Science.gov

Sample records for dual dna vaccination

  1. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  2. DNA vaccines: a review.

    PubMed

    Liu, M A

    2003-04-01

    The DNA vaccines are simple rings of DNA containing a gene encoding an antigen, and a promoter/terminator to make the gene express in mammalian cells. They are a promising new approach for generating all types of desired immunity: cytolytic T lymphocytes (CTL), T helper cells and antibodies, whilst being a technology that has the potential for global usage in terms of manufacturing ease, broad population administration and safety. This review gives an overview of the mechanisms, preclinical and clinical efficacy of DNA vaccines, and point out the limitations of the first generation of such vaccines, and some of the promising second-generation developments. This technology is also being utilized in the field of proteomics as a tool to elucidate the function of genes. The breadth of applications for DNA vaccines thus ranges from prophylactic vaccines to immunotherapy for infectious diseases, cancer, and autoimmune and allergic diseases. PMID:12653868

  3. DNA vaccines against influenza.

    PubMed

    Stachyra, Anna; Góra-Sochacka, Anna; Sirko, Agnieszka

    2014-01-01

    Genetic vaccine technology has been considerably developed within the last two decades. This cost effective and promising strategy can be applied for therapy of cancers and for curing allergy, chronic and infectious diseases, such as a seasonal and pandemic influenza. Despite numerous advantages, several limitations of this technology reduce its performance and can retard its commercial exploitation in humans and its veterinary applications. Inefficient delivery of the DNA vaccine into cells of immunized individuals results in low intracellular supply of suitable expression cassettes encoding an antigen, in its low expression level and, in turn, in reduced immune responses against the antigen. Improvement of DNA delivery into the host cells might significantly increase effectiveness of the DNA vaccine. A vast array of innovative methods and various experimental strategies have been applied in order to enhance the effectiveness of DNA vaccines. They include various strategies improving DNA delivery as well as expression and immunogenic potential of the proteins encoded by the DNA vaccines. Researchers focusing on DNA vaccines against influenza have applied many of these strategies. Recent examples of the most successful modern approaches are discussed in this review.

  4. DNA vaccines and intradermal vaccination by DNA tattooing.

    PubMed

    Oosterhuis, K; van den Berg, J H; Schumacher, T N; Haanen, J B A G

    2012-01-01

    Over the past two decades, DNA vaccination has been developed as a method for the induction of immune responses. However, in spite of high expectations based on their efficacy in preclinical models, immunogenicity of first generation DNA vaccines in clinical trials was shown to be poor, and no DNA vaccines have yet been licensed for human use. In recent years significant progress has been made in the development of second generation DNA vaccines and DNA vaccine delivery methods. Here we review the key characteristics of DNA vaccines as compared to other vaccine platforms, and recent insights into the prerequisites for induction of immune responses by DNA vaccines will be discussed. We illustrate the development of second generation DNA vaccines with the description of DNA tattooing as a novel DNA delivery method. This technique has shown great promise both in a small animal model and in non-human primates and is currently under clinical evaluation.

  5. DNA vaccines in veterinary use

    PubMed Central

    Redding, Laurel; Werner, David B

    2015-01-01

    DNA vaccines represent a new frontier in vaccine technology. One important application of this technology is in the veterinary arena. DNA vaccines have already gained a foothold in certain fields of veterinary medicine. However, several important questions must be addressed when developing DNA vaccines for animals, including whether or not the vaccine is efficacious and cost effective compared with currently available options. Another important question to consider is how to apply this developing technology in a wide range of different situations, from the domestic pet to individual fish in fisheries with several thousand animals, to wildlife programs for disease control. In some cases, DNA vaccines represent an interesting option for vaccination, while in others, currently available options are sufficient. This review will examine a number of diseases of veterinary importance and the progress being made in DNA vaccine technology relevant to these diseases, and we compare these with the conventional treatment options available. PMID:19722897

  6. Evolution of electroporated DNA vaccines.

    PubMed

    Keane-Myers, Andrea M; Bell, Matt

    2014-01-01

    Vaccines have evolved for hundreds of years, but all utilize the premise that safely pre-exposing the host to some component of a pathogen allows for enhanced immune recognition, and potential protection from disease, upon encountering the pathogen at a later date. Early vaccination strategies used inactivated or attenuated vaccines, many of which contained toxins and other components that resulted in reactogenicity or risk of reversion to virulence. DNA vaccines supplant many of the issues associated with inactivated or attenuated vaccines, but these vaccines tend to provide weak immunological responses, particularly in primates. DNA Electroporation may prove to be the "missing link" in the evolution of DNA vaccines allowing for enhanced immune responses from DNA vaccination in humans thereby resulting in protection from disease post-pathogen exposure.

  7. DNA vaccines: a simple DNA sensing matter?

    PubMed

    Coban, Cevayir; Kobiyama, Kouji; Jounai, Nao; Tozuka, Miyuki; Ishii, Ken J

    2013-10-01

    Since the introduction of DNA vaccines two decades ago, this attractive strategy has been hampered by its low immunogenicity in humans. Studies conducted to improve the immunogenicity of DNA vaccines have shown that understanding the mechanism of action of DNA vaccines might be the key to successfully improving their immunogenicity. Our current understanding is that DNA vaccines induce innate and adaptive immune responses in two ways: (1) encoded protein (or polypeptide) antigen(s) by the DNA plasmid can be expressed in stromal cells (i.e., muscle cells) as well as DCs, where these antigens are processed and presented to naïve CD4 or CD8 T cells either by direct or cross presentation, respectively; and (2) the transfected DNA plasmid itself may bind to an un-identified cytosolic DNA sensor and activate the TBK1-STING pathway and the production of type I interferons (IFNs) which function as an adjuvant. Recent studies investigating double-stranded cytosolic DNA sensor(s) have highlighted new mechanisms in which cytosolic DNA may release secondary metabolites, which are in turn recognized by a novel DNA sensing machinery. Here, we discuss these new metabolites and the possibilities of translating this knowledge into improved immunogenicity for DNA vaccines.

  8. DNA vaccines for aquacultured fish.

    PubMed

    Lorenzen, N; LaPatra, S E

    2005-04-01

    Deoxyribonucleic acid (DNA) vaccination is based on the administration of the gene encoding the vaccine antigen, rather than the antigen itself. Subsequent expression of the antigen by cells in the vaccinated hosts triggers the host immune system. Among the many experimental DNA vaccines tested in various animal species as well as in humans, the vaccines against rhabdovirus diseases in fish have given some of the most promising results. A single intramuscular (IM) injection of microgram amounts of DNA induces rapid and long-lasting protection in farmed salmonids against economically important viruses such as infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV). DNA vaccines against other types of fish pathogens, however, have so far had limited success. The most efficient delivery route at present is IM injection, and suitable delivery strategies for mass vaccination of small fish have yet to be developed. In terms of safety, no adverse effects in the vaccinated fish have been observed to date. As DNA vaccination is a relatively new technology, various theoretical and long-term safety issues related to the environment and the consumer remain to be fully addressed, although inherently the risks should not be any greater than with the commercial fish vaccines that are currently used. Present classification systems lack clarity in distinguishing DNA-vaccinated animals from genetically modified organisms (GMOs), which could raise issues in terms of licensing and public acceptance of the technology. The potential benefits of DNA vaccines for farmed fish include improved animal welfare, reduced environmental impacts of aquaculture activities, increased food quality and quantity, and more sustainable production. Testing under commercial production conditions has recently been initiated in Canada and Denmark.

  9. Intralymphatic immunization enhances DNA vaccination

    NASA Astrophysics Data System (ADS)

    Maloy, Kevin J.; Erdmann, Iris; Basch, Veronique; Sierro, Sophie; Kramps, Thomas A.; Zinkernagel, Rolf M.; Oehen, Stefan; Kündig, Thomas M.

    2001-03-01

    Although DNA vaccines have been shown to elicit potent immune responses in animal models, initial clinical trials in humans have been disappointing, highlighting a need to optimize their immunogenicity. Naked DNA vaccines are usually administered either i.m. or intradermally. The current study shows that immunization with naked DNA by direct injection into a peripheral lymph node enhances immunogenicity by 100- to 1,000-fold, inducing strong and biologically relevant CD8+ cytotoxic T lymphocyte responses. Because injection directly into a lymph node is a rapid and easy procedure in humans, these results have important clinical implications for DNA vaccination.

  10. Biotechnology and DNA vaccines for aquatic animals

    USGS Publications Warehouse

    Kurath, G.

    2008-01-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  11. The future of human DNA vaccines.

    PubMed

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans.

  12. DNA Vaccines: Experiences in the Swine Model.

    PubMed

    Accensi, Francesc; Rodríguez, Fernando; Monteagudo, Paula L

    2016-01-01

    DNA vaccination is one of the most fascinating vaccine-strategies currently in development. Two of the main advantages of DNA immunization rely on its simplicity and flexibility, being ideal to dissect both the immune mechanisms and the antigens involved in protection against a given pathogen. Here, we describe several strategies used to enhance the immune responses induced and the protection afforded by experimental DNA vaccines tested in swine and provide with very basic protocol describing the generation and in vivo application of a prototypic DNA vaccine. Only time will tell the last word regarding the definitive implementation of DNA vaccination in the field.

  13. Potent tetravalent replicon vaccines against botulinum neurotoxins using DNA-based Semliki Forest virus replicon vectors.

    PubMed

    Yu, Yun-Zhou; Guo, Jin-Peng; An, Huai-Jie; Zhang, Shu-Ming; Wang, Shuang; Yu, Wei-Yuan; Sun, Zhi-Wei

    2013-05-01

    Human botulism is commonly associated with botulinum neurotoxin (BoNT) serotypes A, B, E and F. This suggests that the greatest need is for a tetravalent vaccine that provides protection against all four of these serotypes. In current study, we investigated the feasibility of generating several tetravalent vaccines that protected mice against the four serotypes. Firstly, monovalent replicon vaccine against BoNT induced better antibody response and protection than that of corresponding conventional DNA vaccine. Secondly, dual-expression DNA replicon pSCARSE/FHc or replicon particle VRP-E/FHc vaccine was well resistant to the challenge of BoNT/E and BoNT/F mixture as a combination vaccine composed of two monovalent replicon vaccines. Finally, the dual-expression DNA replicon or replicon particle tetravalent vaccine could simultaneously and effectively neutralize and protect the four BoNT serotypes. Protection correlated directly with serum ELISA titers and neutralization antibody levels to BoNTs. Therefore, replicon-based DNA or particle might be effective vector to develop BoNT vaccines, which might be more desirable for use in clinical application than the conventional DNA vaccines. Our studies demonstrate the utility of combining dual-expression DNA replicon or replicon particle vaccines into multi-agent formulations as potent tetravalent vaccines for eliciting protective responses to four serotypes of BoNTs.

  14. Technologies for enhanced efficacy of DNA vaccines

    PubMed Central

    Saade, Fadi; Petrovsky, Nikolai

    2012-01-01

    Despite many years of research, human DNA vaccines have yet to fulfill their early promise. Over the past 15 years, multiple generations of DNA vaccines have been developed and tested in preclinical models for prophylactic and therapeutic applications in the areas of infectious disease and cancer, but have failed in the clinic. Thus, while DNA vaccines have achieved successful licensure for veterinary applications, their poor immunogenicity in humans when compared with traditional protein-based vaccines has hindered their progress. Many strategies have been attempted to improve DNA vaccine potency including use of more efficient promoters and codon optimization, addition of traditional or genetic adjuvants, electroporation, intradermal delivery and various prime–boost strategies. This review summarizes these advances in DNA vaccine technologies and attempts to answer the question of when DNA vaccines might eventually be licensed for human use. PMID:22309668

  15. DNA vaccines: recent developments and future possibilities.

    PubMed

    Liu, Margaret A; Wahren, Britta; Karlsson Hedestam, Gunilla B

    2006-11-01

    The field of DNA vaccines continues to advance and several new strategies to augment the immunogenicity of DNA vaccines are under evaluation. The majority of these studies are in the early preclinical stage, but some DNA vaccines have moved into clinical trials. In this review, we describe some of the more recent efforts aimed at increasing the immunogenicity of DNA vaccines, including the use of genetic adjuvants and plasmid-based expression of viral replicons. In addition, we discuss the possibility of using DNA vaccines to address emerging infectious agents where they may provide an advantage over other vaccine strategies and we review some areas where DNA vaccines have been used to target self-antigens. PMID:17032152

  16. Assembly and Assessment of DNA Scaffolded Vaccines.

    PubMed

    Liu, Xiaowei; Wang, Lili; Yan, Hao; Chang, Yung

    2016-01-01

    Vaccines play an important role in preventing many life-threatening infectious diseases. To meet the demand of vaccination for treating a wide range of diseases, rational vaccine design has been recognized as a desirable and necessary strategy for development of safe and effective vaccines. DNA nanostructures are advantageous in the design and construction of synthetic vaccines, owing to their robust self-assembly, programmability, and precision control in complex organization, as well as their intrinsic adjuvant activity. Here, we describe a modular assembly of DNA scaffolded vaccine complex, composing of a model antigen, streptavidin, and adjuvant, CpG oligonucleotide. The DNA-assembled vaccines were found to elicit strong antigen-specific antibody responses, but causing little or no adverse reactions. Conceivably, this vaccine platform can be further optimized for improved immunogenicity and extended to the construction of various subunit vaccines. PMID:27076307

  17. Novel approaches to tuberculosis prevention: DNA vaccines.

    PubMed

    Rivas-Santiago, Bruno; Cervantes-Villagrana, Alberto R

    2014-03-01

    It is estimated that there are approximately eight million new cases of active tuberculosis (TB) worldwide annually. There is only 1 vaccine available for prevention: bacillus Calmette-Guérin (BCG). This has variable efficacy and is only protective for certain extrapulmonary TB cases in children, therefore new strategies for the creation of novel vaccines have emerged. One of the promising approaches is the DNA vaccine, used as a direct vaccination or as a prime-boost vaccine. This review describes the experimental data obtained during the design of DNA vaccines for TB.

  18. Human clinical trials of plasmid DNA vaccines.

    PubMed

    Liu, Margaret A; Ulmer, Jeffrey B

    2005-01-01

    This article gives an overview of DNA vaccines with specific emphasis on the development of DNA vaccines for clinical trials and an overview of those trials. It describes the preclinical research that demonstrated the efficacy of DNA vaccines as well as an explication of the immunologic mechanisms of action. These include the induction of cognate immune responses, such as the generation of cytolytic T lymphocytes (CTL) as well as the effect of the plasmid DNA upon the innate immune system. Specific issues related to the development of DNA as a product candidate are then discussed, including the manufacture of plasmid, the qualification of the plasmid DNA product, and the safety testing necessary for initiating clinical trials. Various human clinical trials for infectious diseases and cancer have been initiated or completed, and an overview of these trials is given. Finally, because the early clinical trials have shown less than optimal immunogenicity, methods to increase the potency of the vaccines are described. PMID:16291211

  19. Bringing DNA vaccines closer to commercial use.

    PubMed

    Carvalho, Joana A; Prazeres, Duarte M F; Monteiro, Gabriel A

    2009-10-01

    Progress in the application of DNA vaccines as an immunization protocol is evident from the increasing number of such vaccines under evaluation in clinical trials and by the recent approval of several DNA vaccine products for veterinary applications. DNA vaccine technology offers important therapeutic and commercial advantages compared with conventional approaches, including the opportunity to target pathogens characterized by significant genetic diversity using a safe immunization platform, and the ability to use a simple, rapid and well-characterized production method. However, further optimization of DNA vaccine technology through the use of improved constructs, delivery systems and immunization protocols is necessary to clinically achieve the promising results that have been demonstrated in preclinical models.

  20. Micro- and nanoparticulates for DNA vaccine delivery.

    PubMed

    Farris, Eric; Brown, Deborah M; Ramer-Tait, Amanda E; Pannier, Angela K

    2016-05-01

    DNA vaccination has emerged as a promising alternative to traditional protein-based vaccines for the induction of protective immune responses. DNA vaccines offer several advantages over traditional vaccines, including increased stability, rapid and inexpensive production, and flexibility to produce vaccines for a wide variety of infectious diseases. However, the immunogenicity of DNA vaccines delivered as naked plasmid DNA is often weak due to degradation of the DNA by nucleases and inefficient delivery to immune cells. Therefore, biomaterial-based delivery systems based on micro- and nanoparticles that encapsulate plasmid DNA represent the most promising strategy for DNA vaccine delivery. Microparticulate delivery systems allow for passive targeting to antigen presenting cells through size exclusion and can allow for sustained presentation of DNA to cells through degradation and release of encapsulated vaccines. In contrast, nanoparticle encapsulation leads to increased internalization, overall greater transfection efficiency, and the ability to increase uptake across mucosal surfaces. Moreover, selection of the appropriate biomaterial can lead to increased immune stimulation and activation through triggering innate immune response receptors and target DNA to professional antigen presenting cells. Finally, the selection of materials with the appropriate properties to achieve efficient delivery through administration routes conducive to high patient compliance and capable of generating systemic and local (i.e. mucosal) immunity can lead to more effective humoral and cellular protective immune responses. In this review, we discuss the development of novel biomaterial-based delivery systems to enhance the delivery of DNA vaccines through various routes of administration and their implications for generating immune responses.

  1. Improving DNA vaccine performance through vector design.

    PubMed

    Williams, James A

    2014-01-01

    DNA vaccines are a rapidly deployed next generation vaccination platform for treatment of human and animal disease. DNA delivery devices, such as electroporation and needle free jet injectors, are used to increase gene transfer. This results in higher antigen expression which correlates with improved humoral and cellular immunity in humans and animals. This review highlights recent vector and transgene design innovations that improve DNA vaccine performance. These new vectors improve antigen expression, increase plasmid manufacturing yield and quality in bioreactors, and eliminate antibiotic selection and other potential safety issues. A flowchart for designing synthetic antigen transgenes, combining antigen targeting, codon-optimization and bioinformatics, is presented. Application of improved vectors, of antibiotic free plasmid production, and cost effective manufacturing technologies will be critical to ensure safety, efficacy, and economically viable manufacturing of DNA vaccines currently under development for infectious disease, cancer, autoimmunity, immunotolerance and allergy indications.

  2. M cell-targeted DNA vaccination

    NASA Astrophysics Data System (ADS)

    Wu, Yunpeng; Wang, Xinhai; Csencsits, Keri L.; Haddad, Asmahan; Walters, Nancy; Pascual, David W.

    2001-07-01

    DNA immunization, although attractive, is poor for inducing mucosal immunity, thus limiting its protective value against most infectious agents. To surmount this shortcoming, we devised a method for mucosal transgene vaccination by using an M cell ligand to direct the DNA vaccine to mucosal inductive tissues and the respiratory epithelium. This ligand, reovirus protein 1, when conjugated to polylysine (PL), can bind the apical surface of M cells from nasal-associated lymphoid tissues. Intranasal immunizations with protein 1-PL-DNA complexes produced antigen-specific serum IgG and prolonged mucosal IgA, as well as enhanced cell-mediated immunity, made evident by elevated pulmonary cytotoxic T lymphocyte responses. Therefore, targeted transgene vaccination represents an approach for enabling DNA vaccination of the mucosa.

  3. DNA vaccines for targeting bacterial infections

    PubMed Central

    Ingolotti, Mariana; Kawalekar, Omkar; Shedlock, Devon J; Muthumani, Karuppiah; Weiner, David B

    2010-01-01

    DNA vaccination has been of great interest since its discovery in the 1990s due to its ability to elicit both humoral and cellular immune responses. DNA vaccines consist of a DNA plasmid containing a transgene that encodes the sequence of a target protein from a pathogen under the control of a eukaryotic promoter. This revolutionary technology has proven to be effective in animal models and four DNA vaccine products have recently been approved for veterinary use. Although few DNA vaccines against bacterial infections have been tested, the results are encouraging. Because of their versatility, safety and simplicity a wider range of organisms can be targeted by these vaccines, which shows their potential advantages to public health. This article describes the mechanism of action of DNA vaccines and their potential use for targeting bacterial infections. In addition, it provides an updated summary of the methods used to enhance immunogenicity from codon optimization and adjuvants to delivery techniques including electroporation and use of nanoparticles. PMID:20624048

  4. Recent advances towards the clinical application of DNA vaccines.

    PubMed

    Bins, A D; van den Berg, J H; Oosterhuis, K; Haanen, J B A G

    2013-04-01

    DNA vaccination is an attractive method for therapeutic vaccination against intracellular pathogens and cancer. This review provides an introduction into the DNA vaccination field and discusses the pre-clinical successes and most interesting clinical achievements thus far. Furthermore, general attributes, mechanism of action and safety of DNA vaccination will be discussed. Since clinical results with DNA vaccination so far show room for improvement, possibilities to improve the delivery and immunogenicity of DNA vaccines are reviewed. In the coming years, these new developments should show whether DNA vaccination is able to induce clinically relevant responses in patients.

  5. Polymer multilayer tattooing for enhanced DNA vaccination

    PubMed Central

    DeMuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2014-01-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These “multilayer tattoo” DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination. PMID:23353628

  6. Polymer multilayer tattooing for enhanced DNA vaccination

    NASA Astrophysics Data System (ADS)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2013-04-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  7. Antiparasitic DNA vaccines in 21st century.

    PubMed

    Wedrychowicz, Halina

    2015-06-01

    Demands for effective vaccines to control parasitic diseases of humans and livestock have been recently exacerbated by the development of resistance of most pathogenic parasites to anti-parasitic drugs. Novel genomic and proteomic technologies have provided opportunities for the discovery and improvement of DNA vaccines which are relatively easy as well as cheap to fabricate and stable at room temperatures. However, their main limitation is rather poor immunogenicity, which makes it necessary to couple the antigens with adjuvant molecules. This paper review recent advances in the development of DNA vaccines to some pathogenic protozoa and helminths. Numerous studies were conducted over the past 14 years of 21st century, employing various administration techniques, adjuvants and new immunogenic antigens to increase efficacy of DNA vaccines. Unfortunately, the results have not been rewarding. Further research is necessary using more extensive combinations of antigens; alternate delivery systems and more efficient adjuvants based on knowledge of the immunomodulatory capacities of parasitic protozoa and helminths.

  8. DNA Mediated Vaccines Delivery Through Nanoparticles.

    PubMed

    Shah, Muhammad Ali A; Ali, Zeeshan; Ahmad, Rasheed; Qadri, Ishtiaq; Fatima, Kaneez; He, Nongyue

    2015-01-01

    Vaccination has led to the eradication of those diseases which had once claimed millions of lives worldwide; however, it is accompanied with a number of dis-advantages especially safety issues until the entry of DNA vaccines. The DNA vaccines have been emerged as the best remedy for problematic diseases being capable of producing humoral and cellular immune responses as well as the safest vaccines so far. However, the magnitude of immune responses produced in primates is lower than that in experimental animals. There are several reasons described theoretically for this limited efficacy and a number of novel approaches have been applied to boost their immune responses, e.g., use of more efficient promoters and coding optimization, addition of traditional or genetic adjuvants, electroporation, intradermal delivery and various prime-boost strategies. One of these strategies is controlled antigen administration of plasmid DNA through microspheres and nanoparticles. This approach is accompanied with a number of advantages to overcome the limitations of traditional delivery systems in terms of stability, solubility and pharmacology. Furthermore, the surface structure of a virus highly resembles with a nanoparticle because of their geometrical regularities and nanoscale dimensions; therefore, the engineering of nanoparticles is based upon principles of natural virus attack which will be the best tool for vaccination. There is evidence that these immune responses can be augmented by properly structured nanosized particles (nanoparticles) that may avoid DNA degradation and facilitate targeted delivery to antigen presenting cells. Adsorption, formulation or encapsulation with particles has been found to stabilize DNA formulations. The use of nanoparticles for DNA vaccine delivery is a platform technology and has been applied for delivery of a variety of existing and potential vaccines successfully.

  9. DNA vaccination in skin enhanced by electroporation.

    PubMed

    Broderick, Kate E; Khan, Amir S; Sardesai, Niranjan Y

    2014-01-01

    DNA vaccines are a next generation branch of vaccines which offer major benefits over their conventional counterparts. However, to be effective in large mammals and humans, an enhancing delivery technology is required. Electroporation is a physical technique which results in improved delivery of large molecules through the cell membrane. In the case of plasmid DNA, electroporation enhances both the uptake and expression of the delivered DNA. The skin is an attractive tissue for DNA vaccination in a clinical setting due to the accessibility of the target, the ease of monitoring, and most importantly the immunocompetent nature of the dermis. Electroporation in the skin has the benefit of being minimally invasive and generally well tolerated. Previous studies have determined that optimized electroporation parameters (such as electrical field intensity, pulse length, pulse width, and plasmid formulation) majorly impact the efficiency of DNA delivery to the skin. We provide an overview of DNA vaccination in skin and muscle. In addition, we detail a protocol for the successful intradermal electroporation of plasmid DNA to guinea pig skin, an excellent dermatological animal model. The work detailed here suggests that the technique is safe and effective and could be highly applicable to a clinical setting.

  10. HIV DNA Vaccine: Stepwise Improvements Make a Difference

    PubMed Central

    Felber, Barbara K.; Valentin, Antonio; Rosati, Margherita; Bergamaschi, Cristina; Pavlakis, George N.

    2014-01-01

    Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic. PMID:26344623

  11. Recent Developments in Preclinical DNA Vaccination

    PubMed Central

    Okuda, Kenji; Wada, Yoshiyuki; Shimada, Masaru

    2014-01-01

    The advantages of genetic immunization of the new vaccine using plasmid DNAs are multifold. For example, it is easy to generate plasmid DNAs, increase their dose during the manufacturing process, and sterilize them. Furthermore, they can be stored for a long period of time upon stabilization, and their protein encoding sequences can be easily modified by employing various DNA-manipulation techniques. Although DNA vaccinations strongly increase Th1-mediated immune responses in animals, several problems persist. One is about their weak immunogenicity in humans. To overcome this problem, various genetic adjuvants, electroporation, and prime-boost methods have been developed preclinically, which are reviewed here. PMID:26344468

  12. DNA-Based Vaccine Guards Against Zika in Monkey Study

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_161106.html DNA-Based Vaccine Guards Against Zika in Monkey Study ... THURSDAY, Sept. 22, 2016 (HealthDay News) -- An experimental DNA-based vaccine protected monkeys from infection with the ...

  13. Trial watch: DNA vaccines for cancer therapy.

    PubMed

    Senovilla, Laura; Vacchelli, Erika; Garcia, Pauline; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-04-01

    The foundation of modern vaccinology dates back to the 1790s, when the English physician Edward Jenner uncovered the tremendous medical potential of prophylactic vaccination. Jenner's work ignited a wave of nationwide vaccination campaigns abating the incidence of multiple life-threatening infectious diseases and culminating with the eradication of natural smallpox virus, which was definitively certified by the WHO in 1980. The possibility of using vaccines against cancer was first proposed at the end of the 19th century by Paul Ehrlich and William Coley. However, it was not until the 1990s that such a hypothesis began to be intensively investigated, following the realization that the immune system is not completely unresponsive to tumors and that neoplastic cells express immunogenic tumor-associated antigens (TAAs). Nowadays, anticancer vaccines are rapidly moving from the bench to the bedside, and a few prophylactic and therapeutic preparations have already been approved by FDA for use in humans. In this setting, one interesting approach is constituted by DNA vaccines, i.e., TAA-encoding circularized DNA constructs, often of bacterial origin, that are delivered to patients as such or by means of specific vectors, including (but not limited to) liposomal preparations, nanoparticles, bacteria and viruses. The administration of DNA vaccines is most often performed via the intramuscular or subcutaneous route and is expected to cause (1) the endogenous synthesis of the TAA by myocytes and/or resident antigen-presenting cells; (2) the presentation of TAA-derived peptides on the cell surface, in association with MHC class I molecules; and (3) the activation of potentially therapeutic tumor-specific immune responses. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating DNA vaccines as therapeutic interventions against cancer. PMID:23734328

  14. Influenza Plasmid DNA Vaccines: Progress and Prospects.

    PubMed

    Bicho, Diana; Queiroz, João António; Tomaz, Cândida Teixeira

    2015-01-01

    Current influenza vaccines have long been used to fight flu infectious; however, recent advances highlight the importance of produce new alternatives. Even though traditional influenza vaccines are safe and usually effective, they need to be uploaded every year to anticipate circulating flu viruses. This limitation together with the use of embryonated chicken eggs as the substrate for vaccine production, is time-consuming and could involve potential biohazards in growth of new virus strains. Plasmid DNA produced by prokaryote microorganisms and encoding foreign proteins had emerged as a promising therapeutic tool. This technology allows the expression of a gene of interest by eukaryotic cells in order to induce protective immune responses against the pathogen of interest. In this review, we discuss the strategies to choose the best DNA vaccine to be applied in the treatment and prevention of influenza. Specifically, we give an update of influenza DNA vaccines developments, all involved techniques, their main characteristics, applicability and technical features to obtain the best option against influenza infections.

  15. The Web-Based DNA Vaccine Database DNAVaxDB and Its Usage for Rational DNA Vaccine Design.

    PubMed

    Racz, Rebecca; He, Yongqun

    2016-01-01

    A DNA vaccine is a vaccine that uses a mammalian expression vector to express one or more protein antigens and is administered in vivo to induce an adaptive immune response. Since the 1990s, a significant amount of research has been performed on DNA vaccines and the mechanisms behind them. To meet the needs of the DNA vaccine research community, we created DNAVaxDB ( http://www.violinet.org/dnavaxdb ), the first Web-based database and analysis resource of experimentally verified DNA vaccines. All the data in DNAVaxDB, which includes plasmids, antigens, vaccines, and sources, is manually curated and experimentally verified. This chapter goes over the detail of DNAVaxDB system and shows how the DNA vaccine database, combined with the Vaxign vaccine design tool, can be used for rational design of a DNA vaccine against a pathogen, such as Mycobacterium bovis.

  16. Innate Immune Signaling by, and Genetic Adjuvants for DNA Vaccination.

    PubMed

    Kobiyama, Kouji; Jounai, Nao; Aoshi, Taiki; Tozuka, Miyuki; Takeshita, Fumihiko; Coban, Cevayir; Ishii, Ken J

    2013-01-01

    DNA vaccines can induce both humoral and cellular immune responses. Although some DNA vaccines are already licensed for infectious diseases in animals, they are not licensed for human use because the risk and benefit of DNA vaccines is still controversial. Indeed, in humans, the immunogenicity of DNA vaccines is lower than that of other traditional vaccines. To develop the use of DNA vaccines in the clinic, various approaches are in progress to enhance or improve the immunogenicity of DNA vaccines. Recent studies have shown that immunogenicity of DNA vaccines are regulated by innate immune responses via plasmid DNA recognition through the STING-TBK1 signaling cascade. Similarly, molecules that act as dsDNA sensors that activate innate immune responses through STING-TBK1 have been identified and used as genetic adjuvants to enhance DNA vaccine immunogenicity in mouse models. However, the mechanisms that induce innate immune responses by DNA vaccines are still unclear. In this review, we will discuss innate immune signaling upon DNA vaccination and genetic adjuvants of innate immune signaling molecules.

  17. DNA vaccination of poultry: The current status in 2015.

    PubMed

    Meunier, Marine; Chemaly, Marianne; Dory, Daniel

    2016-01-01

    DNA vaccination is a promising alternative strategy for developing new human and animal vaccines. The massive efforts made these past 25 years to increase the immunizing potential of this kind of vaccine are still ongoing. A relatively small number of studies concerning poultry have been published. Even though there is a need for new poultry vaccines, five parameters must nevertheless be taken into account for their development: the vaccine has to be very effective, safe, inexpensive, suitable for mass vaccination and able to induce immune responses in the presence of maternal antibodies (when appropriate). DNA vaccination should meet these requirements. This review describes studies in this field performed exclusively on birds (chickens, ducks and turkeys). No evaluations of avian DNA vaccine efficacy performed on mice as preliminary tests have been taken into consideration. The review first describes the state of the art for DNA vaccination in poultry: pathogens targeted, plasmids used and different routes of vaccine administration. Second, it presents strategies designed to improve DNA vaccine efficacy: influence of the route of administration, plasmid dose and age of birds on their first inoculation; increasing plasmid uptake by host cells; addition of immunomodulators; optimization of plasmid backbones and codon usage; association of vaccine antigens and finally, heterologous prime-boost regimens. The final part will indicate additional properties of DNA vaccines in poultry: fate of the plasmids upon inoculation, immunological considerations and the use of DNA vaccines for purposes other than preventing infectious diseases.

  18. Current status of DNA vaccines in veterinary medicine.

    PubMed

    Krishnan, B R

    2000-09-15

    DNA vaccination entails administration of the DNA itself encoding antigen to direct synthesis of the antigen directly in the target organism. The target organism's immune system recognizes the antigen, and generates humoral (antibody)- and/or cell-mediated immune response. DNA vaccines afford numerous advantages over conventional vaccines, including ease of production, stability and transport. They overcome the need to cultivate dangerous infectious agents, and provide a possibility to vaccinate against multiple pathogens in a single shot. DNA vaccination is beginning to be explored for many pathogens of veterinary interest. The status of DNA vaccines in poultry, livestock and companion animals is reviewed here. While examples of DNA vaccines being tested in the veterinary field are not numerous, the early studies highlight the potential DNA vaccinology offers in veterinary medicine.

  19. Effect of vesicle size on tissue localization and immunogenicity of liposomal DNA vaccines.

    PubMed

    Carstens, Myrra G; Camps, Marcel G M; Henriksen-Lacey, Malou; Franken, Kees; Ottenhoff, Tom H M; Perrie, Yvonne; Bouwstra, Joke A; Ossendorp, Ferry; Jiskoot, Wim

    2011-06-24

    The formulation of plasmid DNA (pDNA) in cationic liposomes is a promising strategy to improve the potency of DNA vaccines. In this respect, physicochemical parameters such as liposome size may be important for their efficacy. The aim of the current study was to investigate the effect of vesicle size on the in vivo performance of liposomal pDNA vaccines after subcutaneous vaccination in mice. The tissue distribution of cationic liposomes of two sizes, 500 nm (PDI 0.6) and 140 nm (PDI 0.15), composed of egg PC, DOPE and DOTAP, with encapsulated OVA-encoding pDNA, was studied by using dual radiolabeled pDNA-liposomes. Their potency to elicit cellular and humoral immune responses was investigated upon application in a homologous and heterologous vaccination schedule with 3 week intervals. It was shown that encapsulation of pDNA into cationic lipsomes resulted in deposition at the site of injection, and strongest retention was observed at large vesicle size. The vaccination studies demonstrated a more robust induction of OVA-specific, functional CD8+ T-cells and higher antibody levels upon vaccination with small monodisperse pDNA-liposomes, as compared to large heterodisperse liposomes or naked pDNA. The introduction of a PEG-coating on the small cationic liposomes resulted in enhanced lymphatic drainage, but immune responses were not improved when compared to non-PEGylated liposomes. In conclusion, it was shown that the physicochemical properties of the liposomes are of crucial importance for their performance as pDNA vaccine carrier, and cationic charge and small size are favorable properties for subcutaneous DNA vaccination. PMID:21565240

  20. DNA minigene vaccination for adjuvant neuroblastoma therapy.

    PubMed

    Lode, Holger N; Huebener, Nicole; Zeng, Yan; Fest, Stefan; Weixler, S; Gaedicke, Gerhard

    2004-12-01

    The disruption of self-tolerance against neuroblastoma is the ultimate goal of an effective DNA-vaccine. We demonstrate the induction of protective immunity against syngeneic murine NXS2 neuroblastoma in A/J mice following vaccination with tyrosine hydroxylase (TH)-derived antigens. Oral gene delivery was accomplished using an attenuated strain of Salmonella typhimurium as a carrier harboring vectors encoding for mouse tyrosine hydroxylase (mTH) antigens. Vaccination was effective in protecting animals from a lethal challenge with wild-type NXS2 tumor cells. These findings were extended by comparing efficacy of mTH minigene vaccines with a minigene vaccine comprising three novel epitopes isolated fom NXS2 neuroblastoma cells. For this purpose, MHC class I was immunoprecipitated from NXS2 cell lysates, and peptides were eluted and examined in tandem-mass spectrometry analysis. This led to the identification of three novel natural MHC class I peptide ligands: TEALPVKLI, from ribonucleotide reductase M2; NEYIMSLI, from Ser/Thr protein phosphatase 2A; and FEMVSTLI, of unknown origin. Two minigenes were constructed, one encoding for the three novel epitopes and the second for three known mTH-derived epitopes with high predicted binding affinity to MHC class I, by cloning them into the mammalian expression vector pCMV-3FUB. Immunized mice showed a reduction in primary tumor growth and the absence of spontaneous liver metastasis in the majority of animals. Importantly, there was no significant difference between the two minigenes, suggesting that, compared with tumor peptide isolation, mTH epitope prediction is similarly effective for designing efficient DNA-minigene vaccines. In summary, these findings establish proof of the concept that disruption of self-tolerance against neuroblastoma-associated epitopes may be an effective adjuvant therapeutic strategy.

  1. Efficient vaccine against pandemic influenza: combining DNA vaccination and targeted delivery to MHC class II molecules.

    PubMed

    Grødeland, Gunnveig; Bogen, Bjarne

    2015-06-01

    There are two major limitations to vaccine preparedness in the event of devastating influenza pandemics: the time needed to generate a vaccine and rapid generation of sufficient amounts. DNA vaccination could represent a solution to these problems, but efficacy needs to be enhanced. In a separate line of research, it has been established that targeting of vaccine molecules to antigen-presenting cells enhances immune responses. We have combined the two principles by constructing DNA vaccines that encode bivalent fusion proteins; these target hemagglutinin to MHC class II molecules on antigen-presenting cells. Such DNA vaccines rapidly induce hemagglutinin-specific antibodies and T cell responses in immunized mice. Responses are long-lasting and protect mice against challenge with influenza virus. In a pandemic situation, targeted DNA vaccines could be produced and tested within a month. The novel DNA vaccines could represent a solution to pandemic preparedness in the advent of novel influenza pandemics.

  2. Using Plasmids as DNA Vaccines for Infectious Diseases.

    PubMed

    Tregoning, John S; Kinnear, Ekaterina

    2014-12-01

    DNA plasmids can be used to induce a protective (or therapeutic) immune response by delivering genes encoding vaccine antigens. That naked DNA (without the refinement of coat proteins or host evasion systems) can cross from outside the cell into the nucleus and be expressed is particularly remarkable given the sophistication of the immune system in preventing infection by pathogens. As a result of the ease, low cost, and speed of custom gene synthesis, DNA vaccines dangle a tantalizing prospect of the next wave of vaccine technology, promising individual designer vaccines for cancer or mass vaccines with a rapid response time to emerging pandemics. There is considerable enthusiasm for the use of DNA vaccination as an approach, but this enthusiasm should be tempered by the successive failures in clinical trials to induce a potent immune response. The technology is evolving with the development of improved delivery systems that increase expression levels, particularly electroporation and the incorporation of genetically encoded adjuvants. This review will introduce some key concepts in the use of DNA plasmids as vaccines, including how the DNA enters the cell and is expressed, how it induces an immune response, and a summary of clinical trials with DNA vaccines. The review also explores the advances being made in vector design, delivery, formulation, and adjuvants to try to realize the promise of this technology for new vaccines. If the immunogenicity and expression barriers can be cracked, then DNA vaccines may offer a step change in mass vaccination.

  3. Strategies and hurdles using DNA vaccines to fish.

    PubMed

    Hølvold, Linn B; Myhr, Anne I; Dalmo, Roy A

    2014-01-01

    DNA vaccinations against fish viral diseases as IHNV at commercial level in Canada against VHSV at experimental level are both success stories. DNA vaccination strategies against many other viral diseases have, however, not yet yielded sufficient results in terms of protection. There is an obvious need to combat many other viral diseases within aquaculture where inactivated vaccines fail. There are many explanations to why DNA vaccine strategies against other viral diseases fail to induce protective immune responses in fish. These obstacles include: 1) too low immunogenicity of the transgene, 2) too low expression of the transgene that is supposed to induce protection, 3) suboptimal immune responses, and 4) too high degradation rate of the delivered plasmid DNA. There are also uncertainties with regard distribution and degradation of DNA vaccines that may have implications for safety and regulatory requirements that need to be clarified. By combining plasmid DNA with different kind of adjuvants one can increase the immunogenicity of the transgene antigen - and perhaps increase the vaccine efficacy. By using molecular adjuvants with or without in combination with targeting assemblies one may expect different responses compared with naked DNA. This includes targeting of DNA vaccines to antigen presenting cells as a central factor in improving their potencies and efficacies by means of encapsulating the DNA vaccine in certain carriers systems that may increase transgene and MHC expression. This review will focus on DNA vaccine delivery, by the use of biodegradable PLGA particles as vehicles for plasmid DNA mainly in fish.

  4. Strategies and hurdles using DNA vaccines to fish

    PubMed Central

    2014-01-01

    DNA vaccinations against fish viral diseases as IHNV at commercial level in Canada against VHSV at experimental level are both success stories. DNA vaccination strategies against many other viral diseases have, however, not yet yielded sufficient results in terms of protection. There is an obvious need to combat many other viral diseases within aquaculture where inactivated vaccines fail. There are many explanations to why DNA vaccine strategies against other viral diseases fail to induce protective immune responses in fish. These obstacles include: 1) too low immunogenicity of the transgene, 2) too low expression of the transgene that is supposed to induce protection, 3) suboptimal immune responses, and 4) too high degradation rate of the delivered plasmid DNA. There are also uncertainties with regard distribution and degradation of DNA vaccines that may have implications for safety and regulatory requirements that need to be clarified. By combining plasmid DNA with different kind of adjuvants one can increase the immunogenicity of the transgene antigen – and perhaps increase the vaccine efficacy. By using molecular adjuvants with or without in combination with targeting assemblies one may expect different responses compared with naked DNA. This includes targeting of DNA vaccines to antigen presenting cells as a central factor in improving their potencies and efficacies by means of encapsulating the DNA vaccine in certain carriers systems that may increase transgene and MHC expression. This review will focus on DNA vaccine delivery, by the use of biodegradable PLGA particles as vehicles for plasmid DNA mainly in fish. PMID:24552235

  5. c-DNA vaccination against parasitic infections: advantages and disadvantages.

    PubMed

    Kofta, W; Wedrychowicz, H

    2001-09-12

    Recently developed technology for DNA vaccination appears to offer the good prospect for the development of a multivalent vaccines that will effectively activate both the humoral and cell mediated mechanisms of the immune system. Currently, DNA vaccination against such important parasitic diseases like malaria, leishmaniosis, toxoplasmosis, cryptosporidiosis, schistosomosis, fasciolosis offers several new opportunities. However, the outcome of vaccination depends very much on vaccine formulations, dose and route of vaccine delivery, and the species and even strain of the vaccinated host. To overcome these problems much research is still needed, specifically focused on cloning and testing of new c-DNA sequences in the following: genome projects: different ways of delivery: design of vectors containing appropriate immunostimulatory sequences and very detailed studies on safety. PMID:11522401

  6. DNA/MVA Vaccines for HIV/AIDS.

    PubMed

    Iyer, Smita S; Amara, Rama R

    2014-01-01

    Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous "prime-boost" vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA)-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.

  7. Licensed DNA Vaccines against Infectious Hematopoietic Necrosis Virus (IHNV).

    PubMed

    Alonso, Marta; Leong, Jo-Ann C

    2013-04-01

    This article reviews some of the recent patents on DNA vaccines against fish viruses, in particular against the novirhabdovirus infectious hematopoitic necrosis virus (IHNV). Although very effective in protecting fish against IHNV, only one DNA vaccine has been approved to date for use in Canada. In Europe and in US, its commercialization is restricted due to safety concerns.

  8. Dual Neonate Vaccine Platform against HIV-1 and M. tuberculosis

    PubMed Central

    Hopkins, Richard; Bridgeman, Anne; Joseph, Joan; Gilbert, Sarah C.; McShane, Helen; Hanke, Tomáš

    2011-01-01

    Acquired immunodeficiency syndrome and tuberculosis (TB) are two of the world's most devastating diseases. The first vaccine the majority of infants born in Africa receive is Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a prevention against TB. BCG protects against disseminated disease in the first 10 years of life, but provides a variable protection against pulmonary TB and enhancing boost delivered by recombinant modified vaccinia virus Ankara (rMVA) expressing antigen 85A (Ag85A) of M. tuberculosis is currently in phase IIb evaluation in African neonates. If the newborn's mother is positive for human immunodeficiency virus type 1 (HIV-1), the baby is at high risk of acquiring HIV-1 through breastfeeding. We suggested that a vaccination consisting of recombinant BCG expressing HIV-1 immunogen administered at birth followed by a boost with rMVA sharing the same immunogen could serve as a strategy for prevention of mother-to-child transmission of HIV-1 and rMVA expressing an African HIV-1-derived immunogen HIVA is currently in phase I trials in African neonates. Here, we aim to develop a dual neonate vaccine platform against HIV-1 and TB consisting of BCG.HIVA administered at birth followed by a boost with MVA.HIVA.85A. Thus, mMVA.HIVA.85A and sMVA.HIVA.85A vaccines were constructed, in which the transgene transcription is driven by either modified H5 or short synthetic promoters, respectively, and tested for immunogenicity alone and in combination with BCG.HIVA222. mMVA.HIVA.85A was produced markerless and thus suitable for clinical manufacture. While sMVA.HIVA.85A expressed higher levels of the immunogens, it was less immunogenic than mMVA.HIVA.85A in BALB/c mice. A BCG.HIVA222–mMVA.HIVA.85A prime-boost regimen induced robust T cell responses to both HIV-1 and M. tuberculosis. Therefore, proof-of-principle for a dual anti-HIV-1/M. tuberculosis infant vaccine platform is established. Induction of immune responses against these pathogens soon after

  9. Harnessing DNA-induced immune responses for improving cancer vaccines.

    PubMed

    Herrada, Andrés A; Rojas-Colonelli, Nicole; González-Figueroa, Paula; Roco, Jonathan; Oyarce, César; Ligtenberg, Maarten A; Lladser, Alvaro

    2012-11-01

    DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful "danger signals" by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance.

  10. Harnessing DNA-induced immune responses for improving cancer vaccines

    PubMed Central

    Herrada, Andrés A.; Rojas-Colonelli, Nicole; González-Figueroa, Paula; Roco, Jonathan; Oyarce, César; Ligtenberg, Maarten A.; Lladser, Alvaro

    2012-01-01

    DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful “danger signals” by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance. PMID:23111166

  11. DNA vaccines for poultry: the jump from theory to practice.

    PubMed

    Haygreen, Liz; Davison, Fred; Kaiser, Pete

    2005-02-01

    DNA vaccines could offer a solution to a number of problems faced by the poultry industry; they are relatively easy to manufacture, stable, potentially easy to administer, can overcome neonatal tolerance and the deleterious effects of maternal antibody, and do not cause disease pathology. Combined with this, in ovo vaccination offers the advantage of reduced labor costs, mass administration and the induction of an earlier immune response. Together, this list of advantages is impressive. However, this combined technology is still in its infancy and requires many improvements. The potential of CpG motifs, DNA vaccines and in ovo vaccination, however, can be observed by the increasing number of recent reports investigating their application in challenge experiments. CpG motifs have been demonstrated to be stimulatory both in vitro and in vivo. In addition, DNA vaccines have been successfully delivered via the in ovo route, albeit not yet through the amniotic fluid. Lastly, a recent report has demonstrated that a DNA vaccine against infectious bronchitis virus administered via in ovo vaccination, followed by live virus boost, can slightly improve on the protective effect induced by the live virus alone. Therefore, DNA vaccination via the in ovo route is promising and offers potential as a poultry vaccine, however, efficacy needs to be improved and the costs of production reduced before it is likely to be beneficial to the poultry industry in the long term.

  12. DNA Immunization as an Efficient Strategy for Vaccination

    PubMed Central

    Bolhassani, Azam; Yazdi, Sima Rafati

    2009-01-01

    The field of vaccinology provides excellent promises to control different infectious and non-infectious diseases. Genetic immunization as a new tool in this area by using naked DNA has been shown to induce humoral as well as cellular immune responses with high efficiency. This demonstrates the enormous potential of this strategy for vaccination purposes. DNA vaccines have been widely used to develop vaccines against various pathogens as well as cancer, autoimmune diseases and allergy. However, despite their successful application in many pre-clinical disease models, their potency in human clinical trials has been insufficient to provide protective immunity. Several strategies have been applied to increase the potency of DNA vaccine. Among these strategies, the linkage of antigens to Heat Shock Proteins (HSPs) and the utilization of different delivery systems have been demonstrated as efficient approaches for increasing the potency of DNA vaccines. The uptake of DNA plasmids by cells upon injection is inefficient. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target Antigen-Presenting Cells (APCs) are effective in animal models. Alternatively, different regimens called prime-boost vaccination are also effective. In this regimen, naked DNA is utilized to prime the immune system and either recombinant viral vector or purified recombinant protein with proper adjuvant is used for boosting. In this review, we discuss recent advances in upgrading the efficiency of DNA vaccination in animal models. PMID:23407787

  13. Applications of nanoparticles for DNA based rabies vaccine.

    PubMed

    Shah, Muhammad Ali A; Khan, Sajid Umar; Ali, Zeeshan; Yang, Haowen; Liu, Keke; Mao, Lanlan

    2014-01-01

    Rabies is a fatal encephalomyelitis. Most cases occur in developing countries and are transmitted by dogs. The cell culture vaccines as associated with high cost; therefore, have not replaced the unsafe brain-derived vaccines. In the developing countries these brain-derived rabies vaccines still can be seen in action. Moreover, there will be a need for vaccines against rabies-related viruses against which classical vaccines are not always effective. The worldwide incidence of rabies and the inability of currently used vaccination strategies to provide highly potent and cost-effective therapy indicate the need for alternate control strategies. DNA vaccines have emerged as the safest vaccines and best remedy for complicated diseases like hepatitis, HIV, and rabies. A number of recombinant DNA vaccines are now being developed against several diseases such as AIDS and malaria. Therefore, it can be a valuable alternative for the production of cheaper rabies vaccines against its larger spectrum of viruses. In this review we report published data on DNA-based immunization with sequences encoding rabies with special reference to nanotechnology. PMID:24730305

  14. Intramuscular DNA vaccination protocols mediated by electric fields.

    PubMed

    Chiarella, Pieranna; Signori, Emanuela

    2014-01-01

    Vaccination is historically one of the most important methods for preventing infectious diseases in humans and animals. New insights in the biology of the immune system allow a more rational design of vaccines, and new vaccination strategies are emerging. DNA vaccines have been proposed as a promising approach for introducing foreign antigens into the host for inducing protective immunity against infectious and cancer diseases. Nevertheless, because of their poor immunogenicity, plasmid DNA vaccination strategies need further implementations. Recent data suggest electrotransfer as a useful tool to improve DNA-based vaccination protocols, being able to stimulate both the humoral and cellular immune responses. In preclinical trials, gene electrotransfer is successfully used in prime-boost combination protocols and its tolerability and safety has been demonstrated also in Phase I clinical trials. In this chapter, we report a short comment supporting electrotransfer as an effective strategy to improve DNA-based vaccination protocols and describe the vaccination procedures by plasmid DNA in combination with electrotransfer and hyaluronidase pretreatment in use in our laboratory.

  15. Hepatitis E virus DNA vaccine elicits immunologic memory in mice.

    PubMed

    He, J; Hayes, C G; Binn, L N; Seriwatana, J; Vaughn, D W; Kuschner, R A; Innis, B L

    2001-01-01

    Injection of an expression vector pJHEV containing hepatitis E virus (HEV) structural protein open reading frame 2 gene generates a strong antibody response in BALB/c mice that can bind to and agglutinate HEV. In this study, we tested for immunologic memory in immunized mice whose current levels of IgG to HEV were low or undetectable despite 3 doses of HEV DNA vaccine 18 months earlier. Mice previously vaccinated with vector alone were controls. All mice were administered a dose of HEV DNA vaccine to simulate an infectious challenge with HEV. The endpoint was IgG to HEV determined by ELISA. Ten days after the vaccine dose, 5 of 9 mice previously immunized with HEV DNA vaccine had a slight increase in IgG to HEV. By 40 days after the vaccine dose, the level of IgG to HEV had increased dramatically in all 9 mice (108-fold increase in geometric mean titer). In contrast, no control mice became seropositive. These results indicate that mice vaccinated with 3 doses of HEV DNA vaccine retain immunologic memory. In response to a small antigenic challenge delivered as DNA, possibly less than delivered by a human infective dose of virus, mice with memory were able to generate high levels of antibody in less time than the usual incubation period of hepatitis E. We speculate that this type of response could protect a human from overt disease.

  16. Preclinical and clinical development of DNA vaccines for prostate cancer.

    PubMed

    Colluru, V T; Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2016-04-01

    Prostate cancer is the most commonly diagnosed cancer in the United States. It is also the second leading cause of cancer-related death in men, making it one of the largest public health concerns today. Prostate cancer is an ideal disease for immunotherapies because of the generally slow progression, the dispensability of the target organ in the patient population, and the availability of several tissue-specific antigens. As such, several therapeutic vaccines have entered clinical trials, with one autologous cellular vaccine (sipuleucel-T) recently gaining Food and Drug Administration approval after demonstrating overall survival benefit in randomized phase III clinical trials. DNA-based vaccines are safe, economical, alternative "off-the-shelf" approaches that have undergone extensive evaluation in preclinical models. In fact, the first vaccine approved in the United States for the treatment of cancer was a DNA vaccine for canine melanoma. Several prostate cancer-specific DNA vaccines have been developed in the last decade and have shown promising results in early phase clinical trials. This review summarizes anticancer human DNA vaccine trials, with a focus on those conducted for prostate cancer. We conclude with an outline of special considerations important for the development and successful translation of DNA vaccines from the laboratory to the clinic.

  17. DNA-based influenza vaccines as immunoprophylactic agents toward universality.

    PubMed

    Zhang, Han; El Zowalaty, Mohamed E

    2016-01-01

    Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.

  18. DNA vaccines against viral diseases of farmed fish.

    PubMed

    Evensen, Øystein; Leong, Jo-Ann C

    2013-12-01

    Immunization by an antigen-encoding DNA was approved for commercial sale in Canada against a Novirhabdovirus infection in fish. DNA vaccines have been particularly successful against the Novirhabdoviruses while there are reports on the efficacy against viral pathogens like infectious pancreatic necrosis virus, infectious salmon anemia virus, and lymphocystis disease virus and these are inferior to what has been attained for the novirhabdoviruses. Most recently, DNA vaccination of Penaeus monodon against white spot syndrome virus was reported. Research efforts are now focused on the development of more effective vectors for DNA vaccines, improvement of vaccine efficacy against various viral diseases of fish for which there is currently no vaccines available and provision of co-expression of viral antigen and immunomodulatory compounds. Scientists are also in the process of developing new delivery methods. While a DNA vaccine has been approved for commercial use in farmed salmon in Canada, it is foreseen that it is still a long way to go before a DNA vaccine is approved for use in farmed fish in Europe.

  19. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    PubMed

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine.

  20. Current trends in separation of plasmid DNA vaccines: a review.

    PubMed

    Ghanem, Ashraf; Healey, Robert; Adly, Frady G

    2013-01-14

    Plasmid DNA (pDNA)-based vaccines offer more rapid avenues for development and production if compared to those of conventional virus-based vaccines. They do not rely on time- or labour-intensive cell culture processes and allow greater flexibility in shipping and storage. Stimulating antibodies and cell-mediated components of the immune system are considered as some of the major advantages associated with the use of pDNA vaccines. This review summarizes the current trends in the purification of pDNA vaccines for practical and analytical applications. Special attention is paid to chromatographic techniques aimed at reducing the steps of final purification, post primary isolation and intermediate recovery, in order to reduce the number of steps necessary to reach a purified end product from the crude plasmid.

  1. Humoral response to calicivirus in captive tigers given a dual-strain vaccine.

    PubMed

    Harrison, Tara M; Harrison, Scott H; Sikarskie, James G; Armstrong, Douglas

    2014-03-01

    The current feline vaccine with a single strain of calicivirus has been used for captive tigers, yet it may not protect against virulent systemic calicivirus infections. A cross-institutional study investigated the humoral response to a new dual-strain, killed-virus calicivirus vaccine for nine captive tigers. The subspecies of these tigers were Amur (Panthera tigris altaica), Bengal (Panthera tigris tigris), and Malayan (Panthera tigris jacksoni). Serum neutralization titers for virulent feline calicivirus strain FCV-DD1 were higher following dual-strain vaccine administration. There were no reports of adverse vaccine reactions. Dual-strain vaccination may afford broadened cross-protection against different calicivirus strains and is desirable to reduce the risk of virulent systemic calicivirus disease in tigers.

  2. Humoral response to calicivirus in captive tigers given a dual-strain vaccine.

    PubMed

    Harrison, Tara M; Harrison, Scott H; Sikarskie, James G; Armstrong, Douglas

    2014-03-01

    The current feline vaccine with a single strain of calicivirus has been used for captive tigers, yet it may not protect against virulent systemic calicivirus infections. A cross-institutional study investigated the humoral response to a new dual-strain, killed-virus calicivirus vaccine for nine captive tigers. The subspecies of these tigers were Amur (Panthera tigris altaica), Bengal (Panthera tigris tigris), and Malayan (Panthera tigris jacksoni). Serum neutralization titers for virulent feline calicivirus strain FCV-DD1 were higher following dual-strain vaccine administration. There were no reports of adverse vaccine reactions. Dual-strain vaccination may afford broadened cross-protection against different calicivirus strains and is desirable to reduce the risk of virulent systemic calicivirus disease in tigers. PMID:24712158

  3. Selection and identification of Singapore grouper iridovirus vaccine candidate antigens using bioinformatics and DNA vaccination.

    PubMed

    Ou-yang, Zhengliang; Wang, Peiran; Huang, Youhua; Huang, Xiaohong; Wan, Qingjiao; Zhou, Sheng; Wei, Jingguang; Zhou, Yongcan; Qin, Qiwei

    2012-09-15

    In this study, we described a rapid and efficient method which integrated the bioinformatic prediction and DNA vaccine technology to identify vaccine candidates against Singapore grouper iridovirus (SGIV). The 162 previously defined open reading frames (ORFs) of SGIV were subjected to extensive sequence similarity searches, as well as motif, cellular location, and domain prediction. Based on our analysis, 13 genes were chosen and cloned into the eukaryotic expression vector pcDNA 3.1. In vitro and in vivo expression of these DNA vaccine constructs was examined in Epinephelus akaara spleen cells (EAGS) and immunized fish by Western blot and RT-PCR analysis, respectively. Three weeks after the second booster, immunized fish were challenged with SGIV and the level of protection and survival was assessed. Fish vaccinated with plasmid DNA encoding viral ORF072, ORF039 and ORF036 (designated as pcDNA-72, pcDNA-39 and pcDNA-36, respectively) exhibited 66.7%, 66.7% and 58.3% relative percent survival rates, respectively, in comparison with the control fish. These three DNA vaccines induced innate immune responses, raising significantly high level of Mx expression relative to the fish vaccinated with the empty plasmid at 3 days post-vaccination. Furthermore, recombinant protein from ORF072 was also used to immunize another set of fish and similar protective effect was obtained. Taken together, our results validated the applicability of bioinformatics in genome mining, resulting in the identification of three protective antigens. The promising results obtained in the present study have prompted further testing to improve the immunogenicity of these potential DNA vaccines.

  4. Targeting DNA vaccines to myeloid cells using a small peptide.

    PubMed

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N

    2015-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein Ags to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, which results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able to prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient Ag presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WNV-neutralizing Abs that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses.

  5. DNA vaccines, electroporation and their applications in cancer treatment.

    PubMed

    Lee, Si-Hyeong; Danishmalik, Sayyed Nilofar; Sin, Jeong-Im

    2015-01-01

    Numerous animal studies and recent clinical studies have shown that electroporation-delivered DNA vaccines can elicit robust Ag-specific CTL responses and reduce disease severity. However, cancer antigens are generally poorly immunogenic, requiring special conditions for immune response induction. To date, many different approaches have been used to elicit Ag-specific CTL and anti-neoplastic responses to DNA vaccines against cancer. In vivo electroporation is one example, whereas others include DNA manipulation, xenogeneic antigen use, immune stimulatory molecule and immune response regulator application, DNA prime-boost immunization strategy use and different DNA delivery methods. These strategies likely increase the immunogenicity of cancer DNA vaccines, thereby contributing to cancer eradication. However, cancer cells are heterogeneous and might become CTL-resistant. Thus, understanding the CTL resistance mechanism(s) employed by cancer cells is critical to develop counter-measures for this immune escape. In this review, the use of electroporation as a DNA delivery method, the strategies used to enhance the immune responses, the cancer antigens that have been tested, and the escape mechanism(s) used by tumor cells are discussed, with a focus on the progress of clinical trials using cancer DNA vaccines.

  6. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    SciTech Connect

    Sparger, Ellen E. Dubie, Robert A.; Shacklett, Barbara L.; Cole, Kelly S.; Chang, W.L.; Luciw, Paul A.

    2008-05-10

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-{gamma} enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus.

  7. DNAVaxDB: the first web-based DNA vaccine database and its data analysis.

    PubMed

    Racz, Rebecca; Li, Xinna; Patel, Mukti; Xiang, Zuoshuang; He, Yongqun

    2014-01-01

    Since the first DNA vaccine studies were done in the 1990s, thousands more studies have followed. Here we report the development and analysis of DNAVaxDB (http://www.violinet.org/dnavaxdb), the first publically available web-based DNA vaccine database that curates, stores, and analyzes experimentally verified DNA vaccines, DNA vaccine plasmid vectors, and protective antigens used in DNA vaccines. All data in DNAVaxDB are annotated from reliable resources, particularly peer-reviewed articles. Among over 140 DNA vaccine plasmids, some plasmids were more frequently used in one type of pathogen than others; for example, pCMVi-UB for G- bacterial DNA vaccines, and pCAGGS for viral DNA vaccines. Presently, over 400 DNA vaccines containing over 370 protective antigens from over 90 infectious and non-infectious diseases have been curated in DNAVaxDB. While extracellular and bacterial cell surface proteins and adhesin proteins were frequently used for DNA vaccine development, the majority of protective antigens used in Chlamydophila DNA vaccines are localized to the inner portion of the cell. The DNA vaccine priming, other vaccine boosting vaccination regimen has been widely used to induce protection against infection of different pathogens such as HIV. Parasitic and cancer DNA vaccines were also systematically analyzed. User-friendly web query and visualization interfaces are available in DNAVaxDB for interactive data search. To support data exchange, the information of DNA vaccines, plasmids, and protective antigens is stored in the Vaccine Ontology (VO). DNAVaxDB is targeted to become a timely and vital source of DNA vaccines and related data and facilitate advanced DNA vaccine research and development.

  8. Overview of recent DNA vaccine development for fish

    USGS Publications Warehouse

    Kurath, G.; ,

    2005-01-01

    Since the first description of DNA vaccines for fish in 1996, numerous studies of genetic immunisation against the rhabdovirus pathogens infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) have established their potential as both highly efficacious biologicals and useful basic research tools. Single small doses of rhabdovirus DNA constructs provide extremely strong protection against severe viral challenge under a variety of conditions. DNA vaccines for several other important fish viruses, bacteria, and parasites are under investigation, but they have not yet shown high efficacy. Therefore, current research is focussed on mechanistic studies to understand the basis of protection, and on improvement of the nucleic acid vaccine applications against a wider range of fish pathogens.

  9. Trial watch: Naked and vectored DNA-based anticancer vaccines

    PubMed Central

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm. PMID:26155408

  10. Enhancement of DNA vaccine efficacy by intracellular targeting strategies.

    PubMed

    Freitas, Elisabete Borges; Henriques, Ana Margarida; Fevereiro, Miguel; Prazeres, Duarte Miguel; Monteiro, Gabriel Amaro

    2014-01-01

    Immune response against an encoded antigenic protein can be elicited by including targeting sequences to DNA vaccines that promote protein sorting to processing pathways, related with antigen presentation by major histocompatibility complexes (MHC). Candidate DNA vaccines coding for neuraminidase 3 of the avian influenza virus were designed to encode different sequences that direct the protein to specific cellular compartments such as endoplasmic reticulum (i.e., adenovirus E1A), lysosomes (i.e., LAMP), and the combination of protein targeting to the endoplasmic reticulum and lysosome (i.e., E1A-LAMP). The DNA vaccine prototypes were engineered by biomolecular techniques and subsequently produced in E. coli cells. The biological activity of the vaccines was tested firstly in vitro, in Chinese hamster ovary cells, through flow cytometry and real-time polymerase chain reaction analysis. Then, an essential in vivo study was performed in chickens, in order to evaluate the efficacy of DNA prototype vaccines, by measuring the antibody production by enzyme-linked immunosorbent assay.

  11. DNA vaccine prime and recombinant FPV vaccine boost: an important candidate immunization strategy to control bluetongue virus type 1.

    PubMed

    Li, Junping; Yang, Tao; Xu, Qingyuan; Sun, Encheng; Feng, Yufei; Lv, Shuang; Zhang, Qin; Wang, Haixiu; Wu, Donglai

    2015-10-01

    Bluetongue virus (BTV) is the causative agent of bluetongue (BT), an important sheep disease that caused great economic loss to the sheep industry. There are 26 BTV serotypes based on the outer protein VP2. However, the serotypes BTV-1 and BTV-16 are the two most prevalent serotypes in China. Vaccination is the most effective method of preventing viral infections. Therefore, the need for an effective vaccine against BTV is urgent. In this study, DNA vaccines and recombinant fowlpox virus (rFPV) vaccines expressing VP2 alone or VP2 in combination with VP5 or co-expressing the VP2 and VP5 proteins of BTV-1 were evaluated in both mice and sheep. Several strategies were tested in mice, including DNA vaccine prime and boost, rFPV vaccine prime and boost, and DNA vaccine prime and rFPV vaccine boost. We then determined the best vaccine strategy in sheep. Our results indicated that a strategy combining a DNA vaccine prime (co-expressing VP2 and VP5) followed by an rFPV vaccine boost (co-expressing VP2 and VP5) induced a high titer of neutralizing antibodies in sheep. Therefore, our data suggest that a DNA vaccine consisting of a pCAG-(VP2+VP5) prime and an rFPV-(VP2+VP5) boost is an important candidate for the design of a novel vaccine against BTV-1.

  12. A DNA vaccine against yellow fever virus: development and evaluation.

    PubMed

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  13. A DNA vaccine against yellow fever virus: development and evaluation.

    PubMed

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies. PMID:25875109

  14. Transcriptional IL-15-Directed in vivo DC Targeting DNA Vaccine

    PubMed Central

    Tian, S; Liu, Z; Donahue, C; Noh, HS; Falo, LD; You, Z

    2009-01-01

    DC engineered in vitro by DNA encoding OVAhsp70 and IL-15 up-regulated their expressions of CD80, CD86, CCR7 and IL-15Rα and promoted their productions of IL-6, IL-12 and TNF-α. Transcriptional IL-15-directed in vivo DC targeting DNA vaccine encoding OVAhsp70 elicited long-lasting Th1 and CTL responses and anti-B16OVA activity. CD8 T cell-mediated primary tumor protection was abrogated by DC or CD4 T cell depletion during the induction phase of immune responses. However, CD4 T cell depletion during immunization did not impair CD8 T cell-dependent long-lasting tumor protection. Furthermore, in vivo DC-derived IL-15 exerted the enhancements of cellular and humoral immune responses and antitumor immunity elicited by OVAhsp70 DNA vaccine. Importantly, the potency of this novel DNA vaccine strategy was proven using a self/tumor Ag (TRP2) in a clinically relevant B16 melanoma model. These findings have implications for developing next generation DNA vaccines against cancers and infectious diseases in both healthy and CD4 deficient individuals. PMID:19727134

  15. 78 FR 29698 - Availability of an Environmental Assessment for Field Testing a Canine Lymphoma Vaccine, DNA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... a Canine Lymphoma Vaccine, DNA AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... testing, and then to field test, an unlicensed Canine Lymphoma Vaccine, DNA. The environmental assessment... Lymphoma Vaccine, DNA. Possible Field Test Locations: Arizona, Florida, Georgia, New York, North...

  16. Recombinant DNA technology for the preparation of subunit vaccines.

    PubMed

    Bachrach, H L

    1982-11-15

    Recombinant DNA technology appears to be on the verge of producing safe and effective protein vaccines for animal and human diseases. The procedure is applicable to most viruses because their isolated surface proteins generally possess immunogenic activity. Strategies used for the preparation and cloning of the appropriate genes depend on the characteristics of the viral genomes: whether DNA or RNA; their size, strandedness, and segmentation; and whether messenger RNA are monocistronic or polycistronic. Cloned surface proteins of foot-and-mouth disease and hepatitis B viruses are being tested for possible use as practical vaccines. Two doses of the cloned foot-and-mouth disease viral protein have elicited large amounts of neutralizing antibody and have protected cattle and swine against challenge exposure with the virus. Surface proteins have also been cloned for the viruses of fowl plague, influenza, vesicular stomatitis, rabies, and herpes simplex. Cloning is in progress for surface proteins of viruses causing canine parvovirus gastroenteritis, human papillomas, infectious bovine rhinotracheitis, Rift Valley fever, and paramyxovirus diseases. In addition, advances in recombinant DNA and other facilitating technologies have rekindled interest in the chemical synthesis of polypeptide vaccines for viral diseases. The bioengineering of bacterial vaccines is also under way. Proteinaceous pili of enterotoxigenic Escherichia coli are being produced in E coli K-12 strains for use as vaccines against neonatal diarrheal diseases of livestock. PMID:6129235

  17. Immunogenicity of candidate chimeric DNA vaccine against tuberculosis and leishmaniasis.

    PubMed

    Dey, Ayan; Kumar, Umesh; Sharma, Pawan; Singh, Sarman

    2009-08-13

    Mycobacterium tuberculosis and Leishmania donovani are important intracellular pathogens, especially in Indian context. In India and other South East Asian countries, both these infections are highly endemic and in about 20% cases co-infection of these pathogens is reported. For both these pathogens cell mediated immunity plays most important role. The available treatment of these infections is either prolonged or cumbersome or it is ineffective in controlling the outbreaks and spread. Therefore, potentiation of a common host defense mechanism can be used to prevent both the infections simultaneously. In this study we have developed a novel chimeric DNA vaccine candidate comprising the esat-6 gene of M. tuberculosis and kinesin motor domain gene of L. donovani. After developing this novel chimera, its immunogenicity was studied in mouse model. The immune response was compared with individual constructs of esat-6 and kinesin motor domain. The results showed that immunization with chimeric DNA vaccine construct resulted in stronger IFN-gamma and IL-2 response against kinesin (3012+/-102 and 367.5+/-8.92pg/ml) and ESAT-6 (1334+/-46.5 and 245.1+/-7.72pg/ml) in comparison to the individual vaccine constructs. The reciprocal immune response (IFN-gamma and IL-2) against individual construct was lower (kinesin motor domain: 1788+/-36.48 and 341.8+/-9.801pg/ml and ESAT-6: 867.0+/-47.23 and 170.8+/-4.578pg/ml, respectively). The results also suggest that using the chimeric construct both proteins yielded a reciprocal adjuvant affect over each other as the IFN-gamma production against chimera vaccination is statistically significant (p<0.0001) than individual construct vaccination. From this pilot study we could envisage that the chimeric DNA vaccine construct may offer an attractive strategy in controlling co-infection of leishmaniasis and tuberculosis and have important implication in future vaccine design. PMID:19559111

  18. Immunogenicity of candidate chimeric DNA vaccine against tuberculosis and leishmaniasis.

    PubMed

    Dey, Ayan; Kumar, Umesh; Sharma, Pawan; Singh, Sarman

    2009-08-13

    Mycobacterium tuberculosis and Leishmania donovani are important intracellular pathogens, especially in Indian context. In India and other South East Asian countries, both these infections are highly endemic and in about 20% cases co-infection of these pathogens is reported. For both these pathogens cell mediated immunity plays most important role. The available treatment of these infections is either prolonged or cumbersome or it is ineffective in controlling the outbreaks and spread. Therefore, potentiation of a common host defense mechanism can be used to prevent both the infections simultaneously. In this study we have developed a novel chimeric DNA vaccine candidate comprising the esat-6 gene of M. tuberculosis and kinesin motor domain gene of L. donovani. After developing this novel chimera, its immunogenicity was studied in mouse model. The immune response was compared with individual constructs of esat-6 and kinesin motor domain. The results showed that immunization with chimeric DNA vaccine construct resulted in stronger IFN-gamma and IL-2 response against kinesin (3012+/-102 and 367.5+/-8.92pg/ml) and ESAT-6 (1334+/-46.5 and 245.1+/-7.72pg/ml) in comparison to the individual vaccine constructs. The reciprocal immune response (IFN-gamma and IL-2) against individual construct was lower (kinesin motor domain: 1788+/-36.48 and 341.8+/-9.801pg/ml and ESAT-6: 867.0+/-47.23 and 170.8+/-4.578pg/ml, respectively). The results also suggest that using the chimeric construct both proteins yielded a reciprocal adjuvant affect over each other as the IFN-gamma production against chimera vaccination is statistically significant (p<0.0001) than individual construct vaccination. From this pilot study we could envisage that the chimeric DNA vaccine construct may offer an attractive strategy in controlling co-infection of leishmaniasis and tuberculosis and have important implication in future vaccine design.

  19. Prophylactic and therapeutic DNA vaccines against Chagas disease.

    PubMed

    Arce-Fonseca, Minerva; Rios-Castro, Martha; Carrillo-Sánchez, Silvia del Carmen; Martínez-Cruz, Mariana; Rodríguez-Morales, Olivia

    2015-01-01

    Chagas disease is a zoonosis caused by Trypanosoma cruzi in which the most affected organ is the heart. Conventional chemotherapy has a very low effectiveness; despite recent efforts, there is currently no better or more effective treatment available. DNA vaccines provide a new alternative for both prevention and treatment of a variety of infectious disorders, including Chagas disease. Recombinant DNA technology has allowed some vaccines to be developed using recombinant proteins or virus-like particles capable of inducing both a humoral and cellular specific immune response. This type of immunization has been successfully used in preclinical studies and there are diverse models for viral, bacterial and/or parasitic diseases, allergies, tumors and other diseases. Therefore, several research groups have been given the task of designing a DNA vaccine against experimental infection with T. cruzi. In this review we explain what DNA vaccines are and the most recent studies that have been done to develop them with prophylactic or therapeutic purposes against Chagas disease.

  20. Bacillus subtilis spores as adjuvants for DNA vaccines.

    PubMed

    Aps, Luana R M M; Diniz, Mariana O; Porchia, Bruna F M M; Sales, Natiely S; Moreno, Ana Carolina R; Ferreira, Luís C S

    2015-05-11

    Recently, Bacillus subtilis spores were shown to be endowed with strong adjuvant capacity when co-administered with purified antigenic proteins. In the present study we assessed whether spores possess adjuvant properties when combined with DNA vaccines. We showed that B. subtilis spores promoted the activation of dendritic cells in vitro and induced migration of pro-inflammatory cells after parenteral administration to mice. Likewise, co-administration of spores with a DNA vaccine encoding the human papillomavirus type 16 (HPV-16) E7 protein enhanced the activation of antigen-specific CD8(+) T cell responses in vivo. Mice immunized with the DNA vaccine admixed with spores presented a protective immunity increase to previously implanted tumor cells, capable of expressing HPV-16 oncoproteins. Finally, we observed that the adjuvant effect can vary accordingly to the number of co-administered spores which may be ascribed with the ability to induce. Collectively, the present results demonstrate for the first time that B. subtilis spores can also confer adjuvant effects to DNA vaccines.

  1. Survivin minigene DNA vaccination is effective against neuroblastoma.

    PubMed

    Fest, Stefan; Huebener, Nicole; Bleeke, Matthias; Durmus, Tahir; Stermann, Alexander; Woehler, Anja; Baykan, Bianca; Zenclussen, Ana C; Michalsky, Elke; Jaeger, Ines S; Preissner, Robert; Hohn, Oliver; Weixler, Silke; Gaedicke, Gerhard; Lode, Holger N

    2009-07-01

    The inhibitor of apoptosis protein survivin is highly expressed in neuroblastoma (NB) and survivin-specific T cells were identified in Stage 4 patients. Therefore, we generated a novel survivin minigene DNA vaccine (pUS-high) encoding exclusively for survivin-derived peptides with superior MHC class I (H2-K(k)) binding affinities and tested its efficacy to suppress tumor growth and metastases in a syngeneic NB mouse model. Vaccination was performed by oral gavage of attenuated Salmonella typhimurium SL7207 carrying pUS-high. Mice receiving the pUS-high in the prophylactic setting presented a 48-52% reduction in s.c. tumor volume, weight and liver metastasis level in contrast to empty vector controls. This response was as effective as a survivin full-length vaccine and was associated with an increased target cell lysis, increased presence of CD8(+) T-cells at the primary tumor site and enhanced production of proinflammatory cytokines by systemic CD8(+) T cells. Furthermore, depletion of CD8(+) but not CD4(+) T-cells completely abrogated the pUS-high mediated primary tumor growth suppression, demonstrating a CD8(+) T-cell mediated effect. Therapeutic vaccination with pUS-high led to complete NB eradication in over 50% of immunized mice and surviving mice showed an over 80% reduction in primary tumor growth upon rechallenge in contrast to controls. In summary, survivin-based DNA vaccination is effective against NB and the rational minigene design provides a promising approach to circumvent potentially hazardous effects of using full length antiapoptotic genes as DNA vaccines.

  2. Induction of protection against porcine cysticercosis in growing pigs by DNA vaccination.

    PubMed

    Guo, Aijiang; Jin, Zhizhong; Zheng, Yadong; Hai, Gang; Yuan, Gailing; Li, Hailong; Cai, Xuepeng

    2007-01-01

    A DNA vaccine, pcDNA3-B, was developed by using the nucleotide sequence of Taenia solium B antigen and cloning into pcDNA3.1 plasmid. The growing pigs were vaccinated by one intramuscular infection of 200 or 1000 microg pcDNA3-B. The immunization with 1000 microg of pcDNA3-B showed 92.6% protection when the pigs were challenged by T. solium eggs and four of the five pigs vaccinated had no viable cysts. The results provide encouraging information on the use of pcDNA3-B vaccination for the prevention of cysticercosis.

  3. Field testing of Schistosoma japonicum DNA vaccines in cattle in China.

    PubMed

    Shi, Fuhui; Zhang, Yaobi; Lin, Jiaojiao; Zuo, Xin; Shen, Wei; Cai, Yiumin; Ye, Ping; Bickle, Quentin D; Taylor, Martin G

    2002-11-01

    Vaccines are needed to reduce the zoonotic reservoir of Schistosoma japonicum infection in bovines in China. We have developed two experimental DNA vaccines and have already shown these to be capable of inducing partial protection in water buffalo naturally exposed to the risk of S. japonicum infection in the field. We now report a similar field trial in cattle, the other major bovine reservoir host species in China. Groups of cattle were vaccinated with the VRSj28 vaccine or the VRSj23 vaccine, or, to test whether protection could be enhanced by combination vaccination, with both these DNA vaccines together. After vaccination, the cattle were exposed to natural infection in the field for a period of 54 days. Worm and egg counts carried out at the end of the experiment showed that each of the vaccine groups showed partial resistance, and that combined vaccination was not more effective than vaccination with the individual plasmids.

  4. Nanobiotechnological approaches to delivery of DNA vaccine against fungal infection.

    PubMed

    Ribeiro, A M; Souza, A C O; Amaral, A C; Vasconcelos, N M; Jeronimo, M S; Carneiro, F P; Faccioli, L H; Felipe, M S S; Silva, C L; Bocca, A L

    2013-02-01

    Vaccines play an essential role in keeping humans healthy. Innovative approaches to their use include the utilization of plasmid DNA encoding sequences to express foreign antigens. DNAhsp65 from Mycobacterium leprae is suitable for this purpose due to its ability to elicit a powerful immune response. Controlled release systems represent a promising approach to delivering vaccines. In this work, we used liposomes or PLGA systems to deliver DNAhsp65 to treat the pulmonary fungal infection Paracoccidioidomycosis. Both formulations modulated a protective immune response and reduced the pulmonary fungal burden even in the groups receiving less than four times the amount of the DNAhps65 entrapped within the nanoparticles. Although both systems had the same effective therapeutic results, the advantage of the liposome formulation was that it was administered intranasally, which may be more easily accepted by patients. These systems are a great alternative to be considered as adjuvant vaccine therapy for systemic mycosis.

  5. Transposon leads to contamination of clinical pDNA vaccine.

    PubMed

    van der Heijden, I; Gomez-Eerland, R; van den Berg, J H; Oosterhuis, K; Schumacher, T N; Haanen, J B A G; Beijnen, J H; Nuijen, B

    2013-07-11

    We report an unexpected contamination during clinical manufacture of a Human Papilomavirus (HPV) 16 E6 encoding plasmid DNA (pDNA) vaccine, with a transposon originating from the Escherichia coli DH5 host cell genome. During processing, presence of this transposable element, insertion sequence 2 (IS2) in the plasmid vector was not noticed until quality control of the bulk pDNA vaccine when results of restriction digestion, sequencing, and CGE analysis were clearly indicative for the presence of a contaminant. Due to the very low level of contamination, only an insert-specific PCR method was capable of tracing back the presence of the transposon in the source pDNA and master cell bank (MCB). Based on the presence of an uncontrolled contamination with unknown clinical relevance, the product was rejected for clinical use. In order to prevent costly rejection of clinical material, both in-process controls and quality control methods must be sensitive enough to detect such a contamination as early as possible, i.e. preferably during plasmid DNA source generation, MCB production and ultimately during upstream processing. However, as we have shown that contamination early in the process development pipeline (source pDNA, MCB) can be present below limits of detection of generally applied analytical methods, the introduction of "engineered" or transposon-free host cells seems the only 100% effective solution to avoid contamination with movable elements and should be considered when searching for a suitable host cell-vector combination. PMID:23707695

  6. Synthetic DNA approach to cytomegalovirus vaccine/immune therapy.

    PubMed

    Wu, Stephan J; Villarreal, Daniel O; Shedlock, Devon J; Weiner, David B

    2015-01-01

    There is no licensed vaccine or cure for human cytomegalovirus (CMV), a ubiquitous β-herpes virus that infects 60-95 % of adults worldwide. Infection is a major cause of congenital abnormalities in newborns, contributes to development of childhood cerebral palsy and medulloblastoma, can result in severe disease in immunocompromised patients, and is a major impediment during successful organ transplantation. While CMV has been increasingly associated with numerous inflammatory diseases and cancers, only recently has it been correlated with increased risk of heart disease in adults, the number-one killer in the USA. These data, among others, suggest that subclinical CMV infection, or microinfection, in healthy individuals may play more of a causative role than an epiphenomenon in development of CMV-associated pathologies. Due to the myriad of diseases and complications associated with CMV, an efficacious vaccine would be highly valuable in reducing human morbidity and mortality as well as saving billions of dollars in annual health-care costs and disability adjusted life years (DALY) in the developing world. Therefore, the development of a safe efficacious CMV vaccine or immune therapy is paramount to the public health. This review aims to provide a brief overview on aspects of CMV infection and disease and focuses on current vaccine strategies. The use of new synthetic DNA vaccines might offer one such approach to this difficult problem.

  7. Synthetic DNA Approach to Cytomegalovirus Vaccine/Immune Therapy

    PubMed Central

    Wu, Stephan J.; Villarreal, Daniel O.; Shedlock, Devon J.; Weiner, David B.

    2015-01-01

    There is no licensed vaccine or cure for human cytomegalovirus (CMV), a ubiquitous β-herpes virus that infects 60–95 % of adults worldwide. Infection is a major cause of congenital abnormalities in newborns, contributes to development of childhood cerebral palsy and medulloblastoma, can result in severe disease in immunocompromised patients, and is a major impediment during successful organ transplantation. While CMV has been increasingly associated with numerous inflammatory diseases and cancers, only recently has it been correlated with increased risk of heart disease in adults, the number-one killer in the USA. These data, among others, suggest that subclinical CMV infection, or microinfection, in healthy individuals may play more of a causative role than an epiphenomenon in development of CMV-associated pathologies. Due to the myriad of diseases and complications associated with CMV, an efficacious vaccine would be highly valuable in reducing human morbidity and mortality as well as saving billions of dollars in annual health-care costs and disability adjusted life years (DALY) in the developing world. Therefore, the development of a safe efficacious CMV vaccine or immune therapy is paramount to the public health. This review aims to provide a brief overview on aspects of CMV infection and disease and focuses on current vaccine strategies. The use of new synthetic DNA vaccines might offer one such approach to this difficult problem. PMID:25757619

  8. Synthetic DNA approach to cytomegalovirus vaccine/immune therapy.

    PubMed

    Wu, Stephan J; Villarreal, Daniel O; Shedlock, Devon J; Weiner, David B

    2015-01-01

    There is no licensed vaccine or cure for human cytomegalovirus (CMV), a ubiquitous β-herpes virus that infects 60-95 % of adults worldwide. Infection is a major cause of congenital abnormalities in newborns, contributes to development of childhood cerebral palsy and medulloblastoma, can result in severe disease in immunocompromised patients, and is a major impediment during successful organ transplantation. While CMV has been increasingly associated with numerous inflammatory diseases and cancers, only recently has it been correlated with increased risk of heart disease in adults, the number-one killer in the USA. These data, among others, suggest that subclinical CMV infection, or microinfection, in healthy individuals may play more of a causative role than an epiphenomenon in development of CMV-associated pathologies. Due to the myriad of diseases and complications associated with CMV, an efficacious vaccine would be highly valuable in reducing human morbidity and mortality as well as saving billions of dollars in annual health-care costs and disability adjusted life years (DALY) in the developing world. Therefore, the development of a safe efficacious CMV vaccine or immune therapy is paramount to the public health. This review aims to provide a brief overview on aspects of CMV infection and disease and focuses on current vaccine strategies. The use of new synthetic DNA vaccines might offer one such approach to this difficult problem. PMID:25757619

  9. Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature.

    PubMed

    Facciponte, John G; Ugel, Stefano; De Sanctis, Francesco; Li, Chunsheng; Wang, Liping; Nair, Gautham; Sehgal, Sandy; Raj, Arjun; Matthaiou, Efthymia; Coukos, George; Facciabene, Andrea

    2014-04-01

    Tumor endothelial marker 1 (TEM1; also known as endosialin or CD248) is a protein found on tumor vasculature and in tumor stroma. Here, we tested whether TEM1 has potential as a therapeutic target for cancer immunotherapy by immunizing immunocompetent mice with Tem1 cDNA fused to the minimal domain of the C fragment of tetanus toxoid (referred to herein as Tem1-TT vaccine). Tem1-TT vaccination elicited CD8+ and/or CD4+ T cell responses against immunodominant TEM1 protein sequences. Prophylactic immunization of animals with Tem1-TT prevented or delayed tumor formation in several murine tumor models. Therapeutic vaccination of tumor-bearing mice reduced tumor vascularity, increased infiltration of CD3+ T cells into the tumor, and controlled progression of established tumors. Tem1-TT vaccination also elicited CD8+ cytotoxic T cell responses against murine tumor-specific antigens. Effective Tem1-TT vaccination did not affect angiogenesis-dependent physiological processes, including wound healing and reproduction. Based on these data and the widespread expression of TEM1 on the vasculature of different tumor types, we conclude that targeting TEM1 has therapeutic potential in cancer immunotherapy.

  10. Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death.

    PubMed

    Kim, T W; Hung, C-F; Juang, J; He, L; Hardwick, J M; Wu, T-C

    2004-02-01

    DNA-based alphaviral RNA replicon vectors, also called suicidal DNA vectors, alleviate the concerns of integration or transformation related to conventional DNA vectors since suicidal DNA vectors eventually cause apoptosis of transfected cells. However, the expression of inserted genes in these vectors is transient and the potency of suicidal DNA vaccines may be compromised because of apoptotic cell death. Therefore, to enhance the immune response to the human papillomavirus type 16 (HPV-16) E7 antigen, we generated a DNA-based Semliki Forest virus vector, pSCA1, encoding E7 fused with BCL-xL, an antiapoptotic member of the BCL-2 family. Our results indicated that pSCA1 encoding E7/BCL-xL fusion protein delayed cell death in the pSCA1-transfected dendritic cell line and generated significantly higher E7-specific CD8(+) T-cell-mediated immune responses and better antitumor effects than pSCA1 encoding wild-type E7 gene in vaccinated mice. The antiapoptotic function of BCL-xL is important for the enhancement of antigen-specific CD8(+) T-cell responses in vaccinated mice, because a point mutant of BCL-xL lacking antiapoptotic function was ineffective. These results suggest that strategies to delay suicidal DNA-induced cell death using antiapoptotic proteins may greatly enhance the potency of suicidal DNA.

  11. Daedalic DNA vaccination against self antigens as a treatment for chronic kidney disease

    PubMed Central

    Wang, Yuan Min; Zhou, Jimmy Jianheng; Wang, Ya; Watson, Debbie; Zhang, Geoff Yu; Hu, Min; Wu, Huiling; Zheng, Guoping; Wang, Yiping; Durkan, Anne M; Harris, David CH; Alexander, Stephen I

    2013-01-01

    Chronic kidney disease (CKD) is a major cause of death and morbidity in Australia and worldwide. DNA vaccination has been used for targeting foreign antigens to induce immune responses and prevent autoimmune disease, viral infection and cancer. However, the use of DNA vaccination has been restricted by a limited ability to induce strong immune responses, especially against self-antigens which are limited by mechanisms of self-tolerance. Furthermore, there have been few studies on the potential of DNA vaccination in chronic inflammatory diseases, including CKD. We have established strategies of DNA vaccination targeting specific self-antigens in the immune system including co-stimulatory pathways, T cell receptors and chemokine molecules, which have been effective in protecting against the development of CKD in a variety of animal models. In particular, we find that the efficacy of DNA vaccination is improved by dendritic cell (DC) targeting and can protect against animal models of autoimmune nephritis mimicking human membranous nephropathy. In this review, we summarize several approaches that have been tested to improve the efficacy of DNA vaccination in CKD models, including enhanced DNA vaccine delivery methods, DNA vaccine modifications and new molecular targets for DNA vaccination. Finally, we discuss the specific application of DNA vaccination for preventing and treating CKD. PMID:23412421

  12. Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine.

    PubMed

    Al-Deen, Fatin Nawwab; Ho, Jenny; Selomulya, Cordelia; Ma, Charles; Coppel, Ross

    2011-04-01

    Low efficiency is often observed in the delivery of DNA vaccines. The use of superparamagnetic nanoparticles (SPIONs) to deliver genes via magnetofection could improve transfection efficiency and target the vector to its desired locality. Here, magnetofection was used to enhance the delivery of a malaria DNA vaccine encoding Plasmodium yoelii merozoite surface protein MSP1(19) (VR1020-PyMSP1(19)) that plays a critical role in Plasmodium immunity. The plasmid DNA (pDNA) containing membrane associated 19-kDa carboxyl-terminal fragment of merozoite surface protein 1 (PyMSP1(19)) was conjugated with superparamagnetic nanoparticles coated with polyethyleneimine (PEI) polymer, with different molar ratio of PEI nitrogen to DNA phosphate. We reported the effects of SPIONs-PEI complexation pH values on the properties of the resulting particles, including their ability to condense DNA and the gene expression in vitro. By initially lowering the pH value of SPIONs-PEI complexes to 2.0, the size of the complexes decreased since PEI contained a large number of amino groups that became increasingly protonated under acidic condition, with the electrostatic repulsion inducing less aggregation. Further reaggregation was prevented when the pHs of the complexes were increased to 4.0 and 7.0, respectively, before DNA addition. SPIONs/PEI complexes at pH 4.0 showed better binding capability with PyMSP1(19) gene-containing pDNA than those at neutral pH, despite the negligible differences in the size and surface charge of the complexes. This study indicated that the ability to protect DNA molecules due to the structure of the polymer at acidic pH could help improve the transfection efficiency. The transfection efficiency of magnetic nanoparticle as carrier for malaria DNA vaccine in vitro into eukaryotic cells, as indicated via PyMSP1(19) expression, was significantly enhanced under the application of external magnetic field, while the cytotoxicity was comparable to the benchmark nonviral

  13. Clinical development of intramuscular electroporation: providing a "boost" for DNA vaccines.

    PubMed

    Khan, Amir S; Broderick, Kate E; Sardesai, Niranjan Y

    2014-01-01

    The development of effective vaccines has helped to eradicate or control the spread of numerous infectious diseases. However, there are many more diseases that have proved more difficult to eliminate using conventional vaccines. The recent innovation of DNA vaccines may provide a "boost" to the development efforts. While the early efforts of DNA vaccines in the clinic were disappointing, the use of in vivo electroporation has helped to provide some basis for optimism. Now, there are several ongoing clinical studies of vaccines against such diseases as malaria, HIV, hepatitis C, and even various types of cancer. This review will highlight three recently published clinical studies using intramuscular DNA administration with electroporation.

  14. [Recent advances in DNA vaccines against allergic airway disease: a review].

    PubMed

    Ou, Jin; Xu, Yu; Shi, Wendan

    2013-12-01

    DNA vaccine is used in infectious diseases initially, and later is applied in neoplastic diseases, allergic diseases and other fields with the further understanding of DNA vaccine and the development of genetic engineering. DNA vaccine transfers the genes encoding exogenous antigens to plasmid vector and then is introduced into organism. It controls the antigen proteins synthesis, thus induces specific humoral and cellular immune responses. So it has a broad application prospect in allergic diseases. Compared with the traditional protein vaccines used in specific immunotherapy, DNA vaccine has many advantages, including high purity and specificity, and improvement of patients' compliance etc. However, there are still two unsolved problems. First, the transfection rate of unmodified naked DNA plasmid is not high, Second, it's difficult to induce ideal immune response. In this study, we will review the progress of DNA vaccine applications in respiratory allergic diseases and its various optimization strategies.

  15. Gene Gun Her2/neu DNA Vaccination: Evaluation of Vaccine Efficacy in a Syngeneic Her2/neu Mouse Tumor Model.

    PubMed

    Nguyen-Hoai, Tam; Pezzutto, Antonio; Westermann, Jörg

    2015-01-01

    Genetic vaccination using naked plasmid DNA is an immunization strategy both against infectious diseases and cancer. In order to improve the efficacy of DNA vaccines, particularly in large animals and humans, different strategies have been pursued. These vaccination strategies are based on different application routes, schedules, and coexpression of immunomodulatory molecules as adjuvants. Our mouse tumor model offers the possibility to investigate Her2/neu DNA vaccines in different settings, i.e., intramuscular or intradermal application with or without coexpression of adjuvants. Protection from tumor growth in tumor challenge experiments and both T cell and humoral immune responses against Her2/neu peptides are used as surrogate parameters for vaccine efficacy. PMID:26072399

  16. DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus

    USGS Publications Warehouse

    Emmenegger, E.J.; Kurath, G.

    2008-01-01

    The emergence of spring viremia of carp virus (SVCV) in the United States constitutes a potentially serious alien pathogen threat to susceptible fish stocks in North America. A DNA vaccine with an SVCV glycoprotein (G) gene from a North American isolate was constructed. In order to test the vaccine a challenge model utilizing a specific pathogen-free domestic koi stock and a cold water stress treatment was also developed. We have conducted four trial studies demonstrating that the pSGnc DNA vaccine provided protection in vaccinated fish against challenge at low, moderate, and high virus doses of the homologous virus. The protection was significant (p < 0.05) as compared to fish receiving a mock vaccine construct containing a luciferase reporter gene and to non-vaccinated controls in fish ranging in age from 3 to 14 months. In all trials, the SVCV-G DNA immunized fish were challenged 28-days post-vaccination (546 degree-days) and experienced low mortalities varying from 10 to 50% with relative percent survivals ranging from 50 to 88%. The non-vaccinated controls and mock construct vaccinated fish encountered high cumulative percent mortalities ranging from 70 to 100%. This is the first report of a SVCV DNA vaccine being tested successfully in koi. These experiments prove that the SVCV DNA (pSGnc) vaccine can elicit specific reproducible protection and validates its potential use as a prophylactic vaccine in koi and other vulnerable North American fish stocks.

  17. Dual enzyme electrochemical coding for detecting DNA hybridization.

    PubMed

    Wang, Joseph; Kawde, Abdel-Nasser; Musameh, Mustafa; Rivas, Gustavo

    2002-10-01

    Enzyme-based hybridization assays for the simultaneous electrochemical measurements of two DNA targets are described. Two encoding enzymes, alkaline phosphatase and beta-galactosidase, are used to differentiate the signals of two DNA targets in connection to chronopotentiometric measurements of their electroactive phenol and alpha-naphthol products. These products yield well-defined and resolved peaks at +0.31 V (alpha-naphthol) and +0.63 V (phenol) at the graphite working electrode (vs. Ag/AgCl reference). The position and size of these peaks reflect the identity and level of the corresponding target. The dual target detection capability is coupled to the amplification feature of enzyme tags (to yield fmol detection limits) and with an efficient magnetic removal of non-hybridized nucleic acids. Proper attention is given to the choice of the substrates (for attaining well resolved peaks), to the activity of the enzymes (for obtaining similar sensitivities), and to the selection of the enzymes (for minimizing cross interferences). The new bioassay is illustrated for the simultaneous detection of two DNA sequences related to the BCRA1 breast-cancer gene in a single sample in connection to magnetic beads bearing the corresponding oligonucleotide probes. Prospects for electrochemical coding of multiple DNA targets are discussed.

  18. Clinical experience with a recombinant DNA hepatitis B vaccine.

    PubMed

    Andre, F E

    1988-09-01

    The clinical testing of EngerixR-B, the hepatitis B vaccine produced by SmithKline Biologicals using recombinant DNA technology, started in February 1984. Since extensive pre-clinical laboratory work had established that the polypeptide (HBsAg) expressed in genetically engineered yeast cells was after purification--physically, chemically and antigenically similar to the viral surface antigen particles found in the blood of chronic carriers, the aims of the clinical trials were to compare the safety, reactogenicity, immunogenicity and protective efficacy of yeast-derived (YDV) and plasma-derived (PDV) vaccines. By September 1987, 89 studies had been initiated involving a total of 10,545 subjects aged from birth to 82 years. This extensive experience has established that the risk of hypersensitivity to yeast-derived contaminants is negligible since no hypersensitivity reaction has been observed in any vaccinee, the incidence and severity of local reactions have not increased after repeated inoculations and no anti-yeast antibodies were produced by vaccination. Reactogenicity has been comparable to that of PDV's consisting essentially of transient mild irritation at the site of injection presumably caused by the aluminium hydroxide used as adjuvant. The anti-HBs responses to YDV and PDV's were quantitatively (seroconversion rates, peak antibody levels and persistence) as well as qualitatively (epitope specificity and affinity) similar. The expected protective effect of the immune response to the vaccine was confirmed in a challenge study in chimpanzees and in vaccinated human populations (male homosexuals, institutionalized mentally retarded patients, neonates of carrier women) with historically a high infection rate. PMID:2464196

  19. Targeting tumor vasculature: expanding the potential of DNA cancer vaccines.

    PubMed

    Ugel, Stefano; Facciponte, John G; De Sanctis, Francesco; Facciabene, Andrea

    2015-10-01

    Targeting the tumor vasculature with anti-angiogenesis modalities is a bona fide validated approach that has complemented cancer treatment paradigms. Tumor vasculature antigens (TVA) can be immunologically targeted and offers multiple theoretical advantages that may enhance existing strategies against cancer. We focused on tumor endothelial marker 1 (TEM1/CD248) as a model TVA since it is broadly expressed on many different cancers. Our DNA-based vaccine approach demonstrated that CD248 can be effectively targeted immunologically; anti-tumor responses were generated in several mouse models; and CD8(+)/CD4(+) T cell responses were elicited against peptides derived from CD248 protein. Our work supports our contention that CD248 is a novel immunotherapeutic target for cancer treatment and highlights the efficient, safe and translatable use of DNA-based immunotherapy. We next briefly highlight ongoing investigations targeting CD248 with antibodies as a diagnostic imaging agent and as a therapeutic antibody in an early clinical trial. The optimal approach for generating effective DNA-based cancer vaccines for several tumor types may be a combinatorial approach that enhances immunogenicity such as combination with chemotherapy. Additional combination approaches are discussed and include those that alleviate the immunosuppressive tumor microenvironment induced by myeloid-derived suppressor cells and T regulatory cells. Targeting the tumor vasculature by CD248-based immunological modalities expands the armamentarium against cancer.

  20. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives

    PubMed Central

    Xu, Yingying; Yuen, Pak-Wai; Lam, Jenny Ka-Wing

    2014-01-01

    Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents. PMID:25014738

  1. Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: a biotech's challenge.

    PubMed

    Iurescia, Sandra; Fioretti, Daniela; Fazio, Vito Michele; Rinaldi, Monica

    2012-01-01

    DNA vaccination has been widely explored to develop new, alternative and efficient vaccines for cancer immunotherapy. DNA vaccines offer several benefits such as specific targeting, use of multiple genes to enhance immunity and reduced risk compared to conventional vaccines. Rapid developments in molecular biology and immunoinformatics enable rational design approaches. These technologies allow construction of DNA vaccines encoding selected tumor antigens together with molecules to direct and amplify the desired effector pathways, as well as highly targeted vaccines aimed at specific epitopes. Reliable predictions of immunogenic T cell epitope peptides are crucial for rational vaccine design and represent a key problem in immunoinformatics. Computational approaches have been developed to facilitate the process of epitope detection and show potential applications to the immunotherapeutic treatment of cancer. In this review a number of different epitope prediction methods are briefly illustrated and effective use of these resources to support experimental studies is described. Epitope-driven vaccine design employs these bioinformatics algorithms to identify potential targets of vaccines against cancer. In this paper the selection of T cell epitopes to develop epitope-based vaccines, the need for CD4(+) T cell help for improved vaccines and the assessment of vaccine performance against tumor are reviewed. We focused on two applications, namely prediction of novel T cell epitopes and epitope enhancement by sequence modification, and combined rationale design with bioinformatics for creation of new synthetic mini-genes. This review describes the development of epitope-based DNA vaccines and their antitumor effects in preclinical research against B-cell lymphoma, corroborating the usefulness of this platform as a potential tool for cancer therapy. Achievements in the field of DNA vaccines allow to overcome hurdles to clinical translation. In a scenario where the vaccine

  2. Studies on the development of DNA vaccine against Cysticercus cellulosae infection and its efficacy.

    PubMed

    Cai, X; Chai, Z; Jing, Z; Wang, P; Luo, X; Chen, J; Dou, Y; Feng, S; Su, C; Jin, J

    2001-01-01

    DNA vaccine against Cysticercus cellulosae infection was developed and its efficacy was tested. A pair of primers specific to antigen B gene of C. cellulosae was designed which amplified the gene successfully with RT-PCR. The gene was ligated to PV93 vector, and the recombinant of antigen B gene and PV93 was transformed to JM83 cells. The transformed JM83 cells were cultured in a large scale and the plasmid purified. Based on the recombinant plasmid. a DNA vaccine was developed and used to vaccinate two groups of experimental pigs. In each group, there was a routine vaccine, an enhanced vaccine and a control group. Groups 1 and 2 were challenged at 4 months and at 14 days post vaccination respectively with eggs of Taenia solium. The antibody response was also tested with ELISA. The results suggested that all animals vaccinated AgB gene DNA vaccine, no matter by routine or enhanced vaccine, their antibodies reached maximum peak 23 days post vaccination and decreased gradually. When the animals were challenged 4 months after vaccination, they had strong immunity and the parasites decrease rates were 91.2% and 93.1% respectively. When pigs vaccinated with AgB gene DNA vaccine were challenged 14 days post vaccination with 18,000 eggs/pig. The animals showed strong immunity and the parasite decrease rates were 99.5% and 84.9% respectively. However at that time, the antibodies did not reach the peak. While in the control group, the number of C. cellulosae was as many as 2,500. It was concluded that the pigs vaccinated with DNA vaccine had strong immunity against infection of eggs of T. solium.

  3. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Ge, Qing; Ting, David; Nguyen, David; Shen, Hui-Rong; Chen, Jianzhu; Eisen, Herman N.; Heller, Jorge; Langer, Robert; Putnam, David

    2004-03-01

    Genetic vaccination using plasmid DNA presents a unique opportunity for achieving potent immune responses without the potential limitations of many conventional vaccines. Here we report the design of synthetic biodegradable polymers specifically for enhancing DNA vaccine efficacy in vivo. We molecularly engineered poly(ortho ester) microspheres that are non-toxic to cells, protect DNA from degradation, enable uptake by antigen-presenting cells, and release DNA rapidly in response to phagosomal pH. One type of microsphere of poly(ortho esters) that releases DNA vaccines in synchrony with the natural development of adaptive immunity, elicited distinct primary and secondary humoral and cellular immune responses in mice, and suppressed the growth of tumour cells bearing a model antigen. This polymer microparticulate system could, with further study, have implications for advancing the clinical utility of DNA vaccines as well as other nucleic-acid-based therapeutics against viral infections and cancer.

  4. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control.

    PubMed

    Kumar, A; Samant, M

    2016-05-01

    The visceral leishmaniasis (VL) caused by Leishmania donovani parasite severely affects large populations in tropical and subtropical regions of the world. The arsenal of drugs available is limited, and resistance is common in clinical field isolates. Therefore, vaccines could be an important alternative for prevention against VL. Recently, some investigators advocated the protective efficacy of DNA vaccines, which induces the T cell-based immunity against VL. The vaccine antigens are selected as conserved in various Leishmania species and provide a viable strategy for DNA vaccine development. Our understanding for DNA vaccine development against VL is not enough and much technological advancement is required. Improved formulations and methods of delivery are required, which increase the uptake of DNA vaccine by cells; optimization of vaccine vectors/encoded antigens to augment and direct the host immune response in VL. Despite the many genes identified as vaccine candidates, the disappointing potency of the DNA vaccines in VL underscores the challenges encountered in the efforts to translate efficacy in preclinical models into clinical realities. This review will provide a brief background of DNA vaccines including the insights gained about the design, strategy, safety issues, varied candidates, progress and challenges that play a role in their ability against VL.

  5. Laboratory and field evaluation of Schistosoma japonicum DNA vaccines in sheep and water buffalo in China.

    PubMed

    Shi, F; Zhang, Y; Ye, P; Lin, J; Cai, Y; Shen, W; Bickle, Q D; Taylor, M G

    2001-11-12

    Vaccines are needed to control zoonotic Schistosoma japonicum infection and several vaccine candidates have now been identified. Two of these (Sj28GST and Sj23) have shown particular promise in sheep when injected with Freund's adjuvants. The objective of the present work was to find a vaccine formulation which may have potential for widespread use in the field. DNA vaccine formulations of these antigens were produced and tested first in sheep under laboratory conditions and then in both the laboratory and the field in water buffalo. In both host species partial protection as evidenced by a reduction in parasite counts in vaccinated compared with control animals was induced by both vaccines, and in water buffalo the vaccines were shown to be partially protective in the field as well as in the laboratory. These results suggest that the two DNA vaccines tested here may have potential for large-scale field use.

  6. Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines.

    PubMed

    Vajdy, Michael; Srivastava, Indresh; Polo, John; Donnelly, John; O'Hagan, Derek; Singh, Manmohan

    2004-12-01

    Almost all vaccinations today are delivered through parenteral routes. Mucosal vaccination offers several benefits over parenteral routes of vaccination, including ease of administration, the possibility of self-administration, elimination of the chance of injection with infected needles, and induction of mucosal as well as systemic immunity. However, mucosal vaccines have to overcome several formidable barriers in the form of significant dilution and dispersion; competition with a myriad of various live replicating bacteria, viruses, inert food and dust particles; enzymatic degradation; and low pH before reaching the target immune cells. It has long been known that vaccination through mucosal membranes requires potent adjuvants to enhance immunogenicity, as well as delivery systems to decrease the rate of dilution and degradation and to target the vaccine to the site of immune function. This review is a summary of current approaches to mucosal vaccination, and it primarily focuses on adjuvants as immunopotentiators and vaccine delivery systems for mucosal vaccines based on protein, DNA or RNA. In this context, we define adjuvants as protein or oligonucleotides with immunopotentiating properties co-administered with pathogen-derived antigens, and vaccine delivery systems as chemical formulations that are more inert and have less immunomodulatory effects than adjuvants, and that protect and deliver the vaccine through the site of administration. Although vaccines can be quite diverse in their composition, including inactivated virus, virus-like particles and inactivated bacteria (which are inert), protein-like vaccines, and non-replicating viral vectors such as poxvirus and adenovirus (which can serve as DNA delivery systems), this review will focus primarily on recombinant protein antigens, plasmid DNA, and alphavirus-based replicon RNA vaccines and delivery systems. This review is not an exhaustive list of all available protein, DNA and RNA vaccines, with related

  7. Evaluation of Different DNA Vaccines against Porcine Reproductive and Respiratory Syndrome (PRRS) in Pigs

    PubMed Central

    Petrini, Stefano; Ramadori, Giorgio; Villa, Riccardo; Borghetti, Paolo; de Angelis, Elena; Cantoni, Anna Maria; Corradi, Attilio; Amici, Augusto; Ferrari, Maura

    2013-01-01

    In veterinary medicine, there have been different experiences with the plasmid DNA vaccination. In this area and with the hypothesis to demonstrate the effectiveness of different plasmids encoding porcine respiratory and reproductive syndrome (PRRS), five DNA vaccines against PRRS were evaluated for their innocuity and efficacy in pigs. Eighteen animals were divided into five groups which were injected with five (A, B, C, D, E) different DNA vaccines. Albeit, none of the proposed vaccines were able to protect the animals against PRRS virus. Only vaccines A and B were able to reduce the clinical signs of the infection. ELISA IgM were detected 30 days after the first vaccination in the pigs injected by Vaccine A or B. ELISA IgG were detected 90 days after the first vaccination in the pigs injected by Vaccine B or C. Neutralizing antibody were detected Post Challenge Days 61 (PCD) in all groups. In the pigs inoculated with Vaccine C, IFN-γ were detected 90 days after first vaccination, and after challenge exposure they increased. In the other groups, the IFN-γ were detected after challenge infection. Pigs injected with each of the vaccines A, B, C, D and E showed a significantly higher level of CD4−CD8+ lymphocytes (p < 0.001) after infection in comparison with their controls. PMID:26344342

  8. Short-Fragment DNA Residue from Vaccine Purification Processes Promotes Immune Response to the New Inactivated EV71 Vaccine by Upregulating TLR9 mRNA.

    PubMed

    Shao, Jie; Gao, Fan; Lin, Hui-Juan; Mao, Qun-Ying; Chen, Pan; Wu, Xing; Yao, Xin; Kong, Wei; Liang, Zheng-Lun

    2016-01-01

    To reduce potential oncogenic long genomic DNA in vaccines, nuclease treatment has been applied in the purification processes. However, this action increased the residue of short-fragment DNA and its effect on vaccine potency was still elusive. In this study, we found residual sf-DNA in an inactivated EV71 vaccine could enhance humoral immune response in mice. Ag stimulation in vitro and vaccine injection in vivo revealed that TLR9 transcription level was elevated, indicating that sf-DNA could activate TLR9. These new findings will help us to understand the molecular mechanism induced by vero-cell culture-derived vaccines.

  9. Short-Fragment DNA Residue from Vaccine Purification Processes Promotes Immune Response to the New Inactivated EV71 Vaccine by Upregulating TLR9 mRNA

    PubMed Central

    Shao, Jie; Gao, Fan; Lin, Hui-Juan; Mao, Qun-Ying; Chen, Pan; Wu, Xing; Yao, Xin; Kong, Wei; Liang, Zheng-Lun

    2016-01-01

    To reduce potential oncogenic long genomic DNA in vaccines, nuclease treatment has been applied in the purification processes. However, this action increased the residue of short-fragment DNA and its effect on vaccine potency was still elusive. In this study, we found residual sf-DNA in an inactivated EV71 vaccine could enhance humoral immune response in mice. Ag stimulation in vitro and vaccine injection in vivo revealed that TLR9 transcription level was elevated, indicating that sf-DNA could activate TLR9. These new findings will help us to understand the molecular mechanism induced by vero-cell culture-derived vaccines. PMID:27082865

  10. Secure splenic delivery of plasmid DNA and its application to DNA vaccine.

    PubMed

    Kurosaki, Tomoaki; Kodama, Yukinobu; Muro, Takahiro; Higuchi, Norihide; Nakamura, Tadahiro; Kitahara, Takashi; Miyakoda, Mana; Yui, Katsuyuki; Sasaki, Hitoshi

    2013-01-01

    In this experiment, we developed a novel safe and effective gene delivery vector coated with γ-polyglutamic acid (γ-PGA-coated complexes). The γ-PGA-coated complex was composed of chiseled spherical nano-particles with anionic charges. The plasmid DNA/polyethyleneimine complex (non-coated complex) showed high transgene efficiency in the spleen and lung after intravenous administration in mice, with high liver toxicity and lethality. On the other hand, γ-PGA-coated complex selectively showed high transgene efficiency in the spleen without such toxicity. Furthermore, the γ-PGA-coated complex highly accumulated and showed high gene expression in the marginal zone of the spleen. Those results strongly indicated that γ-PGA-coated complex was suitable as a DNA vaccine vector. We therefore applied γ-PGA-coated complex to melanoma DNA vaccine, pUb-M. The γ-PGA-coated complex containing pUb-M significantly inhibited the growth and metastasis of a melanoma cell line, B16-F10 cells. In conclusion, we developed a splenic gene vector, γ-PGA-coated complex, as a novel technology for clinical vaccination. PMID:24189423

  11. Improvement of DNA vaccination by adjuvants and sophisticated delivery devices: vaccine-platforms for the battle against infectious diseases

    PubMed Central

    2015-01-01

    Advantages of DNA vaccination against infectious diseases over more classical immunization methods include the possibilities for rapid manufacture, fast adaptation to newly emerging pathogens and high stability at ambient temperatures. In addition, upon DNA immunization the antigen is produced by the cells of the vaccinated individual, which leads to activation of both cellular and humoral immune responses due to antigen presentation via MHC I and MHC II molecules. However, so far DNA vaccines have shown most efficient immunogenicity mainly in small rodent models, whereas in larger animals including humans there is still the need to improve effectiveness. This is mostly due to inefficient delivery of the DNA plasmid into cells and nuclei. Here, we discuss technologies used to overcome this problem, including physical means such as in vivo electroporation and co-administration of adjuvants. Several of these methods have already entered clinical testing in humans. PMID:25648133

  12. Immunogenic and protective effects of an oral DNA vaccine against infectious pancreatic necrosis virus in fish.

    PubMed

    de las Heras, Ana I; Rodríguez Saint-Jean, S; Pérez-Prieto, Sara I

    2010-04-01

    DNA vaccines and oral DNA-based immunotherapy against infectious pancreatic necrosis virus (IPNV) have scarcely been studied in salmonid fish. Here, a vector with the capsid VP2 gene inserted was encapsulated in alginate microspheres to avoid the aggressive gastrointestinal conditions experienced following oral administration. Alginate microspheres were effective to protect the pDNA encoding VP2, which was expressed early in different organs of the vaccinated trout and that persisted for at least 60 days. The vaccine induces innate immune responses, raising the expression of IFN more than 10-fold relative to the fish vaccinated with the empty plasmid, at 7 and 15 days post-vaccination. Likewise, maximal expression of the IFN-induced antiviral Mx protein was recorded 15 days post-vaccination and neutralizing antibodies were also detected after 15 days, although their titre rose further at 21 days post-vaccination. Protection was high in the immunized fish, which showed around an 80% relative survival when challenged 15 and 30 days after vaccine delivery. Very low viral load with respect to the control group was detected in the vaccinated fish that survived 45 days after challenge. Thus, this study demonstrates the potential of the encapsulation technique for IPNV-DNA vaccine delivery and the relevance of the IPNV-VP2 gene for future plasmid constructs.

  13. Electroporation-mediated administration of candidate DNA vaccines against HIV-1.

    PubMed

    Vasan, Sandhya

    2014-01-01

    Vaccines to prevent HIV remain desperately needed, but a number of challenges, including retroviral integration, establishment of anatomic reservoir sites, high sequence diversity, and heavy envelope glycosylation. have precluded development of a highly effective vaccine. DNA vaccines have been utilized as candidate HIV vaccines because of their ability to generate cellular and humoral immune responses, the lack of anti-vector response allowing for repeat administration, and their ability to prime the response to viral-vectored vaccines. Because the HIV epidemic has disproportionately affected the developing world, the favorable thermostability profile and relative ease and low cost of manufacture of DNA vaccines offer additional advantages. In vivo electroporation (EP) has been utilized to improve immune responses to DNA vaccines as candidate HIV-1 vaccines in standalone or prime-boost regimens with both proteins and viral-vectored vaccines in several animal models and, more recently, in human clinical trials. This chapter describes the preclinical and clinical development of candidate DNA vaccines for HIV-1 delivered by EP, including challenges to bringing this technology to the developing world.

  14. Immunogenicity of Virus Like Particle Forming Baculoviral DNA Vaccine against Pandemic Influenza H1N1.

    PubMed

    Gwon, Yong-Dae; Kim, Sehyun; Cho, Yeondong; Heo, Yoonki; Cho, Hansam; Park, Kihoon; Lee, Hee-Jung; Choi, Jiwon; Poo, Haryoung; Kim, Young Bong

    2016-01-01

    An outbreak of influenza H1N1 in 2009, representing the first influenza pandemic of the 21st century, was transmitted to over a million individuals and claimed 18,449 lives. The current status in many countries is to prepare influenza vaccine using cell-based or egg-based killed vaccine. However, traditional influenza vaccine platforms have several limitations. To overcome these limitations, many researchers have tried various approaches to develop alternative production platforms. One of the alternative approach, we reported the efficacy of influenza HA vaccination using a baculoviral DNA vaccine (AcHERV-HA). However, the immune response elicited by the AcHERV-HA vaccine, which only targets the HA antigen, was lower than that of the commercial killed vaccine. To overcome the limitations of this previous vaccine, we constructed a human endogenous retrovirus (HERV) envelope-coated, baculovirus-based, virus-like-particle (VLP)-forming DNA vaccine (termed AcHERV-VLP) against pandemic influenza A/California/04/2009 (pH1N1). BALB/c mice immunized with AcHERV-VLP (1×107 FFU AcHERV-VLP, i.m.) and compared with mice immunized with the killed vaccine or mice immunized with AcHERV-HA. As a result, AcHERV-VLP immunization produced a greater humoral immune response and exhibited neutralizing activity with an intrasubgroup H1 strain (PR8), elicited neutralizing antibody production, a high level of interferon-γ secretion in splenocytes, and diminished virus shedding in the lung after challenge with a lethal dose of influenza virus. In conclusion, VLP-forming baculovirus DNA vaccine could be a potential vaccine candidate capable of efficiently delivering DNA to the vaccinee and VLP forming DNA eliciting stronger immunogenicity than egg-based killed vaccines. PMID:27149064

  15. Immunogenicity of Virus Like Particle Forming Baculoviral DNA Vaccine against Pandemic Influenza H1N1

    PubMed Central

    Gwon, Yong-Dae; Kim, Sehyun; Cho, Yeondong; Heo, Yoonki; Cho, Hansam; Park, Kihoon; Lee, Hee-Jung; Choi, Jiwon; Poo, Haryoung; Kim, Young Bong

    2016-01-01

    An outbreak of influenza H1N1 in 2009, representing the first influenza pandemic of the 21st century, was transmitted to over a million individuals and claimed 18,449 lives. The current status in many countries is to prepare influenza vaccine using cell-based or egg-based killed vaccine. However, traditional influenza vaccine platforms have several limitations. To overcome these limitations, many researchers have tried various approaches to develop alternative production platforms. One of the alternative approach, we reported the efficacy of influenza HA vaccination using a baculoviral DNA vaccine (AcHERV-HA). However, the immune response elicited by the AcHERV-HA vaccine, which only targets the HA antigen, was lower than that of the commercial killed vaccine. To overcome the limitations of this previous vaccine, we constructed a human endogenous retrovirus (HERV) envelope-coated, baculovirus-based, virus-like-particle (VLP)–forming DNA vaccine (termed AcHERV-VLP) against pandemic influenza A/California/04/2009 (pH1N1). BALB/c mice immunized with AcHERV-VLP (1×107 FFU AcHERV-VLP, i.m.) and compared with mice immunized with the killed vaccine or mice immunized with AcHERV-HA. As a result, AcHERV-VLP immunization produced a greater humoral immune response and exhibited neutralizing activity with an intrasubgroup H1 strain (PR8), elicited neutralizing antibody production, a high level of interferon-γ secretion in splenocytes, and diminished virus shedding in the lung after challenge with a lethal dose of influenza virus. In conclusion, VLP-forming baculovirus DNA vaccine could be a potential vaccine candidate capable of efficiently delivering DNA to the vaccinee and VLP forming DNA eliciting stronger immunogenicity than egg-based killed vaccines. PMID:27149064

  16. DNA vaccination of bison to brucellar antigens elicits elevated antibody and IFN-γ responses.

    PubMed

    Clapp, Beata; Walters, Nancy; Thornburg, Theresa; Hoyt, Teri; Yang, Xinghong; Pascual, David W

    2011-07-01

    Brucella abortus remains a threat to the health and well-being of livestock in states bordering the Greater Yellowstone Area. During the past several years, cohabitation of infected wildlife with cattle has jeopardized the brucellosis-free status of Idaho, USA; Wyoming, USA; and Montana, USA. Current livestock B. abortus vaccines have not proven to be efficacious in bison (Bison bison) or elk (Cervus elaphus nelsoni). One problem with the lack of vaccine efficacy may stem from the failure to understand wildlife immune responses to vaccines. In an attempt to understand their immune responses, bison were vaccinated with eukaryotic DNA expression vectors encoding the Brucella periplasmic protein, bp26, and the chaperone protein, trigger factor (TF). These DNA vaccines have previously been shown to be protective against Brucella infection in mice. Bison were immunized intramuscularly at weeks 0, 2, and 4 with bp26 and TF DNA vaccines plus CpG adjuvant or empty vector (control) plus CpG. Blood samples were collected before vaccination and at 8, 10, and 12 wk after primary vaccination. The results showed that bison immunized with bp26 and TF DNA vaccines developed enhanced antibody, proliferative T cell, and interferon-gamma (IFN-γ) responses upon in vitro restimulation with purified recombinant bp26 or TF antigens, unlike bison immunized with empty vector. Flow cytometric analysis revealed that the percentages of CD4(+) and CD8(+) T lymphocytes from the DNA-vaccinated groups were significantly greater than they were for those bison given empty vector. These data suggest that DNA vaccination of bison may elicit strong cellular immune responses and serve as an alternative for vaccination of bison for brucellosis.

  17. Unique immunogenicity of hepatitis B virus DNA vaccine presented by live-attenuated Salmonella typhimurium.

    PubMed

    Woo, P C; Wong, L P; Zheng, B J; Yuen, K Y

    2001-04-01

    A novel vaccine for hepatitis B virus (HBV) was designed by putting a naked DNA vaccine carrying hepatitis B surface antigen (HBsAg) into live-attenuated Salmonella typhimurium. Mucosal immunization by the oral route in mice showed significantly stronger cytotoxic T lymphocyte (CTL) response than recombinant HBsAg vaccination (P < 0.01 at an effector:target ratio of 100:1), while comparable to intramuscular naked DNA immunization at all effector:target ratios. Contrary to previous reports on naked DNA vaccines given intramuscularly, the IgG antibody response induced by the mucosal DNA vaccine is relatively weak when compared to recombinant HBsAg vaccine (P < 0.001 at day 21). These findings are supported by a high interferon-gamma but a low interleukin-4 level detected in the supernatant of splenic cell cultures obtained from mucosally immunized mice. As distinct to recombinant HBsAg vaccine which is effective for protection, oral mucosal DNA vaccine should be considered as a candidate for therapeutic immunization in chronic HBV infection, donor immunization before adoptive transfer of HBV-specific CTL to HBsAg positive bone marrow transplant recipients, and immunization of non-responders to recombinant HBsAg vaccine. This strongly cellular and relatively absent humoral response may make this vaccine a better candidate as a therapeutic vaccine for chronic HBV carriers than naked DNA vaccines, as the humoral response is relatively less important for the clearance of HBV from hepatocytes, but its presence may lead to side effects such as serum sickness and immune complex deposition in chronic HBV carriers.

  18. Immunogenicity of varicella zoster virus glycoprotein E DNA vaccine

    PubMed Central

    BAO, LIDAO; WEI, GUOMIN; GAN, HONGMEI; REN, XIANHUA; MA, RUILIAN; WANG, YI; LV, HAIJUN

    2016-01-01

    In the present study a eukaryotic expression vector of varicella zoster virus (VZV) glycoprotein E (gE) was constructed and enabled to express in COS7 cells. Furthermore, a specific immune response against the VZV gE eukaryotic expression plasmid was induced in BALB/c mice. The VZV gE gene was amplified using polymerase chain reaction (PCR) and cloned into a eukaryotic expression vector, pcDNA3.1. The recombinant vector was subsequently transfected into COS7 cells using a liposome transfection reagent. The recombinant protein was instantaneously expressed by the transfected cells, as detected by immunohistochemistry, and the recombinant pcDNA-VZV gE plasmid was subsequently used to immunize mice. Tissue expression levels were analyzed by reverse transcription-PCR. In addition, the levels of serum antibodies and spleen lymphocyte proliferation activity were investigated. The amplified target gene included the full-length gE gene (~2.7 kb), and the recombinant expression vector induced gE expression in COS7 cells. In addition, the expression plasmid induced sustained expression in vivo following immunization of mice. Furthermore, the plasmid was capable of inducing specific antibody production and effectively stimulating T cell proliferation. Effective humoral and cellular immunity was triggered in the mice immunized with the VZV gE eukaryotic expression vector. The results of the present study laid the foundation for future research into a VZV DNA vaccine. PMID:27168804

  19. Antigen Targeting to Human HLA Class II Molecules Increases Efficacy of DNA Vaccination

    PubMed Central

    Fredriksen, Agnete Brunsvik; Løset, Geir Åge; Vikse, Elisabeth; Fugger, Lars

    2016-01-01

    It has been difficult to translate promising results from DNA vaccination in mice to larger animals and humans. Previously, DNA vaccines encoding proteins that target Ag to MHC class II (MHC-II) molecules on APCs have been shown to induce rapid, enhanced, and long-lasting Ag-specific Ab titers in mice. In this study, we describe two novel DNA vaccines that as proteins target HLA class II (HLA-II) molecules. These vaccine proteins cross-react with MHC-II molecules in several species of larger mammals. When tested in ferrets and pigs, a single DNA delivery with low doses of the HLA-II–targeted vaccines resulted in rapid and increased Ab responses. Importantly, painless intradermal jet delivery of DNA was as effective as delivery by needle injection followed by electroporation. As an indication that the vaccines could also be useful for human application, HLA-II–targeted vaccine proteins were found to increase human CD4+ T cell responses by a factor of ×103 in vitro. Thus, targeting of Ag to MHC-II molecules may represent an attractive strategy for increasing efficacy of DNA vaccines in larger animals and humans. PMID:27671110

  20. Growth and performance of Atlantic salmon, Salmo salar L., following administration of a rhabdovirus DNA vaccine alone or concurrently with an oil-adjuvanted, polyvalent vaccine.

    PubMed

    Skinner, L A; Schulte, P M; LaPatra, S E; Balfry, S K; McKinley, R S

    2008-09-01

    This research demonstrates for the first time an absence of growth-related side effects in Atlantic salmon, Salmo salar L., following the injection of a DNA vaccine alone or concurrently with a commercially available, polyvalent, oil-adjuvanted vaccine. Using weight and specific growth rate measurements, individually tagged Atlantic salmon were monitored for 2028 degree days (dd) post-vaccination. During this time, DNA-vaccinated fish did not differ in weight, length, condition factor or specific growth rate compared to unvaccinated control fish. While differences in weight were observed between unvaccinated control and concurrently vaccinated fish, there were no significant differences in weight, length, condition factor or specific growth rate between concurrently vaccinated fish and adjuvant-vaccinated fish, suggesting that only adjuvant vaccination affected growth. To further determine if concurrent injection of a DNA vaccine and a polyvalent, oil-adjuvanted vaccine had a physiological impact on the Atlantic salmon, swimming performance tests were performed at 106 dd post-vaccination with U(crit,1), U(crit,2), the U(crit) recovery ratio (RR) and the normalized RR being similar to values obtained from unvaccinated control fish. In summary, this study shows that concurrent injection of a DNA vaccine and a polyvalent, oil-adjuvanted vaccine does not negatively influence the growth or swimming performance of Atlantic salmon compared to adjuvant vaccination alone.

  1. Dual-point dual-wavelength fluorescence monitoring of DNA separation in a lab on a chip

    PubMed Central

    Dongre, Chaitanya; van Weerd, Jasper; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; van Weeghel, Rob; Hoekstra, Hugo J. W. M.; Pollnau, Markus

    2010-01-01

    We present a simple approach in electrophoretic DNA separation and fluorescent monitoring that allows to identify the insertion or deletion of base-pairs in DNA probe molecules from genetic samples, and to perform intrinsic calibration/referencing for highly accurate DNA analysis. The principle is based on dual-point, dual-wavelength laser-induced fluorescence excitation using one or two excitation windows at the intersection of integrated waveguides and microfluidic channels in an optofluidic chip and a single, color-blind photodetector, resulting in a limit of detection of ~200 pM for single-end-labeled DNA molecules. The approach using a single excitation window is demonstrated experimentally, while the option exploiting two excitation windows is proposed theoretically. PMID:21258504

  2. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.

    2006-01-01

    The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.

  3. An active DNA vaccine against infectious pancreatic necrosis virus (IPNV) with a different mode of action than fish rhabdovirus DNA vaccines.

    PubMed

    Cuesta, A; Chaves-Pozo, E; de Las Heras, A I; Saint-Jean, S Rodríguez; Pérez-Prieto, S; Tafalla, C

    2010-04-26

    Although there are some commercial vaccines available against infectious pancreatic necrosis virus (IPNV), the disease still continues to be a major problem for aquaculture development worldwide. In the current work, we constructed a DNA vaccine against IPNV (pIPNV-PP) by cloning the long open reading frame of the polyprotein encoded by the viral RNA segment A. In vitro, the vaccine is properly translated giving the functional IPNV polyprotein since preVP2, VP2 and VP3 proteins were detected because of the VP4-protease cleavage. EPC cells transfected with the vaccine plasmid expressed the viral proteins and induced the expression of type I interferon (IFN)-induced Mx genes. Furthermore, IPNV synthesized proteins seemed to assemble in virus-like particles as evidenced by electron microscopy. In vivo, rainbow trout specimens were intramuscularly injected with the vaccine and expression of immune-relevant genes, the presence of neutralizing antibodies and effect on viral load was determined. The pIPNV-PP vaccine was expressed at the injection site and up-regulated MHC Ialpha, MHC IIalpha, type-I interferon (IFN), Mx, CD4 and CD8alpha gene expression in the muscle, head kidney or spleen, although to a much lower extent than the up-regulations observed in response to an effective DNA vaccine against viral hemorrhagic septicaemia virus (VHSV). However, the IPNV vaccine was also very effective in terms of acquired immunity since it elicited neutralizing antibodies (in 6 out of 8 trout fingerlings) and decreased 665-fold the viral load after IPNV infection. The effectiveness of this new IPNV DNA vaccine and its possible mechanism of action are discussed and compared to other viral vaccines.

  4. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    PubMed Central

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms. PMID:27054895

  5. Coxiella burnetii DNA in goat milk after vaccination with Coxevac(®).

    PubMed

    Hermans, Mirjam H A; Huijsmans, C Ronald J J; Schellekens, Jeroen J A; Savelkoul, Paul H M; Wever, Peter C

    2011-03-24

    Q fever is a zoonotic disease caused by Coxiella burnetii, a species of bacteria that is distributed globally. A large Q fever epidemic is currently spreading throughout the Netherlands with more than 3500 human cases notified from 2007 to 2009. Governmental measures to prevent further spread of the disease imposed in December 2009 included vaccination of all dairy goats and sheep and, in parallel, bulk tank milk testing to identify contaminated goat and sheep farms. When bulk tank milk was found to contain C. burnetii DNA, pregnant ruminants were culled. An important, but unsolved issue in this policy was whether vaccine-derived C. burnetii DNA is excreted in milk after vaccination. Using real time PCR and single nucleotide polymorphism (SNP) genotyping techniques, we show here that within hours and up to 9 days after vaccination with Coxevac(®), vaccine-derived C. burnetii DNA can be detected in the milk of dairy goats. This is the first report describing DNAlactia of vaccine-derived DNA after vaccination with a completely inactivated vaccine. This finding had implications for the Dutch policy to combat the Q fever epidemic. A 2-week interval was introduced between vaccination and bulk tank milk testing to identify infected farms.

  6. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    PubMed

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms.

  7. Synergistic antitumor efficacy of combined DNA vaccines targeting tumor cells and angiogenesis.

    PubMed

    Yin, Xiaotao; Wang, Wei; Zhu, Xiaoming; Wang, Yu; Wu, Shuai; Wang, Zicheng; Wang, Lin; Du, Zhiyan; Gao, Jiangping; Yu, Jiyun

    2015-09-18

    To further enhance the antitumor efficacy of DNA vaccine, we proposed a synergistic strategy that targeted tumor cells and angiogenesis simultaneously. In this study, a Semliki Forest Virus (SFV) replicon DNA vaccine expressing 1-4 domains of murine VEGFR2 and IL12 was constructed, and was named pSVK-VEGFR2-GFc-IL12 (CAVE). The expression of VEGFR2 antigen and IL12 adjuvant molecule in 293T cells in vitro were verified by western blot and enzyme-linked immune sorbent assay (ELISA). Then CAVE was co-immunized with CAVA, a SFV replicon DNA vaccine targeting survivin and β-hCG antigens constructed previously. The antitumor efficacy of our combined replicon vaccines was evaluated in mice model and the possible mechanism was further investigated. The combined vaccines could elicit efficient humoral and cellular immune responses against survivin, β-hCG and VEGFR2 simultaneously. Compared with CAVE or CAVA vaccine alone, the combined vaccines inhibited the tumor growth and improved the survival rate in B16 melanoma mice model more effectively. Furthermore, the intratumoral microvessel density was lowest in combined vaccines group than CAVE or CAVA alone group. Therefore, this synergistic strategy of DNA vaccines for tumor treatment results in an increased antitumor efficacy, and may be more suitable for translation to future research and clinic. PMID:26253468

  8. Needle-free injection of DNA vaccines: a brief overview and methodology.

    PubMed

    Raviprakash, Kanakatte; Porter, Kevin R

    2006-01-01

    The development of needle-free injection originally stemmed from a general apprehension of needle injections, disease transmission by accidental needle-sticks, and the need for effective mass immunization. Naked DNA vaccines, as attractive and universal as they appear, have not produced robust immune responses in test systems. However, proof of principle for DNA vaccines has been validated with a number of vaccine candidates in a variety of test systems, and the concept of DNA vaccines as a generic platform for vaccines still remains viable and attractive. Many avenues are being explored to enhance the immunogenicity of DNA vaccines. The easiest and most straightforward approach that can be quickly transitioned to a clinical trial setting is vaccine delivery by a needle-free jet injector. This approach has shown much potential in a number of cases and should become the lead method for enhancing DNA vaccines. This approach requires no additional development, and with an expanding market and willingness from jet injector manufacturers to produce prefilled syringes, the technique should become feasible for larger phase II/phase III trials.

  9. Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine.

    PubMed

    Kim, Nak Won; Lee, Min Sang; Kim, Kyu Ri; Lee, Jung Eun; Lee, Kyuri; Park, Jong Sung; Matsumoto, Yoh; Jo, Dong-Gyu; Lee, Haeshin; Lee, Doo Sung; Jeong, Ji Hoon

    2014-04-10

    Microneedle (MN)-based DNA vaccines have many advantages over conventional vaccines administered by hypodermic needles. However, an efficient strategy for delivering DNA vaccines to intradermal cells has not yet been established. Here, we report a new approach for delivering polyplex-based DNA vaccines using MN arrays coated with a pH-responsive polyelectrolyte multilayer assembly (PMA). This approach enabled rapid release of polyplex upon application to the skin. In addition to the polyplex-releasing MNs, we attempted to further maximize the vaccination by developing a polymeric carrier that targeted resident antigen presenting cells (APCs) rich in the intradermal area, as well as a DNA vaccine encoding a secretable fusion protein containing amyloid beta monomer (Aβ1-42), an antigenic determinant. The resulting vaccination system was able to successfully induce a robust humoral immune response compared to conventional subcutaneous injection with hypodermal needles. In addition, antigen challenge after immunization elicited an immediate and strong recall immune response due to immunogenic memory. These results suggest the potential utility of MN-based polyplex delivery systems for enhanced DNA vaccination.

  10. Immune responses in DNA vaccine formulated with PMMA following immunization and after challenge with Leishmania major.

    PubMed

    Zarrati, Somayeh; Mahdavi, Mehdi; Tabatabaie, Fatemeh

    2016-06-01

    Leishmaniasis is a major infectious disease caused by protozoan parasites of the genus Leishmania. Despite of many efforts toward vaccine against Leishmania no effective vaccine has been approved yet. DNA vaccines can generate more powerful and broad immune responses than conventional vaccines. In order to increase immunity, the DNA vaccine has been supplemented with adjuvant. In this study a new nano-vaccine containing TSA recombinant plasmid and poly(methylmethacrylate) nanoparticles (act as adjuvant) was designed and its immunogenicity tested on BALB/c mouse. After three intramuscular injection of nano-vaccine (100 μg), the recombinant TSA protein (20 μg) was injected subcutaneously. Finally as a challenge animals were infected by Leishmania major. After the last injection of nano-vaccine, after protein booster injection, and also after challenge, cellular immune and antibody responses were evaluated by ELISA method. The findings of this study showed the new nano-vaccine was capable of induction both cytokines secretion and specific antibody responses, but predominant Th1 immune response characterized by IFN-γ production compared to control groups. Moreover, results revealed that nano-vaccine was effective in reducing parasite burden in the spleen of Leishmania major-infected BALB/c mice. Base on results, current candidate vaccine has potency for further studies. PMID:27413316

  11. Dual-Function Vaccine for Pseudomonas aeruginosa: Characterization of Chimeric Exotoxin A-Pilin Protein

    PubMed Central

    Hertle, Ralf; Mrsny, Randall; Fitzgerald, David J.

    2001-01-01

    Pseudomonas aeruginosa is the major infectious agent of concern for cystic fibrosis patients. Strategies to prevent colonization by this bacterium and/or neutralize its virulence factors are clearly needed. Here we characterize a dual-function vaccine designed to generate antibodies to reduce bacterial adherence and to neutralize the cytotoxic activity of exotoxin A. To construct the vaccine, key sequences from type IV pilin were inserted into a vector encoding a nontoxic (active-site deletion) version of exotoxin A. The chimeric protein, termed PE64Δ553pil, was expressed in Escherichia coli, refolded to a near-native conformation, and then characterized by various biochemical and immunological assays. PE64Δ553pil bound specifically to asialo-GM1, and, when injected into rabbits, produced antibodies that reduced bacterial adherence and neutralized the cell-killing activity of exotoxin A. Results support further evaluation of this chimeric protein as a vaccine to prevent Pseudomonas colonization in susceptible individuals. PMID:11598071

  12. Vaccine potential of plasma bead-based dual antigen delivery system against experimental murine candidiasis.

    PubMed

    Ahmad, Ejaj; Zia, Qamar; Fatima, Munazza Tamkeen; Owais, Mohammad; Saleemuddin, Mohammed

    2015-11-01

    The development of prophylactic anti-candidal vaccine comprising the Candida albicans cytosolic proteins (Cp) as antigen and plasma beads (PB) prepared from plasma as sustained delivery system, is described. The immune-prophylactic potential of various PBs-based dual antigen delivery systems, co-entrapping Cp pre-entrapped in PLGA microspheres were tested in the murine model. Induction of cell mediated immunity was measured by assaying DTH and NO production as well as in vitro proliferation of lymphocytes derived from the immunized animals. Expression of surface markers on APCs (CD80, CD86) and T-cells (CD4+, CD8+) was also evaluated. Humoral immune response was studied by measuring circulating anti-Cp antibodies and their subclasses. When the prophylactic efficacy of the vaccines was tested in mice challenged with virulent C. albicans, the PB-based formulation (PB-PLGA-Cp vaccine) was found to be most effective in the generation of desirable immune response, in terms of suppression of fungal load and facilitating the survival of the immunized animals.

  13. Preparation, characterization, and in ovo vaccination of dextran-spermine nanoparticle DNA vaccine coexpressing the fusion and hemagglutinin genes against Newcastle disease.

    PubMed

    Firouzamandi, Masoumeh; Moeini, Hassan; Hosseini, Seyed Davood; Bejo, Mohd Hair; Omar, Abdul Rahman; Mehrbod, Parvaneh; El Zowalaty, Mohamed E; Webster, Thomas J; Ideris, Aini

    2016-01-01

    Plasmid DNA (pDNA)-based vaccines have emerged as effective subunit vaccines against viral and bacterial pathogens. In this study, a DNA vaccine, namely plasmid internal ribosome entry site-HN/F, was applied in ovo against Newcastle disease (ND). Vaccination was carried out using the DNA vaccine alone or as a mixture of the pDNA and dextran-spermine (D-SPM), a nanoparticle used for pDNA delivery. The results showed that in ovo vaccination with 40 μg pDNA/egg alone induced high levels of antibody titer (P<0.05) in specific pathogen-free (SPF) chickens at 3 and 4 weeks postvaccination compared to 2 weeks postvaccination. Hemagglutination inhibition (HI) titer was not significantly different between groups injected with 40 μg pDNA + 64 μg D-SPM and 40 μg pDNA at 4 weeks postvaccination (P>0.05). Higher antibody titer was observed in the group immunized with 40 μg pDNA/egg at 4 weeks postvaccination. The findings also showed that vaccination with 40 μg pDNA/egg alone was able to confer protection against Newcastle disease virus strain NDIBS002 in two out of seven SPF chickens. Although the chickens produced antibody titers 3 weeks after in ovo vaccination, it was not sufficient to provide complete protection to the chickens from lethal viral challenge. In addition, vaccination with pDNA/D-SPM complex did not induce high antibody titer when compared with naked pDNA. Therefore, it was concluded that DNA vaccination with plasmid internal ribosome entry site-HN/F can be suitable for in ovo application against ND, whereas D-SPM is not recommended for in ovo gene delivery. PMID:26834470

  14. Preparation, characterization, and in ovo vaccination of dextran-spermine nanoparticle DNA vaccine coexpressing the fusion and hemagglutinin genes against Newcastle disease.

    PubMed

    Firouzamandi, Masoumeh; Moeini, Hassan; Hosseini, Seyed Davood; Bejo, Mohd Hair; Omar, Abdul Rahman; Mehrbod, Parvaneh; El Zowalaty, Mohamed E; Webster, Thomas J; Ideris, Aini

    2016-01-01

    Plasmid DNA (pDNA)-based vaccines have emerged as effective subunit vaccines against viral and bacterial pathogens. In this study, a DNA vaccine, namely plasmid internal ribosome entry site-HN/F, was applied in ovo against Newcastle disease (ND). Vaccination was carried out using the DNA vaccine alone or as a mixture of the pDNA and dextran-spermine (D-SPM), a nanoparticle used for pDNA delivery. The results showed that in ovo vaccination with 40 μg pDNA/egg alone induced high levels of antibody titer (P<0.05) in specific pathogen-free (SPF) chickens at 3 and 4 weeks postvaccination compared to 2 weeks postvaccination. Hemagglutination inhibition (HI) titer was not significantly different between groups injected with 40 μg pDNA + 64 μg D-SPM and 40 μg pDNA at 4 weeks postvaccination (P>0.05). Higher antibody titer was observed in the group immunized with 40 μg pDNA/egg at 4 weeks postvaccination. The findings also showed that vaccination with 40 μg pDNA/egg alone was able to confer protection against Newcastle disease virus strain NDIBS002 in two out of seven SPF chickens. Although the chickens produced antibody titers 3 weeks after in ovo vaccination, it was not sufficient to provide complete protection to the chickens from lethal viral challenge. In addition, vaccination with pDNA/D-SPM complex did not induce high antibody titer when compared with naked pDNA. Therefore, it was concluded that DNA vaccination with plasmid internal ribosome entry site-HN/F can be suitable for in ovo application against ND, whereas D-SPM is not recommended for in ovo gene delivery.

  15. Protection of pigs against Taenia solium cysticercosis using recombinant antigen or in combination with DNA vaccine.

    PubMed

    Guo, Ying-Jun; Sun, Shu-Han; Zhang, Yi; Chen, Zhu-Huan; Wang, Kai-Yu; Huang, Li; Zhang, Shu; Zhang, Hong-Ying; Wang, Qing-Min; Wu, Dan; Zhu, Wei-Jia

    2004-09-28

    In the present study, we investigated the duration of protection afforded to pigs immunized in two different prime-boost regimens: one is homologus priming and boosting with a protein vaccine, and the other is priming with a DNA vaccine and boosting with the protein vaccine. Groups of pigs that received the same vaccination regimen were then challenged with Taenia solium eggs at 6, 12 or 20 weeks post-immunization (wpi), respectively. The results showed that all vaccinated pigs challenged at 6 or 12 wpi showed significant (P < 0.05) reduction in the development of cysts. When challenged at 20 wpi, pigs primed with the DNA vaccine (pcDNA3-cC1) followed by two boosters of the protein vaccine (GST-cC1) showed significant (P < 0.05) protection against the challenge of T. solium eggs, whereas pigs receiving three injections of the protein vaccine showed no significant protection compared to non-vaccinated controls (P > 0.05). Antibody isotype assays showed that DNA prime-protein boost regimen induced a predominantly IgG2 response, compared to an IgG1 biased response for the protein prime-protein boost regimen. In addition, peripheral blood mononuclear cells (PBMC) obtained from the DNA prime-protein boost group proliferated strongly in response to GST-cC1 protein, and this responsiveness persisted until 20 wpi. Taken together, our data suggest that the use of a prime-boost strategy combining DNA and protein vaccines may be better than protein alone for the longevity of protection against the challenge of T. solium eggs.

  16. Distribution and expression in vitro and in vivo of DNA vaccine against lymphocystis disease virus in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Zheng, Fengrong; Sun, Xiuqin; Liu, Hongzhan; Wu, Xingan; Zhong, Nan; Wang, Bo; Zhou, Guodong

    2010-01-01

    Lymphocystis disease, caused by the lymphocystis disease virus (LCDV), is a significant worldwide problem in fish industry causing substantial economic losses. In this study, we aimed to develop the DNA vaccine against LCDV, using DNA vaccination technology. We evaluated plasmid pEGFP-N2-LCDV1.3 kb as a DNA vaccine candidate. The plasmid DNA was transiently expressed after liposome transfection into the eukaryotic COS 7 cell line. The distribution and expression of the DNA vaccine (pEGFP-N2-LCDV1.3kb) were also analyzed in tissues of the vaccinated Japanese flounder by PCR, RT-PCR and fluorescent microscopy. Results from PCR analysis indicated that the vaccine-containing plasmids were distributed in injected muscle, the muscle opposite the injection site, the hind intestine, gill, spleen, head, kidney and liver, 6 and 25 days after vaccination. The vaccine plasmids disappeared 100 d post-vaccination. Fluorescent microscopy revealed green fluorescence in the injected muscle, the muscle opposite the injection site, the hind intestine, gill, spleen, head, kidney and liver of fish 48 h post-vaccination, green fluorescence did not appear in the control treated tissue. Green fluorescence became weak at 60 days post-vaccination. RT-PCR analysis indicated that the mcp gene was expressed in all tested tissues of vaccinated fish 6-50 days post-vaccination. These results demonstrate that the antigen encoded by the DNA vaccine is distributed and expressed in all of the tissues analyzed in the vaccinated fish. The antigen would therefore potentially initiate a specific immune response. the plasmid DNA was injected into Japanese flounder ( Paralichthys olivaceus) intramuscularly and antibodies against LCDV were evaluated. The results indicate that the plasmid encoded DNA vaccine could induce an immune response to LCDV and would therefore offer immune protection against LCD. Further studies are required for the development and application of this promising DNA vaccine.

  17. The antiviral defense mechanisms in mandarin fish induced by DNA vaccination against a rhabdovirus.

    PubMed

    Chen, Zhong-Yuan; Lei, Xiao-Ying; Zhang, Qi-Ya

    2012-06-15

    Plasmid DNAs containing Siniperca chuatsi rhabdovirus (SCRV) glycoprotein gene (pcDNA-G) and nucleoprotein gene (pcDNA-N) were constructed, and used to determine the antiviral immune response elicited by DNA vaccination in mandarin fish. In vitro and in vivo expression of the plasmid constructs was confirmed in transfected cells and muscle tissues of vaccinated fish by Western blot, indirect immunofluorescence or RT-PCR analysis. Fish injected with pcDNA-G exhibited protective effect against SCRV challenge with a relative percent survival (RPS) of 77.5%, but no significant protection (RPS of 2.5%) was observed in fish vaccinated with pcDNA-N. Immunohistochemical analysis showed that vaccination with pcDNA-G decreased histological lesions and suppressed the virus replication in fish target organs, e.g. kidney, liver, spleen, gill and heart. Transcriptional analysis further revealed that the expression levels of type I IFN system genes including interferon regulation factor-7 (IRF-7) gene, myxovirus resistance (Mx) gene and virus inhibitory protein (Viperin) gene were strongly up-regulated after injection with pcDNA-G, whereas the level of transcription of immunoglobulin M (IgM) gene did not show a statistically significant change. These results reveal that type I IFN antiviral immune response is rapidly triggered by the plasmid DNA containing rhabdovirus glycoprotein gene in fish, which offers an explanation of molecular mechanisms for DNA vaccination inducing mandarin fish resist to SCRV disease.

  18. Production and purification of plasmid DNA vaccines: is there scope for further innovation?

    PubMed

    Xenopoulos, Alex; Pattnaik, Priyabrata

    2014-12-01

    The demand for plasmid DNA (pDNA) has vastly increased over the past decade in response to significant advances that have been made in its application for gene therapy and vaccine development. Plasmid DNA-based vaccines are experiencing a resurgence due to success with prime-boost immunization strategies. The challenge has always been poor productivity and delivery of pDNA. Plasmid DNA-based vaccines have traditionally required milligram scale of GMP-grade product for vaccination due to the relatively low efficacy and duration of gene expression. However, efforts to increase pDNA vaccine effectiveness are evolving in genetic manipulations of bacterial host, improvements in product recovery and innovative delivery methods. This review summarizes recent advances in large-scale pDNA vaccine manufacturing, ranging from upstream processing, downstream processing and formulation, as such information is usually not available to the scientific community. The article will highlight technology gaps and offer insight on further scope of innovation.

  19. CD4+ T cell–independent DNA vaccination against opportunistic infections

    PubMed Central

    Zheng, Mingquan; Ramsay, Alistair J.; Robichaux, Myles B.; Norris, Karen A.; Kliment, Corrine; Crowe, Christopher; Rapaka, Rekha R.; Steele, Chad; McAllister, Florencia; Shellito, Judd E.; Marrero, Luis; Schwarzenberger, Paul; Zhong, Qiu; Kolls, Jay K.

    2005-01-01

    Depletion or dysfunction of CD4+ T lymphocytes profoundly perturbs host defenses and impairs immunogenicity of vaccines. Here, we show that plasmid DNA vaccination with a cassette encoding antigen (OVA) and a second cassette encoding full-length CD40 ligand (CD40L), a molecule expressed on activated CD4+ T lymphocytes and critical for T cell helper function, can elicit significant titers of antigen-specific immunoglobulins in serum and Tc1 CD8+ T cell responses in CD4-deficient mice. To investigate whether this approach leads to CD4+ T cell–independent vaccine protection against a prototypic AIDS-defining infection, Pneumocystis (PC) pneumonia, we used serum from mice vaccinated with PC-pulsed, CD40L-modifed DCs to immunoprecipitate PC antigens. Kexin, a PC antigen identified by this approach, was used in a similar DNA vaccine strategy with or without CD40L. CD4-deficient mice receiving DNA vaccines encoding Kexin and CD40L showed significantly higher anti-PC IgG titers as well as opsonic killing of PC compared with those vaccinated with Kexin alone. Moreover, CD4-depleted, Kexin-vaccinated mice showed a 3-log greater protection in a PC challenge model. Adoptive transfer of CD19+ cells or IgG to SCID mice conferred protection against PC challenge, indicating a role of humoral immunity in the protection. The results of these studies show promise for CD4-independent vaccination against HIV-related or other opportunistic pathogens. PMID:16308571

  20. Induction of strain-transcending immunity against Plasmodium chabaudi adami malaria with a multiepitope DNA vaccine.

    PubMed

    Scorza, T; Grubb, K; Smooker, P; Rainczuk, A; Proll, D; Spithill, T W

    2005-05-01

    A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami.

  1. Dual Proinflammatory and Antiviral Properties of Pulmonary Eosinophils in Respiratory Syncytial Virus Vaccine-Enhanced Disease

    PubMed Central

    Su, Yung-Chang; Townsend, Dijana; Herrero, Lara J.; Zaid, Ali; Rolph, Michael S.; Gahan, Michelle E.; Nelson, Michelle A.; Rudd, Penny A.; Matthaei, Klaus I.; Foster, Paul S.; Dent, Lindsay; Tripp, Ralph A.; Lee, James; Simson, Ljubov

    2014-01-01

    ABSTRACT Human respiratory syncytial virus (RSV) is a major cause of morbidity and severe lower respiratory tract disease in the elderly and very young, with some infants developing bronchiolitis, recurrent wheezing, and asthma following infection. Previous studies in humans and animal models have shown that vaccination with formalin-inactivated RSV (FI-RSV) leads to prominent airway eosinophilic inflammation following RSV challenge; however, the roles of pulmonary eosinophilia in the antiviral response and in disease pathogenesis are inadequately understood. In vivo studies in mice with eotaxin and/or interleukin 5 (IL-5) deficiency showed that FI-RSV vaccination did not lead to enhanced pulmonary disease, where following challenge there were reduced pulmonary eosinophilia, inflammation, Th2-type cytokine responses, and altered chemokine (TARC and CCL17) responses. In contrast to wild-type mice, RSV was recovered at high titers from the lungs of eotaxin- and/or IL-5-deficient mice. Adoptive transfer of eosinophils to FI-RSV-immunized eotaxin- and IL-5-deficient (double-deficient) mice challenged with RSV was associated with potent viral clearance that was mediated at least partly through nitric oxide. These studies show that pulmonary eosinophilia has dual outcomes: one linked to RSV-induced airway inflammation and pulmonary pathology and one with innate features that contribute to a reduction in the viral load. IMPORTANCE This study is critical to understanding the mechanisms attributable to RSV vaccine-enhanced disease. This study addresses the hypothesis that IL-5 and eotaxin are critical in pulmonary eosinophil response related to FI-RSV vaccine-enhanced disease. The findings suggest that in addition to mediating tissue pathology, eosinophils within a Th2 environment also have antiviral activity. PMID:25410867

  2. Protection against Vibrio alginolyticus in crimson snapper Lutjanus erythropterus immunized with a DNA vaccine containing the ompW gene.

    PubMed

    Cai, Shuang-Hu; Lu, Yi-Shan; Jian, Ji-Chang; Wang, Bei; Huang, Yu-Cong; Tang, Ju-Fen; Ding, Yu; Wu, Zao-He

    2013-09-24

    The outer membrane proteins of Vibrio alginolyticus play an important role in the virulence of the bacterium and are potential candidates for vaccine development. In the present study, the ompW gene was cloned, expressed and purified. A DNA vaccine was constructed by inserting the ompW gene into a pcDNA plasmid. Crimson snapper Lutjanus erythropterus (Bloch) were injected intramuscularly with the recombinant plasmid pcDNA-ompW. The expression of the DNA vaccine was detected in gill, head kidney, heart, liver, spleen and injection site muscle of crimson snapper by RT-PCR 7 and 28 d post-vaccination. The ELISA results demonstrated that the DNA vaccine produced an observable antibody response in all sera of the vaccinated fish. In addition, crimson snapper immunized with the DNA vaccine showed a relative percentage survival (RPS) of 92.53%, indicating effective protection against V. alginolyticus infection.

  3. Advances and challenges in the development of therapeutic DNA vaccines against hepatitis B virus infection.

    PubMed

    Cova, Lucyna

    2014-01-01

    Despite the existence of an effective prophylactic vaccine, chronic hepatitis B virus (HBV) infection remains a major public health problem. Because very weak and functionally impaired virus-specific immune responses play a key role in the persistence of HBV infection, the stimulation of these responses appears to be of particular importance for virus clearance. In this regard DNA-based vaccination has emerged as novel, promising therapeutic approach for chronic hepatitis B. This review provides an update of preclinical studies in animal models (mouse, chimpanzee, duck, woodchuck), which evaluated the ability of DNA vaccines targeting hepadnaviral proteins to induce potent and sustained immune responses in naïve animals and to enhance virus clearance and break immune tolerance in chronic virus-carriers. Different strategies have been developed and evaluated in these models to optimize DNA vaccine including genetic adjuvants, combination with antiviral drugs, prime-boost regimens and plasmid delivery. The delivery of DNA by in vivo electroporation appears to be of particular interest for increase of vaccine potency in both small and large animal models. Based on the promising results generated in preclinical studies, first clinical trials of DNA vaccines have been initiated, although effective therapy of chronic hepatitis B awaits further improvements in vaccine efficacy.

  4. Hamsters vaccinated with Ace-mep-7 DNA vaccine produced protective immunity against Ancylostoma ceylanicum infection.

    PubMed

    Wiśniewski, Marcin; Jaros, Sławomir; Bąska, Piotr; Cappello, Michael; Długosz, Ewa; Wędrychowicz, Halina

    2016-04-01

    Hookworms are intestinal nematodes that infect up to 740 million people, mostly in tropical and subtropical regions. Adult worms suck blood from damaged vessels in the gut mucosa, digesting hemoglobin using aspartic-, cysteine- and metalloproteases. Targeting aspartic hemoglobinases using drugs or vaccines is therefore a promising approach to ancylostomiasis control. Based on homology to metalloproteases from other hookworm species, we cloned the Ancylostoma ceylanicum metalloprotease 7 cDNA (Ace-mep-7). The corresponding Ace-MEP-7 protein has a predicted molecular mass of 98.8 kDa. The homology to metallopeptidases from other hookworm species and its predicted transmembrane region support the hypothesis that Ace-MEP-7 may be involved in hemoglobin digestion in the hookworm gastrointestinal tract, especially that our analyses show expression of Ace-mep-7 in the adult stage of the parasite. Immunization of Syrian golden hamsters with Ace-mep-7 cDNA resulted in 50% (p < 0.01) intestinal worm burden reduction. Additionally 78% (p < 0.05) egg count reduction in both sexes was observed. These results suggest that immunization with Ace-mep-7 may contribute to reduction in egg count released into the environment during the A. ceylanicum infection. PMID:26795262

  5. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-07-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI

  6. Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis.

    PubMed

    Kawamoto, Takuo; Araki, Kasumi; Sonoda, Eiichiro; Yamashita, Yukiko M; Harada, Kouji; Kikuchi, Koji; Masutani, Chikahide; Hanaoka, Fumio; Nozaki, Kazuhiko; Hashimoto, Nobuo; Takeda, Shunichi

    2005-12-01

    Chicken B lymphocyte precursors and DT40 cells diversify their immunoglobulin-variable (IgV) genes through homologous recombination (HR)-mediated Ig gene conversion. To identify DNA polymerases that are involved in Ig gene conversion, we created DT40 clones deficient in DNA polymerase eta (poleta), which, in humans, is defective in the variant form of xeroderma pigmentosum (XP-V). Poleta is an error-prone translesion DNA synthesis polymerase that can bypass UV damage-induced lesions and is involved in IgV hypermutation. Like XP-V cells, poleta-disrupted (poleta) clones exhibited hypersensitivity to UV. Remarkably, poleta cells showed a significant decrease in the frequency of both Ig gene conversion and double-strand break-induced HR when compared to wild-type cells, and these defects were reversed by complementation with human poleta. Our findings identify a DNA polymerase that carries out DNA synthesis for physiological HR and provides evidence that a single DNA polymerase can play multiple cellular roles. PMID:16337602

  7. The comparative efficacy of CTLA-4 and L-selectin targeted DNA vaccines in mice and sheep.

    PubMed

    Drew, D R; Boyle, J S; Lew, A M; Lightowlers, M W; Chaplin, P J; Strugnell, R A

    2001-08-14

    The access of antigens to antigen presenting cells (APCs) appears to be a rate-limiting step in the generation of immune responses to DNA vaccines. The cytotoxic T lymphocyte antigen 4 (CTLA-4) and L-selectin represent attractive ligands for use in the targeting of antigen to APCs and lymph nodes. CTLA-4 binds with high affinity to the B7 membrane antigen on APCs, while L-selectin functions as a lymphocyte homing marker and binds to CD34 on the surface of high endothelial venule cells. DNA vaccines encoding human immunoglobulin (HIg), fused to either CTLA-4 or L-selectin, have been shown to generate up to 10,000-fold higher anti-HIg antibody responses than DNA vaccines encoding HIg alone. In this study, the ability of CTLA-4 or L-selectin mediated targeting to enhance the humoral immune response to an alternate vaccine antigen was investigated. DNA vaccines encoding CTLA-4-HIg and L-selectin-HIg fused to the host-protective 45W antigen from Taenia ovis were constructed. In BALB/c mice, the L-selectin targeted vaccine did not improve either the magnitude or speed of antibody responses of vaccinated mice. In contrast, the CTLA-4 targeted DNA vaccine generated 45W-specific antibody responses which were up to 30-fold higher than those achieved with non-targeted DNA vaccination. The kinetic of the antibody response generated following CTLA-4 targeted DNA vaccination was also significantly faster than that achieved with non-targeted DNA vaccination, or with adjuvanted protein vaccination. Vaccination of outbred sheep with DNA vaccines expressing either murine or ovine CTLA-4 targeted antigen failed to enhance immune responses. These findings indicate that CTLA-4 targeting may find application in the improvement of DNA vaccines, but requires further development for applications in large animal species.

  8. Immune-Enhancing Effects of Taishan Pinus massoniana Pollen Polysaccharides on DNA Vaccine Expressing Bordetella avium ompA

    PubMed Central

    Zhu, Fujie; Liu, Xiao; Sun, Zhenhong; Yu, Cuilian; Liu, Liping; Yang, Shifa; Li, Bing; Wei, Kai; Zhu, Ruiliang

    2016-01-01

    Bordetella avium is the causative agent of bordetellosis, which remains to be the cause of severe losses in the turkey industry. Given the lack of vaccines that can provide good protection, developing a novel vaccine against B. avium infection is crucial. In this study, we constructed a eukaryotic expression plasmid, which expressed the outer membrane protein A (ompA) of B. avium, to prepare a B. avium recombinant ompA-DNA vaccine. Three concentrations (low, middle, and high) of Taishan Pinus massoniana pollen polysaccharides (TPPPS), a known immunomodulator, were used as adjuvants, and their immune conditioning effects on the developed DNA vaccine were examined. The pure ompA-DNA vaccine, Freund’s incomplete adjuvant ompA-DNA vaccine, and the empty plasmid served as the controls. The chickens in each group were separately inoculated with these vaccines three times at 1, 7, and 14 days old. Dynamic changes in antibody production, cytokine secretion, and lymphocyte count were then determined from 7 to 49 days after the first inoculation. Protective rates of the vaccines were also determined after the third inoculation. Results showed that the pure DNA vaccine obviously induced the production of antibodies, the secretion of cytokines, and the increase in CD4+ and CD8+ T lymphocyte counts in peripheral blood, as well as provided a protective rate of 50% to the B. avium-challenged chickens. The chickens inoculated with the TPPPS adjuvant ompA-DNA vaccine and Freund’s adjuvant ompA-DNA vaccine demonstrated higher levels of immune responses than those inoculated with pure ompA-DNA vaccine, whereas only the ompA-DNA vaccine with 200 mg/mL TPPPS completely protected the chickens against B. avium infection. These findings indicate that the B. avium ompA-DNA vaccine combined with TPPPS is a potentially effective B. avium vaccine. PMID:26870023

  9. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine.

    PubMed

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2012-12-01

    Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure. PMID:23171359

  10. DNA Vaccination: Using the Patient's Immune System to Overcome Cancer

    PubMed Central

    Eschenburg, Georg; Stermann, Alexander; Preissner, Robert; Meyer, Hellmuth-Alexander; Lode, Holger N.

    2010-01-01

    Cancer is one of the most challenging diseases of today. Optimization of standard treatment protocols consisting of the main columns of chemo- and radiotherapy followed or preceded by surgical intervention is often limited by toxic side effects and induction of concomitant malignancies and/or development of resistant mechanisms. This requires the development of therapeutic strategies which are as effective as standard therapies but permit the patients a life without severe negative side effects. Along this line, the development of immunotherapy in general and the innovative concept of DNA vaccination in particular may provide a venue to achieve this goal. Using the patient's own immune system by activation of humoral and cellular immune responses to target the cancer cells has shown first promising results in clinical trials and may allow reduced toxicity standard therapy regimen in the future. The main challenge of this concept is to transfer the plethora of convincing preclinical and early clinical results to an effective treatment of patients. PMID:21197271

  11. Ty virus-like particles, DNA vaccines and Modified Vaccinia Virus Ankara; comparisons and combinations.

    PubMed

    Gilbert, S C; Schneider, J; Plebanski, M; Hannan, C M; Blanchard, T J; Smith, G L; Hill, A V

    1999-03-01

    Three types of vaccine, all expressing the same antigen from Plasmodium berghei, or a CD8+ T cell epitope from that antigen, were compared for their ability to induce CD8+ T cell responses in mice. Higher levels of lysis and numbers of IFN-gamma secreting T cells were primed with Ty virus-like particles and Modified Vaccinia Virus Ankara (MVA) than with DNA vaccines, but none of the vaccines were able to protect immunised mice from infectious challenge even after repeated doses. However, when the immune response was primed with one type of vaccine (Ty-VLPs or DNA) and boosted with another (MVA) complete protection against infection was achieved. Protection correlated with very high levels of IFN-gamma secreting T cells and lysis. This method of vaccination uses delivery systems and routes that can be used in humans and could provide a generally applicable regime for the induction of high levels of CD8+ T cells.

  12. DNA Vaccine that Targets Hemagglutinin to MHC Class II Molecules Rapidly Induces Antibody-Mediated Protection against Influenza

    PubMed Central

    Mjaaland, Siri; Roux, Kenneth H.; Fredriksen, Agnete Brunsvik

    2013-01-01

    New influenza A viruses with pandemic potential periodically emerge due to viral genomic reassortment. In the face of pandemic threats, production of conventional egg-based vaccines is time consuming and of limited capacity. We have developed in this study a novel DNA vaccine in which viral hemagglutinin (HA) is bivalently targeted to MHC class II (MHC II) molecules on APCs. Following DNA vaccination, transfected cells secreted vaccine proteins that bound MHC II on APCs and initiated adaptive immune responses. A single DNA immunization induced within 8 d protective levels of strain-specific Abs and also cross-reactive T cells. During the Mexican flu pandemic, a targeted DNA vaccine (HA from A/California/07/2009) was generated within 3 wk after the HA sequences were published online. These results suggest that MHC II–targeted DNA vaccines could play a role in situations of pandemic threats. The vaccine principle should be extendable to other infectious diseases. PMID:23956431

  13. DNA vaccine encoding Haemonchus contortus actin induces partial protection in goats.

    PubMed

    Yan, Ruofeng; Wang, Jingjing; Xu, Lixin; Song, Xiaokai; Li, Xiangrui

    2014-10-01

    Actin is a globular multi-functional protein that forms microfilaments, and participates in many important cellular processes. Previous study found that Haemonchus contortus actin could be recognized by the serum of goats infected with the homology parasite. This indicated that H. contortus actin could be a potential candidate for vaccine. In this study, DNA vaccine encoding H. contortus actin was tested for protection against experimental H. contortus infections in goats. Fifteen goats were allocated into three trial groups. The animals of Actin group were vaccinated with the DNA vaccine on day 0 and 14, and challenged with 5000 infective H. contortus third stage larval (L3) on day 28. An unvaccinated positive control group was challenged with L3 at the same time. An unvaccinated negative control group was not challenged with L3. The results showed that DNA vaccine were transcribed at local injection sites and expressed in vivo post immunizations respectively. For goats in Actin vaccinated group, higher levels of serum IgG, serum IgA and mucosal IgA were produced, the percentages of CD4(+) T lymphocytes, CD8(+) T lymphocytes and B lymphocytes and the concentrations of TGF-β were increased significantly (P<0.05). Following L3 challenge, the mean eggs per gram feces (EPG) and worm burdens of Actin group were reduced by 34.4% and 33.1%, respectively. This study suggest that recombinant H. contortus Actin DNA vaccine induced partial immune response and has protective potential against goat haemonchosis.

  14. Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy.

    PubMed

    Minigo, Gabriela; Scholzen, Anja; Tang, Choon K; Hanley, Jennifer C; Kalkanidis, Martha; Pietersz, Geoffrey A; Apostolopoulos, Vasso; Plebanski, Magdalena

    2007-01-26

    DNA formulations provide the basis for safe and cost efficient vaccines. However, naked plasmid DNA is only poorly immunogenic and new effective delivery strategies are needed to enhance the potency of DNA vaccines. In this study, we present a novel approach for the delivery of DNA vaccines using inert poly-L-lysine (PLL) coated polystyrene particles, which greatly enhance DNA immunogenicity. Intradermal injection of plasmid DNA encoding for chicken egg ovalbumin (OVA) complexed with PLL-coated polystyrene nanoparticles induced high levels of CD8 T cells as well as OVA-specific antibodies in C57BL/6 mice and furthermore inhibited tumour growth after challenge with the OVA expressing EG7 tumour cell line. Importantly, vaccine efficacy depended critically on the size of the particles used as well as on the presence of the PLL linker. Our data show that PLL-coated polystyrene nanoparticles of 0.05 microm but not 0.02 microm or 1.0 microm in diameter are highly effective for the delivery of DNA vaccines. PMID:17052812

  15. Photoinduced intercalation and coordination of a dirhodium complex to DNA: dual DNA binding.

    PubMed

    Palmer, Alycia M; Burya, Scott J; Gallucci, Judith C; Turro, Claudia

    2014-06-01

    Two new complexes, cis-H,H-[Rh2 (OCCH3 NH)2 (LL)(CH3 CN)2 ](2+) , where LL=bpy (2, bpy=2,2'-bipyridine) and dppz (3, dppz=dipyrido[3,2-a:2',3'-c]phenazine), were prepared from the reaction of cis-H,H-[Rh2 (OCCH3 NH)2 (CH3 CN)6 ](2+) (1) with the corresponding bidentate ligand. The bpy and dppz ligands chelate to the same rhodium atom and are positioned trans to the amidato N atoms, as determined by the single crystal X-ray structure of 2. Irradiation of 2 and 3 with visible light in water results in the exchange of one CH3 CNeq ligand for an H2 O molecule with quantum yields, Φ400 , of 0.040 and 0.044, respectively (λirr =400 nm). The identities of the photoproducts of 2 and 3 were determined to be cis-H,H-[Rh2 (OCCH3 NH)2 (L)(H2 O)(CH3 CN)](2+) , where L is bpy (4) and dppz (5), respectively. Mobility shift assays show that 4 crosslinks double-stranded DNA, and ESI-MS experiments indicate that both 4 and 5 form covalent adducts with single-stranded DNA. In addition, relative viscosity and 2D NMR experiments show that the dppz ligand of 5 also intercalates into DNA upon irradiation, making 3 a dual-binding agent that both intercalates and covalently binds to DNA upon the absorption of visible light.

  16. Immunogenicity of DNA Vaccines Encoding Simian Immunodeficiency Virus Antigen Targeted to Dendritic Cells in Rhesus Macaques

    PubMed Central

    Nchinda, Godwin; Trumpfheller, Christine; Salazar, Andres M.; Töpfer, Katharina; Sauermann, Ulrike; Wagner, Ralf; Hannaman, Drew; Tenner-Racz, Klara; Racz, Paul; Stahl-Hennig, Christiane; Überla, Klaus

    2012-01-01

    Background Targeting antigens encoded by DNA vaccines to dendritic cells (DCs) in the presence of adjuvants enhances their immunogenicity and efficacy in mice. Methodology/Principal Findings To explore the immunogenicity of this approach in non-human primates, we generated a single chain antibody to the antigen uptake receptor DEC-205 expressed on rhesus macaque DCs. DNA vaccines encoding this single chain antibody fused to the SIV capsid protein were delivered to six monkeys each by either intramuscular electroporation or conventional intramuscular injection co-injected or not with poly ICLC, a stabilized poly I: C analogue, as adjuvant. Antibodies to capsid were induced by the DC-targeting and non-targeting control DNA delivered by electroporation while conventional DNA immunization at a 10-fold higher dose of DNA failed to induce detectable humoral immune responses. Substantial cellular immune responses were also observed after DNA electroporation of both DNAs, but stronger responses were induced by the non-targeting vaccine. Conventional immunization with the DC-targeting DNA at a 10-fold higher dose did not give rise to substantial cellular immune responses, neither when co-injected with poly ICLC. Conclusions/Significance The study confirms the potent immunogenicity of DNA vaccines delivered by electroporation. Targeting the DNA via a single chain antibody to DEC-205 expressed by DCs, however, does not improve the immunogenicity of the antigens in non-human primates. PMID:22720025

  17. A cytomegalovirus DNA vaccine induces antibodies that block viral entry into fibroblasts and epithelial cells.

    PubMed

    McVoy, Michael A; Lee, Ronzo; Saccoccio, Frances M; Hartikka, Jukka; Smith, Larry R; Mahajan, Rohit; Wang, Jian Ben; Cui, Xiaohong; Adler, Stuart P

    2015-12-16

    A vaccine to prevent congenital cytomegalovirus (CMV) infections is a national priority. Investigational vaccines have targeted the viral glycoprotein B (gB) as an inducer of neutralizing antibodies and phosphoprotein 65 (pp65) as an inducer of cytotoxic T cells. Antibodies to gB neutralize CMV entry into all cell types but their potency is low compared to antibodies that block epithelial cell entry through targeting the pentameric complex (gH/gL/UL128/UL130/UL131). Hence, more potent overall neutralizing responses may result from a vaccine that combines gB with pentameric complex-derived antigens. To assess the ability of pentameric complex subunits to generate epithelial entry neutralizing antibodies, DNA vaccines encoding UL128, UL130, and/or UL131 were formulated with Vaxfectin(®), an adjuvant that enhances antibody responses to DNA vaccines. Mice were immunized with individual DNA vaccines or with pair-wise or trivalent combinations. Only the UL130 vaccine induced epithelial entry neutralizing antibodies and no synergy was observed from bi- or trivalent combinations. In rabbits the UL130 vaccine again induced epithelial entry neutralizing antibodies while UL128 or UL131 vaccines did not. To evaluate compatibility of the UL130 vaccine with DNA vaccines encoding gB or pp65, mono-, bi-, or trivalent combinations were evaluated. Fibroblast and epithelial entry neutralizing titers did not differ between rabbits immunized with gB alone vs. gB/UL130, gB/pp65, or gB/UL130/pp65 combinations, indicating a lack of antagonism from coadministration of DNA vaccines. Importantly, gB-induced epithelial entry neutralizing titers were substantially higher than activities induced by UL130, and both fibroblast and epithelial entry neutralizing titers induced by gB alone as well as gB/pp65 or gB/UL130/pp65 combinations were comparable to those observed in sera from humans with naturally-acquired CMV infections. These findings support further development of Vaxfectin

  18. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides.

    PubMed

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-08-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. PMID:26129929

  19. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides.

    PubMed

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-08-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.

  20. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    SciTech Connect

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  1. Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization

    PubMed Central

    2014-01-01

    Background Pulmonary-delivered gene therapy promises to mitigate vaccine safety issues and reduce the need for needles and skilled personnel to use them. While plasmid DNA (pDNA) offers a rapid route to vaccine production without side effects or reliance on cold chain storage, its delivery to the lung has proved challenging. Conventional methods, including jet and ultrasonic nebulizers, fail to deliver large biomolecules like pDNA intact due to the shear and cavitational stresses present during nebulization. Methods In vitro structural analysis followed by in vivo protein expression studies served in assessing the integrity of the pDNA subjected to surface acoustic wave (SAW) nebulisation. In vivo immunization trials were then carried out in rats using SAW nebulized pDNA (influenza A, human hemagglutinin H1N1) condensate delivered via intratracheal instillation. Finally, in vivo pulmonary vaccinations using pDNA for influenza was nebulized and delivered via a respirator to sheep. Results The SAW nebulizer was effective at generating pDNA aerosols with sizes optimal for deep lung delivery. Successful gene expression was observed in mouse lung epithelial cells, when SAW-nebulized pDNA was delivered to male Swiss mice via intratracheal instillation. Effective systemic and mucosal antibody responses were found in rats via post-nebulized, condensed fluid instillation. Significantly, we demonstrated the suitability of the SAW nebulizer to administer unprotected pDNA encoding an influenza A virus surface glycoprotein to respirated sheep via aerosolized inhalation. Conclusion Given the difficulty of inducing functional antibody responses for DNA vaccination in large animals, we report here the first instance of successful aerosolized inhalation delivery of a pDNA vaccine in a large animal model relevant to human lung development, structure, physiology, and disease, using a novel, low-power (<1 W) surface acoustic wave (SAW) hand-held nebulizer to produce droplets of pDNA

  2. Introduction of translation stop codons into the viral glycoprotein gene in a fish DNA vaccine eliminates induction of protective immunity

    USGS Publications Warehouse

    Garver, K.A.; Conway, C.M.; Kurath, G.

    2006-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine. ?? Springer Science+Business Media, Inc. 2006.

  3. Development of enhanced antibody response toward dual delivery of nano-adjuvant adsorbed human Enterovirus-71 vaccine encapsulated carrier.

    PubMed

    Saeed, Mohamed I; Omar, Abdul Rahman; Hussein, Mohd Z; Elkhidir, Isam M; Sekawi, Zamberi

    2015-01-01

    This study introduces a new approach for enhancing immunity toward mucosal vaccines. HEV71 killed vaccine that is formulated with nanosize calcium phosphate adjuvant and encapsulated onto chitosan and alginate delivery carriers was examined for eliciting antibody responses in serum and saliva collected at weeks 0, 1, 3, 5, 7 and 9 for viral-specific IgA & IgG levels and viral neutralizing antibody titers. The antibody responses induced in rabbits by the different formulations delivered by a single (buccal) route were compared to those of dual immunization (intradermal / mucosal) and un-immunized control. Chitosan-loaded vaccine adjuvant induced elevated IgA antibody, while Alginate-adjuvant irreversible bonding sequestered the vaccine and markedly reduced immunogenicity. The induced mucosal and parenteral antibody profiles appeared in an inverse manner of enhanced mucosal IgA antibody accompanied by lower systemic IgG following a single oral immunization route. The combined intradermal and oral dual-immunized group developed an elevated salivary IgA, systemic IgG, and virus neutralizing response. A reduced salivary neutralizing antibody titer was observed and attributed to the continual secretion exchanges in saliva. Designing a successful mucosal delivery formulation needs to take into account the vaccine delivery site, dosage, adjuvant and carrier particle size, charge, and the reversibility of component interactions. The dual immunization seems superior and is a important approach for modulating the antibody response and boosting mucosal protection against HEV71 and similar pathogens based on their transmission mode, tissue tropism and shedding sites. Finally, the study has highlighted the significant role of dual immunization for simultaneous inducing and modulating the systemic and mucosal immune responses to EV71. PMID:26186664

  4. Development of enhanced antibody response toward dual delivery of nano-adjuvant adsorbed human Enterovirus-71 vaccine encapsulated carrier

    PubMed Central

    Saeed, Mohamed I; Omar, Abdul Rahman; Hussein, Mohd Z; Elkhidir, Isam M; Sekawi, Zamberi

    2015-01-01

    This study introduces a new approach for enhancing immunity toward mucosal vaccines. HEV71 killed vaccine that is formulated with nanosize calcium phosphate adjuvant and encapsulated onto chitosan and alginate delivery carriers was examined for eliciting antibody responses in serum and saliva collected at weeks 0, 1, 3, 5, 7 and 9 for viral-specific IgA & IgG levels and viral neutralizing antibody titers. The antibody responses induced in rabbits by the different formulations delivered by a single (buccal) route were compared to those of dual immunization (intradermal / mucosal) and un-immunized control. Chitosan-loaded vaccine adjuvant induced elevated IgA antibody, while Alginate-adjuvant irreversible bonding sequestered the vaccine and markedly reduced immunogenicity. The induced mucosal and parenteral antibody profiles appeared in an inverse manner of enhanced mucosal IgA antibody accompanied by lower systemic IgG following a single oral immunization route. The combined intradermal and oral dual-immunized group developed an elevated salivary IgA, systemic IgG, and virus neutralizing response. A reduced salivary neutralizing antibody titer was observed and attributed to the continual secretion exchanges in saliva. Designing a successful mucosal delivery formulation needs to take into account the vaccine delivery site, dosage, adjuvant and carrier particle size, charge, and the reversibility of component interactions. The dual immunization seems superior and is a important approach for modulating the antibody response and boosting mucosal protection against HEV71 and similar pathogens based on their transmission mode, tissue tropism and shedding sites. Finally, the study has highlighted the significant role of dual immunization for simultaneous inducing and modulating the systemic and mucosal immune responses to EV71. PMID:26186664

  5. A novel peptide-nucleotide dual vaccine of human telomerase reverse transcriptase induces a potent cytotoxic T-cell response in vivo

    SciTech Connect

    Guo, Hong; Hao, Jia; Wu, Chao; Shi, Yun; Zhao, Xiao-yan; Fang, Dian-chun . E-mail: fandianchun@hotmail.com

    2007-06-15

    Human telomerase reverse transcriptase (hTERT) is highly expressed in over 85% of human cancers, which makes it a broadly applicable molecular target for cancer therapy. Several groups have demonstrated that hTERT can efficiently evoke specific cytotoxic T lymphocytes (CTL) responses for malignant tumors. In the present study, we developed a novel virus-like particulate peptide-nucleotide dual vaccine (PNDV) of hTERT, which was composed of a low-affinity epitope variant with encoding full-length gene in the same virus-size particulate. We verified the formation of PNDV by DNA retarding assay, DNase I protection assay and transmission electron microscopy, and confirmed its immunogenicity and transfection activities in mammalian cells. Furthermore, in vivo immunization of HLA-A2.1 transgenic mice generated efficient IFN-{gamma} secretion and hTERT-specific CTLs which are known to cause selective cell death of telomerase positive gastrointestinal cancer cells. To our knowledge, this represents the first report on collocating a low-affinity epitope variant with a full-length hTERT gene for anti-cancer vaccine design. This novel strategy for vaccine design not only enables enhanced immunity to a universal tumor antigen, but also has the potential to generate CTLs effective in telomerase-positive tumor cells of diverse tissue origins. Therefore, our findings bear significant implications for immunotherapy of human cancers.

  6. Advances in host and vector development for the production of plasmid DNA vaccines.

    PubMed

    Mairhofer, Juergen; Lara, Alvaro R

    2014-01-01

    Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.

  7. A KALA-modified lipid nanoparticle containing CpG-free plasmid DNA as a potential DNA vaccine carrier for antigen presentation and as an immune-stimulative adjuvant

    PubMed Central

    Miura, Naoya; Shaheen, Sharif M.; Akita, Hidetaka; Nakamura, Takashi; Harashima, Hideyoshi

    2015-01-01

    Technologies that delivery antigen-encoded plasmid DNA (pDNA) to antigen presenting cell and their immune-activation are required for the success of DNA vaccines. Here we report on an artificial nanoparticle that can achieve these; a multifunctional envelope-type nanodevice modified with KALA, a peptide that forms α-helical structure at physiological pH (KALA-MEND). KALA modification and the removal of the CpG-motifs from the pDNA synergistically boosted transfection efficacy. In parallel, transfection with the KALA-MEND enhances the production of multiple cytokines and chemokines and co-stimulatory molecules via the Toll-like receptor 9-independent manner. Endosome-fusogenic lipid envelops and a long length of pDNA are essential for this immune stimulation. Furthermore, cytoplasmic dsDNA sensors that are related to the STING/TBK1 pathway and inflammasome are involved in IFN-β and IL-1β production, respectively. Consequently, the robust induction of antigen-specific cytotoxic T-lymphoma activity and the resulting prophylactic and therapeutic anti-tumor effect was observed in mice that had been immunized with bone marrow-derived dendritic cells ex vivo transfected with antigen-encoding pDNA. Collectively, the KALA-MEND possesses dual functions; gene transfection system and immune-stimulative adjuvant, those are both necessary for the successful DNA vaccine. PMID:25605799

  8. The Murine Intravaginal HSV-2 Challenge Model for Investigation of DNA Vaccines

    PubMed Central

    Marshak, Joshua O.; Dong, Lichun; Koelle, David M.

    2014-01-01

    DNA vaccines have been licensed in veterinary medicine and have promise for humans. This format is relatively immunogenic in mice and guinea pigs, the two principle HSV-2 animal models, permitting rapid assessment of vectors, antigens, adjuvants, and delivery systems. Limitations include the relatively poor immunogenicity of naked DNA in humans and the profound differences in HSV-2 pathogenesis between host species. Herein, we detail lessons learned over the last few years investigating candidate DNA vaccines in the progesterone-primed female mouse vaginal model of HSV-2 infection as a guide to investigators in the field. PMID:24671693

  9. A DNA vaccine against dolphin morbillivirus is immunogenic in bottlenose dolphins.

    PubMed

    Vaughan, Kerrie; Del Crew, Jason; Hermanson, Gary; Wloch, Mary K; Riffenburgh, Robert H; Smith, Cynthia R; Van Bonn, William G

    2007-12-15

    The immunization of exotic species presents considerable challenges. Nevertheless, for facilities like zoos, animal parks, government facilities and non-profit conservation groups, the protection of valuable and endangered species from infectious disease is a growing concern. The rationale for immunization in these species parallels that for human and companion animals; to decrease the incidence of disease. The U.S. Navy Marine Mammal Program, in collaboration with industry and academic partners, has developed and evaluated a DNA vaccine targeting a marine viral pathogen - dolphin morbillivirus (DMV). The DMV vaccine consists of the fusion (F) and hemagglutinin (H) genes of DMV. Vaccine constructs (pVR-DMV-F and pVR-DMV-H) were evaluated for expression in vitro and then for immunogenicity in mice. Injection protocols were designed for application in Atlantic bottlenose dolphins (Tursiops truncatus) to balance vaccine effectiveness with clinical utility. Six dolphins were inoculated, four animals received both pDMV-F and pDMV-H and two animals received a mock vaccine (vector alone). All animals received an inoculation week 0, followed by two booster injections weeks 8 and 14. Vaccine-specific immune responses were documented in all four vaccinated animals. To our knowledge, this is the first report of pathogen-specific immunogenicity to a DNA vaccine in an aquatic mammal species.

  10. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges.

    PubMed

    Grant-Klein, Rebecca J; Altamura, Louis A; Badger, Catherine V; Bounds, Callie E; Van Deusen, Nicole M; Kwilas, Steven A; Vu, Hong A; Warfield, Kelly L; Hooper, Jay W; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2015-01-01

    Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed. PMID:25996997

  11. Testing the Efficacy of a Multi-Component DNA-Prime/DNA-Boost Vaccine against Trypanosoma cruzi Infection in Dogs

    PubMed Central

    Aparicio-Burgos, José E.; Ochoa-García, Laucel; Zepeda-Escobar, José Antonio; Gupta, Shivali; Dhiman, Monisha; Martínez, José Simón; de Oca-Jiménez, Roberto Montes; Arreola, Margarita Val; Barbabosa-Pliego, Alberto; Vázquez-Chagoyán, Juan C.; Garg, Nisha Jain

    2011-01-01

    Background Trypanosoma cruzi, the etiologic agent of Chagas Disease, is a major vector borne health problem in Latin America and an emerging infectious disease in the United States. Methods We tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine (TcVac1) against experimental T. cruzi infection in a canine model. Dogs were immunized with antigen-encoding plasmids and cytokine adjuvants, and two weeks after the last immunization, challenged with T. cruzi trypomastigotes. We measured antibody responses by ELISA and haemagglutination assay, parasitemia and infectivity to triatomines by xenodiagnosis, and performed electrocardiography and histology to assess myocardial damage and tissue pathology. Results Vaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG (IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs, as compared to non-vaccinated controls dogs, responded to T. cruzi with a rapid expansion of antibody response, moderately enhanced CD8+ T cell proliferation and IFN-γ production, and suppression of phagocytes’ activity evidenced by decreased myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized dogs did not control the myocardial parasite burden and electrocardiographic and histopatholgic cardiac alterations that are the hallmarks of acute Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a moderate decline in cardiac alterations determined by EKG and anatomo-/histo-pathological analysis while chronically-infected/non-vaccinated dogs continued to exhibit severe EKG alterations. Conclusions Overall, these results demonstrated that TcVac1 provided a partial resistance to T. cruzi infection and Chagas disease, and provide an impetus to improve the vaccination strategy against Chagas disease. PMID:21625470

  12. CpG DNA as a vaccine adjuvant.

    PubMed

    Bode, Christian; Zhao, Gan; Steinhagen, Folkert; Kinjo, Takeshi; Klinman, Dennis M

    2011-04-01

    Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs trigger cells that express Toll-like receptor 9 (including human plasmacytoid dendritic cells and B cells) to mount an innate immune response characterized by the production of Th1 and proinflammatory cytokines. When used as vaccine adjuvants, CpG ODNs improve the function of professional antigen-presenting cells and boost the generation of humoral and cellular vaccine-specific immune responses. These effects are optimized by maintaining ODNs and vaccine in close proximity. The adjuvant properties of CpG ODNs are observed when administered either systemically or mucosally, and persist in immunocompromised hosts. Preclinical studies indicate that CpG ODNs improve the activity of vaccines targeting infectious diseases and cancer. Clinical trials demonstrate that CpG ODNs have a good safety profile and increase the immunogenicity of coadministered vaccines. PMID:21506647

  13. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer.

    PubMed

    Fioretti, Daniela; Iurescia, Sandra; Rinaldi, Monica

    2014-01-01

    A variety of clinical trials for vaccines against cancer have provided evidence that DNA vaccines are well tolerated and have an excellent safety profile. DNA vaccines require much improvement to make them sufficiently effective against cancer in the clinic. Nowadays, it is clear that an increased antigen expression correlates with improved immunogenicity and it is critical to vaccine performance in large animals and humans. Similarly, additional strategies are required to activate effective immunity against poorly immunogenic tumour antigens. This review discusses very recent scientific references focused on the development of sophisticated DNA vaccines against cancer. We report a selection of novel and relevant patents employed to improve their immunogenicity through several strategies such as the use of tissue-specific transcriptional elements, nuclear localisation signalling, codon-optimisation and by targeting antigenic proteins to secretory pathway. Recent patents validating portions or splice variants of tumour antigens as candidates for cancer DNA vaccines with improved specificity, such as mesothelin and hTERT, are also discussed. Lastly, we review novel patents on the use of genetic immunomodulators, such as "universal" T helper epitopes derived from tetanus toxin, E. coli heat labile enterotoxin and vegetable proteins, as well as cytokines, chemokines or costimulatory molecules such as IL-6, IL-15, IL- 21 to amplify immunity against cancer.

  14. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge

    NASA Astrophysics Data System (ADS)

    Deliyannis, Georgia; Boyle, Jefferey S.; Brady, Jamie L.; Brown, Lorena E.; Lew, Andrew M.

    2000-06-01

    Improving the immunological potency, particularly the Ab response, is a serious hurdle for the protective efficacy and hence broad application of DNA vaccines. We examined the immunogenicity and protective efficacy of a hemagglutinin-based influenza DNA vaccine that was targeted to antigen-presenting cells (APCs) by fusion to CTLA4. The targeted vaccine was shown to induce an accelerated and increased Ab response (as compared with those receiving the nontargeted control) that was predominated by IgG1 and recognized conformationally dependent viral epitopes. Moreover, mice receiving the APC-targeted DNA vaccine had significantly reduced viral titers (100-fold) after a nonlethal virus challenge. The increased protective efficacy was most likely because of increased Ab responses, as cytotoxic T lymphocyte responses were not enhanced. Targeting was demonstrated by direct binding studies of CTLA4 fusion proteins to the cognate ligand (B7; expressed on APCs in vivo). In addition, a targeted protein was detected at 4-fold higher levels in draining lymph nodes within 2-24 h of administration. Therefore, this study demonstrates that targeting DNA-encoded antigen to APCs results in enhanced immunity and strongly suggests that this approach may be useful in improving the protective efficacy of DNA vaccines.

  15. Nucleic acid (DNA) immunization as a platform for dengue vaccine development.

    PubMed

    Porter, Kevin R; Raviprakash, Kanakatte

    2015-12-10

    Since the early 1990s, DNA immunization has been used as a platform for developing a tetravalent dengue vaccine in response to the high priority need for protecting military personnel deployed to dengue endemic regions of the world. Several approaches have been explored ranging from naked DNA immunization to the use of live virus vectors to deliver the targeted genes for expression. Pre-clinical animal studies were largely successful in generating anti-dengue cellular and humoral immune responses that were protective either completely or partially against challenge with live dengue virus. However, Phase 1 clinical evaluation of a prototype monovalent dengue 1 DNA vaccine expressing prM and E genes revealed anti-dengue T cell IFNγ responses, but poor neutralizing antibody responses. These less than optimal results are thought to be due to poor uptake and expression of the DNA vaccine plasmids. Because DNA immunization as a vaccine platform has the advantages of ease of manufacture, flexible genetic manipulation and enhanced stability, efforts continue to improve the immunogenicity of these vaccines using a variety of methods. PMID:26458805

  16. Nucleic acid (DNA) immunization as a platform for dengue vaccine development.

    PubMed

    Porter, Kevin R; Raviprakash, Kanakatte

    2015-12-10

    Since the early 1990s, DNA immunization has been used as a platform for developing a tetravalent dengue vaccine in response to the high priority need for protecting military personnel deployed to dengue endemic regions of the world. Several approaches have been explored ranging from naked DNA immunization to the use of live virus vectors to deliver the targeted genes for expression. Pre-clinical animal studies were largely successful in generating anti-dengue cellular and humoral immune responses that were protective either completely or partially against challenge with live dengue virus. However, Phase 1 clinical evaluation of a prototype monovalent dengue 1 DNA vaccine expressing prM and E genes revealed anti-dengue T cell IFNγ responses, but poor neutralizing antibody responses. These less than optimal results are thought to be due to poor uptake and expression of the DNA vaccine plasmids. Because DNA immunization as a vaccine platform has the advantages of ease of manufacture, flexible genetic manipulation and enhanced stability, efforts continue to improve the immunogenicity of these vaccines using a variety of methods.

  17. Development of a highly efficacious vaccinia-based dual vaccine against smallpox and anthrax, two important bioterror entities.

    PubMed

    Merkel, Tod J; Perera, Pin-Yu; Kelly, Vanessa K; Verma, Anita; Llewellyn, Zara N; Waldmann, Thomas A; Mosca, Joseph D; Perera, Liyanage P

    2010-10-19

    Bioterrorism poses a daunting challenge to global security and public health in the 21st century. Variola major virus, the etiological agent of smallpox, and Bacillus anthracis, the bacterial pathogen responsible for anthrax, remain at the apex of potential pathogens that could be used in a bioterror attack to inflict mass casualties. Although licensed vaccines are available for both smallpox and anthrax, because of inadequacies associated with each of these vaccines, serious concerns remain as to the deployability of these vaccines, especially in the aftermath of a bioterror attack involving these pathogens. We have developed a single vaccine (Wyeth/IL-15/PA) using the licensed Wyeth smallpox vaccine strain that is efficacious against both smallpox and anthrax due to the integration of immune-enhancing cytokine IL-15 and the protective antigen (PA) of B. anthracis into the Wyeth vaccinia virus. Integration of IL-15 renders Wyeth vaccinia avirulent in immunodeficient mice and enhances anti-vaccinia immune responses. Wyeth/IL-15/PA conferred sterile protection against a lethal challenge of B. anthracis Ames strain spores in rabbits. A single dose of Wyeth/IL-15/PA protected 33% of the vaccinated A/J mice against a lethal spore challenge 72 h later whereas a single dose of licensed anthrax vaccine protected only 10%. Our dual vaccine Wyeth/IL-15/PA remedies the inadequacies associated with the licensed vaccines, and the inherent ability of Wyeth vaccinia virus to be lyophilized without loss of potency makes it cold-chain independent, thus simplifying the logistics of storage, stockpiling, and field delivery in the event of a bioterror attack involving smallpox or anthrax. PMID:20921397

  18. Characterization of GD2 peptide mimotope DNA vaccines effective against spontaneous neuroblastoma metastases.

    PubMed

    Fest, Stefan; Huebener, Nicole; Weixler, Silke; Bleeke, Matthias; Zeng, Yan; Strandsby, Anne; Volkmer-Engert, Rudolf; Landgraf, Christiane; Gaedicke, Gerhard; Riemer, Angelika B; Michalsky, Elke; Jaeger, Ines S; Preissner, Robert; Förster-Wald, Elisabeth; Jensen-Jarolim, Erika; Lode, Holger N

    2006-11-01

    Disialoganglioside GD2 is an established target for immunotherapy in neuroblastoma. We tested the hypothesis that active immunization against the glycolipid GD2 using DNA vaccines encoding for cyclic GD2-mimicking decapeptides (i.e., GD2 mimotopes) is effective against neuroblastoma. For this purpose, two GD2 peptide mimotopes (MA and MD) were selected based on docking experiments to anti-GD2 antibody ch14.18 (binding free energy: -41.23 kJ/mol for MA and -48.06 kJ/mol for MD) and Biacore analysis (K(d) = 12.3 x 10(-5) mol/L for MA and 5.3 x 10(-5) mol/L for MD), showing a higher affinity of MD over MA. These sequences were selected for DNA vaccine design based on pSecTag2-A (pSA) also including a T-cell helper epitope. GD2 mimicry was shown following transfection of CHO-1 cells with pSA-MA and pSA-MD DNA vaccines, with twice-higher signal intensity for cells expressing MD over MA. Finally, these DNA vaccines were tested for induction of tumor protective immunity in a syngeneic neuroblastoma model following oral DNA vaccine delivery with attenuated Salmonella typhimurium (SL 7207). Only mice receiving the DNA vaccines revealed a reduction of spontaneous liver metastases. The highest anti-GD2 humoral immune response and natural killer cell activation was observed in mice immunized with the pSA-MD, a finding consistent with superior calculated binding free energy, dissociation constant, and GD2 mimicry potential for GD2 mimotope MD over MA. In summary, we show that DNA immunization with pSA-MD may provide a useful strategy for active immunization against neuroblastoma.

  19. Electroporation mediated DNA vaccination directly to a mucosal surface results in improved immune responses.

    PubMed

    Kichaev, Gleb; Mendoza, Janess M; Amante, Dinah; Smith, Trevor R F; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2013-10-01

    In vivo electroporation (EP) has been shown to be a highly efficient non-viral method for enhancing DNA vaccine delivery and immunogenicity, when the site of immunization is the skin or muscle of animals and humans. However, the route of entry for many microbial pathogens is via the mucosal surfaces of the human body. We have previously reported on minimally invasive, surface and contactless EP devices for enhanced DNA delivery to dermal tissue. Robust antibody responses were induced following vaccine delivery in several tested animal models using these devices. Here, we investigated extending the modality of the surface device to efficiently deliver DNA vaccines to mucosal tissue. Initially, we demonstrated reporter gene expression in the epithelial layer of buccal mucosa in a guinea pig model. There was minimal tissue damage in guinea pig mucosal tissue resulting from EP. Delivery of a DNA vaccine encoding influenza virus nucleoprotein (NP) of influenza H1N1 elicited robust and sustained systemic IgG antibody responses following EP-enhanced delivery in the mucosa. Upon further analysis, IgA antibody responses were detected in vaginal washes and sustained cellular immune responses were detected in animals immunized at the oral mucosa with the surface EP device. This data confirms that DNA delivery and EP targeting mucosal tissue directly results in both robust and sustainable humoral as well as cellular immune responses without tissue damage. These responses are seen both in the mucosa and systemically in the blood. Direct DNA vaccine delivery enhanced by EP in mucosa may have important clinical applications for delivery of prophylactic and therapeutic DNA vaccines against diseases such as HIV, HPV and pneumonia that enter at mucosal sites and require both cellular and humoral immune responses for protection. PMID:23954979

  20. A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity.

    PubMed

    Huebener, Nicole; Fest, Stefan; Strandsby, Anne; Michalsky, Elke; Preissner, Robert; Zeng, Yan; Gaedicke, Gerhard; Lode, Holger N

    2008-07-01

    Therapeutic vaccination against tumor antigens without induction of autoimmunity remains a major challenge in cancer immunotherapy. Here, we show for the first time effective therapeutic vaccination followed by suppression of established spontaneous neuroblastoma metastases using a tyrosine hydroxylase (TH) DNA minigene vaccine. We identified three novel mouse TH (mTH3) derived peptides with high predicted binding affinity to MHC class I antigen H2-K(k) according to the prediction program SYFPEITHI and computer modeling of epitopes into the MHC class I antigen binding groove. Subsequently, a DNA minigene vaccine was generated based on the expression vector pCMV-F3Ub encoding mutated ubiquitin (Gly(76) to Ala(76)) and mTH3. Prophylactic and therapeutic efficacies of this vaccine were established following oral delivery with attenuated Salmonella typhimurium SL7207. Only mice immunized with mTH3 were free of spontaneous liver metastases. This effect was clearly dependent on ubiquitin and high affinity of the mTH epitopes to MHC class I antigens. Specifically, we showed a crucial role for minigene expression as a stable ubiquitin-Ala(76) fusion peptide for vaccine efficacy. The immune response following the mTH3 DNA minigene vaccination was mediated by CD8(+) T cells as indicated by infiltration of primary tumors and TH-specific cytolytic activity in vitro. Importantly, no cell infiltration was detectable in TH-expressing adrenal medulla, indicating the absence of autoimmunity. In summary, we show effective therapeutic vaccination against neuroblastoma with a novel rationally designed TH minigene vaccine without induction of autoimmunity providing an important baseline for future clinical application of this strategy.

  1. Efficacy of avian pneumovirus vaccines against an avian pneumovirus/Escherichia coli O2:K1 dual infection in turkeys.

    PubMed

    Van de Zande, S; Nauwynck, H; Pensaert, M

    2002-03-16

    The clinical, pathological and microbiological outcome of a challenge with avian pneumovirus (APV) and Escherichia coli O2:K1 was evaluated in turkeys vaccinated with an attenuated APV vaccine and with or without maternally derived antibodies. Two groups of two-week-old poults, one with and one without maternally derived antibodies against APV, were vaccinated oculonasally with attenuated APV subtype A or B. A third group remained unvaccinated. Eleven weeks later, the turkeys were inoculated intranasally with either virulent APV subtype A, or E. coli O2:K1, or with both agents three days apart. After the dual infection, birds vaccinated with attenuated subtype A or B, and with or without maternally derived antibodies, had lower mean clinical scores than the unvaccinated birds. In the vaccinated birds, virus replication was significantly reduced and no bacteria were isolated, except from the birds vaccinated with attenuated subtype B. In the unvaccinated turkeys, large numbers of E. coli O2:K1 were isolated from the turbinates of the dually infected birds between one-and-a-half and seven days after they were inoculated.

  2. Tumor antigens for cancer immunotherapy: therapeutic potential of xenogeneic DNA vaccines

    PubMed Central

    Srinivasan, Roopa; Wolchok, Jedd D

    2004-01-01

    Preclinical animal studies have convincingly demonstrated that tumor immunity to self antigens can be actively induced and can translate into an effective anti-tumor response. Several of these observations are being tested in clinical trials. Immunization with xenogeneic DNA is an attractive approach to treat cancer since it generates T cell and antibody responses. When working in concert, these mechanisms may improve the efficacy of vaccines. The use of xenogeneic DNA in overcoming immune tolerance has been promising not only in inbred mice with transplanted tumors but also in outbred canines, which present with spontaneous tumors, as in the case of human. Use of this strategy also overcomes limitations seen in other types of cancer vaccines. Immunization against defined tumor antigens using a xenogeneic DNA vaccine is currently being tested in early phase clinical trials for the treatment of melanoma and prostate cancers, with proposed trials for breast cancer and Non-Hodgkin's Lymphoma. PMID:15090064

  3. Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing.

    PubMed

    Platteel, Anouk C M; Marit de Groot, A; Keller, Christin; Andersen, Peter; Ovaa, Huib; Kloetzel, Peter M; Mishto, Michele; Sijts, Alice J A M

    2016-09-30

    Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA vaccine H56, encoding three secreted Mycobacterium tuberculosis antigens, was used to test a complete strategy to enhance vaccine' immunogenicity. Potential CD8(+) T cell epitopes in H56 were predicted using the NetMHC3.4/ANN program. Mice were immunized with H56 cDNA using dermal DNA tattoo immunization and epitope candidates were tested for recognition by responding CD8(+) T cells in ex vivo assays. Seven novel CD8(+) T cell epitopes were identified. H56 immunogenicity could be substantially enhanced by two strategies: (i) fusion of the H56 sequence to cDNA of proteins that modify intracellular antigen processing or provide CD4(+) T cell help, (ii) by substitution of the epitope's hydrophobic C-terminal flanking residues for polar glutamic acid, which facilitated their proteasome-mediated generation. We conclude that this whole strategy of in silico prediction of potential CD8(+) T cell epitopes in novel antigens, followed by fusion to sequences with immunogenicity-enhancing properties or modification of epitope flanking sequences to improve proteasome-mediated processing, may be exploited to design novel vaccines against emerging or 'hard to treat' intracellular pathogens. PMID:27593157

  4. DNA-hsp65 vaccine as therapeutic strategy to treat experimental chromoblastomycosis caused by Fonsecaea pedrosoi.

    PubMed

    Siqueira, Isaque Medeiros; Ribeiro, Alice Melo; Nóbrega, Yanna Karla de Medeiros; Simon, Karina Smidt; Souza, Ana Camila Oliveira; Jerônimo, Márcio Souza; Cavalcante Neto, Florêncio Figueiredo; Silva, Célio Lopes; Felipe, Maria Sueli Soares; Bocca, Anamélia Lorenzetti

    2013-06-01

    Chromoblastomycosis (CBM) is a chronic subcutaneous mycosis, caused by several dimorphic, pigmented dematiaceous fungi. Patients with the disease are still considered a therapeutic challenge, mainly due to its recalcitrant nature. There is no "gold standard" treatment for this neglected mycosis, but rather there are several treatment options. Chemotherapy alternatives include 5-flucytosine, itraconazole, terbinafine, fluconazole, thiabendazole, ketoconazole and amphotericin B, although the healing of severe cases is still uncommon. However, several studies have reported the DNA vaccine to be promising in the treatment for fungal infections; this vaccine allows the host to restore depressed cellular immunity, minimizing the toxic effects from conventional antifungal therapies. This work was therefore carried out aiming to establish a suitable model for experimental CBM, suggesting also new therapies, including DNA-hsp65 vaccine. By analyzing the morphometrical and histopathological aspects and by quantifying the fungal burden, the results showed the establishment of a chronic, although transitory, experimental CBM model with lesions similar to those presented in humans. A treatment regimen using intralesional itraconazole or amphotericin B was effective in treating experimental CBM, as was a therapy using naked DNA-hsp65 vaccine. It has also been shown that chemotherapy associated with DNA-hsp65 vaccine is promising in the treatment for CBM.

  5. Xenogeneic immunization with human tyrosine hydroxylase DNA vaccines suppresses growth of established neuroblastoma.

    PubMed

    Huebener, Nicole; Fest, Stefan; Hilt, Kerstin; Schramm, Alexander; Eggert, Angelika; Durmus, Tahir; Woehler, Anja; Stermann, Alexander; Bleeke, Matthias; Baykan, Bianca; Weixler, Silke; Gaedicke, Gerhard; Lode, Holger N

    2009-08-01

    Neuroblastoma (NB) is a challenging malignancy of the sympathetic nervous tissue characterized by a very poor prognosis. One important marker for NB is the expression of tyrosine hydroxylase (TH), the first-step enzyme of catecholamine biosynthesis. We could show stable and high TH gene expression in 67 NB samples independent of the clinical stage. Based on this observation, we addressed the question of whether xenogeneic TH DNA vaccination is effective in inducing an anti-NB immune response. For this purpose, we generated three DNA vaccines based on pCMV-F3Ub and pBUD-CE4.1 plasmids encoding for human (h)THcDNA (A), hTH minigene (B), and hTHcDNA in combination with the proinflammatory cytokine interleukin 12 (C), and tested prophylactic and therapeutic efficacy to suppress primary tumor growth and spontaneous metastasis. Here we report that xenogeneic TH DNA vaccination was effective in eradicating established primary tumors and inhibiting metastasis. Interestingly, this effect could not be enhanced by adding the Th1 cytokine interleukin 12. However, increased IFN-gamma production and NB cytotoxicity of effector cells harvested from vaccinated mice suggested the participation of tumor-specific CTLs in the immune response. The depletion of CD8(+)T cells completely abrogated the hTH vaccine-mediated anti-NB immune response. Furthermore, rechallenging of surviving mice resulted in reduced primary tumor growth, indicating the induction of a memory immune response. In conclusion, xenogeneic immunization with TH-derived DNA vaccines is effective against NB, and may open a new venue for a novel and effective immunotherapeutic strategy against this challenging childhood tumor.

  6. [Problems and prospects of gene therapeutics and DNA vaccines development and application].

    PubMed

    Kibirev, Ia A; Drobkov, B I; Marakulin, I V

    2010-01-01

    The review is summarized foreign publications devoted to different aspects of DNA vaccines and gene therapeutics' biological safety. In spite of incomprehension in their action, numerous prototype DNA-based biopharmaceuticals are in advanced stages of human clinical trials. This review is focused on some safety concerns of gene formulations vaccines relate to toxic effects, vertical transmission possibility, genome integration complications, immunologic and immunopathologic effects and environmental spread. It is noted that necessity of national regulatory documents development related to gene therapy medicinal products is significant condition of their application to medical practice.

  7. Mushroom lectin enhanced immunogenicity of HBV DNA vaccine in C57BL/6 and HBsAg-transgenic mice.

    PubMed

    Gao, Wenjuan; Sun, Yuhan; Chen, Shiwen; Zhang, Jingyao; Kang, Jingjing; Wang, Yongqiang; Wang, Hexiang; Xia, Guoliang; Liu, Qinghong; Kang, Youmin

    2013-04-26

    DNA vaccination is a promising strategy for activating immune responses against hepatitis B virus (HBV) infection. However, the accumulated data have shown that DNA vaccination alone generates weak immune responses. To enhance the immunogenicity of HBV DNA vaccine, lectin purified from pleurotus ostreatus (POL) was used as adjuvant of HBV DNA vaccine for C57BL/6 and HBV surface antigen transgenic (HBVsAg-Tg) mice. Our data demonstrate that low dose of POL (1 μg/mouse) in conjunction with HBV DNA vaccine stimulated stronger HBV-specific delayed-type hypersensitivity (DTH) responses and higher HBV-specific IgG level than that in high dose of POL groups (5 μg/mouse and 10 μg/mouse). POL activated strong Th2 and Tc1 cell responses in immunized C57BL/6 and HBVsAg-Tg mice. POL as adjuvant of HBV DNA vaccine effectively enhanced HBV surface protein antibody (HBVsAb) and decreased HBVsAg level for HBV Tg mice treatment. Furthermore, POL infiltrated more lymphocytes excluding Th1, Th2 and Tc1 cell subtypes to liver of HBVsAg-Tg mice. Together, these results suggest that POL as adjuvant enhanced immunogenicity of HBV DNA vaccination and effectively stimulated immune reaponse for HBsAg-Tg mice treatment. Our findings implicate the potential of mushroom lectin as adjuvant of HBV DNA vaccine.

  8. A dual input DNA-based molecular switch.

    PubMed

    Nesterova, Irina V; Elsiddieg, Siddieg O; Nesterov, Evgueni E

    2014-11-01

    We have designed and characterized a DNA-based molecular switch which processes two physiologically relevant inputs: pH (i.e. alkalinisation) and enzymatic activity, and generates a chemical output (in situ synthesized oligonucleotide). The design, based on allosteric interactions between i-motif and hairpin stem within the DNA molecule, addresses such critical physiological system parameters as molecular simplicity, tunability, orthogonality of the two input sensing domains, and compatibility with intracellular operation/delivery. PMID:25099914

  9. The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Lee, Sang-Hee; Sohn, Hae-Jin; Lee, Jinyoung; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2012-12-01

    The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.

  10. Dual functions of Lactobacillus acidophilus NCFM™ at the intermediate dose in protection against rotavirus diarrhea in gnotobiotic pigs vaccinated with a human rotavirus vaccine

    PubMed Central

    Liu, Fangning; Wen, Ke; Li, Guohua; Yang, Xingdong; Kocher, Jacob; Bui, Tammy; Jones, Dorothy; Pelzer, Kevin; Clark-Deener, Sherrie; Yuan, Lijuan

    2014-01-01

    Objectives To examine dose effects of Lactobacillus acidophilus NCFM (LA) ™ strain on rotavirus-specific antibody and B cell responses in gnotobiotic pigs vaccinated with an oral attenuated human rotavirus (AttHRV). Methods Pigs were inoculated with AttHRV vaccine in conjunction with high dose LA (14 doses, total 2.2×109 colony forming units [CFU]), intermediate dose LA (9 doses, total 3.2×106 CFU), low dose LA (5 doses, total 2.1×106 CFU) or without LA feeding. Protection against rotavirus shedding and diarrhea was assessed upon challenge with a virulent HRV. Rotavirus-specific IgA and IgG antibodies in serum and rotavirus-specific IgA and IgG antibody-secreting cells (ASC) and memory B cells in ileum, spleen and blood of the pigs were measured and compared among treatment groups. Results The intermediate dose LA (MidLA), but not high or low dose LA, significantly reduced rotavirus diarrhea (MidLA only group) and significantly improved the protection conferred by AttHRV vaccine (MidLA+AttHRV group). Associated with the increased protection, MidLA significantly enhanced rotavirus-specific antibody, ASC and memory B cell responses to AttHRV vaccine. High or low dose LA did not enhance virus-specific antibody and ASC responses, hence did not improve the vaccine efficacy. Conclusions These findings highlight the importance of dose selection and indicate that certain specific lactobacilli strains at the appropriate dose have the dual function of reducing rotavirus diarrhea and enhancing the immunogenicity and protective efficacy of rotavirus vaccines. PMID:24126832

  11. Protective Immunity to H7N9 Influenza viruses elicited by synthetic DNA Vaccine

    PubMed Central

    Yan, Jian; Villarreal, Daniel O.; Racine, Trina; Chu, Jaemi S.; Walters, Jewell N.; Morrow, Matthew P.; Khan, Amir S.; Sardesai, Niranjan Y.; Kim, J. Joseph; Kobinger, Gary P.; Weiner, David B.

    2014-01-01

    Despite an intensive vaccine program influenza infections remain a major health problem, due to the viruses’ ability to change its envelope glycoprotein hemagglutinin (HA), through shift and drift, permitting influenza to escape protection induced by current vaccines or natural immunity. Recently a new variant, H7N9, has emerged in China causing global concern. First, there have been more than 130 laboratory-confirmed human infections resulting in an alarmingly high death rate (32.3%). Second, genetic changes found in H7N9 appear to be associated with enabling avian influenza viruses to spread more effectively in mammals, thus transmitting infections on a larger scale. Currently, no vaccines or drugs are effectively able to target H7N9. Here, we report the rapid development of a synthetic consensus DNA vaccine (pH7HA) to elicit potent protective immunity against the H7N9 viruses. We show that pH7HA induces broad antibody responses that bind to divergent HAs from multiple new members of the H7N9 family. These antibody responses result in high-titer HAI against H7N9. Simultaneously, this vaccine induces potent polyfunctional effector CD4 and CD8 T cell memory responses. Animals vaccinated with pH7HA are completely protected from H7N9 virus infection and any morbidity associated with lethal challenge. This study establishes that this synthetic consensus DNA vaccine represents a new tool for targeting emerging infection, and more importantly, its design, testing and development into seed stock for vaccine production in a few days in the pandemic setting has significant implications for the rapid deployment of vaccines protecting against emerging infectious diseases. PMID:24631084

  12. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine.

    PubMed

    Yan, Jian; Villarreal, Daniel O; Racine, Trina; Chu, Jaemi S; Walters, Jewell N; Morrow, Matthew P; Khan, Amir S; Sardesai, Niranjan Y; Kim, J Joseph; Kobinger, Gary P; Weiner, David B

    2014-05-19

    Despite an intensive vaccine program influenza infections remain a major health problem, due to the viruses' ability to change its envelope glycoprotein hemagglutinin (HA), through shift and drift, permitting influenza to escape protection induced by current vaccines or natural immunity. Recently a new variant, H7N9, has emerged in China causing global concern. First, there have been more than 130 laboratory-confirmed human infections resulting in an alarmingly high death rate (32.3%). Second, genetic changes found in H7N9 appear to be associated with enabling avian influenza viruses to spread more effectively in mammals, thus transmitting infections on a larger scale. Currently, no vaccines or drugs are effectively able to target H7N9. Here, we report the rapid development of a synthetic consensus DNA vaccine (pH7HA) to elicit potent protective immunity against the H7N9 viruses. We show that pH7HA induces broad antibody responses that bind to divergent HAs from multiple new members of the H7N9 family. These antibody responses result in high-titer HAI against H7N9. Simultaneously, this vaccine induces potent polyfunctional effector CD4 and CD8T cell memory responses. Animals vaccinated with pH7HA are completely protected from H7N9 virus infection and any morbidity associated with lethal challenge. This study establishes that this synthetic consensus DNA vaccine represents a new tool for targeting emerging infection, and more importantly, its design, testing and development into seed stock for vaccine production in a few days in the pandemic setting has significant implications for the rapid deployment of vaccines protecting against emerging infectious diseases.

  13. Identification of upregulated genes in a modified live vaccine strain of Edwardsiella ictaluri compared to a virulent parent strain and characterization of novel DNA vaccine candidates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using PCR-select subtractive cDNA hybridization technique, 41 expressed sequence tags (EST's) were isolated from a modified live vaccine strain (AQUAVAC-ESC formerly RD-33) vs a virulent parent strain (EILO) of Edwardsiella ictaluri. Transcriptional levels of the 41 ESTs in the vaccine strain and th...

  14. Nano-Delivery Vehicles/Adjuvants for DNA Vaccination Against HIV.

    PubMed

    Dong, Yaqiong; Yang, Jun; Zhang, Jinchao; Zhang, Xin

    2016-03-01

    More than 75 million people has been infected HIV and it is responsible for nearly 36 million deaths on a global scale. As one of the deadliest infectious diseases, HIV is becoming the urgent issue of the global epidemic to tackle. In order to settle this problem from the source, some effective prevention strategies should be developed to control the pandemic of HIV. Vaccines, especially DNA vaccines, could be the optimal way to control the spread of HIV due to the unparalleled superiority that DNA vaccines could generate long-term humoral and cellular immune responses which could provide protective immunity for HIV. But the naked DNA could hardly enter into cells and is easily degraded by DNases and lysosomes, so designing effective delivery system is a promising strategy. Since delivery system could be constructed to promote efficient delivery of DNA into mammalian cells, protect them from degradation, and also could be established to be a target system to arrive at certain position of expectation. The current review discusses the potential of various nano-delivery vehicles/adjuvants such as polymer, lipid, liposome, peptide and inorganic material in improving efficiency of diverse modalities available for HIV DNA vaccines.

  15. Nano-Delivery Vehicles/Adjuvants for DNA Vaccination Against HIV.

    PubMed

    Dong, Yaqiong; Yang, Jun; Zhang, Jinchao; Zhang, Xin

    2016-03-01

    More than 75 million people has been infected HIV and it is responsible for nearly 36 million deaths on a global scale. As one of the deadliest infectious diseases, HIV is becoming the urgent issue of the global epidemic to tackle. In order to settle this problem from the source, some effective prevention strategies should be developed to control the pandemic of HIV. Vaccines, especially DNA vaccines, could be the optimal way to control the spread of HIV due to the unparalleled superiority that DNA vaccines could generate long-term humoral and cellular immune responses which could provide protective immunity for HIV. But the naked DNA could hardly enter into cells and is easily degraded by DNases and lysosomes, so designing effective delivery system is a promising strategy. Since delivery system could be constructed to promote efficient delivery of DNA into mammalian cells, protect them from degradation, and also could be established to be a target system to arrive at certain position of expectation. The current review discusses the potential of various nano-delivery vehicles/adjuvants such as polymer, lipid, liposome, peptide and inorganic material in improving efficiency of diverse modalities available for HIV DNA vaccines. PMID:27455611

  16. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy.

    PubMed

    Hu, Qinglian; Wu, Min; Fang, Chun; Cheng, Changyong; Zhao, Mengmeng; Fang, Weihuan; Chu, Paul K; Ping, Yuan; Tang, Guping

    2015-04-01

    Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.

  17. Cloning, protein expression and immunogenicity of HBs-murine IL-18 fusion DNA vaccine.

    PubMed

    Channarong, Sunee; Mitrevej, Ampol; Sinchaipanid, Nuttanan; Usuwantim, Kanchana; Kulkeaw, Kasem; Chaicumpa, Wanpen

    2007-12-01

    Hepatitis B is a global serious disease caused by hepatitis B virus (HBV). There is no known cure for hepatitis B. The best way to deal with the disease is by preventing with hepatitis B vaccine. However, the current protein-based vaccines made up of recombinant hepatitis B surface antigen (HBsAg) are ineffective in chronic HBV carriers and a significant number of the vaccinees do not mount the protective immune response. Novel DNA-based immunization may overcome the deficits of the protein-based immunization and may provide more effective prophylactic and therapeutic outcomes. In this study, we constructed a recombinant plasmid carrying gene encoding the HBV surface antigen (HBs) linked to DNA segment encoding full-length murine interleukin-18, i.e. pcDNA-HBs-IL-18. Immunogenicity of the DNA construct was carried out in BALB/c mice in comparison with mock, i.e. pcDNA3.1+ and vaccines comprised of pRc/CMV-HBs and pRc/CMV-HBs plus pcDNA-IL-18. All vaccinated mice revealed significant serum anti-HBs IgG response after two intramuscular injections of the vaccines at 28 day interval as compared to the level of mock. Co-administration of pRc/CMV-HBs and pcDNA-IL-18 elicited arbitrarily higher levels of anti-HBs IgG than the levels in mice immunized with pRc/CMV-HBs alone and mice that received pcDNA-HBs-IL-18 although not statistically different. Further experiments are needed to investigate the subisotypes of the IgG antibody, the kinetics of cytokine and the cell-mediated immune response. For this communication, the prototype HBs-IL-18 DNA vaccine was successfully constructed and the gene encoding murine IL-18 was successfully cloned. The latter can be co-injected with the antigen coding DNA or used as a fusion partner to the DNA for priming the immune response. The recombinant HBs and full-length IL-18 proteins have potential for other research purposes. They may be used also as standard proteins in the protein quantification assay. PMID:18402297

  18. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    SciTech Connect

    Tong Tiezhu; Fan Huiying; Tan Yadi; Xiao Shaobo; Ling Jieyu; Chen Huanchun; Guo Aizhen . E-mail: aizhen@mail.hzau.edu.cn

    2006-09-08

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28{sub 4} were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d{sub 3} DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD{sub 5}) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d{sub 3} DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response.

  19. Vaccinations

    MedlinePlus

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  20. DNA vaccines encoding altered peptide ligands for SSX2 enhance epitope-specific CD8+ T-cell immune responses☆

    PubMed Central

    Smith, Heath A.; Rekoske, Brian T.; McNeel, Douglas G.

    2014-01-01

    Plasmid DNA serves as a simple and easily modifiable form of antigen delivery for vaccines. The USDA approval of DNA vaccines for several non-human diseases underscores the potential of this type of antigen delivery method as a cost-effective approach for the treatment or prevention of human diseases, including cancer. However, while DNA vaccines have demonstrated safety and immunological effect in early phase clinical trials, they have not consistently elicited robust anti-tumor responses. Hence many recent efforts have sought to increase the immunological efficacy of DNA vaccines, and we have specifically evaluated several target antigens encoded by DNA vaccine as treatments for human prostate cancer. In particular, we have focused on SSX2 as one potential target antigen, given its frequent expression in metastatic prostate cancer. We have previously identified two peptides, p41–49 and p103–111, as HLA-A2-restricted SSX2-specific epitopes. In the present study we sought to determine whether the efficacy of a DNA vaccine could be enhanced by an altered peptide ligand (APL) strategy wherein modifications were made to anchor residues of these epitopes to enhance or ablate their binding to HLA-A2. A DNA vaccine encoding APL modified to increase epitope binding elicited robust peptide-specific CD8+ T cells producing Th1 cytokines specific for each epitope. Ablation of one epitope in a DNA vaccine did not enhance immune responses to the other epitope. These results demonstrate that APL encoded by a DNA vaccine can be used to elicit increased numbers of antigen-specific T cells specific for multiple epitopes simultaneously, and suggest this could be a general approach to improve the immunogenicity of DNA vaccines encoding tumor antigens. PMID:24492013

  1. Fish DNA vaccine against infectious hematopoietic necrosis virus: efficacy of various routes of immunization

    USGS Publications Warehouse

    Corbeil, Serge; Kurath, Gael; LaPatra, Scott E.

    2000-01-01

    The DNA vaccine, pIHNVw-G, contains the gene for the glycoprotein (G) of the rhabdovirus infectious hematopoietic necrosis virus (IHNV), a major pathogen of salmon and trout. The relative efficacy of various routes of immunisation with pIHNVw-G was evaluated using 1.8 g rainbow trout fry vaccinated via intramuscular injection, scarification of the skin, intraperitoneal injection, intrabuccal administration, cutaneous particle bombardment using a gene gun, or immersion in water containing DNA vaccine-coated beads. Twenty-seven days after vaccination neutralising antibody titres were determined, and 2 days later groups of vaccinated and control unvaccinated fish were subjected to an IHNV immersion challenge. Results of the virus challenge showed that the intramuscular injection and the gene gun immunisation induced protective immunity in fry, while intraperitoneal injection provided partial protection. Neutralising antibodies were not detected in sera of vaccinated fish regardless of the route of immunisation used, suggesting that cell mediated immunity may be at least partially responsible for the observed protection.

  2. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    PubMed

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF.

  3. Immunogenicity of RSV F DNA Vaccine in BALB/c Mice

    PubMed Central

    2016-01-01

    Respiratory syncytial virus (RSV) causes severe acute lower respiratory tract disease leading to numerous hospitalizations and deaths among the infant and elderly populations worldwide. There is no vaccine or a less effective drug available against RSV infections. Natural RSV infection stimulates the Th1 immune response and activates the production of neutralizing antibodies, while earlier vaccine trials that used UV-inactivated RSV exacerbated the disease due to the activation of the allergic Th2 response. With a focus on Th1 immunity, we developed a DNA vaccine containing the native RSV fusion (RSV F) protein and studied its immune response in BALB/c mice. High levels of RSV specific antibodies were induced during subsequent immunizations. The serum antibodies were able to neutralize RSV in vitro. The RSV inhibition by sera was also shown by immunofluorescence analyses. Antibody response of the RSV F DNA vaccine showed a strong Th1 response. Also, sera from RSV F immunized and RSV infected mice reduced the RSV infection by 50% and 80%, respectively. Our data evidently showed that the RSV F DNA vaccine activated the Th1 biased immune response and led to the production of neutralizing antibodies, which is the desired immune response required for protection from RSV infections. PMID:27688769

  4. Immunogenicity of RSV F DNA Vaccine in BALB/c Mice

    PubMed Central

    2016-01-01

    Respiratory syncytial virus (RSV) causes severe acute lower respiratory tract disease leading to numerous hospitalizations and deaths among the infant and elderly populations worldwide. There is no vaccine or a less effective drug available against RSV infections. Natural RSV infection stimulates the Th1 immune response and activates the production of neutralizing antibodies, while earlier vaccine trials that used UV-inactivated RSV exacerbated the disease due to the activation of the allergic Th2 response. With a focus on Th1 immunity, we developed a DNA vaccine containing the native RSV fusion (RSV F) protein and studied its immune response in BALB/c mice. High levels of RSV specific antibodies were induced during subsequent immunizations. The serum antibodies were able to neutralize RSV in vitro. The RSV inhibition by sera was also shown by immunofluorescence analyses. Antibody response of the RSV F DNA vaccine showed a strong Th1 response. Also, sera from RSV F immunized and RSV infected mice reduced the RSV infection by 50% and 80%, respectively. Our data evidently showed that the RSV F DNA vaccine activated the Th1 biased immune response and led to the production of neutralizing antibodies, which is the desired immune response required for protection from RSV infections.

  5. Ancylostoma ceylanicum metalloprotease 6 DNA vaccination induces partial protection against hookworm challenge infection.

    PubMed

    Wiśniewski, Marcin; Jaros, Sławomir; Bąska, Piotr; Cappello, Michael; Wędrychowicz, Halina

    2013-09-01

    Hookworms are blood feeding intestinal nematodes that infect more than 500 million people and cause iron deficiency anemia. Infected children suffer from physical and cognitive growth retardation. Because of potential anthelminthic drug resistance, the need for vaccine development is urgent. Numerous antigens have been tested in animal models as vaccines against hookworm infection, but there is no effective human vaccine. We cloned a cDNA encoding Ancylostoma ceylanicum metalloprotease 6 (Acemep-6). Ace-MEP-6 is a protein with a predicted molecular mass of 101.87 kDa and based on computational analysis it is very likely to be engaged in food processing via hemoglobin digestion. Groups of hamsters were immunized with an Ace-mep-6 cDNA vaccine, either once or three times. Animals that were administered one dose developed high resistance (80%, p < 0.01) against challenge infection, whereas triple immunization resulted in no worm burden reduction. These results suggest that DNA vaccines can be powerful tools in ancylostomiasis control, although the mechanisms through which protection is conferred remain unclear.

  6. Immunogenicity of RSV F DNA Vaccine in BALB/c Mice.

    PubMed

    Eroglu, Erdal; Singh, Ankur; Bawage, Swapnil; Tiwari, Pooja M; Vig, Komal; Pillai, Shreekumar R; Dennis, Vida A; Singh, Shree R

    2016-01-01

    Respiratory syncytial virus (RSV) causes severe acute lower respiratory tract disease leading to numerous hospitalizations and deaths among the infant and elderly populations worldwide. There is no vaccine or a less effective drug available against RSV infections. Natural RSV infection stimulates the Th1 immune response and activates the production of neutralizing antibodies, while earlier vaccine trials that used UV-inactivated RSV exacerbated the disease due to the activation of the allergic Th2 response. With a focus on Th1 immunity, we developed a DNA vaccine containing the native RSV fusion (RSV F) protein and studied its immune response in BALB/c mice. High levels of RSV specific antibodies were induced during subsequent immunizations. The serum antibodies were able to neutralize RSV in vitro. The RSV inhibition by sera was also shown by immunofluorescence analyses. Antibody response of the RSV F DNA vaccine showed a strong Th1 response. Also, sera from RSV F immunized and RSV infected mice reduced the RSV infection by 50% and 80%, respectively. Our data evidently showed that the RSV F DNA vaccine activated the Th1 biased immune response and led to the production of neutralizing antibodies, which is the desired immune response required for protection from RSV infections. PMID:27688769

  7. Construction and immunogenicity of a codon-optimized Entamoeba histolytica Gal-lectin-based DNA vaccine.

    PubMed

    Gaucher, Denis; Chadee, Kris

    2002-09-10

    Invasive amebiasis caused by Entamoeba histolytica is the third leading parasitic cause of mortality, and there are no vaccines available to help control the disease. The galactose-adherence lectin (Gal-lectin) is the parasite's major molecule allowing it to adhere to colonic mucin for colonization and to target cells for tissue destruction. It is immunodominant and is regarded as the most promising candidate molecule to be included in a subunit vaccine against amebiasis. In this study, we are reporting the construction of a codon-optimized DNA vaccine encoding a portion of the Gal-lectin heavy subunit that includes the carbohydrate recognition domain (CRD), and its in vivo testing in mice. The vaccine stimulated a Th1-type Gal-lectin-specific cellular immune response as well as the development of serum antibodies that recognized a recombinant portion of the heavy subunit, and that inhibited the adherence of trophozoites to target cells in vitro.

  8. Absence of canine oral papillomavirus DNA following prophylactic L1 particle-mediated immunotherapeutic delivery vaccination.

    PubMed

    Moore, R A; Nicholls, P K; Santos, E B; Gough, G W; Stanley, M A

    2002-09-01

    In the canine oral papillomavirus (COPV) model, following wart regression, COPV DNA was detected by PCR at the challenge site. However, following particle-mediated immunotherapeutic delivery (PMID) of COPV L1 and subsequent challenge, no COPV DNA could be detected. These data support PMID of COPV L1 as a protective vaccine and suggest that PMID of L1 may induce virus clearance. PMID:12185285

  9. Transdermal immunization with low-pressure-gene-gun mediated chitosan-based DNA vaccines against Japanese encephalitis virus.

    PubMed

    Huang, Han-Ning; Li, Tsung-Lin; Chan, Yi-Lin; Chen, Chien-Lung; Wu, Chang-Jer

    2009-10-01

    DNA vaccine is a milestone in contemporary vaccine development. It has considerably offset many shortcomings in conventional vaccines. Although DNA vaccines applied through 'traditional' high-pressure gene guns generally elicit high titers of protective immunity, such a practice however requires enormous investment in daunting instruments that often discourage vaccines due to an inevitable pain-eliciting effect. In this study, we exploited a less expensive yet low-pressure-gene-gun that can alleviate such phobia of pain. DNA vaccines were prepared by using the associative feature of cationic chitosan and anionic DNAs. The optimized N/P ratio is 3. The formulized complex sizes to nano-scale. The vaccine complexes were tested in C3H/HeN mice. The expression of GFP reporter gene was observable and traceable in epidermis and spleen over 3 days. The expressions of GFP and the activation of dendritic cells (DCs) were evident and co-localized in hair follicles and epidermis. C3H/HeN mice immunized with the developed chitosan-JEV DNA vaccines can elicit desired JEV specific antibodies, whereby the mice maintained high survival rates against 50xLD(50) JEV challenge. The low-pressure-gene-gun mediated chitosan-based JEV DNA vaccines have proven to be convenient and efficacious, thereby with high capacity in deployment for future prophylaxis against JEV outbreaks.

  10. Nanogram quantities of a DNA vaccine protect rainbow trout fry against heterologous strains of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Corbeil, S.; LaPatra, S.E.; Anderson, E.D.; Kurath, G.

    2000-01-01

    The efficacy of a DNA vaccine containing the glycoprotein gene of infectious hematopoietic necrosis virus (IHNV), a rhabdovirus affecting trout and salmon, was investigated. The minimal dose of vaccine required, the protection against heterologous strains, and the titers of neutralizing antibodies produced were used to evaluate the potential of the vaccine as a control pharmaceutical. Results indicated that a single dose of as little as 1–10 ng of vaccine protected rainbow trout fry against waterborne challenge by IHNV. An optimal dose of 100 ng per fish was selected to assure strong protection under various conditions. Neutralizing antibody titers were detected in fish vaccinated with concentrations of DNA ranging from 5 to 0.01 μg. Furthermore, the DNA vaccine protected fish against a broad range of viral strains from different geographic locations, including isolates from France and Japan, suggesting that the vaccine could be used worldwide. A single dose of this DNA vaccine induced protection in fish at a lower dose than is usually reported in mammalian DNA vaccine studies.

  11. An effective DNA priming-protein boosting approach for the cervical cancer vaccination.

    PubMed

    Kianmehr, Zahra; Ardestani, Susan K; Soleimanjahi, Hoorieh; Farahmand, Behrokh; Abdoli, Asghar; Khatami, Maryam; Akbari, Khadijeh; Fotouhi, Fatemeh

    2015-03-01

    Considerable advances have been made in developing human papillomaviruses (HPV) prophylactic vaccines based on L1 virus-like particles (VLPs). However, there are limitations in the availability of these vaccines in developing countries, where most cases of cervical cancer occur. In the current study, the prime-boost immunization strategies were studied using a DNA vaccine carrying HPV-16 L1 gene (pcDNA/L1) and insect cell baculovirus-derived HPV-16 L1 VLP. The humoral immunity was evaluated by measuring the specific IgG levels, and the T-cell immune response was assessed by measuring different cytokines such as IFN-γ, TNF-α and IL-10. Results showed that although immunization with pcDNA/L1 alone could induce strong cellular immune responses, higher immunogenicity especially antibody response was achieved in pcDNA/L1 priming-VLP boosting regimen. Therefore, we suggest that prime-boost regimen can be considered as an efficient prophylactic and therapeutic vaccine.

  12. Mycobacterium bovis DNA detection in colostrum as a potential indicator of vaccination effectiveness against bovine tuberculosis.

    PubMed

    Herrera-Rodríguez, Sara E; Gordiano-Hidalgo, María Alejandra; López-Rincón, Gonzálo; Bojorquez-Narváez, Luis; Padilla-Ramírez, Francisco Javier; Pereira-Suárez, Ana Laura; Flores-Valdez, Mario Alberto; Estrada-Chávez, Ciro

    2013-04-01

    Bovine tuberculosis (bTB) remains a problem on many dairy farms in Mexico, as well as a public health risk. We previously found a high frequency of Mycobacterium bovis DNA in colostrum from dairy cows using a nested PCR to detect mpb70. Since there are no reliable in vivo tests to determine the effectiveness of booster Mycobacterium bovis BCG vaccination against bTB, in this work we monitored M. bovis DNA in colostrum by using this nested PCR. In order to decrease the risk of adverse reactions in animals likely containing viable M. bovis, a single application of BCG and a subunit vaccine (EEP-1) formulated with M. bovis culture filtrate proteins (CFP) and a copolymer as the adjuvant was performed in tuberculin skin test-negative cattle (TST(-)), while TST reactor animals (TST(+)) received EEP-1 only. Booster immunization using EEP-1 was applied to both groups, 2 months after primary vaccination to whole herds and 12 months later to lactating cows. Colostrum samples were collected from 6 farms where the cows were vaccinated over a 12-month period postvaccination and, for comparison, from one control farm where the cows were not vaccinated with comparable bTB prevalence. We observed an inverse relationship between the frequency of M. bovis DNA detection and time postvaccination at the first (P < 0.001) and second (P < 0.0001) 6-month periods. Additionally, the concentration of gamma interferon (IFN-γ) was higher in mpb70 PCR-positive colostrum samples (P = 0.0003). These results suggest that M. bovis DNA frequency in colostrum could be a potentially useful biomarker for bTB vaccine efficacy on commercial dairy farms. PMID:23425597

  13. Mycobacterium bovis DNA detection in colostrum as a potential indicator of vaccination effectiveness against bovine tuberculosis.

    PubMed

    Herrera-Rodríguez, Sara E; Gordiano-Hidalgo, María Alejandra; López-Rincón, Gonzálo; Bojorquez-Narváez, Luis; Padilla-Ramírez, Francisco Javier; Pereira-Suárez, Ana Laura; Flores-Valdez, Mario Alberto; Estrada-Chávez, Ciro

    2013-04-01

    Bovine tuberculosis (bTB) remains a problem on many dairy farms in Mexico, as well as a public health risk. We previously found a high frequency of Mycobacterium bovis DNA in colostrum from dairy cows using a nested PCR to detect mpb70. Since there are no reliable in vivo tests to determine the effectiveness of booster Mycobacterium bovis BCG vaccination against bTB, in this work we monitored M. bovis DNA in colostrum by using this nested PCR. In order to decrease the risk of adverse reactions in animals likely containing viable M. bovis, a single application of BCG and a subunit vaccine (EEP-1) formulated with M. bovis culture filtrate proteins (CFP) and a copolymer as the adjuvant was performed in tuberculin skin test-negative cattle (TST(-)), while TST reactor animals (TST(+)) received EEP-1 only. Booster immunization using EEP-1 was applied to both groups, 2 months after primary vaccination to whole herds and 12 months later to lactating cows. Colostrum samples were collected from 6 farms where the cows were vaccinated over a 12-month period postvaccination and, for comparison, from one control farm where the cows were not vaccinated with comparable bTB prevalence. We observed an inverse relationship between the frequency of M. bovis DNA detection and time postvaccination at the first (P < 0.001) and second (P < 0.0001) 6-month periods. Additionally, the concentration of gamma interferon (IFN-γ) was higher in mpb70 PCR-positive colostrum samples (P = 0.0003). These results suggest that M. bovis DNA frequency in colostrum could be a potentially useful biomarker for bTB vaccine efficacy on commercial dairy farms.

  14. Mycobacterium bovis DNA Detection in Colostrum as a Potential Indicator of Vaccination Effectiveness against Bovine Tuberculosis

    PubMed Central

    Herrera-Rodríguez, Sara E.; Gordiano-Hidalgo, María Alejandra; López-Rincón, Gonzálo; Bojorquez-Narváez, Luis; Padilla-Ramírez, Francisco Javier; Pereira-Suárez, Ana Laura; Flores-Valdez, Mario Alberto

    2013-01-01

    Bovine tuberculosis (bTB) remains a problem on many dairy farms in Mexico, as well as a public health risk. We previously found a high frequency of Mycobacterium bovis DNA in colostrum from dairy cows using a nested PCR to detect mpb70. Since there are no reliable in vivo tests to determine the effectiveness of booster Mycobacterium bovis BCG vaccination against bTB, in this work we monitored M. bovis DNA in colostrum by using this nested PCR. In order to decrease the risk of adverse reactions in animals likely containing viable M. bovis, a single application of BCG and a subunit vaccine (EEP-1) formulated with M. bovis culture filtrate proteins (CFP) and a copolymer as the adjuvant was performed in tuberculin skin test-negative cattle (TST−), while TST reactor animals (TST+) received EEP-1 only. Booster immunization using EEP-1 was applied to both groups, 2 months after primary vaccination to whole herds and 12 months later to lactating cows. Colostrum samples were collected from 6 farms where the cows were vaccinated over a 12-month period postvaccination and, for comparison, from one control farm where the cows were not vaccinated with comparable bTB prevalence. We observed an inverse relationship between the frequency of M. bovis DNA detection and time postvaccination at the first (P < 0.001) and second (P < 0.0001) 6-month periods. Additionally, the concentration of gamma interferon (IFN-γ) was higher in mpb70 PCR-positive colostrum samples (P = 0.0003). These results suggest that M. bovis DNA frequency in colostrum could be a potentially useful biomarker for bTB vaccine efficacy on commercial dairy farms. PMID:23425597

  15. A Dual TLR Agonist Adjuvant Enhances the Immunogenicity and Protective Efficacy of the Tuberculosis Vaccine Antigen ID93

    PubMed Central

    Orr, Mark T.; Beebe, Elyse A.; Hudson, Thomas E.; Moon, James J.; Fox, Christopher B.; Reed, Steven G.; Coler, Rhea N.

    2014-01-01

    With over eight million cases of tuberculosis each year there is a pressing need for the development of new vaccines against Mycobacterium tuberculosis. Subunit vaccines consisting of recombinant proteins are an attractive vaccine approach due to their inherent safety compared to attenuated live vaccines and the uniformity of manufacture. Addition of properly formulated TLR agonist-containing adjuvants to recombinant protein vaccines enhances the antigen-specific CD4+ T cell response characterized by IFN-γ and TNF, both of which are critical for the control of TB. We have developed a clinical stage vaccine candidate consisting of a recombinant fusion protein ID93 adjuvanted with the TLR4 agonist GLA-SE. Here we examine whether ID93+GLA-SE can be improved by the addition of a second TLR agonist. Addition of CpG containing DNA to ID93+GLA-SE enhanced the magnitude of the multi-functional TH1 response against ID93 characterized by co-production of IFN-γ, TNF, and IL-2. Addition of CpG also improved the protective efficacy of ID93+GLA-SE. Finally we demonstrate that this adjuvant synergy between GLA and CpG is independent of TRIF signaling, whereas TRIF is necessary for the adjuvant activity of GLA-SE in the absence of CpG. PMID:24404140

  16. RSV fusion (F) protein DNA vaccine provides partial protection against viral infection.

    PubMed

    Wu, Hongzhuan; Dennis, Vida A; Pillai, Shreekumar R; Singh, Shree R

    2009-10-01

    The present study was conducted to investigate the feasibility and efficacy of a RSV F DNA vaccine incorporated with a mucosal adjuvant. Two DNA vaccine vectors (DRF-412 and DRF-412-P) were developed containing residues 412-524 of the RSV F gene. These antigenic regions were cloned into the phCMV1 DNA vaccine vector. One of the DNA vaccine vectors, DRF-412, contained the ctxA(2)B region of the cholera toxin gene as a mucosal adjuvant. The in vitro expressions of these DNA vectors were confirmed in Cos-7 cells by indirect immunofluorescence and Western blot analyses. In vivo expression of the cloned gene was further confirmed in mouse muscle tissue by immunohistological analysis. The active transcription of the RSV F gene in mouse muscle cells was confirmed by RT-PCR. The purified DRF-412 and DRF-412-P DNA vectors were used to immunize mice by intramuscular injections. Our results indicated that DRF-412 and DRF-412-P vaccine vectors were as effective as live RSV in inducing neutralization antibody, systemic Ab (IgG, IgG1, IgG2a, and IgG2b) responses, and mucosal antibody responses (Ig A). The Th1 (TNF-alpha, IL-12p70, IFN-gamma, IL-2) and Th2 (IL-10, IL-6) cytokine profiles were analyzed after stimulation of spleen cells from mice immunized with purified RF-412 protein. We observed that mice inoculated with vector DRF-412 induced a higher mixed Th1/Th2 cytokine immune response than DRF-412-P. Reverse transcriptase and quantitative real-time PCR (qRT-PCR) revealed that mice immunized with the DRF-412 vector contained less viral RNA in lung tissue and the lung immunohistology study confirmed that mice immunized with DRF-412 had better protection than those immunized with the DRF-412-P vector. These results indicate that the RSV DRF-412 vaccine vector, which contains the cholera toxin subunit ctxA2B as a mucosal adjuvant may provide a better DNA vaccination strategy against RSV. PMID:19540885

  17. Dual FRET assay for detecting receptor protein interaction with DNA.

    PubMed

    Krusiński, Tomasz; Ozyhar, Andrzej; Dobryszycki, Piotr

    2010-05-01

    We present here a new assay that is based on the idea of the molecular beacon. This assay makes it possible to investigate two proteins interacting with DNA at two binding sites that are close to each other. The effectiveness of the test depends on the exclusive binding of three DNA fragments in the presence of two proteins, and the monitoring of the process depends upon observing the quenching of two independent fluorescence donors. As a model we used the components of the heterodimeric ecdysteroid receptor proteins ultraspiracle (Usp) and ecdysone receptor (EcR) from Drosophila melanogaster and a response element from the promoter of the hsp27 gene. The response element consists of two binding sites (half-sites) for the DNA binding domains (DBDs). We have shown that protein-protein interactions mediate cooperative binding of the ecdysteroid receptor DBDs to a hsp27(pal) response element. The analysis of the microscopic dissociation constants obtained with the DMB led to the conclusion that there was increased affinity of UspDBD to the 5' half-site in the presence of EcRDBD when the 3' half-site was occupied, and increased affinity of EcRDBD to the 3' half-site when the 5' half-site was occupied.

  18. Protection of rainbow trout against infectious hematopoietic necrosis virus four days after specific or semi-specific DNA vaccination

    USGS Publications Warehouse

    LaPatra, S.E.; Corbeil, S.; Jones, G.R.; Shewmaker, W.D.; Lorenzen, N.; Anderson, E.D.; Kurath, G.

    2001-01-01

    A DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was shown to provide significant protection as soon as 4 d after intramuscular vaccination in 2 g rainbow trout (Oncorhynchus mykiss) held at 15??C. Nearly complete protection was also observed at later time points (7, 14, and 28 d) using a standardized waterborne challenge model. In a test of the specificity of this early protection, immunization of rainbow trout with a DNA vaccine against another fish rhabdovirus, viral hemorrhagic septicemia virus, provided a significant level of cross-protection against IHNV challenge for a transient period of time, whereas a rabies virus DNA vaccine was not protective. This indication of distinct early and late protective mechanisms was not dependent on DNA vaccine doses from 0.1 to 2.5 ??g. ?? 2001 Elsevier Science Ltd.

  19. Efficacy of a DNA Vaccine Carrying Eimeria maxima Gam56 Antigen Gene against Coccidiosis in Chickens

    PubMed Central

    Xu, Jinjun; Zhang, Yan

    2013-01-01

    To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and 100 µg/chick). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with 5×104 sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (P<0.05) at day 7 and 14 after the first immunization. The level of lymphocyte proliferation started to decrease on day 21 after the first immunization. A similar trend was seen in specific antibody levels. Among the 3 pcDNA-Gam56 immunized groups, the median dosage group displayed the highest lymphocyte proliferation and antibody levels (P<0.05). The median dosage group had the greatest relative body weight gain (89.7%), and the greatest oocyst shedding reduction (53.7%). These results indicate that median dosage of DNA vaccine had good immunogenicity and immune protection effects, and may be used in field applications for coccidiosis control. PMID:23710081

  20. Targeting of MYCN by means of DNA vaccination is effective against neuroblastoma in mice.

    PubMed

    Stermann, Alexander; Huebener, Nicole; Seidel, Diana; Fest, Stefan; Eschenburg, Georg; Stauder, Michael; Schramm, Alexander; Eggert, Angelika; Lode, Holger N

    2015-10-01

    The MYCN oncogene is a strong genetic marker associated with poor prognosis in neuroblastoma (NB). Therefore, MYCN gene amplification and subsequent overexpression provide a possible target for new treatment approaches in NB. We first identified an inverse correlation of MYCN expression with CD45 mRNA in 101 NB tumor samples. KEGG mapping further revealed that MYCN expression was associated with immune-suppressive pathways characterized by a down-regulation of T cell activation and up-regulation of T cell inhibitory gene transcripts. We then aimed to investigate whether DNA vaccination against MYCN is effective to induce an antigen-specific and T cell-mediated immune response. For this purpose, we generated a MYCN-expressing syngeneic mouse model by MYCN gene transfer to NXS2 cells. MYCN-DNA vaccines were engineered based on the pCMV-F3Ub plasmid backbone to drive ubiquitinated full-length MYCN-cDNA and minigene expression. Vaccines were delivered orally with attenuated S. typhimurium strain SL7207 as a carrier. Immunization with both MYCN-DNA vaccines significantly reduced primary tumor growth of MYCN-expressing NB cells in contrast to negative controls. The immune response was mediated by tumor-infiltrating T cells in vivo, which revealed MYCN-specific and MHC class I-restricted lysis of inducible MYCN-expressing NB target cells in vitro. Finally, these antigen-specific T cells also killed MYCN-negative mammary carcinoma cells pulsed with MYCN peptides in contrast to controls. In summary, we demonstrate proof of concept that MYCN can be targeted by DNA vaccination, which may provide an approach to overcoming MYCN immune-suppressive activities in patients with MYCN-amplified disease.

  1. Enhanced nasal mucosal delivery and immunogenicity of anti-caries DNA vaccine through incorporation of anionic liposomes in chitosan/DNA complexes.

    PubMed

    Chen, Liulin; Zhu, Junming; Li, Yuhong; Lu, Jie; Gao, Li; Xu, Huibi; Fan, Mingwen; Yang, Xiangliang

    2013-01-01

    The design of optimized nanoparticles offers a promising strategy to enable DNA vaccines to cross various physiological barriers for eliciting a specific and protective mucosal immunity via intranasal administration. Here, we reported a new designed nanoparticle system through incorporating anionic liposomes (AL) into chitosan/DNA (CS/DNA) complexes. With enhanced cellular uptake, the constructed AL/CS/DNA nanoparticles can deliver the anti-caries DNA vaccine pGJA-P/VAX into nasal mucosa. TEM results showed the AL/CS/DNA had a spherical structure. High DNA loading ability and effective DNA protection against nuclease were proved by gel electrophoresis. The surface charge of the AL/CS/DNA depended strongly on pH environment, enabling the intracellular release of loaded DNA via a pH-mediated manner. In comparison to the traditional CS/DNA system, our new design rendered a higher transfection efficiency and longer residence time of the AL/CS/DNA at nasal mucosal surface. These outstanding features enable the AL/CS/DNA to induce a significantly (p<0.01) higher level of secretory IgA (SIgA) than the CS/DNA in animal study, and a longer-term mucosal immunity. On the other hand, the AL/CS/DNA exhibited minimal cytotoxicity. These results suggest that the developed nanoparticles offer a potential platform for DNA vaccine packaging and delivery for more efficient elicitation of mucosal immunity. PMID:23977186

  2. Enhanced non-inflammasome mediated immune responses by mannosylated zwitterionic-based cationic liposomes for HIV DNA vaccines.

    PubMed

    Qiao, Chenmeng; Liu, Jiandong; Yang, Jun; Li, Yan; Weng, Jie; Shao, Yiming; Zhang, Xin

    2016-04-01

    Human immunodeficiency virus (HIV) DNA vaccine can induce cellular and humoral immunity. A safe and effective HIV DNA vaccine is urgent need to prevent the spread of acquired immune deficiency syndrome (AIDS). The major drawback of DNA vaccines is the low immunogenicity, which is caused by the poor delivery to antigen presenting cells and insufficient antigen expression. Sparked by the capability of endosomal/lysosomal escape of the zwitterionic lipid distearoyl phosphoethanol-amine-polycarboxybetaine (DSPE-PCB), we attempted to develop a zwitterionic-based cationic liposome with enhanced immunogenicity of DNA vaccines. The mannosylated zwitterionic-based cationic liposome (man-ZCL) was constructed as a DNA vaccine adjuvant for HIV vaccination. Man-ZCL could complex with DNA antigens to form a tight structure and protect them from nuclei enzyme degradation. Benefited from the capability of the specific mannose receptor mediated antigen processing cells targeting and enhanced endosomal/lysosomal escape, the man-ZCL lipoplexes were supposed to promote antigen presentation and the immunogenicity of DNA vaccines. In vitro and in vivo results revealed that man-ZCL lipoplexes showed enhanced anti-HIV immune responses and lower toxicity compared with CpG/DNA and Lipo2k/DNA, and triggered a Th1/Th2 mixed immunity. An antigen-depot effect was observed in the administration site, and this resulted in enhanced retention of DNA antigens in draining lymph nodes. Most importantly, the man-ZCL could assist to activate T cells through a non-inflammasome pathway. These findings suggested that the man-ZCL could be potentially applied as a safe and efficient DNA adjuvant for HIV vaccines. PMID:26851653

  3. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    SciTech Connect

    Zhang, Han; Sonoda, Koh-Hei; Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  4. Construction and Nonclinical Testing of a Puumala Virus Synthetic M Gene-Based DNA Vaccine

    PubMed Central

    Brocato, R. L.; Josleyn, M. J.; Wahl-Jensen, V.; Schmaljohn, C. S.

    2013-01-01

    Puumala virus (PUUV) is a causative agent of hemorrhagic fever with renal syndrome (HFRS). Although PUUV-associated HFRS does not result in high case-fatality rates, the social and economic impact is considerable. There is no licensed vaccine or specific therapeutic to prevent or treat HFRS. Here we report the synthesis of a codon-optimized, full-length M segment open reading frame and its cloning into a DNA vaccine vector to produce the plasmid pWRG/PUU-M(s2). pWRG/PUU-M(s2) delivered by gene gun produced high-titer neutralizing antibodies in hamsters and nonhuman primates. Vaccination with pWRG/PUU-M(s2) protected hamsters against infection with PUUV but not against infection by related HFRS-associated hantaviruses. Unexpectedly, vaccination protected hamsters in a lethal disease model of Andes virus (ANDV) in the absence of ANDV cross-neutralizing antibodies. This is the first evidence that an experimental DNA vaccine for HFRS can provide protection in a hantavirus lethal disease model. PMID:23239797

  5. Safety and Immunogenicity of DNA Vaccines Encoding Ebolavirus and Marburgvirus Wild-Type Glycoproteins in a Phase I Clinical Trial

    PubMed Central

    Sarwar, Uzma N.; Costner, Pamela; Enama, Mary E.; Berkowitz, Nina; Hu, Zonghui; Hendel, Cynthia S.; Sitar, Sandra; Plummer, Sarah; Mulangu, Sabue; Bailer, Robert T.; Koup, Richard A.; Mascola, John R.; Nabel, Gary J.; Sullivan, Nancy J.; Graham, Barney S.; Ledgerwood, Julie E.

    2015-01-01

    Background Ebolavirus and Marburgvirus cause severe hemorrhagic fever with high mortality and are potential bioterrorism agents. There are no available vaccines or therapeutic agents. Previous clinical trials evaluated transmembrane-deleted and point-mutation Ebolavirus glycoproteins (GPs) in candidate vaccines. Constructs evaluated in this trial encode wild-type (WT) GP from Ebolavirus Zaire and Sudan species and the Marburgvirus Angola strain expressed in a DNA vaccine. Methods The VRC 206 study evaluated the safety and immunogenicity of these DNA vaccines (4 mg administered intramuscularly by Biojector) at weeks 0, 4, and 8, with a homologous boost at or after week 32. Safety evaluations included solicited reactogenicity and coagulation parameters. Primary immune assessment was done by means of GP-specific enzyme-linked immunosorbent assay. Results The vaccines were well tolerated, with no serious adverse events; 80% of subjects had positive enzyme-linked immunosorbent assay results (≥30) at week 12. The fourth DNA vaccination boosted the immune responses. Conclusions The investigational Ebolavirus and Marburgvirus WT GP DNA vaccines were safe, well tolerated, and immunogenic in this phase I study. These results will further inform filovirus vaccine research toward a goal of inducing protective immunity by using WT GP antigens in candidate vaccine regimens. Clinical Trials Registration NCT00605514. PMID:25225676

  6. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses.

    PubMed

    van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew

    2013-02-01

    Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.

  7. Immunotherapy with a posttranscriptionally modified DNA vaccine induces complete protection against metastatic neuroblastoma.

    PubMed

    Pertl, Ursula; Wodrich, Harald; Ruehlmann, J Michael; Gillies, Stephen D; Lode, Holger N; Reisfeld, Ralph A

    2003-01-15

    The successful induction of a T-cell-mediated tumor-protective immunity against poorly immunogenic malignancies remains a major challenge for cancer immunotherapy. We achieved this by immunization with a tyrosine hydroxylase (mTH)-based DNA vaccine, enhanced with the posttranscriptional regulatory acting RNA element (WPRE), derived from woodchuck hepatitis virus in combination with an antibody-cytokine fusion protein (ch14.18-IL-2) that targets interleukin-2 (IL-2) to the tumor microenvironment. This DNA vaccine mTH-WPRE was carried by attenuated Salmonella typhimurium and applied by oral gavage in a mouse model of neuroblastoma. Mice immunized with the mTH-WPRE vaccine, and which additionally received a boost with suboptimal doses of ch14.18-IL-2, were completely protected against hepatic neuroblastoma metastases. In contrast, all controls presented with disseminated metastases. Both T-cell and natural killer (NK) cell-dependent mechanisms were involved in the induction of a systemic tumor-protective immunity. Thus, up-regulation of interferon-gamma (IFN-gamma) expression in CD8(+) T cells occurred only in those animals that received the mTH-WPRE vaccine plus the ch14.18-IL-2 boost. Up-regulation of this proinflammatory cytokine was not observed in mice immunized with mTH-WPRE vaccine alone. A role for NK cells was indicated by the complete abrogation of systemic tumor-protective immunity in all animals that were depleted of NK cells in vivo. Taken together, these data demonstrate that immunization with a posttranscriptionally enhanced DNA vaccine encoding the WPRE sequence, combined with a boost of the ch14.18-IL-2 fusion protein, completely protects against hepatic metastases in a murine model of neuroblastoma and therefore may lead to a new strategy for immunotherapy and prevention of metastatic neuroblastoma.

  8. Evaluation of a Novel Non-Penetrating Electrode for Use in DNA Vaccination

    PubMed Central

    Donate, Amy; Coppola, Domenico; Cruz, Yolmari; Heller, Richard

    2011-01-01

    Current progress in the development of vaccines has decreased the incidence of fatal and non-fatal infections and increased longevity. However, new technologies need to be developed to combat an emerging generation of infectious diseases. DNA vaccination has been demonstrated to have great potential for use with a wide variety of diseases. Alone, this technology does not generate a significant immune response for vaccination, but combined with delivery by electroporation (EP), can enhance plasmid expression and immunity. Most EP systems, while effective, can be invasive and painful making them less desirable for use in vaccination. Our lab recently developed a non-invasive electrode known as the multi-electrode array (MEA), which lies flat on the surface of the skin without penetrating the tissue. In this study we evaluated the MEA for its use in DNA vaccination using Hepatitis B virus as the infectious model. We utilized the guinea pig model because their skin is similar in thickness and morphology to humans. The plasmid encoding Hepatitis B surface antigen (HBsAg) was delivered intradermally with the MEA to guinea pig skin. The results show increased protein expression resulting from plasmid delivery using the MEA as compared to injection alone. Within 48 hours of treatment, there was an influx of cellular infiltrate in experimental groups. Humoral responses were also increased significantly in both duration and intensity as compared to injection only groups. While this electrode requires further study, our results suggest that the MEA has potential for use in electrically mediated intradermal DNA vaccination. PMID:21559474

  9. Preclinical safety and tolerability of a repeatedly administered human leishmaniasis DNA vaccine

    PubMed Central

    Riede, O; Seifert, K; Oswald, D; Endmann, A; Hock, C; Winkler, A; Salguero, F J; Schroff, M; Croft, S L; Juhls, C

    2015-01-01

    The leishmaniases are a complex of vector-borne diseases caused by protozoan parasites of the genus Leishmania. LEISHDNAVAX is a multi-antigen, T-cell epitope-enriched DNA vaccine candidate against human leishmaniasis. The vaccine candidate has been proven immunogenic and showed prophylactic efficacy in preclinical studies. Here, we describe the safety testing of LEISHDNAVAX in naive mice and rats, complemented by the demonstration of tolerability in Leishmania-infected mice. Biodistribution and persistence were examined following single and repeated intradermal (i.d.) administration to rats. DNA vectors were distributed systemically but did not accumulate upon repeated injections. Although vector DNA was cleared from most other tissues within 60 days after the last injection, it persisted in skin at the site of injection and in draining lymph nodes. Evaluation of single-dose and repeated-dose toxicity of the vaccine candidate after i.d. administration to naive, non-infected mice did not reveal any safety concerns. LEISHDNAVAX was also well tolerated in Leishmania-infected mice. Taken together, our results substantiate a favorable safety profile of LEISHDNAVAX in both naive and infected animals and thus, support the initiation of clinical trials for both preventive and therapeutic applications of the vaccine. PMID:25871827

  10. Designing and Development of a DNA Vaccine Based On Structural Proteins of Hepatitis C Virus

    PubMed Central

    Teimourpour, Roghayeh; Tajani, Amineh Sadat; Askari, Vahid Reza; Rostami, Sina; Meshkat, Zahra

    2016-01-01

    Background: Hepatitis C virus (HCV) infection is one of the most prevalent infectious diseases responsible for high morbidity and mortality worldwide. Therefore, designing new and effective therapeutics is of great importance. The aim of the current study was to construct a DNA vaccine containing structural proteins of HCV and evaluation of its expression in a eukaryotic system. Methods: Structural proteins of HCV (core, E1, and E2) were isolated and amplified from JFH strain of HCV genotype 2a using PCR method. The PCR product was cloned into pCDNA3.1 (+) vector and finally were confirmed by restriction enzyme analysis and sequencing methods. The eukaryotic expression of the vector was confirmed by RT-PCR. Results: A recombinant vector containing 2241bp fragment of HCV structural genes was constructed. The desired plasmid was sequenced and corresponded to 100% identity with the submitted sequences in GenBank. RT-PCR results indicated that the recombinant plasmid could be expressed efficiently in the eukaryotic expression system. Conclusion: Successful cloning of structural viral genes in pCDNA3.1 (+) vector and their expression in the eukaryotic expression system facilitates the development of new DNA vaccines against HCV. A DNA vaccine encoding core-E1-E2 antigens was designed. The desired expression vector can be used for further attempts in the development of vaccines. PMID:27799971

  11. Chemokine Adjuvanted Electroporated-DNA Vaccine Induces Substantial Protection from Simian Immunodeficiency Virus Vaginal Challenge

    PubMed Central

    Hutnick, N A; Moldoveanu, Z; Hunter, M; Reuter, M; Yuan, S; Yan, J; Ginsberg, A; Sylvester, A; Pahar, B; Carnathan, D; Kathuria, N; Khan, A S; Montefiori, D; Sardesai, N Y; Betts, M R; Mestecky, J; Marx, P; Weiner, D B

    2015-01-01

    There have been encouraging results for the development of an effective HIV vaccine. However, many questions remain regarding the quality of immune responses and the role of mucosal antibodies. We addressed some of these issues by using a simian immunodeficiency virus (SIV) DNA vaccine adjuvanted with plasmid-expressed mucosal chemokines combined with an intravaginal SIV challenge in rhesus macaque (RhM) model. We previously reported on the ability of CCR9 and CCR10 ligand (L) adjuvants to enhance mucosal and systemic IgA and IgG in small animals. In this study, RhMs were intramuscularly immunized five times with either DNA or DNA plus chemokine adjuvant delivered by electroporation followed by challenge with SIVsmE660. Sixty-eight percent of all vaccinated animals (P=0.0016) remained either uninfected or had aborted infection compared to only 14% in the vaccine naïve group. The highest protection was observed in the CCR10L chemokines group, where 6 of 9 animals had aborted infection and two remained uninfected, leading to 89% protection (P=0.0003). The induction of mucosal SIV-specific antibodies and neutralization titers correlated with trends in protection. These results indicate the need to further investigate the contribution of chemokine adjuvants to modulate immune responses and the role of mucosal antibodies in SIV/HIV protection. PMID:25943275

  12. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    PubMed

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  13. Intranasal DNA vaccination induces potent mucosal and systemic immune responses and cross-protective immunity against influenza viruses.

    PubMed

    Torrieri-Dramard, Lea; Lambrecht, Bénédicte; Ferreira, Helena Lage; Van den Berg, Thierry; Klatzmann, David; Bellier, Bertrand

    2011-03-01

    The induction of potent virus-specific immune responses at mucosal surfaces where virus transmission occurs is a major challenge for vaccination strategies. In the case of influenza vaccination, this has been achieved only by intranasal delivery of live-attenuated vaccines that otherwise pose safety problems. Here, we demonstrate that potent mucosal and systemic immune responses, both cellular and humoral, are induced by intranasal immunization using formulated DNA. We show that formulation with the DNA carrier polyethylenimine (PEI) improved by a 1,000-fold the efficiency of gene transfer in the respiratory track following intranasal administration of luciferase-coding DNA. Using PEI formulation, intranasal vaccination with DNA-encoding hemagglutinin (HA) from influenza A H5N1 or (H1N1)2009 viruses induced high levels of HA-specific immunoglobulin A (IgA) antibodies that were detected in bronchoalveolar lavages (BALs) and the serum. No mucosal responses could be detected after parenteral or intranasal immunization with naked-DNA. Furthermore, intranasal DNA vaccination with HA from a given H5N1 virus elicited full protection against the parental strain and partial cross-protection against a distinct highly pathogenic H5N1 strain that could be improved by adding neuraminidase (NA) DNA plasmids. Our observations warrant further investigation of intranasal DNA as an effective vaccination route.

  14. DNA Vaccines: Protective Immunizations by Parenteral, Mucosal, and Gene-Gun Inoculations

    NASA Astrophysics Data System (ADS)

    Fynan, Ellen F.; Webster, Robert G.; Fuller, Deborah H.; Haynes, Joel R.; Santoro, Joseph C.; Robinson, Harriet L.

    1993-12-01

    Plasmid DNAs expressing influenza virus hemagglutinin glycoproteins have been tested for their ability to raise protective immunity against lethal influenza challenges of the same subtype. In trials using two inoculations of from 50 to 300 μg of purified DNA in saline, 67-95% of test mice and 25-63% of test chickens have been protected against a lethal influenza challenge. Parenteral routes of inoculation that achieved good protection included intramuscular and intravenous injections. Successful mucosal routes of vaccination included DNA drops administered to the nares or trachea. By far the most efficient DNA immunizations were achieved by using a gene gun to deliver DNA-coated gold beads to the epidermis. In mice, 95% protection was achieved by two immunizations with beads loaded with as little as 0.4 μg of DNA. The breadth of routes supporting successful DNA immunizations, coupled with the very small amounts of DNA required for gene-gun immunizations, highlight the potential of this remarkably simple technique for the development of subunit vaccines.

  15. Ag85A DNA Vaccine Delivery by Nanoparticles: Influence of the Formulation Characteristics on Immune Responses.

    PubMed

    Poecheim, Johanna; Barnier-Quer, Christophe; Collin, Nicolas; Borchard, Gerrit

    2016-01-01

    The influence of DNA vaccine formulations on immune responses in combination with adjuvants was investigated with the aim to increase cell-mediated immunity against plasmid DNA (pDNA) encoding Mycobacterium tuberculosis antigen 85A. Different ratios of pDNA with cationic trimethyl chitosan (TMC) nanoparticles were characterized for their morphology and physicochemical characteristics (size, zeta potential, loading efficiency and pDNA release profile) applied in vitro for cellular uptake studies and in vivo, to determine the dose-dependent effects of pDNA on immune responses. A selected pDNA/TMC nanoparticle formulation was optimized by the incorporation of muramyl dipeptide (MDP) as an immunostimulatory agent. Cellular uptake investigations in vitro showed saturation to a maximum level upon the increase in the pDNA/TMC nanoparticle ratio, correlating with increasing Th1-related antibody responses up to a definite pDNA dose applied. Moreover, TMC nanoparticles induced clear polarization towards a Th1 response, indicated by IgG2c/IgG1 ratios above unity and enhanced numbers of antigen-specific IFN-γ producing T-cells in the spleen. Remarkably, the incorporation of MDP in TMC nanoparticles provoked a significant additional increase in T-cell-mediated responses induced by pDNA. In conclusion, pDNA-loaded TMC nanoparticles are capable of provoking strong Th1-type cellular and humoral immune responses, with the potential to be further optimized by the incorporation of MDP. PMID:27626449

  16. Ag85A DNA Vaccine Delivery by Nanoparticles: Influence of the Formulation Characteristics on Immune Responses

    PubMed Central

    Poecheim, Johanna; Barnier-Quer, Christophe; Collin, Nicolas; Borchard, Gerrit

    2016-01-01

    The influence of DNA vaccine formulations on immune responses in combination with adjuvants was investigated with the aim to increase cell-mediated immunity against plasmid DNA (pDNA) encoding Mycobacterium tuberculosis antigen 85A. Different ratios of pDNA with cationic trimethyl chitosan (TMC) nanoparticles were characterized for their morphology and physicochemical characteristics (size, zeta potential, loading efficiency and pDNA release profile) applied in vitro for cellular uptake studies and in vivo, to determine the dose-dependent effects of pDNA on immune responses. A selected pDNA/TMC nanoparticle formulation was optimized by the incorporation of muramyl dipeptide (MDP) as an immunostimulatory agent. Cellular uptake investigations in vitro showed saturation to a maximum level upon the increase in the pDNA/TMC nanoparticle ratio, correlating with increasing Th1-related antibody responses up to a definite pDNA dose applied. Moreover, TMC nanoparticles induced clear polarization towards a Th1 response, indicated by IgG2c/IgG1 ratios above unity and enhanced numbers of antigen-specific IFN-γ producing T-cells in the spleen. Remarkably, the incorporation of MDP in TMC nanoparticles provoked a significant additional increase in T-cell-mediated responses induced by pDNA. In conclusion, pDNA-loaded TMC nanoparticles are capable of provoking strong Th1-type cellular and humoral immune responses, with the potential to be further optimized by the incorporation of MDP. PMID:27626449

  17. Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen.

    PubMed

    Rice, Jason; Buchan, Sarah; Stevenson, Freda K

    2002-10-01

    DNA vaccines can activate immunity against tumor Ags expressed as MHC class I-associated peptides. However, priming of CD8(+) CTL against weak tumor Ags may require adjuvant molecules. We have used a pathogen-derived sequence from tetanus toxin (fragment C (FrC)) fused to tumor Ag sequences to promote Ab and CD4(+) T cell responses. For induction of CD8(+) T cell responses, the FrC sequence has been engineered to remove potentially competitive MHC class I-binding epitopes and to improve presentation of tumor epitopes. The colon carcinoma CT26 expresses an endogenous retroviral gene product, gp70, containing a known H2-L(d)-restricted epitope (AH1). A DNA vaccine encoding gp70 alone was a poor inducer of CTL, and performance was not significantly improved by fusion of full-length FrC. However, use of a minimized domain of FrC, with the AH1 sequence fused to the 3' position, led to rapid induction of high levels of CTL. IFN-gamma-producing epitope-specific CTL were detectable ex vivo and these killed CT26 targets in vitro. The single epitope vaccine was more effective than GM-CSF-transfected CT26 tumor cells in inducing an AH1-specific CTL response and equally effective in providing protection against tumor challenge. Levels of AH1-specific CTL in vivo were increased following injection of tumor cells, and CTL expanded in vitro were able to kill CT26 cells in tumor bearers. Pre-existing immunity to tetanus toxoid had no effect on the induction of AH1-specific CTL. These data demonstrate the power of epitope-specific CTL against tumor cells and illustrate a strategy for priming immunity via a dual component DNA vaccine.

  18. PD-1 or PD-L1 Blockade Restores Antitumor Efficacy Following SSX2 Epitope-Modified DNA Vaccine Immunization

    PubMed Central

    Rekoske, Brian T.; Smith, Heath A.; Olson, Brian M.; Maricque, Brett B.; McNeel, Douglas G.

    2015-01-01

    DNA vaccines have demonstrated antitumor efficacy in multiple preclinical models, but low immunogenicity has been observed in several human clinical trials. This has led to many approaches seeking to improve the immunogenicity of DNA vaccines. We previously reported that a DNA vaccine encoding the cancer-testis antigen SSX2, modified to encode altered epitopes with increased MHC class I affinity, elicited a greater frequency of cytolytic, multifunctional CD8+ T cells in non-tumor-bearing mice. In this report we sought to test if this optimized vaccine resulted in increased antitumor activity in mice bearing an HLA-A2-expressing tumor engineered to express SSX2. We found that immunization of tumor-bearing mice with the optimized vaccine elicited a surprisingly inferior antitumor effect relative to the native vaccine. Both native and optimized vaccines led to increased expression of PD-L1 on tumor cells, but antigen-specific CD8+ T cells from mice immunized with the optimized construct expressed higher PD-1. Splenocytes from immunized animals induced PD-L1 expression on tumor cells in vitro. Antitumor activity of the optimized vaccine could be increased when combined with antibodies blocking PD-1 or PD-L1, or by targeting a tumor line not expressing PD-L1. These findings suggest that vaccines aimed at eliciting effector CD8+ T cells, and DNA vaccines in particular, might best be combined with PD-1 pathway inhibitors in clinical trials. This may be particularly advantageous for vaccines targeting prostate cancer, a disease for which antitumor vaccines have demonstrated clinical benefit and yet PD-1 pathway inhibitors alone have shown little efficacy to date. PMID:26041735

  19. Vaccines

    MedlinePlus Videos and Cool Tools

    Vaccinations are injections of antigens into the body. Once the antigens enter the blood, they circulate along ... suppressor T cells stop the attack. After a vaccination, the body will have a memory of an ...

  20. A multi-head intradermal electroporation device allows for tailored and increased dose DNA vaccine delivery to the skin

    PubMed Central

    McCoy, Jay R; Mendoza, Janess M; Spik, Kristin W; Badger, Catherine; Gomez, Alan F; Schmaljohn, Connie S; Sardesai, Niranjan Y; Broderick, Kate E

    2015-01-01

    The identification of an effective and tolerable delivery method is a necessity for the success of DNA vaccines in the clinic. This article describes the development and validation of a multi-headed intradermal electroporation device which would be applicable for delivering multiple DNA vaccine plasmids simultaneously but spatially separated. Reporter gene plasmids expressing green and red fluorescent proteins were used to demonstrate the impact of spatial separation on DNA delivery to increase the number of transfected cells and avoid interference through visible expression patterns. To investigate the impact of plasmid interference on immunogenicity, a disease target was investigated where issues with multi-valent vaccines had been previously described. DNA-based Hantaan and Puumala virus vaccines were delivered separately or as a combination and the effect of multi-valence was determined by appropriate assays. While a negative impact was observed for both antigenic vaccines when delivered together, these effects were mitigated when the vaccine was delivered using the multi-head device. We also demonstrate how the multi-head device facilitates higher dose delivery to the skin resulting in improved immune responses. This new multi-head platform device is an efficient, tolerable and non-invasive method to deliver multiple plasmid DNA constructs simultaneously allowing the tailoring of delivery sites for combination vaccines. Additionally, this device would allow the delivery of multi-plasmid vaccine formulations without risk of impacted immune responses through interference. Such a low-cost, easy to use device platform for the delivery of multi-agent DNA vaccines would have direct applications by the military and healthcare sectors for mass vaccination purposes. PMID:25839221

  1. Immunogenicity of Bivalent Human Papillomavirus DNA Vaccine Using Human Endogenous Retrovirus Envelope-Coated Baculoviral Vectors in Mice and Pigs

    PubMed Central

    Lee, Hee-Jung; Hur, Yoon-Ki; Cho, Youn-Dong; Kim, Mi-Gyeong; Lee, Hoon-Taek; Oh, Yu-Kyoung; Kim, Young Bong

    2012-01-01

    Human papillomavirus is known to be the major pathogen of cervical cancer. Here, we report the efficacy of a bivalent human papillomavirus type 16 and 18 DNA vaccine system following repeated dosing in mice and pigs using a recombinant baculovirus bearing human endogenous retrovirus envelope protein (AcHERV) as a vector. The intramuscular administration of AcHERV-based HPV16L1 and HPV18L1 DNA vaccines induced antigen-specific serum IgG, vaginal IgA, and neutralizing antibodies to levels comparable to those achieved using the commercially marketed vaccine Cervarix. Similar to Cervarix, AcHERV-based bivalent vaccinations completely blocked subsequent vaginal challenge with HPV type-specific pseudovirions. However, AcHERV-based bivalent vaccinations induced significantly higher cell-mediated immune responses than Cervarix, promoting 4.5- (HPV16L1) and 3.9-(HPV18L1) fold higher interferon-γ production in splenocytes upon stimulation with antigen type-specific pseudovirions. Repeated dosing did not affect the immunogenicity of AcHERV DNA vaccines. Three sequential immunizations with AcHERV-HP18L1 DNA vaccine followed by three repeated dosing with AcHERV-HP16L1 over 11 weeks induced an initial production of anti-HPV18L1 antibody followed by subsequent induction of anti-HPV16L1 antibody. Finally, AcHERV-based bivalent DNA vaccination induced antigen-specific serum IgG immune responses in pigs. These results support the further development of AcHERV as a bivalent human papillomavirus DNA vaccine system for use in preventing the viral infection as well as treating the infected women by inducing both humoral and cell-mediated immune responses. Moreover, the possibility of repeated dosing indicates the utility of AcHERV system for reusable vectors of other viral pathogen vaccines. PMID:23209698

  2. Dendritic cell targeted liposomes-protamine-DNA complexes mediated by synthetic mannosylated cholestrol as a potential carrier for DNA vaccine

    NASA Astrophysics Data System (ADS)

    Li, Pan; Chen, Simu; Jiang, Yuhong; Jiang, Jiayu; Zhang, Zhirong; Sun, Xun

    2013-07-01

    To construct mannosylated liposomes/protamine/DNA (LPD) carriers for DNA vaccine targeting to dendritic cells (DCs), a mannosylated cholesterol derivative (Man-C6-Chol) was synthesized via simple ester linkage and amide bonds. Then, the Man-C6-Chol was applied to LPD formulation as a synthetic ligand. The physicochemical properties of mannosylated LPD (Man-LPD) were first evaluated, including the size and zeta potential, morphology and the ability to protect DNA against DNase I degradation. Man-LPD showed a small size with a stable viral-like structure. In comparison to non-mannose liposomes/LPD (Man-free liposomes/LPD), mannosylated liposomes/LPD (Man-liposomes/Man-LPD) exhibited higher efficiency in both intracellular uptake (2.3-fold) and transfection (4.5-fold) in vitro. Subsequent MTT assays indicated that the LPD carriers had low toxicity on the tested cells. Afterwards, the investigation into the maturation activation on primary bone marrow-derived DCs (BMDCs) showed that both Man-LPD and Man-free LPD induced remarkable up-regulation of CD80, CD86 and CD40 on BMDCs. Inspired by these studies, we can conclude that the synthetic mannosylated LPD targeting to DCs was a potential carrier for DNA vaccine.

  3. DNA Virus Vectors for Vaccine Production in Plants: Spotlight on Geminiviruses

    PubMed Central

    Hefferon, Kathleen L.

    2014-01-01

    Plants represent a safe, efficacious and inexpensive production platform by which to provide vaccines and other therapeutic proteins to the world’s poor. Plant virus expression vector technology has rapidly become one of the most popular methods to express pharmaceutical proteins in plants. This review discusses several of the state-of-the-art plant expression systems based upon geminiviruses that have been engineered for vaccine production. An overview of the advantages of these small, single-stranded DNA viruses is provided and comparisons are made with other virus expression systems. Advances in the design of several different geminivirus vectors are presented in this review, and examples of vaccines and other biologics generated from each are described. PMID:26344750

  4. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery

    PubMed Central

    Davoodi-Semiromi, Abdoreza; Schreiber, Melissa; Nallapali, Samson; Verma, Dheeraj; Singh, Nameirakpam D.; Banks, Robert K.; Chakrabarti, Debopam; Daniell, Henry

    2009-01-01

    Summary Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10+ T cell but not Foxp3+ regulatory T cells, suppression of interferon-γ and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity. PMID:20051036

  5. DNA-based vaccines protect against zoonotic schistosomiasis in water buffalo.

    PubMed

    Da'dara, Akram A; Li, Yuesheng S; Xiong, Tie; Zhou, Jie; Williams, Gail M; McManus, Donald P; Feng, Zheng; Yu, Xin L; Gray, Darren J; Harn, Donald A

    2008-07-01

    Schistosomiasis japonica is an endemic, zoonotic disease of major public health importance in China where water buffaloes account for approximately 75% of disease transmission. Interventions that reduce schistosome infection in water buffaloes will enhance their health simultaneously reducing disease transmission to humans. While chemotherapy has proved successful, it requires continued time consuming and expensive mass treatments. A more sustainable option would be development of vaccines that reduce transmission of S. japonicum from bovines to replace bovine chemotherapy. We performed two randomized double blind trials in water buffaloes to determine if DNA vaccines encoding triose-phosphate isomerase (SjCTPI), or the tetraspanin 23 kDa integral membrane protein (SjC23), alone or fused to bovine heat shock protein 70 (Hsp70) could induce a level of immunity conducive to long-term sustainable control. Groups of water buffaloes (15/group) received three intramuscular injections, 4 weeks apart. Booster immunizations were co-administered with a plasmid DNA encoding IL-12. Four weeks after the last injection, water buffaloes were challenged with 1000 cercariae, and vaccine efficacy analyzed 8 weeks later. Water buffaloes vaccinated with SjCTPI-Hsp70 or SjCTPI plasmids had worm burdens reduced by 51.2% and 41.5%, respectively. Importantly, fecal miracidial hatching was reduced by 52.1% and 33.2% respectively compared to control vaccinated water buffaloes. Vaccination with SjC23-Hsp70 and SjC23 plasmids reduced worm burdens by 50.9% and 45.5%, respectively, and fecal miracidial hatching by 52.0% and 47.4%. A mathematical model of schistosome transmission predicts that schistosome vaccines capable of reducing water buffaloes' fecal egg output by 45%, alone or in conjunction with praziquantel treatment, will lead to a significant reduction in transmission of schistosomiasis. Both DNA vaccines tested here exceed this hypothetical level. Indeed, mathematical modeling of Sj

  6. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon

    USGS Publications Warehouse

    Garver, K.A.; LaPatra, S.E.; Kurath, G.

    2005-01-01

    The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 ??g doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish. ?? Inter-Research 2005.

  7. Therapeutic DNA Vaccine Encoding Peptide P10 against Experimental Paracoccidioidomycosis

    PubMed Central

    Rittner, Glauce M. G.; Muñoz, Julián E.; Marques, Alexandre F.; Nosanchuk, Joshua D.; Taborda, Carlos P.; Travassos, Luiz R.

    2012-01-01

    Paracoccidioidomycosis (PCM), caused by Paracoccidioides brasiliensis, is the most prevalent invasive fungal disease in South America. Systemic mycoses are the 10th most common cause of death among infectious diseases in Brazil and PCM is responsible for more than 50% of deaths due to fungal infections. PCM is typically treated with sulfonamides, amphotericin B or azoles, although complete eradication of the fungus may not occur and relapsing disease is frequently reported. A 15-mer peptide from the major diagnostic antigen gp43, named P10, can induce a strong T-CD4+ helper-1 immune response in mice. The TEPITOPE algorithm and experimental data have confirmed that most HLA-DR molecules can present P10, which suggests that P10 is a candidate antigen for a PCM vaccine. In the current work, the therapeutic efficacy of plasmid immunization with P10 and/or IL-12 inserts was tested in murine models of PCM. When given prior to or after infection with P. brasiliensis virulent Pb 18 isolate, plasmid-vaccination with P10 and/or IL-12 inserts successfully reduced the fungal burden in lungs of infected mice. In fact, intramuscular administration of a combination of plasmids expressing P10 and IL-12 given weekly for one month, followed by single injections every month for 3 months restored normal lung architecture and eradicated the fungus in mice that were infected one month prior to treatment. The data indicate that immunization with these plasmids is a powerful procedure for prevention and treatment of experimental PCM, with the perspective of being also effective in human patients. PMID:22389734

  8. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    SciTech Connect

    Zheng Min; Jin Ningyi; Liu Qi; Huo Xiaowei; Li Yang; Hu Bo; Ma Haili; Zhu Zhanbo; Cong Yanzhao; Li Xiao; Jin Minglan; Zhu Guangze

    2009-08-15

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

  9. Extract from Agaricus blazei Murill can enhance immune responses elicited by DNA vaccine against foot-and-mouth disease.

    PubMed

    Chen, Liang; Shao, Hanjuan

    2006-01-15

    The fungus Agaricus blazei Murill (ABM) is particularly rich in polysaccharides, which have shown particularly strong results in treating and preventing cancers. The goal of this study was to investigate whether co-administration of the ABM extract with foot-and-mouth disease virus (FMDV) DNA vaccine could increase the immune responses. Compared with the control mice, which received FMDV DNA vaccine alone, significant increase in not only the FMDV-specific antibody response but also T cell proliferation was observed in mice which received FMDV DNA vaccine plus the ABM extract. Taken together, these results demonstrated that application of the ABM extract might provide a strategy to improve the efficacy of DNA vaccines.

  10. Effects of DDA, CpG-ODN, and plasmid-encoded chicken IFN-gamma on protective immunity by a DNA vaccine against IBDV in chickens.

    PubMed

    Roh, Ha Jung; Sung, Haan Woo; Kwon, Hyuk Moo

    2006-12-01

    This study examined the adjuvant effects of dimethyl dioctadecyl ammonium bromide (DDA), CpG oligodeoxynucleotides (CpG-ODN), and chicken interferon-gamma (ChIFN-gamma) on a DNA vaccine (pcDNA-VP243) against the infectious bursal disease virus (IBDV). A plasmid encoding chicken IFN-ã was constructed. Twice at 2-week intervals, two-week-old chickens were injected intramuscularly and intraperitoneally with either a DNA vaccine alone or a DNA vaccine together with the respective adjuvants. On week 2 after the second immunization, the chickens were orally challenged with the highly virulent IBDV. The groups that received the DNA vaccines plus either DDA or CpG-ODN showed significantly lower survival rates than the group that received the DNA vaccine alone. However, the survival rates for the DNA vaccine alone and for the DNA vaccine plus ChIFN-gamma were similar. The chickens had no detectable antibodies to the IBDV before the challenge but all the surviving chickens in all groups except for the normal control group showed the induction of antibodies to the IBDV at day 10 after the challenge. As judged by the lymphocyte proliferation assays using the a WST-8 solution performed on the peripheral blood and splenic lymphocytes, the stimulation indices (SI) of the peripheral blood lymphocytes in all groups except for the normal control group were similar immediately before the challenge. At 10 days post-challenge, the SI for DNA vaccine plus either CpG-ODN or ChIFN-gamma was similar to that of the DNA vaccine control group. For splenic lymphocytes, the SI in the DNA vaccine plus CpG-ODN and DNA vaccine plus ChIFN-gamma groups were higher than for the DNA vaccine control. These results suggest that DDA actually compromises the protection against the IBDV by DNA vaccine, and CpG-ODN and IFN-gamma had no significant effect. PMID:17106228

  11. Use of Adjuvants to Enhance the Immune Response Induced by a DNA Vaccine Against Bovine Herpesvirus-1.

    PubMed

    Di Giacomo, Sebastián; Quattrocchi, Valeria; Zamorano, Patricia

    2015-01-01

    This study investigated the induction of humoral and cellular immune response by a DNA vaccine based on the bovine herpesvirus-1 (BoHV-1) glycoprotein D with commercial adjuvants (SEPPIC), in the murine model and in a preliminary assay in cattle, in order to select vaccines candidates that can improve cellular response. A DNA vaccine with most of the adjuvants used in this study was able to elicit a gD and viral-specific humoral immune response in vaccinated mice. Nevertheless, only a DNA vaccine with Montanide GEL 01 PR and Montanide Essai 903110 induced viral-specific proliferation and the highest levels of IFN-γ secretion. Since a cellular response is important to deal with BoHV-1 infection, both adjuvants were tested in a small trial using bovines to corroborate improvement of a cellular response in the natural host. It was observed that a DNA vaccine with Montanide Essai 903110 induced the highest BoHV-1 specific IFN-γ production in cattle. So, this adjuvant is proposed as a suitable candidate to be tested in a BoHV-1 DNA vaccine for protection against viral challenge in bovines.

  12. A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells.

    PubMed

    Lin, Chi-Chen; Yu, Yen-Ling; Shih, Chia-Chiao; Liu, Ko-Jiunn; Ou, Keng-Liang; Hong, Ling-Zong; Chen, Jody D C; Chu, Ching-Liang

    2011-07-01

    DNA vaccine has been suggested to use in cancer therapy, but the efficacy remains to be improved. The immunostimulatory effect of a fungal immunomodulatory protein Ling Zhi-8 (LZ-8) isolated from Ganoderma lucidum has been reported. In this study, we tested the adjuvanticity of LZ-8 for HER-2/neu DNA vaccine against p185(neu) expressing tumor MBT-2 in mice. We found that recombinant LZ-8 stimulated mouse bone marrow-derived dendritic cells (DCs) via TLR4 and its stimulatory effect was not due to any microbe contaminant. In addition, LZ-8 enhanced the ability of DCs to induce antigen-specific T cell activation in vitro and in a subunit vaccine model in vivo. Surprisingly, LZ-8 cotreatment strongly improved the therapeutic effect of DNA vaccine against MBT-2 tumor in mice. This increase in antitumor activity was attributed to the enhancement of vaccine-induced Th1 and CTL responses. Consistent with the results from DCs, the promoting effect of LZ-8 on DNA vaccine was diminished when the MBT-2 tumor cells were grown in TLR4 mutant mice. Thus, we concluded that LZ-8 may be a promising adjuvant to enhance the efficacy of DNA vaccine by activating DCs via TLR4. PMID:21499904

  13. MPT-51/CpG DNA vaccine protects mice against Mycobacterium tuberculosis.

    PubMed

    Silva, Bruna Daniella de Souza; da Silva, Ediane Batista; do Nascimento, Ivan Pereira; Dos Reis, Michelle Cristina Guerreiro; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2009-07-16

    Tuberculosis (TB) is a severe infectious disease that kills approximately two million people worldwide every year. Because BCG protection is variable and does not protects adults, there is a great need for a new vaccine against TB that does not represent a risk for immunocompromised patients and that is also capable of protecting adult individuals. MPT-51 is a protein found in the genome of mycobacteria and binds to the fibronectin of the extracellular matrix, which may have a role in host tissue attachment and virulence. In order to test the usefulness of MPT-51 as a subunit vaccine, BALB/c were vaccinated and challenged with Mycobacterium tuberculosis. The infection of BALB/c with M. tuberculosis increased the number of IFN-gamma(+) T lymphocytes specific to MPT-51 in the spleen and lungs. Inoculation with rMPT-51/FIA and with rMPT-51/CpG DNA in non-infected BALB/c increased the amounts of IFN-gamma(+) T lymphocytes. Inoculation with rMPT-51/FIA also induced a humoral response specific to MPT-51. CFU counts of lung tissues done 60 days after infection showed a reduction of about 2 log in the bacteria load in the group of animals inoculated with rMPT-51/CpG DNA. These results make MPT-51 a valuable component to be further evaluated in the development of other subunit vaccines.

  14. Local gene expression and immune responses of vaginal DNA vaccination using a needle-free injector.

    PubMed

    Kanazawa, Takanori; Takashima, Yuuki; Tamura, Toshiaki; Tsuchiya, Miki; Shibata, Yasunori; Udagawa, Haruhide; Okada, Hiroaki

    2010-08-30

    The vaginal mucosa is the most common site of initiation of virus infections that are transmitted through heterosexual intercourse, including HIV and papillomavirus. Thus, in order to prevent or treat these infections, strong vaginal immunity is required as the first line of defense. In this study, to establish a less invasive, safe, convenient and effective immunization method, we examined the local (skin and vagina) gene transfection efficiency of a non-needle jet injector for daily insulin injection. In the skin experiment, the needle-free injector resulted in a marked increase in marker gene expression, compared to the conventional needle-syringe injection. In addition, intradermal DNA vaccination using the needle-free injector dramatically induced IFN-gamma and antibody systemic responses in mice. Furthermore, we investigated the applicability of the needle-free injector as a vaginal vaccination tool in rabbits. Vaginal gene expression using the needle-free injector was significantly greater than that using needle-syringe injection. Moreover, intravaginal vaccination by the needle-free injector promoted vaginal IgA secretion and IFN-gamma mRNA expression in the blood lymphocytes, to a degree significantly higher than that by needle-syringe injection. In conclusion, local vaginal DNA vaccination using a needle-free jet injector is a promising approach for the prevention and treatment of mucosal infectious diseases.

  15. Engineering RENTA, a DNA prime-MVA boost HIV vaccine tailored for Eastern and Central Africa.

    PubMed

    Nkolola, J P; Wee, E G-T; Im, E-J; Jewell, C P; Chen, N; Xu, X-N; McMichael, A J; Hanke, T

    2004-07-01

    For the development of human immunodeficiency virus type 1 (HIV-1) vaccines, traditional approaches inducing virus-neutralizing antibodies have so far failed. Thus the effort is now focused on elicitation of cellular immunity. We are currently testing in clinical trials in the United Kingdom and East Africa a T-cell vaccine consisting of HIV-1 clade A Gag-derived immunogen HIVA delivered in a prime-boost regimen by a DNA plasmid and modified vaccinia virus Ankara (MVA). Here, we describe engineering and preclinical development of a second immunogen RENTA, which will be used in combination with the present vaccine in a four-component DNA/HIVA-RENTA prime-MVA/HIVA-RENTA boost formulation. RENTA is a fusion protein derived from consensus HIV clade A sequences of Tat, reverse transcriptase, Nef and gp41. We inactivated the natural biological activities of the HIV components and confirmed immunogenicities of the pTHr.RENTA and MVA.RENTA vaccines in mice. Furthermore, we demonstrated in mice and rhesus monkeys broadening of HIVA-elicited T-cell responses by a parallel induction of HIVA- and RENTA-specific responses recognizing multiple HIV epitopes.

  16. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    SciTech Connect

    Korber, Bette; Fischer, William; Wallstrom, Timothy

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.

  17. Intra-epithelial vaccination with COPV L1 DNA by particle-mediated DNA delivery protects against mucosal challenge with infectious COPV in beagle dogs.

    PubMed

    Stanley, M A; Moore, R A; Nicholls, P K; Santos, E B; Thomsen, L; Parry, N; Walcott, S; Gough, G

    2001-04-01

    Protection against viral challenge with canine oral papillomavirus (COPV) was achieved by immunisation via particle-mediated DNA delivery (PMDD) of a plasmid encoding the COPV L1 gene to cutaneous and oral mucosal sites in beagle dogs. The initial dose of approximately 9 microg of DNA was followed by two booster doses at 6 week intervals. A similar approach was used to vaccinate a control group of animals with plasmid DNA encoding the Hepatitis B virus S gene. Following challenge at the oral mucosa with COPV all animals vaccinated with the COPV L1 gene were protected against disease. However five of six animals in the control group developed COPV induced papillomas at the oral mucosa. Both cell-mediated lymphoproliferative and humoral antibody responses to the DNA vaccine were observed. Our data indicate that PMDD of plasmid DNA can protect against mucosal challenge with papillomavirus. PMID:11282188

  18. NF-κB activation during intradermal DNA vaccination is essential for eliciting tumor protective antigen-specific CTL responses.

    PubMed

    Ligtenberg, Maarten A; Rojas-Colonelli, Nicole; Kiessling, Rolf; Lladser, Alvaro

    2013-10-01

    DNA vaccines have been shown to elicit tumor-protective cytotoxic T lymphocyte (CTL) immunity in preclinical models, but have shown limited efficacy in cancer patients. Plasmids used for DNA vaccines can stimulate several innate immune receptors, triggering the activation of master transcription factors, including interferon regulatory factor 3 (IRF3) and nuclear factor κ B (NF-κB). These transcription factors drive the production of type I interferons (IFNs) and pro-inflammatory cytokines, which promote the induction of CTL responses. Understanding the innate immune signaling pathways triggered by DNA vaccines that control the generation of CTL responses will increase our ability to design more effective vaccines. To gain insight into the contribution of these pathways, we vaccinated mice lacking different signaling components with plasmids encoding tyrosinase-related protein 2 (TRP2) or ovalbumin (OVA) using intradermal electroporation. Antigen-specific CTL responses were detected by intracellular IFN-γ staining and in vivo cytotoxicity. Mice lacking IRF3, IFN-α receptor, IL-1β/IL-18, TLR9 or MyD88 showed similar CTL responses to wild-type mice, arguing that none of these molecules were required for the immunogenicity of DNA vaccines. To elucidate the role of NF-κB activation we co-vaccinated mice with pIκBα-SR, a plasmid encoding a mutant IκBα that blocks NF-κB activity. Mice vaccinated with pIκBα-SR and the TRP2-encoding plasmid (pTRP2) drastically reduced the frequencies of TRP2-specific CTLs and were unable to suppress lung melanoma metastasis in vivo, as compared with mice vaccinated only with pTRP2. Taken together these results indicate that the activation of NF-κB is essential for the immunogenicity of intradermal DNA vaccines. PMID:23884215

  19. Arg-Gingipain A DNA Vaccine Induces Protective Immunity against Infection by Porphyromonas gingivalis in a Murine Model

    PubMed Central

    Yonezawa, Hideo; Ishihara, Kazuyuki; Okuda, Katsuji

    2001-01-01

    Arginine-specific cysteine proteinases (RgpA and RgpB) produced by the periodontal pathogen Porphyromonas gingivalis are suspected virulence factors and are involved in interrupting host defense mechanisms as well as in penetrating and destroying periodontal connective tissues. To induce a protective immune response against P. gingivalis, we constructed an rgpA DNA vaccine. BALB/c mice were immunized intradermally by Gene Gun with plasmid DNA carrying rgpA. Antibody responses against P. gingivalis were determined by an enzyme-linked immunosorbent assay. The rgpA DNA vaccine induced high levels of serum antibodies against P. gingivalis. Sera from the rgpA DNA vaccine-immunized mice diminished the proteolytic activity of RgpA and RgpB and inhibited the binding of P. gingivalis to a type I collagen sponge. Moreover, the sera effectively reduced the hemagglutination of P. gingivalis, indicating that the hemagglutinin activity of the organism is associated with RgpA. We found with a murine abscess model that mice immunized with the rgpA DNA vaccine were resistant to an invasive P. gingivalis W50 challenge. These results suggest that the rgpA DNA vaccine induced specific antibodies against the enzyme and that this vaccine could confer protective immunity against P. gingivalis infection. PMID:11292699

  20. Chicken IL-7 as a potent adjuvant enhances IBDV VP2 DNA vaccine immunogenicity and protective efficacy.

    PubMed

    Huo, Shanshan; Zuo, Yuzhu; Li, Nan; Li, Xiujin; Zhang, Yonghong; Wang, Liyue; Liu, Hao; Zhang, Jianlou; Cui, Dan; He, Pingyou; Xu, Jian; Li, Yan; Zhu, Xiutong; Zhong, Fei

    2016-09-25

    Our previous work has demonstrated that the mammalian interleukin-7 (IL-7) gene can enhance the immunogenicity of DNA vaccine. Whether chicken IL-7 (chIL-7) possesses the ability to enhance the immunogenicity of VP2 DNA vaccine of infectious bursal disease virus (IBDV) remained unknown. To investigate this, we constructed a VP2 antigenic region (VP2366) gene and chIL-7 gene vectors, co-immunized chicken with these vectors and analyzed the effects of the chIL-7 gene on VP2366 gene immunogenicity. Results showed that co-administrated chIL-7 gene with VP2 DNA vaccine significantly increased specific serum antibody titers against IBDV, and enhanced lymphocyte proliferation and IFN-γ and IL-4 productions. More importantly, chIL-7 gene significantly increased VP2366 gene-induced protection against virulent IBDV infection, indicating that the chIL-7 gene possessed the capacity to enhance VP2366 DNA vaccine immunogenicity, and therefore might function as a novel adjuvant for IBDV VP2 DNA vaccine. Mechanically, chIL-7 could stimulate the common cytokine receptor γ chain (γc) expressions in vitro and in vivo, which might be involved in chIL-7 enhancement of the immunogenicity of VP2 DNA vaccine. PMID:27599941

  1. The cis-Diammineplatinum(II) Complex of Curcumin: A Dual Action DNA Crosslinking and Photochemotherapeutic Agent.

    PubMed

    Mitra, Koushambi; Gautam, Srishti; Kondaiah, Paturu; Chakravarty, Akhil R

    2015-11-16

    [Pt(cur)(NH3)2](NO3) (1), a curcumin-bound cis-diammineplatinum(II) complex, nicknamed Platicur, as a novel photoactivated chemotherapeutic agent releases photoactive curcumin and an active platinum(II) species upon irradiation with visible light. The hydrolytic instability of free curcumin reduces upon binding to platinum(II). Interactions of 1 with 5'-GMP and ct-DNA indicated formation of platinum-bound DNA adducts upon exposure to visible light (λ=400-700 nm). It showed apoptotic photocytotoxicity in cancer cells (IC50 ≈ 15 μM), thus forming (⋅)OH, while remaining passive in the darkness (IC50 >200 μM). A comet assay and platinum estimation suggest Pt-DNA crosslink formation. The fluorescence microscopic images showed cytosolic localization of curcumin, thus implying possibility of dual action as a chemo- and phototherapeutic agent.

  2. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    PubMed

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria.

  3. Adverse effects of feline IL-12 during DNA vaccination against feline infectious peritonitis virus.

    PubMed

    Glansbeek, Harrie L; Haagmans, Bart L; te Lintelo, Eddie G; Egberink, Herman F; Duquesne, Véronique; Aubert, André; Horzinek, Marian C; Rottier, Peter J M

    2002-01-01

    Cell-mediated immunity is thought to play a decisive role in protecting cats against feline infectious peritonitis (FIP), a progressive and lethal coronavirus disease. In view of the potential of DNA vaccines to induce cell-mediated responses, their efficacy to induce protective immunity in cats was evaluated. The membrane (M) and nucleocapsid (N) proteins were chosen as antigens, because antibodies to the spike (S) protein of FIP virus (FIPV) are known to precipitate pathogenesis. However, vaccination by repeated injections of plasmids encoding these proteins did not protect kittens against challenge infection with FIPV. Also, a prime-boost protocol failed to afford protection, with priming using plasmid DNA and boosting using recombinant vaccinia viruses expressing the same coronavirus proteins. Because of the role of IL-12 in initiating cell-mediated immunity, the effects of co-delivery of plasmids encoding the feline cytokine were studied. Again, IL-12 did not meet expectations - on the contrary, it enhanced susceptibility to FIPV challenge. This study shows that DNA vaccination failed to protect cats against FIP and that IL-12 may yield adverse effects when used as a cytokine adjuvant.

  4. Attenuated Salmonella typhimurium SV4089 as a potential carrier of oral DNA vaccine in chickens.

    PubMed

    Jazayeri, Seyed Davoud; Ideris, Aini; Zakaria, Zunita; Omar, Abdul Rahman

    2012-01-01

    Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV) subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2%) and MCF-10A (0.5%) human breast cancer cells. Newly hatched specific-pathogen-free (SPF) chicks were inoculated once by oral gavage with 10(9) colony-forming unit (CFU) of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR) were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.

  5. Immunogenicity of a plasmid DNA vaccine encoding 42kDa fragment of Plasmodium vivax merozoite surface protein-1.

    PubMed

    Sheikh, Inayat Hussain; Kaushal, Deep C; Chandra, Deepak; Kaushal, Nuzhat A

    2016-10-01

    Plasmodium vivax is the second major human malaria parasite that inflicts debilitating morbidity and consequent economic impact in South-East Asian countries. The relapsing nature of P. vivax along with the emergence of drug-resistant P. vivax strains has emphasized the urgent need for a vaccine. However, the development of an effective vivax vaccine is seriously hampered due to the diversity and variation in parasite antigens and non-availability of suitable animal models. DNA based vaccines represent an alternative approach in inducing immunity to multiple targets from different stages of malaria parasite. DNA prime-boosting strategies induce both antibody mediated and cell-mediated immune responses that are the major mechanisms of protection against malaria parasites. We have earlier studied the immunogenicity and protective efficacy of the soluble and refolded forms of recombinant 42kDa fragment of Plasmodium vivax merozoite surface protein-1 (PvMSP-142) using P. cynomolgi rhesus monkey model. In the present study, we have constructed a recombinant DNA vaccine encoding 42kDa fragment of P. vivax MSP-1 and studied the immunogenicity of PvMSP-142 DNA vaccine construct in mice. The 42kDa gene fragment of PvMSP-1 was PCR amplified using gene specific primers and subcloned into pcDNA 3.1 (+) eukaryotic expression vector. In vitro expression of PvMSP-142 plasmid construct was checked by transfection in COS-1 cell line. Indirect immunofluorescence of transfected COS-1 cells probed with monoclonal antibodies against PvMSP-142 exhibited positive fluorescence. Immunization of BALB/c mice with PvMSP-142-pcDNA vaccine construct revealed the immunogenicity of recombinant vaccine plasmid that can be enhanced by prime boosting with recombinant protein corresponding to the DNA vaccine as evidenced by significant elevation of antibody and the cytokines responses. PMID:27311385

  6. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout

    USGS Publications Warehouse

    Kurath, Gael; Garver, Kyle A.; Corbeil, Serge; Elliott, Diane G.; Anderson, Eric D.; LaPatra, Scott E.

    2006-01-01

    The DNA vaccine pIHNw-G encodes the glycoprotein of the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV). Vaccine performance in rainbow trout was measured 3, 6, 13, 24, and 25 months after vaccination. At three months all fish vaccinated with 0.1 μg pIHNw-G had detectable neutralizing antibody (NAb) and they were completely protected from lethal IHNV challenge with a relative percent survival (RPS) of 100% compared to control fish. Viral challenges at 6, 13, 24, and 25 months post-vaccination showed protection with RPS values of 47–69%, while NAb seroprevalence declined to undetectable levels. Passive transfer experiments with sera from fish after two years post-vaccination were inconsistent but significant protection was observed in some cases. The long-term duration of protection observed here defined a third temporal phase in the immune response to IHNV DNA vaccination, characterized by reduced but significant levels of protection, and decline or absence of detectable NAb titers. Examination of multiple tissues showed an absence of detectable long-term histopathological damage due to DNA vaccination.

  7. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges

    PubMed Central

    Grant-Klein, Rebecca J; Altamura, Louis A; Badger, Catherine V; Bounds, Callie E; Van Deusen, Nicole M; Kwilas, Steven A; Vu, Hong A; Warfield, Kelly L; Hooper, Jay W; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2015-01-01

    Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed. PMID:25996997

  8. Dietary Flavones as Dual Inhibitors of DNA Methyltransferases and Histone Methyltransferases

    PubMed Central

    Kanwal, Rajnee; Datt, Manish; Liu, Xiaoqi; Gupta, Sanjay

    2016-01-01

    Methylation of DNA and histone proteins are mutually involved in the epigenetic regulation of gene expression mediated by DNA methyltransferases (DNMTs) and histone methyltransferases (HMTs). DNMTs methylate cytosine residues within gene promoters, whereas HMTs catalyze the transfer of methyl groups to lysine and arginine residues of histone proteins, thus causing chromatin condensation and transcriptional repression, which play an important role in the pathogenesis of cancer. The potential reversibility of epigenetic alterations has encouraged the development of dual pharmacologic inhibitors of DNA and histone methylation as anticancer therapeutics. Dietary flavones can affect epigenetic modifications that accumulate over time and have shown anticancer properties, which are undefined. Through DNA binding and in silico protein-ligand docking studies with plant flavones viz. Apigenin, Chrysin and Luteolin, the effect of flavones on DNA and histone methylation was assessed. Spectroscopic analysis of flavones with calf-thymus DNA revealed intercalation as the dominant binding mode, with specific binding to a GC-rich sequence in the DNA duplex. A virtual screening approach using a model of the catalytic site of DNMT and EZH2 demonstrated that plant flavones are tethered at both ends inside the catalytic pocket of DNMT and EZH2 by means of hydrogen bonding. Epigenetic studies performed with flavones exhibited a decrease in DNMT enzyme activity and a reversal of the hypermethylation of cytosine bases in the DNA and prevented cytosine methylation in the GC-rich promoter sequence incubated with the M.SssI enzyme. Furthermore, a marked decrease in HMT activity and a decrease in EZH2 protein expression and trimethylation of H3K27 were noted in histones isolated from cancer cells treated with plant flavones. Our results suggest that dietary flavones can alter DNMT and HMT activities and the methylation of DNA and histone proteins that regulate epigenetic modifications, thus

  9. Influenza nucleoprotein DNA vaccination by a skin targeted, dry coated, densely packed microprojection array (Nanopatch) induces potent antibody and CD8(+) T cell responses.

    PubMed

    Fernando, Germain J P; Zhang, Jin; Ng, Hwee-Ing; Haigh, Oscar L; Yukiko, Sally R; Kendall, Mark A F

    2016-09-10

    DNA vaccines have many advantages such as thermostability and the ease and rapidity of manufacture; for example, in an influenza pandemic situation where rapid production of vaccine is essential. However, immunogenicity of DNA vaccines was shown to be poor in humans unless large doses of DNA are used. If a highly efficacious DNA vaccine delivery system could be identified, then DNA vaccines have the potential to displace protein vaccines. In this study, we show in a C57BL/6 mouse model, that the Nanopatch, a microprojection array of high density (>21,000 projections/cm(2)), could be used to deliver influenza nucleoprotein DNA vaccine to skin, to generate enhanced antigen specific antibody and CD8(+) T cell responses compared to the conventional intramuscular (IM) delivery by the needle and syringe. Antigen specific antibody was measured using ELISA assays of mice vaccinated with a DNA plasmid containing the nucleoprotein gene of influenza type A/WSN/33 (H1N1). Antigen specific CD8(+) T cell responses were measured ex-vivo in splenocytes of mice using IFN-γ ELISPOT assays. These results and our previous antibody and CD4(+) T cell results using the Nanopatch delivered HSV DNA vaccine indicate that the Nanopatch is an effective delivery system of general utility that could potentially be used in humans to increase the potency of the DNA vaccines. PMID:27381247

  10. Recombinant Saccharomyces cerevisiae serves as novel carrier for oral DNA vaccines in Carassius auratus.

    PubMed

    Yan, Nana; Xu, Kun; Li, Xinyi; Liu, Yuwan; Bai, Yichun; Zhang, Xiaohan; Han, Baoquan; Chen, Zhilong; Zhang, Zhiying

    2015-12-01

    Oral delivery of DNA vaccines represents a promising vaccinating method for fish. Recombinant yeast has been proved to be a safe carrier for delivering antigen proteins and DNAs to some species in vivo. However, whether recombinant yeast can be used to deliver functional DNAs for vaccination to fish is still unknown. In this study, red crucian carp (Carassius auratus) was orally administrated with recombinant Saccharomyces cerevisiae harboring CMV-EGFP expression cassette. On day 5 post the first vaccination, EGFP expression in the hindgut was detected under fluorescence microscope. To further study whether the delivered gene could induce specific immune responses, the model antigen ovalbumin (OVA) was used as immunogen, and oral administrations were conducted with recombinant S. cerevisiae harboring pCMV-OVA mammalian gene expression cassette as gene delivery or pADH1-OVA yeast gene expression cassette as protein delivery. Each administration was performed with three different doses, and the OVA-specific serum antibody was detected in all the experimental groups by western blotting and enzyme-linked immunosorbent assay (ELISA). ELISA assay also revealed that pCMV-OVA group with lower dose (pCMV-OVA-L) and pADH1-OVA group with moderate dose (pADH1-OVA-M) triggered relatively stronger antibody response than the other two doses. Moreover, the antibody level induced by pCMV-OVA-L group was significantly higher than pADH1-OVA-M group at the same serum dilutions. All the results suggested that recombinant yeast can be used as a potential carrier for oral DNA vaccines and would help to develop more practical strategies to control infectious diseases in aquaculture. PMID:26481518

  11. Preclinical safety evaluation of DNA vaccines encoding modified HPV16 E6 and E7.

    PubMed

    Henken, F E; Oosterhuis, K; Öhlschläger, P; Bosch, L; Hooijberg, E; Haanen, J B A G; Steenbergen, R D M

    2012-06-13

    Persistent infection with high-risk human papillomaviruses (hrHPV) can result in the formation of anogenital cancers. As hrHPV proteins E6 and E7 are required for cancer initiation and maintenance, they are ideal targets for immunotherapeutic interventions. Previously, we have described the development of DNA vaccines for the induction of HPV16 E6 and E7 specific T cell immunity. These vaccines consist of 'gene-shuffled' (SH) versions of HPV16 E6 and E7 that were fused to Tetanus Toxin Fragment C domain 1 (TTFC) and were named TTFC-E6SH and TTFC-E7SH. Gene-shuffling was performed to avoid the risk of inducing malignant transformation at the vaccination site. Here, we describe the preclinical safety evaluation of these candidate vaccines by analysis of their transforming capacity in vitro using established murine fibroblasts (NIH 3T3 cells) and primary human foreskin keratinocytes (HFKs). We demonstrate that neither ectopic expression of TTFC-E6SH and TTFC-E7SH alone or in combination enabled NIH 3T3 cells to form colonies in soft agar. In contrast, expression of HPV16 E6WT and E7WT alone or in combination resulted in effective transformation. Similarly, retroviral transduction of HFKs from three independent donors with both TTFC-E6SH and TTFC-E7SH alone or in combination did not show any signs of immortalization. In contrast, the combined expression of E6WT and E7WT induced immortalization in HFKs from all donors. Based on these results we consider it justified to proceed to clinical evaluation of DNA vaccines encoding TTFC-E6SH and TTFC-E7SH in patients with HPV16 associated (pre)malignancies.

  12. A simple, fast, and sensitive assay for the detection of DNA, thrombin, and adenosine triphosphate based on Dual-Hairpin DNA structure.

    PubMed

    He, Xiuping; Wang, Guangfeng; Xu, Gang; Zhu, Yanhong; Chen, Ling; Zhang, Xiaojun

    2013-11-19

    In the present study, based on multifunctional Dual-Hairpin DNA structure, a simple, fast and high sensitive assay for the detection of DNA, thrombin and adenosine triphosphate (ATP) was demonstrated. DNA sequence labeled with methylene blue (MB), which was designed as single-stranded DNA (ssDNA) matching with target DNA, thrombin, or ATP aptamer, hybridized to the adjunct probe and formed the dual-hairpin structure on the electrode. With the hybridization of adjunct probe and the hairpin-like capture probe in the stem region, the dual-hairpin was formed with outer and inner hairpins. By the conjugation of the target probe with the adjunct probe in the outer hairpin, the adjunct probe divorced from the dual-hairpin structure. The adjunct probe with signal molecules MB, attaching near or divorcing far from the electrode, produced electrochemical signal change and efficient electron transfer due to the fact that it was in proximity to the electrode. However, upon hybridization with the perfect match target, the redox label with the target probe was forced away from the modified electrode, thus resulting in the change of the Dual-Hairpin DNA conformation, which enables impedance of the efficient electron transfer of MB and, consequently, a detectable change of the electrochemical response. In addition, another highlight of this biosensor is its regenerability and stability owing to the merits of structure. Also, based on this Dual-Hairpin platform, the detection limits of DNA, thrombin, and ATP were 50 nM, 3 pM, and 30 nM, respectively. Moreover, this pattern also demonstrated excellent regenerability, reproducibility, and stability. Additionally, given to its ease-of-use, simplicity in design, easy operations, as well as regenerability and stability, the proposed approach may be applied as an excellent design prompter in the preparation of other molecular sensors.

  13. Altered Response Hierarchy and Increased T-Cell Breadth upon HIV-1 Conserved Element DNA Vaccination in Macaques

    PubMed Central

    Kulkarni, Viraj; Valentin, Antonio; Rosati, Margherita; Alicea, Candido; Singh, Ashish K.; Jalah, Rashmi; Broderick, Kate E.; Sardesai, Niranjan Y.; Le Gall, Sylvie; Mothe, Beatriz; Brander, Christian; Rolland, Morgane; Mullins, James I.; Pavlakis, George N.; Felber, Barbara K.

    2014-01-01

    HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24gag elements (CE) induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55gag increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist. PMID:24465991

  14. DNA and virus particle vaccination protects against acquisition and confers control of viremia upon heterologous simian immunodeficiency virus challenge.

    PubMed

    Patel, Vainav; Jalah, Rashmi; Kulkarni, Viraj; Valentin, Antonio; Rosati, Margherita; Alicea, Candido; von Gegerfelt, Agneta; Huang, Wensheng; Guan, Yongjun; Keele, Brandon F; Bess, Julian W; Piatak, Michael; Lifson, Jeffrey D; Williams, William T; Shen, Xiaoying; Tomaras, Georgia D; Amara, Rama R; Robinson, Harriet L; Johnson, Welkin; Broderick, Kate E; Sardesai, Niranjan Y; Venzon, David J; Hirsch, Vanessa M; Felber, Barbara K; Pavlakis, George N

    2013-02-19

    We have previously shown that macaques vaccinated with DNA vectors expressing SIVmac239 antigens developed potent immune responses able to reduce viremia upon high-dose SIVmac251 challenge. To further improve vaccine-induced immunity and protection, we combined the SIVmac239 DNA vaccine with protein immunization using inactivated SIVmac239 viral particles as protein source. Twenty-six weeks after the last vaccination, the animals were challenged intrarectally at weekly intervals with a titrated dose of the heterologous SIVsmE660. Two of DNA-protein coimmunized macaques did not become infected after 14 challenges, but all controls were infected by 11 challenges. Vaccinated macaques showed modest protection from SIVsmE660 acquisition compared with naïve controls (P = 0.050; stratified for TRIM5α genotype). Vaccinees had significantly lower peak (1.6 log, P = 0.0048) and chronic phase viremia (P = 0.044), with 73% of the vaccinees suppressing viral replication to levels below assay detection during the 40-wk follow-up. Vaccine-induced immune responses associated significantly with virus control: binding antibody titers and the presence of rectal IgG to SIVsmE660 Env correlated with delayed SIVsmE660 acquisition; SIV-specific cytotoxic T cells, prechallenge CD4(+) effector memory, and postchallenge CD8(+) transitional memory cells correlated with control of viremia. Thus, SIVmac239 DNA and protein-based vaccine protocols were able to achieve high, persistent, broad, and effective cellular and humoral immune responses able to delay heterologous SIVsmE660 infection and to provide long-term control of viremia. These studies support a role of DNA and protein-based vaccines for development of an efficacious HIV/AIDS vaccine.

  15. Immunotherapy of HPV-associated cancer: DNA/plant-derived vaccines and new orthotopic mouse models.

    PubMed

    Venuti, Aldo; Curzio, Gianfranca; Mariani, Luciano; Paolini, Francesca

    2015-10-01

    Under the optimistic assumption of high-prophylactic HPV vaccine coverage, a significant reduction of cancer incidence can only be expected after decades. Thus, immune therapeutic strategies are needed for persistently infected individuals who do not benefit from the prophylactic vaccines. However, the therapeutic strategies inducing immunity to the E6 and/or E7 oncoprotein of HPV16 are more effective for curing HPV-expressing tumours in animal models than for treating human cancers. New strategies/technologies have been developed to improve these therapeutic vaccines. Our studies focussed on preparing therapeutic vaccines with low-cost technologies by DNA preparation fused to either plant-virus or plant-toxin genes, such as saporin, and by plant-produced antigens. In particular, plant-derived antigens possess an intrinsic adjuvant activity that makes these preparations especially attractive for future development. Additionally, discrepancy in vaccine effectiveness between animals and humans may be due to non-orthotopic localization of animal models. Orthotopic transplantation leads to tumours giving a more accurate representation of the parent tumour. Since HPV can cause cancer in two main localizations, anogenital and oropharynx area, we developed two orthotopic tumour mouse models in these two sites. Both models are bioluminescent in order to follow up the tumour growth by imaging and are induced by cell injection without the need to intervene surgically. These models were utilized for immunotherapies with genetic or plant-derived therapeutic vaccines. In particular, the head/neck orthotopic model appears to be very promising for studies combining chemo-radio-immune therapy that seems to be very effective in patients.

  16. [Protection of health personnel against hepatitis B by DNA recombinant vaccine].

    PubMed

    Navarrete-Navarro, S; Alvarez-Muñoz, M T; Bustamante-Calvillo, M E; Vallejo-Aguilar, O J; Muñoz, O; Santos-Preciado, J I; Avila-Figueroa, C

    1992-11-01

    Hepatitis B (HVB) is a worldwide spread health problem. It has been assessed that there are more than 300 millions of carriers. HVB has a special concern for health care workers (HCW's) due to the high risk among them of getting the infection in clinic-setting areas. According to some estimation, the risk for hepatitis B among HCW's is 2 to 10 times higher than the risk for general population. The risk is related to the degree of direct contact with blood and body fluids, as well as, with the frequency of traumatic exposure in the work place. The control of this infection is based on the observance of universal precautions and the vaccination, since there is not treatment against this disease. The results of an efficacy-evaluation of DNA recombinant vaccine against hepatitis B are reported; 174 HCW's were studied; three dosages of vaccine were administered (0.1st and 6th month) by I.M. via. In addition, three serum samples were collected at 0, 1st and 9th month after vaccine administration. We did not find carriers of surface antigen of hepatitis B. With regards to seroconverted individuals we observed the following results: there were a satisfactory response to the vaccine in 163 individuals (93.7%); however, 8 (4.6%) persons did not reach titles of protective antibodies and 3 (1.7%) did not show seroconversion at all. Therefore, 11 persons (6.3% of the total) did not result immunized. The secondary reactions to the vaccines were low in frequency and mainly of local presentation. Among the study population we did not find chronic carries of hepatitis B.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1466772

  17. Immunotherapy of HPV-associated cancer: DNA/plant-derived vaccines and new orthotopic mouse models.

    PubMed

    Venuti, Aldo; Curzio, Gianfranca; Mariani, Luciano; Paolini, Francesca

    2015-10-01

    Under the optimistic assumption of high-prophylactic HPV vaccine coverage, a significant reduction of cancer incidence can only be expected after decades. Thus, immune therapeutic strategies are needed for persistently infected individuals who do not benefit from the prophylactic vaccines. However, the therapeutic strategies inducing immunity to the E6 and/or E7 oncoprotein of HPV16 are more effective for curing HPV-expressing tumours in animal models than for treating human cancers. New strategies/technologies have been developed to improve these therapeutic vaccines. Our studies focussed on preparing therapeutic vaccines with low-cost technologies by DNA preparation fused to either plant-virus or plant-toxin genes, such as saporin, and by plant-produced antigens. In particular, plant-derived antigens possess an intrinsic adjuvant activity that makes these preparations especially attractive for future development. Additionally, discrepancy in vaccine effectiveness between animals and humans may be due to non-orthotopic localization of animal models. Orthotopic transplantation leads to tumours giving a more accurate representation of the parent tumour. Since HPV can cause cancer in two main localizations, anogenital and oropharynx area, we developed two orthotopic tumour mouse models in these two sites. Both models are bioluminescent in order to follow up the tumour growth by imaging and are induced by cell injection without the need to intervene surgically. These models were utilized for immunotherapies with genetic or plant-derived therapeutic vaccines. In particular, the head/neck orthotopic model appears to be very promising for studies combining chemo-radio-immune therapy that seems to be very effective in patients. PMID:26138695

  18. Dual Targeting Biomimetic Liposomes for Paclitaxel/DNA Combination Cancer Treatment

    PubMed Central

    Liu, Guo-Xia; Fang, Gui-Qing; Xu, Wei

    2014-01-01

    Combinations of chemotherapeutic drugs with nucleic acid has shown great promise in cancer therapy. In the present study, paclitaxel (PTX) and DNA were co-loaded in the hyaluronic acid (HA) and folate (FA)-modified liposomes (HA/FA/PPD), to obtain the dual targeting biomimetic nanovector. The prepared HA/FA/PPD exhibited nanosized structure and narrow size distributions (247.4 ± 4.2 nm) with appropriate negative charge of −25.40 ± 2.7 mV. HA/FA/PD (PTX free HA/FA/PPD) showed almost no toxicity on murine malignant melanoma cell line (B16) and human hepatocellular carcinoma cell line (HepG2) (higher than 80% cell viability), demonstrating the safety of the blank nanovector. In comparison with the FA-modified PTX/DNA co-loaded liposomes (FA/PPD), HA/FA/PPD showed significant superiority in protecting the nanoparticles from aggregation in the presence of plasma and degradation by DNase I. Moreover, HA/FA/PPD could also significantly improve the transfection efficiency and cellular internalization rates on B16 cells comparing to that of FA/PPD (p < 0.05) and PPD (p < 0.01), demonstrating the great advantages of dual targeting properties. Furthermore, fluorescence microscope and flow cytometry results showed that PTX and DNA could be effectively co-delivered into the same tumor cell via HA/FA/PPD, contributing to PTX/DNA combination cancer treatment. In conclusion, the obtained HA/FA/PPD in the study could effectively target tumor cells, enhance transfection efficiency and subsequently achieve the co-delivery of PTX and DNA, displaying great potential for optimal combination therapy. PMID:25177862

  19. The protective efficacy of MSP4/5 against lethal Plasmodium chabaudi adami challenge is dependent on the type of DNA vaccine vector and vaccination protocol.

    PubMed

    Rainczuk, A; Smooker, P M; Kedzierski, L; Black, C G; Coppel, R L; Spithill, T W

    2003-06-20

    The enhancement of immunogenicity of malarial DNA vaccines is important if they are to have practical application in protecting against blood-stage malaria. Here we describe three different DNA vaccine vector types used in conjunction with the blood-stage merozoite surface protein 4/5 (MSP4/5), the murine homologue of Plasmodium falciparum MSP4 and MSP5, in an attempt to enhance survival against lethal Plasmodium chabaudi adami DS blood-stage challenge. MSP4/5 was inserted into VR1020 (secretory), monocyte-chemotactic protein-3 (MCP-3) (chemoattractant), and cytotoxic T-lymphocyte antigen 4 (CTLA4) (lymph node targeting) vectors. Mice were immunized intradermally via gene-gun, IM injection, or boosting with recombinant MSP4/5 protein. Antibody responses after boosting were predominantly of the IgG1 and IgE isotypes, with low avidity antibodies produced in DNA primed groups. Despite antibody responses comparable to recombinant protein immunization, boosting mice primed with antigens encoded by MCP-3 and CTLA4 vectors did not enhance survival compared to vector control groups. Gene-gun vaccination using VR1020/MSP4/5 followed by recombinant MSP4/5 boosting, or gene-gun DNA vaccination alone using MCP-3/MSP4/5, resulted in enhanced survival compared to empty vector control mice. The results suggest that the enhancement of survival against lethal blood-stage malaria challenge after utilizing MSP4/5 DNA vaccination is therefore highly dependent on the route and type of vaccine vector employed.

  20. Oral Vaccination with Attenuated Salmonella typhimurium-Delivered TsPmy DNA Vaccine Elicits Protective Immunity against Trichinella spiralis in BALB/c Mice

    PubMed Central

    Wang, Lei; Wang, Xiaohuan; Bi, Kuo; Sun, Ximeng; Yang, Jing; Gu, Yuan; Huang, Jingjing; Zhan, Bin; Zhu, Xinping

    2016-01-01

    Background Our previous studies showed that Trichinella spiralis paramyosin (TsPmy) is an immunomodulatory protein that inhibits complement C1q and C8/C9 to evade host complement attack. Vaccination with recombinant TsPmy protein induced protective immunity against T. spiralis larval challenge. Due to the difficulty in producing TsPmy as a soluble recombinant protein, we prepared a DNA vaccine as an alternative approach in order to elicit a robust immunity against Trichinella infection. Methods and Findings The full-length TsPmy coding DNA was cloned into the eukaryotic expression plasmid pVAX1, and the recombinant pVAX1/TsPmy was transformed into attenuated Salmonella typhimurium strain SL7207. Oral vaccination of mice with this attenuated Salmonella-delivered TsPmy DNA vaccine elicited a significant mucosal sIgA response in the intestine and a systemic IgG antibody response with IgG2a as the predominant subclass. Cytokine analysis also showed a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, 5, 6, 10) responses in lymphocytes from the spleen and MLNs of immunized mice upon stimulation with TsPmy protein. The expression of the homing receptors CCR9/CCR10 on antibody secreting B cells may be related to the translocation of IgA-secreted B cells to local intestinal mucosa. The mice immunized with Salmonella-delivered TsPmy DNA vaccine produced a significant 44.8% reduction in adult worm and a 46.6% reduction in muscle larvae after challenge with T. spiralis larvae. Conclusion Our results demonstrated that oral vaccination with TsPmy DNA delivered by live attenuated S. typhimurium elicited a significant local IgA response and a mixed Th1/Th2 immune response that elicited a significant protection against T. spiralis infection in mice. PMID:27589591

  1. Intrahepatic DNA vaccination: unexpected increased resistance against murine cysticercosis induced by non-specific enhanced immunity.

    PubMed

    Cruz-Revilla, C; Sonabend, A M; Rosas, G; Toledo, A; Meneses, G; Lopez-Casillas, F; Hernández, B; Fragoso, G; Sciutto, E

    2006-06-01

    Experimental murine cysticercosis caused by Taenia crassiceps has proved to be a useful model with which to test the efficacy of new vaccine candidates and delivery systems against pig cysticercosis. A high level of protection against murine cysticercosis was previously observed by intramuscular or intradermal DNA immunization with the use of the sequence of the recombinant KETc7 antigen cloned in pcDNA3 (pTc-sp7). To determine the effect of KETc7 differential expression in DNA vaccination, KETc7 was cloned in pGEM 11Zf(+) under the control of the tissue-specific regulatory promoter phosphoenolpyruvate carboxykinase (pPc-sp7). A high level of protection was induced by intrahepatic immunization with pPc-sp7, pTc-sp7 and the empty vector in the absence of any specific immunity. The empty vector pGEM 11Zf(+), the plasmid with the highest content of CpG sequences, provided to the most efficient protection. This protection was related to an increased number of splenocytes, enhanced nonspecific splenocyte proliferation, and intensified intrahepatic INF-gamma production. Overall, intrahepatic plasmid CpG-DNA immunization provokes an exacerbated nonspecific immune response that can effectively control Taenia crassiceps cysticercosis.

  2. Immunogenicity and protective efficacy of DNA vaccine against visceral leishmaniasis in BALB/c mice.

    PubMed

    Kaur, Sukhbir; Kaur, Tejinder; Joshi, Jyoti

    2016-07-01

    The current study was designed to examine the protective efficacy of DNA vaccines based on gp63 and Hsp70 against murine visceral leishmaniasis. Inbred BALB/c mice were immunized subcutaneously twice at an interval of three weeks with pcDNA3.1(+) encoding T cell epitopes of gp63 and Hsp70 individually and in combination. Animals were challenged intracardially with 10(7) promastigotes of Leishmania donovani 10 days post immunization and sacrificed 1, 2 and 3 months post challenge. The immunized animals revealed a significant reduction (P < 0.05) in splenic and hepatic parasite burden as compared to the infected controls. Maximum reduction in parasite load (P < 0.05) was observed in animals treated with a combination of pcDNA/gp63 and pcDNA/Hsp70. These animals also showed heightened DTH response, increased IgG2a, elevated Th1 cytokines (IFN-γ and IL-2) and reduced IgG1 and IL-10 levels. Thus, mice immunized with the cocktail vaccine exhibited significantly greater protection in comparison to those immunized with individual antigens. PMID:27533939

  3. Immunogenicity and protective efficacy of DNA vaccine against visceral leishmaniasis in BALB/c mice

    PubMed Central

    Kaur, Sukhbir; Kaur, Tejinder; Joshi, Jyoti

    2016-01-01

    Abstract The current study was designed to examine the protective efficacy of DNA vaccines based on gp63 and Hsp70 against murine visceral leishmaniasis. Inbred BALB/c mice were immunized subcutaneously twice at an interval of three weeks with pcDNA3.1(+) encoding T cell epitopes of gp63 and Hsp70 individually and in combination. Animals were challenged intracardially with 107 promastigotes of Leishmania donovani 10 days post immunization and sacrificed 1, 2 and 3 months post challenge. The immunized animals revealed a significant reduction (P < 0.05) in splenic and hepatic parasite burden as compared to the infected controls. Maximum reduction in parasite load (P < 0.05) was observed in animals treated with a combination of pcDNA/gp63 and pcDNA/Hsp70. These animals also showed heightened DTH response, increased IgG2a, elevated Th1 cytokines (IFN-γ and IL-2) and reduced IgG1 and IL-10 levels. Thus, mice immunized with the cocktail vaccine exhibited significantly greater protection in comparison to those immunized with individual antigens. PMID:27533939

  4. Vaccination with minigenes encoding for novel 'self' antigens are effective in DNA-vaccination against neuroblastoma.

    PubMed

    Huebener, N; Lange, B; Lemmel, C; Rammensee, H G; Strandsby, A; Wenkel, J; Jikai, J; Zeng, Y; Gaedicke, G; Lode, H N

    2003-07-18

    The induction of T-cell mediated immunity against neuroblastoma is a challenge due to poor immunogenicity of this malignancy. Here, we demonstrate the induction of protective immunity in a syngeneic murine neuroblastoma model following vaccination with minigenes comprising of three novel natural MHC class I ligands. First, after immunoprecipitation of MHC class I from NXS2 cells, peptides were eluted and examined in tandem-MS analysis which lead to the identification of three novel natural MHC class I peptide ligands, TEALPVKLI from ribonucleotide reductase M2, NEYIMSLI from Ser/Thr protein phosphatase 2A and FEMVSTLI with unknown origin. Second, we constructed two different minigenes, one encoding for the three novel epitopes and the second for three known mTH derived epitopes with high predicted binding affinity to MHC class I by cloning them into the mammalian expression vector pCMV-3FUB. This lead to constructs with an ubiquitin-tag upstream the inserted epitopes in order to facilitate proteasomal degradation. Furthermore the epitopes were separated by a spacer peptide (AAY), which proved to be a preferential proteasome cleavage site. Third, we demonstrate the induction of protective immunity against neuroblastoma using an attenuated strain of Salmonella typhimurium as a carrier harboring pCMV 3FUb vectors encoding for the two minigenes. These findings establish proof of concept that disruption of self tolerance against neuroblastoma associated epitopes may be an effective adjuvant therapeutic strategy.

  5. Induction of Broad Cytotoxic T Cells by Protective DNA Vaccination Against Marburg and Ebola

    PubMed Central

    Shedlock, Devon J; Aviles, Jenna; Talbott, Kendra T; Wong, Gary; Wu, Stephan J; Villarreal, Daniel O; Myles, Devin JF; Croyle, Maria A; Yan, Jian; Kobinger, Gary P; Weiner, David B

    2013-01-01

    Marburg and Ebola hemorrhagic fevers have been described as the most virulent viral diseases known to man due to associative lethality rates of up to 90%. Death can occur within days to weeks of exposure and there is currently no licensed vaccine or therapeutic. Recent evidence suggests an important role for antiviral T cells in conferring protection, but little detailed analysis of this response as driven by a protective vaccine has been reported. We developed a synthetic polyvalent-filovirus DNA vaccine against Marburg marburgvirus (MARV), Zaire ebolavirus (ZEBOV), and Sudan ebolavirus (SUDV). Preclinical efficacy studies were performed in guinea pigs and mice using rodent-adapted viruses, whereas murine T-cell responses were extensively analyzed using a novel modified assay described herein. Vaccination was highly potent, elicited robust neutralizing antibodies, and completely protected against MARV and ZEBOV challenge. Comprehensive T-cell analysis revealed cytotoxic T lymphocytes (CTLs) of great magnitude, epitopic breadth, and Th1-type marker expression. This model provides an important preclinical tool for studying protective immune correlates that could be applied to existing platforms. Data herein support further evaluation of this enhanced gene-based approach in nonhuman primate studies for in depth analyses of T-cell epitopes in understanding protective efficacy. PMID:23670573

  6. Dengue virus type 1 DNA vaccine induces protective immune responses in rhesus macaques.

    PubMed

    Raviprakash, K; Porter, K R; Kochel, T J; Ewing, D; Simmons, M; Phillips, I; Murphy, G S; Weiss, W R; Hayes, C G

    2000-07-01

    A candidate DNA vaccine expressing dengue virus type 1 pre-membrane and envelope proteins was used to immunize rhesus macaques. Monkeys were immunized intramuscularly (i.m.) or intradermally (i.d.) by three or four 1 mg doses of vaccine, respectively. Monkeys that were inoculated i.m. seroconverted more quickly and had higher antibody levels than those that were inoculated i.d. The sera exhibited virus-neutralizing activity, which declined over time. Four of the eight i.m.-inoculated monkeys were protected completely from developing viraemia when challenged 4 months after the last dose with homologous dengue virus. The other four monkeys had reduced viraemia compared with the control immunized monkeys. The i.d. -inoculated monkeys showed no reduction in viraemia when challenged with the virus. All vaccinated monkeys showed an anamnestic antibody response, indicating that they had established immunological memory. Vaccine-induced antibody had an avidity index similar to that of antibody induced by virus infection; however, no clear correlation was apparent between antibody avidity and virus neutralization titres.

  7. CCL21 (SLC) improves tumor protection by a DNA vaccine in a Her2/neu mouse tumor model.

    PubMed

    Nguyen-Hoai, T; Baldenhofer, G; Sayed Ahmed, M S; Pham-Duc, M; Vu, M D; Lipp, M; Dörken, B; Pezzutto, A; Westermann, J

    2012-01-01

    Secondary lymphoid-tissue chemokine (SLC/CCL21) is a CC chemokine that is constitutively expressed in various lymphoid tissues and binds to chemokine receptor CCR7 on mature dendritic cells (DCs) and distinct T-and B-cell sub-populations. In vivo, CCL21 regulates the encounters between DC and T cells and thus is a key regulator of adaptive immune responses. We asked whether CCL21 is able to augment immunogenicity of a DNA-based vaccine against Her2/neu in a Balb/c mouse model with syngeneic Her2/neu+ tumor cells (D2F2/E2). Mice were vaccinated intramuscularly with plasmid DNA (pDNA) on day 1 and boosted on day 15; tumor challenge was performed subcutaneously on day 25. Coexpression of CCL21 and Her-2/neu resulted in induction of a TH1-polarized immune response and substantial improvement of the protective effect of the DNA vaccine. Coexpression of tumor antigen pDNA(Her2/neu) with both pDNA(GM-CSF) and pDNA(CCL21) as adjuvants led to further improvement of protection by the vaccine (70% tumor-free mice on day 35 vs 40% with either adjuvant alone vs 5-10% with tumor antigen alone). Our results show that CCL21 is a potent adjuvant for DNA vaccination, particularly in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF). Clinical use of a pDNA(Her2/neu/CCL21/GM-CSF) vaccine might be particularly promising in minimal residual Her2/neu+ breast cancer.

  8. DNA shuffling: induced molecular breeding to produce new generation long-lasting vaccines.

    PubMed

    Marshall, Sergio H

    2002-11-01

    The paradigm for classic vaccines has been to mimic natural infection, and their success relies mostly on the induction of neutralizing antibodies followed by long-lasting immunity. The outcome of aggressive chronic infections such as HIV and HCV, the reappearance of fastidious diseases such as tuberculosis and the progression of cancer growth suggest that natural immune responses are definitely insufficient in many cases. A new paradigm is needed to design and develop a new high-efficiency generation of vaccines ideally able to surpass the capabilities of natural immune responses. In vitro evolution is a new, important laboratory method to evolve molecules with desired properties, which appears as an appealing alternative to achieve this goal. In its battle against disease, the vertebrate immune system triggers a series of well-known molecular events in order to produce protective neutralizing antibodies. This natural in vivo response shares remarkable similarities with the in vitro technique known as molecular breeding or "DNA shuffling." This method exploits the recombination between genes to dramatically accelerate the rate at which genes can be evolved under selection pressure in the laboratory, producing optimized high-efficiency mutant proteins. Since new generation vaccines are aimed to overcome natural selection and environmental pressures to fully inactivate rapidly developing pathogen variants, they could be engineered, developed and selected through the application of directed DNA shuffling procedures. This review highlights the potential of the procedure in the complex context of natural immune responses and the equilibrium and interaction existing in nature between hosts and pathogens.

  9. Ultraspecific electrochemical DNA biosensor by coupling spontaneous cascade DNA branch migration and dual-signaling sensing strategy.

    PubMed

    Wang, Ting; Zhou, Lili; Bai, Shulian; Zhang, Zhang; Li, Junlong; Jing, Xiaoying; Xie, Guoming

    2016-04-15

    Using spontaneous cascade DNA branch migration and dual-signaling sensing strategy, we developed a novel universal electrochemical biosensor for the highly specific and sensitive detection of nucleic acids. A target strand (Ts) competitively hybridized with a ferrocene (Fc)-labeled signal probe (Fc-S1), which was blocked by a protector strand (Ps), after strand displacement to form the Ts/Fc-S1 duplex. A methylene blue (MB)-modified signal probe (MB-S2) was immobilized on the Au electrode surface by hybridizing with a thiolated capture probe (Cp). Then, the obtained reactants (Ts/Fc-S1 and MB-S2/Cp) suffered spontaneous DNA branch migration and produced two hybridization products (Fc-S1/Cp and MB-S2/Ts). These reactions led to the dissociation of MB molecules and the collection of Fc molecules. The detection mechanism of this DNA biosensor involved distance variation between the redox tags and the Au electrode, which was associated with target-induced cascade DNA branch migration. Moreover, we rationally designed the cascade DNA branch migration to occur spontaneously with ΔG° ≈ 0, at which slight thermodynamic changes caused by base mismatch exerted a disproportionately large effect on the hybridization yield. This "signal-on/off" sensing system exhibited a remarkable analytical performance and an ultrahigh discrimination capability even against a single-base mismatch. The maximum discrimination factor (DF) of base mutations or alterations can reach 17.9. Therefore, our electrochemical biosensor might hold a great potential for further applications in biomedical research and early clinical diagnosis.

  10. [VACCINES].

    PubMed

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs.

  11. A DNA microarray-based assay to detect dual infection with two dengue virus serotypes.

    PubMed

    Díaz-Badillo, Alvaro; Muñoz, María de Lourdes; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G; Martínez-Muñoz, Jorge P; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  12. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    PubMed Central

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  13. A DNA microarray-based assay to detect dual infection with two dengue virus serotypes.

    PubMed

    Díaz-Badillo, Alvaro; Muñoz, María de Lourdes; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G; Martínez-Muñoz, Jorge P; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  14. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Rong, Guangyu; Hao, Yan; Yu, Lu; Kang, Hong; Wang, Xin; Wang, Xiaohua; Jin, Zheng; Ren, Zhiyu; Li, Zejun

    2016-05-01

    Newcastle disease caused by ND virus (NDV) is a highly contagious disease of birds. Vaccine for effective protection of poultry animals from NDV infection is urgently needed. Mucosal immunity plays a very important role in the antiviral immune response. In this study, a NDV F gene-containing DNA vaccine encapsulated in Ag@SiO2 hollow nanoparticles (pFDNA-Ag@SiO2-NPs) with an average diameter of 500 nm were prepared to assess the mucosal immune response. These nanoparticles exhibited low cytotoxicity and did not destroy the bioactivity of plasmid DNA, which could be expressed in vitro. The plasmid DNA was sustainably released after an initial burst release. In vivo immunization showed that the intranasal immunization of chickens with pFDNA-Ag@SiO2-NPs induced high titers of serum antibody, significantly promoted lymphocyte proliferation and induced higher expression levels of IL-2 and IFN-γ in a dose-dependent manner. These results indicated that the Ag@SiO2 hollow nanoparticles could serve as an efficient and safe delivery carrier for NDV DNA vaccine to induce mucosal immunity. This study has provided promising results for the further development of mucosal vaccines encapsulated in inorganic nanoparticles.

  15. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles.

    PubMed

    Zhao, Kai; Rong, Guangyu; Hao, Yan; Yu, Lu; Kang, Hong; Wang, Xin; Wang, Xiaohua; Jin, Zheng; Ren, Zhiyu; Li, Zejun

    2016-01-01

    Newcastle disease caused by ND virus (NDV) is a highly contagious disease of birds. Vaccine for effective protection of poultry animals from NDV infection is urgently needed. Mucosal immunity plays a very important role in the antiviral immune response. In this study, a NDV F gene-containing DNA vaccine encapsulated in Ag@SiO2 hollow nanoparticles (pFDNA-Ag@SiO2-NPs) with an average diameter of 500 nm were prepared to assess the mucosal immune response. These nanoparticles exhibited low cytotoxicity and did not destroy the bioactivity of plasmid DNA, which could be expressed in vitro. The plasmid DNA was sustainably released after an initial burst release. In vivo immunization showed that the intranasal immunization of chickens with pFDNA-Ag@SiO2-NPs induced high titers of serum antibody, significantly promoted lymphocyte proliferation and induced higher expression levels of IL-2 and IFN-γ in a dose-dependent manner. These results indicated that the Ag@SiO2 hollow nanoparticles could serve as an efficient and safe delivery carrier for NDV DNA vaccine to induce mucosal immunity. This study has provided promising results for the further development of mucosal vaccines encapsulated in inorganic nanoparticles. PMID:27170532

  16. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles

    PubMed Central

    Zhao, Kai; Rong, Guangyu; Hao, Yan; Yu, Lu; Kang, Hong; Wang, Xin; Wang, Xiaohua; Jin, Zheng; Ren, Zhiyu; Li, Zejun

    2016-01-01

    Newcastle disease caused by ND virus (NDV) is a highly contagious disease of birds. Vaccine for effective protection of poultry animals from NDV infection is urgently needed. Mucosal immunity plays a very important role in the antiviral immune response. In this study, a NDV F gene-containing DNA vaccine encapsulated in Ag@SiO2 hollow nanoparticles (pFDNA-Ag@SiO2-NPs) with an average diameter of 500 nm were prepared to assess the mucosal immune response. These nanoparticles exhibited low cytotoxicity and did not destroy the bioactivity of plasmid DNA, which could be expressed in vitro. The plasmid DNA was sustainably released after an initial burst release. In vivo immunization showed that the intranasal immunization of chickens with pFDNA-Ag@SiO2-NPs induced high titers of serum antibody, significantly promoted lymphocyte proliferation and induced higher expression levels of IL-2 and IFN-γ in a dose-dependent manner. These results indicated that the Ag@SiO2 hollow nanoparticles could serve as an efficient and safe delivery carrier for NDV DNA vaccine to induce mucosal immunity. This study has provided promising results for the further development of mucosal vaccines encapsulated in inorganic nanoparticles. PMID:27170532

  17. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    PubMed

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension. PMID:26015450

  18. Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes

    PubMed Central

    Rosada, Rogério S; Torre, Lucimara Gaziola de la; Frantz, Fabiani G; Trombone, Ana PF; Zárate-Bladés, Carlos R; Fonseca, Denise M; Souza, Patrícia RM; Brandão, Izaíra T; Masson, Ana P; Soares, Édson G; Ramos, Simone G; Faccioli, Lúcia H; Silva, Célio L; Santana, Maria HA; Coelho-Castelo, Arlete AM

    2008-01-01

    Background The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally. Results We developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 μg of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-γ and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 μg). Conclusion Our objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease. PMID

  19. Safety and Immunogenicity Study of Multiclade HIV-1 Adenoviral Vector Vaccine Alone or as Boost following a Multiclade HIV-1 DNA Vaccine in Africa

    PubMed Central

    Allen, Susan; Than, Soe; Adams, Elizabeth M.; Graham, Barney S.; Koup, Richard A.; Bailer, Robert T.; Smith, Carol; Dally, Len; Tarragona-Fiol, Tony; Bergin, Philip J.; Hayes, Peter; Ho, Martin; Loughran, Kelley; Komaroff, Wendy; Stevens, Gwynneth; Thomson, Helen; Boaz, Mark J.; Cox, Josephine H.; Schmidt, Claudia; Gilmour, Jill; Nabel, Gary J.; Fast, Patricia

    2010-01-01

    Background We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults. Methodology/Principal Findings Volunteers were randomized to 4 groups receiving the rAd5 vaccine intramuscularly at dosage levels of 1×1010 or 1×1011 particle units (PU) either alone or as boost following 3 injections of the DNA vaccine given at 4 mg/dose intramuscularly by needle-free injection using Biojector® 2000. Safety and immunogenicity were evaluated for 12 months. Both vaccines were well-tolerated. Overall, 62% and 86% of vaccine recipients in the rAd5 alone and DNA prime - rAd5 boost groups, respectively, responded to the HIV-1 proteins by an interferon-gamma (IFN-γ) ELISPOT. The frequency of immune responses was independent of rAd5 dosage levels. The highest frequency of responses after rAd5 alone was detected at 6 weeks; after DNA prime - rAd5 boost, at 6 months (end of study). At baseline, neutralizing antibodies against Ad5 were present in 81% of volunteers; the distribution was similar across the 4 groups. Pre-existing immunity to Ad5 did not appear to have a significant impact on reactogenicity or immune response rates to HIV antigens by IFN-γ ELISPOT. Binding antibodies against Env were detected in up to 100% recipients of DNA prime - rAd5 boost. One volunteer acquired HIV infection after the study ended, two years after receipt of rAd5 alone. Conclusions/Significance The HIV-1 rAd5 vaccine, either alone or as a boost following HIV-1 DNA vaccine, was well-tolerated and immunogenic in African adults. DNA priming increased the frequency and magnitude of cellular and humoral immune responses, but there was no effect of rAd5 dosage on immunogenicity endpoints. Trial

  20. A dual vaccine against influenza & Alzheimer's disease failed to enhance anti-β-amyloid antibody responses in mice with pre-existing virus specific memory.

    PubMed

    Davtyan, Hayk; Ghochikyan, Anahit; Hovakimyan, Armine; Davtyan, Arpine; Cadagan, Richard; Marleau, Annette M; Albrecht, Randy A; García-Sastre, Adolfo; Agadjanyan, Michael G

    2014-12-15

    Novel dual vaccine, WSN-Aβ(1-10), based on the recombinant influenza virus, expressing immunodominant B-cell epitope of β-amyloid, simultaneously induced therapeutically potent anti-Aβ and anti-influenza antibodies. In this study we showed that boosting of WSN-WT primed mice with WSN-Aβ(1-10) enhances anti-viral, but fails to induce anti-Aβ antibody responses. This inhibition is associated with expression of Aβ(1-10) within the context of an inactivated influenza virus vaccine. These results demonstrate that the use of an inactivated influenza virus as a carrier for AD vaccine may not be applicable due to the possible inhibition of anti-Aβ antibody response in individuals previously vaccinated or infected with influenza.

  1. A dual vaccine against influenza & Alzheimer’s disease failed to enhance anti-β-amyloid antibody responses in mice with pre-existing virus specific memory

    PubMed Central

    Davtyan, Hayk; Ghochikyan, Anahit; Hovakimyan, Armine; Davtyan, Arpine; Cadagan, Richard; Marleau, Annette M.; Albrecht, Randy A.; García-Sastre, Adolfo; Agadjanyan, Michael G.

    2014-01-01

    Novel dual vaccine, WSN-Aβ1–10, based on the recombinant influenza virus, expressing immunodominant B-cell epitope of β-amyloid, simultaneously induced therapeutically potent anti-Aβ and anti-influenza antibodies. In this study we showed that boosting of WSN-WT primed mice with WSN-Aβ1–10 enhances anti-viral, but fails to induce anti-Aβ antibody responses. This inhibition is associated to expression of Aβ1–10 within the context of an inactivated influenza virus vaccine. These results demonstrate that the use of an inactivated influenza virus as a carrier for AD vaccine may not be applicable due to the possible inhibition of anti-Aβ antibody response in individuals previously vaccinated or infected with influenza. PMID:25455094

  2. A DNA vaccine encoding Cu,Zn superoxide dismutase of Brucella abortus induces protective immunity in BALB/c mice.

    PubMed

    Oñate, Angel A; Céspedes, Sandra; Cabrera, Alex; Rivers, Rodolfo; González, Andrés; Muñoz, Carola; Folch, Hugo; Andrews, Edilia

    2003-09-01

    This study was conducted to evaluate the immunogenicity and protective efficacy of a DNA vaccine encoding Brucella abortus Cu,Zn superoxide dismutase (SOD). Intramuscular injection of plasmid DNA carrying the SOD gene (pcDNA-SOD) into BALB/c mice elicited both humoral and cellular immune responses. Animals injected with pcDNA-SOD developed SOD-specific antibodies which exhibited a dominance of immunoglobulin G2a (IgG2a) over IgG1. In addition, the DNA vaccine elicited a T-cell-proliferative response and also induced the production of gamma interferon, but not interleukin-10 (IL-10) or IL-4, upon restimulation with either recombinant SOD or crude Brucella protein, suggesting the induction of a typical T-helper-1-dominated immune response in mice. The pcDNA-SOD (but not the control vector) induced a strong, significant level of protection in BALB/c mice against challenge with B. abortus virulent strain 2308; the level of protection was similar to the one induced by B. abortus vaccine strain RB51. Altogether, these data suggest that pcDNA-SOD is a good candidate for use in future studies of vaccination against brucellosis.

  3. Contamination of DNase Preparations Confounds Analysis of the Role of DNA in Alum-Adjuvanted Vaccines.

    PubMed

    Noges, Laura E; White, Janice; Cambier, John C; Kappler, John W; Marrack, Philippa

    2016-08-15

    Aluminum salt (alum) adjuvants have been used for many years as adjuvants for human vaccines because they are safe and effective. Despite its widespread use, the means by which alum acts as an adjuvant remains poorly understood. Recently, it was shown that injected alum is rapidly coated with host chromatin within mice. Experiments suggested that the host DNA in the coating chromatin contributed to alum's adjuvant activity. Some of the experiments used commercially purchased DNase and showed that coinjection of these DNase preparations with alum and Ag reduced the host's immune response to the vaccine. In this study, we report that some commercial DNase preparations are contaminated with proteases. These proteases are responsible for most of the ability of DNase preparations to inhibit alum's adjuvant activity. Nevertheless, DNase somewhat reduces responses to some Ags with alum. The effect of DNase is independent of its ability to cleave DNA, suggesting that alum improves CD4 responses to Ag via a pathway other than host DNA sensing. PMID:27357147

  4. Contamination of DNase Preparations Confounds Analysis of the Role of DNA in Alum-Adjuvanted Vaccines

    PubMed Central

    Noges, Laura E.; White, Janice; Cambier, John C.; Kappler, John W.

    2016-01-01

    Aluminum salt (alum) adjuvants have been used for many years as adjuvants for human vaccines because they are safe and effective. Despite its widespread use, the means by which alum acts as an adjuvant remains poorly understood. Recently, it was shown that injected alum is rapidly coated with host chromatin within mice. Experiments suggested that the host DNA in the coating chromatin contributed to alum’s adjuvant activity. Some of the experiments used commercially purchased DNase and showed that coinjection of these DNase preparations with alum and Ag reduced the host’s immune response to the vaccine. In this study, we report that some commercial DNase preparations are contaminated with proteases. These proteases are responsible for most of the ability of DNase preparations to inhibit alum’s adjuvant activity. Nevertheless, DNase somewhat reduces responses to some Ags with alum. The effect of DNase is independent of its ability to cleave DNA, suggesting that alum improves CD4 responses to Ag via a pathway other than host DNA sensing. PMID:27357147

  5. Sublingual Immunization of Trivalent Human Papillomavirus DNA Vaccine in Baculovirus Nanovector for Protection against Vaginal Challenge

    PubMed Central

    Lee, Hee-Jung; Cho, Hansam; Kim, Mi-Gyeong; Heo, Yoon-Ki; Cho, Yeondong; Gwon, Yong-Dae; Park, Ki Hoon; Jin, Hyerim; Kim, Jinyoung; Oh, Yu-Kyoung; Kim, Young Bong

    2015-01-01

    Here, we report the immunogenicity of a sublingually delivered, trivalent human papillomavirus (HPV) DNA vaccine encapsidated in a human endogenous retrovirus (HERV) envelope-coated, nonreplicable, baculovirus nanovector. The HERV envelope-coated, nonreplicable, baculovirus-based DNA vaccine, encoding HPV16L1, -18L1 and -58L1 (AcHERV-triHPV), was constructed and sublingually administered to mice without adjuvant. Following sublingual (SL) administration, AcHERV-triHPV was absorbed and distributed throughout the body. At 15 minutes and 1 day post-dose, the distribution of AcHERV-triHPV to the lung was higher than that to other tissues. At 30 days post-dose, the levels of AcHERV-triHPV had diminished throughout the body. Six weeks after the first of three doses, 1×108 copies of SL AcHERV-triHPV induced HPV type-specific serum IgG and neutralizing antibodies to a degree comparable to that of IM immunization with 1×109 copies. AcHERV-triHPV induced HPV type-specific vaginal IgA titers in a dose-dependent manner. SL immunization with 1×1010 copies of AcHERV-triHPV induced Th1 and Th2 cellular responses comparable to IM immunization with 1×109 copies. Molecular imaging revealed that SL AcHERV-triHPV in mice provided complete protection against vaginal challenge with HPV16, HPV18, and HPV58 pseudoviruses. These results support the potential of SL immunization using multivalent DNA vaccine in baculovirus nanovector for induction of mucosal, systemic, and cellular immune responses. PMID:25789464

  6. Label-free and dual-amplified detection of protein via small molecule-ligand linked DNA and a cooperative DNA machine.

    PubMed

    Li, Pei; Wang, Lei; Zhu, Jing; Wu, Yushu; Jiang, Wei

    2015-10-15

    Sensitive detection of protein is essential for both molecular diagnostics and biomedical research. Here, taking folate receptor as the model analyte, we developed a label-free and dual-amplified strategy via small molecular-ligand linked DNA and a cooperative DNA machine which could perform primary amplification and mediate secondary amplification simultaneously. Firstly, the specific binding of folate receptor to the small-molecule folate which linked to a trigger DNA could protect the trigger DNA from exonuclease I digestion, translating folate receptor detection into trigger DNA detection. Subsequently, trigger DNA initiated the DNA machine through hybridizing with the hairpin of the DNA machine, resulting in hairpin conformational change and stem open. The open stem further hybridized with a primer which initiated circular strand-displacement polymerization reaction; meanwhile the rolling circle amplification templates which were initially blocked in the DNA machine were liberated to mediate rolling circle amplification. In such a working model, the DNA machine achieved cooperatively controlling circular strand-displacement polymerization reaction and rolling circle amplification, realizing dual-amplification. Finally, the rolling circle amplification process synthesized a long repeated G-quadruplex sequence, which strongly interacted with N-methyl mesoporphyrin IX, bringing label-free fluorescence signal. This strategy could detect folate receptor as low as 0.23 pM. A recovery over 90% was obtained when folate receptor was detected in spiked human serum, demonstrating the feasibility of this detection strategy in biological samples.

  7. DNA Vaccination Elicits Protective Immune Responses against Pandemic and Classic Swine Influenza Viruses in Pigs ▿ †

    PubMed Central

    Gorres, J. Patrick; Lager, Kelly M.; Kong, Wing-Pui; Royals, Michael; Todd, John-Paul; Vincent, Amy L.; Wei, Chih-Jen; Loving, Crystal L.; Zanella, Eraldo L.; Janke, Bruce; Kehrli, Marcus E.; Nabel, Gary J.; Rao, Srinivas S.

    2011-01-01

    Swine influenza is a highly contagious viral infection in pigs that significantly impacts the pork industry due to weight loss and secondary infections. There is also the potential of a significant threat to public health, as was seen in 2009 when the pandemic H1N1 influenza virus strain emerged from reassortment events among avian, swine, and human influenza viruses within pigs. As classic and pandemic H1N1 strains now circulate in swine, an effective vaccine may be the best strategy to protect the pork industry and public health. Current inactivated-virus vaccines available for swine influenza protect only against viral strains closely related to the vaccine strain, and egg-based production of these vaccines is insufficient to respond to large outbreaks. DNA vaccines are a promising alternative since they can potentially induce broad-based protection with more efficient production methods. In this study we evaluated the potentials of monovalent and trivalent DNA vaccine constructs to (i) elicit both humoral and gamma interferon (IFN-γ) responses and (ii) protect pigs against viral shedding and lung disease after challenge with pandemic H1N1 or classic swine H1N1 influenza virus. We also compared the efficiency of a needle-free vaccine delivery method to that of a conventional needle/syringe injection. We report that DNA vaccination elicits robust serum antibody and cellular responses after three immunizations and confers significant protection against influenza virus challenge. Needle-free delivery elicited improved antibody responses with the same efficiency as conventional injection and should be considered for development as a practical alternative for vaccine administration. PMID:21918118

  8. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease.

    PubMed

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-07-01

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. PMID:27123586

  9. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs

    PubMed Central

    2012-01-01

    Background During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV) or distemper virus (CDV) after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. Methods We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV) 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an “Internal Ribosome Entry Site” (IRES) domain. Results The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The FMDV 2A was also efficient

  10. Development of a New DNA Vaccine for Alzheimer Disease Targeting a Wide Range of Aβ Species and Amyloidogenic Peptides

    PubMed Central

    Matsumoto, Yoh; Niimi, Naoko; Kohyama, Kuniko

    2013-01-01

    It has recently been determined that not only Aβ oligomers, but also other Aβ species and amyloidogenic peptides are neurotoxic in Alzheimer disease (AD) and play a pivotal role in AD pathogenesis. In the present study, we attempted to develop new DNA vaccines targeting a wide range of Aβ species. For this purpose, we first performed in vitro assays with newly developed vaccines to evaluate Aβ production and Aβ secretion abilities and then chose an IgL-Aβx4-Fc-IL-4 vaccine (designated YM3711) for further studies. YM3711 was vaccinated to mice, rabbits and monkeys to evaluate anti-Aβ species antibody-producing ability and Aβ reduction effects. It was found that YM3711 vaccination induced significantly higher levels of antibodies not only to Aβ1-42 but also to AD-related molecules including AβpE3-42, Aβ oligomers and Aβ fibrils. Importantly, YM3711 significantly reduced these Aβ species in the brain of model mice. Binding and competition assays using translated YM3711 protein products clearly demonstrated that a large part of antibodies induced by YM3711 vaccination are directed at conformational epitopes of the Aβ complex and oligomers. Taken together, we demonstrate that YM3711 is a powerful DNA vaccine targeting a wide range of AD-related molecules and is worth examining in preclinical and clinical trials. PMID:24086465

  11. DNA-based vaccine against La Crosse virus: protective immune response mediated by neutralizing antibodies and CD4+ T cells.

    PubMed

    Schuh, T; Schultz, J; Moelling, K; Pavlovic, J

    1999-07-01

    La Crosse virus (LACV)-mediated encephalitis is the most frequently reported arboviral disease in the United States, but to date no vaccine against this virus is available. We have established a new animal model, genetically targeted mice lacking a functional interferon type I receptor (IFNAR-1). These mice show an age-independent susceptibility to LACV and develop an acute encephalitis within 6 days of infection, thereby allowing the evaluation of vaccines against LACV. Taking advantage of this knockout mouse model, we have assessed the feasibility of DNA vaccination against this viral disease. Plasmid DNAs, encoding either the virus surface glycoproteins G1 and G2 or the internal nucleocapsid protein N, were used to immunize IFNAR-1-deficient mice. Mice vaccinated with DNA encoding the glycoproteins G1 and G2 produced neutralizing antibodies and exhibited a high degree of protection against challenge with high doses of LACV. Depletion of CD4+ T cells in mice vaccinated with DNA encoding G1/G2 reduced their capacity to control the infection. Virus titration and immunohistological analysis revealed that the protected mice showed no evidence of LACV particles in the brain. This indicates that the vaccine-induced immune response efficiently blocked viral spreading from the primary replication site to the brain. In contrast, immunization with DNA encoding protein N yielded only a partial protective effect that can be attributed to the cellular immune response. Taken together, this study shows that DNA vaccines can be designed to efficiently induce a protective immune response based on neutralizing antibodies and CD4+ T cells.

  12. A recombinant DNA vaccine protects mice deficient in the alpha/beta interferon receptor against lethal challenge with Usutu virus.

    PubMed

    Martín-Acebes, Miguel A; Blázquez, Ana-Belén; Cañas-Arranz, Rodrigo; Vázquez-Calvo, Ángela; Merino-Ramos, Teresa; Escribano-Romero, Estela; Sobrino, Francisco; Saiz, Juan-Carlos

    2016-04-19

    Usutu virus (USUV) is a mosquito-borne flavivirus whose circulation had been confined to Africa since it was first detected in 1959. However, in the last decade USUV has emerged in Europe causing episodes of avian mortality and sporadic severe neuroinvasive infections in humans. Remarkably, adult laboratory mice exhibit limited susceptibility to USUV infection, which has impaired the analysis of the immune responses, thus complicating the evaluation of virus-host interactions and of vaccine candidates against this pathogen. In this work, we showed that mice deficient in the alpha/beta interferon receptor (IFNAR (-/-) mice) were highly susceptible to USUV infection and provided a lethal challenge model for vaccine testing. To validate this infection model, a plasmid DNA vaccine candidate encoding the precursor of membrane (prM) and envelope (E) proteins of USUV was engineered. Transfection of cultured cells with this plasmid resulted in expression of USUV antigens and the assembly and secretion of small virus-like particles also known as recombinant subviral particles (RSPs). A single intramuscular immunization with this plasmid was sufficient to elicit a significant level of protection against challenge with USUV in IFNAR (-/-) mice. The characterization of the humoral response induced revealed that DNA vaccination primed anti-USUV antibodies, including neutralizing antibodies. Overall, these results probe the suitability of IFNAR (-/-) mice as an amenable small animal model for the study of USUV host virus interactions and vaccine testing, as well as the feasibility of DNA-based vaccine strategies for the control of this pathogen.

  13. Fusion of CTLA-4 with HPV16 E7 and E6 Enhanced the Potency of Therapeutic HPV DNA Vaccine

    PubMed Central

    Gan, Lili; Jia, Rong; Zhou, Lili; Guo, Jihua; Fan, Mingwen

    2014-01-01

    Preventive anti-HPV vaccines are effective against HPV infection but not against existing HPV-associated diseases, including cervical cancer and other malignant diseases. Therefore, the development of therapeutic vaccines is urgently needed. To improve anti-tumor effects of therapeutic vaccine, we fused cytotoxic T-lymphocyte antigen 4 (CTLA-4) with HPV16 E7 and E6 as a fusion therapeutic DNA vaccine (pCTLA4-E7E6). pCTLA4-E7E6 induced significantly higher anti-E7E6 specific antibodies and relatively stronger specific CTL responses than the nonfusion DNA vaccine pE7E6 in C57BL/6 mice bearing with TC-1 tumors. pCTLA4-E7E6 showed relatively stronger anti-tumor effects than pE7E6 in therapeutic immunization. These results suggest that fusing CTLA-4 with E7E6 is a useful strategy to develop therapeutic HPV DNA vaccines. In addition, fusing the C-terminal of E7 with the N-terminal of E6 impaired the functions of both E7 and E6. PMID:25265018

  14. Virus-Like Particle Secretion and Genotype-Dependent Immunogenicity of Dengue Virus Serotype 2 DNA Vaccine

    PubMed Central

    Galula, Jedhan U.; Shen, Wen-Fan; Chuang, Shih-Te

    2014-01-01

    ABSTRACT Dengue virus (DENV), composed of four distinct serotypes, is the most important and rapidly emerging arthropod-borne pathogen and imposes substantial economic and public health burdens. We constructed candidate vaccines containing the DNA of five of the genotypes of dengue virus serotype 2 (DENV-2) and evaluated the immunogenicity, the neutralizing (Nt) activity of the elicited antibodies, and the protective efficacy elicited in mice immunized with the vaccine candidates. We observed a significant correlation between the level of in vitro virus-like particle secretion, the elicited antibody response, and the protective efficacy of the vaccines containing the DNA of the different DENV genotypes in immunized mice. However, higher total IgG antibody levels did not always translate into higher Nt antibodies against homologous and heterologous viruses. We also found that, in contrast to previous reports, more than 50% of total IgG targeted ectodomain III (EDIII) of the E protein, and a substantial fraction of this population was interdomain highly neutralizing flavivirus subgroup-cross-reactive antibodies, such as monoclonal antibody 1B7-5. In addition, the lack of a critical epitope(s) in the Sylvatic genotype virus recognized by interdomain antibodies could be the major cause of the poor protection of mice vaccinated with the Asian 1 genotype vaccine (pVD2-Asian 1) from lethal challenge with virus of the Sylvatic genotype. In conclusion, although the pVD2-Asian 1 vaccine was immunogenic, elicited sufficient titers of Nt antibodies against all DENV-2 genotypes, and provided 100% protection against challenge with virus of the homologous Asian 1 genotype and virus of the heterologous Cosmopolitan genotype, it is critical to monitor the potential emergence of Sylvatic genotype viruses, since vaccine candidates under development may not protect vaccinated humans from these viruses. IMPORTANCE Five genotype-specific dengue virus serotype 2 (DENV-2) DNA vaccine

  15. Universal real-time PCR assay for quantitation and size evaluation of residual cell DNA in human viral vaccines.

    PubMed

    André, Murielle; Reghin, Sylviane; Boussard, Estelle; Lempereur, Laurent; Maisonneuve, Stéphane

    2016-05-01

    Residual host cellular DNA (rcDNA) is one of the principal risk associated with continuous cell lines derived medicines such as viral vaccines. To assess rcDNA degradation, we suggest two quantitative real-time PCR assays designed to separately quantify target sequences shorter and longer than the 200 bp risk limit, the relative abundance of both targets reflecting the extent of rcDNA fragmentation. The conserved multicopy ribosomal 18S RNA gene was targeted to detect host cell templates from most mammalian cell substrates commonly used in the manufacture of human viral vaccines. The detection range of the method was assessed on purified DNA templates from different animal origins. The standard calibrator origin and structural conformation were shown crucial to achieve accurate quantification. Artificial mixtures of PCR products shorter and longer than 200 bp were used as a model to check the ability of the assay to estimate the fragment size distribution. The method was successfully applied to a panel of Vero cell derived vaccines and could be used as a universal method for determination of both content and size distribution of rcDNA in vaccines.

  16. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients

    PubMed Central

    Kim, Tae Jin; Jin, Hyun-Tak; Hur, Soo-Young; Yang, Hyun Gul; Seo, Yong Bok; Hong, Sung Ran; Lee, Chang-Woo; Kim, Suhyeon; Woo, Jung-Won; Park, Ki Seok; Hwang, Youn-Young; Park, Jaehan; Lee, In-Ho; Lim, Kyung-Taek; Lee, Ki-Heon; Jeong, Mi Seon; Surh, Charles D.; Suh, You Suk; Park, Jong Sup; Sung, Young Chul

    2014-01-01

    Here, we demonstrate that electroporation-enhanced immunization with a rationally designed HPV DNA vaccine (GX-188E), preferentially targeting HPV antigens to dendritic cells, elicits a significant E6/E7-specific IFN-γ-producing T-cell response in all nine cervical intraepithelial neoplasia 3 (CIN3) patients. Importantly, eight out of nine patients exhibit an enhanced polyfunctional HPV-specific CD8 T-cell response as shown by an increase in cytolytic activity, proliferative capacity and secretion of effector molecules. Notably, seven out of nine patients display complete regression of their lesions and viral clearance within 36 weeks of follow up. GX-188E administration does not elicit serious vaccine-associated adverse events at all administered doses. These findings indicate that the magnitude of systemic polyfunctional CD8 T-cell response is the main contributing factor for histological, cytological and virological responses, providing valuable insights into the design of therapeutic vaccines for effectively treating persistent infections and cancers in humans. PMID:25354725

  17. Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine.

    PubMed

    Ballou, W R; Hoffman, S L; Sherwood, J A; Hollingdale, M R; Neva, F A; Hockmeyer, W T; Gordon, D M; Schneider, I; Wirtz, R A; Young, J F

    1987-06-01

    A recombinant DNA Plasmodium falciparum sporozoite vaccine produced in Escherichia coli (FSV-1) was tested in doses of 10 micrograms to 800 micrograms protein in fifteen volunteers. No serious adverse reactions occurred. Antibodies that reacted with P falciparum sporozoite antigens by enzyme-linked immunoassay developed in twelve of the volunteers. The highest antibody titres induced were similar to those resulting from lifelong natural exposure to sporozoite-infected mosquitoes. Postimmunization serum samples from a majority of volunteers mediated the circumsporozoite (CS) precipitation reaction and inhibited sporozoite invasion of hepatoma cells in vitro. Serum from the three volunteers who received 800 micrograms doses reacted with the surface of sporozoites in an immunofluorescence assay. Six immunised volunteers receiving a fourth dose of FSV-1 and two non-immunised controls were challenged by bites of mosquitoes infected from cultured P falciparum gametocytes. Parasitaemia did not develop in the volunteer with the highest titre of CS antibodies, and parasitaemia was delayed in two other immunised volunteers. This study confirms that human beings can be protected by CS protein subunit vaccines and provides a framework for the further development and testing of more immunogenic sporozoite vaccines.

  18. Electroporation for the Delivery of DNA-based Vaccines and Immunotherapeutics: Current Clinical Developments

    PubMed Central

    Bodles-Brakhop, Angela M; Heller, Richard; Draghia-Akli, Ruxandra

    2009-01-01

    Electroporation (EP) has been used in basic research for the past 25 years to aid in the transfer of DNA into cells in vitro. EP in vivo enhances transfer of DNA vaccines and therapeutic plasmids to the skin, muscle, tumors, and other tissues resulting in high levels of expression, often with serological and clinical benefits. The recent interest in nonviral gene transfer as treatment options for a vast array of conditions has resulted in the refinement and optimization of EP technology. Current research has revealed that EP can be successfully used in many species, including humans. Clinical trials are currently under way. Herein, the transition of EP from basic science to clinical trials will be discussed. PMID:19223870

  19. Dose-dependent inhibition of Gag cellular immunity by Env in SIV/HIV DNA vaccinated macaques

    PubMed Central

    Valentin, Antonio; Li, Jinyao; Rosati, Margherita; Kulkarni, Viraj; Patel, Vainav; Jalah, Rashmi; Alicea, Candido; Reed, Steven; Sardesai, Niranjan; Berkower, Ira; Pavlakis, George N; Felber, Barbara K

    2015-01-01

    The induction of a balanced immune response targeting the major structural proteins, Gag and Env of HIV, is important for the development of an efficacious vaccine. The use of DNA plasmids expressing different antigens offers the opportunity to test in a controlled manner the influence of different vaccine components on the magnitude and distribution of the vaccine-induced cellular and humoral immune responses. Here, we show that increasing amounts of env DNA results in greatly enhanced Env antibody titers without significantly affecting the levels of anti-Env cellular immune responses. Co-immunization with Env protein further increased antibody levels, indicating that vaccination with DNA only is not sufficient for eliciting maximal humoral responses against Env. In contrast, under high env:gag DNA plasmid ratio, the development of Gag cellular responses was significantly reduced by either SIV or HIV Env, whereas Gag humoral responses were not affected. Our data indicate that a balanced ratio of the 2 key HIV/SIV vaccine components, Gag and Env, is important to avoid immunological interference and to achieve both maximal humoral responses against Env to prevent virus acquisition and maximal cytotoxic T cell responses against Gag to prevent virus spread. PMID:26125521

  20. The site of administration influences both the type and the magnitude of the immune response induced by DNA vaccine electroporation.

    PubMed

    Vandermeulen, Gaëlle; Vanvarenberg, Kevin; De Beuckelaer, Ans; De Koker, Stefaan; Lambricht, Laure; Uyttenhove, Catherine; Reschner, Anca; Vanderplasschen, Alain; Grooten, Johan; Préat, Véronique

    2015-06-22

    We investigated the influence of the site of administration of DNA vaccine on the induced immune response. DNA vaccines were administered by electroporation at three different sites: tibial cranial muscle, abdominal skin and ear pinna. Aiming to draw general conclusions about DNA vaccine delivery, we successively used several plasmids encoding either luciferase and ovalbumin as models or gp160 and P1A as vaccines against HIV and P815 mastocytoma, respectively. Low levels and duration of luciferase transgene expression were observed after electroporation of the abdominal skin, partly explaining its lower immunogenic performance as compared to the other sites of administration. Analyses of OT-I CD8+ and OT-II CD4+ T cell responses highlighted the differential impact of the delivery site on the elicited immune response. Muscle electroporation induced the strongest humoral immune response and both muscle and ear pinna sites induced cellular immunity against gp160. Ear pinna delivery generated the highest level of CTL responses against P1A but electroporation of muscle and ear pinna were equally efficient in delaying P815 growth and improving mice survival. The present study demonstrated that the site of administration is a key factor to be tested in the development of DNA vaccine.

  1. Salmonella SL7207 application is the most effective DNA vaccine delivery method for successful tumor eradication in a murine model for neuroblastoma.

    PubMed

    Berger, Elisa; Soldati, Rocio; Huebener, Nicole; Hohn, Oliver; Stermann, Alexander; Durmus, Tahir; Lobitz, Stephan; Zenclussen, Ana C; Christiansen, Holger; Lode, Holger N; Fest, Stefan

    2013-05-01

    Attenuated Salmonella is an approved oral life vaccine that is currently entering pre-clinical cancer vaccination studies as a promising DNA carrier. In a syngeneic mouse model for neuroblastoma, oral gavage of Salmonella typhimurium (SL7207) carrying recent generated survivin DNA vaccines induced a stronger cellular anti-NB immune response than gene gun application or injection of lentivirally transduced bone marrow-derived DCs. The level of Salmonella-associated side effects was not significant as indicated by unaffected survivin-mediated hematopoiesis and wound healing. We believe that our findings provide an important baseline to translate Salmonella-based DNA vaccination into a clinical application for neuroblastoma.

  2. Immunogenicity and safety of xenogeneic vascular endothelial growth factor receptor-2 DNA vaccination in mice and dogs

    PubMed Central

    Denies, Sofie; Cicchelero, Laetitia; Polis, Ingeborgh; Sanders, Niek N.

    2016-01-01

    Vascular endothelial growth factor receptor-2 (VEGFR-2) is an attractive target in oncology due to its crucial role in angiogenesis. In this study a DNA vaccine coding for human VEGFR-2 was evaluated in healthy mice and dogs, administered by intradermal injection and electroporation. In mice, three doses and vaccination schedules were evaluated. Cellular immune responses were measured by intracellular IFN-gamma staining and a cytotoxicity assay and antibodies by ELISA. Safety was assessed by measuring regulatory T cells and myeloid derived suppressor cells and a wound healing assay. The vaccine was subsequently evaluated in dogs, which were vaccinated three times with 100μg. Cellular immune responses were measured by intracellular IFN-gamma staining and antibodies by a flow cytometric assay. In mice, maximal cellular responses were observed after two vaccinations with 5μg. Humoral responses continued to increase with higher dose and number of vaccinations. No abnormalities in the measured safety parameters were observed. The vaccine was also capable of eliciting a cellular and humoral immune response in dogs. No adverse effects were observed, but tolerability of the electroporation was poor. This study will facilitate the evaluation of the vaccine in tumor bearing animals, ranging from rodent models to dogs with spontaneous tumors. PMID:26871296

  3. Immunogenicity and safety of xenogeneic vascular endothelial growth factor receptor-2 DNA vaccination in mice and dogs.

    PubMed

    Denies, Sofie; Cicchelero, Laetitia; Polis, Ingeborgh; Sanders, Niek N

    2016-03-01

    Vascular endothelial growth factor receptor-2 (VEGFR-2) is an attractive target in oncology due to its crucial role in angiogenesis. In this study a DNA vaccine coding for human VEGFR-2 was evaluated in healthy mice and dogs, administered by intradermal injection and electroporation. In mice, three doses and vaccination schedules were evaluated. Cellular immune responses were measured by intracellular IFN-gamma staining and a cytotoxicity assay and antibodies by ELISA. Safety was assessed by measuring regulatory T cells and myeloid derived suppressor cells and a wound healing assay. The vaccine was subsequently evaluated in dogs, which were vaccinated three times with 100µg. Cellular immune responses were measured by intracellular IFN-gamma staining and antibodies by a flow cytometric assay. In mice, maximal cellular responses were observed after two vaccinations with 5µg. Humoral responses continued to increase with higher dose and number of vaccinations. No abnormalities in the measured safety parameters were observed. The vaccine was also capable of eliciting a cellular and humoral immune response in dogs. No adverse effects were observed, but tolerability of the electroporation was poor. This study will facilitate the evaluation of the vaccine in tumor bearing animals, ranging from rodent models to dogs with spontaneous tumors. PMID:26871296

  4. Protective Efficacy and Immunogenicity of a Combinatory DNA Vaccine against Influenza A Virus and the Respiratory Syncytial Virus

    PubMed Central

    Stab, Viktoria; Nitsche, Sandra; Niezold, Thomas; Storcksdieck genannt Bonsmann, Michael; Wiechers, Andrea; Tippler, Bettina; Hannaman, Drew; Ehrhardt, Christina; Überla, Klaus

    2013-01-01

    The Respiratory Syncytial Virus (RSV) and Influenza A Virus (IAV) are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA) of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8+ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations. PMID:23967287

  5. Detection of human papillomavirus (HPV) L1 gene DNA possibly bound to particulate aluminum adjuvant in the HPV vaccine Gardasil.

    PubMed

    Lee, Sin Hang

    2012-12-01

    Medical practitioners in nine countries submitted samples of Gardasil (Merck & Co.) to be tested for the presence of human papillomavirus (HPV) DNA because they suspected that residual recombinant HPV DNA left in the vaccine might have been a contributing factor leading to some of the unexplained post-vaccination side effects. A total of 16 packages of Gardasil were received from Australia, Bulgaria, France, India, New Zealand, Poland, Russia, Spain and the United States. A nested polymerase chain reaction (PCR) method using the MY09/MY11 degenerate primers for initial amplification and the GP5/GP6-based nested PCR primers for the second amplification were used to prepare the template for direct automated cycle DNA sequencing of a hypervariable segment of the HPV L1 gene which is used for manufacturing of the HPV L1 capsid protein by a DNA recombinant technology in vaccine production. Detection of HPV DNA and HPV genotyping of all positive samples were finally validated by BLAST (Basic Local Alignment Search Tool) analysis of a 45-60 bases sequence of the computer-generated electropherogram. The results showed that all 16 Gardasil samples, each with a different lot number, contained fragments of HPV-11 DNA, or HPV-18 DNA, or a DNA fragment mixture from both genotypes. The detected HPV DNA was found to be firmly bound to the insoluble, proteinase-resistant fraction, presumably of amorphous aluminum hydroxyphosphate sulfate (AAHS) nanoparticles used as adjuvant. The clinical significance of these residual HPV DNA fragments bound to a particulate mineral-based adjuvant is uncertain after intramuscular injection, and requires further investigation for vaccination safety. PMID:23078778

  6. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice.

    PubMed

    Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai

    2014-10-01

    To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB.

  7. Dual mechanisms of DNA sequencing based on tunnelling between nitrogen-doped carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Han; Kim, Yong-Hoon

    2013-03-01

    The DNA sequencing approach based on the combination of nanopores and electron tunnelling has seen considerable advances in recent years, and particularly carbon nanomaterials have emerged as promising candidates to replace metal electrodes. Carrying out extensive first-principles calculations, we here show that two distinct DNA sequencing mechanisms can be achieved with different configurations of a single-type nitrogen-doped capped carbon nanotube (CNT) that has significantly enhanced transmission and chemical sensitivity over its pristine counterpart. With a small CNT-CNT gap size that induces face-on nucleobase configurations, we obtain a typical conductance ordering where the largest signal is induced from guanine due to its highest occupied molecular orbital energetic position higher than those of other bases. On the other hand, for a large CNT-CNT gap size that accommodates edge-on nucleobase configurations, we extract a completely different conductance ordering in which thymine results in the largest signal. We find that the latter novel nucleobase sensing mechanism originates from the nature of chemical connectivity between nitrogen-doped CNT caps and nucleobase functional groups that include the thymine methyl group. This work thus demonstrates the feasibility of a tunnelling-based dual-mode approach toward whole genome sequencing applications, detection of DNA base modifications, and single-molecule sensing in general.

  8. Effect of different human papillomavirus serological and DNA criteria on vaccine efficacy estimates.

    PubMed

    Lang Kuhs, Krystle A; Porras, Carolina; Schiller, John T; Rodriguez, Ana Cecilia; Schiffman, Mark; Gonzalez, Paula; Wacholder, Sholom; Ghosh, Arpita; Li, Yan; Lowy, Douglas R; Kreimer, Aimée R; Poncelet, Sylviane; Schussler, John; Quint, Wim; van Doorn, Leen-Jan; Sherman, Mark E; Sidawy, Mary; Herrero, Rolando; Hildesheim, Allan; Safaeian, Mahboobeh

    2014-09-15

    Two trials of clinically approved human papillomavirus (HPV) vaccines, Females United to Unilaterally Reduce Endo/Ectocervical Disease (FUTURE I/II) and the Papilloma Trial Against Cancer in Young Adults (PATRICIA), reported a 22% difference in vaccine efficacy (VE) against cervical intraepithelial neoplasia grade 2 or worse in HPV-naïve subcohorts; however, serological testing methods and the HPV DNA criteria used to define HPV-unexposed women differed between the studies. We applied previously described methods to simulate these HPV-naïve subcohorts within the Costa Rica HPV16/18 Vaccine Trial and assessed how these criteria affect the estimation of VE. We applied 2 enzyme-linked immunosorbent assay (ELISA) thresholds for HPV16 and HPV18 seropositivity (8 and 7 ELISA units/mL, respectively, for PATRICIA; 54 and 65 ELISA units/mL, respectively, for FUTURE I/II (to approximate the competitive Luminex immunoassay)) and 2 criteria for HPV DNA positivity (12 oncogenic HPV types, plus HPV66 and 68/73 for PATRICIA; or plus HPV6 and 11 for FUTURE I/II). VE was computed in the 2 naïve subcohorts. Using the FUTURE I/II and PATRICIA criteria, VE estimates against cervical intraepithelial neoplasia grade 2 or worse, regardless of HPV type, were 69.0% (95% confidence interval: 40.3%, 84.9%) and 80.8% (95% confidence interval: 52.6%, 93.5%), respectively (P = 0.1). Although the application of FUTURE I/II criteria to our cohort resulted in the inclusion of more sexually experienced women, methodological differences did not fully explain the VE differences.

  9. DNA shuffling: induced molecular breeding to produce new generation long-lasting vaccines.

    PubMed

    Marshall, Sergio H

    2002-11-01

    The paradigm for classic vaccines has been to mimic natural infection, and their success relies mostly on the induction of neutralizing antibodies followed by long-lasting immunity. The outcome of aggressive chronic infections such as HIV and HCV, the reappearance of fastidious diseases such as tuberculosis and the progression of cancer growth suggest that natural immune responses are definitely insufficient in many cases. A new paradigm is needed to design and develop a new high-efficiency generation of vaccines ideally able to surpass the capabilities of natural immune responses. In vitro evolution is a new, important laboratory method to evolve molecules with desired properties, which appears as an appealing alternative to achieve this goal. In its battle against disease, the vertebrate immune system triggers a series of well-known molecular events in order to produce protective neutralizing antibodies. This natural in vivo response shares remarkable similarities with the in vitro technique known as molecular breeding or "DNA shuffling." This method exploits the recombination between genes to dramatically accelerate the rate at which genes can be evolved under selection pressure in the laboratory, producing optimized high-efficiency mutant proteins. Since new generation vaccines are aimed to overcome natural selection and environmental pressures to fully inactivate rapidly developing pathogen variants, they could be engineered, developed and selected through the application of directed DNA shuffling procedures. This review highlights the potential of the procedure in the complex context of natural immune responses and the equilibrium and interaction existing in nature between hosts and pathogens. PMID:14550030

  10. Effect of Different Human Papillomavirus Serological and DNA Criteria on Vaccine Efficacy Estimates

    PubMed Central

    Lang Kuhs, Krystle A.; Porras, Carolina; Schiller, John T.; Rodriguez, Ana Cecilia; Schiffman, Mark; Gonzalez, Paula; Wacholder, Sholom; Ghosh, Arpita; Li, Yan; Lowy, Douglas R.; Kreimer, Aimée R.; Poncelet, Sylviane; Schussler, John; Quint, Wim; van Doorn, Leen-Jan; Sherman, Mark E.; Sidawy, Mary; Herrero, Rolando; Hildesheim, Allan; Safaeian, Mahboobeh; Lang Kuhs, Krystle A.; Schiller, John T.; Schiffman, Mark; Wacholder, Sholom; Lowy, Douglas R.; Kreimer, Aimée R.; Sherman, Mark E.; Hildesheim, Allan; Safaeian, Mahboobeh; Porras, Carolina; Rodriguez, Ana Cecilia; Gonzalez, Paula; Herrero, Rolando; Gonzalez, Paula; Herrero, Rolando; Ghosh, Arpita; Li, Yan; Poncelet, Sylviane; Schussler, John; Quint, Wim; van Doorn, Leen-Jan; Sidawy, Mary; Self, Steve; Benavides, Adriana; Calzada, Luis Diego; Karron, Ruth; Nayar, Ritu; Roach, Nancy; Cain, Joanna; Davey, Diane; DeMets, David; Fuster, Francisco; Gershon, Ann; Holly, Elizabeth; Raventós, Henriette; Rida, Wasima; Rosero-Bixby, Luis; Suthers, Kristen; Lara, Silvia; Thomas, Sarah; Alfaro, Mario; Barrantes, Manuel; Concepción Bratti, M.; Cárdenas, Fernando; Cortés, Bernal; Espinoza, Albert; Estrada, Yenory; González, Paula; Guillén, Diego; Herrero, Roland; Jiménez, Silvia E.; Morales, Jorge; Villegas, Luis; Morera, Lidia Ana; Pérez, Elmer; Porras, Carolina; Rodríguez, Ana Cecilia; Rivas, Libia; Freer, Enrique; Bonilla, José; García-Piñeres, Alfanso; Silva, Sandra; Atmella, Ivannia; Ramírez, Margarita; Hildesheim, Allan; Kreimer, Aimée R.; Lowy, Douglas R.; Macklin, Nora; Schiffman, Mark; Schiller, John T.; Sherman, Mark; Solomon, Diane; Wacholder, Sholom; Pinto, Ligia; Kemp, Troy; Eklund, Claire; Hutchinson, Martha; Sidawy, Mary; Quint, Wim; van Doorn, Leen-Jan

    2014-01-01

    Two trials of clinically approved human papillomavirus (HPV) vaccines, Females United to Unilaterally Reduce Endo/Ectocervical Disease (FUTURE I/II) and the Papilloma Trial Against Cancer in Young Adults (PATRICIA), reported a 22% difference in vaccine efficacy (VE) against cervical intraepithelial neoplasia grade 2 or worse in HPV-naïve subcohorts; however, serological testing methods and the HPV DNA criteria used to define HPV-unexposed women differed between the studies. We applied previously described methods to simulate these HPV-naïve subcohorts within the Costa Rica HPV16/18 Vaccine Trial and assessed how these criteria affect the estimation of VE. We applied 2 enzyme-linked immunosorbent assay (ELISA) thresholds for HPV16 and HPV18 seropositivity (8 and 7 ELISA units/mL, respectively, for PATRICIA; 54 and 65 ELISA units/mL, respectively, for FUTURE I/II (to approximate the competitive Luminex immunoassay)) and 2 criteria for HPV DNA positivity (12 oncogenic HPV types, plus HPV66 and 68/73 for PATRICIA; or plus HPV6 and 11 for FUTURE I/II). VE was computed in the 2 naïve subcohorts. Using the FUTURE I/II and PATRICIA criteria, VE estimates against cervical intraepithelial neoplasia grade 2 or worse, regardless of HPV type, were 69.0% (95% confidence interval: 40.3%, 84.9%) and 80.8% (95% confidence interval: 52.6%, 93.5%), respectively (P = 0.1). Although the application of FUTURE I/II criteria to our cohort resulted in the inclusion of more sexually experienced women, methodological differences did not fully explain the VE differences. PMID:25139208

  11. A DNA vaccine against tuberculosis based on the 65 kDa heat-shock protein differentially activates human macrophages and dendritic cells

    PubMed Central

    Franco, Luís H; Wowk, Pryscilla F; Silva, Célio L; Trombone, Ana PF; Coelho-Castelo, Arlete AM; Oliver, Constance; Jamur, Maria C; Moretto, Edson L; Bonato, Vânia LD

    2008-01-01

    Background A number of reports have demonstrated that rodents immunized with DNA vaccines can produce antibodies and cellular immune responses presenting a long-lasting protective immunity. These findings have attracted considerable interest in the field of DNA vaccination. We have previously described the prophylactic and therapeutic effects of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in a murine model of tuberculosis. As DNA vaccines are often less effective in humans, we aimed to find out how the DNA-HSP65 stimulates human immune responses. Methods To address this question, we analysed the activation of both human macrophages and dendritic cells (DCs) cultured with DNA-HSP65. Then, these cells stimulated with the DNA vaccine were evaluated regarding the expression of surface markers, cytokine production and microbicidal activity. Results It was observed that DCs and macrophages presented different ability to uptake DNA vaccine. Under DNA stimulation, macrophages, characterized as CD11b+/CD86+/HLA-DR+, produced high levels of TNF-alpha, IL-6 (pro-inflammatory cytokines), and IL-10 (anti-inflammatory cytokine). Besides, they also presented a microbicidal activity higher than that observed in DCs after infection with M. tuberculosis. On the other hand, DCs, characterized as CD11c+/CD86+/CD123-/BDCA-4+/IFN-alpha-, produced high levels of IL-12 and low levels of TNF-alpha, IL-6 and IL-10. Finally, the DNA-HSP65 vaccine was able to induce proliferation of peripheral blood lymphocytes. Conclusion Our data suggest that the immune response is differently activated by the DNA-HSP65 vaccine in humans. These findings provide important clues to the design of new strategies for using DNA vaccines in human immunotherapy. PMID:18208592

  12. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice.

    PubMed

    Tomusange, Khamis; Wijesundara, Danushka; Gummow, Jason; Garrod, Tamsin; Li, Yanrui; Gray, Lachlan; Churchill, Melissa; Grubor-Bauk, Branka; Gowans, Eric J

    2016-01-01

    DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans.

  13. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice.

    PubMed

    Tomusange, Khamis; Wijesundara, Danushka; Gummow, Jason; Garrod, Tamsin; Li, Yanrui; Gray, Lachlan; Churchill, Melissa; Grubor-Bauk, Branka; Gowans, Eric J

    2016-01-01

    DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans. PMID:27358023

  14. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice

    PubMed Central

    Tomusange, Khamis; Wijesundara, Danushka; Gummow, Jason; Garrod, Tamsin; Li, Yanrui; Gray, Lachlan; Churchill, Melissa; Grubor-Bauk, Branka; Gowans, Eric J.

    2016-01-01

    DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans. PMID:27358023

  15. A dual amplification fluorescent strategy for sensitive detection of DNA methyltransferase activity based on strand displacement amplification and DNAzyme amplification.

    PubMed

    Cui, Wanling; Wang, Lei; Jiang, Wei

    2016-03-15

    DNA methyltransferase (MTase) plays a critical role in many biological processes and has been regarded as a predictive cancer biomarker and a therapeutic target in cancer treatment. Sensitive detection of DNA MTase activity is essential for early cancer diagnosis and therapeutics. Here, we developed a dual amplification fluorescent strategy for sensitive detection of DNA MTase activity based on strand displacement amplification (SDA) and DNAzyme amplification. A trifunctional double-stranded DNA (dsDNA) probe was designed including a methylation site for DNA MTase recognition, a complementary sequence of 8-17 DNAzyme for synthesizing DNAzyme, and a nicking site for nicking enzyme cleavage. Firstly, the trifunctional dsDNA probe was methylated by DNA MTase to form the methylated dsDNA. Subsequently, HpaII restriction endonuclease specifically cleaved the residue of unmethylated dsDNA. Next, under the action of polymerase and nicking enzyme, the methylared dsDNA initiated SDA, releasing numbers of 8-17 DNAzymes. Finally, the released 8-17 DNAzymes triggered DNAzyme amplification reaction to induce a significant fluorescence enhancement. This strategy could detect DNA MTase activity as low as 0.0082U/mL. Additionally, the strategy was successfully applied for evaluating the inhibitions of DNA MTase using two anticancer drugs, 5-azacytidine and 5-aza-2'-deoxycytidine. The results indicate the proposed strategy has a potential application in early cancer diagnosis and therapeutics.

  16. A Nonhuman Primate Scrub Typhus Model: Protective Immune Responses Induced by pKarp47 DNA Vaccination in Cynomolgus Macaques

    PubMed Central

    Chattopadhyay, Suchismita; Jiang, Ju; Nawtaisong, Pruksa; Lee, John S.; Tan, Esterlina; Dela Cruz, Eduardo; Burgos, Jasmin; Abalos, Rodolfo; Blacksell, Stuart D.; Lombardini, Eric; Turner, Gareth D.; Day, Nicholas P. J.; Richards, Allen L.

    2015-01-01

    We developed an intradermal (ID) challenge cynomolgus macaque (Macaca fascicularis) model of scrub typhus, the leading cause of treatable undifferentiated febrile illness in tropical Asia, caused by the obligate intracellular bacterium, Orientia tsutsugamushi. A well-characterized animal model is required for the development of clinically relevant diagnostic assays and evaluation of therapeutic agents and candidate vaccines. We investigated scrub typhus disease pathophysiology and evaluated two O. tsutsugamushi 47-kDa, Ag-based candidate vaccines, a DNA plasmid vaccine (pKarp47), and a virus-vectored vaccine (Kp47/47-Venezuelan equine encephalitis virus replicon particle) for safety, immunogenicity, and efficacy against homologous ID challenge with O. tsutsugamushi Karp. Control cynomolgus macaques developed fever, classic eschars, lymphadenopathy, bacteremia, altered liver function, increased WBC counts, pathogen-specific Ab (IgM and IgG), and cell-mediated immune responses. Vaccinated macaques receiving the DNA plasmid pKarp47 vaccine had significantly increased O. tsutsugamushi–specific, IFN-γ–producing PBMCs (p = 0.04), reduced eschar frequency and bacteremia duration (p ≤ 0.01), delayed bacteremia onset (p < 0.05), reduced circulating bacterial biomass (p = 0.01), and greater reduction of liver transaminase levels (p < 0.03) than controls. This study demonstrates a vaccine-induced immune response capable of conferring sterile immunity against high-dose homologous ID challenge of O. tsutsugamushi in a nonhuman primate model, and it provides insight into cell-mediated immune control of O. tsutsugamushi and dissemination dynamics, highlights the importance of bacteremia indices for evaluation of both natural and vaccine-induced immune responses, and importantly, to our knowledge, has determined the first phenotypic correlates of immune protection in scrub typhus. We conclude that this model is suitable for detailed investigations into vaccine

  17. A nonhuman primate scrub typhus model: protective immune responses induced by pKarp47 DNA vaccination in cynomolgus macaques.

    PubMed

    Paris, Daniel H; Chattopadhyay, Suchismita; Jiang, Ju; Nawtaisong, Pruksa; Lee, John S; Tan, Esterlina; Dela Cruz, Eduardo; Burgos, Jasmin; Abalos, Rodolfo; Blacksell, Stuart D; Lombardini, Eric; Turner, Gareth D; Day, Nicholas P J; Richards, Allen L

    2015-02-15

    We developed an intradermal (ID) challenge cynomolgus macaque (Macaca fascicularis) model of scrub typhus, the leading cause of treatable undifferentiated febrile illness in tropical Asia, caused by the obligate intracellular bacterium, Orientia tsutsugamushi. A well-characterized animal model is required for the development of clinically relevant diagnostic assays and evaluation of therapeutic agents and candidate vaccines. We investigated scrub typhus disease pathophysiology and evaluated two O. tsutsugamushi 47-kDa, Ag-based candidate vaccines, a DNA plasmid vaccine (pKarp47), and a virus-vectored vaccine (Kp47/47-Venezuelan equine encephalitis virus replicon particle) for safety, immunogenicity, and efficacy against homologous ID challenge with O. tsutsugamushi Karp. Control cynomolgus macaques developed fever, classic eschars, lymphadenopathy, bacteremia, altered liver function, increased WBC counts, pathogen-specific Ab (IgM and IgG), and cell-mediated immune responses. Vaccinated macaques receiving the DNA plasmid pKarp47 vaccine had significantly increased O. tsutsugamushi-specific, IFN-γ-producing PBMCs (p = 0.04), reduced eschar frequency and bacteremia duration (p ≤ 0.01), delayed bacteremia onset (p < 0.05), reduced circulating bacterial biomass (p = 0.01), and greater reduction of liver transaminase levels (p < 0.03) than controls. This study demonstrates a vaccine-induced immune response capable of conferring sterile immunity against high-dose homologous ID challenge of O. tsutsugamushi in a nonhuman primate model, and it provides insight into cell-mediated immune control of O. tsutsugamushi and dissemination dynamics, highlights the importance of bacteremia indices for evaluation of both natural and vaccine-induced immune responses, and importantly, to our knowledge, has determined the first phenotypic correlates of immune protection in scrub typhus. We conclude that this model is suitable for detailed investigations into vaccine-induced immune

  18. Intravaginal HPV DNA vaccination with electroporation induces local CD8+ T-cell immune responses and antitumor effects against cervicovaginal tumors.

    PubMed

    Sun, Y; Peng, S; Qiu, J; Miao, J; Yang, B; Jeang, J; Hung, C-F; Wu, T-C

    2015-07-01

    Therapeutic human papillomavirus (HPV) vaccines have the potential to inhibit the progression of an established HPV infection to precancer and cancer lesions by targeting HPV oncoproteins. We have previously developed a therapeutic DNA vaccine encoding calreticulin (CRT) linked to E7, CRT/E7 DNA vaccine, for use in the treatment of HPV-associated lesions. Since the transfection efficiency of DNA vaccines administered in vivo is typically low, we examined the use of electroporation as well as different routes of administration to enhance antigen-specific tumor control. We tested the effects of the CRT/E7 DNA vaccine administered intramuscularly or intravaginally, with or without electroporation, on the generation of CD8+ T-cell immunity and therapeutic antitumor effects in HPV16 E7-expressing cervicovaginal tumor-bearing mice. We found that intravaginal vaccination of CRT/E7 DNA followed by electroporation-induced potent E7-specific CD8(+) T-cell responses in the cervicovaginal tract, compared with intramuscular injection followed by electroporation. Furthermore, tumor-bearing mice vaccinated intravaginally followed by electroporation had an enhanced survival, antitumor effects and local production of IFN-γ+CD8+ T cells compared with those vaccinated intramuscularly with electroporation. Thus, we show that intravaginal CRT/E7 DNA vaccination followed by electroporation generates the most potent therapeutic antitumor effects against an orthotopic E7-expressing tumor model. The current study will have significant clinical implications once a clinically applicable electroporation device for intravaginal use becomes available.

  19. Analysis of DNA-vaccinated fish reveals viral antigen in muscle, kidney and thymus, and transient histopathologic changes

    USGS Publications Warehouse

    Garver, K.A.; Conway, C.M.; Elliott, D.G.; Kurath, G.

    2005-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was used in a systematic study to analyze vaccine tissue distribution, persistence, expression patterns, and histopathologic effects. Vaccine plasmid pIHNw-G, containing the gene for the viral glycoprotein, was detected immediately after intramuscular injection in all tissues analyzed, including blood, but at later time points was found primarily in muscle tissue, where it persisted to 90 days. Glycoprotein expression was detected in muscle, kidney, and thymus tissues, with levels peaking at 14 days and becoming undetectable by 28 days. Histologic examination revealed no vaccine-specific pathologic changes at the standard effective dose of 0.1 ??g DNA per fish, but at a high dose of 50 ??g an increased inflammatory response was evident. Transient damage associated with needle injection was localized in muscle tissue, but by 90 days after vaccination no damage was detected in any tissue, indicating the vaccine to be safe and well tolerated. ?? Springer Science+Business Media, Inc. 2005.

  20. Ag85A/ESAT-6 chimeric DNA vaccine induces an adverse response in tuberculosis-infected mice

    PubMed Central

    Liang, Yan; Bai, Xuejuang; Zhang, Junxian; Song, Jingying; Yang, Yourong; Yu, Qi; Li, Ning; Wu, Xueqiong

    2016-01-01

    The Mycobacterium tuberculosis (M. tb) antigens encoded by the 6 kDa early secretory antigenic target (esat-6) and antigen 85A (ag85a) genes are known to exert protective effects against tuberculosis in animal models. In addition, these antigens represent vaccine components that were tested in early human clinical trials. In the present study, a chimeric DNA vaccine was constructed that contained two copies of the esat-6 gene inserted into the ag85a gene from M. tb. BALB/c mice were treated with this chimeric vaccine following infection with either M. tb H37Rv or a clinical multi drug resistant tuberculosis isolate. Treatment of both groups of mice with the chimeric vaccine resulted in accelerated mortality. These findings are in contrast with previous results, which indicated that DNA vaccines expressing the individual antigens were either beneficial or at least not harmful. The results of the present study suggested that the ESAT-6 antigen is not suitable for inclusion in therapeutic vaccines. PMID:27279275

  1. Nanoscale characterization of DNA conformation using dual-color fluorescence axial localization and label-free biosensing.

    PubMed

    Zhang, Xirui; Daaboul, George G; Spuhler, Philipp S; Freedman, David S; Yurt, Abdulkadir; Ahn, Sunmin; Avci, Oguzhan; Ünlü, M Selim

    2014-12-21

    Quantitative determination of the density and conformation of DNA molecules tethered to the surface can help optimize and understand DNA nanosensors and nanodevices, which use conformational or motional changes of surface-immobilized DNA for detection or actuation. We present an interferometric sensing platform that combines (i) dual-color fluorescence spectroscopy for precise axial co-localization of two fluorophores attached at different nucleotides of surface-immobilized DNA molecules and (ii) independent label-free quantification of biomolecule surface density at the same site. Using this platform, we examined the conformation of DNA molecules immobilized on a three-dimensional polymeric surface and demonstrated simultaneous detection of DNA conformational change and binding in real-time. These results demonstrate that independent quantification of both surface density and molecular nanoscale conformation constitutes a versatile approach for nanoscale solid-biochemical interface investigations and molecular binding assays.

  2. Clustered epitopes within a new poly-epitopic HIV-1 DNA vaccine shows immunogenicity in BALB/c mice.

    PubMed

    Jafarpour, Nazli; Memarnejadian, Arash; Aghasadeghi, Mohammad Reza; Kohram, Fatemeh; Aghababa, Haniyeh; Khoramabadi, Nima; Mahdavi, Mehdi

    2014-08-01

    Despite a huge number of studies towards vaccine development against human immunodeficiency virus-1, no effective vaccine has been approved yet. Thus, new vaccines should be provided with new formulations. Herein, a new DNA vaccine candidate encoding conserved and immunogenic epitopes from HIV-1 antigens of tat, pol, gag and env is designed and constructed. After bioinformatics analyses to find the best epitopes and their tandem, nucleotide sequence corresponding to the designed multiepitope was synthesized and cloned into pcDNA3.1+ vector. Expression of pcDNA3.1-tat/pol/gag/env plasmid was evaluated in HEK293T cells by RT-PCR and western-blotting. Seven groups of BALB/c mice were intramuscularly immunized three times either with 50, 100, 200 µg of plasmid in 2-week intervals or with similar doses of insert-free plasmid. Two weeks after the last injection, proliferation of T cells and secretion of IL4 and IFN-γ cytokines were evaluated using Brdu and ELISA methods, respectively. Results showed the proper expression of the plasmid in protein and mRNA levels. Moreover, the designed multiepitope plasmid was capable of induction of both proliferation responses as well as IFN-γ and IL-4 cytokine production in a considerable level compared to the control groups. Overall, our primary data warranted further detailed studies on the potency of this vaccine. PMID:24842263

  3. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap.

    PubMed

    Gray, Glenda E; Mayer, Kenneth H; Elizaga, Marnie L; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C; Sato, Alicia; Gu, Niya; Tomaras, Georgia D; Tucker, Timothy; Barnett, Susan W; Mkhize, Nonhlanhla N; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-06-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 10(9) PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4(+) T-cell and CD8(+) T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4(+) T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4(+) T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.).

  4. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap.

    PubMed

    Gray, Glenda E; Mayer, Kenneth H; Elizaga, Marnie L; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C; Sato, Alicia; Gu, Niya; Tomaras, Georgia D; Tucker, Timothy; Barnett, Susan W; Mkhize, Nonhlanhla N; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-06-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 10(9) PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4(+) T-cell and CD8(+) T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4(+) T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4(+) T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.). PMID:27098021

  5. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap

    PubMed Central

    Mayer, Kenneth H.; Elizaga, Marnie L.; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C.; Sato, Alicia; Gu, Niya; Tomaras, Georgia D.; Tucker, Timothy; Barnett, Susan W.; Mkhize, Nonhlanhla N.; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-01-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 109 PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4+ T-cell and CD8+ T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4+ T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4+ T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.) PMID:27098021

  6. Vaccination with Bivalent DNA Vaccine of α1-Giardin and CWP2 Delivered by Attenuated Salmonella typhimurium Reduces Trophozoites and Cysts in the Feces of Mice Infected with Giardia lamblia

    PubMed Central

    Feng, Xian-Min; Zheng, Wen-Yu; Zhang, Hong-Mei; Shi, Wen-Yan; Li, Yao; Cui, Bai-Ji; Wang, Hui-Yan

    2016-01-01

    Background Giardia lamblia is one of the most common infectious protozoans in human that may cause diarrhea in travelers. Searching for antigens that induced effectively protective immunity has become a key point in the development of vaccine against giardiasis. Methodology/Principal Findings Mice vaccinated with G. lamblia trophozozite-specific α1-giardin DNA vaccine delivered orally by attenuated Salmonella typhimurium SL7027 elicited 74.2% trophozoite reduction, but only 28% reduction in cyst shedding compared with PBS buffer control. Oral vaccination with Salmonella-delivered cyst-specific CWP2 DNA produced 89% reduction in cysts shedding in feces of vaccinated mice. Significantly, the mice vaccinated with Salmonella-delivered bivalent α1-giardin and CWP2 DNA vaccines produced significant reduction in both trophozoite (79%) and cyst (93%) in feces of vaccinated mice. This parasite reduction is associated with the strong local mucosal IgA secretion and the IgG2a-dominant systemic immune responses in vaccinated mice. Conclusions The results demonstrate that bivalent vaccines targeting α1-giardin and CWP2 can protect mice against the colonization of Giardia trophozoite and block the transformation of cyst in host at the same time, and can be used to prevent Giardia infection and block the transmission of giardiasis. PMID:27332547

  7. [Combined use of irradiation and DNA tumor vaccine to treat canine oral malignant melanoma: a pilot study].

    PubMed

    Herzog, A; Buchholz, J; Ruess-Melzer, K; Lang, J; Kaser-Hotz, B

    2013-02-01

    Melanoma is the most common oral tumor in dogs, characterized by rapid growth, local invasion, and high metastatic rate. The goal of this study was to evaluate the combination of radiation therapy and DNA tumor vaccine. We hypothesized, that the concurrent use would not increase toxicity. Nine dogs with oral melanoma were treated with 4 fractions of 8 Gray at 7-day intervals. The vaccine was given 4 times every 14 days, beginning at the first radiation fraction. Local acute radiation toxicities were assessed according to the VRTOG toxicity scoring scheme over a time period of 7 weeks. In none of the evaluated dogs, mucositis, dermatitis and conjunctivitis exceeded grade 2. In 3 dogs mild fever, lethargy, and local swelling at the injection site were seen after vaccine application. In conclusion, the concurrent administration of radiation therapy and vaccine was well tolerated in all dogs. PMID:23385072

  8. Cyclophilin A as a potential genetic adjuvant to improve HIV-1 Gag DNA vaccine immunogenicity by eliciting broad and long-term Gag-specific cellular immunity in mice

    PubMed Central

    Hou, Jue; Zhang, Qicheng; Liu, Zheng; Wang, Shuhui; Li, Dan; Liu, Chang; Liu, Ying; Shao, Yiming

    2016-01-01

    Previous research has shown that host Cyclophilin A (CyPA) can promote dendritic cell maturation and the subsequent innate immune response when incorporated into an HIV-1 Gag protein to circumvent the resistance of dendritic cells to HIV-1 infection. This led us to hypothesize that CyPA may improve HIV-1 Gag-specific vaccine immunogenicity via binding with Gag antigen. The adjuvant effect of CyPA was evaluated using a DNA vaccine with single or dual expression cassettes. Mouse studies indicated that CyPA specifically and markedly promoted HIV-1 Gag-specific cellular immunity but not an HIV-1 Env-specific cellular response. The Gag/CyPA dual expression cassettes stimulated a greater Gag-specific cellular immune response, than Gag immunization alone. Furthermore, CyPA induced a broad Gag-specific T cell response and strong cellular immunity that lasted up to 5 months. In addition, CyPA skewed to cellular rather than humoral immunity. To investigate the mechanisms of the adjuvant effect, site-directed mutagenesis in CyPA, including active site residues H54Q and F60A resulted in mutants that were co-expressed with Gag in dual cassettes. The immune response to this vaccine was analyzed in vivo. Interestingly, the wild type CyPA markedly increased Gag cellular immunity, but the H54Q and F60A mutants drastically reduced CyPA adjuvant activation. Therefore, we suggest that the adjuvant effect of CyPA was based on Gag-CyPA-specific interactions. Herein, we report that Cyclophilin A can augment HIV-1 Gag-specific cellular immunity as a genetic adjuvant in multiplex DNA immunization strategies, and that activity of this adjuvant is specific, broad, long-term, and based on Gag-CyPA interaction. PMID:26305669

  9. Protective immunity against Taenia crassiceps murine cysticercosis induced by DNA vaccination with a Taenia saginata tegument antigen.

    PubMed

    Rosas, Gabriela; Fragoso, Gladis; Garate, Teresa; Hernández, Beatriz; Ferrero, Patricia; Foster-Cuevas, Mildred; Parkhouse, R Michael E; Harrison, Leslie J S; Briones, Sergio López; González, Luis Miguel; Sciutto, Edda

    2002-11-01

    This study investigated the protective capacity of the recombinant Taenia saginata Tso18 antigen administered as a DNA vaccine in the Taenia crassiceps murine model of cysticercosis. This Tso18 DNA sequence, isolated from a T. saginata oncosphere cDNA library, has homologies with Taenia solium and Echinococcus sp. It was cloned in the pcDNA3.1 plasmid and injected once intramuscularly into mice. Compared to saline-vaccinated control mice, immunization reduced the parasite burden by 57.3-81.4%, while lower levels of non-specific protection were induced in control mice injected with the plasmid pcDNA3.1 (18.8-33.1%) or a plasmid with irrelevant construct, pcDNA3.1/3D15 (33.4-38.8%). Importantly, significant levels of protection were observed between the pcDNA3.1/Tso18 plasmid and pcDNA3.1/3D15 plasmid immunized mice. Mice immunized with pTso18 synthesized low levels of, primarily IgG1 sub-class, antibodies. These antibodies were shown to recognize a 66 kDa antigen fraction of T. crassiceps and T. solium. Splenocytes enriched in both CD4+CD8- and CD4-CD8+ T cells from these vaccinated mice proliferated in vitro when exposed to antigens from both T. solium and T. crassiceps cestodes. Immunolocalization studies revealed the Tso18 antigen in oncospheres of T. saginata and T. solium, in the adult tapeworm and in the tegument of T. solium cysticerci. The protective capacity of this antigen and its extensive distribution in different stages, species and genera of cestodes points to the potential of Tso18 antigen for the possible design of a vaccine against cestodes.

  10. Trout oral VP2 DNA vaccination mimics transcriptional responses occurring after infection with infectious pancreatic necrosis virus (IPNV).

    PubMed

    Ballesteros, Natalia A; Saint-Jean, Sylvia S Rodríguez; Perez-Prieto, Sara I; Coll, Julio M

    2012-12-01

    Time-course and organ transcriptional response profiles in rainbow trout Oncorhynchus mykiss were studied after oral DNA-vaccination with the VP2 gene of the infectious pancreatic necrosis virus (IPNV) encapsulated in alginates. The profiles were also compared with those obtained after infection with IPNV. A group of immune-related genes (stat1, ifn1, ifng, mx1, mx3, il8, il10, il11, il12b, tnf2, mhc1uda, igm and igt) previously selected from microarray analysis of successful oral vaccination of rainbow trout, were used for the RTqPCR analysis. The results showed that oral VP2-vaccination qualitatively mimicked both the time-course and organ (head kidney, spleen, intestine, pyloric ceca, and thymus) transcriptional profiles obtained after IPNV-infection. Highest transcriptional differential expression levels after oral vaccination were obtained in thymus, suggesting those might be important for subsequent protection against IPNV challenges. However, transcriptional differential expression levels of most of the genes mentioned above were lower in VP2-vaccinated than in IPNV-infected trout, except for ifn1 which were similar. Together all the results suggest that the oral-alginate VP2-vaccination procedure immunizes trout against IPNV in a similar way as IPNV-infection does while there is still room for additional improvements in the oral vaccination procedure. Some of the genes described here could be used as markers to further optimize the oral immunization method.

  11. Development of a screening system for DNA damage and repair of potential carcinogens based on dual luciferase assay in human HepG2 cell.

    PubMed

    Fan, Longgang; Niu, Yujie; Zhang, Shaohui; Shi, Lei; Guo, Huicai; Liu, Yi; Zhang, Rong

    2013-09-01

    At present, different methods are used for the detection of early biological effects of DNA-damaging agents in environment. Some sensitive testing methods employing DNA damage-inducing genes RNR3, RAD51, RAD54 or growth-arrested and DNA damage-inducible gene 153 (Gadd 153) are used to detect the DNA damage. The host cell reactivation (HCR) assay is a functional assay that is based on the independent transfection of cells with either damaged or undamaged plasmid DNA and allows the identification of the genes responsible for DNA repair-deficient syndromes. In this study, we combined the gadd153-luc test system and HCR assay to measure the DNA damage and DNA repair by dual luciferase assay. We used 16 DNA-damaging agents all of which were detected by a positive dual luciferase reporter test system. The sensitivity of the dual luciferase assay system to detect DNA damage/repair was same as the gadd153-luc test system and/or the HCR assay. Since DNA repair is important to maintain genetic stability, DNA damage and repair have been good biomarkers of early biological effects of DNA-damaging agents. Accordingly, the measurement of DNA repair capacity should be a valued tool in molecular epidemiology studies. The dual luciferase assay described in this study is rapid, convenient, stable and standard.

  12. Two distinct DNA binding modes guide dual roles Of a CRISPR-Cas protein complex

    PubMed Central

    Westra, Edze R.; Vlot, Marnix; Künne, Tim; Sobota, Małgorzata; Dekker, Cees; Brouns, Stan J.J.; Joo, Chirlmin

    2015-01-01

    SUMMARY Small RNA-guided protein complexes play an essential role in CRISPR-mediated immunity in prokaryotes. While these complexes initiate interference by flagging cognate invader DNA for destruction, recent evidence has implicated their involvement in new CRISPR memory formation, called priming, against mutated invader sequences. The mechanism by which the target recognition complex mediates these disparate responses—interference and priming—remains poorly understood. Using single-molecule FRET, we visualize how bona fide and mutated targets are differentially probed by E. coli Cascade. We observe that the recognition of bona fide targets is an ordered process that is tightly controlled for high fidelity. Mutated targets are recognized with low fidelity, which is featured by short-lived and PAM- and seed-independent binding by any segment of the crRNA. These dual roles of Cascade in immunity with distinct fidelities underpin CRISPR-Cas robustness, allowing for efficient degradation of bona fide targets and priming of mutated DNA targets. PMID:25752578

  13. Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex.

    PubMed

    Blosser, Timothy R; Loeff, Luuk; Westra, Edze R; Vlot, Marnix; Künne, Tim; Sobota, Małgorzata; Dekker, Cees; Brouns, Stan J J; Joo, Chirlmin

    2015-04-01

    Small RNA-guided protein complexes play an essential role in CRISPR-mediated immunity in prokaryotes. While these complexes initiate interference by flagging cognate invader DNA for destruction, recent evidence has implicated their involvement in new CRISPR memory formation, called priming, against mutated invader sequences. The mechanism by which the target recognition complex mediates these disparate responses-interference and priming-remains poorly understood. Using single-molecule FRET, we visualize how bona fide and mutated targets are differentially probed by E. coli Cascade. We observe that the recognition of bona fide targets is an ordered process that is tightly controlled for high fidelity. Mutated targets are recognized with low fidelity, which is featured by short-lived and PAM- and seed-independent binding by any segment of the crRNA. These dual roles of Cascade in immunity with distinct fidelities underpin CRISPR-Cas robustness, allowing for efficient degradation of bona fide targets and priming of mutated DNA targets.

  14. Poly(2-aminoethyl methacrylate) with well-defined chain-length for DNA vaccine delivery to dendritic cells

    PubMed Central

    Ji, Weihang; Panus, David; Palumbo, R. Noelle; Tang, Rupei; Wang, Chun

    2011-01-01

    Poly(2-aminoethyl methacrylate) (PAEM) homopolymers with defined chain-length and narrow molecular weight distribution were synthesized using atom transfer radical polymerization (ATRP), and a comprehensive study was conducted to evaluate the colloidal properties of PAEM/plasmid DNA polyplexes, the uptake and subcellular trafficking of polyplexes in antigen-presenting dendritic cells (DCs), and the biological performance of PAEM as a potential DNA vaccine carrier. PAEM of different chain-length (45, 75 and 150 repeating units) showed varying strength in condensing plasmid DNA into narrowly dispersed nanoparticles with very low cytotoxicity. Longer polymer chain-length resulted in higher levels of overall cellular uptake and nuclear uptake of plasmid DNA, but shorter polymer chains favored intracellular and intra-nuclear release of free plasmid from the polyplexes. Despite its simple chemical structure, PAEM transfected DCs very efficiently in vitro in media with or without serum and led to phenotypic maturation of DCs. When a model antigen-encoding ovalbumin plasmid was used, transfected DCs stimulated the activation of naïve CD8+ T cells to produce high levels of interferon-γ. The efficiency of transfection, DC maturation, and CD8+ T cell activation showed varying degrees of polymer chain-length dependence. These structurally defined cationic polymers may have much potential as efficient DNA vaccine carriers and immunostimulatory adjuvants. They may also serve as a model material system for elucidating structural and intracellular mechanisms of polymer-mediated DNA vaccine delivery. PMID:22082257

  15. Evaluation of DNA encoding acidic ribosomal protein P2 of Cryptosporidium parvum as a potential vaccine candidate for cryptosporidiosis.

    PubMed

    Benitez, Alvaro; Priest, Jeffrey W; Ehigiator, Humphrey N; McNair, Nina; Mead, Jan R

    2011-11-15

    The Cryptosporidium parvum acidic ribosomal protein P2 (CpP2) is an important immunodominant marker in C. parvum infection. In this study, the CpP2 antigen was evaluated as a vaccine candidate using a DNA vaccine model in adult C57BL/6 IL-12 knockout (KO) mice, which are susceptible to C. parvum infection. Our data show that subcutaneous immunization in the ear with DNA encoding CpP2 (CpP2-DNA) cloned into the pUMVC4b vector induced a significant anti-CpP2 IgG antibody response that was predominantly of the IgG1 isotype. Compared to control KO mice immunized with plasmid alone, CpP2-immunized mice demonstrated specific in vitro spleen cell proliferation as well as enhanced IFN-γ production to recombinant CpP2. Further, parasite loads in CpP2 DNA-immunized mice were compared to control mice challenged with C. parvum oocysts. Although a trend in reduction of infection was observed in the CpP2 DNA-immunized mice, differences between groups were not statistically significant. These results suggest that a DNA vaccine encoding the C. parvum P2 antigen is able to provide an effective means of eliciting humoral and cellular responses and has the potential to generate protective immunity against C. parvum infection but may require using alternative vectors or adjuvant to generate a more potent and balanced response.

  16. Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination

    USGS Publications Warehouse

    Purcell, Maureen K.; Kurath, Gael; Garver, Kyle A.; Herwig, Russell P.; Winton, James R.

    2004-01-01

    Infectious haematopoietic necrosis virus (IHNV) is a well-studied virus of salmonid fishes. A highly efficacious DNA vaccine has been developed against this virus and studies have demonstrated that this vaccine induces both an early and transient non-specific anti-viral phase as well as long-term specific protection. The mechanisms of the early anti-viral phase are not known, but previous studies noted changes in Mx gene expression, suggesting a role for type I interferon. This study used quantitative real-time reverse transcriptase PCR methodology to compare expression changes over time of a number of cytokine or cytokine-related genes in the spleen of rainbow trout following injection with poly I:C, live IHNV, the IHNV DNA vaccine or a control plasmid encoding the non-antigenic luciferase gene. The target genes included Mx-1, viral haemorrhagic septicaemia virus induced gene 8 (Vig-8), TNF-α1, TNF-α2, IL-1β1, IL-8, TGF-β1 and Hsp70. Poly I:C stimulation induced several genes but the strongest and significant response was observed in the Mx-1 and Vig-8 genes. The live IHN virus induced a significant response in all genes examined except TGF-β1. The control plasmid construct and the IHNV DNA vaccine marginally induced a number of genes, but the main difference between these two groups was a statistically significant induction of the Mx-1 and Vig-8 genes by the IHNV vaccine only. The gene expression profiles elicited by the live virus and the IHNV DNA vaccine differed in a number of aspects but this study confirms the clear role for a type I interferon-like response in early anti-viral defence.

  17. Stable and long-lasting immune response in horses after DNA vaccination against equine arteritis virus.

    PubMed

    Giese, M; Bahr, U; Jakob, N J; Kehm, R; Handermann, M; Müller, H; Vahlenkamp, T H; Spiess, C; Schneider, T H; Schusse, G; Darai, G

    2002-10-01

    Equine arteritis virus (EAV) is the causative agent of the equine viral arteritis. It is a small RNA virus with a linear, non-segmented plus RNA genome. EAV is a member of the Arteriviridae family that includes porcine reproductive and respiratory syndrome virus (PRSSV), simian haemorrhagic fever virus (SHFV) and lactate dehydrogenase virus (LDV). The viral transmission is via respiratory and reproductive routes. Clinical signs in horses vary, and severe infection can lead to abortions in pregnant mares or neonatal foal death. The aim of this study was to investigate the development of the immune response in horses after immunization with a DNA vaccine harbouring and expressing EAV Open Reading Frames (ORF) 2, 5, and 7, in combination with equine interleukin 2 (eqIL2). Three boosters followed the basic immunization in two-week intervals. Each immunization was a combination of gene gun and intramuscular injection. All horses developed a high titer of neutralizing antibodies after basic immunization within 2 weeks. Remarkably, this immune response was found to be independent of the age of animals. The youngest horse was six-years old, and the oldest twenty-two years old. A remarkable difference in the immune response between the young and old were not observed. The duration of immunity was investigated during a period of one year. After 12 months, neutralizing antibodies were still detectable in all the vaccinated horses.

  18. Interleukin-15 enhance DNA vaccine elicited mucosal and systemic immunity against foot and mouth disease virus.

    PubMed

    Wang, Xiao; Zhang, Xinyu; Kang, Youming; Jin, Huali; Du, Xiaogang; Zhao, Gan; Yu, Yang; Li, Jinyao; Su, Baowei; Huang, Chang; Wang, Bin

    2008-09-19

    Aerosol transmission of foot and mouth disease virus (FMDV) is believed to be an important route of infection. Induction of mucosal response is thought to be effective way against such infection. Various approaches have been developed including the use of molecules adjuvant and polymers delivery for the mucosal delivery of DNA vaccine. In this study, using low molecular weight chitosan as a delivery vehicle, we investigated whether co-administration intranasally of the FMDV DNA vaccine, pcD-VP1 and a construct expressing IL-15 as the molecular adjuvant can enhance mucosal and systemic immune responses in animals. Compared to the group intranasally immunized with pcD-VP1 alone, the group immunized with the molecular adjuvant not only was induced higher level of mucosal sIgA but also serum IgG. Interestingly, intranasal delivery of the IL-15 construct with pcD-VP1 significantly enhanced the cell-mediated immunity (CMI) compared to the pcD-VP1 alone, as evidenced by the higher level of antigen-specific T-cell proliferation, cytotoxic T lymphocyte (CTL) response and higher expressions of IFN-gamma in both CD4+ and CD8+ T cells inform the spleen and mucosal sites. Consistently, IL-15 as adjuvant provided higher level of FMDV neutralizing antibody against FMDV and high secretions of IgA producing cells in mucosal tissues. Taken together, the results demonstrated that intranasal delivery of IL-15 as a mucosal adjuvant can enhance the antigen-specific mucosal and systemic immune responses, which may provide a protection against the FMDV initial infection.

  19. VennVax, a DNA-prime, peptide-boost multi-T-cell epitope poxvirus vaccine, induces protective immunity against vaccinia infection by T cell response alone

    PubMed Central

    Moise, Leonard; Buller, R. Mark; Schriewer, Jill; Lee, Jinhee; Frey, Sharon; Martin, William; De Groot, Anne S.

    2011-01-01

    The potential for smallpox to be disseminated in a bioterror attack has prompted development of new, safer smallpox vaccination strategies. We designed and evaluated immunogenicity and efficacy of a T-cell epitope vaccine based on conserved and antigenic vaccinia/variola sequences, identified using bioinformatics and immunological methods. Vaccination in HLA transgenic mice using a DNA-prime/peptide-boost strategy elicited significant T cell responses to multiple epitopes. No antibody response pre-challenge was observed, neither against whole vaccinia antigens nor vaccine epitope peptides. Remarkably, 100% of vaccinated mice survived lethal vaccinia challenge, demonstrating that protective immunity to vaccinia does not require B cell priming. PMID:21055490

  20. Control of HPV-associated tumors by innovative therapeutic HPV DNA vaccine in the absence of CD4+ T cells

    PubMed Central

    2014-01-01

    Human papillomavirus (HPV) infections are particularly problematic for HIV + and solid organ transplant patients with compromised CD4+ T cell-dependent immunity as they produce more severe and progressive disease compared to healthy individuals. There are no specific treatments for chronic HPV infection, resulting in an urgent unmet need for a modality that is safe and effective for both immunocompromised and otherwise normal patients with recalcitrant disease. DNA vaccination is attractive because it avoids the risks of administration of live vectors to immunocompromised patients, and can induce potent HPV-specific cytotoxic T cell responses. We have developed a DNA vaccine (pNGVL4a-hCRTE6E7L2) encoding calreticulin (CRT) fused to E6, E7 and L2 proteins of HPV-16, the genotype associated with approximately 90% vaginal, vulvar, anal, penile and oropharyngeal HPV-associated cancers and the majority of cervical cancers. Administration of the DNA vaccine by intramuscular (IM) injection followed by electroporation induced significantly greater HPV-specific immune responses compared to IM injection alone or mixed with alum. Furthermore, pNGVL4a-hCRTE6E7L2 DNA vaccination via electroporation of mice carrying an intravaginal HPV-16 E6/E7-expressing syngeneic tumor demonstrated more potent therapeutic effects than IM vaccination alone. Of note, administration of the DNA vaccine by IM injection followed by electroporation elicited potent E6 and E7-specific CD8+ T cell responses and antitumor effects despite CD4+ T cell-depletion, although no antibody response was detected. While CD4+ T cell-depletion did reduce the E6 and E7-specific CD8+ T cell response, it remained sufficient to prevent subcutaneous tumor growth and to eliminate circulating tumor cells in a model of metastatic HPV-16+ cancer. Thus, the antibody response was CD4-dependent, whereas CD4+ T cell help enhanced the E6/E7-specific CD8+ T cell immunity, but was not required. Taken together, our data suggest that

  1. Designation of a Novel DKK1 Multiepitope DNA Vaccine and Inhibition of Bone Loss in Collagen-Induced Arthritic Mice

    PubMed Central

    Zhang, Xiaoqing; Liu, Sibo; Li, Shentao; Du, Yuxuan; Dou, Yunpeng; Li, Zhanguo; Yuan, Huihui; Zhao, Wenming

    2015-01-01

    Dickkopf-1 (DKK1), a secretory inhibitor of canonical Wnt signaling, plays a critical role in certain bone loss diseases. Studies have shown that serum levels of DKK1 are significantly higher in rheumatoid arthritis (RA) patients and are correlated with the severity of the disease, which indicates the possibility that bone erosion in RA may be inhibited by neutralizing the biological activity of DKK1. In this study, we selected a panel of twelve peptides using the software DNASTAR 7.1 and screened high affinity and immunogenicity epitopes in vitro and in vivo assays. Furthermore, we optimized four B cell epitopes to design a novel DKK1 multiepitope DNA vaccine and evaluated its bone protective effects in collagen-induced arthritis (CIA), a mouse model of RA. High level expression of the designed vaccine was measured in supernatant of COS7 cells. In addition, intramuscular immunization of BALB/c mice with this vaccine was also highly expressed and sufficient to induce the production of long-term IgG, which neutralized natural DKK1 in vivo. Importantly, this vaccine significantly attenuated bone erosion in CIA mice compared with positive control mice. These results provide evidence for the development of a DNA vaccine targeted against DKK1 to attenuate bone erosion. PMID:26075259

  2. Systemically administered gp100 encoding DNA vaccine for melanoma using water-in-oil-in-water multiple emulsion delivery systems.

    PubMed

    Kalariya, Mayurkumar; Amiji, Mansoor M

    2013-09-10

    The purpose of this study was to develop a water-in-oil-in-water (W/O/W) multiple emulsions-based vaccine delivery system for plasmid DNA encoding the gp100 peptide antigen for melanoma immunotherapy. The gp100 encoding plasmid DNA was encapsulated in the inner-most aqueous phase of squalane oil containing W/O/W multiple emulsions using a two-step emulsification method. In vitro transfection ability of the encapsulated plasmid DNA was investigated in murine dendritic cells by transgene expression analysis using fluorescence microscopy and ELISA methods. Prophylactic immunization using the W/O/W multiple emulsions encapsulated the gp100 encoding plasmid DNA vaccine significantly reduced tumor volume in C57BL/6 mice during subsequent B16-F10 tumor challenge. In addition, serum Th1 cytokine levels and immuno-histochemistry of excised tumor tissues indicated activation of cytotoxic T-lymphocytes mediated anti-tumor immunity causing tumor growth suppression. The W/O/W multiple emulsions-based vaccine delivery system efficiently delivers the gp100 plasmid DNA to induce cell-mediated anti-tumor immunity.

  3. Head-to-head comparison of three vaccination strategies based on DNA and raw insect-derived recombinant proteins against Leishmania.

    PubMed

    Todolí, Felicitat; Rodríguez-Cortés, Alhelí; Núñez, María Del Carmen; Laurenti, Márcia D; Gómez-Sebastián, Silvia; Rodríguez, Fernando; Pérez-Martín, Eva; Escribano, José M; Alberola, Jordi

    2012-01-01

    Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories -the cheapest way of producing DNA-PROT vaccines- is a practical and cost-effective way for potential "off the shelf" supplying vaccines at very low prices for the protection against

  4. Protective efficacy of a Mycoplasma pneumoniae P1C DNA vaccine fused with the B subunit of Escherichia coli heat-labile enterotoxin.

    PubMed

    Zhu, Cuiming; Wang, Shiping; Hu, Shihai; Yu, Minjun; Zeng, Yanhua; You, Xiaoxing; Xiao, Jinhong; Wu, Yimou

    2012-06-01

    In the present study, we investigated the immunomodulatory responses of a DNA vaccine constructed by fusing Mycoplasma pneumoniae P1 protein carboxy terminal region (P1C) with the Escherichia coli heat-labile toxin B subunit (LTB). BALB/c mice were immunized by intranasal inoculation with control DNAs, the P1C DNA vaccine or the LTB-P1C fusion DNA vaccine. Levels of the anti-M. pneumoniae antibodies and levels of interferon-γ and IL-4 in mice were increased significantly upon inoculation of the LTB-P1C fusion DNA vaccine when compared with the inoculation with P1C DNA vaccine. The LTB-P1C fusion DNA vaccine efficiently enhanced the M. pneumoniae-specific IgA and IgG levels. The IgG2a/IgG1 ratio was significantly higher in bronchoalveolar lavages fluid and sera from mice fusion with LTB and P1C than mice receiving P1C alone. When the mice were challenged intranasally with 10(7) CFU M. pneumoniae strain (M129), the LTB-P1C fusion DNA vaccine conferred significantly better protection than P1C DNA vaccine (P < 0.05), as suggested by the results, such as less inflammation, lower histopathological score values, lower detectable number of M. pneumoniae strain, and lower mortality of challenging from 5 × 10(8) CFU M. pneumoniae. These results indicated that the LTB-P1C fusion DNA vaccine efficiently improved protective efficacy against M. pneumoniae infection and effectively attenuated development of M. pneumoniae in mice.

  5. Immunogenicity of a Bovine Herpesvirus 1 Glycoprotein D DNA Vaccine Complexed with Bovine Neutrophil Beta-Defensin 3

    PubMed Central

    Mackenzie-Dyck, Sarah; Latimer, Laura; Atanley, Ethel; Kovacs-Nolan, Jennifer; Attah-Poku, Sam; Babiuk, Lorne A.

    2014-01-01

    Protective efficacy against bovine herpesvirus 1 (BoHV-1) has been demonstrated to be induced by a plasmid encoding bovine neutrophil beta-defensin 3 (BNBD3) as a fusion construct with truncated glycoprotein D (tgD). However, in spite of the increased cell-mediated immune responses induced by this DNA vaccine, the clinical responses of BoHV-1-challenged cattle were not reduced over those observed in animals vaccinated with the plasmid encoding tgD alone; this might have been because the vaccine failed to improve humoral responses. We hypothesized that an alternative vaccine design strategy that utilized the DNA vaccine pMASIA-tgD as a complex with BNBD3 might improve humoral responses while maintaining robust Th1-type cell-mediated responses. C57BL/6 mice were vaccinated with pMASIA-tgD complexed with 0, 0.01875, 0.1875, or 1.875 nmol of a stable synthesized analog of BNBD3 (aBNBD3). The best results were seen in mice immunized with the vaccine composed of pMASIA-tgD complexed to 0.1875 nmol aBNBD3. In this group, humoral responses were improved, as evidenced by increased virus neutralization, tgD-specific early IgG1, and later IgG2a titers, while the strong cell-mediated immune responses, measured based on specific gamma interferon (IFN-γ)-secreting cells, were maintained relative to pMASIA-tgD. Modulation of the immune response might have been due in part to the effect of BNBD3 on dendritic cells (DCs). In vitro studies showed that murine bone marrow-derived DCs (BMDCs) pretreated with aBNBD3 were activated, as evidenced by CD11c downregulation, and were functionally mature, as shown by increased allostimulatory ability. Native, synthetic, and analog forms of BNBD3 were equally capable of inducing functional maturation of BMDCs. PMID:25378352

  6. Toxoplasma gondii: Vaccination with a DNA vaccine encoding T- and B-cell epitopes of SAG1, GRA2, GRA7 and ROP16 elicits protection against acute toxoplasmosis in mice.

    PubMed

    Cao, Aiping; Liu, Yuan; Wang, Jingjing; Li, Xun; Wang, Shuai; Zhao, Qunli; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2015-11-27

    Toxoplasma gondii (T. gondii) is an obligate, intracellular, protozoan parasite that infects large variety of warm-blooded animals including humans, livestock, and marine mammals, and causes the disease toxoplasmosis. Although T. gondii infection rates differ significantly from country to country, it still has a high morbidity and mortality. In these circumstances, developing an effective vaccine against T. gondii is urgently needed for preventing and treating toxoplasmosis. The aim of this study was to construct a multi-epitopes DNA vaccine and evaluate the immune protective efficacy against acute toxoplasmosis in mice. Therefore, twelve T- and B-cell epitopes from SAG1, GRA2, GRA7 and ROP16 of T. gondii were predicted by bioinformatics analysis, and then a multi-epitopes DNA vaccine was constructed. Mice immunized with the multi-epitopes DNA vaccine gained higher levels of IgG titers and IgG2a subclass titers, significant production of gamma interferon (IFN-γ), percentage of T lymphocyte subsets, and longer survival times against the acute infection of T. gondii compared with those of mice administered with empty plasmid and those in control groups. Furthermore, a genetic adjuvant pEGFP-RANTES (pRANTES) could enhance the efficacy of the multi-epitopes DNA vaccine associating with humoral and cellular (Th1, CD8(+) T cell) immune responses. Above all, the DNA vaccine and the genetic adjuvant revealed in this study might be new candidates for further vaccine development against T. gondii infection.

  7. DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin.

    PubMed

    Montaner, Beatriz; Castillo-Avila, Wilmar; Martinell, Marc; Ollinger, Rupert; Aymami, Joan; Giralt, Ernest; Pérez-Tomás, Ricardo

    2005-06-01

    Prodigiosin is a red pigment produced by Serratia marcescens with apoptotic activity. We examined the mechanism of action of this tripyrrole alkaloid, focusing on its interaction with DNA and its ability to inhibit both topoisomerase I and topoisomerase II. We also evaluated the DNA damage induced in cancer cell lines. Prodigiosin-DNA intercalation was analyzed using a competition dialysis assay with different DNA base sequences. Topoisomerase I and II inhibition was studied in vitro by a cleavage assay, and in cultured cells, by analysis of its ability to form covalent complexes. Furthermore, we analyzed DNA damage by pulse-field gel electrophoresis and by immunocytochemistry. Apoptosis inducing factor (AIF)/phospho-H2AX (p-H2AX) double labeling by confocal microscopy was performed to determine the possible implication of AIF in the prodigiosin-DNA damage. Finally, we studied the ability of this drug to induce copper-mediated DNA damage at different pH by a DNA cleavage assay. Our results demonstrate prodigiosin-DNA interaction in vitro and in cultured cells. It involves prodigiosin-DNA intercalation, with some preference for the alternating base pairs but with no discrimination between AT or CG sequences, dual abolition of topoisomerase I and II activity and, as consequence, DNA cleavage. Prodigiosin-DNA damage is independent of AIF. Furthermore, we found that copper-mediated cleavage activity is associated with pH (occurring at pH 6.8 rather than pH 7.4) and with the Cu(2+) ion concentration. These results indicate DNA a therapeutic target for prodigiosin and could explain the apoptosis mechanism of action induced by this antineoplastic drug.

  8. Constructing Tumor Vaccines Targeting for Vascular Endothelial Growth Factor (VEGF) by DNA Shuffling.

    PubMed

    Bie, Nana; Zhao, Xiuyun; Li, Zhitao; Qi, Gaofu

    2016-09-01

    Most of tumor antigens are self-proteins with poor antigenicity because of immune tolerance. Here, we describe DNA shuffling for overcoming the tolerance of tumor antigens such as vascular endothelial growth factor (VEGF), a growth factor associated with tumor angiogenesis. VEGF genes from mouse, rat, human, and chicken were randomly assembled to chimeric genes by DNA shuffling for constructing an expression library, then screened by PCR, SDS-PAGE, and immunization. A chimeric protein named as No. 46 was selected from the library with the strongest immunotherapy effects on mouse H22 hepatocellular carcinoma, which could induce long-lasted and high level of antibodies recognizing VEGF in mice. Immunization with this chimeric protein could significantly inhibit tumor angiogenesis, slow down tumor growth, increase the survival rate of tumor-bearing mice, and inhibit the lung metastases of tumor in mouse. Treatment with the anti-VEGF IgG induced by this chimeric protein also significantly inhibited tumor growth and improved the survival rate of tumor-bearing mice, by blocking the tyrosine phosphorylation of ERK1/2 pathway of VEGF-VEGFR interaction. Our study provides an efficient approach to overcome the immune tolerance of self-antigens for developing novel tumor vaccines. PMID:27428264

  9. Characterization of immune responses induced by immunization with the HA DNA vaccines of two antigenically distinctive H5N1 HPAIV isolates.

    PubMed

    Gao, Yulong; Wen, Zhiyuan; Dong, Ke; Zhong, Gongxun; Wang, Xiaomei; Bu, Zhigao; Chen, Hualan; Ye, Ling; Yang, Chinglai

    2012-01-01

    The evolution of the H5N1 highly pathogenic avian influenza virus (HPAIV) has resulted in high sequence variations and diverse antigenic properties in circulating viral isolates. We investigated immune responses induced by HA DNA vaccines of two contemporary H5N1 HPAIV isolates, A/bar-headed goose/Qinghai/3/2005 (QH) and A/chicken/Shanxi/2/2006 (SX) respectively, against the homologous as well as the heterologous virus isolate for comparison. Characterization of antibody responses induced by immunization with QH-HA and SX-HA DNA vaccines showed that the two isolates are antigenically distinctive. Interestingly, after immunization with the QH-HA DNA vaccine, subsequent boosting with the SX-HA DNA vaccine significantly augmented antibody responses against the QH isolate but only induced low levels of antibody responses against the SX isolate. Conversely, after immunization with the SX-HA DNA vaccine, subsequent boosting with the QH-HA DNA vaccine significantly augmented antibody responses against the SX isolate but only induced low levels of antibody responses against the QH isolate. In contrast to the antibody responses, cross-reactive T cell responses are readily detected between these two isolates at similar levels. These results indicate the existence of original antigenic sin (OAS) between concurrently circulating H5N1 HPAIV strains, which may need to be taken into consideration in vaccine development against the potential H5N1 HPAIV pandemic.

  10. The protective effect of a Schistosoma japonicum Chinese strain 23 kDa plasmid DNA vaccine in pigs is enhanced with IL-12.

    PubMed

    Zhu, Yinchang; Ren, Jiangong; Da'dara, Akram; Harn, Donald; Xu, Ming; Si, Jin; Yu, Chuanxin; Liang, Yousheng; Ye, Ping; Yin, Xuren; He, Wei; Xu, Yongliang; Cao, Guoqun; Hua, Wanquan

    2004-11-15

    The schistosome integral membrane protein Sm/Sj23 was initially shown to induce protection in mice as a synthetic peptide vaccine and further, as a plasmid DNA vaccine to induce protection in mice, sheep and water buffalo. In this study we asked if we could induce protection against challenge infection in pigs against Schistosoma japonicum by vaccinating them with a plasmid DNA vaccine encoding the S. japonicum Chinese strain 23 kDa membrane protein. Further, we asked if we could enhance protective efficacy of this vaccine by the addition of IL-12. We compared vaccination with SjC23 plasmid DNA alone or with IL-12 plasmid DNA in pigs. Pigs were immunized three times at three weekly intervals. Thirty Chinese Songjang native pigs were divided into three groups. In group A, each pig was immunized with 500 microg of SjC23 plasmid DNA by intramuscular (i.m.) injection in both buttocks. In group B each pig was immunized with 500 microg of SjC23 plasmid DNA, and 500 microg of each of pcDNA3.1-p35 and 500 microg of pcDNA3.1-p40 DNA by i.m. injection. In group C each pig was immunized with 500 microg of pcDNA3.1 as the control. Thirty days post-vaccination, pigs were challenged with S. japonicum cercariae and adult and egg burdens and granuloma size determined 45 days post-challenge. The results showed that worm reduction rates in SjC23 group compared with control group were 29.2% and in the SjC23 + IL-12 group reduced 58.6%. Similarly the female worm reduction rates were 50.8 and 58.8%, the hepatic egg reduction rates were 48.2 and 56.4%, and the mean square measure reduction rates of hepatic egg granulomas were 48.6 and 44.4%, the mean diameter reduction rates of granulomas were 27.6 and 22.8% in pigs vaccinated with SjC23 or SjC23 + IL-12 compared to plasmid vaccinated pigs, respectively. Analysis of sera from pigs vaccinated with SjC23 showed that 4 of 10 pigs had anti-Sj23 antibody responses; with 5 of 10 pigs positive for anti-Sj23 in the SjC23+IL-12 group. These

  11. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorrhynchus mykiss).

    PubMed

    Ballesteros, Natalia A; Alonso, Marta; Saint-Jean, Sylvia Rodríguez; Perez-Prieto, Sara I

    2015-08-01

    Administered by intramuscular injection, a DNA vaccine (pIRF1A-G) containing the promoter regions upstream of the rainbow trout interferon regulatory factor 1A gene (IRF1A) driven the expression of the infectious hematopoietic necrosis virus (IHNV) glycoprotein (G) elicited protective immune responses in rainbow trout (Oncorhynchus mykiss). However, less laborious and cost-effective routes of DNA vaccine delivery are required to vaccinate large numbers of susceptible farmed fish. In this study, the pIRF1A-G vaccine was encapsulated into alginate microspheres and orally administered to rainbow trout. At 1, 3, 5, and 7 d post-vaccination, IHNV G transcripts were detected by quantitative real-time PCR in gills, spleen, kidney and intestinal tissues of vaccinated fish. This result suggested that the encapsulation of pIRF1A-G in alginate microparticles protected the DNA vaccine from degradation in the fish stomach and ensured vaccine early delivery to the hindgut, vaccine passage through the intestinal mucosa and its distribution thought internal and external organs of vaccinated fish. We also observed that the oral route required approximately 20-fold more plasmid DNA than the injection route to induce the expression of significant levels of IHNV G transcripts in kidney and spleen of vaccinated fish. Despite this limitation, increased IFN-1, TLR-7 and IgM gene expression was detected by qRT-PCR in kidney of vaccinated fish when a 10 μg dose of the oral pIRF1A-G vaccine was administered. In contrast, significant Mx-1, Vig-1, Vig-2, TLR-3 and TLR-8 gene expression was only detected when higher doses of pIRF1A-G (50 and 100 μg) were orally administered. The pIRF1A-G vaccine also induced the expression of several markers of the adaptive immune response (CD4, CD8, IgM and IgT) in kidney and spleen of immunized fish in a dose-dependent manner. When vaccinated fish were challenged by immersion with live IHNV, evidence of a dose-response effect of the oral vaccine could also

  12. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans.

    PubMed

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline; Karlsson, Ingrid; Krog, Jesper S; Williams, James A; Fomsgaard, Anders

    2015-01-01

    The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine expressed by next-generation vectors. These new vectors can improve gene expression, but they are also efficiently produced on large scales and comply with regulatory guidelines by avoiding antibiotic resistance genes. In addition, a new needle-free delivery of the vaccine, convenient for mass vaccinations, was compared with intradermal needle injection followed by electroporation. We report that when our DNA vaccine is expressed by the new vectors and delivered to the skin with the needle-free device in the rabbit model, it can elicit an antibody response with the same titers as a conventional vector with intradermal electroporation. The needle-free delivery is already in use for traditional protein vaccines in pigs but should be considered as a practical alternative for the mass administration of broadly protective influenza DNA vaccines. PMID:25746201

  13. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans.

    PubMed

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline; Karlsson, Ingrid; Krog, Jesper S; Williams, James A; Fomsgaard, Anders

    2015-01-01

    The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine expressed by next-generation vectors. These new vectors can improve gene expression, but they are also efficiently produced on large scales and comply with regulatory guidelines by avoiding antibiotic resistance genes. In addition, a new needle-free delivery of the vaccine, convenient for mass vaccinations, was compared with intradermal needle injection followed by electroporation. We report that when our DNA vaccine is expressed by the new vectors and delivered to the skin with the needle-free device in the rabbit model, it can elicit an antibody response with the same titers as a conventional vector with intradermal electroporation. The needle-free delivery is already in use for traditional protein vaccines in pigs but should be considered as a practical alternative for the mass administration of broadly protective influenza DNA vaccines.

  14. Development of a full-length cDNA-derived enterovirus A71 vaccine candidate using reverse genetics technology.

    PubMed

    Yang, Ya-Ting; Chow, Yen-Hung; Hsiao, Kuang-Nan; Hu, Kai-Chieh; Chiang, Jen-Ron; Wu, Suh-Chin; Chong, Pele; Liu, Chia-Chyi

    2016-08-01

    Enterovirus A71 (EV-A71) is responsible for epidemics of hand, foot and mouth disease (HFMD) in young children. To circumvent difficulties in obtaining clinical enterovirus isolates that might be contaminated with other viruses, a platform technology was developed to quickly generate vaccine virus strains based on the published enterovirus genomic sequences. A recombinant plasmid containing the full-length infectious cDNA clone of EV-A71 vaccine strain E59 was directly generated after transfecting the recombinant plasmid into Vero, RD or HEK293A cells, and phenotypic characteristics similar to the parental strain were observed. The cDNA-derived infectious EV-A71 virus grown in Vero cells produced relatively stable virus titers in both T-flasks and microcarrier culture systems. To evaluate the genetic stability of the cDNA-derived EV-A71 viruses, the immunodominant structural proteins, VP1 and VP2, of the recombinant EV-A71 viruses were sequenced and analyzed. The cDNA-derived EV-A71 virus showed weak pathogenicity in a human SCARB2 mouse model. These results show the successful generation of a recombinant virus derived from a published viral genomic sequence that demonstrated good genetic stability and viral yields, which could represent an efficient and safe vaccine strain for cGMP-grade manufacturing. PMID:27387826

  15. Efficacy of a glycoprotein DNA vaccine against viral haemorrhagic septicaemia (VHS) in Pacific herring, Clupea pallasii Valenciennes

    USGS Publications Warehouse

    Hart, L.M.; Lorenzen, Niels; LaPatra, S.E.; Grady, C.A.; Roon, S.E.; O’Reilly, J.; Gregg, J.L.; Hershberger, P.K.

    2012-01-01

    Viral haemorrhagic septicaemia virus (VHSV) and its associated disease state, viral haemorrhagic septicaemia (VHS), is hypothesized to be a proximate factor accounting for the decline and failed recovery of Pacific herring populations in Prince William Sound, AK (Marty et al. 1998, 2003, 2010). Survivors of laboratory-induced VHSV epizootics develop resistance to subsequent viral exposure (Kocan et al. 2001; Hershberger et al. 2007, 2010), which is likely the result of immune system recognition of the viral glycoprotein (G) (Lecocq-Xhonneux et al. 1994), a surface antigen that contains neutralizing epitopes (Lorenzen, Olesen & Jorgensen 1990; Jørgensen et al. 1995) and cell attachment domains (Lecocq-Xhonneux et al. 1994; Estepa & Coll 1996). These properties have proven useful in the development of G-gene-based DNA vaccines for VHSV and a related rhabdovirus, infectious haematopoietic necrosis virus (IHNV) (Anderson et al. 1996; Heppell et al. 1998; Corbeil et al. 1999; Einer-Jensen et al. 2009). Rainbow trout fingerlings, Oncorhynchus mykiss (Walbaum), vaccinated with 1 µg of either the VHS or IHN vaccine are protected from VHS when exposed to virus as early as 4 days (44 degree days) post-vaccination (p.v.) (Lorenzen et al. 2002). At later time points (80 days p.v.; 880 degree days), the level of cross-protection against VHS by IHN vaccination is either completely lost (60 days p.v.; 660 degree days) (3 g rainbow trout; 1 µg vaccine dose) (Lorenzen et al. 2002) or present at intermediate levels (6.5 g rainbow trout; 1 µg vaccine dose) (Einer-Jensen et al. 2009). Comparatively, VHS vaccination remains effective as long as 9 months (2520 degree days) p.v. (100 g rainbow trout; 0.5 µg vaccine dose) (McLauchlan et al. 2003). These results suggest that IHN and VHS vaccination activate a rapid transitory innate immune response against VHSV that is followed by long-term adaptive immunity in VHS-vaccinated trout (Lorenzen et al. 2002).

  16. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines

    PubMed Central

    2011-01-01

    Food-grade Lactic Acid Bacteria (LAB) have been safely consumed for centuries by humans in fermented foods. Thus, they are good candidates to develop novel oral vectors, constituting attractive alternatives to attenuated pathogens, for mucosal delivery strategies. Herein, this review summarizes our research, up until now, on the use of LAB as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Most of our work has been based on the model LAB Lactococcus lactis, for which we have developed efficient genetic tools, including expression signals and host strains, for the heterologous expression of therapeutic proteins such as antigens, cytokines and enzymes. Resulting recombinant lactococci strains have been tested successfully for their prophylactic and therapeutic effects in different animal models: i) against human papillomavirus type 16 (HPV-16)-induced tumors in mice, ii) to partially prevent a bovine β-lactoglobulin (BLG)-allergic reaction in mice and iii) to regulate body weight and food consumption in obese mice. Strikingly, all of these tools have been successfully transposed to the Lactobacillus genus, in recent years, within our laboratory. Notably, anti-oxidative Lactobacillus casei strains were constructed and tested in two chemically-induced colitis models. In parallel, we also developed a strategy based on the use of L. lactis to deliver DNA at the mucosal level, and were able to show that L. lactis is able to modulate the host response through DNA delivery. Today, we consider that all of our consistent data, together with those obtained by other groups, demonstrate and reinforce the interest of using LAB, particularly lactococci and lactobacilli strains, to develop novel therapeutic protein mucosal delivery vectors which should be tested now in human clinical trials. PMID:21995317

  17. Head-to-Head Comparison of Three Vaccination Strategies Based on DNA and Raw Insect-Derived Recombinant Proteins against Leishmania

    PubMed Central

    Núñez, María del Carmen; Laurenti, Márcia D.; Gómez-Sebastián, Silvia; Rodríguez, Fernando; Pérez-Martín, Eva; Escribano, José M.

    2012-01-01

    Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories –the cheapest way of producing DNA-PROT vaccines– is a practical and cost-effective way for potential “off the shelf” supplying vaccines at very low prices for the protection against

  18. Enhancing immune responses of EV71 VP1 DNA vaccine by co-inoculating plasmid IL-12 or GM-CSF expressing vector in mice.

    PubMed

    Peng, X; Fang, X; Li, J; Kong, L; Li, B; Ding, X

    2016-01-01

    Enterovirus 71 (EV71) is a major causative viral agent for large outbreaks of hand, foot, and mouth disease in children and infants, yet there is no vaccine or effective antiviral treatment for severe EV71 infection. The immunogenicity of EV71 VP1 DNA vaccine and the immunoregulatory activity of interleukin-12 (IL-12) or granulocyte-monocyte colony stimulating factor (GM-CSF) were investigated. DNA vaccine plasmids, pcDNA-VP1, pcDNA-IL-12 and pcDNA-GM-CSF were constructed and inoculated into BALB/c mice with or without pcDNA-IL-12 or pcDNA-GM-CSF by intramuscular injection. Cellular and humoral immune responses were assessed by indirect ELISA, lymphocyte proliferation assays, cytokine release assay and FACS. The VP1 DNA vaccine had good immunogenicity and can induce specific humoral and cellular immunity in BALB/c mice, while IL-2 or GM-CSF plays an immunoadjuvant role and enhances specific immune responses. This study provides a frame of reference for the design of DNA vaccines against EV71. PMID:27188732

  19. Enhancing immune responses of EV71 VP1 DNA vaccine by co-inoculating plasmid IL-12 or GM-CSF expressing vector in mice.

    PubMed

    Peng, X; Fang, X; Li, J; Kong, L; Li, B; Ding, X

    2016-01-01

    Enterovirus 71 (EV71) is a major causative viral agent for large outbreaks of hand, foot, and mouth disease in children and infants, yet there is no vaccine or effective antiviral treatment for severe EV71 infection. The immunogenicity of EV71 VP1 DNA vaccine and the immunoregulatory activity of interleukin-12 (IL-12) or granulocyte-monocyte colony stimulating factor (GM-CSF) were investigated. DNA vaccine plasmids, pcDNA-VP1, pcDNA-IL-12 and pcDNA-GM-CSF were constructed and inoculated into BALB/c mice with or without pcDNA-IL-12 or pcDNA-GM-CSF by intramuscular injection. Cellular and humoral immune responses were assessed by indirect ELISA, lymphocyte proliferation assays, cytokine release assay and FACS. The VP1 DNA vaccine had good immunogenicity and can induce specific humoral and cellular immunity in BALB/c mice, while IL-2 or GM-CSF plays an immunoadjuvant role and enhances specific immune responses. This study provides a frame of reference for the design of DNA vaccines against EV71.

  20. Immune and histopathologic responses of DNA-vaccinated hybrid striped bass Morone saxatilis x M. chrysops after acute Mycobacterium marinum infection.

    PubMed

    Pasnik, David J; Smith, Stephen A

    2006-11-21

    The post-challenge immune and histopathologic responses of hybrid striped bass vaccinated with a DNA vaccine encoding the Mycobacterium marinum Ag85A gene and subsequently challenged with M. marinum were investigated. Juvenile hybrid striped bass Morone saxatilis x M. chrysops were injected intramuscularly with 25 or 50 microg DNA plasmid and developed significant specific protective responses to live bacterial challenge 120 d post-vaccination. Both vaccine groups demonstrated increased survival, reduced splenic bacterial counts, and reduced granuloma formation compared to the control groups 14 d after challenge with approximately 8 x 10(5) cfu M. marinum g(-1) fish body wt. The vaccine groups also developed more rapidly and significantly increased antibody and lymphoproliferative responses post-challenge compared to control groups, and these post-challenge immune responses appear to be vital against M. marinum infection in vaccinated hybrid striped bass. No significant differences in immune responses were recognized between the 25 and 50 microg vaccination groups, and these groups eventually experienced mortalities, splenic bacterial counts, and granuloma formation 28 d post-challenge comparable to those of the control groups at 14 d post-challenge. Therefore, vaccination of hybrid striped bass with a DNA vaccine encoding the M. marinum Ag85A gene provided significant but limited duration of protection against an acute high-dose M. marinum challenge.

  1. An Epitope-Substituted DNA Vaccine Improves Safety and Immunogenicity against Dengue Virus Type 2.

    PubMed

    Tang, Chung-Tao; Li, Pi-Chun; Liu, I-Ju; Liao, Mei-Ying; Chiu, Chiung-Yi; Chao, Day-Yu; Wu, Han-Chung

    2015-01-01

    Dengue virus (DENV), a global disease, is divided into four serotypes (DENV1-4). Cross-reactive and non-neutralizing antibodies against envelope (E) protein of DENV bind to the Fcγ receptors (FcγR) of cells, and thereby exacerbate viral infection by heterologous serotypes via antibody-dependent enhancement (ADE). Identification and modification of enhancing epitopes may mitigate enhancement of DENV infection. In this study, we characterized the cross-reactive DB21-6 and DB39-2 monoclonal antibodies (mAbs) against domain I-II of DENV; these antibodies poorly neutralized and potently enhanced DENV infection both in vitro and in vivo. In addition, two enhancing mAbs, DB21-6 and DB39-2, were observed to compete with sera antibodies from patients infected with dengue. The epitopes of these enhancing mAbs were identified using phage display, structural prediction, and mapping of virus-like particle (VLP) mutants. N8, R9, V12, and E13 are the reactive residues of DB21-6, while N8, R9, and E13 are the reactive residues of DB39-2. N8 substitution tends to maintain VLP secretion, and decreases the binding activity of DB21-6 and DB39-2. The immunized sera from N8 substitution (N8R) DNA vaccine exerted greater neutralizing and protective activity than wild-type (WT)-immunized sera, both in vitro and in vivo. Furthermore, treatment with N8R-immunized sera reduced the enhancement of mortality in AG129 mice. These results support identification and substitution of enhancing epitope as a novel strategy for developing safe dengue vaccines. PMID:26135599

  2. The dose-dependent effect on protection and humoral response to a DNA vaccine against Infectious Hematopoietic Necrosis (IHN) virus in subyearling rainbow trout

    USGS Publications Warehouse

    LaPatra, Scott E.; Corbeil, Serge; Jones, Gerald R.; Shewmaker, William D.; Kurath, Gael

    2000-01-01

    A dose–response study that used the DNA vaccine pIHNw-G against infectious hematopoietic necrosis virus (IHNV) showed that complete and highly significant (P < 0.001) protection against a virus injection challenge can be attained in subyearling rainbow trout Oncorhynchus mykiss (145–160 g, 8- to 10-months-old) 6 weeks after a single intramuscular injection with doses as low as 1 μg. Complete protection was also reproducibly demonstrated at higher vaccine doses; however, no protection was observed with a 0.1-μg dose. Virus-neutralizing antibody titers were detected in fish that had been vaccinated with different doses of the DNA vaccine and then sham-infected; there appeared to be a dose-dependent effect, with higher titers obtained with higher doses of vaccine. The DNA-vaccinated animals that survived virus challenge had significantly (P < 0.05) higher neutralizing antibody titers than sham-infected, DNA-vaccinated control fish. Additionally, the titers detected in the IHN survivors exhibited a significant (P < 0.05) dose-dependent effect, with the highest titers being present in fish that received the highest vaccine doses.

  3. Optimized codon usage enhances the expression and immunogenicity of DNA vaccine encoding Taenia solium oncosphere TSOL18 gene.

    PubMed

    Wang, Yuan-Yuan; Chang, Xue-Lian; Tao, Zhi-Yong; Wang, Xiao-Li; Jiao, Yu-Meng; Chen, Yong; Qi, Wen-Juan; Xia, Hui; Yang, Xiao-Di; Sun, Xin; Shen, Ji-Long; Fang, Qiang

    2015-07-01

    Cysticercosis due to larval cysts of Taenia solium, is a serious public health problem affecting humans in numerous regions worldwide. The oncospheral stage-specific TSOL18 antigen is a promising candidate for an anti-cysticercosis vaccine. It has been reported that the immunogenicity of the DNA vaccine may be enhanced through codon optimization of candidate genes. The aim of the present study was to further increase the efficacy of the cysticercosis DNA vaccine; therefore, a codon optimized recombinant expression plasmid pVAX1/TSOL18 was developed in order to enhance expression and immunogenicity of TSOL18. The gene encoding TSOL18 of Taenia solium was optimized, and the resulting opt-TSOL18 gene was amplified and expressed. The results of the present study showed that the codon-optimized TSOL18 gene was successfully expressed in CHO-K1 cells, and immunized mice vaccinated with opt-TSOL18 recombinant expression plasmids demonstrated opt‑TSOL18 expression in muscle fibers, as determined by immunohistochemistry. In addition, the codon-optimized TSOL18 gene produced a significantly greater effect compared with that of TSOL18 and active spleen cells were markedly stimulated in vaccinated mice. 3H-thymidine incorporation was significantly greater in the opt-TSOL18 group compared with that of the TSOL18, pVAX and blank control groups (P<0.01). In conclusion, the eukaryotic expression vector containing the codon-optimized TSOL18 gene was successfully constructed and was confirmed to be expressed in vivo and in vitro. The expression and immunogenicity of the codon-optimized TSOL18 gene were markedly greater compared with that of the un-optimized gene. Therefore, these results may provide the basis for an optimized TSOL18 gene vaccine against cysticercosis.

  4. pDUAL: A transposon-based cosmid cloning vector for generating nested deletions and DNA sequencing templates in vivo

    SciTech Connect

    Wang, Gan; Berg, C.M. ); Blakesley, R.W. ); Berg, D.E. )

    1993-08-15

    The authors describe a transposon [gamma][delta]-containing cosmid cloning vector, pDUAL (previously called pJANUS), and demonstrate an efficient strategy for isolating nested deletions in both large-scale and small-scale DNA sequencing efforts. This [open quotes]deletion factory[close quotes] strategy takes advantage of the ability of [gamma][delta](Tn1000) to generate deletions that extend from an end of the transposon into adjacent DNA when [gamma][delta] transposes to new sites in the same DNA molecule. pDUAL contains the contraselectable (conditional lethal) sacB[sup +] (sucrose sensitivity) and strA[sup +] (streptomycin sensitivity) genes just outside each end of an engineered [gamma][delta] and selectable kan[sup +] (Kan[sup r]) and tet[sup +] (Tet[sup r]) genes between the cloning site and sacB and strA, respectively. Selection on sucrose tetracycline medium yields deletions that extend from one [gamma][delta] end for various distances in to the cloned DNA, while selection on streptomycin kanamycin medium yields comparable deletions in the other direction. Both types of deletions are recoverable because the essential plasmid replication origin is embedded in the [gamma][delta] component and is thereby retained in each deletion product. Pilot experiments with pDUAL clones showed that deletion end points can be mapped or selected by plasmid size and that both DNA strands of any single clone can be accessed for sequencing by using a pair of universal primers specific for sequences that are just interior to the [gamma][delta] ends. 27 refs., 3 figs.

  5. [DNA vaccination via in vivo electroporation can elicit specific immune response against highly pathogenic H5N1 influenza viral structural antigens in mice].

    PubMed

    Wang, Wen; Chen, Hong; Tan, Wen-jie; Deng, Yao; Wang, Min; Liu, Yuan; Yin, Xiao; Zhang, Ke; Guan, Jie; Zhou, Jian-fang; Shu, Yue-long; Ruan, Li

    2010-05-01

    This study aims to develop inexpensive and effective experimental vaccines against highly pathogenic H5N1 Avian Influenza (HPAI) virus and to optimize their immunization programs. To this end, we first synthesized the codon-optimized hemagglutinin gene (HAop) and neuraminidase gene (NAop), both of which were derived from a H5N1 virus (Anhui strain), and constructed successfully the DNA vaccines containing a single cistronic construct (HAwt, HAop, or NAop) or a bicistronic construct (HAop/M2 or NAop/M1) of H5N1 influenza virus origin. Their expression was confirmed by indirect immunofluorescent assay (IFA) and Western blotting. Then twice vaccination of mice with the DNA vaccines by injection intramuscularly or in vivo electroporation (EP) via two different routes was evaluated and analyzed by hemagglutination inhibition (HI) assay, NA-specific antibody detection, micro-neutralizing antibody test and IFN-gamma ELISpot assay. Our results showed that the DNA vaccines with coden-optimized HAop and NAop constructs could quickly elicit a strong immune response by in vivo EP, especially the cellular immune response against HA and NA; the in vivo EP via intradermal route induced stronger humoral immune responses than those via intramuscular route. Our findings will pave a way for further development of novel DNA-based H5N1 vaccine and for the optimization of the immunization programs of DNA vaccine. PMID:20572336

  6. Recombinant DNA vaccine against neurite outgrowth inhibitors attenuates behavioral deficits and decreases Abeta in an Alzheimer's disease mouse model.

    PubMed

    Zhang, Lingling; Ma, Quanhong; Yang, Wulin; Qi, Xiangrong; Yao, Zhigang; Liu, Ying; Liang, Liang; Wang, Xiang; Ma, Chunmei; Huang, Lan; Xu, Yanfeng; Zhu, Hua; Deng, Wei; Gao, Yingying; Ruan, Li; Xiao, Zhicheng; Qin, Chuan

    2013-07-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes a progressive loss in learning and memory capabilities and eventually results in dementia. The non-renewable nature of neurons in the central nervous system leads to the basic pathological changes that are related to the various behavioral and psychological symptoms of AD. Oligodendrocyte- and myelin-related neurite outgrowth inhibitors (NOIs) tend to hinder the regeneration of neurons. We designed a recombinant DNA vaccine composed of multiple specific inhibitory domains of NOIs. Vaccination induced effective antibodies against the specific domains in the sera of mice treated with a DNA primed-vaccinia virus boost regimen. The vaccine attenuated neuronal degeneration in the mouse brain and protected the model mice from behavioral deficits. Vaccination also decreased the formation of soluble Aβ oligomer and amyloid plaques in the co-transgenic mice brain. What's more, astrocytosis in brains of APP/PS1 co-transgenic mice was also relieved. The results suggested that immunotherapy with multiple specific domains of myelin- and oligodendrocyte-related NOIs may be a promising approach for Alzheimer's disease and other degenerative central nervous system diseases.

  7. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice.

    PubMed

    Saljoughian, N; Zahedifard, F; Doroud, D; Doustdari, F; Vasei, M; Papadopoulou, B; Rafati, S

    2013-12-01

    The use of an appropriate delivery system has recently emerged as a promising approach for the development of effective vaccination against visceral leishmaniasis (VL). Here, we compare two vaccine delivery systems, namely electroporation and cationic solid-lipid nanoparticle (cSLN) formulation, to administer a DNA vaccine harbouring the L. donovani A2 antigen along with L. infantum cysteine proteinases [CPA and CPB without its unusual C-terminal extension (CPB(-CTE) )] and evaluate their potential against L. infantum challenge. Prime-boost administration of the pcDNA-A2-CPA-CPB(-CTE) delivered by either electroporation or cSLN formulation protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-γ and lower levels of IL-10 production, leading to a strong Th1 immune response. At all time points, the ratio of IFN-γ: IL-10 induced upon restimulation with rA2-rCPA-rCPB and F/T antigens was significantly higher in vaccinated animals. Moreover, Th2-efficient protection was elicited through a high humoral immune response. Nitric oxide production, parasite burden and histopathological analysis were also in concordance with other findings. Overall, these data indicate that similar to the electroporation delivery system, cSLNs as a nanoscale vehicle of Leishmania antigens could improve immune response, hence indicating the promise of these strategies against visceral leishmaniasis.

  8. Comparative analysis of antigen-targeting sequences used in DNA vaccines.

    PubMed

    Carvalho, Joana A; Azzoni, Adriano R; Prazeres, Duarte M F; Monteiro, Gabriel A

    2010-03-01

    Plasmid vectors can be optimized by including specific signals that promote antigen targeting to the major antigen presentation and processing pathways, increasing the immunogenicity and potency of DNA vaccines. A pVAX1-based backbone was used to encode the Green Fluorescence Protein (GFP) reporter gene fused either to ISG (Invariant Surface Glycoprotein) or to TSA (trans-sialidase) Trypanosoma brucei genes. The plasmids were further engineered to carry antigen-targeting sequences, which promote protein transport to the extracellular space (secretion signal), lysosomes (LAMP-1) and to the endoplasmic reticulum (adenovirus e1a). Transfection efficiency was not affected by differences in the size between each construct as no differences in the plasmid copy number per cell were found. This finding also suggests that the addition of both ISG gene and targeting sequences did not add sensitive regions prone to nuclease attack to the plasmid. Cells transfected with pVAX1GFP had a significant higher number of transcripts. This could be a result of lower mRNA stability and/or a lower transcription rate associated with the bigger transcripts. On the other hand, no differences were found between transcript levels of each ISG-GFP plasmids. Therefore, the addition of these targeting sequences does not affect the maturation/stability of the transcripts. Microscopy analysis showed differences in protein localization and fluorescent levels of cells transfected with pVAX1GFP and ISG constructs. Moreover, cells transfected with the lamp and secretory sequences presented a distinct distribution pattern when compared with ISG protein. Protein expression was quantified by flow cytometry. Higher cell fluorescence was observed in cells expressing the cytoplasmic fusion protein (ISG-GFP or TSA-GFP) compared with cells where the protein was transported to the lysosomal pathway. Protein transport to the endoplasmic reticulum does not lead to a decrease in the mean fluorescence values. The

  9. Development of a robust, versatile, and scalable inoculum train for the production of a DNA vaccine.

    PubMed

    Okonkowski, J; Kizer-Bentley, L; Listner, K; Robinson, D; Chartrain, M

    2005-01-01

    For many microbial fermentation processes, the inoculum train can have a substantial impact on process performance in terms of productivity, profitability, and process control. In general, it is understood that a well-characterized and flexible inoculum train is essential for future scale-up and implementation of the process in a pilot plant or manufacturing setting. A fermentation process utilizing E. coli DH5 for the production of plasmid DNA carrying the HIV gag gene for use as a vaccine is currently under development in our laboratory. As part of the development effort, we evaluated inoculum train schemes that incorporate one, two, or three stages. In addition, we investigated the effect of inoculum viable-cell concentrations, either thawed or actively growing, over a wide range (from 2.5 x 10(4) to 1.0 x 10(8) viable cells/mL or approximately 0.001% to 4% of final working volume). The various inoculum trains were evaluated in terms of final plasmid yield, process time, reproducibility, robustness, and feasibility at large scale. The results of these studies show that final plasmid yield remained in the desired range, despite the number of stages or inoculation viable-cell concentrations comprising the inoculum train. On the basis of these observations and because it established a large database, the first part of these investigations supports an exceptional flexibility in the design of scalable inoculum trains for this DNA vaccine process. This work also highlighted that a slightly higher level of process reproducibility, as measured by the time for the culture to reach mid-exponential growth, was observed when using actively growing versus frozen cells. It also demonstrated the existence of a viable-cell concentration threshold for the one-stage process, since we observed that inoculation of the production stage with very low amounts of viable cells from a frozen source could lead to increased process sensitivity to external factors such as variation in the

  10. Induction of a Protective Response in Mice by the Dengue Virus NS3 Protein Using DNA Vaccines

    PubMed Central

    Costa, Simone M.; Yorio, Anna Paula; Gonçalves, Antônio J. S.; Vidale, Mariana M.; Costa, Emmerson C. B.; Mohana-Borges, Ronaldo; Motta, Marcia A.; Freire, Marcos S.; Alves, Ada M. B.

    2011-01-01

    The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection. PMID:22031819

  11. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines.

    PubMed

    Costa, Simone M; Yorio, Anna Paula; Gonçalves, Antônio J S; Vidale, Mariana M; Costa, Emmerson C B; Mohana-Borges, Ronaldo; Motta, Marcia A; Freire, Marcos S; Alves, Ada M B

    2011-01-01

    The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.

  12. Evaluation of a chimeric multi-epitope-based DNA vaccine against subgroup J avian leukosis virus in chickens.

    PubMed

    Xu, Qingqing; Cui, Ning; Ma, Xingjiang; Wang, Fangkun; Li, Hongmei; Shen, Zhiqiang; Zhao, Xiaomin

    2016-07-19

    The prokaryotic expressed recombinant chimeric multi-epitope protein X (rCMEPX) had been evaluated with good immunogenicity and protective efficacy against subgroup J avian leukosis virus (ALV-J) in our previous study. In the present research, we cloned the chimeric multi-epitope gene X into the eukaryotic expression vector pVAX1 to evaluate its potency as a DNA vaccine. The purified recombinant gp85 protein and rCMEPX were used as positive controls and a DNA prime-protein boost strategy was also studied. Six experimental groups of 7-day-old chickens (20 per group) were immunized intramuscularly three times at 2weeks interval with PBS, gp85, rCMEPX, pVAX1, pVAX-X and pVAX-X+rCMEPX respectively. The antibody titers and cellular immune responses were assayed after immunization. The efficacy of immunoprotection against the challenge of ALV-J NX0101 strain was also examined. The results showed that the DNA vaccine could elicit both neutralizing antibodies and cellular responses. Immune-challenge experiments showed good protection efficacy against ALV-J infection. Particularly, the regimen involving one priming pVAX-X and twice recombinant rCMEPX boosting, induced the highest antibody titers in all immunized groups. Our results suggest that the constructed chimeric multi-epitope DNA has potential for a candidate vaccine against ALV-J when used in proper prime-boost combinations. The data presented here may provide an alternative strategy for vaccine design in chicken ALV-J prevention.

  13. Cimetidine synergizes with Praziquantel to enhance the immune response of HBV DNA vaccine via activating cytotoxic CD8(+) T cell.

    PubMed

    Xie, Xiaoping; Geng, Shuang; Liu, Hu; Li, Chaofan; Yang, Yuqin; Wang, Bin

    2014-01-01

    Previously, we have reported that either CIM or PZQ, 2 clinical drugs, could be used to develop as adjuvants on HBV DNA vaccine to elicit both humoral and cellular immune responses. Here, we demonstrate that combinations of CIM and PZQ as adjuvants for a HBV DNA vaccine, could induce much stronger antigen specific CD4(+) and CD8(+) T cell responses compared either with CIM or PZQ alone. The synergistic effects of CIM plus PZQ to HBV DNA vaccine were observed on a higher IgG2a/IgG1 ratio, an increase of HBsAg-specific CD4(+) T cells capable of producing IFN-γ or IL-17A and a robust IFN-γ-, IL-17A-, or TNF-α-producing CD8(+) T cells to HBsAg. Most importantly, the antigen-specific CTL response was also elevated significantly, which is critical for the eradication of hepatitis B virus (HBV) infected cells. Using an HBsAg transgenic mouse model, the expression of HBsAg in the hepatic cells was also significantly reduced after immunized with pCD-S 2 in the presence of 0.5% CIM and 0.25% PZQ. Further investigations demonstrated that the synergistic effects of combination of CIM and PZQ were dependent on enhanced cytotoxic CD8(+) T cells, which was correlated with impaired activities of regulatory T cells. Therefore, combinations of CIM and PZQ have great potential to be used as effective adjuvants on DNA-based vaccinations for the treatment of chronic hepatitis B. PMID:24643207

  14. Priming with two DNA vaccines expressing hepatitis C virus NS3 protein targeting dendritic cells elicits superior heterologous protective potential in mice.

    PubMed

    Guan, Jie; Deng, Yao; Chen, Hong; Yin, Xiao; Yang, Yang; Tan, Wenjie

    2015-10-01

    Development an effective vaccine may offer an alternative preventive and therapeutic strategy against HCV infection. DNA vaccination has been shown to induce robust humoral and cellular immunity and overcome many problems associated with conventional vaccines. In this study, mice were primed with either conventional pVRC-based or suicidal pSC-based DNA vaccines carrying DEC-205-targeted NS3 antigen (DEC-NS3) and boosted with type 5 adenoviral vectors encoding the partial NS3 and core antigens (C44P). The prime boost regimen induced a marked increase in antigen-specific humoral and T-cell responses in comparison with either rAd5-based vaccines or DEC-205-targeted DNA immunization in isolation. The protective effect against heterogeneous challenge was correlated with high levels of anti-NS3 IgG and T-cell-mediated immunity against NS3 peptides. Moreover, priming with a suicidal DNA vaccine (pSC-DEC-NS3), which elicited increased TNF-α-producing CD4+ and CD8+ T-cells against NS3-2 peptides (aa 1245-1461), after boosting, showed increased heterogeneous protective potential compared with priming with a conventional DNA vaccine (pVRC-DEC-NS3). In conclusion, a suicidal DNA vector (pSC-DEC-NS3) expressing DEC-205-targeted NS3 combined with boosting using an rAd5-based HCV vaccine (rAd5-C44P) is a good candidate for a safe and effective vaccine against HCV infection.

  15. The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine.

    PubMed

    Zhou, Xianfeng; Zhang, Xizhen; Yu, Xianghui; Zha, Xiao; Fu, Qiuan; Liu, Bin; Wang, Xueyun; Chen, Yan; Chen, Yue; Shan, Yaming; Jin, Yinghua; Wu, Yongge; Liu, Junqiu; Kong, Wei; Shen, Jiacong

    2008-01-01

    Nonviral gene delivery systems based on conventional high molecular weight chitosans are efficient as DNA vaccine delivery system, but have poor physical properties such as aggregated shapes, low solubility at neutral pH, high viscosity at concentrations used for in vivo delivery and a slow onset of action. Furthermore, Chitosan oligomers shorter than 14 monomers units were recently found to form only weak complexes with DNA, resulting in physically unstable polyplexes in vitro and in vivo. Here, low molecular weight chitosans with an average molecular mass of 6kDa (Chito6) have been covalently attached to gold nanoparticles (GNPs), and the potency of the resulting Chito6-GNPs conjugates as vectors for the delivery of plasmid DNA has been investigated in vitro and in vivo. After delivery by intramuscular immunization in BALB/c mice, the Chito6-GNPs conjugates induced an enhanced serum antibody response 10 times more potent than naked DNA vaccine. Additionally, in contrast to naked DNA, the Chito6-GNPs conjugates induced potent cytotoxic T lymphocyte responses at a low dose.

  16. Ultrasensitive electrochemical detection of DNA based on Zn²⁺ assistant DNA recycling followed with hybridization chain reaction dual amplification.

    PubMed

    Qian, Yong; Wang, Chunyan; Gao, Fenglei

    2015-01-15

    A new strategy to combine Zn(2+) assistant DNA recycling followed with hybridization chain reaction dual amplification was designed for highly sensitive electrochemical detection of target DNA. A gold electrode was used to immobilize molecular beacon (MB) as the recognition probe and perform the amplification procedure. In the presence of the target DNA, the hairpin probe 1 was opened, and the DNAzyme was liberated from the caged structure. The activated DNAzyme hybridized with the MB and catalyzed its cleavage in the presence of Zn(2+) cofactor and resulting in a free DNAzyme strand. Finally, each target-induced activated DNAzyme underwent many cycles triggering the cleavage of MB, thus forming numerous MB fragments. The MB fragments triggered the HCR and formed a long double-helix DNA structure. Because both H1 and H2 were labeled by biotin, a lot of SA-ALP was captured on the electrode surface, thus catalyzing a silver deposition process for electrochemical stripping analysis. This novel cascade signal amplification strategy can detect target DNA down to the attomolar level with a dynamic range spanning 6 orders of magnitude. This highly sensitive and specific assay has a great potential to become a promising DNA quantification method in biomedical research and clinical diagnosis.

  17. DNA sequence analysis of the Hind III M fragment from Chinese vaccine strain of vaccinia virus.

    PubMed

    Liu, V J; Jin, Q; Jin, D Y; Hou, Y D

    1989-01-01

    The complete DNA sequence of the Hind III M fragment of vaccinia virus (VV) Tian Tan strain genome was determined by the dideoxynucleotide chain termination method. Three open reading frames (ORFs) were identified in the complementary strand of the sequence, comprised of 2218bp. Among them, ORF K1 initiates its transcription at -45 of the Hind III K fragment. The deduced peptide encoded by K1 contains 284 amino acids with a calculated molecular weight of 32.48 KDa. Its sequence is homologous to the host range protein of VV Copenhagen strain; the variation is only 2.46% at the amino acid level. ORF M2 could encode a peptide of 21.94 KDa with 196 amino acids. This gene was shown to be homologous to that of the 23 KDa peptide of herpes simplex virus type I. A non-coding region of 204bp located between K1 and M2 is rich in palindromic structures. ORF M1 extends its 3' terminus into the Hind III N fragment. Within the M fragment, M1 can only encode 212 amino acids. The major part of ORF M1 is very similar to the M portion of a possible alpha-amanitin resistance gene isolated from VV-WR strain. This work provides a molecular foundation in the construction of a new insertion vector for the preparation of a recombinant vaccinia virus to be used as a polyvalent live vaccine.

  18. An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection.

    PubMed

    Valero, Yulema; Awad, Elham; Buonocore, Francesco; Arizcun, Marta; Esteban, M Ángeles; Meseguer, José; Chaves-Pozo, Elena; Cuesta, Alberto

    2016-12-01

    Vaccines for fish need to be improved for the aquaculture sector, with DNA vaccines and the oral administration route providing the most promising improvements. In this study, we have created an oral chitosan-encapsulated DNA vaccine (CP-pNNV) for the nodavirus (NNV) in order to protect the very susceptible European sea bass (Dicentrarchus labrax). Our data show that the oral CP-pNNV vaccine failed to induce serum circulating or neutralizing specific antibodies (immunoglobulin M) or to up-regulate their gene expression in the posterior gut. However, the vaccine up-regulated the expression of genes related to the cell-mediated cytotoxicity (CMC; tcrb and cd8a) and the interferon pathway (IFN; ifn, mx and ifng). In addition, 3 months after vaccination, challenged fish showed a retarded onset of fish death and lower cumulative mortality with a relative survival of 45%. Thus, we created a chitosan-encapsulated DNA vaccine against NNV that is partly protective to European sea bass juveniles and up-regulates the transcription of genes related to CMC and IFN. However, further studies are needed to improve the anti-NNV vaccine and to understand its mechanisms. PMID:27370973

  19. A synthetic consensus anti–spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates

    PubMed Central

    Muthumani, Karuppiah; Falzarano, Darryl; Reuschel, Emma L.; Tingey, Colleen; Flingai, Seleeke; Villarreal, Daniel O.; Wise, Megan; Patel, Ami; Izmirly, Abdullah; Aljuaid, Abdulelah; Seliga, Alecia M.; Soule, Geoff; Morrow, Matthew; Kraynyak, Kimberly A.; Khan, Amir S.; Scott, Dana P.; Feldmann, Friederike; LaCasse, Rachel; Meade-White, Kimberly; Okumura, Atsushi; Ugen, Kenneth E.; Sardesai, Niranjan Y.; Kim, J. Joseph; Kobinger, Gary; Feldmann, Heinz; Weiner, David B.

    2015-01-01

    First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen. PMID:26290414

  20. An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection.

    PubMed

    Valero, Yulema; Awad, Elham; Buonocore, Francesco; Arizcun, Marta; Esteban, M Ángeles; Meseguer, José; Chaves-Pozo, Elena; Cuesta, Alberto

    2016-12-01

    Vaccines for fish need to be improved for the aquaculture sector, with DNA vaccines and the oral administration route providing the most promising improvements. In this study, we have created an oral chitosan-encapsulated DNA vaccine (CP-pNNV) for the nodavirus (NNV) in order to protect the very susceptible European sea bass (Dicentrarchus labrax). Our data show that the oral CP-pNNV vaccine failed to induce serum circulating or neutralizing specific antibodies (immunoglobulin M) or to up-regulate their gene expression in the posterior gut. However, the vaccine up-regulated the expression of genes related to the cell-mediated cytotoxicity (CMC; tcrb and cd8a) and the interferon pathway (IFN; ifn, mx and ifng). In addition, 3 months after vaccination, challenged fish showed a retarded onset of fish death and lower cumulative mortality with a relative survival of 45%. Thus, we created a chitosan-encapsulated DNA vaccine against NNV that is partly protective to European sea bass juveniles and up-regulates the transcription of genes related to CMC and IFN. However, further studies are needed to improve the anti-NNV vaccine and to understand its mechanisms.

  1. [Comparison of protective properties of the smallpox DNA-vaccine based on the variola virus A30L gene and its variant with modified codon usage].

    PubMed

    Maksiutov, R A; Shchelkunov, S N

    2011-01-01

    Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.

  2. Evaluation of immunogenicity and protective efficacy of a plasmid DNA vaccine encoding ribosomal protein L9 of Brucella abortus in BALB/c mice.

    PubMed

    Jain, Shikha; Afley, Prachiti; Dohre, Sudhir K; Saxena, Nandita; Kumar, Subodh

    2014-07-31

    Brucellosis is a worldwide zoonotic disease. No Brucella vaccine is available for use in humans and existing animal vaccines have limitations. We have previously described the ribosomal protein L9 to have the vaccine potential. In this study, L9 based DNA vaccine (pVaxL9) was generated and evaluated in mouse model. Intramuscular immunisation of pVaxL9 was able to elicit the anti-L9 IgG antibody response of both IgG1 and IgG2a isotypes when compared with PBS and pVax immunised control animals. Heightened antibody response was observed in mice groups immunised with pVaxL9 priming and recombinant L9 boosting (PB) and where pDNA immunisation was carried out by in vivo electroporation (EP). The vaccine groups proliferated splenocytes and released Th1 type cytokines e.g. IFN-γ, TNF-α, IL-2. Further, flow cytometric analysis revealed that IFN-γ was released by both by CD4+ and CD8+ T cells particularly in PB and EP groups when compared with mice immunised with empty control vector. The L9 based pDNA vaccine was able to confer significant protection in mice against challenge with virulent B. abortus with PB and EP groups offering better protection. Taken together, it can be concluded that L9 based DNA vaccine is immunogenic and confer protection in mouse model.

  3. Adjuvanting a DNA vaccine with a TLR9 ligand plus Flt3 ligand results in enhanced cellular immunity against the simian immunodeficiency virus.

    PubMed

    Kwissa, Marcin; Amara, Rama R; Robinson, Harriet L; Moss, Bernard; Alkan, Sefik; Jabbar, Abdul; Villinger, Francois; Pulendran, Bali

    2007-10-29

    DNA vaccines offer promising strategies for immunization against infections. However, their clinical use requires improvements in immunogenicity. We explored the efficacy of Toll-like receptor (TLR) ligands (TLR-Ls) on augmenting the immunogenicity of a DNA prime-modified vaccinia virus Ankara (MVA) boost vaccine against SIV. Rhesus macaques were injected with Fms-like tyrosine kinase 3 (Flt3)-ligand (FL) to expand dendritic cells (DCs) and were primed with a DNA vaccine encoding immunodeficiency virus antigens mixed with ligands for TLR9 or TLR7/8. Subsequently, the animals were boosted with DNA and twice with recombinant MVA expressing the same antigens. TLR9-L (CpG DNA) mediated activation of DCs in vivo and enhanced the magnitude of antigen-specific CD8(+) interferon (IFN) gamma(+) T cells and polyfunctional CD8(+) T cells producing IFN-gamma, tumor necrosis factor alpha, and interleukin 2. Although this trial was designed primarily as an immunogenicity study, we challenged the animals with pathogenic SIVmac(251) and observed a reduction in peak viremia and cumulative viral loads in the TLR9-L plus FL-adjuvanted group relative to the unvaccinated group; however, the study design precluded comparisons between the adjuvanted groups and the group vaccinated with DNA/MVA alone. Viral loads were inversely correlated with the magnitude and quality of the immune response. Thus, the immunogenicity of DNA vaccines can be augmented with TLR9-L plus FL. PMID:17954572

  4. Enhanced Immune Response to DNA Vaccine Encoding Bacillus anthracis PA-D4 Protects Mice against Anthrax Spore Challenge

    PubMed Central

    Kim, Na Young; Chang, Dong Suk; Kim, Yeonsu; Kim, Chang Hwan; Hur, Gyeung Haeng; Yang, Jai Myung; Shin, Sungho

    2015-01-01

    Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4) of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM) signal sequence encoding for PA-D4, which contains codon-optimized genes. The expression and secretion of recombinant protein was confirmed in vitro in 293T cells transfected with plasmid and detected by western blotting, confocal microscopy, and enzyme-linked immunosorbent assay (ELISA). The results revealed that PA-D4 protein can be efficiently expressed and secreted at high levels into the culture medium. When plasmid DNA was given intramuscularly to mice, a significant PA-D4-specific antibody response was induced. Importantly, high titers of antibodies were maintained for nearly 1 year. Furthermore, incorporation of the SV40 enhancer in the plasmid DNA resulted in approximately a 15-fold increase in serum antibody levels in comparison with the plasmid without enhancer. The antibodies produced were predominantly the immunoglobulin G2 (IgG2) type, indicating the predominance of the Th1 response. In addition, splenocytes collected from immunized mice produced PA-D4-specific interferon gamma (IFN-γ). The biodistribution study showed that plasmid DNA was detected in most organs and it rapidly cleared from the injection site. Finally, DNA vaccination with electroporation induced a significant increase in immunogenicity and successfully protected the mice against anthrax spore challenge. Our approach to enhancing the immune response contributes to the development of DNA vaccines against anthrax and other biothreats. PMID:26430894

  5. Modulatory effect of CpG oligodeoxynucleotide on a DNA vaccine against nervous necrosis virus in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Chen, Shiang-Peng; Peng, Ran-Hong; Chiou, Pinwen P

    2015-08-01

    We report the development of a DNA vaccine pcMGNNV2 against nervous necrosis virus (NNV), a leading cause of mass mortality in grouper larvae. In addition, the modulatory effect of CpG oligodeoxynucleotide (ODN), a Toll-like receptor 9 agonist, on the DNA vaccine was evaluated. The DNA vaccine alone elicited the production of NNV-specific antibodies, indicating that the vaccine was capable of triggering adaptive humoral response. Furthermore, significant induction of TLR9, Mx and IL-1β was observed in the spleen on day 7 post-vaccination, supporting that the vaccine could trigger TLR9 signaling. The incorporation of CpG ODN at high dose did not significantly affect the level of NNV-specific antibodies, but was able to moderately enhance the expression of Mx and IL-1β on day 7, indicating its ability in modulating innate response. After challenge with NNV, the vaccine alone enhanced the survival rate in infected larvae at both 1 and 2 weeks post-vaccination. The combination of CpG ODN further increased the survival rate at week 1 but not week 2. Interestingly, at week 2 the ODN appeared to induce a Th1-like response, as indicated by upregulation of T-bet (a Th1 marker) and downregulation of GATA-3 (a Th2 marker). Thus, the results suggest that the boosted Th1 response by CpG ODN does not augment the protection efficacy of pcMGNNV2 vaccine. To our best knowledge, this is the first report of a successful DNA vaccine against NNV in grouper.

  6. Protective and Anti-Pathology Effects of Sm Fructose-1,6-Bisphosphate Aldolase-Based DNA Vaccine against Schistosoma mansoni by Changing Route of Injection

    PubMed Central

    Saber, Mohamed; Hammam, Olft; Karim, Amr; Medhat, Amina; Khela, Mamdouh; El-Dabaa, Ehab

    2013-01-01

    This study aimed to evaluate the efficacy of fructose-1,6-bis phosphate aldolase (SMALDO) DNA vaccination against Schistosoma mansoni infection using different routes of injection. The SMALDO has been cloned into the eukaryotic expression vector pcDNA3.1/V5-His TOPO-TA and was used in injecting Swiss albino mice intramuscularly (IM), subcutaneously (SC), or intraperitoneally (IP) (50 µg/mouse). Mice vaccinated with non-recombinant pcDNA3.1 served as controls. Each group was immunized 4 times at weeks 0, 2, 4, and 6. Two weeks after the last booster dose, all mice groups were infected with 80 S. mansoni cercariae via tail immersion. At week 8 post-infection, animals were sacrificed for assessment of parasitological and histopathological parameters. High anti-SMALDO IgG antibody titers were detected in sera of all vaccinated groups (P<0.01) compared to the control group. Both the IP and SC vaccination routes resulted in a significant reduction in worm burden (46.2% and 28.9%, respectively, P<0.01). This was accompanied by a significant reduction in hepatic and intestinal egg counts (41.7% and 40.2%, respectively, P<0.01) in the IP group only. The number of dead eggs was significantly increased in both IP and IM groups (P<0.01). IP vaccination recorded the highest significant reduction in granuloma number and diameter (54.7% and 29.2%, respectively, P<0.01) and significant increase in dead miracidia (P<0.01). In conclusion, changing the injection route of SMALDO DNA vaccination significantly influenced the efficacy of vaccination. SMALDO DNA vaccination via IP route could be a promising protective and anti-pathology vaccine candidate against S. mansoni infection. PMID:23710082

  7. A novel dendritic-cell-targeting DNA vaccine for hepatitis B induces T cell and humoral immune responses and potentiates the antivirus activity in HBV transgenic mice.

    PubMed

    Yu, Debin; Liu, Hong; Shi, Shuai; Dong, Liwei; Wang, Hongge; Wu, Nuoting; Gao, Hui; Cheng, Zhaojun; Zheng, Qun; Cai, Jiaojiao; Zou, Libo; Zou, Zhihua

    2015-12-01

    Strategies for inducing an effective immune response following vaccination have focused on targeting antigens to dendritic cells (DCs) through the DC-specific surface molecule DEC-205. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single-chain antibodies directed against DEC-205. Here, we investigated this promising approach for its enhancement of hepatitis B virus (HBV)-specific cellular and humoral immune responses and its antiviral effects in HBV transgenic mice. A plasmid DNA vaccine encoding mouse DEC-205 single-chain fragment variable (mDEC-205-scFv) linked with the hepatitis B surface antigen (HBsAg) was constructed. Vaccination with this fusion DNA vaccine in HBV transgenic mice induced robust antiviral T cell and antibody immunity against HBsAg. The levels of serum-circulating HBsAg and the HBV DNA copy number were downregulated by the induction of a higher HBsAg-specific response. Thus, in this study, we demonstrated the therapeutic efficacy of the novel mDEC-205-scFv-fused DNA vaccine in a mouse model of immune-tolerant, chronic HBV infection.

  8. A DNA vaccine encoding VP22 of herpes simplex virus type I (HSV-1) and OprF confers enhanced protection from Pseudomonas aeruginosa in mice.

    PubMed

    Yu, Xian; Wang, Yan; Xia, Yifan; Zhang, Lijuan; Yang, Qin; Lei, Jun

    2016-08-17

    Pseudomonas aeruginosa antimicrobial resistance is a major therapeutic challenge. DNA vaccination is an attractive approach for antigen-specific immunotherapy against P. aeruginosa. We explored the feasibility of employing Herpes simplex virus type 1 tegument protein, VP22, as a molecular tool to enhance the immunogenicity of an OprF DNA vaccine against P. aeruginosa. Recombinant DNA vaccines, pVAX1-OprF, pVAX1-OprF-VP22 (encoding a n-OprF-VP22-c fusion protein) and pVAX1-VP22-OprF (encoding a n-VP22-OprF-c fusion protein) were constructed. The humoral and cellular immune responses and immune protective effects of these DNA vaccines in mice were evaluated. In this report, we showed that vaccination with pVAX1-OprF-VP22 induced higher levels of IgG titer, T cell proliferation rate. It also provided better immune protection against the P. aeruginosa challenge when compared to that induced by pVAX1-OprF or pVAX1-VP22-OprF DNA vaccines. Molecular mechanistic analyses indicated vaccination with pVAX1-OprF-VP22 triggered immune responses characterized by a preferential increase in antigen specific IgG2a and IFN-γ in mice, indicating Th1 polarization. We concluded that VP22 is a potent stimulatory molecular tool for DNA vaccination when fused to the carboxyl end of OprF gene. Our study provides a novel strategy for prevention and treatment of P. aeruginosa infection. PMID:27449680

  9. Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation.

    PubMed

    Cashman, Kathleen A; Broderick, Kate E; Wilkinson, Eric R; Shaia, Carl I; Bell, Todd M; Shurtleff, Amy C; Spik, Kristin W; Badger, Catherine V; Guttieri, Mary C; Sardesai, Niranjan Y; Schmaljohn, Connie S

    2013-01-01

    Lassa virus (LASV) causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC) that expressed the LASV glycoprotein precursor gene (GPC). This plasmid was used to vaccinate guinea pigs (GPs) using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6) with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development. PMID:26344112

  10. Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure

    PubMed Central

    Henderson, Thomas; Nilles, Matthew L.; Kwilas, Steve A.; Josleyn, Matthew D.; Hammerbeck, Christopher D.; Schiltz, James; Royals, Michael; Ballantyne, John; Hooper, Jay W.; Bradley, David S.

    2015-01-01

    Andes virus (ANDV) and ANDV-like viruses are responsible for most hantavirus pulmonary syndrome (HPS) cases in South America. Recent studies in Chile indicate that passive transfer of convalescent human plasma shows promise as a possible treatment for HPS. Unfortunately, availability of convalescent plasma from survivors of this lethal disease is very limited. We are interested in exploring the concept of using DNA vaccine technology to produce antiviral biologics, including polyclonal neutralizing antibodies for use in humans. Geese produce IgY and an alternatively spliced form, IgYΔFc, that can be purified at high concentrations from egg yolks. IgY lacks the properties of mammalian Fc that make antibodies produced in horses, sheep, and rabbits reactogenic in humans. Geese were vaccinated with an ANDV DNA vaccine encoding the virus envelope glycoproteins. All geese developed high-titer neutralizing antibodies after the second vaccination, and maintained high-levels of neutralizing antibodies as measured by a pseudovirion neutralization assay (PsVNA) for over 1 year. A booster vaccination resulted in extraordinarily high levels of neutralizing antibodies (i.e., PsVNA80 titers >100,000). Analysis of IgY and IgYΔFc by epitope mapping show these antibodies to be highly reactive to specific amino acid sequences of ANDV envelope glycoproteins. We examined the protective efficacy of the goose-derived antibody in the hamster model of lethal HPS. α-ANDV immune sera, or IgY/IgYΔFc purified from eggs, were passively transferred to hamsters subcutaneously starting 5 days after an IM challenge with ANDV (25 LD50). Both immune sera, and egg-derived purified IgY/IgYΔFc, protected 8 of 8 and 7 of 8 hamsters, respectively. In contrast, all hamsters receiving IgY/IgYΔFc purified from normal geese (n=8), or no-treatment (n=8), developed lethal HPS. These findings demonstrate that the DNA vaccine/goose platform can be used to produce a candidate antiviral biological product

  11. Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure.

    PubMed

    Haese, Nicole; Brocato, Rebecca L; Henderson, Thomas; Nilles, Matthew L; Kwilas, Steve A; Josleyn, Matthew D; Hammerbeck, Christopher D; Schiltz, James; Royals, Michael; Ballantyne, John; Hooper, Jay W; Bradley, David S

    2015-01-01

    Andes virus (ANDV) and ANDV-like viruses are responsible for most hantavirus pulmonary syndrome (HPS) cases in South America. Recent studies in Chile indicate that passive transfer of convalescent human plasma shows promise as a possible treatment for HPS. Unfortunately, availability of convalescent plasma from survivors of this lethal disease is very limited. We are interested in exploring the concept of using DNA vaccine technology to produce antiviral biologics, including polyclonal neutralizing antibodies for use in humans. Geese produce IgY and an alternatively spliced form, IgYΔFc, that can be purified at high concentrations from egg yolks. IgY lacks the properties of mammalian Fc that make antibodies produced in horses, sheep, and rabbits reactogenic in humans. Geese were vaccinated with an ANDV DNA vaccine encoding the virus envelope glycoproteins. All geese developed high-titer neutralizing antibodies after the second vaccination, and maintained high-levels of neutralizing antibodies as measured by a pseudovirion neutralization assay (PsVNA) for over 1 year. A booster vaccination resulted in extraordinarily high levels of neutralizing antibodies (i.e., PsVNA80 titers >100,000). Analysis of IgY and IgYΔFc by epitope mapping show these antibodies to be highly reactive to specific amino acid sequences of ANDV envelope glycoproteins. We examined the protective efficacy of the goose-derived antibody in the hamster model of lethal HPS. α-ANDV immune sera, or IgY/IgYΔFc purified from eggs, were passively transferred to hamsters subcutaneously starting 5 days after an IM challenge with ANDV (25 LD50). Both immune sera, and egg-derived purified IgY/IgYΔFc, protected 8 of 8 and 7 of 8 hamsters, respectively. In contrast, all hamsters receiving IgY/IgYΔFc purified from normal geese (n=8), or no-treatment (n=8), developed lethal HPS. These findings demonstrate that the DNA vaccine/goose platform can be used to produce a candidate antiviral biological product

  12. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever

    PubMed Central

    Golden, Joseph W.; Maes, Piet; Kwilas, Steven A.; Ballantyne, John

    2016-01-01

    ABSTRACT Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT50), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. IMPORTANCE Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can

  13. In silico analyses of Wilms׳ tumor protein to designing a novel multi-epitope DNA vaccine against cancer.

    PubMed

    Khalili, Saeed; Rahbar, Mohammad Reza; Dezfulian, Mohammad Haj; Jahangiri, Abolfazl

    2015-08-21

    Predefined and pre-weighted objective criteria and essential role of Wilms׳ tumor wild type gene (WT1) for maintaining transformed features of cancer cells confirm the high potency of WT1 as a valuable cancer antigen. The antigen was at the top of the ranking among 75 representative cancer antigens. In the present study, an in silico approach was launched to characterized novel CTL epitopes and design a novel multi-epitope DNA vaccine to elicit a desirable immune response against cancers over expressing WT1. Forty-four novel epitopes were described. A multi-epitope construct was designed based on predicted epitopes which is 310 residues in length. The vaccine candidate designed here displays acceptable population coverage (>65%) in different ethnicities as well as high probability of eliciting WT1 antibodies which both are pertinent goals in the context of appropriate multi-epitope vaccines. Various in silico analyses indicate that final vaccine is a qualified immunotherapy candidate capable of eliciting both CD4+ and CD8+ T cell responses.

  14. A recombinant DNA vaccine encoding Eimeria acervulina cSZ-2 induces immunity against experimental E. tenella infection.

    PubMed

    Shah, Mohammad Ali A; Yan, Roufeng; Xu, Lixin; Song, Xiaokai; Li, Xiangrui

    2010-04-19

    The study describes vaccination experiments with highly immunogenic sporozoite Eimeria acervulina cSZ-2 to determine its efficacy against E. tenella challenge. Chickens were randomly divided into six groups. The chickens in the vaccinated groups were vaccinated with pVAX1-cSZ2, pVAX1-IL-2 and pVAX1-cSZ2-IL-2 twice 'at days 14 and 21' with dose rate of 100microg intramuscularly. At 28 days of age, all chickens except the non-vaccinated non-challenged control group were inoculated orally with 5x10(4) sporulated oocysts of E. tenella. Seven days later, all chickens were weighed and slaughtered for caecum examination. Our findings make it obvious that cSZ-2 DNA immunisation can induce host immune responses by decreasing intestinal lesions, body weight loss and oocyst ratio, imparting partial protection. It is concluded that co-administration of interleukin 2 can further enhance its immunity, leading towards further research.

  15. Broadly neutralizing DNA vaccine with specific mutation alters the antigenicity and sugar-binding activities of influenza hemagglutinin

    PubMed Central

    Chen, Ming-Wei; Liao, Hsin-Yu; Huang, Yaoxing; Jan, Jia-Tsrong; Huang, Chih-Cheng; Ren, Chien-Tai; Wu, Chung-Yi; Cheng, Ting-Jen Rachel; Ho, David D.; Wong, Chi-Huey

    2011-01-01

    The rapid genetic drift of influenza virus hemagglutinin is an obstacle to vaccine efficacy. Previously, we found that the consensus hemagglutinin DNA vaccine (pCHA5) can only elicit moderate neutralization activities toward the H5N1 clade 2.1 and clade 2.3 viruses. Two approaches were thus taken to improve the protection broadness of CHA5. The first one was to include certain surface amino acids that are characteristic of clade 2.3 viruses to improve the protection profiles. When we immunized mice with CHA5 harboring individual mutations, the antibodies elicited by CHA5 containing P157S elicited higher neutralizing activity against the clade 2.3 viruses. Likewise, the viruses pseudotyped with hemagglutinin containing 157S became more susceptible to neutralization. The second approach was to update the consensus sequence with more recent H5N1 strains, generating a second-generation DNA vaccine pCHA5II. We showed that pCHA5II was able to elicit higher cross-neutralization activities against all H5N1 viruses. Comparison of the neutralization profiles of CHA5 and CHA5II, and the animal challenge studies, revealed that CHA5II induced the broadest protection profile. We concluded that CHA5II combined with electroporation delivery is a promising strategy to induce antibodies with broad cross-reactivities against divergent H5N1 influenza viruses. PMID:21321237

  16. Nanoparticle formulation enhanced protective immunity provoked by PYGPI8p-transamidase related protein (PyTAM) DNA vaccine in Plasmodium yoelii malaria model.

    PubMed

    Cherif, Mahamoud Sama; Shuaibu, Mohammed Nasir; Kodama, Yukinobu; Kurosaki, Tomoaki; Helegbe, Gideon Kofi; Kikuchi, Mihoko; Ichinose, Akitoyo; Yanagi, Tetsuo; Sasaki, Hitoshi; Yui, Katsuyuki; Tien, Nguyen Huy; Karbwang, Juntra; Hirayama, Kenji

    2014-04-01

    We have previously reported the new formulation of polyethylimine (PEI) with gamma polyglutamic acid (γ-PGA) nanoparticle (NP) to have provided Plasmodium yoelii merozoite surface protein-1 (PyMSP-1) plasmid DNA vaccine with enhanced protective cellular and humoral immunity in the lethal mouse malaria model. PyGPI8p-transamidase-related protein (PyTAM) was selected as a possible candidate vaccine antigen by using DNA vaccination screening from 29 GPI anchor and signal sequence motif positive genes picked up using web-based bioinformatics tools; though the observed protection was not complete. Here, we observed augmented protective effect of PyTAM DNA vaccine by using PEI and γ-PGA complex as delivery system. NP-coated PyTAM plasmid DNA immunized mice showed a significant survival rate from lethal P. yoelii challenge infection compared with naked PyTAM plasmid or with NP-coated empty plasmid DNA group. Antigen-specific IgG1 and IgG2b subclass antibody levels, proportion of CD4 and CD8T cells producing IFN-γ in the splenocytes and IL-4, IFN-γ, IL-12 and TNF-α levels in the sera and in the supernatants from ex vivo splenocytes culture were all enhanced by the NP-coated PyTAM DNA vaccine. These data indicates that NP augments PyTAM protective immune response, and this enhancement was associated with increased DC activation and concomitant IL-12 production.

  17. Discovery and Characterization of a Water-Soluble Prodrug of a Dual Inhibitor of Bacterial DNA Gyrase and Topoisomerase IV

    PubMed Central

    2015-01-01

    Benzimidazole 1 is the lead compound resulting from an antibacterial program targeting dual inhibitors of bacterial DNA gyrase and topoisomerase IV. With the goal of improving key drug-like properties, namely, the solubility and the formulability of 1, an effort to identify prodrugs was undertaken. This has led to the discovery of a phosphate ester prodrug 2. This prodrug is rapidly cleaved to the parent drug molecule upon both oral and intravenous administration. The prodrug achieved equivalent exposure of 1 compared to dosing the parent in multiple species. The prodrug 2 has improved aqueous solubility, simplifying both intravenous and oral formulation. PMID:26191374

  18. A H+/Ag+ dual-target responsive label-free light-up probe based on a DNA triplex.

    PubMed

    Xu, Lijun; Guo, Yahui; Wang, Jine; Zhou, Lu; Zhang, Yuanyuan; Hong, Shanni; Wang, Zhili; Zhang, Jianye; Pei, Renjun

    2015-05-01

    We developed a dual-target responsive sensor for label-free light-up fluorescent detection of protons (H(+)) and silver ions (Ag(+)) using an "OR'' logic gate. Berberine, a cost-effective and non-toxic indicator, partially intercalates the formed triplex DNA in the presence of H(+) or Ag(+), generating enhanced fluorescence. The designed Ag(+) probe has high selectivity and desirable sensitivity, which is necessary for practical use. The robust "OR" logic gate is capable of a rapid and reversible response to the H(+) and/or Ag(+) inputs. PMID:25663002

  19. Concurrent injection of a rhabdovirus-specific DNA vaccine with a polyvalent, oil-adjuvanted vaccine delays the specific anti-viral immune response in Atlantic salmon, Salmo salar L.

    PubMed

    Skinner, Lisa A; LaPatra, S E; Adams, A; Thompson, K D; Balfry, S K; McKinley, R S; Schulte, P M

    2010-04-01

    Vaccines are commonly used in salmonid aquaculture as a method of disease prevention. Although there is a substantial amount of published research regarding the immunological and physiological effects following the injection of different polyvalent vaccines and DNA vaccines, there are no published reports examining the physiological and immunological effects of concurrent vaccine injection, which is the situation encountered in aquaculture. Using key immunological parameters such as lysozyme activity and specific antibody titres we examined the short-term activation of the immune response of cultured Atlantic salmon (Salmo salar L.) following concurrent injection with a traditional, polyvalent, oil-adjuvanted vaccine (AV) and an IHNV-specific DNA vaccine (DV). Our results indicate that different aspects of the innate and adaptive immune responses are influenced in either a positive or negative manner. While concurrent vaccine injection elicited an increase in lysozyme activity, changes in antibody titre (Ab) were antigen specific. The production of anti-Aeromonas salmonicida Abs was significantly greater in the combined vaccine group at 296 degree days post-vaccine injection (dd pvi), while the production of anti-Listonella anguillarum Abs was significantly greater at 106 dd pvi in the combined vaccine group. Of even greater interest was the apparent delay in production of IHNV-specific neutralizing antibodies (NAb) when the DV was injected concurrently with the polyvalent AV. The results indicated that concurrent injection of a polyvalent oil-AV and a DV can be beneficial to the production of antibodies; however, the specific anti-viral response may be delayed.

  20. A hantavirus pulmonary syndrome (HPS) DNA vaccine delivered using a spring-powered jet injector elicits a potent neutralizing antibody response in rabbits and nonhuman primates.

    PubMed

    Kwilas, Steve; Kishimori, Jennifer M; Josleyn, Matthew; Jerke, Kurt; Ballantyne, John; Royals, Michael; Hooper, Jay W

    2014-01-01

    Sin Nombre virus (SNV) and Andes virus (ANDV) cause most of the hantavirus pulmonary syndrome (HPS) cases in North and South America, respectively. The chances of a patient surviving HPS are only two in three. Previously, we demonstrated that SNV and ANDV DNA vaccines encoding the virus envelope glycoproteins elicit high-titer neutralizing antibodies in laboratory animals, and (for ANDV) in nonhuman primates (NHPs). In those studies, the vaccines were delivered by gene gun or muscle electroporation. Here, we tested whether a combined SNV/ANDV DNA vaccine (HPS DNA vaccine) could be delivered effectively using a disposable syringe jet injection (DSJI) system (PharmaJet, Inc). PharmaJet intramuscular (IM) and intradermal (ID) needle-free devices are FDA 510(k)-cleared, simple to use, and do not require electricity or pressurized gas. First, we tested the SNV DNA vaccine delivered by PharmaJet IM or ID devices in rabbits and NHPs. Both IM and ID devices produced high-titer anti-SNV neutralizing antibody responses in rabbits and NHPs. However, the ID device required at least two vaccinations in NHP to detect neutralizing antibodies in most animals, whereas all animals vaccinated once with the IM device seroconverted. Because the IM device was more effective in NHP, the Stratis(®) (PharmaJet IM device) was selected for follow-up studies. We evaluated the HPS DNA vaccine delivered using Stratis(®) and found that it produced high-titer anti-SNV and anti-ANDV neutralizing antibodies in rabbits (n=8/group) as measured by a classic plaque reduction neutralization test and a new pseudovirion neutralization assay. We were interested in determining if the differences between DSJI delivery (e.g., high-velocity liquid penetration through tissue) and other methods of vaccine injection, such as needle/syringe, might result in a more immunogenic DNA vaccine. To accomplish this, we compared the HPS DNA vaccine delivered by DSJI versus needle/syringe in NHPs (n=8/group). We found

  1. Subviral Particle as Vaccine and Vaccine Platform

    PubMed Central

    Tan, Ming; Jiang, Xi

    2014-01-01

    Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts. PMID:24662314

  2. Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus.

    PubMed

    Fernandez-Fernandez, Carmen; Gonzalez, Diego; Collier, Justine

    2011-01-01

    DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A)]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA). We found that the expression of the DnaA(R357A) mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A) protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A) could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.

  3. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8+ T Cell Responses, Enabling Faster Resolution of Influenza Disease

    PubMed Central

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U.; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M.; Fredriksen, Agnete Brunsvik; Tregoning, John S.

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.

  4. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8(+) T Cell Responses, Enabling Faster Resolution of Influenza Disease.

    PubMed

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M; Fredriksen, Agnete Brunsvik; Tregoning, John S

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8(+) T cells can improve protection. To further explore the role of CD8(+) T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8(+) T cells. However, DNA vaccine regimes that induced CD8(+) T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-E(d) single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines. PMID:27602032

  5. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8+ T Cell Responses, Enabling Faster Resolution of Influenza Disease

    PubMed Central

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U.; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M.; Fredriksen, Agnete Brunsvik; Tregoning, John S.

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines. PMID:27602032

  6. Protective efficacy of a broadly cross-reactive swine influenza DNA vaccine encoding M2e, cytotoxic T lymphocyte epitope and consensus H3 hemagglutinin

    PubMed Central

    2012-01-01

    Background Pigs have been implicated as mixing reservoir for the generation of new pandemic influenza strains, control of swine influenza has both veterinary and public health significance. Unlike human influenza vaccines, strains used for commercially available swine influenza vaccines are not regularly replaced, making the vaccines provide limited protection against antigenically diverse viruses. It is therefore necessary to develop broadly protective swine influenza vaccines that are efficacious to both homologous and heterologous virus infections. In this study, two forms of DNA vaccines were constructed, one was made by fusing M2e to consensus H3HA (MHa), which represents the majority of the HA sequences of H3N2 swine influenza viruses. Another was made by fusing M2e and a conserved CTL epitope (NP147-155) to consensus H3HA (MNHa). Their protective efficacies against homologous and heterologous challenges were tested. Results BALB/c mice were immunized twice by particle-mediated epidermal delivery (gene gun) with the two DNA vaccines. It was shown that the two vaccines elicited substantial antibody responses, and MNHa induced more significant T cell-mediated immune response than MHa did. Then two H3N2 strains representative of different evolutional and antigenic clusters were used to challenge the vaccine-immunized mice (homosubtypic challenge). Results indicated that both of the DNA vaccines prevented homosubtypic virus infections completely. The vaccines’ heterologous protective efficacies were further tested by challenging with a H1N1 swine influenza virus and a reassortant 2009 pandemic strain. It was found that MNHa reduced the lung viral titers significantly in both challenge groups, histopathological observation showed obvious reduction of lung pathogenesis as compared to MHa and control groups. Conclusions The combined utility of the consensus HA and the conserved M2e and CTL epitope can confer complete and partial protection against homologous and

  7. Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine.

    PubMed

    Wang, R; Epstein, J; Baraceros, F M; Gorak, E J; Charoenvit, Y; Carucci, D J; Hedstrom, R C; Rahardjo, N; Gay, T; Hobart, P; Stout, R; Jones, T R; Richie, T L; Parker, S E; Doolan, D L; Norman, J; Hoffman, S L

    2001-09-11

    We assessed immunogenicity of a malaria DNA vaccine administered by needle i.m. or needleless jet injection [i.m. or i.m./intradermally (i.d.)] in 14 volunteers. Antigen-specific IFN-gamma responses were detected by enzyme-linked immunospot (ELISPOT) assays in all subjects to multiple 9- to 23-aa peptides containing class I and/or class II restricted epitopes, and were dependent on both CD8(+) and CD4(+) T cells. Overall, frequency of response was significantly greater after i.m. jet injection. CD8(+)-dependent cytotoxic T lymphocytes (CTL) were detected in 8/14 volunteers. Demonstration in humans of elicitation of the class I restricted IFN-gamma responses we believe necessary for protection against the liver stage of malaria parasites brings us closer to an effective malaria vaccine.

  8. Synthesis and Biological Evaluation of the First Dual Tyrosyl-DNA Phosphodiesterase I (Tdp1) - Topoisomerase I (Top1) Inhibitors

    PubMed Central

    Nguyen, Trung Xuan; Morrell, Andrew; Conda-Sheridan, Martin; Marchand, Christophe; Agama, Keli; Bermingam, Alun; Stephen, Andrew G.; Chergui, Adel; Naumova, Alena; Fisher, Robert; O’Keefe, Barry R.; Pommier, Yves; Cushman, Mark

    2012-01-01

    Substances with dual tyrosyl-DNA phosphodiesterase I - topoisomerase I inhibitory activity in one low molecular weight compound would constitute a unique class of anticancer agents that could potentially have significant advantages over drugs that work against the individual enzymes. The present study demonstrates the successful synthesis and evaluation of the first dual Top1-Tdp1 inhibitors, which are based on the indenoisoquinoline chemotype. One bis(indenoisoquinoline) had significant activity against human Tdp1 (IC50 = 1.52 ± 0.05 μM), and it was also equipotent to camptothecin as a Top1 inhibitor. Significant insights into enzyme-drug interactions were gained via structure-activity relationship studies of the series. The present results also document the failure of the previously reported sulfonyl ester pharmacophore to confer Tdp1 inhibition in this indenoisoquinoline class of inhibitors, even though it was demonstrated to work well for the steroid NSC 88915 (7). The current study will facilitate future efforts to optimize dual Top1-Tdp1 inhibitors. PMID:22536944

  9. Immune responses to oral pcDNA-VP2 vaccine in relation to infectious pancreatic necrosis virus carrier state in rainbow trout Oncorhynchus mykiss.

    PubMed

    Ballesteros, Natalia A; Rodriguez Saint-Jean, Sylvia; Perez-Prieto, Sara I

    2015-06-15

    The VP2 gene of infectious pancreatic necrosis virus, encoded in an expression plasmid and encapsulated in alginate microspheres, was used for oral DNA vaccination of fish to better understand the carrier state and the action of the vaccine. The efficacy of the vaccine was evaluated by measuring the prevention of virus persistence in the vaccinated fish that survived after waterborne virus challenge. A real-time RT-qPCR analysis revealed lower levels of IPNV-VP4 transcripts in rainbow trout survivors among vaccinated and challenged fish compared with the control virus group at 45 days post-infection. The infective virus was recovered from asymptomatic virus control fish, but not from the vaccinated survivor fish, suggesting an active role of the vaccine in the control of IPNV infection. Moreover, the levels of IPNV and immune-related gene expression were quantified in fish showing clinical infection as well as in asymptomatic rainbow trout survivors. The vaccine mimicked the action of the virus, although stronger expression of immune-related genes, except for IFN-1 and IL12, was detected in survivors from the virus control (carrier) group than in those from the vaccinated group. The transcriptional levels of the examined genes also showed significant differences in the virus control fish at 10 and 45 days post-challenge.

  10. Immune responses to oral pcDNA-VP2 vaccine in relation to infectious pancreatic necrosis virus carrier state in rainbow trout Oncorhynchus mykiss.

    PubMed

    Ballesteros, Natalia A; Rodriguez Saint-Jean, Sylvia; Perez-Prieto, Sara I

    2015-06-15

    The VP2 gene of infectious pancreatic necrosis virus, encoded in an expression plasmid and encapsulated in alginate microspheres, was used for oral DNA vaccination of fish to better understand the carrier state and the action of the vaccine. The efficacy of the vaccine was evaluated by measuring the prevention of virus persistence in the vaccinated fish that survived after waterborne virus challenge. A real-time RT-qPCR analysis revealed lower levels of IPNV-VP4 transcripts in rainbow trout survivors among vaccinated and challenged fish compared with the control virus group at 45 days post-infection. The infective virus was recovered from asymptomatic virus control fish, but not from the vaccinated survivor fish, suggesting an active role of the vaccine in the control of IPNV infection. Moreover, the levels of IPNV and immune-related gene expression were quantified in fish showing clinical infection as well as in asymptomatic rainbow trout survivors. The vaccine mimicked the action of the virus, although stronger expression of immune-related genes, except for IFN-1 and IL12, was detected in survivors from the virus control (carrier) group than in those from the vaccinated group. The transcriptional levels of the examined genes also showed significant differences in the virus control fish at 10 and 45 days post-challenge. PMID:25892368

  11. Functional aspects of intrahepatic hepatitis B virus-specific T cells induced by therapeutic DNA vaccination.

    PubMed

    Brass, Anette; Frelin, Lars; Milich, David R; Sällberg, Matti; Ahlén, Gustaf

    2015-03-01

    Current therapies for the hepatitis B virus (HBV), a major cause of severe liver disease, suppress viral replication but replication rebounds if therapy is withdrawn. It is widely accepted that immune activation is needed to control replication off-therapy. To specifically activate T cells crossreactive between the hepatitis B core and e antigens (HBcAg/HBeAg) in chronically infected patients, we developed a therapeutic vaccine candidate. The vaccine encompass codon-optimized HBcAg and IL-12 expressing plasmids delivered using targeted high-pressure injection combined with in vivo electroporation. One dose of the vaccine primed a B-cell-independent polyfunctional T-cell response, in wild-type, and in HBeAg-transgenic mice with an impaired ability to respond to HBc/eAg. The response peaked at 2 weeks and contracted at week 6 after vaccination. Coadministration of IL-12 improved antibody levels, and T-cell expansion and functionality. The vaccine primed T cells that, 2 weeks after a single dose, cleared hepatocytes transiently expressing HBcAg in vaccinated wild-type and HBeAg-transgenic mice. However, 4 weeks later, these functional responses were lost. Booster doses after 8-12 weeks effectively restored function and expansion of the rapidly contracting T cells. Thus, this vaccine strategy primes functional HBcAg-specific T cells in a host with dysfunctional response to HBV.

  12. Characterization of Immune Responses Induced by Ebola Virus Glycoprotein (GP) and Truncated GP Isoform DNA Vaccines and Protection Against Lethal Ebola Virus Challenge in Mice.

    PubMed

    Li, Wenfang; Ye, Ling; Carrion, Ricardo; Mohan, Gopi S; Nunneley, Jerritt; Staples, Hilary; Ticer, Anysha; Patterson, Jean L; Compans, Richard W; Yang, Chinglai

    2015-10-01

    In addition to its surface glycoprotein (GP), Ebola virus directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. We recently reported that sGP actively diverts host antibody responses against the epitopes that it shares with GP and thereby allows itself to absorb anti-GP antibodies, a phenomenon we termed "antigenic subversion." To investigate the effect of antigenic subversion by sGP on protection against virus infection, we compared immune responses induced by different prime-boost immunization regimens with GP and sGP DNA vaccines in mice and their efficacy against lethal Ebola virus challenge. Similar levels of anti-GP antibodies were induced by 2 immunizations with sGP and GP DNA vaccines. However, 2 immunizations with GP but not sGP DNA vaccine fully protected mice from lethal challenge. Boosting with sGP or GP DNA vaccine in mice that had been primed by GP or sGP DNA vaccine augmented the levels of anti-GP antibody responses and further improved protective efficacy against Ebola virus infection. These results show that both the quality and the levels of anti-GP antibody responses affect the efficacy of protection against Ebola virus infection.

  13. Development of a new DNA vaccine based on mycobacterial ESAT-6 antigen delivered by recombinant invasive Lactococcus lactis FnBPA+.

    PubMed

    Pereira, Vanessa Bastos; Saraiva, Tessália Diniz Luerce; Souza, Bianca Mendes; Zurita-Turk, Meritxell; Azevedo, Marcela Santiago Pacheco; De Castro, Camila Prósperi; Mancha-Agresti, Pamela; Dos Santos, Janete Soares Coelho; Santos, Ana Cristina Gomes; Faria, Ana Maria Caetano; Leclercq, Sophie; Azevedo, Vasco; Miyoshi, Anderson

    2015-02-01

    The use of the food-grade bacterium Lactococcus lactis as a vehicle for the oral delivery of DNA vaccine plasmids constitutes a promising strategy for vaccination. The delivery of DNA plasmids into eukaryotic cells is of critical importance for subsequent DNA expression and effectiveness of the vaccine. In this context, the use of the recombinant invasive L. lactis FnBPA+ (fibronectin-binding protein A) strain for the oral delivery of the eukaryotic expression vector vaccination using lactic acid bacteria (pValac), coding for the 6-kDa early secreted antigenic target (ESAT-6) gene of Mycobacterium tuberculosis, could represent a new DNA vaccine strategy against tuberculosis. To this end, the ESAT-6 sequence was cloned into the pValac vector; the L. lactis fibronectin-binding protein A (FnBPA)+ (pValac:ESAT-6) strain was obtained, and its immunological profile was checked in BALB/c mice. This strain was able to significantly increase interferon gamma (IFN-γ) production in spleen cells, showing a systemic T helper 1 (Th1) cell response. The mice also showed a significant increase in specific secretory immunoglobulin A (sIgA) production in colon tissue and fecal extracts. Thus, this is the first time that L. lactis has been used to deliver a plasmid DNA harboring a gene that encodes an antigen against tuberculosis through mucous membranes. PMID:25503506

  14. Improving the safety of viral DNA vaccines: development of vectors containing both 5' and 3' homologous regulatory sequences from non-viral origin.

    PubMed

    Martinez-Lopez, A; Encinas, P; García-Valtanen, P; Gomez-Casado, E; Coll, J M; Estepa, A

    2013-04-01

    Although some DNA vaccines have proved to be very efficient in field trials, their authorisation still remains limited to a few countries. This is in part due to safety issues because most of them contain viral regulatory sequences to driving the expression of the encoded antigen. This is the case of the only DNA vaccine against a fish rhabdovirus (a negative ssRNA virus), authorised in Canada, despite the important economic losses that these viruses cause to aquaculture all over the world. In an attempt to solve this problem and using as a model a non-authorised, but efficient DNA vaccine against the fish rhabdovirus, viral haemorrhagic septicaemia virus (VHSV), we developed a plasmid construction containing regulatory sequences exclusively from fish origin. The result was an "all-fish vector", named pJAC-G, containing 5' and 3' regulatory sequences of β-acting genes from carp and zebrafish, respectively. In vitro and in vivo, pJAC-G drove a successful expression of the VHSV glycoprotein G (G), the only antigen of the virus conferring in vivo protection. Furthermore, and by means of in vitro fusion assays, it was confirmed that G protein expressed from pJAC-G was fully functional. Altogether, these results suggest that DNA vaccines containing host-homologous gene regulatory sequences might be useful for developing safer DNA vaccines, while they also might be useful for basic studies.

  15. Induction of pro-apoptotic antibodies to triple negative breast cancer by vaccination with TRAIL death receptor DR5 DNA

    PubMed Central

    Piechocki, Marie P.; Wu, Gen Sheng; Jones, Richard F.; Jacob