-based computer modeling such as finite-element or finite-difference methods...

  18. Mapping Soil Surface Macropores Using Infrared Thermography: An Exploratory Laboratory Study

    PubMed Central

    de Lima, João L. M. P.; Abrantes, João R. C. B.; Silva, Valdemir P.; de Lima, M. Isabel P.; Montenegro, Abelardo A. A.

    2014-01-01

    Macropores and water flow in soils and substrates are complex and are related to topics like preferential flow, nonequilibrium flow, and dual-continuum. Hence, the quantification of the number of macropores and the determination of their geometry are expected to provide a better understanding on the effects of pores on the soil's physical and hydraulic properties. This exploratory study aimed at evaluating the potential of using infrared thermography for mapping macroporosity at the soil surface and estimating the number and size of such macropores. The presented technique was applied to a small scale study (laboratory soil flume). PMID:25371915

  19. Investigation of Coupled model of Pore network and Continuum in shale gas

    NASA Astrophysics Data System (ADS)

    Cao, G.; Lin, M.

    2016-12-01

    Flow in shale spanning over many scales, makes the majority of conventional treatment methods disabled. For effectively simulating, a coupled model of pore-scale and continuum-scale was proposed in this paper. Based on the SEM image, we decompose organic-rich-shale into two subdomains: kerogen and inorganic matrix. In kerogen, the nanoscale pore-network is the main storage space and migration pathway so that the molecular phenomena (slip and diffusive transport) is significant. Whereas, inorganic matrix, with relatively large pores and micro fractures, the flow is approximate to Darcy. We use pore-scale network models (PNM) to represent kerogen and continuum-scale models (FVM or FEM) to represent matrix. Finite element mortars are employed to couple pore- and continuum-scale models by enforcing continuity of pressures and fluxes at shared boundary interfaces. In our method, the process in the coupled model is described by pressure square equation, and uses Dirichlet boundary conditions. We discuss several problems: the optimal element number of mortar faces, two categories boundary faces of pore network, the difference between 2D and 3D models, and the difference between continuum models FVM and FEM in mortars. We conclude that: (1) too coarse mesh in mortars will decrease the accuracy, while too fine mesh will lead to an ill-condition even singular system, the optimal element number is depended on boundary pores and nodes number. (2) pore network models are adjacent to two different mortar faces (PNM to PNM, PNM to continuum model), incidental repeated mortar nodes must be deleted. (3) 3D models can be replaced by 2D models under certain condition. (4) FVM is more convenient than FEM, for its simplicity in assigning interface nodes pressure and calculating interface fluxes. This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB10020302), the 973 Program (2014CB239004), the Key Instrument Developing Project of the CAS (ZDYZ2012-1-08-02), the National Natural Science Foundation of China (41574129).

  20. Fundamentals of continuum mechanics – classical approaches and new trends

    NASA Astrophysics Data System (ADS)

    Altenbach, H.

    2018-04-01

    Continuum mechanics is a branch of mechanics that deals with the analysis of the mechanical behavior of materials modeled as a continuous manifold. Continuum mechanics models begin mostly by introducing of three-dimensional Euclidean space. The points within this region are defined as material points with prescribed properties. Each material point is characterized by a position vector which is continuous in time. Thus, the body changes in a way which is realistic, globally invertible at all times and orientation-preserving, so that the body cannot intersect itself and as transformations which produce mirror reflections are not possible in nature. For the mathematical formulation of the model it is also assumed to be twice continuously differentiable, so that differential equations describing the motion may be formulated. Finally, the kinematical relations, the balance equations, the constitutive and evolution equations and the boundary and/or initial conditions should be defined. If the physical fields are non-smooth jump conditions must be taken into account. The basic equations of continuum mechanics are presented following a short introduction. Additionally, some examples of solid deformable continua will be discussed within the presentation. Finally, advanced models of continuum mechanics will be introduced. The paper is dedicated to Alexander Manzhirov’s 60th birthday.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitherer, Claus; Lee, Janice C.; Hernandez, Svea

    We report on the detection of Lyman continuum radiation in two nearby starburst galaxies. Tol 0440-381, Tol 1247-232, and Mrk 54 were observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope . The three galaxies have radial velocities of ∼13,000 km s{sup −1}, permitting a ∼35 Å window on the restframe Lyman continuum shortward of the Milky Way Lyman edge at 912 Å. The chosen instrument configuration using the G140L grating covers the spectral range from 912 to 2000 Å. We developed a dedicated background subtraction method to account for the temporal and spatial background variations ofmore » the detector, which is crucial at the low flux levels around 912 Å. This modified pipeline allowed us to significantly improve the statistical and systematic detector noise and will be made available to the community. We detect Lyman continuum in all three galaxies. However, we conservatively interpret the emission in Tol 0440-381 as an upper limit due to possible contamination by geocoronal Lyman series lines. We determined the current star formation properties from the far-ultraviolet continuum and spectral lines and used synthesis models to predict the Lyman continuum radiation emitted by the current population of hot stars. We discuss various model uncertainties such as, among others, atmospheres and evolution models. Lyman continuum escape fractions were derived from a comparison between the observed and predicted Lyman continuum fluxes. Tol 1247-232, Mrk 54, and Tol 0440-381 have absolute escape fractions of (4.5 ± 1.2)%, (2.5 ± 0.72)%, and <(7.1 ± 1.1)%, respectively.« less

  2. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns - Time history of the dust continuum and line emission

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.

    1993-01-01

    Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.

  3. The Multiple Continuum Components in the White-Light Flare of 16 January 2009 on the dM4.5e Star YZ CMi

    NASA Astrophysics Data System (ADS)

    Kowalski, A. F.; Hawley, S. L.; Holtzman, J. A.; Wisniewski, J. P.; Hilton, E. J.

    2012-03-01

    The white light during M dwarf flares has long been known to exhibit the broadband shape of a T≈10 000 K blackbody, and the white light in solar-flares is thought to arise primarily from hydrogen recombination. Yet, a current lack of broad-wavelength coverage solar flare spectra in the optical/near-UV region prohibits a direct comparison of the continuum properties to determine if they are indeed so different. New spectroscopic observations of a secondary flare during the decay of a megaflare on the dM4.5e star YZ CMi have revealed multiple components in the white-light continuum of stellar flares, including both a blackbody-like spectrum and a hydrogen-recombination spectrum. One of the most surprising findings is that these two components are anti-correlated in their temporal evolution. We combine initial phenomenological modeling of the continuum components with spectra from radiative hydrodynamic models to show that continuum veiling causes the measured anti-correlation. This modeling allows us to use the components' inferred properties to predict how a similar spatially resolved, multiple-component, white-light continuum might appear using analogies to several solar-flare phenomena. We also compare the properties of the optical stellar flare white light to Ellerman bombs on the Sun.

  4. Bottom-up modeling of damage in heterogeneous quasi-brittle solids

    NASA Astrophysics Data System (ADS)

    Rinaldi, Antonio

    2013-03-01

    The theoretical modeling of multisite cracking in quasi-brittle materials is a complex damage problem, hard to model with traditional methods of fracture mechanics due to its multiscale nature and to strain localization induced by microcracks interaction. Macroscale "effective" elastic models can be conveniently applied if a suitable Helmholtz free energy function is identified for a given material scenario. Del Piero and Truskinovsky (Continuum Mech Thermodyn 21:141-171, 2009), among other authors, investigated macroscale continuum solutions capable of matching—in a top-down view—the phenomenology of the damage process for quasi-brittle materials regardless of the microstructure. On the contrary, this paper features a physically based solution method that starts from the direct consideration of the microscale properties and, in a bottom-up view, recovers a continuum elastic description. This procedure is illustrated for a simple one-dimensional problem of this type, a bar modeled stretched by an axial displacement, where the bar is modeled as a 2D random lattice of decohesive spring elements of finite strength. The (microscale) data from simulations are used to identify the "exact" (macro-) damage parameter and to build up the (macro-) Helmholtz function for the equivalent elastic model, bridging the macroscale approach by Del Piero and Truskinovsky. The elastic approach, coupled with microstructural knowledge, becomes a more powerful tool to reproduce a broad class of macroscopic material responses by changing the convexity-concavity of the Helmholtz energy. The analysis points out that mean-field statistics are appropriate prior to damage localization but max-field statistics are better suited in the softening regime up to failure, where microstrain fluctuation needs to be incorporated in the continuum model. This observation is of consequence to revise mean-field damage models from literature and to calibrate Nth gradient continuum models.

  5. Families with burn injury: application in the clinically relevant continuum model.

    PubMed

    Lehna, Carlee

    2011-06-01

    This article incorporates the findings from a predominantly qualitative, mixed-method study examining sibling survivors' experiences of a major childhood burn injury into the clinically relevant continuum model as a means of promoting culturally competent and family-centered care. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Evolution of plastic anisotropy for high-strain-rate computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, S.K.; Maudlin, P.J.

    1994-12-01

    A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texturemore » code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.« less

  7. Continuum and three-nucleon force effects on Be 9 energy levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langhammer, Joachim; Navrátil, Petr; Quaglioni, Sofia

    2015-02-05

    In this paper, we extend the recently proposed ab initio no-core shell model with continuum to include three-nucleon (3N) interactions beyond the few-body domain. The extended approach allows for the assessment of effects of continuum degrees of freedom as well as of the 3N force in ab initio calculations of structure and reaction observables of p- and lower-sd-shell nuclei. As a first application we concentrate on energy levels of the 9Be system for which all excited states lie above the n- 8Be threshold. For all energy levels, the inclusion of the continuum significantly improves the agreement with experiment, which wasmore » an issue in standard no-core shell model calculations. Furthermore, we find the proper treatment of the continuum indispensable for reliable statements about the quality of the adopted 3N interaction from chiral effective field theory. Finally, in particular, we find the 1/2 + resonance energy, which is of astrophysical interest, in good agreement with experiment.« less

  8. Comparing Multidimensional and Continuum Models of Vocabulary Acquisition: An Empirical Examination of the Vocabulary Knowledge Scale

    ERIC Educational Resources Information Center

    Stewart, Jeffrey; Batty, Aaron Olaf; Bovee, Nicholas

    2012-01-01

    Second language vocabulary acquisition has been modeled both as multidimensional in nature and as a continuum wherein the learner's knowledge of a word develops along a cline from recognition through production. In order to empirically examine and compare these models, the authors assess the degree to which the Vocabulary Knowledge Scale (VKS;…

  9. The 'Baldwin Effect' in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Morris, Patrick; Conti, Peter S.; Lamers, Henny J. G. L. M.; Koenigsberger, Gloria

    1993-01-01

    The equivalent widths of a number of emission lines in the spectra of WN-type Wolf-Rayet stars are found to inversely correlate with the luminosity of the underlying continuum. This is the well-known Baldwin Effect that has previously been observed in quasars and some Seyfert I galaxies. The Effect can be inferred from line and continuum predictions in published non-LTE model helium atmospheres and is explainable in terms of differences in wind density among WN stars. Using a simple wind model, we show that the Effect arises from the fact that both the effective radius for the local continuum and the emission measure of the layers above the continuum-forming region depend on the density in the wind. The Effect provides a new method for distance determinations of W-R stars.

  10. Continuum simulation of the discharge of the granular silo: a validation test for the μ(I) visco-plastic flow law.

    PubMed

    Staron, L; Lagrée, P-Y; Popinet, S

    2014-01-01

    Using a continuum Navier-Stokes solver with the μ(I) flow law implemented to model the viscous behavior, and the discrete Contact Dynamics algorithm, the discharge of granular silos is simulated in two dimensions from the early stages of the discharge until complete release of the material. In both cases, the Beverloo scaling is recovered. We first do not attempt a quantitative comparison, but focus on the qualitative behavior of velocity and pressure at different locations in the flow. A good agreement for the velocity is obtained in the regions of rapid flows, while areas of slow creep are not entirely captured by the continuum model. The pressure field shows a general good agreement, while bulk deformations are found to be similar in both approaches. The influence of the parameters of the μ(I) flow law is systematically investigated, showing the importance of the dependence on the inertial number I to achieve quantitative agreement between continuum and discrete discharge. However, potential problems involving the systems size, the configuration and "non-local" effects, are suggested. Yet the general ability of the continuum model to reproduce qualitatively the granular behavior is found to be very encouraging.

  11. Assessment of current state of the art in modeling techniques and analysis methods for large space structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1983-01-01

    Advances in continuum modeling, progress in reduction methods, and analysis and modeling needs for large space structures are covered with specific attention given to repetitive lattice trusses. As far as continuum modeling is concerned, an effective and verified analysis capability exists for linear thermoelastic stress, birfurcation buckling, and free vibration problems of repetitive lattices. However, application of continuum modeling to nonlinear analysis needs more development. Reduction methods are very effective for bifurcation buckling and static (steady-state) nonlinear analysis. However, more work is needed to realize their full potential for nonlinear dynamic and time-dependent problems. As far as analysis and modeling needs are concerned, three areas are identified: loads determination, modeling and nonclassical behavior characteristics, and computational algorithms. The impact of new advances in computer hardware, software, integrated analysis, CAD/CAM stems, and materials technology is also discussed.

  12. Time dependent reliability model incorporating continuum damage mechanics for high-temperature ceramics

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1989-01-01

    Presently there are many opportunities for the application of ceramic materials at elevated temperatures. In the near future ceramic materials are expected to supplant high temperature metal alloys in a number of applications. It thus becomes essential to develop a capability to predict the time-dependent response of these materials. The creep rupture phenomenon is discussed, and a time-dependent reliability model is outlined that integrates continuum damage mechanics principles and Weibull analysis. Several features of the model are presented in a qualitative fashion, including predictions of both reliability and hazard rate. In addition, a comparison of the continuum and the microstructural kinetic equations highlights a strong resemblance in the two approaches.

  13. Breakdown and Limit of Continuum Diffusion Velocity for Binary Gas Mixtures from Direct Simulation

    NASA Astrophysics Data System (ADS)

    Martin, Robert Scott; Najmabadi, Farrokh

    2011-05-01

    This work investigates the breakdown of the continuum relations for diffusion velocity in inert binary gas mixtures. Values of the relative diffusion velocities for components of a gas mixture may be calculated using of Chapman-Enskog theory and occur not only due to concentration gradients, but also pressure and temperature gradients in the flow as described by Hirschfelder. Because Chapman-Enskog theory employs a linear perturbation around equilibrium, it is expected to break down when the velocity distribution deviates significantly from equilibrium. This breakdown of the overall flow has long been an area of interest in rarefied gas dynamics. By comparing the continuum values to results from Bird's DS2V Monte Carlo code, we propose a new limit on the continuum approach specific to binary gases. To remove the confounding influence of an inconsistent molecular model, we also present the application of the variable hard sphere (VSS) model used in DS2V to the continuum diffusion velocity calculation. Fitting sample asymptotic curves to the breakdown, a limit, Vmax, that is a fraction of an analytically derived limit resulting from the kinetic temperature of the mixture is proposed. With an expected deviation of only 2% between the physical values and continuum calculations within ±Vmax/4, we suggest this as a conservative estimate on the range of applicability for the continuum theory.

  14. An Optimization-based Atomistic-to-Continuum Coupling Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Derek; Bochev, Pavel B.; Luskin, Mitchell

    2014-08-21

    In this paper, we present a new optimization-based method for atomistic-to-continuum (AtC) coupling. The main idea is to cast the latter as a constrained optimization problem with virtual Dirichlet controls on the interfaces between the atomistic and continuum subdomains. The optimization objective is to minimize the error between the atomistic and continuum solutions on the overlap between the two subdomains, while the atomistic and continuum force balance equations provide the constraints. Separation, rather then blending of the atomistic and continuum problems, and their subsequent use as constraints in the optimization problem distinguishes our approach from the existing AtC formulations. Finally,more » we present and analyze the method in the context of a one-dimensional chain of atoms modeled using a linearized two-body potential with next-nearest neighbor interactions.« less

  15. Dual-input two-compartment pharmacokinetic model of dynamic contrast-enhanced magnetic resonance imaging in hepatocellular carcinoma.

    PubMed

    Yang, Jian-Feng; Zhao, Zhen-Hua; Zhang, Yu; Zhao, Li; Yang, Li-Ming; Zhang, Min-Ming; Wang, Bo-Yin; Wang, Ting; Lu, Bao-Chun

    2016-04-07

    To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma (HCC). From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant (Ktrans), plasma flow (Fp), permeability surface area product (PS), efflux rate constant (kep), extravascular extracellular space volume ratio (ve), blood plasma volume ratio (vp), and hepatic perfusion index (HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model (2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student's t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. The Fp value was greater than the PS value (FP = 1.07 mL/mL per minute, PS = 0.19 mL/mL per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dual-input 2CXM, respectively. There were no significant differences in the kep, vp, or HPI between the dual-input extended Tofts model and the dual-input 2CXM (P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for ve, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dual-input 2CXM were correlated with Ktrans derived from the dual-input extended Tofts model (P = 0.002, r = 0.566; P = 0.002, r = 0.570); kep, vp, and HPI between the two kinetic models were positively correlated (P = 0.001, r = 0.594; P = 0.0001, r = 0.686; P = 0.04, r = 0.391, respectively). In the dual input extended Tofts model, ve was significantly less than that in the dual input 2CXM (P = 0.004), and no significant correlation was seen between the two tracer kinetic models (P = 0.156, r = 0.276). Neither tumor size nor tumor stage was significantly correlated with any of the pharmacokinetic parameters obtained from the two models (P > 0.05). A dual-input two-compartment pharmacokinetic model (a dual-input extended Tofts model and a dual-input 2CXM) can be used in assessing the microvascular physiopathological properties before the treatment of advanced HCC. The dual-input extended Tofts model may be more stable in measuring the ve; however, the dual-input 2CXM may be more detailed and accurate in measuring microvascular permeability.

  16. Denitrification constitutes an import N sink in subtropical N-saturated forests - a nitrate dual isotope study

    NASA Astrophysics Data System (ADS)

    Yu, Lonfei; Zhu, Jing; Mulder, Jan; Dörsch, Peter

    2016-04-01

    Forests in China receive variable but increasing amounts of nitrogen from the atmosphere causing N saturation and nitrate runoff. Surprisingly high N-retention has been reported from subtropical forests, suggesting active mechanisms of N removal. Here we report a multi-site study of 15N and 18O abundances in soil nitrate (NO3-) across seven forested catchments spanning from temperate to subtropical China. In each catchment, samples were taken on one date during one or two summer along the hydrological continuum comprising hillslope positions and riparian zones. We had found previously in an intensive multi-year study at one of the sites, that the spatial pattern of summertime 15N and 18O in soil nitrate was remarkably stable across climatically distinct years, suggesting persistent N removal by denitrification at the foot of hill slopes and in groundwater discharge zones (Yu et al., submitted). In the present study, we extended the scope to five subtropical Chinese catchments and compared them with two temperate forests. Our data confirm the general pattern of efficient nitrification on hillslopes and strong denitrification in riparian zones in the subtropical catchments but not in the temperate ones. This is likely because high summer rainfalls at the monsoonal sites connect N mineralization and oxidation in upland positions with NO3- reduction in ground water discharge zones via NO3- runoff, rendering subtropical forests an efficient sink for reactive N with implications for regional N budgets. The impact of N deposition level, hydrology and edaphic factors on the predictive power of nitrate isotope signatures for N removal processes will be discussed. Yu L, Zhu J, Mulder J, Dörsch P: Spatiotemporal patterns in dual nitrate isotopes reveal efficient N transformation and denitrification along a hydrological continuum in N-saturated, subtropical forest. Submitted

  17. Collocational Processing in Light of the Phraseological Continuum Model: Does Semantic Transparency Matter?

    ERIC Educational Resources Information Center

    Gyllstad, Henrik; Wolter, Brent

    2016-01-01

    The present study investigates whether two types of word combinations (free combinations and collocations) differ in terms of processing by testing Howarth's Continuum Model based on word combination typologies from a phraseological tradition. A visual semantic judgment task was administered to advanced Swedish learners of English (n = 27) and…

  18. Comparing and Contrasting American and Japanese Cultural Values Using a Negotiation Continuum Model.

    ERIC Educational Resources Information Center

    Garrison, Jean A.

    A negotiation continuum model can be used to compare and contrast American and Japanese cultural values. Although two basic styles of negotiating--competitive and cooperative--can be identified, there are a number of general principles that govern all negotiations. These include planning and preparing strategies in advance and practicing nonverbal…

  19. A Continuum Model of Social/Sexual Curriculum and Programming Services.

    ERIC Educational Resources Information Center

    Heler, Ann, Ed.

    This packet of materials from the Wayne County (Michigan) Intermediate School District offers a continuum model of social/sexual curriculum and programming services. Materials include: (1) a copy of a district school board policy giving school districts permission to pursue these curriculum areas; (2) staff guidelines for dealing with students…

  20. The May Center for Early Childhood Education: Description of a Continuum of Services Model for Children with Autism.

    ERIC Educational Resources Information Center

    Campbell, Susan; Cannon, Barbara; Ellis, James T.; Lifter, Karen; Luiselli, James K.; Navalta, Carryl P.; Taras, Marie

    1998-01-01

    Describes a comprehensive continuum of services model for children with autism developed by a human services agency in Massachusetts, which incorporates these and additional empirically based approaches. Service components, methodologies, and program objectives are described, including representative summary data. Best practice approaches toward…

  1. An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through black lipid membranes.

    PubMed Central

    van Dijk, C; de Levie, R

    1985-01-01

    The continuum and single jump treatments of ion transport through black lipid membranes predict experimentally distinguishable results, even when the same mechanistic assumptions are made and the same potential-distance profile is used. On the basis of steady-state current-voltage curves for nonactin-mediated transport of potassium ions, we find that the continuum model describes the data accurately, whereas the single jump model fails to do so, for all cases investigated in which capacitance measurements indicate that the membrane thickness varies little with applied potential. PMID:3839420

  2. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2012-08-03

    is unlimited. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites The views, opinions...12211 Research Triangle Park, NC 27709-2211 ballistics, composites, Kevlar , material models, microstructural defects REPORT DOCUMENTATION PAGE 11... Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites Report Title Fiber-reinforced polymer matrix composite materials display quite complex deformation

  3. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Reynolds, Daniel R.

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  4. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE PAGES

    Gardner, David J.; Reynolds, Daniel R.

    2017-01-05

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  5. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  6. Numerical investigation of non-perturbative kinetic effects of energetic particles on toroidicity-induced Alfvén eigenmodes in tokamaks and stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaby, Christoph; Könies, Axel; Kleiber, Ralf

    2016-09-15

    The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem usingmore » a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.« less

  7. The wetland continuum: a conceptual framework for interpreting biological studies

    USGS Publications Warehouse

    Euliss, N.H.; LaBaugh, J.W.; Fredrickson, L.H.; Mushet, D.M.; Swanson, G.A.; Winter, T.C.; Rosenberry, D.O.; Nelson, R.D.

    2004-01-01

    We describe a conceptual model, the wetland continuum, which allows wetland managers, scientists, and ecologists to consider simultaneously the influence of climate and hydrologic setting on wetland biological communities. Although multidimensional, the wetland continuum is most easily represented as a two-dimensional gradient, with ground water and atmospheric water constituting the horizontal and vertical axis, respectively. By locating the position of a wetland on both axes of the continuum, the potential biological expression of the wetland can be predicted at any point in time. The model provides a framework useful in the organization and interpretation of biological data from wetlands by incorporating the dynamic changes these systems undergo as a result of normal climatic variation rather than placing them into static categories common to many wetland classification systems. While we developed this model from the literature available for depressional wetlands in the prairie pothole region of North America, we believe the concept has application to wetlands in many other geographic locations.

  8. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    NASA Astrophysics Data System (ADS)

    Hu, S. X.

    2017-08-01

    Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.

  9. Shape dependence of two-cylinder Rényi entropies for free bosons on a lattice

    NASA Astrophysics Data System (ADS)

    Chojnacki, Leilee; Cook, Caleb Q.; Dalidovich, Denis; Hayward Sierens, Lauren E.; Lantagne-Hurtubise, Étienne; Melko, Roger G.; Vlaar, Tiffany J.

    2016-10-01

    Universal scaling terms occurring in Rényi entanglement entropies have the potential to bring new understanding to quantum critical points in free and interacting systems. Quantitative comparisons between analytical continuum theories and numerical calculations on lattice models play a crucial role in advancing such studies. In this paper, we exactly calculate the universal two-cylinder shape dependence of entanglement entropies for free bosons on finite-size square lattices, and compare to approximate functions derived in the continuum using several different Ansätze. Although none of these Ansätze are exact in the thermodynamic limit, we find that numerical fits are in good agreement with continuum functions derived using the anti-de Sitter/conformal field theory correspondence, an extensive mutual information model, and a quantum Lifshitz model. We use fits of our lattice data to these functions to calculate universal scalars defined in the thin-cylinder limit, and compare to values previously obtained for the free boson field theory in the continuum.

  10. Kinetic Monte Carlo simulations of ion-induced ripple formation: Dependence on flux, temperature, and defect concentration in the linear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chason, E.; Chan, W. L.; Bharathi, M. S.

    Low-energy ion bombardment produces spontaneous periodic structures (sputter ripples) on many surfaces. Continuum theories describe the pattern formation in terms of ion-surface interactions and surface relaxation kinetics, but many features of these models (such as defect concentration) are unknown or difficult to determine. In this work, we present results of kinetic Monte Carlo simulations that model surface evolution using discrete atomistic versions of the physical processes included in the continuum theories. From simulations over a range of parameters, we obtain the dependence of the ripple growth rate, wavelength, and velocity on the ion flux and temperature. The results are discussedmore » in terms of the thermally dependent concentration and diffusivity of ion-induced surface defects. We find that in the early stages of ripple formation the simulation results are surprisingly well described by the predictions of the continuum theory, in spite of simplifying approximations used in the continuum model.« less

  11. Electron Information in Single- and Dual-Frequency Capacitive Discharges at Atmospheric Pressure.

    PubMed

    Park, Sanghoo; Choe, Wonho; Moon, Se Youn; Shi, Jian Jun

    2018-05-14

    Determining the electron properties of weakly ionized gases, particularly in a high electron-neutral collisional condition, is a nontrivial task; thus, the mechanisms underlying the electron characteristics and electron heating structure in radio-frequency (rf) collisional discharges remain unclear. Here, we report the electrical characteristics and electron information in single-frequency (4.52 MHz and 13.56 MHz) and dual-frequency (a combination of 4.52 MHz and 13.56 MHz) capacitive discharges within the abnormal α-mode regime at atmospheric pressure. A continuum radiation-based electron diagnostic method is employed to estimate the electron density (n e ) and temperature (T e ). Our experimental observations reveal that time-averaged n e (7.7-14 × 10 11  cm -3 ) and T e (1.75-2.5 eV) can be independently controlled in dual-frequency discharge, whereas such control is nontrivial in single-frequency discharge, which shows a linear increase in n e and little to no change in T e with increases in the rf input power. Furthermore, the two-dimensional spatiotemporal evolution of neutral bremsstrahlung and associated electron heating structures is demonstrated. These results reveal that a symmetric structure in electron heating becomes asymmetric (via a local suppression of electron temperature) as two-frequency power is simultaneously introduced.

  12. Mesoscopic and continuum modelling of angiogenesis

    PubMed Central

    Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.

    2016-01-01

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. PMID:24615007

  13. Multiscale Modeling of Damage Processes in fcc Aluminum: From Atoms to Grains

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Yamakov, V.

    2008-01-01

    Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics-based modeling procedures, such as the finite element method (FEM), with MD analyses thereby reducing the region of atomic scale refinement. Such multiscale modeling strategies can be divided into two broad classifications: concurrent multiscale methods that directly incorporate an atomistic domain within a continuum domain and sequential multiscale methods that extract an averaged response from the atomistic simulation for later use as a constitutive model in a continuum analysis.

  14. Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review

    PubMed Central

    Chirikjian, G. S.

    2016-01-01

    Hyper-redundant (or snakelike) manipulators have many more degrees of freedom than are required to position and orient an object in space. They have been employed in a variety of applications ranging from search-and-rescue to minimally invasive surgical procedures, and recently they even have been proposed as solutions to problems in maintaining civil infrastructure and the repair of satellites. The kinematic and dynamic properties of snakelike robots are captured naturally using a continuum backbone curve equipped with a naturally evolving set of reference frames, stiffness properties, and mass density. When the snakelike robot has a continuum architecture, the backbone curve corresponds with the physical device itself. Interestingly, these same modeling ideas can be used to describe conformational shapes of DNA molecules and filamentous protein structures in solution and in cells. This paper reviews several classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone curves; (2) flexible steerable needles; and (3) concentric tube continuum robots. It is then shown how the same mathematical modeling methods used in these robotics contexts can be used to model molecules such as DNA. All of these problems are treated in the context of a common mathematical framework based on the differential geometry of curves, continuum mechanics, and variational calculus. Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-Poincaré approaches are reviewed. PMID:27030786

  15. Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review.

    PubMed

    Chirikjian, G S

    Hyper-redundant (or snakelike) manipulators have many more degrees of freedom than are required to position and orient an object in space. They have been employed in a variety of applications ranging from search-and-rescue to minimally invasive surgical procedures, and recently they even have been proposed as solutions to problems in maintaining civil infrastructure and the repair of satellites. The kinematic and dynamic properties of snakelike robots are captured naturally using a continuum backbone curve equipped with a naturally evolving set of reference frames, stiffness properties, and mass density. When the snakelike robot has a continuum architecture, the backbone curve corresponds with the physical device itself. Interestingly, these same modeling ideas can be used to describe conformational shapes of DNA molecules and filamentous protein structures in solution and in cells. This paper reviews several classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone curves; (2) flexible steerable needles; and (3) concentric tube continuum robots. It is then shown how the same mathematical modeling methods used in these robotics contexts can be used to model molecules such as DNA. All of these problems are treated in the context of a common mathematical framework based on the differential geometry of curves, continuum mechanics, and variational calculus. Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-Poincaré approaches are reviewed.

  16. Comparison of all atom, continuum, and linear fitting empirical models for charge screening effect of aqueous medium surrounding a protein molecule

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Sugiura, Junnnosuke; Nagayama, Kuniaki

    2002-05-01

    To investigate the role hydration plays in the electrostatic interactions of proteins, the time-averaged electrostatic potential of the B1 domain of protein G in an aqueous solution was calculated with full atomic molecular dynamics simulations that explicitly considers every atom (i.e., an all atom model). This all atom calculated potential was compared with the potential obtained from an electrostatic continuum model calculation. In both cases, the charge-screening effect was fairly well formulated with an effective relative dielectric constant which increased linearly with increasing charge-charge distance. This simulated linear dependence agrees with the experimentally determined linear relation proposed by Pickersgill. Cut-off approximations for Coulomb interactions failed to reproduce this linear relation. Correlation between the all atom model and the continuum models was found to be better than the respective correlation calculated for linear fitting to the two models. This confirms that the continuum model is better at treating the complicated shapes of protein conformations than the simple linear fitting empirical model. We have tried a sigmoid fitting empirical model in addition to the linear one. When weights of all data were treated equally, the sigmoid model, which requires two fitting parameters, fits results of both the all atom and the continuum models less accurately than the linear model which requires only one fitting parameter. When potential values are chosen as weighting factors, the fitting error of the sigmoid model became smaller, and the slope of both linear fitting curves became smaller. This suggests the screening effect of an aqueous medium within a short range, where potential values are relatively large, is smaller than that expected from the linear fitting curve whose slope is almost 4. To investigate the linear increase of the effective relative dielectric constant, the Poisson equation of a low-dielectric sphere in a high-dielectric medium was solved and charges distributed near the molecular surface were indicated as leading to the apparent linearity.

  17. Hydrology of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Bodvarsson, G.S.; Fabryka-Martin, J. M.

    2001-01-01

    Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr-1 under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (~300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominately through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

  18. Scanning MWCNT-Nanopipette and Probe Microscopy: Li Patterning and Transport Studies.

    PubMed

    Larson, Jonathan M; Bharath, Satyaveda C; Cullen, William G; Reutt-Robey, Janice E

    2015-10-07

    A carbon-nanotube-enabling scanning probe technique/nanotechnology for manipulating and measuring lithium at the nano/mesoscale is introduced. Scanning Li-nanopipette and probe microscopy (SLi-NPM) is based on a conductive atomic force microscope (AFM) cantilever with an open-ended multi-walled carbon nanotube (MWCNT) affixed to its apex. SLi-NPM operation is demonstrated with a model system consisting of a Li thin film on a Si(111) substrate. By control of bias, separation distance, and contact time, attograms of Li can be controllably pipetted to or from the MWCNT tip. Patterned surface Li features are then directly probed via noncontact AFM measurements with the MWCNT tip. The subsequent decay of Li features is simulated with a mesoscale continuum model, developed here. The Li surface diffusion coefficient for a four (two) Li layer thick film is measured as D=8(±1.2)×10(-15) cm(2) s(-1) (D=1.75(±0.15)×10(-15) cm(2) s(-1)). Dual-Li pipetting/measuring with SLi-NPM enables a broad range of time-dependent Li and nanoelectrode characterization studies of fundamental importance to energy-storage research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dynamic load mitigation using dissipative elastic metamaterials with multiple Maxwell-type oscillators

    NASA Astrophysics Data System (ADS)

    Alamri, Sagr; Li, Bing; Tan, K. T.

    2018-03-01

    Dissipative elastic metamaterials have attracted increased attention in recent times. This paper presents the development of a dissipative elastic metamaterial with multiple Maxwell-type resonators for stress wave attenuation. The mechanism of the dissipation effect on the vibration characteristics is systematically investigated by mass-spring-damper models with single and dual resonators. Based on the parameter optimization, it is revealed that a broadband wave attenuation region (stopping band) can be obtained by properly utilizing interactions from resonant motions and viscoelastic effects of the Maxwell-type oscillators. The relevant numerical verifications are conducted for various cases, and excellent agreement between the numerical and theoretical frequency response functions is shown. The design of this dissipative metamaterial system is further applied for dynamic load mitigation and blast wave attenuation. Moreover, the transient response in the continuum model is designed and analyzed for more robust design. By virtue of the bandgap merging effect induced by the Maxwell-type damper, the transient blast wave can be almost completely suppressed in the low frequency range. A significantly improved performance of the proposed dissipative metamaterials for stress wave mitigation is verified in both time and frequency domains.

  20. Multiscale Modeling of Intergranular Fracture in Aluminum: Constitutive Relation For Interface Debonding

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Glaessgen, E. H.

    2008-01-01

    Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.

  1. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multispectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/sq m, which compared to the 4 W/sq m magnitude of the greenhouse gas forcing and the 1-2 W/sq m estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning, the empirical continuum models over the full spectral range of interest for remote sensing and climate applications. Thus, we propose to further develop and refine our existing, far-wing formalism to provide an improved treatment applicable from the near-infrared through the microwave. Based on the results of this investigation, we will provide to the remote sensing/climate modeling community a practical and accurate tabulation of the continuum absorption covering the near-infrared through the microwave region of the spectrum for the range of temperatures and pressures of interest for atmospheric applications.

  2. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning the empirical continuum models over the full spectral range of interest for remote sensing and climate applications. Thus, we propose to further develop and refine our existing far-wing formalism to provide an improved treatment applicable from the near-infrared through the microwave. Based on the results of this investigation, we will provide to the remote sensing/climate modeling community a practical and accurate tabulation of the continuum absorption covering the near-infrared through the microwave region of the spectrum for the range of temperatures and pressures of interest for atmospheric applications.

  3. Gradual multifractal reconstruction of time-series: Formulation of the method and an application to the coupling between stock market indices and their Hölder exponents

    NASA Astrophysics Data System (ADS)

    Keylock, Christopher J.

    2018-04-01

    A technique termed gradual multifractal reconstruction (GMR) is formulated. A continuum is defined from a signal that preserves the pointwise Hölder exponent (multifractal) structure of a signal but randomises the locations of the original data values with respect to this (φ = 0), to the original signal itself(φ = 1). We demonstrate that this continuum may be populated with synthetic time series by undertaking selective randomisation of wavelet phases using a dual-tree complex wavelet transform. That is, the φ = 0 end of the continuum is realised using the recently proposed iterated, amplitude adjusted wavelet transform algorithm (Keylock, 2017) that fully randomises the wavelet phases. This is extended to the GMR formulation by selective phase randomisation depending on whether or not the wavelet coefficient amplitudes exceeds a threshold criterion. An econophysics application of the technique is presented. The relation between the normalised log-returns and their Hölder exponents for the daily returns of eight financial indices are compared. One particularly noticeable result is the change for the two American indices (NASDAQ 100 and S&P 500) from a non-significant to a strongly significant (as determined using GMR) cross-correlation between the returns and their Hölder exponents from before the 2008 crash to afterwards. This is also reflected in the skewness of the phase difference distributions, which exhibit a geographical structure, with Asian markets not exhibiting significant skewness in contrast to those from elsewhere globally.

  4. Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions

    NASA Astrophysics Data System (ADS)

    Jin, Wang; Penington, Catherine J.; McCue, Scott W.; Simpson, Matthew J.

    2016-10-01

    Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of r≥slant 1 concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, λ C(1-C), where λ is the proliferation rate, is generalised to a universal growth function, λ C f(C). Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.

  5. Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions.

    PubMed

    Jin, Wang; Penington, Catherine J; McCue, Scott W; Simpson, Matthew J

    2016-10-07

    Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of [Formula: see text] concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, [Formula: see text], where λ is the proliferation rate, is generalised to a universal growth function, [Formula: see text]. Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.

  6. Cross-continuum Care Continuity: Achieving Seamless Care and Managing Comorbidities.

    PubMed

    Boston-Fleischhauer, Carol; Rose, Robert; Hartwig, Laurie

    As healthcare systems continue to design care models responsive to payment changes and the assumption of clinical and financial risk, the need exists for a comprehensive approach to address cross-continuum care transitions. This article will highlight key learnings from the Nurse Executive Center's research on achieving care continuity. The business case for developing a cross-continuum care transition strategy will be discussed, as well as systemic enablers for the achievement of seamless care. A case study example of 1 system's solution for supporting the multiple comorbid patient population as part of its cross-continuum care transition strategy will be examined.

  7. SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-09-01

    This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.

  8. Microstructural comparison of the kinematics of discrete and continuum dislocations models

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Po, Giacomo

    2015-12-01

    The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.

  9. Spiraling down the river continuum: stream ecology and the U-shaped curve

    Treesearch

    Jackson R. Webster

    2007-01-01

    The spiraling concept provides an explicit approach to modeling the longitudinal linkages within a river continuum. I developed a spiraling-based model for particulate organic C dynamics in the Little Tennessee River to synthesize existing data and to illustrate our current understanding of ecosystem processes in river ecosystems. The Little Tennessee River is a medium...

  10. Breakdown parameter for kinetic modeling of multiscale gas flows.

    PubMed

    Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao

    2014-06-01

    Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers.

  11. Multiscale Fiber Kinking: Computational Micromechanics and a Mesoscale Continuum Damage Mechanics Models

    NASA Technical Reports Server (NTRS)

    Herraez, Miguel; Bergan, Andrew C.; Gonzalez, Carlos; Lopes, Claudio S.

    2017-01-01

    In this work, the fiber kinking phenomenon, which is known as the failure mechanism that takes place when a fiber reinforced polymer is loaded under longitudinal compression, is studied. A computational micromechanics model is employed to interrogate the assumptions of a recently developed mesoscale continuum damage mechanics (CDM) model for fiber kinking based on the deformation gradient decomposition (DGD) and the LaRC04 failure criteria.

  12. Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1993-01-01

    Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.

  13. A Geometrically Nonlinear Phase Field Theory of Brittle Fracture

    DTIC Science & Technology

    2014-10-01

    of crack propagation. Philos Mag 91:75–95 Sun X, Khaleel M (2004) Modeling of glass fracture damage using continuum damage mechanics -static spherical...elastic fracture mechanics ). Engineering finite element (FE) simula- tions often invoke continuum damage mechanics the- ories, wherein the tangent...stiffness of a material ele- ment degrades as “damage” accumulates.Conventional continuum damage mechanics theories (Clayton and McDowell 2003, 2004; Sun and

  14. Series Pneumatic Artificial Muscles (sPAMs) and Application to a Soft Continuum Robot.

    PubMed

    Greer, Joseph D; Morimoto, Tania K; Okamura, Allison M; Hawkes, Elliot W

    2017-01-01

    We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially round a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot's pneumatic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds.

  15. Series Pneumatic Artificial Muscles (sPAMs) and Application to a Soft Continuum Robot

    PubMed Central

    Greer, Joseph D.; Morimoto, Tania K.; Okamura, Allison M.; Hawkes, Elliot W.

    2017-01-01

    We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially round a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot’s pneumatic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds. PMID:29379672

  16. Hybrid continuum-coarse-grained modeling of erythrocytes

    NASA Astrophysics Data System (ADS)

    Lyu, Jinming; Chen, Paul G.; Boedec, Gwenn; Leonetti, Marc; Jaeger, Marc

    2018-06-01

    The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE-POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum-coarse-grained model for the study of RBCs in fluid flows.

  17. Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.

    2002-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.

  18. Improved dual-porosity models for petrophysical analysis of vuggy reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Haitao

    2017-08-01

    A new vug interconnection, isolated vug (IVG), was investigated through resistivity modeling and the dual-porosity model for connected vug (CVG) vuggy reservoirs was tested. The vuggy models were built by pore-scale modeling, and their electrical resistivity was calculated by the finite difference method. For CVG vuggy reservoirs, the CVG reduced formation factors and increased the porosity exponents, and the existing dual-porosity model failed to match these results. Based on the existing dual-porosity model, a conceptual dual-porosity model for CVG was developed by introducing a decoupled term to reduce the resistivity of the model. For IVG vuggy reservoirs, IVG increased the formation factors and porosity exponents. The existing dual-porosity model succeeded due to accurate calculation of the formation factors of the deformed interparticle porous media caused by the insertion of the IVG. Based on the existing dual-porosity model, a new porosity model for IVG vuggy reservoirs was developed by simultaneously recalculating the formation factors of the altered interparticle pore-scale models. The formation factors and porosity exponents from the improved and extended dual-porosity models for CVG and IVG vuggy reservoirs well matched the simulated formation factors and porosity exponents. This work is helpful for understanding the influence of connected and disconnected vugs on resistivity factors—an issue of particular importance in carbonates.

  19. Mechanics of low-dimensional carbon nanostructures: Atomistic, continuum, and multi-scale approaches

    NASA Astrophysics Data System (ADS)

    Mahdavi, Arash

    A new multiscale modeling technique called the Consistent Atomic-scale Finite Element (CAFE) method is introduced. Unlike traditional approaches for linking the atomic structure to its equivalent continuum, this method directly connects the atomic degrees of freedom to a reduced set of finite element degrees of freedom without passing through an intermediate homogenized continuum. As a result, there is no need to introduce stress and strain measures at the atomic level. The Tersoff-Brenner interatomic potential is used to calculate the consistent tangent stiffness matrix of the structure. In this finite element formulation, all local and non-local interactions between carbon atoms are taken into account using overlapping finite elements. In addition, a consistent hierarchical finite element modeling technique is developed for adaptively coarsening and refining the mesh over different parts of the model. This process is consistent with the underlying atomic structure and, by refining the mesh to the scale of atomic spacing, molecular dynamic results can be recovered. This method is valid across the scales and can be used to concurrently model atomistic and continuum phenomena so, in contrast with most other multi-scale methods, there is no need to introduce artificial boundaries for coupling atomistic and continuum regions. Effect of the length scale of the nanostructure is also included in the model by building the hierarchy of elements from bottom up using a finite size atom cluster as the building block. To be consistent with the bravais multi-lattice structure of sp2-bonded carbon, two independent displacement fields are used for reducing the order of the model. Sparse structure of the stiffness matrix of these nanostructures is exploited to reduce the memory requirement and to speed up the formation of the system matrices and solution of the equilibrium equations. Applicability of the method is shown with several examples of the nonlinear mechanics of carbon nanotubes and carbon nanocones subject to different loadings and boundary conditions. This finite element technique is also used to study the natural frequencies of low-dimensional carbon nanostructures and comparing the results with those of a homogenized isotropic continuum shell. Conclusion is that, replacing the atomic lattice with an isotropic continuum shell for a graphene sheet does not significantly affect the vibration frequencies while in the case of carbon nanotubes and carbon nanocones there is a significant difference between the natural frequencies of the atomistic model and its continuum counterpart. In the case of the carbon nanotube, continuum model successfully captures the beam bending vibration modes while overestimating frequencies of the modes in which the cross-section undergoes significant deformation. Furthermore, in the case of carbon nanotubes, the continuum shell exhibits a torsional mode which appears to be an artifact resulting from the small nominal thickness typically used in the continuum shell approximation of these nanostructures. Results of this study indicate that isotropic continuum shell models, while simple and useful in static analysis, cannot accurately predict the vibration frequencies of these nanostructures. We have studied the bistable nature of single-walled carbon nanotubes by investigating the change in the tube's energy as it is compressed between flat rigid indenters of various widths. Assuming the nanotube deformed uniformly along its length and modeling the cross-section as an inextensible, non-linear beam we found that tubes with a radius greater than 12 A are bistable and that tubes with a radius greater than 25 A have a lower energy in the collapsed state than in the inflated state. The difference in energy between the collapsed and inflated states decreases nearly linearly with increasing tube radius. While the inflated state remains stable for tubes of all diameters, the energy barrier keeping the tube from collapsing approaches zero as the tube radius increases. We also demonstrate why collapse with a wide indenter may be difficult to observe in narrow tubes. A reduced-order model is developed for the dynamics of the carbon nanotube atomic force microscope probes. Bending behavior of the nanotube probe is modeled using Euler's elastica. A nonlinear moment-curvature relationship is implemeneted to account for the ovalization of the cross section of the nanotube during bending. Van der Waal forces acting between tube and the substrate is integrated over the surface of the tube and used as distributed follower forces acting on the equivalent elastica. Approximating the behavior of the nanotube with an elastica proved to be a very effiecient technique for modeling these nanostructures.

  20. Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods

    NASA Technical Reports Server (NTRS)

    Harik, V. M.

    2001-01-01

    Limitations in the validity of the continuum beam model for carbon nanotubes (NTs) and nanorods are examined. Applicability of all assumptions used in the model is restricted by the two criteria for geometric parameters that characterize the structure of NTs. The key non-dimensional parameters that control the NT buckling behavior are derived via dimensional analysis of the nanomechanical problem. A mechanical law of geometric similitude for NT buckling is extended from continuum mechanics for different molecular structures. A model applicability map, where two classes of beam-like NTs are identified, is constructed for distinct ranges of non-dimensional parameters. Expressions for the critical buckling loads and strains are tailored for two classes of NTs and compared with the data provided by the molecular dynamics simulations. copyright 2001 Elsevier Science Ltd. All rights reserved.

  1. Quantum mechanical/molecular mechanical/continuum style solvation model: time-dependent density functional theory.

    PubMed

    Thellamurege, Nandun M; Cui, Fengchao; Li, Hui

    2013-08-28

    A combined quantum mechanical/molecular mechanical/continuum (QM/MMpol/C) style method is developed for time-dependent density functional theory (TDDFT, including long-range corrected TDDFT) method, induced dipole polarizable force field, and induced surface charge continuum model. Induced dipoles and induced charges are included in the TDDFT equations to solve for the transition energies, relaxed density, and transition density. Analytic gradient is derived and implemented for geometry optimization and molecular dynamics simulation. QM/MMpol/C style DFT and TDDFT methods are used to study the hydrogen bonding of the photoactive yellow protein chromopore in ground state and excited state.

  2. High-order continuum kinetic method for modeling plasma dynamics in phase space

    DOE PAGES

    Vogman, G. V.; Colella, P.; Shumlak, U.

    2014-12-15

    Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,v x,v y) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuummore » finite volume algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,v r,v z) phase space are presented.« less

  3. Ultrafast nonlinear spectrometer for material characterization

    NASA Astrophysics Data System (ADS)

    Negres, Raluca Aurelia

    2001-11-01

    This work describes the use of a broadband spectral source for nonlinear spectroscopy to characterize various materials with potential applications in confocal microscopy, biological sample markers, optical limiting devices and optical switches. The goal is to study the spectrum of nonlinear absorption and the dispersion of nonlinear refraction as well as the dynamics of the nonlinearities by means of femtosecond excite-probe experiments. The principle is quite simple: if a sample is under the influence of a strong fs excitation pulse and a probe pulse beam is incident at the same time, or shortly after (within the decay time of the nonlinearity), then the probe pulse will sense the nonlinearity induced by the excitation. If the probe pulse is broadband, a femtosecond white-light continuum (WLC) in our case, we can monitor the nonlinearity induced over the entire continuum spectrum in one laser ``shot''. The use of femtosecond laser pulses to generate WLC will provide femtosecond time resolution for time-resolved spectroscopy. We built the nonlinear spectrometer and allowed for many degrees of flexibility in terms of choice of wavelengths for pump and probe beams and a dual detection system to cover both visible and infrared spectral ranges. We have the possibility of performing broad band spectral measurements using a spectrometer or selected narrow bandwidth probes incident on Si or Ge photodiodes, for improved S/N ratios. The intrinsic properties of the continuum probe demand a careful characterization of its spatial and temporal profile. Knowledge of the dispersion of the index of refraction in various optical elements, including the sample itself, is also required for a correct analysis of the transient absorption raw data, especially for short time-scale dynamics of nonlinear processes. We tested the system using well-characterized semiconductor samples, and the results came out in excellent agreement with those from previous picosecond Z-scan measurements and theoretical modeling. With confidence, we can now measure various organic dyes with enhanced two-photon and excited-state absorption. Our setup is used to conduct a systematic study on similar compounds with modified molecular structures in order to learn about structure-property relations and draw guidelines for future design work.

  4. Numerical simulation of asphalt mixtures fracture using continuum models

    NASA Astrophysics Data System (ADS)

    Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz

    2018-01-01

    The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.

  5. A multiscale MD-FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure.

    PubMed

    Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A

    2014-02-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.

  6. A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure

    PubMed Central

    Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.

    2014-01-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582

  7. Atomistic to continuum modeling of solidification microstructures

    DOE PAGES

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked tomore » experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.« less

  8. Continuum electromechanical modeling of protein-membrane interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Y. C.; Lu, Benzhuo; Gorfe, Alemayehu A.

    2010-10-01

    A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electroelastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.

  9. Models for twistable elastic polymers in Brownian dynamics, and their implementation for LAMMPS.

    PubMed

    Brackley, C A; Morozov, A N; Marenduzzo, D

    2014-04-07

    An elastic rod model for semi-flexible polymers is presented. Theory for a continuum rod is reviewed, and it is shown that a popular discretised model used in numerical simulations gives the correct continuum limit. Correlation functions relating to both bending and twisting of the rod are derived for both continuous and discrete cases, and results are compared with numerical simulations. Finally, two possible implementations of the discretised model in the multi-purpose molecular dynamics software package LAMMPS are described.

  10. RXTE Observation of the Tycho Supernova Remnant

    NASA Technical Reports Server (NTRS)

    The, Lih-Sin

    1998-01-01

    SN1006 [4] and Cas A [1, 9] supernova remnants have been shown convincingly to have a hard X-ray power-law continuum. This continuum is thought to be the synchrotron radiation from accelerated electrons of approx. 100 TeV at the shock fronts. Our goal of AO2 RXTE observation is to detect the hard X-ray continuum and to determine the nature of the continuum from Tycho SNR. A detection of a power-law continuum from Tycho SNR can strongly argue for SNRs are the source of cosmic rays with the first order Fermi acceleration as the energizing process. We report the results of our AO2 RXTE 1 x 10(exp 5) sec observation of Tycho SNR. We detect two components of the X-ray spectrum from Tycho SNR both at better than 3 omega confidence. The best two component models are: bremsstrahlung (kT=2.67 +/- 0.13 keV) + bremsstrahlung (kT=7.07 +/- 2.21/1.72 keV) or bremsstrahlung (kT=2.36 +/- 0.21/0.57 keV) + power-law (gamma=2.58 +/- 0.12/0.09 ). This result is an improvement compaxed with the previous most sensitive X-ray measurements by Ginga which shows Tycho's observed X-ray continuum requires a two-component model to yield acceptable fits with the hard component parameters being highly uncertain. Our RXTE measurements constrain all parameter within 3o, ranges. However, we cannot yet distinguish between thermal and nonthermal models for the hard component. In the followings, we describe what we accomplished in the period covered by the grant proposal.

  11. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less

  12. Statistical Model of Dynamic Markers of the Alzheimer's Pathological Cascade.

    PubMed

    Balsis, Steve; Geraci, Lisa; Benge, Jared; Lowe, Deborah A; Choudhury, Tabina K; Tirso, Robert; Doody, Rachelle S

    2018-05-05

    Alzheimer's disease (AD) is a progressive disease reflected in markers across assessment modalities, including neuroimaging, cognitive testing, and evaluation of adaptive function. Identifying a single continuum of decline across assessment modalities in a single sample is statistically challenging because of the multivariate nature of the data. To address this challenge, we implemented advanced statistical analyses designed specifically to model complex data across a single continuum. We analyzed data from the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 1,056), focusing on indicators from the assessments of magnetic resonance imaging (MRI) volume, fluorodeoxyglucose positron emission tomography (FDG-PET) metabolic activity, cognitive performance, and adaptive function. Item response theory was used to identify the continuum of decline. Then, through a process of statistical scaling, indicators across all modalities were linked to that continuum and analyzed. Findings revealed that measures of MRI volume, FDG-PET metabolic activity, and adaptive function added measurement precision beyond that provided by cognitive measures, particularly in the relatively mild range of disease severity. More specifically, MRI volume, and FDG-PET metabolic activity become compromised in the very mild range of severity, followed by cognitive performance and finally adaptive function. Our statistically derived models of the AD pathological cascade are consistent with existing theoretical models.

  13. Water Vapor Self-Continuum by Cavity Ring Down Spectroscopy in the 1.6 Micron Transparency Window

    NASA Astrophysics Data System (ADS)

    Campargue, Alain; Kassi, Samir; Mondelain, Didier

    2014-06-01

    Since its discovery one century ago, a deep and unresolved controversy remains on the nature of the water vapor continuum. Several interpretations are proposed: accumulated effect of the distant wings of many individual spectral lines, metastable or true bound water dimers, collision-induced absorption. The atmospheric science community has largely sidestepped this controversy, and has adopted a pragmatic approach: most radiative transfer codes used in climate modelling, numerical weather prediction and remote sensing use the MT_CKD model which is a semi-empirical formulation of the continuum The MT_CKD cross-sections were tuned to available observations in the mid-infrared but in the absence of experimental constraints, the extrapolated near infrared (NIR) values are much more hazardous. Due to the weakness of the broadband absorption signal to be measured, very few measurements of the water vapor continuum are available in the NIR windows especially for temperature conditions relevant for our atmosphere. This is in particular the case for the 1.6 μm window where the very few available measurements show a large disagreement. Here we present the first measurements of the water vapor self-continuum cross-sections in the 1.6 μm window by cavity ring down spectroscopy (CRDS). The pressure dependence of the absorption continuum was investigated during pressure cycles up to 12 Torr for selected wavenumber values. The continuum level is observed to deviate from the expected quadratic dependence with pressure. This deviation is interpreted as due to a significant contribution of water adsorbed on the super mirrors to the cavity loss rate. The pressure dependence is well reproduced by a second order polynomial. We interpret the linear and quadratic terms as the adsorbed water and vapour water contribution, respectively. The derived self-continuum cross sections, measured between 5875 and 6450 wn, shows a minimum value around 6300 wn. These cross sections will be compared to the existing experimental data and models, especially to recent FTS measurements and to the last version of the MT_CKD 2.5 model. Mlawer, E.J., V.H. Payne, J.L. Moncet, et al. (2012), Phil. Trans. R. Soc. A, 370, 2520-2556. Mondelain, D., A. Aradj, S. Kassi, et al. (2013), JQSRT, 130, 381-391.

  14. HYDROGEN BALMER CONTINUUM IN SOLAR FLARES DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH (IRIS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinzel, P.; Kleint, L., E-mail: pheinzel@asu.cas.cz

    We present a novel observation of the white light flare (WLF) continuum, which was significantly enhanced during the X1 flare on 2014 March 29 (SOL2014-03-29T17:48). Data from the Interface Region Imaging Spectrograph (IRIS) in its near-UV channel show that at the peak of the continuum enhancement, the contrast at the quasi-continuum window above 2813 Å reached 100%-200% and can be even larger closer to Mg II lines. This is fully consistent with the hydrogen recombination Balmer-continuum emission, which follows an impulsive thermal and non-thermal ionization caused by the precipitation of electron beams through the chromosphere. However, a less probable photosphericmore » continuum enhancement cannot be excluded. The light curves of the Balmer continuum have an impulsive character with a gradual fading, similar to those detected recently in the optical region on the Solar Optical Telescope on board Hinode. This observation represents a first Balmer-continuum detection from space far beyond the Balmer limit (3646 Å), eliminating seeing effects known to complicate the WLF detection. Moreover, we use a spectral window so far unexplored for flare studies, which provides the potential to study the Balmer continuum, as well as many metallic lines appearing in emission during flares. Combined with future ground-based observations of the continuum near the Balmer limit, we will be able to disentangle various scenarios of the WLF origin. IRIS observations also provide a critical quantitative measure of the energy radiated in the Balmer continuum, which constrains various models of the energy transport and deposit during flares.« less

  15. Quantum mechanical/molecular mechanical/continuum style solvation model: second order Møller-Plesset perturbation theory.

    PubMed

    Thellamurege, Nandun M; Si, Dejun; Cui, Fengchao; Li, Hui

    2014-05-07

    A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths of the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.

  16. Waste IPSC : Thermal-Hydrologic-Chemical-Mechanical (THCM) modeling and simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Wang, Yifeng; Arguello, Jose Guadalupe, Jr.

    2010-10-01

    Waste IPSC Objective is to develop an integrated suite of high performance computing capabilities to simulate radionuclide movement through the engineered components and geosphere of a radioactive waste storage or disposal system: (1) with robust thermal-hydrologic-chemical-mechanical (THCM) coupling; (2) for a range of disposal system alternatives (concepts, waste form types, engineered designs, geologic settings); (3) for long time scales and associated large uncertainties; (4) at multiple model fidelities (sub-continuum, high-fidelity continuum, PA); and (5) in accordance with V&V and software quality requirements. THCM Modeling collaborates with: (1) Other Waste IPSC activities: Sub-Continuum Processes (and FMM), Frameworks and Infrastructure (and VU,more » ECT, and CT); (2) Waste Form Campaign; (3) Used Fuel Disposition (UFD) Campaign; and (4) ASCEM.« less

  17. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.

    Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less

  18. Continuum vs. spring network models of airway-parenchymal interdependence

    PubMed Central

    Ma, Baoshun

    2012-01-01

    The outward tethering forces exerted by the lung parenchyma on the airways embedded within it are potent modulators of the ability of the airway smooth muscle to shorten. Much of our understanding of these tethering forces is based on treating the parenchyma as an elastic continuum; yet, on a small enough scale, the lung parenchyma in two dimensions would seem to be more appropriately described as a discrete spring network. We therefore compared how the forces and displacements in the parenchyma surrounding a contracting airway are predicted to differ depending on whether the parenchyma is modeled as an elastic continuum or as a spring network. When the springs were arranged hexagonally to represent alveolar walls, the predicted parenchymal stresses and displacements propagated substantially farther away from the airway than when the springs were arranged in a triangular pattern or when the parenchyma was modeled as a continuum. Thus, to the extent that the parenchyma in vivo behaves as a hexagonal spring network, our results suggest that the range of interdependence forces due to airway contraction may have a greater influence than was previously thought. PMID:22500006

  19. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    DOE PAGES

    Hu, S. X.

    2017-08-10

    Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less

  20. LTE modeling of inhomogeneous chromospheric structure using high-resolution limb observations

    NASA Technical Reports Server (NTRS)

    Lindsey, C.

    1987-01-01

    The paper discusses considerations relevant to LTE modeling of rough atmospheres. Particular attention is given to the application of recent high-resolution observations of the solar limb in the far-infrared and radio continuum to the modeling of chromospheric spicules. It is explained how the continuum limb observations can be combined with morphological knowledge of spicule structure to model the physical conditions in chromospheric spicules. This discussion forms the basis for a chromospheric model presented in a parallel publication based on observations ranging from 100 microns to 2.6 mm.

  1. An Off-Lattice Hybrid Discrete-Continuum Model of Tumor Growth and Invasion

    PubMed Central

    Jeon, Junhwan; Quaranta, Vito; Cummings, Peter T.

    2010-01-01

    Abstract We have developed an off-lattice hybrid discrete-continuum (OLHDC) model of tumor growth and invasion. The continuum part of the OLHDC model describes microenvironmental components such as matrix-degrading enzymes, nutrients or oxygen, and extracellular matrix (ECM) concentrations, whereas the discrete portion represents individual cell behavior such as cell cycle, cell-cell, and cell-ECM interactions and cell motility by the often-used persistent random walk, which can be depicted by the Langevin equation. Using this framework of the OLHDC model, we develop a phenomenologically realistic and bio/physically relevant model that encompasses the experimentally observed superdiffusive behavior (at short times) of mammalian cells. When systemic simulations based on the OLHDC model are performed, tumor growth and its morphology are found to be strongly affected by cell-cell adhesion and haptotaxis. There is a combination of the strength of cell-cell adhesion and haptotaxis in which fingerlike shapes, characteristic of invasive tumor, are observed. PMID:20074513

  2. Kinetic Monte Carlo simulation of self-organized pattern formation induced by ion beam sputtering using crater functions

    NASA Astrophysics Data System (ADS)

    Yang, Zhangcan; Lively, Michael A.; Allain, Jean Paul

    2015-02-01

    The production of self-organized nanostructures by ion beam sputtering has been of keen interest to researchers for many decades. Despite numerous experimental and theoretical efforts to understand ion-induced nanostructures, there are still many basic questions open to discussion, such as the role of erosion or curvature-dependent sputtering. In this work, a hybrid MD/kMC (molecular dynamics/kinetic Monte Carlo) multiscale atomistic model is developed to investigate these knowledge gaps, and its predictive ability is validated across the experimental parameter space. This model uses crater functions, which were obtained from MD simulations, to model the prompt mass redistribution due to single-ion impacts. Defect migration, which is missing from previous models that use crater functions, is treated by a kMC Arrhenius method. Using this model, a systematic study was performed for silicon bombarded by Ar+ ions of various energies (100 eV, 250 eV, 500 eV, 700 eV, and 1000 eV) at incidence angles of 0∘ to 80∘. The simulation results were compared with experimental findings, showing good agreement in many aspects of surface evolution, such as the phase diagram. The underestimation of the ripple wavelength by the simulations suggests that surface diffusion is not the main smoothening mechanism for ion-induced pattern formation. Furthermore, the simulated results were compared with moment-description continuum theory and found to give better results, as the simulation did not suffer from the same mathematical inconsistencies as the continuum model. The key finding was that redistributive effects are dominant in the formation of flat surfaces and parallel-mode ripples, but erosive effects are dominant at high angles when perpendicular-mode ripples are formed. Ion irradiation with simultaneous sample rotation was also simulated, resulting in arrays of square-ordered dots. The patterns obtained from sample rotation were strongly correlated to the rotation speed and to the pattern types formed without sample rotation, and a critical value of about 5 rpm was found between disordered ripples and square-ordered dots. Finally, simulations of dual-beam sputtering were performed, with the resulting patterns determined by the flux ratio of the two beams and the pattern types resulting from single-beam sputtering under the same conditions.

  3. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators

    PubMed Central

    Dosdall, Derek J; Sweeney, James D

    2008-01-01

    Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561

  4. A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Durlofsky, L. J.

    2016-10-01

    A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.

  5. Non-uniform Continuum Model for Solvated Species Based on Frozen-Density Embedding Theory: The Study Case of Solvatochromism of Coumarin 153.

    PubMed

    Shedge, Sapana V; Zhou, Xiuwen; Wesolowski, Tomasz A

    2014-09-01

    Recent application of the Frozen-Density Embedding Theory based continuum model of the solvent, which is used for calculating solvatochromic shifts in the UV/Vis range, are reviewed. In this model, the solvent is represented as a non-uniform continuum taking into account both the statistical nature of the solvent and specific solute-solvent interactions. It offers, therefore, a computationally attractive alternative to methods in which the solvent is described at atomistic level. The evaluation of the solvatochromic shift involves only two calculations of excitation energy instead of at least hundreds needed to account for inhomogeneous broadening. The present review provides a detailed graphical analysis of the key quantities of this model: the average charge density of the solvent (<ρB>) and the corresponding Frozen-Density Embedding Theory derived embedding potential for coumarin 153.

  6. A continuum model of transcriptional bursting

    PubMed Central

    Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R

    2016-01-01

    Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676

  7. Combined binary collision and continuum mechanics model applied to focused ion beam milling of a silicon membrane

    NASA Astrophysics Data System (ADS)

    Hobler, Gerhard

    2015-06-01

    Many experiments indicate the importance of stress and stress relaxation upon ion implantation. In this paper, a model is proposed that is capable of describing ballistic effects as well as stress relaxation by viscous flow. It combines atomistic binary collision simulation with continuum mechanics. The only parameters that enter the continuum model are the bulk modulus and the radiation-induced viscosity. The shear modulus can also be considered but shows only minor effects. A boundary-fitted grid is proposed that is usable both during the binary collision simulation and for the spatial discretization of the force balance equations. As an application, the milling of a slit into an amorphous silicon membrane with a 30 keV focused Ga beam is studied, which demonstrates the relevance of the new model compared to a more heuristic approach used in previous work.

  8. Evaporation in Capillary Porous Media at the Perfect Piston-Like Invasion Limit: Evidence of Nonlocal Equilibrium Effects

    NASA Astrophysics Data System (ADS)

    Attari Moghaddam, Alireza; Prat, Marc; Tsotsas, Evangelos; Kharaghani, Abdolreza

    2017-12-01

    The classical continuum modeling of evaporation in capillary porous media is revisited from pore network simulations of the evaporation process. The computed moisture diffusivity is characterized by a minimum corresponding to the transition between liquid and vapor transport mechanisms confirming previous interpretations. Also the study suggests an explanation for the scattering generally observed in the moisture diffusivity obtained from experimental data. The pore network simulations indicate a noticeable nonlocal equilibrium effect leading to a new interpretation of the vapor pressure-saturation relationship classically introduced to obtain the one-equation continuum model of evaporation. The latter should not be understood as a desorption isotherm as classically considered but rather as a signature of a nonlocal equilibrium effect. The main outcome of this study is therefore that nonlocal equilibrium two-equation model must be considered for improving the continuum modeling of evaporation.

  9. Toward lattice fractional vector calculus

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  10. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1993-01-01

    Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.

  11. Continuous Shape Estimation of Continuum Robots Using X-ray Images

    PubMed Central

    Lobaton, Edgar J.; Fu, Jinghua; Torres, Luis G.; Alterovitz, Ron

    2015-01-01

    We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot’s shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints. PMID:26279960

  12. Continuous Shape Estimation of Continuum Robots Using X-ray Images.

    PubMed

    Lobaton, Edgar J; Fu, Jinghua; Torres, Luis G; Alterovitz, Ron

    2013-05-06

    We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot's shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints.

  13. Dissipation consistent fabric tensor definition from DEM to continuum for granular media

    NASA Astrophysics Data System (ADS)

    Li, X. S.; Dafalias, Y. F.

    2015-05-01

    In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.

  14. Numerical simulations of continuum-driven winds of super-Eddington stars

    NASA Astrophysics Data System (ADS)

    van Marle, A. J.; Owocki, S. P.; Shaviv, N. J.

    2008-09-01

    We present the results of numerical simulations of continuum-driven winds of stars that exceed the Eddington limit and compare these against predictions from earlier analytical solutions. Our models are based on the assumption that the stellar atmosphere consists of clumped matter, where the individual clumps have a much larger optical thickness than the matter between the clumps. This `porosity' of the stellar atmosphere reduces the coupling between radiation and matter, since photons tend to escape through the more tenuous gas between the clumps. This allows a star that formally exceeds the Eddington limit to remain stable, yet produce a steady outflow from the region where the clumps become optically thin. We have made a parameter study of wind models for a variety of input conditions in order to explore the properties of continuum-driven winds. The results show that the numerical simulations reproduce quite closely the analytical scalings. The mass-loss rates produced in our models are much larger than can be achieved by line driving. This makes continuum driving a good mechanism to explain the large mass-loss and flow speeds of giant outbursts, as observed in η Carinae and other luminous blue variable stars. Continuum driving may also be important in population III stars, since line driving becomes ineffective at low metallicities. We also explore the effect of photon tiring and the limits it places on the wind parameters.

  15. Reverberation Mapping of the Continuum Source in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fausnaugh, Michael Martin

    I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently variable to measure continuum-Hbeta lags and super-massive black hole masses: MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. I also obtain Hgamma and HeII lags for all objects except 3C 382. The HeII lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines to continuum variations are also in qualitative agreement with photoionization models. Finally, I measure optical continuum lags for the two most variable targets, MCG+08-11-011 and NGC 2617. I again find lags consistent with geometrically thin accretion-disk models that have temperature profiles T ∝ R-3/4. The observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. Using a physical model, these differences can be explained if the mass accretion rates are larger than inferred from the optical continuum luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long 2.6 day lag is problematic for coronal reprocessing models.

  16. A Continuum Method for Determining Membrane Protein Insertion Energies and the Problem of Charged Residues

    PubMed Central

    Choe, Seungho; Hecht, Karen A.; Grabe, Michael

    2008-01-01

    Continuum electrostatic approaches have been extremely successful at describing the charged nature of soluble proteins and how they interact with binding partners. However, it is unclear whether continuum methods can be used to quantitatively understand the energetics of membrane protein insertion and stability. Recent translation experiments suggest that the energy required to insert charged peptides into membranes is much smaller than predicted by present continuum theories. Atomistic simulations have pointed to bilayer inhomogeneity and membrane deformation around buried charged groups as two critical features that are neglected in simpler models. Here, we develop a fully continuum method that circumvents both of these shortcomings by using elasticity theory to determine the shape of the deformed membrane and then subsequently uses this shape to carry out continuum electrostatics calculations. Our method does an excellent job of quantitatively matching results from detailed molecular dynamics simulations at a tiny fraction of the computational cost. We expect that this method will be ideal for studying large membrane protein complexes. PMID:18474636

  17. Characterization of double continuum formulations of transport through pore-scale information

    NASA Astrophysics Data System (ADS)

    Porta, G.; Ceriotti, G.; Bijeljic, B.

    2016-12-01

    Information on pore-scale characteristics is becoming increasingly available at unprecedented levels of detail from modern visualization/data-acquisition techniques. These advancements are not completely matched by corresponding developments of operational procedures according to which we can engineer theoretical findings aiming at improving our ability to reduce the uncertainty associated with the outputs of continuum-scale models to be employed at large scales. We present here a modeling approach which rests on pore-scale information to achieve a complete characterization of a double continuum model of transport and fluid-fluid reactive processes. Our model makes full use of pore-scale velocity distributions to identify mobile and immobile regions. We do so on the basis of a pointwise (in the pore space) evaluation of the relative strength of advection and diffusion time scales, as rendered by spatially variable values of local Péclet numbers. After mobile and immobile regions are demarcated, we build a simplified unit cell which is employed as a representative proxy of the real porous domain. This model geometry is then employed to simplify the computation of the effective parameters embedded in the double continuum transport model, while retaining relevant information from the pore-scale characterization of the geometry and velocity field. We document results which illustrate the applicability of the methodology to predict transport of a passive tracer within two- and three-dimensional media upon comparison with direct pore-scale numerical simulation of transport in the same geometrical settings. We also show preliminary results about the extension of this model to fluid-fluid reactive transport processes. In this context, we focus on results obtained in two-dimensional porous systems. We discuss the impact of critical quantities required as input to our modeling approach to obtain continuum-scale outputs. We identify the key limitations of the proposed methodology and discuss its capability also in comparison with alternative approaches grounded, e.g., on nonlocal and particle-based approximations.

  18. Toward generalized continuum models of granular soil and granular soil-tire interaction: A combined discrete element and thermomicromechanical continuum analysis of densely packed assemblies

    DTIC Science & Technology

    2007-04-30

    flow and deformation of soils in contact with metallic and/or rubber -like bodies” Proceedings, 13th International Conference of the ISTVS 1, pp 201-208...soil- tyre interaction problem”, Proceedings, First North American Workshop on Modeling the Mechanics of Off-Road Mobility. Paper GL-94-30 U.S

  19. Non-Equilbrium Fermi Gases

    DTIC Science & Technology

    2016-02-02

    understanding is the experimental verification of a new model of light-induced loss spectra, employing continuum-dressed basis states, which agrees in...and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self -explanatory... verification of a new model of light-induced loss spectra, employing continuum-dressed basis states, which agrees in shape and magnitude with all of our

  20. Atmospheric absorption of terahertz radiation and water vapor continuum effects

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Slingerland, Elizabeth J.; Giles, Robert H.; Goyette, Thomas M.

    2013-09-01

    The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.

  1. Discrimination between discrete and continuum scattering from the sub-seafloor.

    PubMed

    Holland, Charles W; Steininger, Gavin; Dosso, Stan E

    2015-08-01

    There is growing evidence that seabed scattering is often dominated by heterogeneities within the sediment volume as opposed to seafloor roughness. From a theoretical viewpoint, sediment volume heterogeneities can be described either by a fluctuation continuum or by discrete particles. In at-sea experiments, heterogeneity characteristics generally are not known a priori. Thus, an uninformed model selection is generally made, i.e., the researcher must arbitrarily select either a discrete or continuum model. It is shown here that it is possible to (acoustically) discriminate between continuum and discrete heterogeneities in some instances. For example, when the spectral exponent γ3>4, the volume scattering cannot be described by discrete particles. Conversely, when γ3≤2, the heterogeneities likely arise from discrete particles. Furthermore, in the range 2<γ3≤4 it is sometimes possible to discriminate via physical bounds on the parameter values. The ability to so discriminate is important, because there are few tools for measuring small scale, O(10(-2) to 10(1)) m, sediment heterogeneities over large areas. Therefore, discriminating discrete vs continuum heterogeneities via acoustic remote sensing may lead to improved observations and concomitant increased understanding of the marine benthic environment.

  2. An oculomotor continuum from exploration to fixation

    PubMed Central

    Otero-Millan, Jorge; Macknik, Stephen L.; Langston, Rachel E.; Martinez-Conde, Susana

    2013-01-01

    During visual exploration, saccadic eye movements scan the scene for objects of interest. During attempted fixation, the eyes are relatively still but often produce microsaccades. Saccadic rates during exploration are higher than those of microsaccades during fixation, reinforcing the classic view that exploration and fixation are two distinct oculomotor behaviors. An alternative model is that fixation and exploration are not dichotomous, but are instead two extremes of a functional continuum. Here, we measured the eye movements of human observers as they either fixed their gaze on a small spot or scanned natural scenes of varying sizes. As scene size diminished, so did saccade rates, until they were continuous with microsaccadic rates during fixation. Other saccadic properties varied as function of image size as well, forming a continuum with microsaccadic parameters during fixation. This saccadic continuum extended to nonrestrictive, ecological viewing conditions that allowed all types of saccades and fixation positions. Eye movement simulations moreover showed that a single model of oculomotor behavior can explain the saccadic continuum from exploration to fixation, for images of all sizes. These findings challenge the view that exploration and fixation are dichotomous, suggesting instead that visual fixation is functionally equivalent to visual exploration on a spatially focused scale. PMID:23533278

  3. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study.

    PubMed

    Bilić, A; Sanvito, S

    2013-07-10

    Pyrene, the smallest two-dimensional mesh of aromatic rings, with various terminal thiol substitutions, has been considered as a potential molecular interconnect. Charge transport through two terminal devices has been modeled using density functional theory (with and without self interaction correction) and the non-equilibrium Green's function method. A tetra-substituted pyrene, with dual thiol terminal groups at opposite ends, has been identified as an excellent candidate, owing to its high conductance, virtually independent of bias voltage. The two possible extensions of its motif generate two series of graphene nanoribbons, with zigzag and armchair edges and with semimetallic and semiconducting electron band structure, respectively. The effects related to the wire length and the bias voltage on the charge transport have been investigated for both sets. The conductance of the nanoribbons with a zigzag edge does not show either length or voltage dependence, owing to an almost perfect electron transmission with a continuum of conducting channels. In contrast, for the armchair nanoribbons a slow exponential attenuation of the conductance with the length has been found, due to their semiconducting nature.

  4. Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, Nicholas Bryan; Perry, John Oliver; Coleman, Joshua Eugene

    2017-07-11

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to themore » beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.« less

  5. Molecular Modeling of Lipid Membrane Curvature Induction by a Peptide: More than Simply Shape

    PubMed Central

    Sodt, Alexander J.; Pastor, Richard W.

    2014-01-01

    Molecular dynamics simulations of an amphipathic helix embedded in a lipid bilayer indicate that it will induce substantial positive curvature (e.g., a tube of diameter 20 nm at 16% surface coverage). The induction is twice that of a continuum model prediction that only considers the shape of the inclusion. The discrepancy is explained in terms of the additional presence of specific interactions described only by the molecular model. The conclusion that molecular shape alone is insufficient to quantitatively model curvature is supported by contrasting molecular and continuum models of lipids with large and small headgroups (choline and ethanolamine, respectively), and of the removal of a lipid tail (modeling a lyso-lipid). For the molecular model, curvature propensity is analyzed by computing the derivative of the free energy with respect to bending. The continuum model predicts that the inclusion will soften the bilayer near the headgroup region, an effect that may weaken curvature induction. The all-atom predictions are consistent with experimental observations of the degree of tubulation by amphipathic helices and variation of the free energy of binding to liposomes. PMID:24806928

  6. A software platform for continuum modeling of ion channels based on unstructured mesh

    NASA Astrophysics Data System (ADS)

    Tu, B.; Bai, S. Y.; Chen, M. X.; Xie, Y.; Zhang, L. B.; Lu, B. Z.

    2014-01-01

    Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson-Nernst-Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels.

  7. Posture and cognition in the elderly: interaction and contribution to the rehabilitation strategies.

    PubMed

    Borel, L; Alescio-Lautier, B

    2014-01-01

    In this paper we review the effects of aging on sensory systems and their impact on posture, balance and gait. We also address cognitive aging and attempt to specify which altered cognitive functions negatively impact balance and walking. The role of cognition in postural control is tested with dual-task experiments. This situation results in deleterious effects due to an attentional overload. Given the human cognitive system has limited capacities, we propose that simultaneously performing two tasks depends on the capacity of each individual to perform these tasks on a continuum between automatic execution to highly controlled performance. A level of maximum control exceeds the subject's attentional capacity, which makes it impossible to perform both tasks simultaneously. The subject therefore prioritizes one of the tasks. We use representative dual-task studies from the literature to illustrate the relationship between the different cognitive components and their impact on the control of posture and gait in elderly subjects with altered cognitive capacities and with elderly subjects who are fallers or who have altered sensory-motor capacities. Recently this postural-cognitive relationship was addressed with a new approach. We report how cognitive training can improve dual-task management and we attempt to define the cognitive mechanisms that may be responsible for better postural balance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Continuum and discrete approach in modeling biofilm development and structure: a review.

    PubMed

    Mattei, M R; Frunzo, L; D'Acunto, B; Pechaud, Y; Pirozzi, F; Esposito, G

    2018-03-01

    The scientific community has recognized that almost 99% of the microbial life on earth is represented by biofilms. Considering the impacts of their sessile lifestyle on both natural and human activities, extensive experimental activity has been carried out to understand how biofilms grow and interact with the environment. Many mathematical models have also been developed to simulate and elucidate the main processes characterizing the biofilm growth. Two main mathematical approaches for biomass representation can be distinguished: continuum and discrete. This review is aimed at exploring the main characteristics of each approach. Continuum models can simulate the biofilm processes in a quantitative and deterministic way. However, they require a multidimensional formulation to take into account the biofilm spatial heterogeneity, which makes the models quite complicated, requiring significant computational effort. Discrete models are more recent and can represent the typical multidimensional structural heterogeneity of biofilm reflecting the experimental expectations, but they generate computational results including elements of randomness and introduce stochastic effects into the solutions.

  9. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.

  10. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less

  11. Quantum mechanical/molecular mechanical/continuum style solvation model: Second order Møller-Plesset perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thellamurege, Nandun M.; Si, Dejun; Cui, Fengchao

    A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths ofmore » the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.« less

  12. Numerical modelling of bifurcation and localisation in cohesive-frictional materials

    NASA Astrophysics Data System (ADS)

    de Borst, René

    1991-12-01

    Methods are reviewed for analysing highly localised failure and bifurcation modes in discretised mechanical systems as typically arise in numerical simulations of failure in soils, rocks, metals and concrete. By the example of a plane-strain biaxial test it is shown that strain softening and lack of normality in elasto-plastic constitutive equations and the ensuing loss of ellipticity of the governing field equations cause a pathological mesh dependence of numerical solutions for such problems, thus rendering the results effectively meaningless. The need for introduction of higher-order continuum models is emphasised to remedy this shortcoming of the conventional approach. For one such a continuum model, namely the unconstrained Cosserat continuum, it is demonstrated that meaningful and convergent solutions (in the sense that a finite width of the localisation zone is computed upon mesh refinement) can be obtained.

  13. A continuum state variable theory to model the size-dependent surface energy of nanostructures.

    PubMed

    Jamshidian, Mostafa; Thamburaja, Prakash; Rabczuk, Timon

    2015-10-14

    We propose a continuum-based state variable theory to quantify the excess surface free energy density throughout a nanostructure. The size-dependent effect exhibited by nanoplates and spherical nanoparticles i.e. the reduction of surface energy with reducing nanostructure size is well-captured by our continuum state variable theory. Our constitutive theory is also able to predict the reducing energetic difference between the surface and interior (bulk) portions of a nanostructure with decreasing nanostructure size.

  14. The Dual Language Program Planner: A Guide for Designing and Implementing Dual Language Programs.

    ERIC Educational Resources Information Center

    Howard, Elizabeth R.; Olague, Natalie; Rogers, David

    This guide offers a framework to facilitate the planning process for dual language programs, assuming at least a basic working knowledge of the central characteristics and essential features of dual language models. It provides an overview of the various models that serve linguistically diverse student populations, defining the term dual language…

  15. Computation of forces arising from the polarizable continuum model within the domain-decomposition paradigm

    NASA Astrophysics Data System (ADS)

    Gatto, Paolo; Lipparini, Filippo; Stamm, Benjamin

    2017-12-01

    The domain-decomposition (dd) paradigm, originally introduced for the conductor-like screening model, has been recently extended to the dielectric Polarizable Continuum Model (PCM), resulting in the ddPCM method. We present here a complete derivation of the analytical derivatives of the ddPCM energy with respect to the positions of the solute's atoms and discuss their efficient implementation. As it is the case for the energy, we observe a quadratic scaling, which is discussed and demonstrated with numerical tests.

  16. Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences

    NASA Technical Reports Server (NTRS)

    Decker, Rand (Editor)

    1989-01-01

    In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.

  17. Modeling of Pedestrian Flows Using Hybrid Models of Euler Equations and Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Bärwolff, Günter; Slawig, Thomas; Schwandt, Hartmut

    2007-09-01

    In the last years various systems have been developed for controlling, planning and predicting the traffic of persons and vehicles, in particular under security aspects. Going beyond pure counting and statistical models, approaches were found to be very adequate and accurate which are based on well-known concepts originally developed in very different research areas, namely continuum mechanics and computer science. In the present paper, we outline a continuum mechanical approach for the description of pedestrain flow.

  18. Dynamic Modelling for Planar Extensible Continuum Robot Manipulators

    DTIC Science & Technology

    2006-01-01

    5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7... octopus arm [18]. The OCTARM, shown in Figure 1, is a three-section robot with nine degrees of freedom. Aside from two axis bending with constant... octopus arm. However, while allowing extensibility, the model is based on an approximation (by a Þnite number of linear models) to the true continuum

  19. On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2016-10-01

    The highly dynamic processes within a hillslope-riparian-stream (HRS) continuum are known to affect streamflow generation, but are yet not fully understood. Within this study, we simulated a headwater HRS continuum in western Luxembourg with an integrated hydrologic surface subsurface model (HydroGeoSphere). The model was setup with thorough consideration of catchment-specific attributes and we performed a multicriteria model evaluation (4 years) with special focus on the temporally varying spatial patterns of surface saturation. We used a portable thermal infrared (TIR) camera to map surface saturation with a high spatial resolution and collected 20 panoramic snapshots of the riparian zone (approx. 10 m × 20 m) under different hydrologic conditions. Qualitative and quantitative comparison of the processed TIR panoramas and the corresponding model output panoramas revealed a good agreement between spatiotemporal dynamic model and field surface saturation patterns. A double logarithmic linear relationship between surface saturation extent and discharge was similar for modeled and observed data. This provided confidence in the capability of an integrated hydrologic surface subsurface model to represent temporal and spatial water flux dynamics at small (HRS continuum) scales. However, model scenarios with different parameterizations of the riparian zone showed that discharge and surface saturation were controlled by different parameters and hardly influenced each other. Surface saturation only affected very fast runoff responses with a small volumetric contribution to stream discharge, indicating that the dynamic surface saturation in the riparian zone does not necessarily imply a major control on runoff generation.

  20. Dynamic analysis of Space Shuttle/RMS configuration using continuum approach

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.

    1994-01-01

    The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.

  1. Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure

    NASA Astrophysics Data System (ADS)

    Saksala, Timo

    2016-10-01

    This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.

  2. Isostaticity in Cosserat Continuum

    DTIC Science & Technology

    2012-01-01

    Geotech . Eng. Div. 106(4), 419–433 (1980) 13. Walker, D.M., Tordesillas, A., Thornton, C., Behringer, R.P., Zhang, J., Peters, J.F.: Percolating contact...thermomicromechanical approach to multiscale continuum modeling of dense granular materials. Acta Geotech . 3, 225–240 (2008) 17. Oda, M., Takemura, T

  3. Grain transport mechanics in shallow flow

    USDA-ARS?s Scientific Manuscript database

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  4. Grain transport mechanics in shallow overland flow

    USDA-ARS?s Scientific Manuscript database

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  5. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar (registered trademark)-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2013-03-01

    of coarser-scale materials and structures containing Kevlar fibers (e.g., yarns, fabrics, plies, lamina, and laminates ). Journal of Materials...Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar -Fiber-Reinforced Polymer-Matrix Composites M. Grujicic, B. Pandurangan, J.S...extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar fiber

  6. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    PubMed Central

    Mitran, Sorin

    2013-01-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale. PMID:23729842

  7. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitran, Sorin, E-mail: mitran@unc.edu

    2013-07-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough,more » upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.« less

  8. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin

    2013-07-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.

  9. Effect of drug particle size in ultrasound compacted tablets. Continuum percolation model approach.

    PubMed

    Millán, Mónica; Caraballo, Isidoro

    2006-03-09

    The main objective of this work is to study the influence of the drug particle size on the pharmaceutical availability of ultrasound compacted tablets. Inert matrix systems containing different drug particle sizes were prepared using both, an ultrasound-assisted press and a traditional eccentric machine. Potassium chloride was used as drug model and Eudragit RS-PM as matrix forming excipient. The excipient particle size was kept constant. The cross-sectional microphotographs of ultrasound tablets show the existence of a quasi-continuum medium. Keeping constant the drug load, US-tablets showed very similar release rates, whereas for traditional tablets, an increase in the particle size resulted in a clear decrease in the release rate. In these tablets, the excipient forms an almost continuum medium. In an infinite theoretical system of these characteristics, the size of the drug particles will not modify the percolation threshold. The percolation of the excipient in this system can be assimilated to a continuum percolation model. In accordance with the proposed model, a lower influence of the drug particle size on the drug release rate was obtained for the US-tablets in comparison with traditional tablets. This fact can be indicative of the similarity of the drug percolation thresholds in these systems.

  10. Model Reduction in Biomechanics

    NASA Astrophysics Data System (ADS)

    Feng, Yan

    The mechanical characteristic of the cell is primarily performed by the cytoskeleton. Microtubules, actin, and intermediate filaments are the three main cytoskeletal polymers. Of these, microtubules are the stiffest and have multiple functions within a cell that include: providing tracks for intracellular transport, transmitting the mechanical force necessary for cell division during mitosis, and providing sufficient stiffness for propulsion in flagella and cilia. Microtubule mechanics has been studied by a variety of methods: detailed molecular dynamics (MD), coarse-grained models, engineering type models, and elastic continuum models. In principle, atomistic MD simulations should be able to predict all desired mechanical properties of a single molecule, however, in practice the large computational resources are required to carry out a simulation of larger biomolecular system. Due to the limited accessibility using even the most ambitious all-atom models and the demand for the multiscale molecular modeling and simulation, the emergence of the reduced models is critically important to provide the capability for investigating the biomolecular dynamics that are critical to many biological processes. Then the coarse-grained models, such as elastic network models and anisotropic network models, have been shown to bequite accurate in predicting microtubule mechanical response, but still requires significant computational resources. On the other hand, the microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models, are often used to extract mechanical parameters from experimental results. The microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models in which the biomolecular system is assumed as homogeneous isotropic materials with solid cross-sections, are often used to extract mechanical parameters from experimental results. However, in real biological world, these homogeneous and isotropic assumptions are usually invalidate. Thus, instead of using hypothesized model, a specific continuum model at mesoscopic scale can be introduced based upon data reduction of the results from molecular simulations at atomistic level. Once a continuum model is established, it can provide details on the distribution of stresses and strains induced within the biomolecular system which is useful in determining the distribution and transmission of these forces to the cytoskeletal and sub-cellular components, and help us gain a better understanding in cell mechanics. A data-driven model reduction approach to the problem of microtubule mechanics as an application is present, a beam element is constructed for microtubules based upon data reduction of the results from molecular simulation of the carbon backbone chain of alphabeta-tubulin dimers. The data base of mechanical responses to various types of loads from molecular simulation is reduced to dominant modes. The dominant modes are subsequently used to construct the stiffness matrix of a beam element that captures the anisotropic behavior and deformation mode coupling that arises from a microtubule's spiral structure. In contrast to standard Euler-Bernoulli or Timoshenko beam elements, the link between forces and node displacements results not from hypothesized deformation behavior, but directly from the data obtained by molecular scale simulation. Differences between the resulting microtubule data-driven beam model (MTDDBM) and standard beam elements are presented, with a focus on coupling of bending, stretch, shear deformations. The MTDDBM is just as economical to use as a standard beam element, and allows accurate reconstruction of the mechanical behavior of structures within a cell as exemplified in a simple model of a component element of the mitotic spindle.

  11. Time evolution of complexity in Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Iizuka, Norihiro; Sugishita, Sotaro

    2017-12-01

    Quantum complexity is conjectured to probe inside of black hole horizons (or wormholes) via gauge gravity correspondence. In order to have a better understanding of this correspondence, we study time evolutions of complexities for Abelian pure gauge theories. For this purpose, we discretize the U (1 ) gauge group as ZN and also the continuum spacetime as lattice spacetime, and this enables us to define a universal gate set for these gauge theories and to evaluate time evolutions of the complexities explicitly. We find that to achieve a large complexity ˜exp (entropy), which is one of the conjectured criteria necessary to have a dual black hole, the Abelian gauge theory needs to be maximally nonlocal.

  12. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows

    NASA Astrophysics Data System (ADS)

    Richard, L.; Vasilchenko, S.; Mondelain, D.; Ventrillard, I.; Romanini, D.; Campargue, A.

    2017-11-01

    In a recent contribution [A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, D. Romanini, Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J. Geophys. Res. Atmos., 121,13,180-13,203, doi:10.1002/2016JD025531], we reported accurate water vapor absorption continuum measurements by Cavity Ring-down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Absorption Spectroscopy (OF-CEAS) at selected spectral points of 4 near infrared transparency windows. In the present work, the self-continuum cross-sections, CS, are determined for two new spectral points. The 2491 cm-1 spectral point in the region of maximum transparency of the 4.0 μm window was measured by OF-CEAS in the 23-52 °C temperature range. The 4435 cm-1 spectral point of the 2.1 μm window was measured by CRDS at room temperature. The self-continuum cross-sections were determined from the pressure squared dependence of the continuum absorption. Comparison to the literature shows a reasonable agreement with 1970 s and 1980 s measurements using a grating spectrograph in the 4.0 μm window and a very good consistency with our previous laser measurements in the 2.1 μm window. For both studied spectral points, our values are much smaller than previous room temperature measurements by Fourier Transform Spectroscopy. Significant deviations (up to about a factor 4) are noted compared to the widely used semi empirical MT_CKD model of the absorption continuum. The measured temperature dependence at 2491 cm-1 is consistent with previous high temperature measurements in the 4.0 μm window and follows an exp(D0/kT) law, D0 being the dissociation energy of the water dimer.

  13. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method

    PubMed Central

    Kojic, Milos; Filipovic, Nenad; Tsuda, Akira

    2012-01-01

    A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249–274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier–Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples – simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method. PMID:23814322

  14. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing.more » Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.« less

  15. Boron nitride nanotube-based biosensing of various bacterium/viruses: continuum modelling-based simulation approach.

    PubMed

    Panchal, Mitesh B; Upadhyay, Sanjay H

    2014-09-01

    In this study, the feasibility of single walled boron nitride nanotube (SWBNNT)-based biosensors has been ensured considering the continuum modelling-based simulation approach, for mass-based detection of various bacterium/viruses. Various types of bacterium or viruses have been taken into consideration at the free-end of the cantilevered configuration of the SWBNNT, as a biosensor. Resonant frequency shift-based analysis has been performed with the adsorption of various bacterium/viruses considered as additional mass to the SWBNNT-based sensor system. The continuum mechanics-based analytical approach, considering effective wall thickness has been considered to validate the finite element method (FEM)-based simulation results, based on continuum volume-based modelling of the SWBNNT. As a systematic analysis approach, the FEM-based simulation results are found in excellent agreement with the analytical results, to analyse the SWBNNTs for their wide range of applications such as nanoresonators, biosensors, gas-sensors, transducers and so on. The obtained results suggest that by using the SWBNNT of smaller size the sensitivity of the sensor system can be enhanced and detection of the bacterium/virus having mass of 4.28 × 10⁻²⁴ kg can be effectively performed.

  16. Workplace disaster preparedness and response: the employee assistance program continuum of services.

    PubMed

    Paul, Jan; Blum, Dorothy

    2005-01-01

    Response programs for workplace critical and traumatic events are becoming an acknowledged and sought after standard of care. The current trauma literature recognizes what goes on in the workplace between the Employee Assistance Program (EAP) and management. The authors have taken this intra-organizational relationship, assimilated the information, and developed a model that recognizes and supports management throughout the continuum of response to workplace traumatic events. The model recognizes the EAP as an important workplace resource and tool in management's ability to strike the balance of managing the workforce while assisting in recovery following workplace trauma. The introduced concept defines the continuum and highlights the before, during, and after phases, showing how EAP supports management in most effectively doing their job.

  17. A Size-Luminosity Relationship for Protoplanetary Disks in Lupus

    NASA Astrophysics Data System (ADS)

    Terrell, Marie; Andrews, Sean

    2018-01-01

    The sizes of the 340 GHz continuum emission from 56 protoplanetary disks in the Lupus star-forming region were measured by modeling their ALMA visibility profiles. We describe the mechanism for these measurements and some preliminary results regarding the correlation between the continuum luminosities and sizes.

  18. A Framework for Health Communication Across the HIV Treatment Continuum

    PubMed Central

    Van Lith, Lynn M.; Mallalieu, Elizabeth C.; Packman, Zoe R.; Myers, Emily; Ahanda, Kim Seifert; Harris, Emily; Gurman, Tilly; Figueroa, Maria-Elena

    2017-01-01

    Background: As test and treat rolls out, effective interventions are needed to address the determinants of outcomes across the HIV treatment continuum and ensure that people infected with HIV are promptly tested, initiate treatment early, adhere to treatment, and are virally suppressed. Communication approaches offer viable options for promoting relevant behaviors across the continuum. Conceptual Framework: This article introduces a conceptual framework, which can guide the development of effective health communication interventions and activities that aim to impact behaviors across the HIV treatment continuum in low- and medium-income countries. The framework includes HIV testing and counseling, linkage to care, retention in pre-antiretroviral therapy and antiretroviral therapy initiation in one single-stage linkage to care and treatment, and adherence for viral suppression. The determinants of behaviors vary across the continuum and include both facilitators and barriers with communication interventions designed to focus on specific determinants presented in the model. At each stage, relevant determinants occur at the various levels of the social–ecological model: intrapersonal, interpersonal, health services, community, and policy. Effective health communication interventions have mainly relied on mHealth, interpersonal communication through service providers and peers, community support groups, and treatment supporters. Discussion: The conceptual framework and evidence presented highlight areas across the continuum where health communication can significantly impact treatment outcomes to reach the 90-90-90 goals by strategically addressing key behavioral determinants. As test and treat rolls out, multifaceted health communication approaches will be critical. PMID:27930606

  19. Differential porosimetry and permeametry for random porous media.

    PubMed

    Hilfer, R; Lemmer, A

    2015-07-01

    Accurate determination of geometrical and physical properties of natural porous materials is notoriously difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography (μ-CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of the continuum microstructure. This paper reports continuum measurements of volume and specific surface with full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More importantly, the methods of differential permeametry and differential porosimetry are introduced as precision tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with floating point precision are compared to discrete approximations. Differential porosities and differential surface area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover small oscillatory correlations with a period of roughly 850μm, thus implying that the sample is not strictly stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates.

  20. Inverse Electrocardiographic Source Localization of Ischemia: An Optimization Framework and Finite Element Solution

    PubMed Central

    Wang, Dafang; Kirby, Robert M.; MacLeod, Rob S.; Johnson, Chris R.

    2013-01-01

    With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the myocardium with the bidomain heart model. The task is an inverse source problem governed by partial differential equations (PDE). Our main contribution is solving the inverse problem within a PDE-constrained optimization framework that enables various physically-based constraints in both equality and inequality forms. We formulated the optimality conditions rigorously in the continuum before deriving finite element discretization, thereby making the optimization independent of discretization choice. Such a formulation was derived for the L2-norm Tikhonov regularization and the total variation minimization. The subsequent numerical optimization was fulfilled by a primal-dual interior-point method tailored to our problem’s specific structure. Our simulations used realistic, fiber-included heart models consisting of up to 18,000 nodes, much finer than any inverse models previously reported. With synthetic ischemia data we localized ischemic regions with roughly a 10% false-negative rate or a 20% false-positive rate under conditions up to 5% input noise. With ischemia data measured from animal experiments, we reconstructed TMPs with roughly 0.9 correlation with the ground truth. While precisely estimating the TMP in general cases remains an open problem, our study shows the feasibility of reconstructing TMP during the ST interval as a means of ischemia localization. PMID:23913980

  1. Gating Mechanisms of Mechanosensitive Channels of Large Conductance, I: A Continuum Mechanics-Based Hierarchical Framework

    PubMed Central

    Chen, Xi; Cui, Qiang; Tang, Yuye; Yoo, Jejoong; Yethiraj, Arun

    2008-01-01

    A hierarchical simulation framework that integrates information from molecular dynamics (MD) simulations into a continuum model is established to study the mechanical response of mechanosensitive channel of large-conductance (MscL) using the finite element method (FEM). The proposed MD-decorated FEM (MDeFEM) approach is used to explore the detailed gating mechanisms of the MscL in Escherichia coli embedded in a palmitoyloleoylphosphatidylethanolamine lipid bilayer. In Part I of this study, the framework of MDeFEM is established. The transmembrane and cytoplasmic helices are taken to be elastic rods, the loops are modeled as springs, and the lipid bilayer is approximated by a three-layer sheet. The mechanical properties of the continuum components, as well as their interactions, are derived from molecular simulations based on atomic force fields. In addition, analytical closed-form continuum model and elastic network model are established to complement the MDeFEM approach and to capture the most essential features of gating. In Part II of this study, the detailed gating mechanisms of E. coli-MscL under various types of loading are presented and compared with experiments, structural model, and all-atom simulations, as well as the analytical models established in Part I. It is envisioned that such a hierarchical multiscale framework will find great value in the study of a variety of biological processes involving complex mechanical deformations such as muscle contraction and mechanotransduction. PMID:18390626

  2. A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins

    PubMed Central

    Xiao, Li; Diao, Jianxiong; Greene, D'Artagnan; Wang, Junmei; Luo, Ray

    2017-01-01

    Membrane proteins constitute a large portion of the human proteome and perform a variety of important functions as membrane receptors, transport proteins, enzymes, signaling proteins, and more. Computational studies of membrane proteins are usually much more complicated than those of globular proteins. Here we propose a new continuum model for Poisson-Boltzmann calculations of membrane channel proteins. Major improvements over the existing continuum slab model are as follows:1) The location and thickness of the slab model are fine-tuned based on explicit-solvent MD simulations. 2) The highly different accessibility in the membrane and water regions are addressed with a two-step, two-probe grid labeling procedure, and 3) The water pores/channels are automatically identified. The new continuum membrane model is optimized (by adjusting the membrane probe, as well as the slab thickness and center) to best reproduce the distributions of buried water molecules in the membrane region as sampled in explicit water simulations. Our optimization also shows that the widely adopted water probe of 1.4 Å for globular proteins is a very reasonable default value for membrane protein simulations. It gives the best compromise in reproducing the explicit water distributions in membrane channel proteins, at least in the water accessible pore/channel regions that we focus on. Finally, we validate the new membrane model by carrying out binding affinity calculations for a potassium channel, and we observe a good agreement with experiment results. PMID:28564540

  3. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  4. Validation of the Continuum of Care Conceptual Model for Athletic Therapy

    PubMed Central

    Lafave, Mark R.; Butterwick, Dale; Eubank, Breda

    2015-01-01

    Utilization of conceptual models in field-based emergency care currently borrows from existing standards of medical and paramedical professions. The purpose of this study was to develop and validate a comprehensive conceptual model that could account for injuries ranging from nonurgent to catastrophic events including events that do not follow traditional medical or prehospital care protocols. The conceptual model should represent the continuum of care from the time of initial injury spanning to an athlete's return to participation in their sport. Finally, the conceptual model should accommodate both novices and experts in the AT profession. This paper chronicles the content validation steps of the Continuum of Care Conceptual Model for Athletic Therapy (CCCM-AT). The stages of model development were domain and item generation, content expert validation using a three-stage modified Ebel procedure, and pilot testing. Only the final stage of the modified Ebel procedure reached a priori 80% consensus on three domains of interest: (1) heading descriptors; (2) the order of the model; (3) the conceptual model as a whole. Future research is required to test the use of the CCCM-AT in order to understand its efficacy in teaching and practice within the AT discipline. PMID:26464897

  5. HIV service delivery models towards 'Zero AIDS-related Deaths': a collaborative case study of 6 Asia and Pacific countries.

    PubMed

    Fujita, Masami; Poudel, Krishna C; Green, Kimberly; Wi, Teodora; Abeyewickreme, Iyanthi; Ghidinelli, Massimo; Kato, Masaya; Vun, Mean Chhi; Sopheap, Seng; San, Khin Ohnmar; Bollen, Phavady; Rai, Krishna Kumar; Dahal, Atul; Bhandari, Durga; Boas, Peniel; Yaipupu, Jessica; Sirinirund, Petchsri; Saonuam, Pairoj; Duong, Bui Duc; Nhan, Do Thi; Thu, Nguyen Thi Minh; Jimba, Masamine

    2015-04-24

    In the Asia-Pacific region, limited systematic assessment has been conducted on HIV service delivery models. Applying an analytical framework of the continuum of prevention and care, this study aimed to assess HIV service deliveries in six Asia and Pacific countries from the perspective of service availability, linking approaches and performance monitoring for maximizing HIV case detection and retention. Each country formed a review team that provided published and unpublished information from the national HIV program. Four types of continuum were examined: (i) service linkages between key population outreach and HIV diagnosis (vertical-community continuum); (ii) chronic care provision across HIV diagnosis and treatment (chronological continuum); (iii) linkages between HIV and other health services (horizontal continuum); and (iv) comprehensive care sites coordinating care provision (hub and heart of continuum). Regarding the vertical-community continuum, all districts had voluntary counselling and testing (VCT) in all countries except for Myanmar and Vietnam. In these two countries, limited VCT availability was a constraint for referring key populations reached. All countries monitored HIV testing coverage among key populations. Concerning the chronological continuum, the proportion of districts/townships having antiretroviral treatment (ART) was less than 70% except in Thailand, posing a barrier for accessing pre-ART/ART care. Mechanisms for providing chronic care and monitoring retention were less developed for VCT/pre-ART process compared to ART process in all countries. On the horizontal continuum, the availability of HIV testing for tuberculosis patients and pregnant women was limited and there were sub-optimal linkages between tuberculosis, antenatal care and HIV services except for Cambodia and Thailand. These two countries indicated higher HIV testing coverage than other countries. Regarding hub and heart of continuum, all countries had comprehensive care sites with different degrees of community involvement. The analytical framework was useful to identify similarities and considerable variations in service availability and linking approaches across the countries. The study findings would help each country critically adapt and adopt global recommendations on HIV service decentralization, linkages and integration. Especially, the findings would inform cross-fertilization among the countries and national HIV program reviews to determine county-specific measures for maximizing HIV case detection and retention.

  6. Wave propagation in equivalent continuums representing truss lattice materials

    DOE PAGES

    Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; ...

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures from lattice materials, but the design of such structures will require accurate, efficient simulation methods. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss in the small deformation regime is complicated by microinertial effects. This study derives a dynamic equivalent continuum model for periodic trussmore » structures suitable for representing long-wavelength wave propagation and verifies it against the full Bloch wave theory and detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long wavelength characteristics of the response such as anisotropic elastic soundspeeds. Finally, the formulation presented here also improves upon previous work by preserving equilibrium at truss joints for simple lattices and by improving numerical stability by eliminating vertices in the effective yield surface.« less

  7. Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.

    PubMed

    Wu, Tim; Hung, Alice; Mithraratne, Kumar

    2014-11-01

    This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data.

  8. Ash Dispersal in Planetary Atmospheres: Continuum vs. Non-continuum Effects

    NASA Astrophysics Data System (ADS)

    Fagents, S. A.; Baloga, S. M.; Glaze, L. S.

    2013-12-01

    The dispersal of ash from a volcanic vent on any given planet is dictated by particle properties (density, shape, and size distribution), the intensity of the eruptive source, and the characteristics of the planetary environment (atmospheric structure, wind field, and gravity) into which the ash is erupted. Relating observations of potential pyroclastic deposits to source locations and eruption conditions requires a detailed quantitative understanding of the settling rates of individual particles under changing ambient conditions. For atmospheres that are well described by continuum mechanics, the conventional Newtonian description of particle motion allows particle settling velocities to be related to particle characteristics via a drag coefficient. However, under rarefied atmospheric conditions (i.e., on Mars and at high altitude on Earth), non-continuum effects become important for ash-sized particles, and an equation of motion based on statistical mechanics is required for calculating particle motion. We have developed a rigorous new treatment of particle settling under variable atmospheric conditions and applied it to Earth and Mars. When non-continuum effects are important (as dictated by the mean free path of atmospheric gas relative to the particle size), fall velocities are greater than those calculated by continuum mechanics. When continuum conditions (i.e., higher atmospheric densities) are reached during descent, our model switches to a conventional formulation that determines the appropriate drag coefficient as the particle transits varying atmospheric properties. The variation of settling velocity with altitude allows computation of particle trajectories, fall durations and downwind dispersal. Our theoretical and numerical analyses show that several key, competing factors strongly influence the downwind trajectories of ash particles and the extents of the resulting deposits. These factors include: the shape of the particles (non-spherical particles fall more slowly than spherical particle shapes commonly adopted in settling models); the formation of particle aggregates, which enhances settling rates; and the lagging of particle motion behind the ambient wind field, which results in less widely dispersed deposits. Above all, any particles experiencing non-continuum effects settle faster and are less widely dispersed than particles falling in an entirely continuum regime. Our model results demonstrate the complex interplay of these factors in the Martian environment, and our approach provides a basis for relating deposits observed in planetary datasets to candidate volcanic sources and eruption conditions. This allows for a critical reassessment of the potential for explosive volcanism to contribute to extremely widespread, fine-grained, layered deposits such as the Medusae Fossae Formation.

  9. Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei XVI: A 13 Year Study of Spectral Variability in NGC 5548

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Berlind, P.; Bertram, R.; Bischoff, K.; Bochkarev, N. G.; Burenkov, A. N.; Calkins, M.; Carrasco, L.; Chavushyan, V. H.

    2002-01-01

    We present the final installment of an intensive 13 year study of variations of the optical continuum and broad H beta emission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 H beta measurements. The H beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r is proportional to L(sup 1/2)(sub ion). Moreover, the apparently linear nature of the correlation between the H beta response time and the nonstellar optical continuum F(sub opt) arises as a consequence of the changing shape of the continuum as it varies, specifically F(sub opt) is proportional to F(sup 0.56)(sub UV).

  10. Incorporation of the TIP4P water model into a continuum solvent for computing solvation free energy

    NASA Astrophysics Data System (ADS)

    Yang, Pei-Kun

    2014-10-01

    The continuum solvent model is one of the commonly used strategies to compute solvation free energy especially for large-scale conformational transitions such as protein folding or to calculate the binding affinity of protein-protein/ligand interactions. However, the dielectric polarization for computing solvation free energy from the continuum solvent is different than that obtained from molecular dynamic simulations. To mimic the dielectric polarization surrounding a solute in molecular dynamic simulations, the first-shell water molecules was modeled using a charge distribution of TIP4P in a hard sphere; the time-averaged charge distribution from the first-shell water molecules were estimated based on the coordination number of the solute, and the orientation distribution of the first-shell waters and the intermediate water molecules were treated as that of a bulk solvent. Based on this strategy, an equation describing the solvation free energy of ions was derived.

  11. Hybrid discrete/continuum algorithms for stochastic reaction networks

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; ...

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less

  12. PowderSim: Lagrangian Discrete and Mesh-Free Continuum Simulation Code for Cohesive Soils

    NASA Technical Reports Server (NTRS)

    Johnson, Scott; Walton, Otis; Settgast, Randolph

    2013-01-01

    PowderSim is a calculation tool that combines a discrete-element method (DEM) module, including calibrated interparticle-interaction relationships, with a mesh-free, continuum, SPH (smoothed-particle hydrodynamics) based module that utilizes enhanced, calibrated, constitutive models capable of mimicking both large deformations and the flow behavior of regolith simulants and lunar regolith under conditions anticipated during in situ resource utilization (ISRU) operations. The major innovation introduced in PowderSim is to use a mesh-free method (SPH-based) with a calibrated and slightly modified critical-state soil mechanics constitutive model to extend the ability of the simulation tool to also address full-scale engineering systems in the continuum sense. The PowderSim software maintains the ability to address particle-scale problems, like size segregation, in selected regions with a traditional DEM module, which has improved contact physics and electrostatic interaction models.

  13. Dual nozzle aerodynamic and cooling analysis study

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1981-01-01

    Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.

  14. Effective Boundary Conditions for Continuum Method of Investigation of Rarefied Gas Flow over Blunt Body

    NASA Astrophysics Data System (ADS)

    Brykina, I. G.; Rogov, B. V.; Semenov, I. L.; Tirskiy, G. A.

    2011-05-01

    Super- and hypersonic rarefied gas flow over blunt bodies is investigated by using asymptotically correct viscous shock layer (VSL) model with effective boundary conditions and thin viscous shock layer model. Correct shock and wall conditions for VSL are proposed with taking into account terms due to the curvature which are significant at low Reynolds number. These conditions improve original Davis's VSL model [1]. Numerical calculation of Krook equation [2] is carried out to verify continuum results. Continuum numerical and asymptotic solutions are compared with kinetic solution, free-molecule flow solution and with DSMC solutions [3, 4, 5] over a wide range of free-stream Knudsen number Kn∞. It is shown that taking into account terms with shock and surface curvatures have a pronounced effect on skin friction and heat-transfer in transitional flow regime. Using the asymptotically correct VSL model with effective boundary conditions significantly extends the range of its applicability to higher Kn∞ numbers.

  15. An extended continuum model considering optimal velocity change with memory and numerical tests

    NASA Astrophysics Data System (ADS)

    Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng

    2018-01-01

    In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.

  16. Influence of spatial variation of phenomenological parameters on the modeling of boundary conditions for flows with dynamic wetting

    NASA Astrophysics Data System (ADS)

    Hizumi, Yuka; Omori, Takeshi; Yamaguchi, Yasutaka; Kajisima, Takeo

    2014-11-01

    For reliable prediction of multiphase flows in micro- and nano-scales, continuum models are expected to account for small scale physics near the contact line (CL) region. Some existing works (for example the series of papers by the group of Qian and Ren) have been successful in deriving continuum models and corresponding boundary conditions which reproduce well the molecular dynamics (MD) simulation results. Their studies, however, did not fully address the issue of adsorption layer especially in the CL region, and it is still not clear if general conclusion can be deduced from their results. In the present study we investigate in detail the local viscosity and the corresponding stress tensor formulation in the solid-liquid interface and in the CL region of immiscible two-phase Couette flows by means of MD simulation. The application limit of the generalized Navier boundary condition and the continuum model with uniform viscosity is addressed by systematic coarse-graining of sampling bins.

  17. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    NASA Astrophysics Data System (ADS)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

  18. Model of fracture of metal melts and the strength of melts under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Mayer, P. N.; Mayer, A. E.

    2015-07-01

    The development of a continuum model of deformation and fracture of melts is needed for the description of the behavior of metals in extreme states, in particular, under high-current electron and ultrashort laser irradiation. The model proposed includes the equations of mechanics of a two-phase continuum and the equations of the kinetics of phase transitions. The change (exchange) of the volumes of dispersed and carrier phases and of the number of dispersed particles is described, and the energy and mass exchange between the phases due to phase transitions is taken into account. Molecular dynamic (MD) calculations are carried out with the use of the LAMMPS program. The continuum model is verified by MD, computational, and experimental data. The strength of aluminum, copper, and nickel is determined at various temperatures and strain rates. It is shown that an increase in the strain rate leads to an increase in the strength of a liquid metal, while an increase in temperature leads to a decrease in its strength.

  19. Derivation of a continuum model and the energy law for moving contact lines with insoluble surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen, E-mail: matzz@nus.edu.sg; Xu, Shixin, E-mail: matxs@nus.edu.sg; Ren, Weiqing, E-mail: matrw@nus.edu.sg

    2014-06-15

    A continuous model is derived for the dynamics of two immiscible fluids with moving contact lines and insoluble surfactants based on thermodynamic principles. The continuum model consists of the Navier-Stokes equations for the dynamics of the two fluids and a convection-diffusion equation for the evolution of the surfactant on the fluid interface. The interface condition, the boundary condition for the slip velocity, and the condition for the dynamic contact angle are derived from the consideration of energy dissipations. Different types of energy dissipations, including the viscous dissipation, the dissipations on the solid wall and at the contact line, as wellmore » as the dissipation due to the diffusion of surfactant, are identified from the analysis. A finite element method is developed for the continuum model. Numerical experiments are performed to demonstrate the influence of surfactant on the contact line dynamics. The different types of energy dissipations are compared numerically.« less

  20. Parameterizations of Chromospheric Condensations in dG and dMe Model Flare Atmospheres

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Allred, Joel C.

    2018-01-01

    The origin of the near-ultraviolet and optical continuum radiation in flares is critical for understanding particle acceleration and impulsive heating in stellar atmospheres. Radiative-hydrodynamic (RHD) simulations in 1D have shown that high energy deposition rates from electron beams produce two flaring layers at T ∼ 104 K that develop in the chromosphere: a cooling condensation (downflowing compression) and heated non-moving (stationary) flare layers just below the condensation. These atmospheres reproduce several observed phenomena in flare spectra, such as the red-wing asymmetry of the emission lines in solar flares and a small Balmer jump ratio in M dwarf flares. The high beam flux simulations are computationally expensive in 1D, and the (human) timescales for completing NLTE models with adaptive grids in 3D will likely be unwieldy for some time to come. We have developed a prescription for predicting the approximate evolved states, continuum optical depth, and emergent continuum flux spectra of RHD model flare atmospheres. These approximate prescriptions are based on an important atmospheric parameter: the column mass ({m}{ref}) at which hydrogen becomes nearly completely ionized at the depths that are approximately in steady state with the electron beam heating. Using this new modeling approach, we find that high energy flux density (>F11) electron beams are needed to reproduce the brightest observed continuum intensity in IRIS data of the 2014 March 29 X1 solar flare, and that variation in {m}{ref} from 0.001 to 0.02 g cm‑2 reproduces most of the observed range of the optical continuum flux ratios at the peak of M dwarf flares.

  1. A continuum membrane model for small deformations of a spider orb-web

    NASA Astrophysics Data System (ADS)

    Morassi, Antonino; Soler, Alejandro; Zaera, Ramón

    2017-09-01

    In this paper we propose a continuum membrane model for the infinitesimal deformation of a spider web. The model is derived in the simple context of axially-symmetric webs formed by radial threads connected with circumferential threads belonging to concentric circles. Under suitable assumption on the tensile pre-stress acting in the referential configuration, the out-of-plane static equilibrium and the free transverse and in-plane vibration of a supported circular orb-web are studied in detail. The accuracy of the model in describing a discrete spider web is numerically investigated.

  2. A Study of Problems and Responses in the Development of Dual-Language Education Models in Tibetan Regions: Taking Xiahe County in Gannan Tibetan Autonomous Prefecture as an Example

    ERIC Educational Resources Information Center

    Hongzhi, Long

    2017-01-01

    Dual-language education models are theoretical and practical systems formed through the process of dual-language education and centered on study and teaching. The language environment is the basis for developing and reforming dual-language education models. The author takes Xiahe County in Gannan Tibetan Autonomous Prefecture as an example and…

  3. Water vapor absorption in the atmospheric window at 239 GHz

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.

    1995-01-01

    Absolute absorption rates of pure water vapor and mixtures of water vapor and nitrogen have been measured in the atmospheric window at 239 GHz. The dependence on pressure as well as temperature has been obtained. The experimental data are compared with several theoretical or empirical models, and satisfactory agreement is obtained with the models involving a continuum; in the case of pure water vapor, the continuum contribution based upon recent theoretical developments gives good results. The temperature dependence is stronger than that proposed in a commonly used atmospheric transmission model.

  4. Continuum model for hydrogen pickup in zirconium alloys of LWR fuel cladding

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2017-04-01

    A continuum model for calculating the time-dependent hydrogen pickup fractions in various Zirconium alloys under steam and pressured water oxidation has been developed in this study. Using only one fitting parameter, the effective hydrogen gas partial pressure at the oxide surface, a qualitative agreement is obtained between the predicted and previously measured hydrogen pickup fractions. The calculation results therefore demonstrate that H diffusion through the dense oxide layer plays an important role in the hydrogen pickup process. The limitations and possible improvement of the model are also discussed.

  5. On deformation of complex continuum immersed in a plane space

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

  6. Transport Phenomena of Water in Molecular Fluidic Channels

    PubMed Central

    Vo, Truong Quoc; Kim, BoHung

    2016-01-01

    In molecular-level fluidic transport, where the discrete characteristics of a molecular system are not negligible (in contrast to a continuum description), the response of the molecular water system might still be similar to the continuum description if the time and ensemble averages satisfy the ergodic hypothesis and the scale of the average is enough to recover the classical thermodynamic properties. However, even in such cases, the continuum description breaks down on the material interfaces. In short, molecular-level liquid flows exhibit substantially different physics from classical fluid transport theories because of (i) the interface/surface force field, (ii) thermal/velocity slip, (iii) the discreteness of fluid molecules at the interface and (iv) local viscosity. Therefore, in this study, we present the result of our investigations using molecular dynamics (MD) simulations with continuum-based energy equations and check the validity and limitations of the continuum hypothesis. Our study shows that when the continuum description is subjected to the proper treatment of the interface effects via modified boundary conditions, the so-called continuum-based modified-analytical solutions, they can adequately predict nanoscale fluid transport phenomena. The findings in this work have broad effects in overcoming current limitations in modeling/predicting the fluid behaviors of molecular fluidic devices. PMID:27650138

  7. Bulbous head formation in bidisperse shallow granular flows over inclined planes

    NASA Astrophysics Data System (ADS)

    Denissen, I.; Thornton, A.; Weinhart, T.; Luding, S.

    2017-12-01

    Predicting the behaviour of hazardous natural granular flows (e.g. debris-flows and pyroclastic flows) is vital for an accurate assessment of the risks posed by such events. In these situations, an inversely graded vertical particle-size distribution develops, with larger particles on top of smaller particles. As the surface velocity of such flows is larger than the mean velocity, the larger material is then transported to the flow front. This creates a downstream size-segregation structure, resulting in a flow front composed purely of large particles, that are generally more frictional in geophysical flows. Thus, this segregation process reduces the mobility of the flow front, resulting in the formation of, a so-called, bulbous head. One of the main challenges of simulating these hazardous natural granular flows is the enormous number of particles they contain, which makes discrete particle simulations too computationally expensive to be practically useful. Continuum methods are able to simulate the bulk flow- and segregation behaviour of such flows, but have to make averaging approximations that reduce the huge number of degrees of freedom to a few continuum fields. Small-scale periodic discrete particle simulations can be used to determine the material parameters needed for the continuum model. In this presentation, we use a depth-averaged model to predict the flow profile for particulate chute flows, based on flow height, depth-averaged velocity and particle-size distribution [1], and show that the bulbous head structure naturally emerges from this model. The long-time behaviour of this solution of the depth-averaged continuum model converges to a novel travelling wave solution [2]. Furthermore, we validate this framework against computationally expensive 3D particle simulations, where we see surprisingly good agreement between both approaches, considering the approximations made in the continuum model. We conclude by showing that the travelling distance and height of a bidisperse granular avalanche can be well predicted by our continuum model. REFERENCES [1] M. J. Woodhouse, A. R. Thornton, C. G. Johnson, B. P. Kokelaar, J. M. N. T. Gray, J. Fluid Mech., 709, 543-580 (2012) [2] I.F.C. Denissen, T. Weinhart, A. Te Voortwis, S. Luding, J. M. N. T. Gray, A. R. Thornton, under review with J. Fluid Mech. (2017)

  8. VLTI-GRAVITY measurements of cool evolved stars

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Rau, G.; Chiavassa, A.; Höfner, S.; Scholz, M.; Wood, P. R.; de Wit, W. J.; Eisenhauer, F.; Haubois, X.; Paumard, T.

    2018-06-01

    Context. Dynamic model atmospheres of Mira stars predict variabilities in the photospheric radius and in atmospheric molecular layers which are not yet strongly constrained by observations. Aims: Here we measure the variability of the oxygen-rich Mira star R Peg in near-continuum and molecular bands. Methods: We used near-infrared K-band spectro-interferometry with a spectral resolution of about 4000 obtained at four epochs between post-maximum and minimum visual phases employing the newly available GRAVITY beam combiner at the Very Large Telescope Interferometer (VLTI). Results: Our observations show a continuum radius that is anti-correlated with the visual lightcurve. Uniform disc (UD) angular diameters at a near-continuum wavelength of 2.25 μm are steadily increasing with values of 8.7 ± 0.1 mas, 9.4 ± 0.1 mas, 9.8 ± 0.1 mas, and 9.9 ± 0.1 mas at visual phases of 0.15, 0.36, 0,45, 0.53, respectively. UD diameters at a bandpass around 2.05 μm, dominated by water vapour, follow the near-continuum variability at larger UD diameters between 10.7 mas and 11.7 mas. UD diameters at the CO 2-0 bandhead, instead, are correlated with the visual lightcurve and anti-correlated with the near-continuum UD diameters, with values between 12.3 mas and 11.7 mas. Conclusions: The observed anti-correlation between continuum radius and visual lightcurve is consistent with an earlier study of the oxygen-rich Mira S Lac, and with recent 1D CODEX dynamic model atmosphere predictions. The amplitude of the variation is comparable to the earlier observations of S Lac, and smaller than predicted by CODEX models. The wavelength-dependent visibility variations at our epochs can be reproduced by a set of CODEX models at model phases between 0.3 and 0.6. The anti-correlation of water vapour and CO contributions at our epochs suggests that these molecules undergo different processes in the extended atmosphere along the stellar cycle. The newly available GRAVITY instrument is suited to conducting longer time series observations, which are needed to provide strong constraints on the model-predicted intra- and inter-cycle variability. Based on observations made with the VLT Interferometer at Paranal Observatory under programme IDs 60.A-9176 and 098.D-0647.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hong, E-mail: h-yu@seu.edu.cn; Chen, Hong-Bo

    In this article, a new semi-continuum model is built to describe the fundamental vibration frequency of the silicon nanowires in <111> orientation. The Keating potential model and the discrete nature in the width and the thickness direction of the silicon nanowires in <111> orientation are applied in the new semi-continuum model. Based on the Keating model and the principle of conservation of energy, the vibration frequency of the silicon nanowires with the triangle, the rhombus, and the hexagon cross sections are derived. It is indicated that the calculation results based on this new model are accordant with the simulation resultsmore » of the software based on molecular dynamics (MD).« less

  10. Multiscale Simulations of Reactive Transport

    NASA Astrophysics Data System (ADS)

    Tartakovsky, D. M.; Bakarji, J.

    2014-12-01

    Discrete, particle-based simulations offer distinct advantages when modeling solute transport and chemical reactions. For example, Brownian motion is often used to model diffusion in complex pore networks, and Gillespie-type algorithms allow one to handle multicomponent chemical reactions with uncertain reaction pathways. Yet such models can be computationally more intensive than their continuum-scale counterparts, e.g., advection-dispersion-reaction equations. Combining the discrete and continuum models has a potential to resolve the quantity of interest with a required degree of physicochemical granularity at acceptable computational cost. We present computational examples of such "hybrid models" and discuss the challenges associated with coupling these two levels of description.

  11. M Dwarf Flare Continuum Variations on One-second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes at the La Silla Paranal Observatory under programme ID 085.D-0501(A).

  12. Multiscale modeling and simulation for nano/micro materials

    NASA Astrophysics Data System (ADS)

    Wang, Xianqiao

    Continuum description and atomic description used to be two distinct methods in the community of modeling and simulations. Science and technology have become so advanced that our understanding of many physical phenomena involves the concepts of both. So our goal now is to build a bridge to make atoms and continua communicate with each other. Micromorphic theory (MMT) envisions a material body as a continuous collection of deformable particles; each possesses finite size and inner structure. It is considered as the most successful top-down formulation of a two-level continuum model to bridge the gap between the micro level and macro level. Therefore MMT can be expected to unveil many new classes of physical phenomena that fall beyond classical field theories. In this work, the constitutive equations for generalized Micromorphic thermoviscoelastic solid and generalized Micromorphic fluid have been formulated. To enlarge the domain of applicability of MMT, from nano, micro to macro, we take a bottom-up approach to re-derive the generalized atomistic field theory (AFT) comprehensively and completely and establish the relationship between AFT and MMT. Finite element (FE) method is then implemented to pursue the numerical solutions of the governing equations derived in AFT. When the finest mesh is used, i.e., the size of FE mesh is equal to the lattice constant of the material, the computational model becomes identical to molecular dynamics simulation. When a coarse mesh is used, the resulting model is a coarse-grained model, the majority of the degrees of freedom are eliminated and the computational cost is largely reduced. When the coarse mesh and finest mesh exist concurrently, i.e., the finest mesh is used in the critical regions and the coarser mesh is used in the far field, it leads naturally to a concurrent atomistic/continuum model. Atomic scale, coarse-grained scale and concurrent atomistic/continuum simulations have demonstrated the potential capability of AFT to simulate most grand challenging problems in nano/micro physics, and shown that AFT has the advantages of both atomic model and MMT. Therefore, AFT has accomplished the mission to bridge the gap between continuum mechanics and atomic physics.

  13. Translating caring theory across the continuum from inpatient to ambulatory care.

    PubMed

    Tonges, Mary; McCann, Meghan; Strickler, Jeff

    2014-06-01

    While theory-based practice is a Magnet® characteristic, translating theories to practice remains challenging. As a result, theory-guided practice remains an ideal rather than a realized goal in many organizations. This article provides an overview of a research-derived caring theory, a translational model for theory-driven practice, implementation of a delivery model designed to translate theory across the acute and ambulatory care continuum, and resulting outcomes in oncology clinics and the emergency department.

  14. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  15. Microstructure-Based Fatigue Life Prediction Methods for Naval Steel Structures

    DTIC Science & Technology

    1993-01-30

    approach is to work with the lognormal random variable model proposed by Yang et al . [2], which avoids these difficulties. The simplest form of the...I Al - I I 11. and Ti-alloys [ 10- 111 correlate with the elastic modulus only in the continuum growth regime. On the other hand. compilation of...growth. In fact, Eq. (5) implies that microstructure plays no role in the continuum growth regime. Theoretical models of Frost, et al . [35], and

  16. Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets

    NASA Astrophysics Data System (ADS)

    Zeng, Yayun; Wang, Jun; Xu, Kaixuan

    2017-04-01

    A new financial agent-based time series model is developed and investigated by multiscale-continuum percolation system, which can be viewed as an extended version of continuum percolation system. In this financial model, for different parameters of proportion and density, two Poisson point processes (where the radii of points represent the ability of receiving or transmitting information among investors) are applied to model a random stock price process, in an attempt to investigate the fluctuation dynamics of the financial market. To validate its effectiveness and rationality, we compare the statistical behaviors and the multifractal behaviors of the simulated data derived from the proposed model with those of the real stock markets. Further, the multiscale sample entropy analysis is employed to study the complexity of the returns, and the cross-sample entropy analysis is applied to measure the degree of asynchrony of return autocorrelation time series. The empirical results indicate that the proposed financial model can simulate and reproduce some significant characteristics of the real stock markets to a certain extent.

  17. Rotator cuff tendinopathy: a model for the continuum of pathology and related management.

    PubMed

    Lewis, Jeremy S

    2010-10-01

    Pathology of the soft tissues of the shoulder including the musculotendinous rotator cuff and subacromial bursa are extremely common and are a principal cause of pain and suffering. Competing theories have been proposed to explain the pathoaetiology of rotator cuff pathology at specific stages and presentations of the condition. This review proposes a model to describe the continuum of the rotator cuff pathology from asymptomatic tendon through full thickness rotator cuff tears. The pathoaetiology of rotator cuff failure is multifactorial and results from a combination of intrinsic, extrinsic and environmental factors. Recently a new and generic model detailing the continuum of tendon pathology has been proposed. This model is relevant for the rotator cuff and provides a framework to stage the continuity of rotator cuff pathology. Furthermore, it provides a structure to identify the substantial deficiencies in our knowledge base and areas where research would improve our understanding of the pathological and repair process, together with assessment and management. The strength of this model adapted for the rotator cuff tendons and subacromial bursa will be tested in its ability to incorporate and adapt to emerging research.

  18. Polymer Fluid Dynamics: Continuum and Molecular Approaches.

    PubMed

    Bird, R B; Giacomin, A J

    2016-06-07

    To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. Themore » NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.« less

  20. Low-Density Nozzle Flow by the Direct Simulation Monte Carlo and Continuum Methods

    NASA Technical Reports Server (NTRS)

    Chung, Chang-Hong; Kim, Sku C.; Stubbs, Robert M.; Dewitt, Kenneth J.

    1994-01-01

    Two different approaches, the direct simulation Monte Carlo (DSMC) method based on molecular gasdynamics, and a finite-volume approximation of the Navier-Stokes equations, which are based on continuum gasdynamics, are employed in the analysis of a low-density gas flow in a small converging-diverging nozzle. The fluid experiences various kinds of flow regimes including continuum, slip, transition, and free-molecular. Results from the two numerical methods are compared with Rothe's experimental data, in which density and rotational temperature variations along the centerline and at various locations inside a low-density nozzle were measured by the electron-beam fluorescence technique. The continuum approach showed good agreement with the experimental data as far as density is concerned. The results from the DSMC method showed good agreement with the experimental data, both in the density and the rotational temperature. It is also shown that the simulation parameters, such as the gas/surface interaction model, the energy exchange model between rotational and translational modes, and the viscosity-temperature exponent, have substantial effects on the results of the DSMC method.

  1. Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models

    NASA Technical Reports Server (NTRS)

    Leone, Frank A.; Davila, Carlos G.; Mabson, Gerald E.; Ramnath, Madhavadas; Hyder, Imran

    2017-01-01

    This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upper-bound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.

  2. Comparison of Nernst-Planck and reaction rate models for multiply occupied channels.

    PubMed Central

    Levitt, D G

    1982-01-01

    The Nernst-Planck continuum equation for a channel that can be occupied by at most two ions is solved for two different physical cases. The first case is for the assumption that the water and ion cannot get around each other anywhere in the channel, so that if there are two ions in the channel the distance between them is fixed by the number of water molecules between them. The second case is for the assumption that there are regions at he ends of the channel where the ions and water can get around each other. For these two cases, the validity of the simple two-site reaction-rate approximation when there is a continuously varying central energy barrier was evaluated by comparing it with the exact Nernst-Planck solution. For the first continuum case, the kinetics for the continuum and reaction-rate models are nearly identical. For the second case, the agreement depends on the strength of the ion-ion interaction energy. For a low interaction energy (large channel diameter) a high ion concentrations, there is a large difference in the flux as a function of voltage for the two models-with the continuum flux becoming more than four times larger at 250 mV. Simple analytical expressions are derived for the two-ion continuum channel for the case where the ends are in equilibrium with the bulk solution and for the case where ion mobility becomes zero when there are two ions in the channel. The implications of these results for biological channels are discussed. PMID:6280783

  3. PT-symmetry breaking with divergent potentials: Lattice and continuum cases

    NASA Astrophysics Data System (ADS)

    Joglekar, Yogesh N.; Scott, Derek D.; Saxena, Avadh

    2014-09-01

    We investigate the parity- and time-reversal (PT-) symmetry breaking in lattice models in the presence of long-ranged, non-Hermitian, PT-symmetric potentials that remain finite or become divergent in the continuum limit. By scaling analysis of the fragile PT threshold for an open finite lattice, we show that continuum loss-gain potentials Vα(x)∝i|x|αsgn(x) have a positive PT-breaking threshold for α >-2, and a zero threshold for α ≤-2. When α <0 localized states with complex (conjugate) energies in the continuum energy band occur at higher loss-gain strengths. We investigate the signatures of PT-symmetry breaking in coupled waveguides, and show that the emergence of localized states dramatically shortens the relevant time scale in the PT-symmetry broken region.

  4. Mortality along the continuum of HIV care in Rwanda: a model-based analysis.

    PubMed

    Bendavid, Eran; Stauffer, David; Remera, Eric; Nsanzimana, Sabin; Kanters, Steve; Mills, Edward J

    2016-12-01

    HIV is the leading cause of death among adults in sub-Saharan Africa. However, mortality along the HIV care continuum is poorly described. We combine demographic, epidemiologic, and health services data to estimate where are people with HIV dying along Rwanda's care continuum. We calibrated an age-structured HIV disease and transmission stochastic simulation model to the epidemic in Rwanda. We estimate mortality among HIV-infected individuals in the following states: untested, tested without establishing care in an antiretroviral therapy (ART) program (unlinked), in care before initiating ART (pre-ART), lost to follow-up (LTFU) following ART initiation, and retained in active ART care. We estimated mortality among people living with HIV in Rwanda through 2025 under current conditions, and with improvements to the HIV care continuum. In 2014, the greatest portion of deaths occurred among those untested (35.4%), followed by those on ART (34.1%), reflecting the large increase in the population on ART. Deaths among those LTFU made up 11.8% of all deaths among HIV-infected individuals in 2014, and in the base case this portion increased to 18.8% in 2025, while the contribution to mortality declined among those untested, unlinked, and in pre-ART. In our model only combined improvements to multiple aspects of the HIV care continuum were projected to reduce the total number of deaths among those with HIV, estimated at 8177 in 2014, rising to 10,659 in the base case, and declining to 5,691 with combined improvements in 2025. Mortality among those untested for HIV contributes a declining portion of deaths among HIV-infected individuals in Rwanda, but the portion of deaths among those LTFU is expected to increase the most over the next decade. Combined improvements to the HIV care continuum might be needed to reduce the number of deaths among those with HIV.

  5. A high-resolution extraterrestrial solar spectrum and water vapour continuum at near infrared wavelengths from ground-based spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Menang, K. P.

    A high resolution extraterrestrial solar spectrum (CAVIAR solar spectrum) and water vapour continuum have been derived in near infrared windows from 2000-10000 cm-1 (105μm), by applying the Langley technique to calibrated ground-based high-resolution Fourier transform spectrometer measurements, made under clear-sky conditions. The effect of the choice of an extraterrestrial solar spectrum for radiative transfer calculations of clear-sky absorption and heating rates in the near infrared was also studied. There is a good agreement between the solar lines strengths and positions of the CAVIAR solar spectrum and those from both high-resolution satellite and ground-based measurements in their regions of spectral overlap. However, there are significant differences between the structure of the CAVIAR solar spectrum and spectra from models. Many of the detected lines are missing from widely-used modelled extraterrestrial solar spectrum. The absolute level and hence wavenumber-integrated solar irradiance of the CAVIAR solar spectrum was also found to be 8% lower than the satellite-based Thuillier et al spectra from 5200-10000 cm-1. Using different extraterrestrial solar spectra for radiative transfer calculations in the near infrared led to differences of up to about 11 W m-2 (8.2%) in the absorbed solar irradiance while the tropospheric and stratospheric heating rates could respectively differ by up to about 0.13K day-1 (8.1%) and 0.19 K day-1 (7.6%) for an overhead Sun and mid-latitude summer atmosphere. This work has shown that the widely-used empirically modelled continuum may be underestimating the strength of the water vapour continuum from 2000-10000 cm-1, with the derived continuum up to more than 2 orders of magnitude stronger at some wavenumbers in the windows. The derived continuum is also stronger than that implied by laboratory measurements, by a factor of up to 40 in some spectral regions.

  6. HESS Opinions: The complementary merits of competing modelling philosophies in hydrology

    NASA Astrophysics Data System (ADS)

    Hrachowitz, Markus; Clark, Martyn P.

    2017-08-01

    In hydrology, two somewhat competing philosophies form the basis of most process-based models. At one endpoint of this continuum are detailed, high-resolution descriptions of small-scale processes that are numerically integrated to larger scales (e.g. catchments). At the other endpoint of the continuum are spatially lumped representations of the system that express the hydrological response via, in the extreme case, a single linear transfer function. Many other models, developed starting from these two contrasting endpoints, plot along this continuum with different degrees of spatial resolutions and process complexities. A better understanding of the respective basis as well as the respective shortcomings of different modelling philosophies has the potential to improve our models. In this paper we analyse several frequently communicated beliefs and assumptions to identify, discuss and emphasize the functional similarity of the seemingly competing modelling philosophies. We argue that deficiencies in model applications largely do not depend on the modelling philosophy, although some models may be more suitable for specific applications than others and vice versa, but rather on the way a model is implemented. Based on the premises that any model can be implemented at any desired degree of detail and that any type of model remains to some degree conceptual, we argue that a convergence of modelling strategies may hold some value for advancing the development of hydrological models.

  7. Consistent Continuum Particle Modeling of Hypersonic Flows and Development of HybridSimulation Capability

    DTIC Science & Technology

    2017-07-01

    Directorate 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 AFRL /RVBYE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -RV-PS-TR-2017-0152 12. DISTRIBUTION...Belvoir, VA 22060-6218 AFRL /RVIL Kirtland AFB, NM 87117-5776 Official Record Copy AFRL /RVBYE/Dr. Raymond Bemish 1 cy Approved for public release... AFRL -RV-PS- TR-2017-0152 AFRL -RV-PS- TR-2017-0152 CONSISTENT CONTINUUM-PARTICLE MODELING OF HYPERSONIC FLOWS AND DEVELOPMENT OF HYBRID

  8. The Role of Molecular Motors in the Mechanics of Active Gels and the Effects of Inertia, Hydrodynamic Interaction and Compressibility in Passive Microrheology

    DTIC Science & Technology

    2014-07-01

    to use the two-point microrheology technique 88 to measure the complex compressibility of biopolymers and cell components such as F-actin and...loads [23, 115]. Several works have used a continuum-mechanics level of description to model self- organization [64, 2] and rheology [79, 12, 33] of...morphogenesis [94]. Several works have used a continuum-mechanics level of description to model self- organization [64, 2] and rheology [79, 12, 33] of

  9. Spreading of nonmotile bacteria on a hard agar plate: Comparison between agent-based and stochastic simulations

    NASA Astrophysics Data System (ADS)

    Rana, Navdeep; Ghosh, Pushpita; Perlekar, Prasad

    2017-11-01

    We study spreading of a nonmotile bacteria colony on a hard agar plate by using agent-based and continuum models. We show that the spreading dynamics depends on the initial nutrient concentration, the motility, and the inherent demographic noise. Population fluctuations are inherent in an agent-based model, whereas for the continuum model we model them by using a stochastic Langevin equation. We show that the intrinsic population fluctuations coupled with nonlinear diffusivity lead to a transition from a diffusion limited aggregation type of morphology to an Eden-like morphology on decreasing the initial nutrient concentration.

  10. Small-amplitude acoustics in bulk granular media

    NASA Astrophysics Data System (ADS)

    Henann, David L.; Valenza, John J., II; Johnson, David L.; Kamrin, Ken

    2013-10-01

    We propose and validate a three-dimensional continuum modeling approach that predicts small-amplitude acoustic behavior of dense-packed granular media. The model is obtained through a joint experimental and finite-element study focused on the benchmark example of a vibrated container of grains. Using a three-parameter linear viscoelastic constitutive relation, our continuum model is shown to quantitatively predict the effective mass spectra in this geometry, even as geometric parameters for the environment are varied. Further, the model's predictions for the surface displacement field are validated mode-by-mode against experiment. A primary observation is the importance of the boundary condition between grains and the quasirigid walls.

  11. Radiation of partially ionized atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Soon, W. H.; Kunc, J. A.

    1990-01-01

    A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.

  12. Continuum analyzing power for 4He(p-->,p') at 100 MeV

    NASA Astrophysics Data System (ADS)

    Lawrie, J. J.; Whittal, D. M.; Cowley, A. A.

    1990-08-01

    Distorted-wave impulse approximation calculations of the continuum analyzing power for the inclusive reaction 4He(p-->,p') at an incident energy of 100 MeV are presented. In addition to the quasifree knockout of nucleons, contributions from the knockout of deuteron, triton, and helion clusters are taken into account, together with a breakup component. Whereas nucleon knockout by itself does not account for the experimentally observed analyzing power, the inclusion of clusters has a large effect. Thus a simple knockout model is able to provide a reasonable description of the experimental continuum analyzing power.

  13. The polarization of continuum radiation in sunspots. I - Rayleigh and Thomson scattering

    NASA Technical Reports Server (NTRS)

    Finn, G. D.; Jefferies, J. T.

    1974-01-01

    Expressions are derived for the Stokes parameters of light scattered by a layer of free electrons and hydrogen atoms in a sunspot. A physically reasonable sunspot model was found so that the direction of the calculated linear polarization agrees reasonably with observations. The magnitude of the calculated values of the linear polarization agrees generally with values observed in the continuum at 5830 A. Circular polarization in the continuum also accompanies electron scattering in spot regions; however for commonly accepted values of the longitudinal magnetic field, the predicted circular polarization is much smaller than observed.

  14. Mechanism of asymmetric lineshape broadening in GaAs1-xNx Raman spectra

    NASA Astrophysics Data System (ADS)

    Mialitsin, Aleksej; Fluegel, Brian; Ptak, Aaron; Mascarenhas, Angelo

    2012-07-01

    Resonance Raman spectroscopy is used to probe the asymmetric broadening of the LO phonon linewidth in a dilute GaAs1-xNx alloy (x=0.41%). Electronic Raman scattering from a broad continuum is observed that gets enhanced concurrently with the LO phonon linewidth under resonance. The Fano interaction between the LO phonon and the electronic continuum is used to develop a model that satisfactorily explains the origin of the asymmetric LO phonon linewidth broadening in this abnormal alloy as arising due to coupling between the discrete and the continuum configurations.

  15. Dynamics of basaltic glass dissolution - Capturing microscopic effects in continuum scale models

    NASA Astrophysics Data System (ADS)

    Aradóttir, E. S. P.; Sigfússon, B.; Sonnenthal, E. L.; Björnsson, G.; Jónsson, H.

    2013-11-01

    The method of 'multiple interacting continua' (MINC) was applied to include microscopic rate-limiting processes in continuum scale reactive transport models of basaltic glass dissolution. The MINC method involves dividing the system up to ambient fluid and grains, using a specific surface area to describe the interface between the two. The various grains and regions within grains can then be described by dividing them into continua separated by dividing surfaces. Millions of grains can thus be considered within the method without the need to explicity discretizing them. Four continua were used for describing a dissolving basaltic glass grain; the first one describes the ambient fluid around the grain, while the second, third and fourth continuum refer to a diffusive leached layer, the dissolving part of the grain and the inert part of the grain, respectively. The model was validated using the TOUGHREACT simulator and data from column flow through experiments of basaltic glass dissolution at low, neutral and high pH values. Successful reactive transport simulations of the experiments and overall adequate agreement between measured and simulated values provides validation that the MINC approach can be applied for incorporating microscopic effects in continuum scale basaltic glass dissolution models. Equivalent models can be used when simulating dissolution and alteration of other minerals. The study provides an example of how numerical modeling and experimental work can be combined to enhance understanding of mechanisms associated with basaltic glass dissolution. Column outlet concentrations indicated basaltic glass to dissolve stoichiometrically at pH 3. Predictive simulations with the developed MINC model indicated significant precipitation of secondary minerals within the column at neutral and high pH, explaining observed non-stoichiometric outlet concentrations at these pH levels. Clay, zeolite and hydroxide precipitation was predicted to be most abundant within the column.

  16. Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-Newtonian flows

    NASA Astrophysics Data System (ADS)

    Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em

    2018-06-01

    We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.

  17. The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results

    PubMed Central

    Seppecher, P.

    2015-01-01

    In order to found continuum mechanics, two different postulations have been used. The first, introduced by Lagrange and Piola, starts by postulating how the work expended by internal interactions in a body depends on the virtual velocity field and its gradients. Then, by using the divergence theorem, a representation theorem is found for the volume and contact interactions which can be exerted at the boundary of the considered body. This method assumes an a priori notion of internal work, regards stress tensors as dual of virtual displacements and their gradients, deduces the concept of contact interactions and produces their representation in terms of stresses using integration by parts. The second method, conceived by Cauchy and based on the celebrated tetrahedron argument, starts by postulating the type of contact interactions which can be exerted on the boundary of every (suitably) regular part of a body. Then it proceeds by proving the existence of stress tensors from a balance-type postulate. In this paper, we review some relevant literature on the subject, discussing how the two postulations can be reconciled in the case of higher gradient theories. Finally, we underline the importance of the concept of contact surface, edge and wedge s-order forces. PMID:26730215

  18. On Thermodynamic Constraints upon Turbulence Modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ning; Durst, Franz

    2000-11-01

    Turbulence is a continuum phenomenon which can be described within the framework of continuum mechanics. Such foundation has the potential for improving turbulence modeling, making it less heuristic and more rational. In the present research, we consider the compatibility of turbulence modeling with the second law of thermodynamics. We show that the Clausius-Planck inequality, as an expression of the principle of entropy growth, places a thermodynamic restriction upon the turbulence modeling of an incompressible Navier-Stokes fluid in an isothermal temperature field. This thermodynamic restriction is given in the form of an inequality, which ensures non-negativeness of the mean internal dissipation. As an illustration, we show the thermodynamic constraints on the modeling of a few typical homogeneous turbulent flows.

  19. Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Giacomin, A. Jeffrey; Saengow, Chaimongkol

    2018-05-01

    In this paper, we connect a molecular description of the rheology of a polymeric liquid to a continuum description, and then test this connection for large-amplitude oscillatory shear (LAOS) flow. Specifically, for the continuum description, we use the 6-constant Oldroyd framework, and for the molecular, we use the simplest relevant molecular model, the suspension of rigid dumbbells. By relevant, we mean predicting at least higher harmonics in the shear stress response in LAOS. We call this connection a molecular continuum, and we examine two ways of arriving at this connection. The first goes through the retarded motion expansion, and the second expands each of a set of specific material functions (complex, steady shear, and steady uniaxial extensional viscosities). Both ways involve in comparing the coefficients of expansions and then solve for the six constants of the continuum framework in terms of the two constants of the rigid dumbbell suspension. The purpose of a molecular continuum is that many well-known results for rigid dumbbell suspensions in other flow fields can also be easily obtained, without having to firstly find the orientation distribution function. In this paper, we focus on the recent result for the rigid dumbbell suspension in LAOS. We compare the accuracies of the retarded motion molecular continuum (RMMC) with the material function molecular continuum (MFMC). We find the RMMC to be the most accurate for LAOS.

  20. Modeling ultrafast solvated electronic dynamics using time-dependent density functional theory and polarizable continuum model.

    PubMed

    Liang, Wenkel; Chapman, Craig T; Ding, Feizhi; Li, Xiaosong

    2012-03-01

    A first-principles solvated electronic dynamics method is introduced. Solvent electronic degrees of freedom are coupled to the time-dependent electronic density of a solute molecule by means of the implicit reaction field method, and the entire electronic system is propagated in time. This real-time time-dependent approach, incorporating the polarizable continuum solvation model, is shown to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. © 2012 American Chemical Society

  1. On the choice of boundary conditions in continuum models of continental deformation

    NASA Technical Reports Server (NTRS)

    Wdowinski, Shimon; O'Connell, Richard J.

    1990-01-01

    Recent studies of continental deformation have treated the lithosphere as a viscous medium and investigated the time evolution of the deformation caused by tectonic and buoyancy forces. This paper examines the differences between (1) continuum models that keep velocity boundary conditions constant with time and (2) models that keep stress boundary conditions constant with time. These differences are demonstrated by using a simple example of a continental lithosphere that is subjected to horizontal compression. The results show that in (2) the indentation velocity decreases with time, while in (1) the indentation velocity remains constant with time.

  2. Do some x-ray stars have white dwarf companions

    NASA Technical Reports Server (NTRS)

    Mccollum, Bruce

    1995-01-01

    Some Be stars which are intermittent X-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be + WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 100 A. Either the detection or the nondetection of Be + WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.

  3. Do Some X-ray Stars Have White Dwarf Companions?

    NASA Technical Reports Server (NTRS)

    McCollum, Bruce

    1995-01-01

    Some Be stars which are intermittent C-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be+WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 1OOOA. Either the detection or the nondetection of Be+WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.

  4. Second law of thermodynamics in volume diffusion hydrodynamics in multicomponent gas mixtures

    NASA Astrophysics Data System (ADS)

    Dadzie, S. Kokou

    2012-10-01

    We presented the thermodynamic structure of a new continuum flow model for multicomponent gas mixtures. The continuum model is based on a volume diffusion concept involving specific species. It is independent of the observer's reference frame and enables a straightforward tracking of a selected species within a mixture composed of a large number of constituents. A method to derive the second law and constitutive equations accompanying the model is presented. Using the configuration of a rotating fluid we illustrated an example of non-classical flow physics predicted by new contributions in the entropy and constitutive equations.

  5. Computational modeling of the effective Young's modulus values of fullerene molecules: a combined molecular dynamics simulation and continuum shell model.

    PubMed

    Ghavanloo, Esmaeal; Izadi, Razie; Nayebi, Ali

    2018-02-28

    Estimating the Young's modulus of a structure in the nanometer size range is a difficult task. The reliable determination of this parameter is, however, important in both basic and applied research. In this study, by combining molecular dynamics (MD) simulations and continuum shell theory, we designed a new approach to determining the Young's modulus values of different spherical fullerenes. The results indicate that the Young's modulus values of fullerene molecules decrease nonlinearly with increasing molecule size and understandably tend to the Young's modulus of an ideal flat graphene sheet at large molecular radii. To the best of our knowledge, this is first time that a combined atomistic-continuum method which can predict the Young's modulus values of fullerene molecules with high precision has been reported.

  6. The influence of continuum radiation fields on hydrogen radio recombination lines

    NASA Astrophysics Data System (ADS)

    Prozesky, Andri; Smits, Derck P.

    2018-05-01

    Calculations of hydrogen departure coefficients using a model with the angular momentum quantum levels resolved that includes the effects of external radiation fields are presented. The stimulating processes are important at radio frequencies and can influence level populations. New numerical techniques with a solid mathematical basis have been incorporated into the model to ensure convergence of the solution. Our results differ from previous results by up to 20 per cent. A direct solver with a similar accuracy but more efficient than the iterative method is used to evaluate the influence of continuum radiation on the hydrogen population structure. The effects on departure coefficients of continuum radiation from dust, the cosmic microwave background, the stellar ionising radiation, and free-free radiation are quantified. Tables of emission and absorption coefficients for interpreting observed radio recombination lines are provided.

  7. Taylor, Graicunas, Worthy, Likert, and Thayer: Span of Control and Organizational Structure--Where They Fit on the "Leadership Continuum."

    ERIC Educational Resources Information Center

    Corder, Lloyd E.

    The "Leadership Continuum" model developed in 1961 by R. Tannenbaum, I. Weschler, and F. Massarik clearly illustrates the ideas that management scholars like Frederick Taylor, V. A. Graicunas, James Worthy, Rensis Likert, and Frederick Thayer have posited concerning span of control and organizational structure. Each of these scholars…

  8. Assessment and Therapeutic Application of the Expressive Therapies Continuum: Implications for Brain Structures and Functions

    ERIC Educational Resources Information Center

    Lusebrink, Vija B.

    2010-01-01

    The Expressive Therapies Continuum (ETC) provides a theoretical model for art-based assessments and applications of media in art therapy. The three levels of the ETC (Kinesthetic/Sensory, Perceptual/Affective, and Cognitive/Symbolic) appear to reflect different functions and structures in the brain that process visual and affective information.…

  9. A dynamic response model for pressure sensors in continuum and high Knudsen number flows with large temperature gradients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.

    1996-01-01

    This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.

  10. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For simulation of corona discharges from nanostructures, a one-dimensional (1-D) multiscale model is used due to the prohibitive computational expense associated with two-dimensional (2-D) modeling. Near the nanoscale discharge electrode surface, a kinetic model based on PIC-MCC is used due to a relatively large Knudsen number in this region. Far away from the nanoscale discharge electrode, a continuum model is used since the Knudsen number is very small there. The multiscale modeling results are compared with experimental data. The quantitative agreement in positive discharges and qualitative agreement in negative discharges validate the modeling approach. The mechanism of sustaining the discharge process from nanostructures is revealed and is found to be different from that of discharge from micro- or macro-sized electrodes. Finally, the corona plasma model is combined with a plasma chemistry model and a transport model to predict the ozone production from the nanoscale corona. The dependence of ozone production on the applied potential and air velocity is studied. The electric field distribution in a 2-D multiscale domain (from nanoscale to microscale) is predicted by solving the Poisson's equation using a finite difference scheme. The discretized linear equations are solved using a multigrid method under the framework of PETSc on a paralleled supercomputer. Although the Poisson solver is able to resolve the multiscale field, the prohibitively long computation time limits the use of a 2-D solver in the current PIC-MCC scheme.

  11. Pore-scale and continuum simulations of solute transport micromodel benchmark experiments

    DOE PAGES

    Oostrom, M.; Mehmani, Y.; Romero-Gomez, P.; ...

    2014-06-18

    Four sets of nonreactive solute transport experiments were conducted with micromodels. Three experiments with one variable, i.e., flow velocity, grain diameter, pore-aspect ratio, and flow-focusing heterogeneity were in each set. The data sets were offered to pore-scale modeling groups to test their numerical simulators. Each set consisted of two learning experiments, for which our results were made available, and one challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the transverse dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing,more » and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice Boltzmann (LB) approach, and one used a computational fluid dynamics (CFD) technique. Furthermore, we used the learning experiments, by the PN models, to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used the learning experiments to appropriately discretize the spatial grid representations. For the continuum modeling, the required dispersivity input values were estimated based on published nonlinear relations between transverse dispersion coefficients and Peclet number. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values, resulting in reduced dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models, which account for the micromodel geometry and underlying flow and transport physics, needed up to several days on supercomputers to resolve the more complex problems.« less

  12. Polarized Continuum Radiation from Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrington, J. Patrick

    2015-10-01

    Continuum scattering by free electrons can be significant in early type stars, while in late type stars Rayleigh scattering by hydrogen atoms or molecules may be important. Computer programs used to construct models of stellar atmospheres generally treat the scattering of the continuum radiation as isotropic and unpolarized, but this scattering has a dipole angular dependence and will produce polarization. We review an accurate method for evaluating the polarization and limb darkening of the radiation from model stellar atmospheres. We use this method to obtain results for: (i) Late type stars, based on the MARCS code models (Gustafsson et al. 2008), and (ii) Early type stars, based on the NLTE code TLUSTY (Lanz and Hubeny 2003). These results are tabulated at http://www.astro.umd.edu/~jph/Stellar_Polarization.html. While the net polarization vanishes for an unresolved spherical star, this symmetry is broken by rapid rotation or by the masking of part of the star by a binary companion or during the transit of an exoplanet. We give some numerical results for these last cases.

  13. Fractal continuum model for tracer transport in a porous medium.

    PubMed

    Herrera-Hernández, E C; Coronado, M; Hernández-Coronado, H

    2013-12-01

    A model based on the fractal continuum approach is proposed to describe tracer transport in fractal porous media. The original approach has been extended to treat tracer transport and to include systems with radial and uniform flow, which are cases of interest in geoscience. The models involve advection due to the fluid motion in the fractal continuum and dispersion whose mathematical expression is taken from percolation theory. The resulting advective-dispersive equations are numerically solved for continuous and for pulse tracer injection. The tracer profile and the tracer breakthrough curve are evaluated and analyzed in terms of the fractal parameters. It has been found in this work that anomalous transport frequently appears, and a condition on the fractal parameter values to predict when sub- or superdiffusion might be expected has been obtained. The fingerprints of fractality on the tracer breakthrough curve in the explored parameter window consist of an early tracer breakthrough and long tail curves for the spherical and uniform flow cases, and symmetric short tailed curves for the radial flow case.

  14. Continuum and atomistic description of excess electrons in TiO2

    NASA Astrophysics Data System (ADS)

    Maggio, Emanuele; Martsinovich, Natalia; Troisi, Alessandro

    2016-02-01

    The modelling of an excess electron in a semiconductor in a prototypical dye sensitised solar cell is carried out using two complementary approaches: atomistic simulation of the TiO2 nanoparticle surface is complemented by a dielectric continuum model of the solvent-semiconductor interface. The two methods are employed to characterise the bound (excitonic) states formed by the interaction of the electron in the semiconductor with a positive charge opposite the interface. Density-functional theory (DFT) calculations show that the excess electron in TiO2 in the presence of a counterion is not fully localised but extends laterally over a large region, larger than system sizes accessible to DFT calculations. The numerical description of the excess electron at the semiconductor-electrolyte interface based on the continuum model shows that the exciton is also delocalised over a large area: the exciton radius can have values from tens to hundreds of Ångströms, depending on the nature of the semiconductor (characterised by the dielectric constant and the electron effective mass in our model).

  15. Unexpected Dual Task Benefits on Cycling in Parkinson Disease and Healthy Adults: A Neuro-Behavioral Model

    PubMed Central

    Altmann, Lori J. P.; Stegemöller, Elizabeth; Hazamy, Audrey A.; Wilson, Jonathan P.; Okun, Michael S.; McFarland, Nikolaus R.; Shukla, Aparna Wagle; Hass, Chris J.

    2015-01-01

    Background When performing two tasks at once, a dual task, performance on one or both tasks typically suffers. People with Parkinson’s disease (PD) usually experience larger dual task decrements on motor tasks than healthy older adults (HOA). Our objective was to investigate the decrements in cycling caused by performing cognitive tasks with a range of difficulty in people with PD and HOAs. Methods Twenty-eight participants with Parkinson’s disease and 20 healthy older adults completed a baseline cycling task with no secondary tasks and then completed dual task cycling while performing 12 tasks from six cognitive domains representing a wide range of difficulty. Results Cycling was faster during dual task conditions than at baseline, and was significantly faster for six tasks (all p<.02) across both groups. Cycling speed improved the most during the easiest cognitive tasks, and cognitive performance was largely unaffected. Cycling improvement was predicted by task difficulty (p<.001). People with Parkinson’s disease cycled slower (p<.03) and showed reduced dual task benefits (p<.01) than healthy older adults. Conclusions Unexpectedly, participants’ motor performance improved during cognitive dual tasks, which cannot be explained in current models of dual task performance. To account for these findings, we propose a model integrating dual task and acute exercise approaches which posits that cognitive arousal during dual tasks increases resources to facilitate motor and cognitive performance, which is subsequently modulated by motor and cognitive task difficulty. This model can explain both the improvement observed on dual tasks in the current study and more typical dual task findings in other studies. PMID:25970607

  16. An atomistic-continuum hybrid simulation of fluid flows over superhydrophobic surfaces

    PubMed Central

    Li, Qiang; He, Guo-Wei

    2009-01-01

    Recent experiments have found that slip length could be as large as on the order of 1 μm for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption is not valid and the Navier-Stokes equations are used in a large region for bulk flows where the continuum assumption does hold. These two descriptions are coupled using the dynamic coupling model in the overlap region to ensure momentum continuity. The hybrid simulation predicts a superhydrophobic state with large slip lengths, which cannot be obtained by molecular dynamics simulation alone. PMID:19693344

  17. Mechanosensitive Channels: Insights from Continuum-Based Simulations

    PubMed Central

    Tang, Yuye; Yoo, Jejoong; Yethiraj, Arun; Cui, Qiang; Chen, Xi

    2009-01-01

    Mechanotransduction plays an important role in regulating cell functions and it is an active topic of research in biophysics. Despite recent advances in experimental and numerical techniques, the intrinsic multiscale nature imposes tremendous challenges for revealing the working mechanisms of mechanosensitive channels. Recently, a continuum-mechanics based hierarchical modeling and simulation framework has been established and applied to study the mechanical responses and gating behaviors of a prototypical mechanosensitive channel, the mechanosensitive channel of large conductance (MscL) in bacteria Escherichia coli (E. coli), from which several putative gating mechanisms have been tested and new insights deduced. This article reviews these latest findings using the continuum mechanics framework and suggests possible improvements for future simulation studies. This computationally efficient and versatile continuum-mechanics based protocol is poised to make contributions to the study of a variety of mechanobiology problems. PMID:18787764

  18. Continuum modeling of the mechanical and thermal behavior of discrete large structures

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Hefzy, M. S.

    1980-01-01

    In the present paper we introduce a rather straightforward construction procedure in order to derive continuum equivalence of discrete truss-like repetitive structures. Once the actual structure is specified, the construction procedure can be outlined by the following three steps: (a) all sets of parallel members are identified, (b) unidirectional 'effective continuum' properties are derived for each of these sets and (c) orthogonal transformations are finally used to determine the contribution of each set to the 'overall effective continuum' properties of the structure. Here the properties includes mechanical (stiffnesses), thermal (coefficients of thermal expansions) and material densities. Once expanded descriptions of the steps (b) and (c) are done, the construction procedure will be applied to a wide variety of discrete structures and the results will be compared with those of other existing methods.

  19. Stiffness Control of Surgical Continuum Manipulators

    PubMed Central

    Mahvash, Mohsen; Dupont, Pierre E.

    2013-01-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot’s coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions. PMID:24273466

  20. Solar radio continuum storms

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of sunspot magnetic fields, are the sources of the radio emissions. A model is considered to explain the relation of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their relation to their own stabilizing effects are important in interpreting both of these storms.

  1. Using Multiscale Modeling to Study Coupled Flow, Transport, Reaction and Biofilm Growth Processes in Porous Media

    NASA Astrophysics Data System (ADS)

    Valocchi, A. J.; Laleian, A.; Werth, C. J.

    2017-12-01

    Perturbation of natural subsurface systems by fluid inputs may induce geochemical or microbiological reactions that change porosity and permeability, leading to complex coupled feedbacks between reaction and transport processes. Some examples are precipitation/dissolution processes associated with carbon capture and storage and biofilm growth associated with contaminant transport and remediation. We study biofilm growth due to mixing controlled reaction of multiple substrates. As biofilms grow, pore clogging occurs which alters pore-scale flow paths thus changing the mixing and reaction. These interactions are challenging to quantify using conventional continuum-scale porosity-permeability relations. Pore-scale models can accurately resolve coupled reaction, biofilm growth and transport processes, but modeling at this scale is not feasible for practical applications. There are two approaches to address this challenge. Results from pore-scale models in generic pore structures can be used to develop empirical relations between porosity and continuum-scale parameters, such as permeability and dispersion coefficients. The other approach is to develop a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled by a suitable method that ensures continuity of flux across the interface. Thus, regions of high reactivity where flow alteration occurs are resolved at the pore scale for accuracy while regions of low reactivity are resolved at the continuum scale for efficiency. This approach thus avoids the need for empirical upscaling relations in regions with strong feedbacks between reaction and porosity change. We explore and compare these approaches for several two-dimensional cases.

  2. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.

    PubMed

    Bonthuis, Douwe Jan; Netz, Roland R

    2013-10-03

    Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.

  3. Doublet tracer tests to determine the contaminant flushing properties of a municipal solid waste landfill.

    PubMed

    Woodman, N D; Rees-White, T C; Beaven, R P; Stringfellow, A M; Barker, J A

    2017-08-01

    This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5m and 20m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as ~0.02 (~4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting. Copyright © 2017. Published by Elsevier B.V.

  4. Doublet tracer tests to determine the contaminant flushing properties of a municipal solid waste landfill

    NASA Astrophysics Data System (ADS)

    Woodman, N. D.; Rees-White, T. C.; Beaven, R. P.; Stringfellow, A. M.; Barker, J. A.

    2017-08-01

    This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5 m and 20 m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as 0.02 ( 4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting.

  5. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.

    PubMed

    Riccardi, Demian; Guo, Hao-Bo; Parks, Jerry M; Gu, Baohua; Liang, Liyuan; Smith, Jeremy C

    2013-01-08

    Understanding aqueous phase processes involving group 12 metal cations is relevant to both environmental and biological sciences. Here, quantum chemical methods and polarizable continuum models are used to compute the hydration free energies of a series of divalent group 12 metal cations (Zn(2+), Cd(2+), and Hg(2+)) together with Cu(2+) and the anions OH(-), SH(-), Cl(-), and F(-). A cluster-continuum method is employed, in which gas-phase clusters of the ion and explicit solvent molecules are immersed in a dielectric continuum. Two approaches to define the size of the solute-water cluster are compared, in which the number of explicit waters used is either held constant or determined variationally as that of the most favorable hydration free energy. Results obtained with various polarizable continuum models are also presented. Each leg of the relevant thermodynamic cycle is analyzed in detail to determine how different terms contribute to the observed mean signed error (MSE) and the standard deviation of the error (STDEV) between theory and experiment. The use of a constant number of water molecules for each set of ions is found to lead to predicted relative trends that benefit from error cancellation. Overall, the best results are obtained with MP2 and the Solvent Model D polarizable continuum model (SMD), with eight explicit water molecules for anions and 10 for the metal cations, yielding a STDEV of 2.3 kcal mol(-1) and MSE of 0.9 kcal mol(-1) between theoretical and experimental hydration free energies, which range from -72.4 kcal mol(-1) for SH(-) to -505.9 kcal mol(-1) for Cu(2+). Using B3PW91 with DFT-D3 dispersion corrections (B3PW91-D) and SMD yields a STDEV of 3.3 kcal mol(-1) and MSE of 1.6 kcal mol(-1), to which adding MP2 corrections from smaller divalent metal cation water molecule clusters yields very good agreement with the full MP2 results. Using B3PW91-D and SMD, with two explicit water molecules for anions and six for divalent metal cations, also yields reasonable agreement with experimental values, due in part to fortuitous error cancellation associated with the metal cations. Overall, the results indicate that the careful application of quantum chemical cluster-continuum methods provides valuable insight into aqueous ionic processes that depend on both local and long-range electrostatic interactions with the solvent.

  6. A dynamic dual process model of risky decision making.

    PubMed

    Diederich, Adele; Trueblood, Jennifer S

    2018-03-01

    Many phenomena in judgment and decision making are often attributed to the interaction of 2 systems of reasoning. Although these so-called dual process theories can explain many types of behavior, they are rarely formalized as mathematical or computational models. Rather, dual process models are typically verbal theories, which are difficult to conclusively evaluate or test. In the cases in which formal (i.e., mathematical) dual process models have been proposed, they have not been quantitatively fit to experimental data and are often silent when it comes to the timing of the 2 systems. In the current article, we present a dynamic dual process model framework of risky decision making that provides an account of the timing and interaction of the 2 systems and can explain both choice and response-time data. We outline several predictions of the model, including how changes in the timing of the 2 systems as well as time pressure can influence behavior. The framework also allows us to explore different assumptions about how preferences are constructed by the 2 systems as well as the dynamic interaction of the 2 systems. In particular, we examine 3 different possible functional forms of the 2 systems and 2 possible ways the systems can interact (simultaneously or serially). We compare these dual process models with 2 single process models using risky decision making data from Guo, Trueblood, and Diederich (2017). Using this data, we find that 1 of the dual process models significantly outperforms the other models in accounting for both choices and response times. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. On the Nature of Orion Source I

    NASA Astrophysics Data System (ADS)

    Báez-Rubio, A.; Jiménez-Serra, I.; Martín-Pintado, J.; Zhang, Q.; Curiel, S.

    2018-01-01

    The Kleinmann–Low nebula in Orion, the closest region of massive star formation, harbors Source I, whose nature is under debate. Knowledge of this source may have profound implications for our understanding of the energetics of the hot core in Orion KL since it might be the main heating source in the region. The spectral energy distribution of this source in the radio is characterized by a positive spectral index close to 2, which is consistent with (i) thermal bremsstrahlung emission of ionized hydrogen gas produced by a central massive protostar, or (ii) photospheric bremsstrahlung emission produced by electrons when deflected by the interaction with neutral and molecular hydrogen like Mira-like variable stars. If ionized hydrogen gas were responsible for the observed continuum emission, its modeling would predict detectable emission from hydrogen radio recombination lines (RRLs). However, our SMA observations were obtained with a high enough sensitivity to rule out that the radio continuum emission arises from a dense hypercompact H II region because the H26α line would have been detected, in contrast with our observations. To explain the observational constraints, we investigate further the nature of the radio continuum emission from source I. We have compared available radio continuum data with the predictions from our upgraded non-LTE 3D radiative transfer model, MOdel for REcombination LInes, to show that radio continuum fluxes and sizes can only be reproduced by assuming both dust and bremsstrahlung emission from neutral gas. The dust emission contribution is significant at ν ≥ 43 GHz. In addition, our RRL peak intensity predictions for the ionized metals case are consistent with the nondetection of Na and K RRLs at millimeter and submillimeter wavelengths.

  8. Fluctuation relation based continuum model for thermoviscoplasticity in metals

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Shubhankar; Roy, Debasish; Reddy, J. N.; Srinivasa, Arun

    2016-11-01

    A continuum plasticity model for metals is presented from considerations of non-equilibrium thermodynamics. Of specific interest is the application of a fluctuation relation that subsumes the second law of thermodynamics en route to deriving the evolution equations for the internal state variables. The modelling itself is accomplished in a two-temperature framework that appears naturally by considering the thermodynamic system to be composed of two weakly interacting subsystems, viz. a kinetic vibrational subsystem corresponding to the atomic lattice vibrations and a configurational subsystem of the slower degrees of freedom describing the motion of defects in a plastically deforming metal. An apparently physical nature of the present model derives upon considering the dislocation density, which characterizes the configurational subsystem, as a state variable. Unlike the usual constitutive modelling aided by the second law of thermodynamics that merely provides a guideline to select the admissible (though possibly non-unique) processes, the present formalism strictly determines the process or the evolution equations for the thermodynamic states while including the effect of fluctuations. The continuum model accommodates finite deformation and describes plastic deformation in a yield-free setup. The theory here is essentially limited to face-centered cubic metals modelled with a single dislocation density as the internal variable. Limited numerical simulations are presented with validation against relevant experimental data.

  9. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    NASA Technical Reports Server (NTRS)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  10. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2004-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  11. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2001-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  12. Linearized lattice Boltzmann method for micro- and nanoscale flow and heat transfer.

    PubMed

    Shi, Yong; Yap, Ying Wan; Sader, John E

    2015-07-01

    Ability to characterize the heat transfer in flowing gases is important for a wide range of applications involving micro- and nanoscale devices. Gas flows away from the continuum limit can be captured using the Boltzmann equation, whose analytical solution poses a formidable challenge. An efficient and accurate numerical simulation of the Boltzmann equation is thus highly desirable. In this article, the linearized Boltzmann Bhatnagar-Gross-Krook equation is used to develop a hierarchy of thermal lattice Boltzmann (LB) models based on half-space Gaussian-Hermite (GH) quadrature ranging from low to high algebraic precision, using double distribution functions. Simplified versions of the LB models in the continuum limit are also derived, and are shown to be consistent with existing thermal LB models for noncontinuum heat transfer reported in the literature. Accuracy of the proposed LB hierarchy is assessed by simulating thermal Couette flows for a wide range of Knudsen numbers. Effects of the underlying quadrature schemes (half-space GH vs full-space GH) and continuum-limit simplifications on computational accuracy are also elaborated. The numerical findings in this article provide direct evidence of improved computational capability of the proposed LB models for modeling noncontinuum flows and heat transfer at small length scales.

  13. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improvemore » estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H α , and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.« less

  14. Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales

    PubMed Central

    Zhang, Yonghe

    2010-01-01

    Ionocovalency (IC), a quantitative dual nature of the atom, is defined and correlated with quantum-mechanical potential to describe quantitatively the dual properties of the bond. Orbiotal hybrid IC model scale, IC, and IC electronegativity scale, XIC, are proposed, wherein the ionicity and the covalent radius are determined by spectroscopy. Being composed of the ionic function I and the covalent function C, the model describes quantitatively the dual properties of bond strengths, charge density and ionic potential. Based on the atomic electron configuration and the various quantum-mechanical built-up dual parameters, the model formed a Dual Method of the multiple-functional prediction, which has much more versatile and exceptional applications than traditional electronegativity scales and molecular properties. Hydrogen has unconventional values of IC and XIC, lower than that of boron. The IC model can agree fairly well with the data of bond properties and satisfactorily explain chemical observations of elements throughout the Periodic Table. PMID:21151444

  15. BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool

    NASA Astrophysics Data System (ADS)

    Schulte, Daniel O.; Bastian, Welsch; Wolfram, Rühaak; Kristian, Bär; Ingo, Sass

    2017-04-01

    Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storage (BTES) systems for seasonally fluctuating heat sources like solar thermal energy or district heating grids. The high temperature level of these heat sources prohibits the use of the shallow subsurface for environmental reasons. Therefore, deeper reservoirs have to be accessed instead. The increased depth of the systems results in high investment costs and has hindered the implementation of this technology until now. Therefore, research of medium deep BTES systems relies on numerical simulation models. Current simulation tools cannot - or only to some extent - describe key features like partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We give an update on the development of BASIMO: a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport in a dual-continuum approach. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. Thereby, partly insulated boreholes can be considered in the model. Furthermore, BASIMO can be used to improve the design of BTES systems: the tool allows for automated parameter variations and is readily coupled to other code like mathematical optimization algorithms. Optimization can be used to determine the required minimum system size or to increase the system performance.

  16. A Model for Predicting Thermoelectric Properties of Bi2Te3

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; VonAllmen, Paul

    2009-01-01

    A parameterized orthogonal tight-binding mathematical model of the quantum electronic structure of the bismuth telluride molecule has been devised for use in conjunction with a semiclassical transport model in predicting the thermoelectric properties of doped bismuth telluride. This model is expected to be useful in designing and analyzing Bi2Te3 thermoelectric devices, including ones that contain such nano - structures as quantum wells and wires. In addition, the understanding gained in the use of this model can be expected to lead to the development of better models that could be useful for developing other thermoelectric materials and devices having enhanced thermoelectric properties. Bi2Te3 is one of the best bulk thermoelectric materials and is widely used in commercial thermoelectric devices. Most prior theoretical studies of the thermoelectric properties of Bi2Te3 have involved either continuum models or ab-initio models. Continuum models are computationally very efficient, but do not account for atomic-level effects. Ab-initio models are atomistic by definition, but do not scale well in that computation times increase excessively with increasing numbers of atoms. The present tight-binding model bridges the gap between the well-scalable but non-atomistic continuum models and the atomistic but poorly scalable ab-initio models: The present tight-binding model is atomistic, yet also computationally efficient because of the reduced (relative to an ab-initio model) number of basis orbitals and flexible parameterization of the Hamiltonian.

  17. Prediction of Continuous Cooling Transformation Diagrams for Dual-Phase Steels from the Intercritical Region

    NASA Astrophysics Data System (ADS)

    Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.

    2011-09-01

    The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.

  18. Discrete structures in continuum descriptions of defective crystals

    PubMed Central

    2016-01-01

    I discuss various mathematical constructions that combine together to provide a natural setting for discrete and continuum geometric models of defective crystals. In particular, I provide a quite general list of ‘plastic strain variables’, which quantifies inelastic behaviour, and exhibit rigorous connections between discrete and continuous mathematical structures associated with crystalline materials that have a correspondingly general constitutive specification. PMID:27002070

  19. Leading the Future We Envision: Nurturing a Culture of Innovation Across the Continuum of Care.

    PubMed

    DʼAlfonso, Jim; Zuniga, Anita; Weberg, Daniel; Orders, Ann E

    2016-01-01

    In the Fall of 2012, this large integrated health care system located in Northern California, comprising 21 hospitals and employing more than 25 000 nurses across all inpatient, outpatient, and continuum of care areas, embarked upon a comprehensive initiative to further engage the "hearts and minds" of its nursing workforce while establishing a foundation for innovation in an era of health care reform. This article will outline the strategy employed to ensure that professional nurses across the continuum of care were made aware of the impact of the Affordable Care Act. Major shifts to value-based care and improved performance expectations focus our attention on quality, service, and affordability, also known as the "Triple Aim." Transitioning from a volume-focused model to a value-based care model requires measurable and sustainable improvements over current performance, reinforcing the importance of increased levels of engagement, shared accountability, and purposeful collaboration. Over a span of 18 months, the organization conducted 55 interactive educational forums for point-of-care care teams and leadership. These dynamic learning events helped recalibrate the working foundation for how leaders would nurture the process for innovation among care teams and transform care across the continuum of care.

  20. A contact layer element for large deformations

    NASA Astrophysics Data System (ADS)

    Weißenfels, C.; Wriggers, P.

    2015-05-01

    In many contact situations the material behavior of one contact member strongly influences the force acting between the two bodies. Unfortunately standard friction models cannot reproduce all of these material effects at the contact layer and often continuum interface elements are used instead. These elements are intrinsically tied to the fixed grid and hence cannot be used in large sliding simulations. Due to the shortcomings of the standard contact formulations and of the interface elements a new type of a contact layer element is developed in this work. The advantages of this element are the direct implementation of continuum models into the contact formulation and the application to arbitrary large deformations. Showing a relation between continuum and contact kinematics based on the solid-shell concept the new contact element is at the end a natural extension of the standard contact formulations into 3D. Two examples show that the continuum behavior can be exactly reproduced at the contact surface even in large sliding situations using this contact layer element. For the discretization of the new contact element the Mortar method is chosen exemplary, but it can be combined with all kinds of contact formulations.

  1. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    NASA Astrophysics Data System (ADS)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  2. Angular resolution and range of dipole-dipole correlations in water

    NASA Astrophysics Data System (ADS)

    Mathias, Gerald; Tavan, Paul

    2004-03-01

    We investigate the dipolar correlations in liquid water at angular resolution by molecular-dynamics simulations of a large periodic simulation system containing about 40 000 molecules. Because we are particularly interested in the long-range ordering, we use a simple three-point model for these molecules. The electrostatics is treated both by Ewald summation and by minimum image truncation combined with a reaction field approach. To gain insight into the angular dependence of the simulated dipolar ordering we introduce a suitable expansion of the molecular pair distribution function into a set of two-dimensional correlation functions. We show that these functions enable detailed insights into the shell structure of the dipolar ordering around a given water molecule. For these functions we derive analytical expressions in the particular case in which liquid water is conceived as a dielectric continuum. Comparisons of these continuum models with the correlation functions derived from the simulations yield the key result that liquid water behaves like a continuum dielectric beyond distances of about 15 Å from a given water molecule. We argue that this should be a generic property of water independent of our modeling. By comparison of the results of the two different electrostatics treatments with the continuum description we show that the boundary artifacts occurring in both methods are isotropically distributed and are locally small in the respective boundary regions.

  3. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian

    2017-02-10

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramatymore » High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.« less

  4. Ion Transport through Membrane-Spanning Nanopores Studied by Molecular Dynamics Simulations and Continuum Electrostatics Calculations

    PubMed Central

    Peter, Christine; Hummer, Gerhard

    2005-01-01

    Narrow hydrophobic regions are a common feature of biological channels, with possible roles in ion-channel gating. We study the principles that govern ion transport through narrow hydrophobic membrane pores by molecular dynamics simulation of model membranes formed of hexagonally packed carbon nanotubes. We focus on the factors that determine the energetics of ion translocation through such nonpolar nanopores and compare the resulting free-energy barriers for pores with different diameters corresponding to the gating regions in closed and open forms of potassium channels. Our model system also allows us to compare the results from molecular dynamics simulations directly to continuum electrostatics calculations. Both simulations and continuum calculations show that subnanometer wide pores pose a huge free-energy barrier for ions, but a small increase in the pore diameter to ∼1 nm nearly eliminates that barrier. We also find that in those wider channels the ion mobility is comparable to that in the bulk phase. By calculating local electrostatic potentials, we show that the long range Coulomb interactions of ions are strongly screened in the wide water-filled channels. Whereas continuum calculations capture the overall energetics reasonably well, the local water structure, which is not accounted for in this model, leads to interesting effects such as the preference of hydrated ions to move along the pore wall rather than through the center of the pore. PMID:16006629

  5. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    NASA Technical Reports Server (NTRS)

    Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian N.; Cauzzi, Gianna; Carlsson, Mats

    2017-01-01

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe II chromospheric emission line profiles observed in the impulsive phase.

  6. Traveling waves in a continuum model of 1D schools

    NASA Astrophysics Data System (ADS)

    Oza, Anand; Kanso, Eva; Shelley, Michael

    2017-11-01

    We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.

  7. Models of Uranium continuum radio emission

    NASA Technical Reports Server (NTRS)

    Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.

    1987-01-01

    Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.

  8. Comparison of solar hard X-ray and UV line and continuum bursts with high time resolution

    NASA Technical Reports Server (NTRS)

    Orwig, L. E.; Woodgate, B. E.

    1986-01-01

    A comparison of data sets from the UV Spectrometer and Polarimeter and Hard X-ray Burst Spectrometer instruments on SMM has established the close relationship of the impulsive phase hard X-ray and UV continuum and OV line emissions, lending support to the notion that they have a similar origin low in the solar atmosphere. These results severely constrain models that attempt to explain impulsive phase hard X-rays and UV emission; alternative processes of impulsive-phase UV continuum production should accordingly be considered. Attention is given to an electron beam 'hole boring' mechanism and a photoionization radiation transport mechanism.

  9. Application of micropolar plasticity to post failure analysis in geomechanics

    NASA Astrophysics Data System (ADS)

    Manzari, Majid T.

    2004-08-01

    A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy-Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright

  10. The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm

    NASA Astrophysics Data System (ADS)

    Lechevallier, Loic; Vasilchenko, Semen; Grilli, Roberto; Mondelain, Didier; Romanini, Daniele; Campargue, Alain

    2018-04-01

    The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long-standing issue in molecular spectroscopy with direct impact in atmospheric and planetary sciences. In recent years, we have determined the self-continuum absorption of water vapour at different spectral points of the atmospheric windows at 4.0, 2.1, 1.6, and 1.25 µm, by highly sensitive cavity-enhanced laser techniques. These accurate experimental constraints have been used to adjust the last version (3.2) of the semi-empirical MT_CKD model (Mlawer-Tobin_Clough-Kneizys-Davies), which is widely incorporated in atmospheric radiative-transfer codes. In the present work, the self-continuum cross-sections, CS, are newly determined at 3.3 µm (3007 cm-1) and 2.0 µm (5000 cm-1) by optical-feedback-cavity enhanced absorption spectroscopy (OFCEAS) and cavity ring-down spectroscopy (CRDS), respectively. These new data allow extending the spectral coverage of the 4.0 and 2.1 µm windows, respectively, and testing the recently released 3.2 version of the MT_CKD continuum. By considering high temperature literature data together with our data, the temperature dependence of the self-continuum is also obtained.

  11. A dual-process approach to exploring the role of delay discounting in obesity.

    PubMed

    Price, Menna; Higgs, Suzanne; Maw, James; Lee, Michelle

    2016-08-01

    Delay discounting of financial rewards has been related to overeating and obesity. Neuropsychological evidence supports a dual-system account of both discounting and overeating behaviour where the degree of impulsive decision making is determined by the relative strength of reward desire and executive control. A dual-parameter model of discounting behaviour is consistent with this theory. In this study, the fit of the commonly used one-parameter model was compared to a new dual-parameter model for the first time in a sample of adults with wide ranging BMI. Delay discounting data from 79 males and females (males=26) across a wide age (M=28.44years (SD=8.81)) and BMI range (M=25.42 (SD=5.16)) was analysed. A dual-parameter model (saturating-hyperbolic; Doya, [Doya (2008) ]) was applied to the data and compared on model fit indices to the single-parameter model. Discounting was significantly greater in the overweight/obese participants using both models, however, the two parameter model showed a superior fit to data (p<0.0001). The two parameters were shown to be related yet distinct measures consistent with a dual-system account of inter-temporal choice behaviour. The dual-parameter model showed superior fit to data and the two parameters were shown to be related yet distinct indices sensitive to differences between weight groups. Findings are discussed in terms of the impulsive reward and executive control systems that contribute to unhealthy food choice and within the context of obesity related research. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Ablation of silicate particles in high-speed continuum and transition flow with application to the collection of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.; Miller, Wayne F.

    1991-01-01

    The ablative deceleration of spheres in the continuum and slip regimes is studied using spherical 7.1-micron-diam soda-lime glass particles launched from vacuum at about 4500 m/sec speed through a 13-micron-thick plastic film into a capture chamber containing Xe at 0.1 or 0.2 atm pressure and 295 K temperature. The results of SEM examinations of the collected ablated particles showed that the ratio of the ablated-particle radius (Rf) to the initial radius (R0) increased with gas pressure (from Rf/R0 about 0.67 at 0.1 atm, to about 0.88 at 0.2 atm). A model was developed to describe the ablation and deceleration of spheres in high-speed continuum and slip flow. The pressure dependence predicted by the model agreed with experimental results.

  13. Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum.

    PubMed

    Sridhar, A; Kouznetsova, V G; Geers, M G D

    This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only.

  14. Assessing the roles of impulsivity, food-related cognitions, BMI, and demographics in the dual pathway model of binge eating among men and women.

    PubMed

    Mason, Tyler B; Lewis, Robin J

    2015-08-01

    The dual pathway model is a widely accepted model of binge eating that focuses on the role of sociocultural factors, negative affect, and dietary restraint. However, less is known about demographic (e.g., gender and ethnicity) differences in the model and the role of other variables in the model. To further our understanding of the dual pathway model of binge eating, the current study examined the role of demographics (i.e., gender, race, BMI, parental education and obesity), impulsivity, and food-related cognitions in the dual pathway model. A sample of college students completed a battery of measures. Multi-group structural equation modeling was used to evaluate the dual pathway model separately for men and women. Results supported the dual pathway model of binge eating among men and women, and also supported food-related cognitions as an important variable prior to binge eating. In other words, body shame was associated with more dietary restraint and negative affect, and in turn, dietary restraint and negative affect were associated with increased negative food-related cognitions. Then, food-related cognitions predicted binge eating. Additionally impulsivity was related to body shame, negative affect, and food-related cognitions, but was unrelated to binge eating after controlling for the other variables. Racial differences existed among women in BMI and body shame, but there were no racial differences among men. Our results suggest that the dual pathway model adequately explains binge eating among men and women, but that food-related cognitions may be an imporant anteceden to binge eating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Gradient effects in a new class of electro-elastic bodies

    NASA Astrophysics Data System (ADS)

    Arvanitakis, Antonios

    2018-06-01

    Continuum theories for electro-elastic solids suggest the development of electric field or polarization-based models. Advanced versions of these models are the so-called gradient models, i.e., polarization gradient and electric field gradient models, which prove to be more than capable of explaining the behavior of a continuum in a wider range of length scales. In this work, implicit constitutive relations for electro-elastic bodies are considered with the introduction of polarization and electric field gradient effects. In this sense, the new class of electro-elastic bodies extends even further to account for nonlocality in constitutive equations, besides strain-limiting behavior and polarization saturation for large values of stresses and electric field, respectively. Nonlocality in constitutive equations is essential in modeling various phenomena.

  16. Modelling Thin Film Microbending: A Comparative Study of Three Different Approaches

    NASA Astrophysics Data System (ADS)

    Aifantis, Katerina E.; Nikitas, Nikos; Zaiser, Michael

    2011-09-01

    Constitutive models which describe crystal microplasticity in a continuum framework can be envisaged as average representations of the dynamics of dislocation systems. Thus, their performance needs to be assessed not only by their ability to correctly represent stress-strain characteristics on the specimen scale but also by their ability to correctly represent the evolution of internal stress and strain patterns. In the present comparative study we consider the bending of a free-standing thin film. We compare the results of 3D DDD simulations with those obtained from a simple 1D gradient plasticity model and a more complex dislocation-based continuum model. Both models correctly reproduce the nontrivial strain patterns predicted by DDD for the microbending problem.

  17. Study of clustering structures through breakup reactions

    NASA Astrophysics Data System (ADS)

    Capel, Pierre

    2014-12-01

    Models for the description of breakup reactions used to study the structure of exotic cluster structures like halos are reviewed. The sensitivity of these models to the projectile description is presented. Calculations are sensitive to the projectile ground state mostly through its asymptotic normalisation coefficient (ANC). They also probe the continuum of the projectile. This enables studying not only resonant states of the projectile but also its non-resonant continuum both resonant and non-resonant. This opens the possibility to study correlations between both halo neutrons in two-neutron halo nuclei.

  18. Galactic Abundance Gradients fro IR Fine Strucuture LInes in Compact H II regions

    NASA Technical Reports Server (NTRS)

    Afflerbach, A.; Churchwell, E.; Werner, M. W.

    1996-01-01

    We present observations of the [S III]19(micro)m, [O III]52 and 88(micro)m, and [N III]57(micro)m lines toward 18 compact and ultracompact (UC) H II regions. These data were combined with data from the literature and high-resolution radio continuum maps to construct detailed statistical equilibrium and ionization equilibrium models of 34 compact H II regions located at galactocentric distances (Dg)0-12kpc. Our models simultaneously fit the observed IR fine-structure lines and high-resolution radio continuum maps.

  19. Elasticity of fractal materials using the continuum model with non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-01-01

    Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.

  20. A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology

    NASA Astrophysics Data System (ADS)

    Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim

    2016-08-01

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKFOSA. Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameter estimations than the joint and dual approaches.

  1. Succinimide Formation from an NGR-Containing Cyclic Peptide: Computational Evidence for Catalytic Roles of Phosphate Buffer and the Arginine Side Chain.

    PubMed

    Kirikoshi, Ryota; Manabe, Noriyoshi; Takahashi, Ohgi

    2017-02-16

    The Asn-Gly-Arg (NGR) motif and its deamidation product iso Asp-Gly-Arg ( iso DGR) have recently attracted considerable attention as tumor-targeting ligands. Because an NGR-containing peptide and the corresponding iso DGR-containing peptide target different receptors, the spontaneous NGR deamidation can be used in dual targeting strategies. It is well known that the Asn deamidation proceeds via a succinimide derivative. In the present study, we computationally investigated the mechanism of succinimide formation from a cyclic peptide, c[CH₂CO-NGRC]-NH₂, which has recently been shown to undergo rapid deamidation in a phosphate buffer. An H₂PO₄ - ion was explicitly included in the calculations. We employed the density functional theory using the B3LYP functional. While geometry optimizations were performed in the gas phase, hydration Gibbs energies were calculated by the SM8 (solvation model 8) continuum model. We have found a pathway leading to the five-membered ring tetrahedral intermediate in which both the H₂PO₄ - ion and the Arg side chain act as catalyst. This intermediate, once protonated at the NH₂ group on the five-membered ring, was shown to easily undergo NH₃ elimination leading to the succinimide formation. This study is the first to propose a possible catalytic role for the Arg side chain in the NGR deamidation.

  2. Fundamental Flux Equations for Fracture-Matrix Interactions with Linear Diffusion

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Zhou, Q.; Rutqvist, J.; Birkholzer, J. T.

    2017-12-01

    The conventional dual-continuum models are only applicable for late-time behavior of pressure propagation in fractured rock, while discrete-fracture-network models may explicitly deal with matrix blocks at high computational expense. To address these issues, we developed a unified-form diffusive flux equation for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular matrix blocks (squares, cubes, rectangles, and rectangular parallelepipeds) by partitioning the entire dimensionless-time domain (Zhou et al., 2017a, b). For each matrix block, this flux equation consists of the early-time solution up until a switch-over time after which the late-time solution is applied to create continuity from early to late time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the coefficients dependent on dimensionless area-to-volume ratio and aspect ratios for rectangular blocks. For the late-time solutions, one exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic blocks. The time-partitioning method was also used for calculating pressure/concentration/temperature distribution within a matrix block. The approximate solution contains an error-function solution for early times and an exponential solution for late times, with relative errors less than 0.003. These solutions form the kernel of multirate and multidimensional hydraulic, solute and thermal diffusion in fractured reservoirs.

  3. EUVE observations of Algol: Detection of a continuum and implications for the coronal (Fe/H) abundance

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.; Lemen, James R.; Schmitt, Jurgen H. M. M.; Pye, John P.

    1995-01-01

    We report results from the first extreme ultraviolet spectrum of the prototypical eclipsing binary Algol (beta Per), obtained with the spectrometers on the Extreme Ultraviolet Explorer (EUVE). The Algol spectrum in the 80-350 A range is dominated by emission lines of Fe XVI-XXIV, and the He II 304 A line. The Fe emission is characteristic of high-temperature plasma at temperatures up to at least log T approximately 7.3 K. We have successfully modeled the observed quiescent spectrum using a continuous emission measure distribution with the bulk of the emitting material at log T greater than 6.5. We are able to adequately fit both the coronal lines and continuum data with a cosmic abundance plasma, but only if Algol's quiescent corona is dominated by material at log T greater than 7.5, which is physically ruled out by prior X-ray observations of the quiescent Algol spectrum. Since the coronal (Fe/H) abundance is the principal determinant of the line-to-continuum ratio in the EUV, allowing the abundance to be a free parameter results in models with a range of best-fit abundances approximately = 15%-40% of solar photospheric (Fe/H). Since Algol's photospheric (Fe/H) appears to be near-solar, the anomalous EUV line-to-continuum ratio could either be the result of element segregation in the coronal formation process, or other, less likely mechanisms that may enhance the continuum with respect to the lines.

  4. Hypersonic rarefied-flow aerodynamics inferred from Shuttle Orbiter acceleration measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hinson, E. W.

    1989-01-01

    Data obtained from multiple flights of sensitive accelerometers on the Space Shuttle Orbiter during reentry have been used to develop an improved aerodynamic model for the Orbiter normal- and axial-force coefficients in hypersonic rarefied flow. The lack of simultaneous atmospheric density measurements was overcome in part by using the ratio of normal-to-axial acceleration, in which density cancels, as a constraint. Differences between the preflight model and the flight-acceleration-derived model in the continuum regime are attributed primarily to real gas effects. New insights are gained into the variation of the force coefficients in the transition between the continuum regime and free molecule flow.

  5. Mathematical toy model inspired by the problem of the adaptive origins of the sexual orientation continuum

    NASA Astrophysics Data System (ADS)

    Skinner, Brian

    2016-09-01

    Same-sex sexual behaviour is ubiquitous in the animal kingdom, but its adaptive origins remain a prominent puzzle. Here, I suggest the possibility that same-sex sexual behaviour arises as a consequence of the competition between an evolutionary drive for a wide diversity in traits, which improves the adaptability of a population, and a drive for sexual dichotomization of traits, which promotes opposite-sex attraction and increases the rate of reproduction. This trade-off is explored via a simple mathematical `toy model'. The model exhibits a number of interesting features and suggests a simple mathematical form for describing the sexual orientation continuum.

  6. From cells to tissue: A continuum model of epithelial mechanics

    NASA Astrophysics Data System (ADS)

    Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru

    2017-08-01

    A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.

  7. Continuum damage model for ferroelectric materials and its application to multilayer actuators

    NASA Astrophysics Data System (ADS)

    Gellmann, Roman; Ricoeur, Andreas

    2016-05-01

    In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.

  8. Mathematical toy model inspired by the problem of the adaptive origins of the sexual orientation continuum.

    PubMed

    Skinner, Brian

    2016-09-01

    Same-sex sexual behaviour is ubiquitous in the animal kingdom, but its adaptive origins remain a prominent puzzle. Here, I suggest the possibility that same-sex sexual behaviour arises as a consequence of the competition between an evolutionary drive for a wide diversity in traits, which improves the adaptability of a population, and a drive for sexual dichotomization of traits, which promotes opposite-sex attraction and increases the rate of reproduction. This trade-off is explored via a simple mathematical 'toy model'. The model exhibits a number of interesting features and suggests a simple mathematical form for describing the sexual orientation continuum.

  9. AGN Space Telescope and Optical Reverberation Mapping Project V. Continuum Time Delays and Disk Inclinations

    NASA Astrophysics Data System (ADS)

    Starkey, David; Agn Storm Team

    2015-01-01

    Reverberation mapping is a proven method for obtaining black hole mass estimates and constraining the size of the BLR. We analyze multi-wavelength continuum light curves from the 7 month AGN STORM monitoring of NGC 5548 and use reverberation mapping to model the accretion disk time delays. The model fits the light curves at UV to IR wavelengths assuming reprocessing on a flat, steady-state blackbody accretion disk. We calculate the inclination-dependent transfer function and investigate to what extent our model can determine the disk inclination, black hole MMdot and power law index of the disc temperature-radius relation.

  10. A numerical analysis of high-temperature heat pipe startup from the frozen state

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1993-01-01

    Continuum and rarefied vapor flows co-exist along the heat pipe length for most of the startup period. A two-region model is proposed in which the vapor flow in the continuum region is modeled by the compressible Navier-Stokes equations, and the vapor flow in the rarefied region is simulated by a self-diffusion model. The two vapor regions are linked with appropriate boundary conditions, and heat pipe wail, wick, and vapor flow are solved as a conjugate problem. The numerical solutions for the entire heat pipe startup process from the frozen state are compared with the corresponding experimental data with good agreement.

  11. The wind geometry of the Wolf-Rayet star HD 191765

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. F.; Nordsieck, K. H.; Taylor, M.; Bjorkman, K. S.; Magalhaes, A. M.; Wolff, M. J.

    1992-01-01

    A time-dependent spectropolarimetric data set of HD 191765 in the wavelength range 3159-7593 A is presented. At all epochs the present observations display a large and strongly wavelength-dependent continuum polarization and reduced levels of polarization across the emission lines. The data imply a significant intrinsic continuum polarization which requires a general deviation of the electron distribution from spherical symmetry. The global shape is quite stable as a function of time; small fluctuations may arise from localized density/temperature changes. The line polarizations are consistent with an axisymmetric wind geometry and ionization stratification. A qualitative model for polarization in a Wolf-Rayet atmosphere is developed. It is argued that the blueward rise of the continuum polarization in HD 191765 can be explained if the density in the wind is high, resulting in a competition of thermal and electron-scattering continuum opacity in the vertical.

  12. Non Abelian T-duality in Gauged Linear Sigma Models

    NASA Astrophysics Data System (ADS)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  13. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  14. Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.

    PubMed

    Asinari, Pietro

    2009-11-01

    A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.

  15. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.

    2014-10-07

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n c), and a single solvent-dependent parameter: the dispersion scale factor (s 6), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s 6 parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less

  16. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.

    2014-10-07

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n{sub c}), and a single solvent-dependent parameter: the dispersion scale factor (s{sub 6}), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s{sub 6} parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less

  17. Performance Enhancements Under Dual-task Conditions

    NASA Technical Reports Server (NTRS)

    Kramer, A. F.; Wickens, C. D.; Donchin, E.

    1984-01-01

    Research on dual-task performance has been concerned with delineating the antecedent conditions which lead to dual-task decrements. Capacity models of attention, which propose that a hypothetical resource structure underlies performance, have been employed as predictive devices. These models predict that tasks which require different processing resources can be more successfully time shared than tasks which require common resources. The conditions under which such dual-task integrality can be fostered were assessed in a study in which three factors likely to influence the integrality between tasks were manipulated: inter-task redundancy, the physical proximity of tasks and the task relevant objects. Twelve subjects participated in three experimental sessions in which they performed both single and dual-tasks. The primary task was a pursuit step tracking task. The secondary tasks required the discrimination between different intensities or different spatial positions of a stimulus. The results are discussed in terms of a model of dual-task integrality.

  18. Weak bump quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, B. J.; Mcdowell, J.

    1994-01-01

    Research into the optical, ultraviolet and infrared continuum emission from quasars and their host galaxies was carried out. The main results were the discovery of quasars with unusually weak infrared emission and the construction of a quantitative estimate of the dispersion in quasar continuum properties. One of the major uncertainties in the measurement of quasar continuum strength is the contribution to the continuum of the quasar host galaxy as a function of wavelength. Continuum templates were constructed for different types of host galaxy and individual estimates made of the decomposed quasar and host continua based on existing observations of the target quasars. The results are that host galaxy contamination is worse than previously suspected, and some apparent weak bump quasars are really normal quasars with strong host galaxies. However, the existence of true weak bump quasars such as PHL 909 was confirmed. The study of the link between the bump strength and other wavebands was continued by comparing with IRAS data. There is evidence that excess far infrared radiation is correlated with weaker ultraviolet bumps. This argues against an orientation effect and implies a probable link with the host galaxy environment, for instance the presence of a luminous starburst. However, the evidence still favors the idea that reddening is not important in those objects with ultraviolet weak bumps. The same work has led to the discovery of a class of infrared weak quasars. Pushing another part of the envelope of quasar continuum parameter space, the IR-weak quasars have implications for understanding the effects of reddening internal to the quasars, the reality of ultraviolet turnovers, and may allow further tests of the Phinney dust model for the IR continuum. They will also be important objects for studying the claimed IR to x-ray continuum correlation.

  19. The Complexity of Developmental Predictions from Dual Process Models

    ERIC Educational Resources Information Center

    Stanovich, Keith E.; West, Richard F.; Toplak, Maggie E.

    2011-01-01

    Drawing developmental predictions from dual-process theories is more complex than is commonly realized. Overly simplified predictions drawn from such models may lead to premature rejection of the dual process approach as one of many tools for understanding cognitive development. Misleading predictions can be avoided by paying attention to several…

  20. Jail-to-community treatment continuum for adults with co-occurring substance use and mental disorders: study protocol for a pilot randomized controlled trial.

    PubMed

    Van Dorn, Richard A; Desmarais, Sarah L; Rade, Candalyn B; Burris, Elizabeth N; Cuddeback, Gary S; Johnson, Kiersten L; Tueller, Stephen J; Comfort, Megan L; Mueser, Kim T

    2017-08-04

    Adults with co-occurring mental and substance use disorders (CODs) are overrepresented in jails. In-custody barriers to treatment, including a lack of evidence-based treatment options and the often short periods of incarceration, and limited communication between jails and community-based treatment agencies that can hinder immediate enrollment into community care once released have contributed to a cycle of limited treatment engagement, unaddressed criminogenic risks, and (re)arrest among this vulnerable and high-risk population. This paper describes a study that will develop research and communication protocols and adapt two evidence-based treatments, dual-diagnosis motivational interviewing (DDMI) and integrated group therapy (IGT), for delivery to adults with CODs across a jail-to-community treatment continuum. Adaptations to DDMI and IGT were guided by the Risk-Need-Responsivity model and the National Institute of Corrections' implementation competencies; the development of the implementation framework and communication protocols were guided by the Evidence-Based Interagency Implementation Model for community corrections and the Inter-organizational Relationship model, respectively. Implementation and evaluation of the protocols and adapted interventions will occur via an open trial and a pilot randomized trial. The clinical intervention consists of two in-jail DDMI sessions and 12 in-community IGT sessions. Twelve adults with CODs and four clinicians will participate in the open trial to evaluate the acceptability and feasibility of, and fidelity to, the interventions and research and communication protocols. The pilot controlled trial will be conducted with 60 inmates who will be randomized to either DDMI-IGT or treatment as usual. A baseline assessment will be conducted in jail, and four community-based assessments will be conducted during a 6-month follow-up period. Implementation, clinical, public health, and treatment preference outcomes will be evaluated. Findings have the potential to improve both jail- and community-based treatment services for adults with CODs as well as inform methods for conducting rigorous pilot implementation and evaluation research in correctional settings and as inmates re-enter the community. Findings will contribute to a growing area of work focused on interrupting the cycle of limited treatment engagement, unaddressed criminogenic risks, and (re)arrest among adults with CODs. ClinicalTrials.gov, NCT02214667 . Registered on 10 August 2014.

  1. Integrating the behavioral and neural dynamics of response selection in a dual-task paradigm: a dynamic neural field model of Dux et al. (2009).

    PubMed

    Buss, Aaron T; Wifall, Tim; Hazeltine, Eliot; Spencer, John P

    2014-02-01

    People are typically slower when executing two tasks than when only performing a single task. These dual-task costs are initially robust but are reduced with practice. Dux et al. (2009) explored the neural basis of dual-task costs and learning using fMRI. Inferior frontal junction (IFJ) showed a larger hemodynamic response on dual-task trials compared with single-task trial early in learning. As dual-task costs were eliminated, dual-task hemodynamics in IFJ reduced to single-task levels. Dux and colleagues concluded that the reduction of dual-task costs is accomplished through increased efficiency of information processing in IFJ. We present a dynamic field theory of response selection that addresses two questions regarding these results. First, what mechanism leads to the reduction of dual-task costs and associated changes in hemodynamics? We show that a simple Hebbian learning mechanism is able to capture the quantitative details of learning at both the behavioral and neural levels. Second, is efficiency isolated to cognitive control areas such as IFJ, or is it also evident in sensory motor areas? To investigate this, we restrict Hebbian learning to different parts of the neural model. None of the restricted learning models showed the same reductions in dual-task costs as the unrestricted learning model, suggesting that efficiency is distributed across cognitive control and sensory motor processing systems.

  2. A model for one-dimensional morphoelasticity and its application to fibroblast-populated collagen lattices.

    PubMed

    Menon, Shakti N; Hall, Cameron L; McCue, Scott W; McElwain, D L Sean

    2017-10-01

    The mechanical behaviour of solid biological tissues has long been described using models based on classical continuum mechanics. However, the classical continuum theories of elasticity and viscoelasticity cannot easily capture the continual remodelling and associated structural changes in biological tissues. Furthermore, models drawn from plasticity theory are difficult to apply and interpret in this context, where there is no equivalent of a yield stress or flow rule. In this work, we describe a novel one-dimensional mathematical model of tissue remodelling based on the multiplicative decomposition of the deformation gradient. We express the mechanical effects of remodelling as an evolution equation for the effective strain, a measure of the difference between the current state and a hypothetical mechanically relaxed state of the tissue. This morphoelastic model combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. A novel feature of our model is that while most models describe growth as a continuous quantity, here we begin with discrete cells and develop a continuum representation of lattice remodelling based on an appropriate limit of the behaviour of discrete cells. To demonstrate the utility of our approach, we use this framework to capture qualitative aspects of the continual remodelling observed in fibroblast-populated collagen lattices, in particular its contraction and its subsequent sudden re-expansion when remodelling is interrupted.

  3. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and we provide a novel and general framework for multiscale modeling of systems featuring one or more dissolved species. This makes it possible to retain molecular detail for parts of the problem that require it while using a simple, continuum description for parts where high detail is unnecessary, reducing the number of degrees of freedom (i.e. number of particles) dramatically. This opens the possibility for modeling ion transport in biological processes and biomolecule assembly in ionic solution, as well as electrokinetic phenomena at interfaces such as corrosion. The number of particles in the system is further reduced through an integrated boundary approach, which we apply to colloidal suspensions. In this thesis, we describe this general framework for multiscale modeling single- and multicomponent systems, provide several simple equilibrium and non-equilibrium case studies, and discuss future applications.

  4. Discrete structures in continuum descriptions of defective crystals.

    PubMed

    Parry, G P

    2016-04-28

    I discuss various mathematical constructions that combine together to provide a natural setting for discrete and continuum geometric models of defective crystals. In particular, I provide a quite general list of 'plastic strain variables', which quantifies inelastic behaviour, and exhibit rigorous connections between discrete and continuous mathematical structures associated with crystalline materials that have a correspondingly general constitutive specification. © 2016 The Author(s).

  5. Does the river continuum concept apply on a tropical island? Longitudinal variation in a Puerto Rican stream.

    Treesearch

    Effie A. Greathouse; Catherine M. Pringle

    2006-01-01

    We examined whether a tropical stream in Puerto Rico matched predictions of the river continuum concept (RCC) for macroinvertebrate functional feeding groups (FFGs). Sampling sites for macroinvertebrates, basal resources, and fishes ranged from headwaters to within 2.5 km of the fourth-order estuary. In a comparison with a model temperate system in which RCC...

  6. The Lyman-Continuum Fluxes and Stellar Parameters of O and Early B-Type Stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Garmany, Catherine D.; Shull, J. Michael

    1996-01-01

    Using the results of the most recent stellar atmosphere models applied to a sample of hot stars, we construct calibrations of effective temperature (T(sub eff)), and gravity (log(sub g)) with a spectral type and luminosity class for Galactic 0-type and early B-type stars. From the model results we also derive an empirical relation between the bolometric correction and T(sub eff) and log g. Using a sample of stars with known distances located in OB associations in the Galaxy and the Large Magellanic Cloud, we derive a new calibration of M(sub v) with spectral class. With these new calibrations and the stellar atmosphere models of Kurucz, we calculate the physical parameters and ionizing photon luminosities in the H(0) and He(0) continua for O and early B-type stars. We find substantial differences between our values of the Lyman- continuum luminosity and those reported in the literature. We also discuss the systematic discrepancy between O-type stellar masses derived from spectroscopic models and those derived from evolutionary tracks. Most likely, the cause of this 'mass discrepancy' lies primarily in the atmospheric models, which are plane parallel and hydrostatic and therefore do not account for an extended atmosphere and the velocity fields in a stellar wind. Finally, we present a new computation of the Lyman-continuum luminosity from 429 known O stars located within 2.5 kpc of the Sun. We find the total ionizing luminosity from this population ((Q(sub 0)(sup T(sub ot))) = 7.0 x 10(exp 51) photons/s) to be 47% larger than that determined using the Lyman continuum values tabulated by Panagia.

  7. Joint Bayesian Estimation of Quasar Continua and the Lyα Forest Flux Probability Distribution Function

    NASA Astrophysics Data System (ADS)

    Eilers, Anna-Christina; Hennawi, Joseph F.; Lee, Khee-Gan

    2017-08-01

    We present a new Bayesian algorithm making use of Markov Chain Monte Carlo sampling that allows us to simultaneously estimate the unknown continuum level of each quasar in an ensemble of high-resolution spectra, as well as their common probability distribution function (PDF) for the transmitted Lyα forest flux. This fully automated PDF regulated continuum fitting method models the unknown quasar continuum with a linear principal component analysis (PCA) basis, with the PCA coefficients treated as nuisance parameters. The method allows one to estimate parameters governing the thermal state of the intergalactic medium (IGM), such as the slope of the temperature-density relation γ -1, while marginalizing out continuum uncertainties in a fully Bayesian way. Using realistic mock quasar spectra created from a simplified semi-numerical model of the IGM, we show that this method recovers the underlying quasar continua to a precision of ≃ 7 % and ≃ 10 % at z = 3 and z = 5, respectively. Given the number of principal component spectra, this is comparable to the underlying accuracy of the PCA model itself. Most importantly, we show that we can achieve a nearly unbiased estimate of the slope γ -1 of the IGM temperature-density relation with a precision of +/- 8.6 % at z = 3 and +/- 6.1 % at z = 5, for an ensemble of ten mock high-resolution quasar spectra. Applying this method to real quasar spectra and comparing to a more realistic IGM model from hydrodynamical simulations would enable precise measurements of the thermal and cosmological parameters governing the IGM, albeit with somewhat larger uncertainties, given the increased flexibility of the model.

  8. Multiscale modeling of lithium ion batteries: thermal aspects

    PubMed Central

    Zausch, Jochen

    2015-01-01

    Summary The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory. PMID:25977870

  9. Combining frozen-density embedding with the conductor-like screening model using Lagrangian techniques for response properties.

    PubMed

    Schieschke, Nils; Di Remigio, Roberto; Frediani, Luca; Heuser, Johannes; Höfener, Sebastian

    2017-07-15

    We present the explicit derivation of an approach to the multiscale description of molecules in complex environments that combines frozen-density embedding (FDE) with continuum solvation models, in particular the conductor-like screening model (COSMO). FDE provides an explicit atomistic description of molecule-environment interactions at reduced computational cost, while the outer continuum layer accounts for the effect of long-range isotropic electrostatic interactions. Our treatment is based on a variational Lagrangian framework, enabling rigorous derivations of ground- and excited-state response properties. As an example of the flexibility of the theoretical framework, we derive and discuss FDE + COSMO analytical molecular gradients for excited states within the Tamm-Dancoff approximation (TDA) and for ground states within second-order Møller-Plesset perturbation theory (MP2) and a second-order approximate coupled cluster with singles and doubles (CC2). It is shown how this method can be used to describe vertical electronic excitation (VEE) energies and Stokes shifts for uracil in water and carbostyril in dimethyl sulfoxide (DMSO), respectively. In addition, VEEs for some simplified protein models are computed, illustrating the performance of this method when applied to larger systems. The interaction terms between the FDE subsystem densities and the continuum can influence excitation energies up to 0.3 eV and, thus, cannot be neglected for general applications. We find that the net influence of the continuum in presence of the first FDE shell on the excitation energy amounts to about 0.05 eV for the cases investigated. The present work is an important step toward rigorously derived ab initio multilayer and multiscale modeling approaches. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. CONTINUUM INTENSITY AND [O i] SPECTRAL LINE PROFILES IN SOLAR 3D PHOTOSPHERIC MODELS: THE EFFECT OF MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbian, D.; Moreno-Insertis, F., E-mail: damian@iac.es, E-mail: fmi@iac.es

    2015-04-01

    The importance of magnetic fields in three-dimensional (3D) magnetoconvection models of the Sun’s photosphere is investigated in terms of their influence on the continuum intensity at different viewing inclination angles and on the intensity profile of two [O i] spectral lines. We use the RH numerical radiative transfer code to perform a posteriori spectral synthesis on the same time series of magnetoconvection models used in our publications on the effect of magnetic fields on abundance determination. We obtain a good match of the synthetic disk-center continuum intensity to the absolute continuum values from the Fourier Transform Spectrometer (FTS) observational spectrum; the matchmore » of the center-to-limb variation synthetic data to observations is also good, thanks, in part, to the 3D radiation transfer capabilities of the RH code. The different levels of magnetic flux in the numerical time series do not modify the quality of the match. Concerning the targeted [O i] spectral lines, we find, instead, that magnetic fields lead to nonnegligible changes in the synthetic spectrum, with larger average magnetic flux causing both of the lines to become noticeably weaker. The photospheric oxygen abundance that one would derive if instead using nonmagnetic numerical models would thus be lower by a few to several centidex. The inclusion of magnetic fields is confirmed to be important for improving the current modeling of the Sun, here in particular in terms of spectral line formation and of deriving consistent chemical abundances. These results may shed further light on the still controversial issue regarding the precise value of the solar oxygen abundance.« less

  11. Modeling the Impact of Interventions Along the HIV Continuum of Care in Newark, New Jersey

    PubMed Central

    Birger, Ruthie B.; Hallett, Timothy B.; Sinha, Anushua; Grenfell, Bryan T.; Hodder, Sally L.

    2014-01-01

    Background. The human immunodeficiency virus (HIV) epidemic in Newark, New Jersey, is among the most severe in the United States. Prevalence ranges up to 3.3% in some groups. The aim of this study is to use a mathematical model of the epidemic in Newark to assess the impact of interventions along the continuum of care, leading to virologic suppression. Methods. A model was constructed of HIV infection including specific care-continuum steps. The model was calibrated to HIV/AIDS cases in Newark among different populations over a 10-year period. Interventions applied to model fits were increasing proportions tested, linked and retained in care, linked and adherent to treatment, and increasing testing frequency, high-risk-group testing, and adherence. Impacts were assessed by measuring incidence and death reductions 10 years postintervention. Results. The most effective interventions for reducing incidence were improving treatment adherence and increasing testing frequency and coverage. No single intervention reduced incidence in 2023 by >5%, and the most effective combination of interventions reduced incidence by approximately 16% (2%–24%). The most efficacious interventions for reducing deaths were increasing retention, linkage to care, testing coverage, and adherence. Increasing retention reduced deaths by approximately 27% (24%–29%); the most efficacious combination of interventions reduced deaths in 2023 by approximately 52% (46%–57%). Conclusions. Reducing HIV deaths in Newark over a 10-year period may be a realizable goal, but reducing incidence is less likely. Our results highlight the importance of addressing leaks across the entire continuum of care and reinforcing efforts to prevention new HIV infections with additional interventions. PMID:24140971

  12. The NIKA2 Large Field-of-View Millimeter Continuum Camera for the 30-M IRAM Telescope

    NASA Astrophysics Data System (ADS)

    Monfardini, Alessandro

    2018-01-01

    We have constructed and deployed a multi-thousands pixels dual-band (150 and 260 GHz, respectively 2mm and 1.15mm wavelengths) camera to image an instantaneous field-of-view of 6.5arc-min and configurable to map the linear polarization at 260GHz. We are providing a detailed description of this instrument, named NIKA2 (New IRAM KID Arrays 2), in particular focusing on the cryogenics, the optics, the focal plane arrays based on Kinetic Inductance Detectors (KID) and the readout electronics. We are presenting the performance measured on the sky during the commissioning runs that took place between October 2015 and April 2017 at the 30-meter IRAM (Institute of Millimetric Radio Astronomy) telescope at Pico Veleta, and preliminary science-grade results.

  13. Use of a supercontinuum white light in evaluating the spectral sensitivity of the pupil light reflex

    NASA Astrophysics Data System (ADS)

    Chin, Catherine; Leick, Lasse; Podoleanu, Adrian; Lall, Gurprit S.

    2018-03-01

    We assessed the spectral sensitivity of the pupillary light reflex in mice using a high power super continuum white light (SCWL) source in a dual wavelength configuration. This novel approach was compared to data collected from a more traditional setup using a Xenon arc lamp fitted with monochromatic interference filters. Irradiance response curves were constructed using both systems, with the added benefit of a two-wavelength, equivocal power, output using the SCWL. The variables applied to the light source were intensity, wavelength and stimulus duration through which the physiological output measured was the minimum pupil size attained under such conditions. We show that by implementing the SCWL as our novel stimulus we were able to dramatically increase the physiological usefulness of our pupillometry system.

  14. Structure preserving noise and dissipation in the Toda lattice

    NASA Astrophysics Data System (ADS)

    Arnaudon, Alexis

    2018-05-01

    In this paper, we use Flaschka’s change of variables of the open Toda lattice and its interpretation in terms of the group structure of the LU factorisation as a coadjoint motion on a certain dual of the Lie algebra to implement a structure preserving noise and dissipation. Both preserve the structure of the coadjoint orbit, that is the space of symmetric tri-diagonal matrices and arise as a new type of multiplicative noise and nonlinear dissipation of the Toda lattice. We investigate some of the properties of these deformations and, in particular, the continuum limit as a stochastic Burger equation with a nonlinear viscosity. This work is meant to be exploratory, and open more questions that we can answer with simple mathematical tools and without numerical simulations.

  15. The South Carolina rural-urban HIV continuum of care.

    PubMed

    Edun, Babatunde; Iyer, Medha; Albrecht, Helmut; Weissman, Sharon

    2017-07-01

    The HIV continuum of care model is widely used by various agencies to describe the HIV epidemic in stages from diagnosis through to virologic suppression. It identifies the various points at which persons living with HIV (PLWHIV) within a population fail to reach their next step in HIV care. The rural population in the Southern United States is disproportionally affected by the HIV epidemic. The purpose of this study was to examine these rural-urban disparities using the HIV care continuum model and determine at what stages these differences become apparent. PLWHIV aged 13 years and older in South Carolina (SC) were identified using data from the enhanced HIV/AIDS Reporting System. The percentages of PLWHIV linked to care, retained in care, and virologically suppressed were determined. Rural versus urban residence was determined using the Office of Management and Budget classification. There were 14,523 PLWHIV in SC at the end of 2012; 11,193 (77%) of whom were categorized as urban and 3305 (22%) as rural. There was no difference between urban and rural for those who had received any care: 64% versus 64% (p = .61); retention in care 53% versus 53% (p = .71); and virologic suppression 49% versus 48% (p = .35), respectively. The SC rural-urban HIV cascade represents the first published cascade of care model using rural versus urban residence. Although significant health care disparities exist between rural and urban residents, there were no major differences between rural and urban residents at the various stages of engagement in HIV care using the HIV continuum of care model.

  16. The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2007-01-01

    A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  17. The SMM model as a boundary value problem using the discrete diffusion equation.

    PubMed

    Campbell, Joel

    2007-12-01

    A generalized single-step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  18. Dual education and industrial cooperation in electrical engineering

    NASA Astrophysics Data System (ADS)

    Váradiné Szarka, A.

    2016-11-01

    Dual education in higher education is a new system in Hungary introduced by Mercedes Benz with cooperation of Kecskemet College. In the new system companies support certain number of students and provide them strong practical education in their field. Students applying successfully for dual education study together with non-dual students at the university, so they go through the same university courses as their non-dual colleagues, but while non-dual students’ academic year includes 2×14 weeks active semester and 2×6 weeks exam session, all over 40 weeks, dual students have 48 working weeks including study at the university and practicing at the company. The main question of the success which one is the most effective model to be applied. This paper summarises 2 models of dual education with their advantages and disadvantages and also it presents practical realization at the University of Debrecen with special attention to measurement and instrumentation. Dual education in BSc level electrical engineering course cooperates with 6 multinational companies of the region in four specialization. Dual education also has great impact to the modernisation of engineering education. Detailed study of dual education in field of instrumentation and measurement is provided in the paper.

  19. Spectral Variations of T Tauri stars

    NASA Astrophysics Data System (ADS)

    Guenther, E.

    1994-02-01

    Although it can now be taken for granted that T Tauri stars accrete matter from circumstellar disks, the way in which the matter is ultimately accreted by the star is still under discussion. Boundary layer models, as well as models of magnetic accretion are considered. Since the very inner part of the disk, the star, and the boundary layer or the accretion shock radiate mainly in the optical, it is necessary to investigate this wavelength region. Optical spectra of classical T Tauri stars consist of emission lines superimposed on a late-type photospheric spectrum, but the photospheric lines in T Tauri stars are much weaker than the lines of main sequence stars of the same spectral type. This is generally attributed to the presence of an additional continuum which veils the photospheric spectrum of the star, which may be be the emission of the boundary layer, or the emission of the immediate vicinity of an accretion shock. The aim of this work is to give additional information on the nature of the region that emits the veiling continuum by investigating the correlations between the veiling and line fluxes in time serieses of T Tauri stars. For this work a time series of 27, 117, and 89 spectra of BM And, DI Cep and DG Tau, were taken in 9, 13, and 12 nights, using the Echellette-Spectrograph of the 2.2m telescope on Calar Alto, Spain. These T Tauri stars were selected because of their different of levels of activity. The spectra cover the whole region between 3200Å and 11000Å with a resolution of about Δ λ λ = 3000. Using 32 template stars the spectral types of the stars were determined, which is found to remain unchanged during the whole time series. The wavelengths of all photospheric lines are in agreement with a single doppler shift (+/- 6 km/s), which is taken as the systemic velocity. It is thus assumed that the low excitation lines are indeed the photospheric lines of the star and the veiling is an additional continuum source. The spectrum of the veiling continuum is determined by subtracting a flux calibrated, scaled template spectrum from the flux calibrated, deredened T Taui star spectrum. The spectra of the veiling continuum exhibit a strong, variable Balmer Jump, but no Pashen Jump is seen. Hα is the only emission line in the spectrum of BM And, all other Balmer lines and the lines of He I appear in absorption, and are redshifted by at least 100 km/s. While the correlation between Hα and the veiling continuum is high, the correlation between all redshifted absorption lines and the veiling continuum is very low. From a comparison of observed and computed profiles of He I it is concluded that this line might form close to an accretion shock, and so should the higher Balmer. Since no redshifted absorption component is seen in Hα, the emission component must be optically thick, and should then be formed at a larger distance from the star than the redshifted absorption components, and hence the veiling continuum. The observations of BM And clearly show that the magnetic model is valid in this case, but the veiling continuum is not the emission of the accretion shock itself. DG Tau and DI Cep show the same kind of behavior. All emission lines have correlation factors between about 0.3 and 0.8. The highest correlations are found in the Balmer lines and low excitation Fe I and Fe II lines. There are no delay effects between the lines, all lines reach their maxima and minima at the same time. From the large Balmer decrement, and calculation of the Balmer lines and the veiling continuum in a simple slab model, it is concluded that the emitting region that is responsible for the emission lines and the veiling continuum has a temperature of 10000 K, and a density of 3**1018m-3 or less. In the slab geometry this corresponds to an emitting region which is at least 10000 km (≅ 0.01 R*) thick. It can thus be concluded that the region emitting the veiling continuum is relatively large and thin.

  20. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai

    2009-03-14

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

Top