Science.gov

Sample records for dual functional lithium-lead

  1. Volumetric Properties of Lithium-Lead Melts

    NASA Astrophysics Data System (ADS)

    Khairulin, R. A.; Abdullaev, R. N.; Stankus, S. V.; Agazhanov, A. S.; Savchenko, I. V.

    2017-02-01

    The density of liquid lithium and lithium-lead alloys (10.02 at.% Pb, 14.98 at.% Pb, 18.06 at.% Pb, 20.02 at.% Pb, 22.24 at.% Pb, 23.09 at.% Pb, 25.10 at.% Pb, 30.15 at.% Pb, 38.21 at.% Pb, 40.11 at.% Pb, 43.08 at.% Pb, 46.65 at.% Pb, 50.15 at.% Pb, 60.23 at.% Pb, 70.01 at.% Pb, 83.00 at.% Pb, and 84.30 at.% Pb) has been measured using the gamma-ray attenuation technique over the temperature range from the liquidus line to 1050 K. The position of the liquidus curve in the Li-Pb phase diagram has been clarified. The compositional dependencies of molar volume and volumetric thermal expansion coefficient of the Li-Pb liquid system have been constructed and discussed.

  2. Dual function conducting polymer diodes

    DOEpatents

    Heeger, Alan J.; Yu, Gang

    1996-01-01

    Dual function diodes based on conjugated organic polymer active layers are disclosed. When positively biased the diodes function as light emitters. When negatively biased they are highly efficient photodiodes. Methods of preparation and use of these diodes in displays and input/output devices are also disclosed.

  3. Unraveling Executive Functioning in Dual Diagnosis

    PubMed Central

    Duijkers, Judith C. L. M.; Vissers, Constance Th. W. M.; Egger, Jos I. M.

    2016-01-01

    In mental health, the term dual-diagnosis is used for the co-occurrence of Substance Use Disorder (SUD) with another mental disorder. These co-occurring disorders can have a shared cause, and can cause/intensify each other’s expression. Forming a threat to health and society, dual-diagnosis is associated with relapses in addiction-related behavior and a destructive lifestyle. This is due to a persistent failure to control impulses and the maintaining of inadequate self-regulatory behavior in daily life. Thus, several aspects of executive functioning like inhibitory, shifting and updating processes seem impaired in dual-diagnosis. Executive (dys-)function is currently even seen as a shared underlying key component of most mental disorders. However, the number of studies on diverse aspects of executive functioning in dual-diagnosis is limited. In the present review, a systematic overview of various aspects of executive functioning in dual-diagnosis is presented, striving for a prototypical profile of patients with dual-diagnosis. Looking at empirical results, inhibitory and shifting processes appear to be impaired for SUD combined with schizophrenia, bipolar disorder or cluster B personality disorders. Studies involving updating process tasks for dual-diagnosis were limited. More research that zooms in to the full diversity of these executive functions is needed in order to strengthen these findings. Detailed insight in the profile of strengths and weaknesses that underlies one’s behavior and is related to diagnostic classifications, can lead to tailor-made assessment and indications for treatment, pointing out which aspects need attention and/or training in one’s self-regulative abilities. PMID:27445939

  4. Dual Functions of the Indonesian Armed Forces

    DTIC Science & Technology

    1991-04-01

    Force. As a Social Political force the activities covered are: ideological, political, social, economic, cultural and religious. The IAF dual function...cannot be separated from Indonesian history nor from National political culture . The wide spread of islands that constitute Indonesia meant that a...variety of customs, cultures , languages and religions had to be molded together as the Indonesian society and this is described in the motto of the

  5. Affine Riesz bases and the dual function

    NASA Astrophysics Data System (ADS)

    Terekhin, P. A.

    2016-09-01

    This paper is concerned with systems of functions on the unit interval which are generated by dyadic dilations and integer translations of a given function. Similar systems have a wide range of applications in the theory of wavelets, in nonlinear, and in particular, in greedy approximations, in the representation of functions by series, in problems in numerical analysis, and so on. Conditions, and in some particular cases, criteria for the generating function are given for the system to be Besselian, to form a Riesz basis or to be an orthonormal system, and separately, to be complete. For this purpose, the concept of the dual function of the generating function of a system is introduced and studied. Some of the conditions given below are easy to verify in practice, as is demonstrated by examples. Bibliography: 25 titles.

  6. Dual and Feller-Reuter-Riley transition functions

    NASA Astrophysics Data System (ADS)

    Li, Yangrong

    2006-01-01

    In this paper, we investigate duality and Feller-Reuter-Riley (FRR) property of continuous-time Markov chains (CTMCs). A criterion of dual q-functions is given in terms of their q-matrices. For a dual q-matrix Q, a necessary and sufficient conditions for the minimal Q-function to be a FRR transition function are also given. Finally, by using dual technique, we give a criterion of FRR Q-functions when Q is monotone.

  7. Dual functional selenium-substituted hydroxyapatite

    PubMed Central

    Wang, Yanhua; Ma, Jun; Zhou, Lei; Chen, Jin; Liu, Yonghui; Qiu, Zhiye; Zhang, Shengmin

    2012-01-01

    Hydroxyapatite (HA) doped with trace elements has attracted much attention recently owing to its excellent biological functions. Herein, we use a facile co-precipitation method to incorporate selenium into HA by adding sodium selenite during synthesis. The obtained selenium-substituted HA products are needle-like nanoparticles which have  size and crystallinity that are similar to those of the pure HA nanoparticles (HANs) when the selenium content is low. HANs are found to have the ability to induce the apoptosis of osteosarcoma cells, and the anti-tumour effects are enhanced after incorporation of selenium. Meanwhile, the nanoparticles can also support the growth of bone marrow stem cells. Furthermore, the flow cytometric results indicate that the apoptosis induction of osteosarcoma cells is caused by the increased reactive oxygen species and decreased mitochondrial membrane potential. These results show that the selenium-substituted HANs are potentially promising bone graft materials in osteosarcoma treatment due to their dual functions of supporting normal cell growth and inducing tumour cell apoptosis. PMID:23741613

  8. Enrichment of orange emission of Er3+ ion with Sn4+ ion as sensitizer in lithium lead phosphate glass system

    NASA Astrophysics Data System (ADS)

    Rajanikanth, P.; Gandhi, Y.; Veeraiah, N.

    2015-10-01

    Lithium lead phosphate glasses doped with 1.0 mol% of Er2O3 and mixed with varying concentrations of SnO2 (from 0 to 7.0 mol%) have been synthesized. Optical absorption and luminescence spectra of the prepared glasses were recorded at ambient temperature. The radiative lifetimes were measured from the luminescence decay profiles recorded at room temperature. Similar studies have also been carried out for the SnO2 singly doped glasses. The absorption and luminescence spectra of Er3+ ions doped glasses were characterized using Judd-Ofelt theory. The radiative parameters viz., transition probability A, branching ratio β and the radiative lifetime τ of principal emission transitions of these glasses have been evaluated. The energy transfer mechanism between Sn4+ and Er3+ in co-doped glasses has been explored as a function of SnO2 concentration with the help of rate equations. The results indicated a significant enhancement in the intensity of orange emission 4G11/2 → 4I11/2 of Er3+ ions due to co-doping with SnO2. The results were further analyzed with IR spectral data and ac conductivity studies. The analysis pointed out that about 3.0 mol% of SnO2 is the most favorable concentration for getting the highest quantum efficiency of orange emission and for the maximum energy transfer with low non-radiative transition probabilities.

  9. Dual functional star polymers for lubricants

    SciTech Connect

    Cosimbescu, Lelia; Robinson, Joshua W.; Zhou, Yan; Qu, Jun

    2016-09-12

    Star-shaped poly(alkyl methacrylate)s (PAMAs) with a three arm architecturewere designed, prepared and their performance as a dual additive (viscosity index improver and friction modifier) for engine oils was evaluated. Furthermore, the structure property relationships between the macromolecular structure and lubricant performance were studied, such as molecular weight and polarity effects on the viscosity index. Several copolymers of dodecylmethacrylate with polar methacrylates in various amounts and various topologies, were synthesized as model compounds. Star polymers with a polar content of at least 10% in a block or tapered block topology effectively reduced the friction coefficient in both mixed and boundary lubrication regimes. Furthermore, a polar content of 20% was efficient in reducing friction in both random and block topologies.

  10. Dual functional star polymers for lubricants

    DOE PAGES

    Cosimbescu, Lelia; Robinson, Joshua W.; Zhou, Yan; ...

    2016-09-12

    Star-shaped poly(alkyl methacrylate)s (PAMAs) with a three arm architecturewere designed, prepared and their performance as a dual additive (viscosity index improver and friction modifier) for engine oils was evaluated. Furthermore, the structure property relationships between the macromolecular structure and lubricant performance were studied, such as molecular weight and polarity effects on the viscosity index. Several copolymers of dodecylmethacrylate with polar methacrylates in various amounts and various topologies, were synthesized as model compounds. Star polymers with a polar content of at least 10% in a block or tapered block topology effectively reduced the friction coefficient in both mixed and boundary lubricationmore » regimes. Furthermore, a polar content of 20% was efficient in reducing friction in both random and block topologies.« less

  11. Dual Functional Star Polymers for Lubricants

    SciTech Connect

    Cosimbescu, Lelia; Robinson, Joshua W.; Zhou, Yan; Qu, Jun

    2016-09-12

    Star-shaped poly(alkyl methacrylate)s (PAMAs) with a 3-arm architecture were designed, prepared and their performance as a dual additive (viscosity index improver and friction modifier) for engine oils was evaluated. Furthermore, the structure-property relationships between macromolecular structure and lubricant performance were studied. Several co-polymers of dodecylmethacrylate with polar methacrylates in various amounts and various topologies, were synthesized as model compounds. Star polymers with a polar content of at least 10% effectively reduced the friction coefficient in both mixed and boundary lubrication regime only in block or tapered block topology. However, a polar content of 20% was efficient in reducing friction in both random and block topologies.

  12. Dual functional star polymers for lubricants

    SciTech Connect

    Cosimbescu, Lelia; Robinson, Joshua W.; Zhou, Yan; Qu, Jun

    2016-09-12

    Star-shaped poly(alkyl methacrylate)s (PAMAs) with a three arm architecturewere designed, prepared and their performance as a dual additive (viscosity index improver and friction modifier) for engine oils was evaluated. Furthermore, the structure property relationships between the macromolecular structure and lubricant performance were studied, such as molecular weight and polarity effects on the viscosity index. Several copolymers of dodecylmethacrylate with polar methacrylates in various amounts and various topologies, were synthesized as model compounds. Star polymers with a polar content of at least 10% in a block or tapered block topology effectively reduced the friction coefficient in both mixed and boundary lubrication regimes. Furthermore, a polar content of 20% was efficient in reducing friction in both random and block topologies.

  13. Study on hydrogen isotopes permeation in fluidized state of liquid lithium-lead

    SciTech Connect

    Yoshimura, S.; Yoshimura, R.; Okada, M.; Fukada, S.; Edao, Y.

    2015-03-15

    Lithium-lead (Li-Pb) is one of the most promising candidate materials for the liquid blanket of fusion reactors. Hydrogen transfer under a fluidized condition of Li-Pb is investigated experimentally to design a Li-Pb blanket system. Li-Pb eutectic alloy flows inside a Ni tube in the experimental system, where H{sub 2} permeates into and out of the forced Li-Pb flow. The overall H{sub 2} permeation rate is analyzed using a mass balance model. Hydrogen atoms diffuse in Ni and Li-Pb. The steady-state H{sub 2} permeation rate obtained by this experiment is smaller than the result of the calculation model. A resistance factor is introduced to the present analysis in order to evaluate the influence of other H{sub 2} transfer mechanisms, such as diffusion in Li-Pb and dissolution reaction between Ni and Li-Pb. The contribution of the resistance to the overall H{sub 2} permeation rate becomes large when the flow rate of Li-Pb is low. This is because the boundary layer thickness between Ni and Li-Pb affects the overall H{sub 2} permeation rate. When the flow velocity of Li-Pb increases, the thickness of the boundary layer becomes thin, and the driving force of H{sub 2} permeation through the Ni wall becomes bigger. (authors)

  14. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    SciTech Connect

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-12-12

    Lithium lead silicate glasses with composition 30Li{sub 2}O{center_dot}(70-x)PbO{center_dot}xSiO{sub 2}(where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO{sub 2} content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO{sub 2} content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm{sup -1} in IR spectra of these glasses indicates the presence of network forming PbO{sub 4} tetrahedral units in glass structure. The increase in intensity with increasing SiO{sub 2} content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm{sup -1}. The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO{sub 2} ratio.

  15. Dual-functional drug liposomes in treatment of resistant cancers.

    PubMed

    Mu, Li-Min; Ju, Rui-Jun; Liu, Rui; Bu, Ying-Zi; Zhang, Jing-Ying; Li, Xue-Qi; Zeng, Fan; Lu, Wan-Liang

    2017-06-01

    Efficacy of regular chemotherapy is significantly hampered by multidrug resistance (MDR) and severe systemic toxicity. The reduced toxicity has been evidenced after administration of drug liposomes, consisting of the first generation of regular drug liposomes, the second generation of long-circulation drug liposomes, and the third generation of targeting drug liposomes. However, MDR of cancers remains as an unsolved issue. The objective of this article is to review the dual-functional drug liposomes, which demonstrate the potential in overcoming MDR. Herein, dual-functional drug liposomes are referring to the drug-containing phospholipid bilayer vesicles that possess a dual-function of providing the basic efficacy of drug and the extended effect of the drug carrier. They exhibit unique roles in treatment of resistant cancer via circumventing drug efflux caused by adenosine triphosphate binding cassette (ABC) transporters, eliminating cancer stem cells, destroying mitochondria, initiating apoptosis, regulating autophagy, destroying supply channels, utilizing microenvironment, and silencing genes of the resistant cancer. As the prospect of an estimation, dual-functional drug liposomes would exhibit more strength in their extended function, hence deserving further investigation for clinical validation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Dual-modality imaging of function and physiology

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Iwata, Koji; Wong, Kenneth H.; Wu, Max C.; Da Silva, Angela; Tang, Hamilton R.; Barber, William C.; Hwang, Andrew B.; Sakdinawat, Anne E.

    2002-04-01

    Dual-modality imaging is a technique where computed tomography or magnetic resonance imaging is combined with positron emission tomography or single-photon computed tomography to acquire structural and functional images with an integrated system. The data are acquired during a single procedure with the patient on a table viewed by both detectors to facilitate correlation between the structural and function images. The resulting data can be useful for localization for more specific diagnosis of disease. In addition, the anatomical information can be used to compensate the correlated radionuclide data for physical perturbations such as photon attenuation, scatter radiation, and partial volume errors. Thus, dual-modality imaging provides a priori information that can be used to improve both the visual quality and the quantitative accuracy of the radionuclide images. Dual-modality imaging systems also are being developed for biological research that involves small animals. The small-animal dual-modality systems offer advantages for measurements that currently are performed invasively using autoradiography and tissue sampling. By acquiring the required data noninvasively, dual-modality imaging has the potential to allow serial studies in a single animal, to perform measurements with fewer animals, and to improve the statistical quality of the data.

  17. Monitoring: a dual-function coping style.

    PubMed

    Shiloh, Shoshana; Orgler-Shoob, Michal

    2006-04-01

    Monitoring (Miller, 1991) is defined as a cognitive coping style characterized by the tendency to seek information about threats. This study found that information seeking in stressful situations is perceived by individuals as related to the emotion-focused more than the problem-focused function of coping and that there is considerable variance among individuals in the perceived functions of information seeking and the relationships among information-seeking reactions and their perceived functions. Information-seeking preferences in a natural stressful situation (a final course examination) were predicted by individual differences in perceived functions of information seeking rather than by generalized behavioral coping styles (monitoring). The results were interpreted in relation to the cognitive-affective system theory (Mischel & Shoda, 1995), and implications for the measurement of coping dispositions were discussed.

  18. Colored dual-functional photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Lee, Jae Yong; Xu, Ting; Park, Hui Joon; Guo, L. Jay

    2016-06-01

    In this article, we review our recent efforts on multi-functional photovoltaic (PV) cells that can produce desired reflective, transmissive, or neutral colors, by controlling light interaction with semiconductors and electrode structures in a desired manner. The PV cells integrated with plasmonic color filtering schemes using subwavelength gratings, and other approaches exploiting photonic resonances in an optical nanocavity consisting of highly absorbing semiconductor media are described. For further enhancement of optical and electrical performance characteristics of the multi-functional PV cells, possible difficulties and the outlook for future work are discussed.

  19. Polymeric blends for sensor and actuation dual functionality

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L. (Inventor); Harrison, Joycelyn S. (Inventor); Su, Ji (Inventor); Ounaies, Zoubeida (Inventor)

    2004-01-01

    The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components. The temperature dependence of the piezoelectric response and the mechanical toughness of the dual functional blends are also tailored by the composition adjustment.

  20. Balancing the Dual Functions of Portfolio Assessment

    ERIC Educational Resources Information Center

    Lam, Ricky; Lee, Icy

    2010-01-01

    While research on portfolio assessment (PA) has focused largely on the summative aspects of writing assessment, not much has been done to find out its formative potential. Drawing upon student questionnaires and student and teacher interview data, this paper aims to explore the formative functions of PA and, specifically, how the formative…

  1. Design of the helium cooled lithium lead breeding blanket in CEA: from TBM to DEMO

    NASA Astrophysics Data System (ADS)

    Aiello, G.; Aubert, J.; Forest, L.; Jaboulay, J.-C.; Li Puma, A.; Boccaccini, L. V.

    2017-04-01

    The helium cooled lithium lead (HCLL) blanket concept was originally developed in CEA at the beginning of 2000: it is one of the two European blanket concepts to be tested in ITER in the form of a test blanket module (TBM) and one of the four blanket concepts currently being considered for the DEMOnstration reactor that will follow ITER. The TBM is a highly optimized component for the ITER environment that will provide crucial information for the development of the DEMO blanket, but its design needs to be adapted to the DEMO reactor. With respect to the TBM design, reduction of the steel content in the breeding zone (BZ) is sought in order to maximize tritium breeding reactions. Different options are being studied, with the potential of reaching tritium breeding ratio (TBR) values up to 1.21. At the same time, the design of the back supporting structure (BSS), which is a DEMO specific component that has to support the blanket modules inside the vacuum vessel (VV), is ongoing with the aim of maximizing the shielding power and minimizing pumping power. This implies a re-engineering of the modules’ attachment system. Design changes however, will have an impact on the manufacturing and assembly sequences that are being developed for the HCLL-TBM. Due to the differences in joint configurations, thicknesses to be welded, heat dissipation and the various technical constraints related to the accessibility of the welding tools and implementation of non-destructive examination (NDE), the manufacturing procedure should be adapted and optimized for DEMO design. Laser welding instead of TIG could be an option to reduce distortions. The time-of-flight diffraction (TOFD) technique is being investigated for NDE. Finally, essential information expected from the HCLL-TBM program that will be needed to finalize the DEMO design is discussed.

  2. Bacterial cells carrying synthetic dual-function operon survived starvation.

    PubMed

    Matsumoto, Yuki; Ito, Yoichiro; Tsuru, Saburo; Ying, Bei-Wen; Yomo, Tetsuya

    2011-01-01

    A synthetic dual-function operon with a bistable structure was designed and successfully integrated into the bacterial genome. Bistability was generated by the mutual inhibitory structure comprised of the promoters P(tet) and P(lac) and the repressors LacI and TetR. Dual function essential for cell growth was introduced by replacing the genes (i.e., hisC and leuB) encoding proteins involved in the biosynthesis of histidine and leucine from their native chromosomal locations to the synthetic operon. Both colony formation and population dynamics of the cells carrying this operon showed that the cells survived starvation and the newly formed population transited between the two stable states, representing the induced hisC and leuB levels, in accordance with the nutritional status. The results strongly suggested that the synthetic design of proto-operons sensitive to external perturbations is practical and functional in native cells.

  3. Integrated process and dual-function catalyst for olefin epoxidation

    DOEpatents

    Zhou, Bing; Rueter, Michael

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  4. Dual-Functional Antifogging/Antimicrobial Polymer Coating.

    PubMed

    Zhao, Jie; Ma, Li; Millians, William; Wu, Tiehang; Ming, Weihua

    2016-04-06

    Dual-functional antifogging/antimicrobial polymer coatings were prepared by forming a semi-interpenetrating polymer network (SIPN) of partially quaternized poly(2-(dimethylamino)ethyl methacrylate-co-methyl methacrylate) and polymerized ethylene glycol dimethacrylate network. The excellent antifogging behavior of the smooth coating was mainly attributed to the hydrophilic/hydrophobic balance of the partially quaternized copolymer, while the covalently bonded, hydrophobic quaternary ammonium compound (5 mol % in the copolymer) rendered the coating strongly antimicrobial, as demonstrated by the total kill against both Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli. The antimicrobial action of the SIPN coating was based on contact killing, without leaching of bactericidal species, as revealed by a zone-of-inhibition test. This type of dual-functional coating may find unique applications where both antimicrobial and antifogging properties are desired.

  5. Dual-functional photocatalysis for hydrogen evolution from industrial wastewaters.

    PubMed

    Lin, Zhaoyong; Li, Lihua; Yu, Lili; Li, Weijia; Yang, Guowei

    2017-03-22

    Realization of hydrogen economy requires an environmental and economic method for hydrogen (H2) evolution. Dual-functional photocatalysis, that is, producing H2 from industrial wastewaters, may be the most ideal. However, it seems almost impossible to achieve dual-functional photocatalysis because of the difficulty in the simultaneous existence of photocatalytic pollutant degradation (PDR) and H2 evolution reactions (HER) in one system. All previous designs show that either HER or PDR is inhibited due to the insufficient management of the photo-generated electrons (e(-)) and holes (h(+)). To overcome this issue, we consider that both PDR and HER could be improved simultaneously by employing a suitable photocatalyst whose main active species in PDR are h(+). In this case, e(-) and h(+) can play their own roles in accomplishing HER and PDR, respectively, via the charge spatial separation in the selected photocatalyst. Herein, Cu2O polyhedrons are constructed as a proof-of-concept example. A favorable dual-functional photocatalytic performance is achieved by the Cu2O cubooctahedrons. Furthermore, an appropriate pollutant concentration is significant for the optimization of both HER and PDR performances due to the competition between H atom adsorption and pollutant molecule adsorption on the surfaces of the photocatalyst. This advance provides the H2 evolution technology with a more environmental and economic method.

  6. Dual-Language Education for Low-Income Children: Preliminary Evidence of Benefits for Executive Function

    ERIC Educational Resources Information Center

    Esposito, Alena G.; Baker-Ward, Lynne

    2013-01-01

    This investigation is an initial examination of possible enhancement of executive function through a dual-language (50:50) education model. The ethnically diverse, low-income sample of 120 children from Grades K, 2, and 4 consisted of approximately equal numbers of children enrolled in dual-language and traditional classrooms. Dual-language…

  7. Dual-Language Education for Low-Income Children: Preliminary Evidence of Benefits for Executive Function

    ERIC Educational Resources Information Center

    Esposito, Alena G.; Baker-Ward, Lynne

    2013-01-01

    This investigation is an initial examination of possible enhancement of executive function through a dual-language (50:50) education model. The ethnically diverse, low-income sample of 120 children from Grades K, 2, and 4 consisted of approximately equal numbers of children enrolled in dual-language and traditional classrooms. Dual-language…

  8. Dual-functional electrospun poly(2-hydroxyethyl methacrylate).

    PubMed

    Zhang, Bo; Lalani, Reza; Cheng, Fang; Liu, Qingsheng; Liu, Lingyun

    2011-12-01

    Poly(2-hydroxyethyl methacrylate) (pHEMA) has been widely used in many biomedical applications due to its well-known biocompatibility. For tissue engineering applications, porous scaffolds that mimic fibrous structures of natural extracellular matrix and possess high surface-area-to-volume ratios are highly desirable. So far, a systematic approach to control diameter and morphology of pHEMA fibers has not been reported and potential applications of pHEMA fibers have barely been explored. In this work, pHEMA was synthesized and processed into fibrous scaffolds using an electrospinning approach. Fiber diameters from 270 nm to 3.6 μm were achieved by controlling polymer solution concentration and electrospinning flow rate. Post-electrospinning thermal treatment significantly improves integrity of the electrospun membranes in water. The pHEMA microfibrous membranes exhibited water absorption up to 280% (w/w), whereas the pHEMA hydrogel only absorbed 70% water. Fibrinogen adsorption experiments demonstrate that the electrospun pHEMA fibers highly resist nonspecific protein adsorption. Hydroxyl groups on electrospun pHEMA fibers were further activated for protein immobilization. A bovine serum albumin (BSA) binding capacity as high as 120 mg BSA/g membrane was realized at an intermediate fiber diameter. The pHEMA fibrous scaffolds functionalized with collagen I significantly promoted fibroblast adhesion, spreading, and proliferation. We conclude that the electrospun pHEMA fibers are dual functional, that is, they resist nonspecific protein adsorption meanwhile abundant hydroxyl groups on fibers allow effective conjugation of biomolecules in a nonfouling background. High water absorption and dual functionality of the electrospun pHEMA fibers may lead to a number of potential applications such as wound dressings, tissue scaffolds, and affinity membranes.

  9. Development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/water interaction

    SciTech Connect

    Biney, P.O.

    1993-04-01

    An experimental set-up for accurate measurement of hydrogen generation rate in Lithium-Lead (Li[sub 17]Pb[sub 83]) Steam or water interactions has been designed. The most important features of the design include a pneumatic actuated quick opening and closing high temperature all stainless steel valve used to control the reaction time and the placement of most measuring devices below a water line to minimize leakage of the hydrogen collected. A PC based data acquisition and control system provides remote process sequencing, acquisition and control of all major components of the set-up. Initial tests indicate that the first design objective of maintaining leakproof gas collection chamber has been achieved. Initial pressure tests indicated that the pressure drop over a time span of 30 minutes was within the tolerance of the pressure transducer used to measure the pressure (within 0.690 kPa) at a nominal system pressure of 685 kPa. The experimental system hardware, data acquisition and control programs and data analysis program have been completed, tested and are currently functional.

  10. Electrical/optical dual-function redox potential transistor

    PubMed Central

    Li, Shunpu; Wang, Wensi; Xu, Ju; Chu, Daping; Shen, Z. John; Roy, Saibal

    2013-01-01

    We demonstrate a new type of transistors, the electrical/optical “dual-function redox-potential transistors”, which is solution processable and environmentally stable. This device consists of vertically staked electrodes that act as gate, emitter and collector. It can perform as a normal transistor, whilst one electrode which is sensitised by dye enables to generate photocurrent when illuminated. Solution processable oxide-nanoparticles were used to form various functional layers, which allow an electrolyte to penetrate through and, consequently, the current between emitter and collector can be controlled by the gate potential modulated distribution of ions. The result here shows that the device performs with high ON-current under low driving voltage (<1 V), while the transistor performance can readily be controlled by photo-illumination. Such device with combined optical and electrical functionalities allows single device to perform the tasks that are usually done by a circuit/system with multiple optical and electrical components, and it is promising for various applications. PMID:24310311

  11. Mental Health and Psychological Functioning of Dual-Career Families.

    ERIC Educational Resources Information Center

    Gilbert, Lucia Albino; Rachlin, Vicki

    1987-01-01

    Identifies key issues in the psychosocial development of women and men that are important to understanding dual-career marriages. Describes life as a dual career family considering rewards, sources of stress, and factors that promote effective coping. Addresses pertinent metaissues--concepts of equity and the nature of society. Offers…

  12. An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy

    PubMed Central

    Chen, Yichao; Xia, Rui; Huang, Yixian; Zhao, Wenchen; Li, Jiang; Zhang, Xiaolan; Wang, Pengcheng; Venkataramanan, Raman; Fan, Jie; Xie, Wen; Ma, Xiaochao; Lu, Binfeng; Li, Song

    2016-01-01

    Immunochemotherapy combines a chemotherapeutic agent with an immune-modulating agent and represents an attractive approach to improve cancer therapy. However, the success of immunochemotherapy is hampered by the lack of a strategy to effectively co-deliver the two therapeutics to the tumours. Here we report the development of a dual-functional, immunostimulatory nanomicellar carrier that is based on a prodrug conjugate of PEG with NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor currently used for reversing tumour immune suppression. An Fmoc group, an effective drug-interactive motif, is also introduced into the carrier to improve the drug loading capacity and formulation stability. We show that PEG2k-Fmoc-NLG alone is effective in enhancing T-cell immune responses and exhibits significant antitumour activity in vivo. More importantly, systemic delivery of paclitaxel (PTX) using the PEG2k-Fmoc-NLG nanocarrier leads to a significantly improved antitumour response in both breast cancer and melanoma mouse models. PMID:27819653

  13. Analysis of molecular and (di)atomic dual-descriptor functions and matrices.

    PubMed

    Alcoba, Diego R; Oña, Ofelia B; Torre, Alicia; Lain, Luis; Bultinck, Patrick

    2017-06-01

    In this work, the dual-descriptor is studied in matrix form [Formula: see text] and both coordinates condensed to atoms, resulting in atomic and diatomic (or where applicable, bond) condensed single values. This double partitioning method of the dual-descriptor matrix is proposed within the Hirshfeld-I atoms-in-molecule framework although it is easily extended to other atoms-in-molecules methods. Diagonalizing the resulting atomic and bond dual-descriptor matrices gives eigenvalues and eigenvectors describing the reactivity of atoms and bonds. The dual-descriptor function is the diagonal element of the underlying matrix. The extra information contained in the atom and bond resolution is highlighted and the effect of choosing either the fragment of molecular response or response of molecular fragment approach is quantified. Graphical Abstract Atom and bond condensed dual descriptor matrices and functions are derived from molecular ones using Hirshfeld-I atoms in molecules weight functions.

  14. Transport properties of lithium- lead-vanadium-telluride glass and glass ceramics

    SciTech Connect

    Sathish, M.; Eraiah, B.

    2014-04-24

    Glasses with the chemical composition 35Li{sub 2}O-(45-x)V{sub 2}O{sub 5−}20PbO-xTeO{sub 2} (where x = 2.5, 5, 7.5, 10, 15 mol %) have prepared by conventional melt quenching method. The electrical conductivity of Li{sup +} ion conducting lead vanadium telluride glass samples has been carried out both as a function of temperature and frequency in the temperature range 503K-563K and over frequencies 40 Hz to 10 MHz. The electronic conduction has been observed in the present systems. When these samples annealed around 400°C for 2hour become the glass ceramic, which also shows increase tendency of conductivity. SEM confines glass and glass ceramic nature of the prepared samples.

  15. Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications

    NASA Astrophysics Data System (ADS)

    Deopa, Nisha; Rao, A. S.

    2017-10-01

    Photoluminescence (PL) characterization of Lithium Lead Alumino Borate (LiPbAlB) glasses doped with Sm3+ ions at varying concentrations have been studied by using absorption, excitation, emission, time resolved and confocal image measurements. From the absorption spectra, Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ion doped LiPbAlB glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2, for which the emission cross-sections and branching ratios were evaluated to know the potentialities of these materials as visible luminescent devices. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition level were used to estimate quantum efficiency of the as-prepared glasses. The non-exponential decay curves observed for higher Sm3+ ion concentrations were well fitted to Inokuti-Hirayama model to understand the predominant energy transfer mechanism involved in the as-prepared glasses. CIE chromaticity coordinates and correlated color temperatures (CCT) were evaluated to understand the utility of the titled glasses in cool white light generation. The confocal images captured under 405 nm CW laser excitation show intense reddish-orange color. From the evaluated radiative parameters, emission cross-sections, quantum efficiency, CIE co-ordinates, CCT temperatures and confocal images, it was observed that LiPbAlB glass with 0.5 mol% Sm3+ ions are more suitable for w-LEDs and reddish-orange luminescent device applications.

  16. Thermal comfort properties of cotton and nonwoven surgical gowns with dual functional finish.

    PubMed

    Cho, J S; Tanabe, S; Cho, G

    1997-05-01

    The purpose of this study was to evaluate thermal comfort properties of surgical gowns made of dual functional finish cotton and nonwoven fabrics which have barrier properties of blood and micro-organism. Four types of surgical gowns, which were made of nonwoven fabrics with finish or without and were made of cotton with finish or without, were tested. The thermal insulations of four surgical gowns were measured with thermal manikin. Subjective experiments on thermal comfort, skin temperature and clothing microclimate were conducted. Six male subjects, between 26 and 28 years age old, participated in the wear trials tests. Typical activities for surgeons in the operation theater were simulated during the experimental sessions. Air temperature in a climate chamber was kept at 22 degrees C and its humidity was 60% RH. Air velocity was controlled at less than 0.15 m/s. Inner radiant temperature was almost equal to the air temperature. Basic thermal insulation of the dual functional finished nonwoven surgical gown was 0.87 clo, which was slightly higher than that of untreated (0.84 clo). However, the skin temperature of the subject wearing a dual functional finished surgical gown was significantly lower at P < .05. When the subject wears the dual functional finished gown, the amount of sweating was less than that when wearing untreated. Microclimate temperature and humidity of dual functional finished surgical gown were lower than untreated and it was statistically significant. There was no significant difference in subjective humid and overall comfort sensation between finished and untreated ones. Thermal sensation of dual functional finished one was significantly different from untreated one only during the first exercise. The results of this study indicate that the dual functional finish surgical gown allowed heat to be transferred from the skin of subject to the atmosphere better than untreated. The nonwoven surgical gown showed no difference in comfort properties

  17. The Role of Control Functions in Mentalizing: Dual-Task Studies of Theory of Mind and Executive Function

    ERIC Educational Resources Information Center

    Bull, Rebecca; Phillips, Louise H.; Conway, Claire A.

    2008-01-01

    Conflicting evidence has arisen from correlational studies regarding the role of executive control functions in Theory of Mind. The current study used dual-task manipulations of executive functions (inhibition, updating and switching) to investigate the role of these control functions in mental state and non-mental state tasks. The "Eyes"…

  18. Dual Use of Bladder Anticholinergics and Cholinesterase Inhibitors: Long-Term Functional and Cognitive Outcomes

    PubMed Central

    Sink, Kaycee M.; Thomas, Joseph; Xu, Huiping; Craig, Bruce; Kritchevsky, Steven; Sands, Laura P.

    2015-01-01

    OBJECTIVES To determine the cognitive and functional consequences of dual use of cholinesterase inhibitors (ChIs) and the bladder anticholinergics oxybutynin or tolterodine. DESIGN Prospective cohort study. SETTING Nursing homes (NHs) in the state of Indiana. PARTICIPANTS Three thousand five hundred thirty-six Medicaid-eligible NH residents aged 65 and older taking a ChI between January 1, 2003, and December 31, 2004. Residents were excluded if they were taking an anticholinergic other than oxybutynin or tolterodine. MEASUREMENTS Indiana Medicaid claims data were merged with data from the Minimum Data Set (MDS). Repeated-measures analyses were performed to assess the effects of dual therapy on change in cognitive function measured using the MDS Cognition Scale (MDS-COGS; scored 0–10) and change in activity of daily living (ADL) function using the seven ADL items in the MDS (scored 0–28). Potential covariates included age, sex, race, number of medications, and Charlson Comorbidity Index score. RESULTS Three hundred seventy-six (10.6%) residents were prescribed oxybutynin or tolterodine concomitantly with a ChI. In residents in the top quartile of ADL function, ADL function declined an average of 1.08 points per quarter when not taking bladder anticholinergics (ChI alone), compared with 1.62 points per quarter when taking dual therapy, a 50% greater rate in quarterly decline in ADL function (P =.01). There was no excess decline attributable to dual therapy in MDS-COGS scores or in ADL function for residents who started out with lower functioning. CONCLUSION In higher-functioning NH residents, dual use of ChIs and bladder anticholinergics may result in greater rates of functional decline than use of ChIs alone. The MDS-COGS may not be sensitive enough to detect differences in cognition due to dual use. PMID:18384584

  19. Functional mathematical model of dual pathway AV nodal conduction.

    PubMed

    Climent, A M; Guillem, M S; Zhang, Y; Millet, J; Mazgalev, T N

    2011-04-01

    Dual atrioventricular (AV) nodal pathway physiology is described as two different wave fronts that propagate from the atria to the His bundle: one with a longer effective refractory period [fast pathway (FP)] and a second with a shorter effective refractory period [slow pathway (SP)]. By using His electrogram alternance, we have developed a mathematical model of AV conduction that incorporates dual AV nodal pathway physiology. Experiments were performed on five rabbit atrial-AV nodal preparations to develop and test the presented model. His electrogram alternances from the inferior margin of the His bundle were used to identify fast and slow wave front propagations. The ability to predict AV conduction time and the interaction between FP and SP wave fronts have been analyzed during regular and irregular atrial rhythms (e.g., atrial fibrillation). In addition, the role of dual AV nodal pathway wave fronts in the generation of Wenckebach periodicities has been illustrated. Finally, AV node ablative modifications have been evaluated. The model accurately reproduced interactions between FP and SP during regular and irregular atrial pacing protocols. In all experiments, specificity and sensitivity higher than 85% were obtained in the prediction of the pathway responsible for conduction. It has been shown that, during atrial fibrillation, the SP ablation significantly increased the mean HH interval (204 ± 39 vs. 274 ± 50 ms, P < 0.05), whereas FP ablation did not produce significant slowing of ventricular rate. The presented mathematical model can help in understanding some of the intriguing AV node mechanisms and should be considered as a step forward in the studies of AV nodal conduction.

  20. Polynomial dual energy inverse functions for bone Calcium/Phosphorus ratio determination and experimental evaluation.

    PubMed

    Sotiropoulou, P; Fountos, G; Martini, N; Koukou, V; Michail, C; Kandarakis, I; Nikiforidis, G

    2016-12-01

    An X-ray dual energy (XRDE) method was examined, using polynomial nonlinear approximation of inverse functions for the determination of the bone Calcium-to-Phosphorus (Ca/P) mass ratio. Inverse fitting functions with the least-squares estimation were used, to determine calcium and phosphate thicknesses. The method was verified by measuring test bone phantoms with a dedicated dual energy system and compared with previously published dual energy data. The accuracy in the determination of the calcium and phosphate thicknesses improved with the polynomial nonlinear inverse function method, introduced in this work, (ranged from 1.4% to 6.2%), compared to the corresponding linear inverse function method (ranged from 1.4% to 19.5%).

  1. Embedding dual function into molecular motors through collective motion

    PubMed Central

    Saito, Nen; Kaneko, Kunihiko

    2017-01-01

    Protein motors, such as kinesins and dyneins, bind to a microtubule and travel along it in a specific direction. Previously, it was thought that the directionality for a given motor was constant in the absence of an external force. However, the directionality of the kinesin-5 Cin8 was recently found to change as the number of motors that bind to the same microtubule is increased. Here, we introduce a simple mechanical model of a microtubule-sliding assay in which multiple motors interact with the filament. We show that, due to the collective phenomenon, the directionality of the motor changes (e.g., from minus- to plus- end directionality), depending on the number of motors. This is induced by a large diffusive component in the directional walk and by the subsequent frustrated motor configuration, in which multiple motors pull the filament in opposite directions, similar to a game of tug-of-war. A possible role of the dual-directional motors for the mitotic spindle formation is also discussed. Our framework provides a general mechanism to embed two conflicting tasks into a single molecular machine, which works context-dependently. PMID:28281683

  2. Embedding dual function into molecular motors through collective motion.

    PubMed

    Saito, Nen; Kaneko, Kunihiko

    2017-03-10

    Protein motors, such as kinesins and dyneins, bind to a microtubule and travel along it in a specific direction. Previously, it was thought that the directionality for a given motor was constant in the absence of an external force. However, the directionality of the kinesin-5 Cin8 was recently found to change as the number of motors that bind to the same microtubule is increased. Here, we introduce a simple mechanical model of a microtubule-sliding assay in which multiple motors interact with the filament. We show that, due to the collective phenomenon, the directionality of the motor changes (e.g., from minus- to plus- end directionality), depending on the number of motors. This is induced by a large diffusive component in the directional walk and by the subsequent frustrated motor configuration, in which multiple motors pull the filament in opposite directions, similar to a game of tug-of-war. A possible role of the dual-directional motors for the mitotic spindle formation is also discussed. Our framework provides a general mechanism to embed two conflicting tasks into a single molecular machine, which works context-dependently.

  3. TRICHLOROETHYLENE SORPTION AND OXIDATION USING A DUAL FUNCTION SORBENT/CATALYST IN A FALLING FURNACE REACTOR

    EPA Science Inventory

    A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...

  4. TRICHLOROETHYLENE SORPTION AND OXIDATION USING A DUAL FUNCTION SORBENT/CATALYST IN A FALLING FURNACE REACTOR

    EPA Science Inventory

    A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...

  5. The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.

    PubMed

    Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ron; Emsell, Louise; Amant, Frederic; Sunaert, Stefan

    2013-09-01

    Insight into the neural architecture of multitasking is crucial when investigating the pathophysiology of multitasking deficits in clinical populations. Presently, little is known about how the brain combines dual-tasking with a concurrent short-term memory task, despite the relevance of this mental operation in daily life and the frequency of complaints related to this process, in disease. In this study we aimed to examine how the brain responds when a memory task is added to dual-tasking. Thirty-three right-handed healthy volunteers (20 females, mean age 39.9 ± 5.8) were examined with functional brain imaging (fMRI). The paradigm consisted of two cross-modal single tasks (a visual and auditory temporal same-different task with short delay), a dual-task combining both single tasks simultaneously and a multi-task condition, combining the dual-task with an additional short-term memory task (temporal same-different visual task with long delay). Dual-tasking compared to both individual visual and auditory single tasks activated a predominantly right-sided fronto-parietal network and the cerebellum. When adding the additional short-term memory task, a larger and more bilateral frontoparietal network was recruited. We found enhanced activity during multitasking in components of the network that were already involved in dual-tasking, suggesting increased working memory demands, as well as recruitment of multitask-specific components including areas that are likely to be involved in online holding of visual stimuli in short-term memory such as occipito-temporal cortex. These results confirm concurrent neural processing of a visual short-term memory task during dual-tasking and provide evidence for an effective fMRI multitasking paradigm.

  6. Dual Functions of Perirhinal Cortex in Fear Conditioning

    PubMed Central

    Kent, Brianne A.; Brown, Thomas H.

    2012-01-01

    The present review examines the role of perirhinal cortex (PRC) in Pavlovian fear conditioning. The focus is on rats, partly because so much is known, behaviorally and neurobiologically, about fear conditioning in these animals. In addition, the neuroanatomy and neurophysiology of rat PRC have been described in considerable detail at the cellular and systems levels. The evidence suggests that PRC can serve at least two types of mnemonic functions in Pavlovian fear conditioning. The first function, termed "stimulus unitization," refers to the ability to treat two or more separate items or stimulus elements as a single entity. Supporting evidence for this perceptual function comes from studies of context conditioning as well as delay conditioning to discontinuous auditory cues. In a delay paradigm, the conditional stimulus (CS) and unconditional stimulus (US) overlap temporally and co-terminate. The second PRC function entails a type of "transient memory." Supporting evidence comes from studies of trace cue conditioning, where there is a temporal gap or trace interval between the CS offset and the US onset. For learning to occur, there must be a transient CS representation during the trace interval. We advance a novel neurophysiological mechanism for this transient representation. These two hypothesized functions of PRC are consistent with inferences based on non-aversive forms of learning. PMID:22903623

  7. Dual functions of perirhinal cortex in fear conditioning.

    PubMed

    Kent, Brianne A; Brown, Thomas H

    2012-10-01

    The present review examines the role of perirhinal cortex (PRC) in Pavlovian fear conditioning. The focus is on rats, partly because so much is known, behaviorally and neurobiologically, about fear conditioning in these animals. In addition, the neuroanatomy and neurophysiology of rat PRC have been described in considerable detail at the cellular and systems levels. The evidence suggests that PRC can serve at least two types of mnemonic functions in Pavlovian fear conditioning. The first function, termed "stimulus unitization," refers to the ability to treat two or more separate items or stimulus elements as a single entity. Supporting evidence for this perceptual function comes from studies of context conditioning as well as delay conditioning to discontinuous auditory cues. In a delay paradigm, the conditional stimulus (CS) and unconditional stimulus (US) overlap temporally and co-terminate. The second PRC function entails a type of "transient memory." Supporting evidence comes from studies of trace cue conditioning, where there is a temporal gap or trace interval between the CS offset and the US onset. For learning to occur, there must be a transient CS representation during the trace interval. We advance a novel neurophysiological mechanism for this transient representation. These two hypothesized functions of PRC are consistent with inferences based on non-aversive forms of learning.

  8. Dual-mode Imaging of Cutaneous Tissue Oxygenation and Vascular Function

    PubMed Central

    Xu, Ronald X.; Huang, Kun; Qin, Ruogu; Huang, Jiwei; Xu, Jeff S.; Ding, Liya; Gnyawali, Urmila S.; Gordillo, Gayle M.; Gnyawali, Surya C.; Sen, Chandan K.

    2010-01-01

    Accurate assessment of cutaneous tissue oxygenation and vascular function is important for appropriate detection, staging, and treatment of many health disorders such as chronic wounds. We report the development of a dual-mode imaging system for non-invasive and non-contact imaging of cutaneous tissue oxygenation and vascular function. The imaging system integrated an infrared camera, a CCD camera, a liquid crystal tunable filter and a high intensity fiber light source. A Labview interface was programmed for equipment control, synchronization, image acquisition, processing, and visualization. Multispectral images captured by the CCD camera were used to reconstruct the tissue oxygenation map. Dynamic thermographic images captured by the infrared camera were used to reconstruct the vascular function map. Cutaneous tissue oxygenation and vascular function images were co-registered through fiduciary markers. The performance characteristics of the dual-mode image system were tested in humans. PMID:21178967

  9. Dual frequency electrical impedance tomography to obtain functional image

    NASA Astrophysics Data System (ADS)

    Sapuan, Imam; Ain, Khusnul; Suryanto, Alif

    2017-05-01

    Electric Impedance Tomography with two frequencies is a system to detect the anomalies. This system is expected to detect the presence of a cancer in the breast. In this study, the objects are modelled in a circle phantom within 13 cm diameter. Those objects are equipped with 16 electrodes of copperplate. The objects, carrots, are functioned as a cancer and water as a medium of the normal breast. This electrode works to inject the current and to measure the voltage at a certain point. The position of the electrode current injection is controlled by a de-multiplexer, whereas the measurement of voltage at the electrodes is controlled by a multiplexer. The electric current source utilized has two frequencies; 10 kHz and 100 kHz. This electric current is generated from a circuit of Voltage Controlled Current Source using an oscillator XR2206. The microcontroller is utilized to control the current injection through a de-multiplexer and the measurement of output voltage through a multiplexer. This research has produced three images. Two images are obtained from both frequencies of 10 kHz and 100 kHz. Those two images cannot be achieved in the reality. The object condition of normal breast cannot be measured, since the normal breast of a person is different from others. In this study, the two images can be obtained when the potential background of the phantom can be measured. The third image is obtained from the reconstruction of the electrical potential difference between the low and high frequencies. This image is called as a functional image. This functional image makes the EIT system can be implemented, since it can be obtained without measuring the potential background. This functional image reveals that the anomalies are more obvious than the single frequency image.

  10. Redox-Neutral Dual Functionalization of Electron-Deficient Alkenes.

    PubMed

    Pettersson, Fredrik; Bergonzini, Giulia; Cassani, Carlo; Wallentin, Carl-Johan

    2017-06-01

    Visible-light photoredox catalysis has been utilized in a new multicomponent reaction forming β-functionalized δ-diketones under mild conditions in an operationally convenient manner. Single-electron reduction of in situ generated carboxylic acid derivatives forms acyl radicals that react further via 1,2-acylalkylation of olefins in an intermolecular, three-components cascade reaction, giving valuable synthetic entities from readily available starting materials. A diverse set of substrates has been used, demonstrating robust methodology with broad substrate scope. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Redox‐Neutral Dual Functionalization of Electron‐Deficient Alkenes

    PubMed Central

    Pettersson, Fredrik; Bergonzini, Giulia; Cassani, Carlo

    2017-01-01

    Abstract Visible‐light photoredox catalysis has been utilized in a new multicomponent reaction forming β‐functionalized δ‐diketones under mild conditions in an operationally convenient manner. Single‐electron reduction of in situ generated carboxylic acid derivatives forms acyl radicals that react further via 1,2‐acylalkylation of olefins in an intermolecular, three‐components cascade reaction, giving valuable synthetic entities from readily available starting materials. A diverse set of substrates has been used, demonstrating robust methodology with broad substrate scope. PMID:28402066

  12. Dual function of the selenoprotein PHGPx during sperm maturation.

    PubMed

    Ursini, F; Heim, S; Kiess, M; Maiorino, M; Roveri, A; Wissing, J; Flohé, L

    1999-08-27

    The selenoprotein phospholipid hydroperoxide glutathione peroxidase (PHGPx) changes its physical characteristics and biological functions during sperm maturation. PHGPx exists as a soluble peroxidase in spermatids but persists in mature spermatozoa as an enzymatically inactive, oxidatively cross-linked, insoluble protein. In the midpiece of mature spermatozoa, PHGPx protein represents at least 50 percent of the capsule material that embeds the helix of mitochondria. The role of PHGPx as a structural protein may explain the mechanical instability of the mitochondrial midpiece that is observed in selenium deficiency.

  13. Dual-functional ROMP-based betaines: effect of hydrophilicity and backbone structure on nonfouling properties.

    PubMed

    Colak, Semra; Tew, Gregory N

    2012-01-10

    Foundational materials for nonfouling coatings were designed and synthesized from a series of novel dual-functional zwitterionic polymers, Poly[NRZI], which were easily obtained via ring-opening metathesis polymerization (ROMP) followed by a single step transformation of the cationic precursor, Poly[NR(+)], to the zwitterion, Poly[NRZI]. The resulting unique dual-functional structure contained the anion and the cation within the same repeat unit but on separate side chains, enabling the hydrophilicity of the system to be tuned at the repeat unit level. These dual-functional zwitterionic polymers were specifically designed to investigate the impact of structural changes, including the backbone, hydrophilicity, and charge, on the overall nonfouling properties. To evaluate the importance of backbone structure, and as a direct comparison to previously studied methacrylate-based betaines, norbornene-based carbo- and sulfobetaines (Poly[NCarboZI] and Poly[NSulfoZI]) as well as a methacrylate-based sulfobetaine (Poly[MASulfoZI]) were synthesized. These structures contain the anion-cation pairs on the same side chain. Nonfouling coatings were prepared from copolymers, composed of the zwitterionic/cationic precursor monomer and an ethoxysilane-containing monomer. The coatings were evaluated by using protein adsorption studies, which clearly indicated that the overall hydrophilicity has a major influence on the nonfouling character of the materials. The most hydrophilic coating, from the oligoethylene glycol (OEG)-containing dual-functional betaine, Poly[NOEGZI-co-NSi], showed the best resistance to nonspecific protein adsorption (Γ(FIB) = 0.039 ng/mm(2)). Both norbornene-based polymers systems, Poly[NSulfoZI] and Poly[NCarboZI], were more hydrophilic and thus more resistant to protein adsorption than the methacrylate-based Poly[MASulfoZI]. Comparing the protein resistance of the dual-functional zwitterionic coatings, Poly[NRZI-co-NSi], to that of their cationic

  14. Potential Benefits of Exergaming for Cognition and Dual-Task Function in Older Adults: A Systematic Review.

    PubMed

    Ogawa, Elisa F; You, Tongjian; Leveille, Suzanne G

    2016-04-01

    This paper provides a systematic review of current research findings using exergaming as a treatment for improving cognition and dual-task function in older adults. A literature search was conducted to collect exergaming intervention studies that were either randomized controlled or uncontrolled studies. Of the seven identified studies (five randomized controlled studies and two uncontrolled studies), three studies focused on cognitive function alone, two studies focused on dual-task function alone, and two studies measured both cognitive function and dual-task function. Current evidence supports that exergaming improves cognitive function and dual-task function, which potentially leads to fall prevention. However, it is unclear whether exergaming, which involves both cognitive input and physical exercise, has additional benefits compared with traditional physical exercise alone. Further studies should include traditional exercise as a control group to identify these potential, additional benefits.

  15. Development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/water interaction. Technical status progress report, October 1, 1991--March 15, 1993

    SciTech Connect

    Biney, P.O.

    1993-04-01

    An experimental set-up for accurate measurement of hydrogen generation rate in Lithium-Lead (Li{sub 17}Pb{sub 83}) Steam or water interactions has been designed. The most important features of the design include a pneumatic actuated quick opening and closing high temperature all stainless steel valve used to control the reaction time and the placement of most measuring devices below a water line to minimize leakage of the hydrogen collected. A PC based data acquisition and control system provides remote process sequencing, acquisition and control of all major components of the set-up. Initial tests indicate that the first design objective of maintaining leakproof gas collection chamber has been achieved. Initial pressure tests indicated that the pressure drop over a time span of 30 minutes was within the tolerance of the pressure transducer used to measure the pressure (within 0.690 kPa) at a nominal system pressure of 685 kPa. The experimental system hardware, data acquisition and control programs and data analysis program have been completed, tested and are currently functional.

  16. Dual Function of Sox1 in Telencephalic Progenitor Cells

    PubMed Central

    Kan, Lixin; Jalali, Ali; Zhao, Li-Ru; Zhou, Xiaojing; McGuire, Tammy; Kazanis, Ilias; Episkopou, Vasso; Bassuk, Alexander G.; Kessler, John A.

    2012-01-01

    The transcription factor, Sox1 has been implicated in the maintenance of neural progenitor cell status, but accumulating evidence suggests that this is only part of its function. This study examined the role of Sox1 expression in proliferation, lineage commitment, and differentiation by telencephalic neural progenitor cells in vitro and in vivo, and further clarified the pattern of Sox1 expression in postnatal and adult mouse brain. Telencephalic neural progenitor cells isolated from Sox1 null embryos formed neurospheres normally, but were specifically deficient in neuronal differentiation. Conversely, overexpression of Sox1 in the embryonic telencephalon in vivo both expanded the progenitor pool and biased neural progenitor cells towards neuronal lineage commitment. Sox1 mRNA and protein were found to be persistently expressed in the postnatal and adult brain in both differentiated and neurogenic regions. Importantly, in differentiated regions Sox1 co-labeled only with neuronal markers. These observations, coupled with previous studies, suggest that Sox1 expression by early embryonic progenitor cells initially helps to maintain the cells in cell cycle, but that continued expression subsequently promotes neuronal lineage commitment. PMID:17719572

  17. Dual functional AuNRs@MnMEIOs nanoclusters for magnetic resonance imaging and photothermal therapy.

    PubMed

    Chuang, Yao-Chen; Lin, Chia-Jung; Lo, Shih-Feng; Wang, Jei-Lin; Tzou, Shey-Cherng; Yuan, Shyng-Shiou; Wang, Yun-Ming

    2014-05-01

    A novel dual functional theranosis platform is developed based on manganese magnetism-engineered iron oxide (MnMEIO) and gold nanorods (AuNRs) to combine magnetic resonance (MR) imaging and photothermal therapy in one nanocluster. The platform showed improved T2-weighted MR imaging and exhibited a near-infrared (NIR) induced temperature elevation due to the unique characteristics of AuNRs@MnMEIOs nanoclusters. The obtained dual functional spherical-shaped nanoclusters showed low cytotoxicity, and high cellular uptake efficiency. The AuNRs@MnMEIOs nanoclusters also demonstrated a 1.9 and 2.2 folds r2 relaxivity value higher than those of monodispersed MnMEIO and Resovist. In addition, in vivo MR imaging study found that the contrast enhancements were - 70.4 ± 4.3% versus - 7.5 ± 3.0% in Her-2/neu overexpression tumors as compared to the control tumors. More importantly, NIR laser irradiation to the tumor site resulted in outstanding photothermal therapeutic efficacy and without damage to the surrounding tissue. In additional, the prepared dual functional AuNRs@MnMEIOs display high stability and furthermore disperse even in the presence of external magnet, showing that AuNRs@MnMEIOs nanoclusters can be manipulated by an external magnetic field. Therefore, such nanoclusters combined MR imaging and photothermal therapeutic functionality can be developed as a promising nanosystem for effective cancer diagnosis and therapy.

  18. Development of a Dual-Functional Hydrogel Using RGD and Anti-VEGF Aptamer.

    PubMed

    Zhao, Nan; Battig, Mark R; Xu, Ming; Wang, Xiuli; Xiong, Na; Wang, Yong

    2017-08-15

    Synthetic molecular libraries hold great potential to advance the biomaterial development. However, little effort is made to integrate molecules with molecular recognition abilities selected from different libraries into a single biomolecular material. The purpose of this work is to incorporate peptides and nucleic acid aptamers into a porous hydrogel to develop a dual-functional biomaterial. The data show that an anti-integrin peptide can promote the attachment and growth of endothelial cells in a 3D porous poly(ethylene glycol) hydrogel and an antivascular endothelial growth factor aptamer can sequester and release VEGF of high bioactivity. Importantly, the dual-functional porous hydrogel enhances the growth and survival of endothelial cells. This work demonstrates that molecules selected from different synthetic libraries can be integrated into one system for the development of novel biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Switching between Anion-Binding Catalysis and Aminocatalysis with a Rotaxane Dual-Function Catalyst.

    PubMed

    Eichstaedt, Katarzyna; Jaramillo-Garcia, Javier; Leigh, David A; Marcos, Vanesa; Pisano, Simone; Singleton, Thomas A

    2017-07-12

    The "off" state for aminocatalysis by a switchable [2]rotaxane is shown to correspond to an "on" state for anion-binding catalysis. Conversely, the aminocatalysis "on" state of the dual-function rotaxane is inactive in anion-binding catalysis. Switching between the different states is achieved through the stimuli-induced change of position of the macrocycle on the rotaxane thread. The anion-binding catalysis results from a pair of triazolium groups that act together to CH-hydrogen-bond to halide anions when the macrocycle is located on an alternative (ammonium) binding site, stabilizing the in situ generation of benzhydryl cation and oxonium ion intermediates from activated alkyl halides. The aminocatalysis and anion-binding catalysis sites of the dual-function rotaxane catalyst can be sequentially concealed or revealed, enabling catalysis of both steps of a tandem reaction process.

  20. Dual representation for the generating functional of the Feynman path-integral

    NASA Astrophysics Data System (ADS)

    Matone, Marco

    2016-09-01

    The generating functional for scalar theories admits a representation which is dual with respect to the one introduced by Schwinger, interchanging the role of the free and interacting terms. It maps ∫ V (δJ) and JΔJ to δϕc Δδϕc and ∫ V (ϕc), respectively, with ϕc = ∫ JΔ and Δ the Feynman propagator. Comparing the Schwinger representation with its dual version one gets a little known relation that we prove to be a particular case of a more general operatorial relation. We then derive a new representation of the generating functional T [ϕc ] = W [ J ] expressed in terms of covariant derivatives acting on 1

  1. Fast Fabrication of Flexible Functional Circuits Based on Liquid Metal Dual-Trans Printing.

    PubMed

    Wang, Qian; Yu, Yang; Yang, Jun; Liu, Jing

    2015-11-25

    A dual-trans method to print the first functional liquid-metal circuit layout on poly(vinyl chloride) film, and then transfer it into a poly(dimethylsiloxane) substrate through freeze phase transition processing for the fabrication of a flexible electronic device. A programmable soft electronic band and a temperature-sensing module wirelessly communicate with a mobile phone, demonstrating the efficiency and capability of the method. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structure, function and translational relevance of aquaporin dual water and ion channels

    PubMed Central

    Yool, Andrea J; Campbell, Ewan M

    2012-01-01

    Aquaporins have been assumed to be selective for water alone, and aquaglyceroporins are accepted as carrying water and small uncharged solutes including glycerol. This review presents an expanded view of aquaporins as channels with more complex mechanisms of regulation and diverse repertoires of substrate permeabilities than were originally appreciated in the early establishment of the field. The role of aquaporins as dual water and gated ion channels is likely to have physiological and potentially translational relevance, and can be evaluated with newly developed molecular and pharmacological tools. Ion channel activity has been shown for Aquaporins -0, -1, and -6, Drosphila Big Brain, and plant Nodulin-26. Although the concept of ion channel function in aquaporins remains controversial, research advances are beginning to define not only the ion channel function but also the detailed molecular mechanisms that govern and mediate the multifunctional capabilities. With regard to physiological relevance, the adaptive benefit of expression of ion channel activity in aquaporins, implied by amino acid sequence conservation of the ion channel gating domains, suggests they provide more than water or glycerol and solute transport. Dual ion and water channels are of interest for understanding the modulation of transmembrane fluid gradients, volume regulation, and possible signal transduction in tissues expressing classes of aquaporins that have the dual function capability. Other aquaporin classes might be found in future work to have ion channel activities, pending identification of the possible signaling pathways that could govern activation. PMID:22342689

  3. Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan.

    PubMed

    Wang, Jianglin; Hu, Wei; Liu, Qun; Zhang, Shengmin

    2011-07-01

    Heparinized biomaterials exhibit great anticoagulant properties. However, they promote proliferation of Staphylococcus aureus (S. aureus) and therefore cause infection within the bloodstream upon implantation in vivo. In the present study, an interesting dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan was synthesized. First, heparin was grafted onto the silk fibroin by covalent immobilization with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS). All data gathered from Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and elemental analysis (EA) indicated that the heparin was successfully immobilized onto the silk fibroin. The dual-functional composite of heparinized silk fibroin and chitosan was then fabricated by a blending method. The anticoagulant activity of the heparinized materials was evaluated using the prothrombin time (PT), activated partial thromboplastin time (APTT) and thrombin time (TT). The results showed that both heparinized silk fibroin and the composite material exhibited better hemocompatibility in comparison with single silk fibroin or chitosan. The antibacterial property of the materials was investigated by the pour-plate method. Results further suggested that the composite antibacterial property with respect to S. aureus was significantly enhanced. The dual-functionality of the composite material may supply a potential choice in blood contact devices.

  4. Production Functions for Water Delivery Systems: Analysis and Estimation Using Dual Cost Function and Implicit Price Specifications

    NASA Astrophysics Data System (ADS)

    Teeples, Ronald; Glyer, David

    1987-05-01

    Both policy and technical analysis of water delivery systems have been based on cost functions that are inconsistent with or are incomplete representations of the neoclassical production functions of economics. We present a full-featured production function model of water delivery which can be estimated from a multiproduct, dual cost function. The model features implicit prices for own-water inputs and is implemented as a jointly estimated system of input share equations and a translog cost function. Likelihood ratio tests are performed showing that a minimally constrained, full-featured production function is a necessary specification of the water delivery operations in our sample. This, plus the model's highly efficient and economically correct parameter estimates, confirms the usefulness of a production function approach to modeling the economic activities of water delivery systems.

  5. Multi-functional angiographic OFDI using frequency-multiplexed dual-beam illumination

    PubMed Central

    Kim, SunHee; Park, Taejin; Jang, Sun-Joo; Nam, Ahhyun S.; Vakoc, Benjamin J.; Oh, Wang-Yuhl

    2015-01-01

    Detection of blood flow inside the tissue sample can be achieved by measuring the local change of complex signal over time in angiographic optical coherence tomography (OCT). In conventional angiographic OCT, the transverse displacement of the imaging beam during the time interval between a pair of OCT signal measurements must be significantly reduced to minimize the noise due to the beam scanning-induced phase decorrelation at the expense of the imaging speed. Recent introduction of dual-beam scan method either using polarization encoding or two identical imaging systems in spectral-domain (SD) OCT scheme shows potential for high-sensitivity vasculature imaging without suffering from spurious phase noise caused by the beam scanning-induced spatial decorrelation. In this paper, we present multi-functional angiographic optical frequency domain imaging (OFDI) using frequency-multiplexed dual-beam illumination. This frequency multiplexing scheme, utilizing unique features of OFDI, provides spatially separated dual imaging beams occupying distinct electrical frequency bands that can be demultiplexed in the frequency domain processing. We demonstrate the 3D multi-functional imaging of the normal mouse skin in the dorsal skin fold chamber visualizing distinct layer structures from the intensity imaging, information about mechanical integrity from the polarization-sensitive imaging, and depth-resolved microvasculature from the angiographic imaging that are simultaneously acquired and automatically co-registered. PMID:25968731

  6. Accessing Elaborated 2,1-Borazaronaphthalene Cores Using Photoredox/Nickel Dual-Catalytic Functionalization.

    PubMed

    Jouffroy, Matthieu; Davies, Geraint H M; Molander, Gary A

    2016-04-01

    A highly effective method for derivatizing 2,1-borazaronaphthalene cores using ammonium alkylbis(catecholato)silicates via photoredox/nickel dual catalysis is reported. By forging C(sp)(3)-C(sp)(2) bonds via this approach, alkyl fragments with various functional groups can be introduced to the azaborine core, affording previously inaccessible heterocyclic isosteres in good to excellent yields. The base-free, room-temperature conditions outlined allow sensitive functional group tolerance, even permitting the cross-coupling of unprotected primary and secondary amines.

  7. Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses

    PubMed Central

    Nickerson, Lisa D.; Smith, Stephen M.; Öngür, Döst; Beckmann, Christian F.

    2017-01-01

    Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude

  8. Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses.

    PubMed

    Nickerson, Lisa D; Smith, Stephen M; Öngür, Döst; Beckmann, Christian F

    2017-01-01

    Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or "shape") as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects

  9. The Theory of Propellers I : Determination of the Circulation Function and the Mass Coefficient for Dual-Rotating Propellers

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1944-01-01

    Values of the circulation function have been obtained for dual-rotating propellers. Numerical values are given for four, eight, and twelve-blade dual-rotating propellers and for advance ratios from 2 to about 6. In addition, the circulation function has been determine for single-rotating propellers for the higher values of the advance ratio. The mass coefficient, another quantity of significance in propeller theory, has been introduced.

  10. Integrated rate-dependent and dual pathway AV nodal functions: principles and assessment framework.

    PubMed

    Billette, Jacques; Tadros, Rafik

    2014-01-15

    The atrioventricular (AV) node conducts slowly and has a long refractory period. These features sustain the filtering of atrial impulses and hence are often modulated to optimize ventricular rate during supraventricular tachyarrhythmias. The AV node is also the site of a clinically common reentrant arrhythmia. Its function is assessed for a variety of purposes from its responses to a premature protocol (S1S2, test beats introduced at different cycle lengths) repeatedly performed at different basic rates and/or to an incremental pacing protocol (increasingly faster rates). Puzzlingly, resulting data and interpretation differ with protocols as well as with chosen recovery and refractory indexes, and are further complicated by the presence of built-in fast and slow pathways. This problem applies to endocavitary investigations of arrhythmias as well as to many experimental functional studies. This review supports an integrated framework of rate-dependent and dual pathway AV nodal function that can account for these puzzling characteristics. The framework was established from AV nodal responses to S1S2S3 protocols that, compared with standard S1S2 protocols, allow for an orderly quantitative dissociation of the different factors involved in changes in AV nodal conduction and refractory indexes under rate-dependent and dual pathway function. Although largely based on data from experimental studies, the proposed framework may well apply to the human AV node. In conclusion, the rate-dependent and dual pathway properties of the AV node can be integrated within a common functional framework the contribution of which to individual responses can be quantitatively determined with properly designed protocols and analytic tools.

  11. Dynamic Changes in Brain Functional Connectivity during Concurrent Dual-Task Performance

    PubMed Central

    Cocchi, Luca; Zalesky, Andrew; Toepel, Ulrike; Whitford, Thomas J.; De-Lucia, Marzia; Murray, Micah M.; Carter, Olivia

    2011-01-01

    This study investigated the spatial, spectral, temporal and functional proprieties of functional brain connections involved in the concurrent execution of unrelated visual perception and working memory tasks. Electroencephalography data was analysed using a novel data-driven approach assessing source coherence at the whole-brain level. Three connections in the beta-band (18–24 Hz) and one in the gamma-band (30–40 Hz) were modulated by dual-task performance. Beta-coherence increased within two dorsofrontal-occipital connections in dual-task conditions compared to the single-task condition, with the highest coherence seen during low working memory load trials. In contrast, beta-coherence in a prefrontal-occipital functional connection and gamma-coherence in an inferior frontal-occipitoparietal connection was not affected by the addition of the second task and only showed elevated coherence under high working memory load. Analysis of coherence as a function of time suggested that the dorsofrontal-occipital beta-connections were relevant to working memory maintenance, while the prefrontal-occipital beta-connection and the inferior frontal-occipitoparietal gamma-connection were involved in top-down control of concurrent visual processing. The fact that increased coherence in the gamma-connection, from low to high working memory load, was negatively correlated with faster reaction time on the perception task supports this interpretation. Together, these results demonstrate that dual-task demands trigger non-linear changes in functional interactions between frontal-executive and occipitoparietal-perceptual cortices. PMID:22140572

  12. Dual-Functional Hydrazide-Reactive and Anhydride-Containing Oligomeric Hydrogel Building Blocks.

    PubMed

    Kascholke, Christian; Loth, Tina; Kohn-Polster, Caroline; Möller, Stephanie; Bellstedt, Peter; Schulz-Siegmund, Michaela; Schnabelrauch, Matthias; Hacker, Michael C

    2017-03-13

    Biomimetic hydrogels are advanced biomaterials that have been developed following different synthetic routes. Covalent postfabrication functionalization is a promising strategy to achieve efficient matrix modification decoupled of general material properties. To this end, dual-functional macromers were synthesized by free radical polymerization of maleic anhydride with diacetone acrylamide (N-(1,1-dimethyl-3-oxobutyl)acrylamide) and pentaerythritol diacrylate monostearate. Amphiphilic oligomers (Mn < 7.5 kDa) with anhydride contents of 7-20% offered cross-linking reactivity to yield rigid hydrogels with gelatinous peptides (E = 4-13 kPa) and good cell adhesion properties. Mildly reactive methyl ketones as second functionality remained intact during hydrogel formation and potential of covalent matrix modification was shown using hydrazide and hydrazine model compounds. Successful secondary dihydrazide cross-linking was demonstrated by an increase of hydrogel stiffness (>40%). Efficient hydrazide/hydrazine immobilization depending on solution pH, hydrogel ketone content as well as ligand concentration for bioconjugation was shown and reversibility of hydrazone formation was indicated by physiologically relevant hydrazide release over 7 days. Proof-of-concept experiments with hydrazido-functionalized hyaluronan demonstrated potential for covalent aECM immobilization. The presented dual-functional macromers have perspective as reactive hydrogel building blocks for various biomedical applications.

  13. Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches.

    PubMed

    Smith, David V; Utevsky, Amanda V; Bland, Amy R; Clement, Nathan; Clithero, John A; Harsch, Anne E W; McKell Carter, R; Huettel, Scott A

    2014-07-15

    A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent component analysis (ICA). We estimated voxel-wise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust-yet frequently ignored-neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity.

  14. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    PubMed Central

    Springer, Shmuel; Vatine, Jean-Jacques; Lipson, Ronit; Wolf, Alon; Laufer, Yocheved

    2012-01-01

    The study objective was to assess the effect of functional electrical stimulation (FES) applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years) with hemiparesis (5.37 ± 5.43 years since diagnosis) demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (P < 0.0001). In conclusion, dual-channel FES may enhance gait performance in subjects with hemiparesis more than peroneal FES alone. PMID:23097635

  15. Continuous Dual Resetting of the Immune Repertoire as a Basic Principle of the Immune System Function

    PubMed Central

    2017-01-01

    Idiopathic chronic inflammatory conditions (ICIC) such as allergy, asthma, chronic obstructive pulmonary disease, and various autoimmune conditions are a worldwide health problem. Understanding the pathogenesis of ICIC is essential for their successful therapy and prevention. However, efforts are hindered by the lack of comprehensive understanding of the human immune system function. In line with those efforts, described here is a concept of stochastic continuous dual resetting (CDR) of the immune repertoire as a basic principle that governs the function of immunity. The CDR functions as a consequence of system's thermodynamically determined intrinsic tendency to acquire new states of inner equilibrium and equilibrium against the environment. Consequently, immune repertoire undergoes continuous dual (two-way) resetting: against the physiologic continuous changes of self and against the continuously changing environment. The CDR-based dynamic concept of immunity describes mechanisms of self-regulation, tolerance, and immunosenescence, and emphasizes the significance of immune system's compartmentalization in the pathogenesis of ICIC. The CDR concept's relative simplicity and concomitantly documented congruency with empirical, clinical, and experimental data suggest it may represent a plausible theoretical framework to better understand the human immune system function. PMID:28246613

  16. Continuous Dual Resetting of the Immune Repertoire as a Basic Principle of the Immune System Function.

    PubMed

    Balzar, Silvana

    2017-01-01

    Idiopathic chronic inflammatory conditions (ICIC) such as allergy, asthma, chronic obstructive pulmonary disease, and various autoimmune conditions are a worldwide health problem. Understanding the pathogenesis of ICIC is essential for their successful therapy and prevention. However, efforts are hindered by the lack of comprehensive understanding of the human immune system function. In line with those efforts, described here is a concept of stochastic continuous dual resetting (CDR) of the immune repertoire as a basic principle that governs the function of immunity. The CDR functions as a consequence of system's thermodynamically determined intrinsic tendency to acquire new states of inner equilibrium and equilibrium against the environment. Consequently, immune repertoire undergoes continuous dual (two-way) resetting: against the physiologic continuous changes of self and against the continuously changing environment. The CDR-based dynamic concept of immunity describes mechanisms of self-regulation, tolerance, and immunosenescence, and emphasizes the significance of immune system's compartmentalization in the pathogenesis of ICIC. The CDR concept's relative simplicity and concomitantly documented congruency with empirical, clinical, and experimental data suggest it may represent a plausible theoretical framework to better understand the human immune system function.

  17. Dual functions of a melanin-based ornament in the common yellowthroat

    PubMed Central

    Tarof, Scott A; Dunn, Peter O; Whittingham, Linda A

    2005-01-01

    Melanin-based ornaments often function as signals in male–male competition, whereas carotenoid-based ornaments appear to be important in female mate choice. This difference in function is thought to occur because carotenoid pigments are more costly to produce than melanins and are thus more reliable indicators of male quality. We examined the role of melanin- and carotenoid-based ornaments in male–male competition and female choice in the common yellowthroat Geothlypis trichas, a sexually dichromatic passerine. Males display a black facial mask produced by melanin pigmentation and a bright yellow bib (throat, breast and belly) produced by carotenoid pigmentation. In controlled aviary experiments, mask size was the best predictor of both male–male competition and female mate choice, and, therefore, mask size may be regarded as an ornament of dual function. These dual functions may help to maintain the reliability of mask size as an indicator of male quality, despite the potentially low cost of production. The size of the bib was unrelated to male–male competition or female choice, but there was a tendency for females to prefer males with more colourful bibs. We propose that the black mask is important in competition for territories with other males and for attracting females. Our results highlight the need for more studies of the mechanisms of sexual selection in species with ornaments composed of different pigment types. PMID:16024373

  18. The Dual Role of Oxygen Functions in Coal Pretreatment and Liquefaction: Crosslinking and Cleavage Reactions

    SciTech Connect

    Michael Serio; Erik Kroo; Sylvie Charpenay; Peter Solomon

    1993-09-30

    The overall objective of this project was to elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project was an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectively modified coals in order to provide specific information relevant to the reactions of real coals. The investigations included liquefaction experiments in microautoclave reactors, along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts were made to incorporate the results of experiments on the different systems into a liquefaction model.

  19. Ion energy distribution function in dual-frequency rf capacitively coupled discharges: analytical model.

    PubMed

    Olevanov, M; Proshina, O; Rakhimova, T; Voloshin, D

    2008-08-01

    An analytical approach is used to calculate an ion energy distribution function (IEDF) in a dual frequency (DF) collisionless rf discharge in argon. Three possible limit regimes for frequency relations in the DF discharge are discussed. The analytical IEDF is obtained for the intermediate-frequency case, which is most applicable in plasma-processing technologies. The analytical expressions for an ion spectrum width as well as for the minimum and maximum ion energies are derived. The analytical theory is compared with a particle-in-cell Monte Carlo numerical simulation and also with the results of a semianalytical model.

  20. Single active-layer structured dual-function devices using hybrid polymer-quantum dots.

    PubMed

    Son, Dong-Ick; Park, Dong-Hee; Ie, Sang-Yub; Choi, Won-Kook; Choi, Ji-Won; Li, Fushan; Kim, Tae-Whan

    2008-10-01

    We demonstrate hybrid polymer-quantum dot dual-function devices with a single active-layer structure consisting of CdSe/ZnS semiconductor quantum dots dispersed with poly N-vinylcarbazole (PVK) and 1,3,5-tirs-(N-phenylbenzimidazol-2-yl) benzene (TPBi) fabricated on an indium-tin-oxide (ITO)/glass substrate by using a simple spin-coating technique. The dual-function devices are composed of light-emitting diodes (LED) on the top side and nonvolatile organic bistable memory devices (OBD) on the bottom side and can show electroluminescence (EL) along with electrical bistability concurrently. Both the functionality of LEDs and OBDs can be successfully achieved by adding an electron transport layer (ETL) TPBi to the OBD to attain an LED in which the lowest unoccupied molecular orbital (LUMO) level of TPBi is positioned at the energy level between the conduction band of CdSe/ZnS and the LiF/Al electrode. Through transmission electron microscopy (TEM) study, it is revealed that CdSe/ZnS QDs distributed on the interface of the hole transport layer (HTL) and ETL significantly take part in the electroluminescence process rather than those existing at the outer surface of the ETL.

  1. Development of a patch type embedded cardiac function monitoring system using dual microprocessor for arrhythmia detection in heart disease patient.

    PubMed

    Jang, Yongwon; Noh, Hyung Wook; Lee, I B; Jung, Ji-Wook; Song, Yoonseon; Lee, Sooyeul; Kim, Seunghwan

    2012-01-01

    A patch type embedded cardiac function monitoring system was developed to detect arrhythmias such as PVC (Premature Ventricular Contraction), pause, ventricular fibrillation, and tachy/bradycardia. The overall system is composed of a main module including a dual processor and a Bluetooth telecommunication module. The dual microprocessor strategy minimizes power consumption and size, and guarantees the resources of embedded software programs. The developed software was verified with standard DB, and showed good performance.

  2. Dual function of MG53 in membrane repair and insulin signaling

    PubMed Central

    Tan, Tao; Ko, Young-Gyu; Ma, Jianjie

    2016-01-01

    MG53 is a member of the TRIM-family protein that acts as a key component of the cell membrane repair machinery. MG53 is also an E3-ligase that ubiquinates insulin receptor substrate-1 and controls insulin signaling in skeletal muscle cells. Since its discovery in 2009, research efforts have been devoted to translate this basic discovery into clinical applications in human degenerative and metabolic diseases. This review article highlights the dual function of MG53 in cell membrane repair and insulin signaling, the mechanism that underlies the control of MG53 function, and the therapeutic value of targeting MG53 function in regenerative medicine. [BMB Reports 2016; 49(8): 414-423] PMID:27174502

  3. Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance.

    PubMed

    Pan, Shunlong; Li, Jiansheng; Noonan, Owen; Fang, Xiaofeng; Wan, Gaojie; Yu, Chengzhong; Wang, Lianjun

    2017-05-02

    Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH)x nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification.

  4. Hybrid ultrasound and dual-wavelength optoacoustic biomicroscopy for functional neuroimaging

    NASA Astrophysics Data System (ADS)

    Rebling, Johannes; Estrada, Hector; Zwack, Michael; Sela, Gali; Gottschalk, Sven; Razansky, Daniel

    2017-03-01

    Many neurological disorders are linked to abnormal activation or pathological alterations of the vasculature in the affected brain region. Obtaining simultaneous morphological and physiological information of neurovasculature is very challenging due to the acoustic distortions and intense light scattering by the skull and brain. In addition, the size of cerebral vasculature in murine brains spans an extended range from just a few microns up to about a millimeter, all to be recorded in 3D and over an area of several dozens of mm2. Numerous imaging techniques exist that excel at characterizing certain aspects of this complex network but are only capable of providing information on a limited spatiotemporal scale. We present a hybrid ultrasound and dual-wavelength optoacoustic microscope, capable of rapid imaging of murine neurovasculature in-vivo, with high spatial resolution down to 12 μm over a large field of view exceeding 50mm2. The dual wavelength imaging capability allows for the visualization of functional blood parameters through an intact skull while pulse-echo ultrasound biomicroscopy images are captured simultaneously by the same scan head. The flexible hybrid design in combination with fast high-resolution imaging in 3D holds promise for generating better insights into the architecture and function of the neurovascular system.

  5. Fukui and dual-descriptor matrices within the framework of spin-polarized density functional theory.

    PubMed

    Alcoba, Diego R; Lain, Luis; Torre, Alicia; Oña, Ofelia B; Chamorro, Eduardo

    2013-06-28

    This work deals with the Fukui and dual reactivity descriptors within the framework of the spin-polarized density functional theory. The first and second derivatives of the electron density and the spin density with respect to the total number of electrons N = Nα + Nβ and with respect to the spin number NS = Nα-Nβ have been formulated by means of reduced density matrices in the representation of the spin-orbitals of a given basis set, providing the matrix extension of those descriptors. The analysis of the eigenvalues and eigenvectors of the Fukui and dual-descriptor matrices yields information on the role played by the molecular orbitals in charge-transfer and spin-polarization processes. This matrix formulation enables determining similarity indices which allows one to evaluate quantitatively the quality of the simple frontier molecular orbital model in conceptual density functional theory. Selected closed- and open-shell systems in different spin symmetries have been studied with this matrix formalism at several levels of electronic correlation. The results confirm the suitability of this approach.

  6. A dual physiological character for sexual function: libido and sexual pheromones.

    PubMed

    Motofei, Ion G

    2009-12-01

    Human sexual response is a complex function involving many cerebral, spinal and peripheral aspects; the last are relatively known and benefit from good pharmacological control, as in the case of erectile dysfunction. Spinal cord sexual reflexes also have a good theoretical and experimental description. There is minimal understanding of the cerebral sexual processes (libido, sexual arousal, orgasm). The initial perspective was that the cerebral areas implied in sexuality exert descending stimulatory and inhibitory influences on spinal cord sexual centres/reflexes. This was a wrong supposition, which inhibited progress in this subject, with a considerable impact on a subject's individual and social life. A new approach to sexual function arises from the idea that simple neurological structures can support only simple functions, while a more complex function requires correspondingly complex anatomical structures. For this reason the spinal cord would not be able to realise the integration of multiple (spinal and psychosensorial) stimuli into a unique and coherent ejaculation response. Consequently, all mechanisms implied in human sexuality would be cerebral processes, ejaculation reflexes ascending in evolution to the cerebral level. This new evolutionary concept was developed after 2001 in five distinct articles on the cerebral duality of sexual arousal, sexual hormones, ejaculation and serotonergic receptors. During this period other published results suggested a possible cerebral duality for sexual pheromones and libido in humans. All these dual physiological aspects are integrated in this review into one neurophysiological model, thus trying to further develop the new concepts of sexual function and perhaps relational behaviour. In conclusion, ejaculation is a dual cerebral process with arousal sensation (hormonally modulated) and libido perception (pheromonally modulated) as the afferent part. Two neurophysiological axes could exist in both men and women. In this

  7. Upper-Extremity Dual-Task Function: An Innovative Method to Assess Cognitive Impairment in Older Adults

    PubMed Central

    Toosizadeh, Nima; Najafi, Bijan; Reiman, Eric M.; Mager, Reine M.; Veldhuizen, Jaimeson K.; O’Connor, Kathy; Zamrini, Edward; Mohler, Jane

    2016-01-01

    Background: Difficulties in orchestrating simultaneous tasks (i.e., dual-tasking) have been associated with cognitive impairments in older adults. Gait tests have been commonly used as the motor task component for dual-task assessments; however, many older adults have mobility impairments or there is a lack of space in busy clinical settings. We assessed an upper-extremity function (UEF) test as an alternative motor task to study the dual-task motor performance in older adults. Methods: Older adults (≥65 years) were recruited, and cognitive ability was measured using the Montreal cognitive assessment (MoCA). Participants performed repetitive elbow flexion with their maximum pace, once single-task, and once while counting backward by one (dual-task). Single- and dual-task gait tests were also performed with normal speed. Three-dimensional kinematics was measured both from upper-extremity and lower-extremity using wearable sensors to determine UEF and gait parameters. Parameters were compared between the cognitively impaired and healthy groups using analysis of variance tests, while controlling for age, gender, and body mass index (BMI). Correlations between UEF and gait parameters for dual-task and dual-task cost were assessed using linear regression models. Results: Sixty-seven older adults were recruited (age = 83 ± 10 years). Based on MoCA, 10 (15%) were cognitively impaired. While no significant differences were observed in the single-task condition, within the dual-task condition, the cognitively impaired group showed significantly less arm flexion speed (62%, d = 1.51, p = 0.02) and range of motion (27%, d = 0.93, p = 0.04), and higher speed variability (88%, d = 1.82, p < 0.0001) compared to the cognitively intact group, when adjusted with age, gender, and BMI. Significant correlations were observed between UEF speed parameters and gait stride velocity for dual-task condition (r = 0.55, p < 0.0001) and dual-task cost (r = 0.28, p = 0.03). Conclusion: We

  8. A dual change model of life satisfaction and functioning for individuals with schizophrenia

    PubMed Central

    Edmondson, Melissa; Pahwa, Rohini; Lee, Karen Kyeunghae; Hoe, Maanse; Brekke, John S.

    2013-01-01

    Despite the notion that increases in functioning should be associated with increases in life satisfaction in schizophrenia, research has often found no association between the two. Dual change models of global and domain-specific life satisfaction and functioning were examined in 145 individuals with schizophrenia receiving community-based services over 12 months. Functioning and satisfaction were measured using the Role Functioning Scale and Satisfaction with Life Scale. Data were analyzed using latent growth curve modeling. Improvement in global life satisfaction was associated with improvement in overall functioning over time. Satisfaction with living situation also improved as independent functioning improved. Work satisfaction did not improve as work functioning improved. Although social functioning improved, satisfaction with social relationships did not. The link between overall functioning and global life satisfaction provides support for a recovery-based orientation to community based psychosocial rehabilitation services. When examining sub-domains, the link between outcomes and subjective experience suggests a more complex picture than previously found. These findings are crucial to interventions and programs aimed at improving functioning and the subjective experiences of consumers recovering from mental illness. Interventions that show improvements in functional outcomes can assume that they will show concurrent improvements in global life satisfaction as well and in satisfaction with independent living. Interventions geared toward improving social functioning will need to consider the complexity of social relationships and how they affect satisfaction associated with personal relationships. Interventions geared towards improving work functioning will need to consider how the quality and level of work affect satisfaction with employment. PMID:22591780

  9. A dual change model of life satisfaction and functioning for individuals with schizophrenia.

    PubMed

    Edmondson, Melissa; Pahwa, Rohini; Lee, Karen Kyeunghae; Hoe, Maanse; Brekke, John S

    2012-08-01

    Despite the notion that increases in functioning should be associated with increases in life satisfaction in schizophrenia, research has often found no association between the two. Dual change models of global and domain-specific life satisfaction and functioning were examined in 145 individuals with schizophrenia receiving community-based services over 12 months. Functioning and satisfaction were measured using the Role Functioning Scale and Satisfaction with Life Scale. Data were analyzed using latent growth curve modeling. Improvement in global life satisfaction was associated with improvement in overall functioning over time. Satisfaction with living situation also improved as independent functioning improved. Work satisfaction did not improve as work functioning improved. Although social functioning improved, satisfaction with social relationships did not. The link between overall functioning and global life satisfaction provides support for a recovery-based orientation to community based psychosocial rehabilitation services. When examining sub-domains, the link between outcomes and subjective experience suggests a more complex picture than previously found. These findings are crucial to interventions and programs aimed at improving functioning and the subjective experiences of consumers recovering from mental illness. Interventions that show improvements in functional outcomes can assume that they will show concurrent improvements in global life satisfaction as well and in satisfaction with independent living. Interventions geared toward improving social functioning will need to consider the complexity of social relationships and how they affect satisfaction associated with personal relationships. Interventions geared towards improving work functioning will need to consider how the quality and level of work affect satisfaction with employment. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. AMDE-1 Is a Dual Function Chemical for Autophagy Activation and Inhibition

    PubMed Central

    Li, Min; Yang, Zuolong; Vollmer, Laura L.; Gao, Ying; Fu, Yuanyuan; Liu, Cui; Chen, Xiaoyun; Liu, Peiqing; Vogt, Andreas; Yin, Xiao-Ming

    2015-01-01

    Autophagy is the process by which cytosolic components and organelles are delivered to the lysosome for degradation. Autophagy plays important roles in cellular homeostasis and disease pathogenesis. Small chemical molecules that can modulate autophagy activity may have pharmacological value for treating diseases. Using a GFP-LC3-based high content screening assay we identified a novel chemical that is able to modulate autophagy at both initiation and degradation levels. This molecule, termed as Autophagy Modulator with Dual Effect-1 (AMDE-1), triggered autophagy in an Atg5-dependent manner, recruiting Atg16 to the pre-autophagosomal site and causing LC3 lipidation. AMDE-1 induced autophagy through the activation of AMPK, which inactivated mTORC1 and activated ULK1. AMDE-1did not affect MAP kinase, JNK or oxidative stress signaling for autophagy induction. Surprisingly, treatment with AMDE-1 resulted in impairment in autophagic flux and inhibition of long-lived protein degradation. This inhibition was correlated with a reduction in lysosomal degradation capacity but not with autophagosome-lysosome fusion. Further analysis indicated that AMDE-1 caused a reduction in lysosome acidity and lysosomal proteolytic activity, suggesting that it suppressed general lysosome function. AMDE-1 thus also impaired endocytosis-mediated EGF receptor degradation. The dual effects of AMDE-1 on autophagy induction and lysosomal degradation suggested that its net effect would likely lead to autophagic stress and lysosome dysfunction, and therefore cell death. Indeed, AMDE-1 triggered necroptosis and was preferentially cytotoxic to cancer cells. In conclusion, this study identified a new class of autophagy modulators with dual effects, which can be explored for potential uses in cancer therapy. PMID:25894744

  11. A hierarchical polymer brush coating with dual-function antibacterial capability.

    PubMed

    Yan, Shunjie; Song, Lingjie; Luan, Shifang; Xin, Zhirong; Du, Shanshan; Shi, Hengchong; Yuan, Shuaishuai; Yang, Yuming; Yin, Jinghua

    2017-01-01

    Bacterial infections are problematic in many healthcare-associated devices. Antibacterial surfaces integrating the strength of bacteria repellent and bactericidal functions exhibit an encouraging efficacy in tackling this problem. Herein, a hierarchical dual-function antibacterial polymer brush coating that integrates an antifouling bottom layer with a bactericidal top layer is facilely constructed via living photograft polymerization. Excellent resistance to bacterial attachment is correlated with the antifouling components, and good bactericidal activity is afforded by the bactericidal components, and therefore the hierarchical coating shows an excellent long-term antibacterial capability. In addition, due to the presence of the hydrophilic background layer, the hierarchical surface has the greatly improved biocompatibility, as shown by the suppression of platelet adhesion and activation, the inhibition of erythrocyte adhesion and damage, and low toxicity against mammalian cells. The hierarchical polymer brush system provides the basis for the development of long-term antibacterial and biocompatible surfaces.

  12. The dual roles of functional groups in the photoluminescence of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Shujun; Cole, Ivan S.; Zhao, Dongyuan; Li, Qin

    2016-03-01

    The photoluminescent properties of graphene nanoparticle (named graphene quantum dots) have attracted significant research attention in recent years owing to their profound application potential. However, the photoluminescence (PL) origin of this class of nanocarbons is still unclear. In this paper, combining direct experimental evidence enabled by a facile size-tunable oxygenated graphene quantum dots (GQDs) synthesis method and theoretical calculations, the roles of the aromatic core, functional groups and disordered structures (i.e. defects and sp3 carbon) in the PL of oxygenated GQDs are elucidated in detail. In particular, we found that the functional groups on GQDs play dual roles in the overall emission: (1) they enable π* --> n and σ* --> n transitions, resulting in a molecular type of PL, spectrally invariable with change of particle size or excitation energy; (2) similar to defects and sp3 carbon, functional groups also induce structural deformation to the aromatic core, leading to mid-gap states or, in other words, energy traps, causing π* --> mid-gap states --> π transitions. Therefore, functional groups contribute to both the blue edge and the red shoulder of GQDs' PL spectra. The new insights on the role of functional groups in PL of fluorescent nanocarbons will enable better designs of this new class of materials.The photoluminescent properties of graphene nanoparticle (named graphene quantum dots) have attracted significant research attention in recent years owing to their profound application potential. However, the photoluminescence (PL) origin of this class of nanocarbons is still unclear. In this paper, combining direct experimental evidence enabled by a facile size-tunable oxygenated graphene quantum dots (GQDs) synthesis method and theoretical calculations, the roles of the aromatic core, functional groups and disordered structures (i.e. defects and sp3 carbon) in the PL of oxygenated GQDs are elucidated in detail. In particular, we found

  13. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.

    PubMed

    Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei

    2012-08-30

    We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid

  14. GrDHP: a general utility function representation for dual heuristic dynamic programming.

    PubMed

    Ni, Zhen; He, Haibo; Zhao, Dongbin; Xu, Xin; Prokhorov, Danil V

    2015-03-01

    A general utility function representation is proposed to provide the required derivable and adjustable utility function for the dual heuristic dynamic programming (DHP) design. Goal representation DHP (GrDHP) is presented with a goal network being on top of the traditional DHP design. This goal network provides a general mapping between the system states and the derivatives of the utility function. With this proposed architecture, we can obtain the required derivatives of the utility function directly from the goal network. In addition, instead of a fixed predefined utility function in literature, we conduct an online learning process for the goal network so that the derivatives of the utility function can be adaptively tuned over time. We provide the control performance of both the proposed GrDHP and the traditional DHP approaches under the same environment and parameter settings. The statistical simulation results and the snapshot of the system variables are presented to demonstrate the improved learning and controlling performance. We also apply both approaches to a power system example to further demonstrate the control capabilities of the GrDHP approach.

  15. The dual roles of functional groups in the photoluminescence of graphene quantum dots.

    PubMed

    Wang, Shujun; Cole, Ivan S; Zhao, Dongyuan; Li, Qin

    2016-04-14

    The photoluminescent properties of graphene nanoparticle (named graphene quantum dots) have attracted significant research attention in recent years owing to their profound application potential. However, the photoluminescence (PL) origin of this class of nanocarbons is still unclear. In this paper, combining direct experimental evidence enabled by a facile size-tunable oxygenated graphene quantum dots (GQDs) synthesis method and theoretical calculations, the roles of the aromatic core, functional groups and disordered structures (i.e. defects and sp(3) carbon) in the PL of oxygenated GQDs are elucidated in detail. In particular, we found that the functional groups on GQDs play dual roles in the overall emission: (1) they enable π* → n and σ* → n transitions, resulting in a molecular type of PL, spectrally invariable with change of particle size or excitation energy; (2) similar to defects and sp(3) carbon, functional groups also induce structural deformation to the aromatic core, leading to mid-gap states or, in other words, energy traps, causing π* → mid-gap states → π transitions. Therefore, functional groups contribute to both the blue edge and the red shoulder of GQDs' PL spectra. The new insights on the role of functional groups in PL of fluorescent nanocarbons will enable better designs of this new class of materials.

  16. Dual Functional Small Molecule Probes as Fluorophore and Ligand for Misfolding Proteins

    PubMed Central

    Zhang, Xueli; Ran, Chongzhao

    2013-01-01

    Misfolding of a protein is a destructive process for variety of diseases that include neurodegenerative diseases such as Alzheimer’s disease, Parkinson disease, Huntington disease, mad cow disease, amyotrophic lateral sclerosis (ALS), and frontal temporal dementia (FTD), and other non-CNS diseases such as diabetes, cystic fibrosis, and lysosomal storage diseases. Formation of various misfunctional large assembles of the misfolded protein is the primary consequence. To detect the formation of the aggregated species is very important for not only basic mechanism research but also very crucial for diagnosis of the diseases. In this review, we updated references related to the new development of the dual functional fluorescent small molecule probes for detecting the aggregated proteins in vitro and in vivo. PMID:24363605

  17. Preparation of self-cleaning surfaces with a dual functionality of superhydrophobicity and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Park, Eun Ji; Yoon, Hye Soo; Kim, Dae Han; Kim, Yong Ho; Kim, Young Dok

    2014-11-01

    Thin film of polydimethylsiloxane (PDMS) was deposited on SiO2 nanoparticles by chemical vapor deposition, and SiO2 became completely hydrophobic after PDMS coating. Mixtures of TiO2 and PDMS-coated SiO2 nanoparticles with various relative ratios were prepared, and distributed on glass surfaces, and water contact angles and photocatalytic activities of these surfaces were studied. Samples consisting of TiO2 and PDMS-coated SiO2 with a ratio of 7:3 showed a highly stable superhydrophobicity under UV irradiation with a water contact angle of 165° and UV-driven photocatalytic activity for decomposition of methylene blue and phenol in aqueous solution. Our process can be exploited for fabricating self-cleaning surfaces with dual functionality of superhydrophobicity and photocatalytic activity at the same time.

  18. [Post-translational ligation and function of dual-vector transferred split CFTR gene].

    PubMed

    Zhu, Fu-Xiang; Liu, Ze-Long; Qu, Hui-Ge; Chi, Xiao-Yan

    2010-01-01

    The mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to an autosomal recessive genetic disorder cystic fibrosis (CF). The gene therapy for CF using adeno-associated virus (AAV) vectors delivering CFTR gene is restricted by the contents limitation of AAV vectors. In this study the split CFTR genes severed at its regulatory domain were delivered by a dual-vector system with an intein-mediated protein trans-splicing as a technique to investigate the post-translational ligation of CFTR half proteins and its function as a chloride ion channel. A pair of eukaryotic expression vectors was constructed by breaking the human CFTR cDNA before Ser712 codon and fusing with Ssp DnaB intein coding sequences. After co-transfection into baby hamster kidney (BHK) cells followed by transient expression, patch clamps were carried out to record the chloride current of whole-cell and the activity of a single channel, and the ligation of two halves of CFTR was observed by Western blotting. The results showed that the intein-fused half genes co-transfected cells displayed a high whole cell chloride current and activity of a single channel indicating the functional recovery of chloride channel, and an intact CFTR protein band was figured out by CFTR-specific antibodies indicating that intein can efficiently ligate the separately expressed half CFTR proteins. The data demonstrated that protein splicing strategy could be used as a strategy in delivering CFTR gene by two vectors, encouraging our ongoing research program on dual AAV vector system based gene transfer in gene therapy for cystic fibrosis.

  19. Dual functional nisin-multi-walled carbon nanotubes coated filters for bacterial capture and inactivation.

    PubMed

    Dong, Xiuli; Yang, Liju

    2015-01-01

    Removal of pathogens from water is one way to prevent waterborne illness. In this paper, we developed dual functional carbon nanotube (CNT) modified filters for bacterial capture and inactivation, utilizing multi-walled CNTs (MWCNTs) to coat on commercially available filters and making use of the exceptional adsorption property of CNTs to adsorb a natural antimicrobial peptide-nisin on it. Two types of MWCNTs with different outer layer diameters were used (MWCNTs1: <8 nm in diameter; MWCNTs2: 10-20 nm in diameter). The thickness of MWCNT layers, surface morphology, and surface hydrophobicity of both types of MWCNT coated filters were characterized. The MWCNT coating on filters significantly increased the surface hydrophobicity. The absorption of nisin and the capture of bacterial pathogens were correlated with increased surface hydrophobicity. The MWCNTs1 and MWCNTs2 filters with 1.5 mg MWCNTs loading captured 2.44 and 3.88 log of cells, respectively, from aqueous solutions containing a total of ~10(6) CFU/mL cells. Nisin deposit at the amount of 0.5 mg on the surfaces of MWCNT filters significantly reduced the viability of captured B. anthracis cells by 95.71-97.19 %, and inhibited the metabolic activities of the captured cells by approximately 98.3 %. The results demonstrated that the MWCNT-nisin filters achieved dual functions in bacterial pathogen capture and inhibition in one single filtration step, which is potentially applicable in removing undesired microorganisms from water sources and inhibiting captured Gram positive bacteria activities.

  20. Dual functionality of cis-regulatory elements as developmental enhancers and Polycomb response elements.

    PubMed

    Erceg, Jelena; Pakozdi, Tibor; Marco-Ferreres, Raquel; Ghavi-Helm, Yad; Girardot, Charles; Bracken, Adrian P; Furlong, Eileen E M

    2017-03-15

    Developmental gene expression is tightly regulated through enhancer elements, which initiate dynamic spatio-temporal expression, and Polycomb response elements (PREs), which maintain stable gene silencing. These two cis-regulatory functions are thought to operate through distinct dedicated elements. By examining the occupancy of the Drosophila pleiohomeotic repressive complex (PhoRC) during embryogenesis, we revealed extensive co-occupancy at developmental enhancers. Using an established in vivo assay for PRE activity, we demonstrated that a subset of characterized developmental enhancers can function as PREs, silencing transcription in a Polycomb-dependent manner. Conversely, some classic Drosophila PREs can function as developmental enhancers in vivo, activating spatio-temporal expression. This study therefore uncovers elements with dual function: activating transcription in some cells (enhancers) while stably maintaining transcriptional silencing in others (PREs). Given that enhancers initiate spatio-temporal gene expression, reuse of the same elements by the Polycomb group (PcG) system may help fine-tune gene expression and ensure the timely maintenance of cell identities. © 2017 Erceg et al.; Published by Cold Spring Harbor Laboratory Press.

  1. HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins

    PubMed Central

    Bertheloot, Damien; Latz, Eicke

    2017-01-01

    Our immune system is based on the close collaboration of the innate and adaptive immune systems for the rapid detection of any threats to the host. Recognition of pathogen-derived molecules is entrusted to specific germline-encoded signaling receptors. The same receptors have now also emerged as efficient detectors of misplaced or altered self-molecules that signal tissue damage and cell death following, for example, disruption of the blood supply and subsequent hypoxia. Many types of endogenous molecules have been shown to provoke such sterile inflammatory states when released from dying cells. However, a group of proteins referred to as alarmins have both intracellular and extracellular functions which have been the subject of intense research. Indeed, alarmins can either exert beneficial cell housekeeping functions, leading to tissue repair, or provoke deleterious uncontrolled inflammation. This group of proteins includes the high-mobility group box 1 protein (HMGB1), interleukin (IL)-1α, IL-33 and the Ca2+-binding S100 proteins. These dual-function proteins share conserved regulatory mechanisms, such as secretory routes, post-translational modifications and enzymatic processing, that govern their extracellular functions in time and space. Release of alarmins from mesenchymal cells is a highly relevant mechanism by which immune cells can be alerted of tissue damage, and alarmins play a key role in the development of acute or chronic inflammatory diseases and in cancer development. PMID:27569562

  2. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study.

    PubMed

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-08-25

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.

  3. A Novel High-Power Dual-Band Coupled-Line Gysel Power Divider with Impedance-Transforming Functions

    PubMed Central

    Wang, Weimin; Liu, Yuanan

    2014-01-01

    A novel coupled-line structure is proposed to design dual-band and high-power Gysel power dividers with inherent impedance-transforming functions. Based on traditional even- and odd-mode technique, the analytical design methods in closed-form formula are obtained and the accurate electrical parameters analysis is presented. Due to the usage of coupled-line sections, more design-parameter freedom and a wider frequency-ratio operation range for this kind of dual-band Gysel powder divider are obtained. Several numerical examples are designed and calculated to demonstrate flexible dual-band applications with different impedance-transforming functions. A practical microstrip power divider operating at 2 GHz and 3.2 GHz is designed, fabricated, and measured. The good agreement between the calculated and measured results verifies our proposed circuit structure and analytical design approach. PMID:24764768

  4. A novel high-power dual-band coupled-line Gysel power divider with impedance-transforming functions.

    PubMed

    Wang, Weimin; Wu, Yongle; Liu, Yuanan

    2014-01-01

    A novel coupled-line structure is proposed to design dual-band and high-power Gysel power dividers with inherent impedance-transforming functions. Based on traditional even- and odd-mode technique, the analytical design methods in closed-form formula are obtained and the accurate electrical parameters analysis is presented. Due to the usage of coupled-line sections, more design-parameter freedom and a wider frequency-ratio operation range for this kind of dual-band Gysel powder divider are obtained. Several numerical examples are designed and calculated to demonstrate flexible dual-band applications with different impedance-transforming functions. A practical microstrip power divider operating at 2 GHz and 3.2 GHz is designed, fabricated, and measured. The good agreement between the calculated and measured results verifies our proposed circuit structure and analytical design approach.

  5. Effects of Gait Self-Efficacy and Lower-Extremity Physical Function on Dual-Task Performance in Older Adults

    PubMed Central

    Banducci, Sarah E.; Daugherty, Ana M.; Fanning, Jason; Awick, Elizabeth A.; Porter, Gwenndolyn C.; Burzynska, Agnieszka; Shen, Sa; Kramer, Arthur F.; McAuley, Edward

    2017-01-01

    Objectives. Despite evidence of self-efficacy and physical function's influences on functional limitations in older adults, few studies have examined relationships in the context of complex, real-world tasks. The present study tested the roles of self-efficacy and physical function in predicting older adults' street-crossing performance in single- and dual-task simulations. Methods. Lower-extremity physical function, gait self-efficacy, and street-crossing success ratio were assessed in 195 older adults (60–79 years old) at baseline of a randomized exercise trial. During the street-crossing task, participants walked on a self-propelled treadmill in a virtual reality environment. Participants crossed the street without distraction (single-task trials) and conversed on a cell phone (dual-task trials). Structural equation modeling was used to test hypothesized associations independent of demographic and clinical covariates. Results. Street-crossing performance was better on single-task trials when compared with dual-task trials. Direct effects of self-efficacy and physical function on success ratio were observed in dual-task trials only. The total effect of self-efficacy was significant in both conditions. The indirect path through physical function was evident in the dual-task condition only. Conclusion. Physical function can predict older adults' performance on high fidelity simulations of complex, real-world tasks. Perceptions of function (i.e., self-efficacy) may play an even greater role. The trial is registered with United States National Institutes of Health ClinicalTrials.gov (ID: NCT01472744; Fit & Active Seniors Trial). PMID:28255557

  6. Effects of Gait Self-Efficacy and Lower-Extremity Physical Function on Dual-Task Performance in Older Adults.

    PubMed

    Ehlers, Diane K; Banducci, Sarah E; Daugherty, Ana M; Fanning, Jason; Awick, Elizabeth A; Porter, Gwenndolyn C; Burzynska, Agnieszka; Shen, Sa; Kramer, Arthur F; McAuley, Edward

    2017-01-01

    Objectives. Despite evidence of self-efficacy and physical function's influences on functional limitations in older adults, few studies have examined relationships in the context of complex, real-world tasks. The present study tested the roles of self-efficacy and physical function in predicting older adults' street-crossing performance in single- and dual-task simulations. Methods. Lower-extremity physical function, gait self-efficacy, and street-crossing success ratio were assessed in 195 older adults (60-79 years old) at baseline of a randomized exercise trial. During the street-crossing task, participants walked on a self-propelled treadmill in a virtual reality environment. Participants crossed the street without distraction (single-task trials) and conversed on a cell phone (dual-task trials). Structural equation modeling was used to test hypothesized associations independent of demographic and clinical covariates. Results. Street-crossing performance was better on single-task trials when compared with dual-task trials. Direct effects of self-efficacy and physical function on success ratio were observed in dual-task trials only. The total effect of self-efficacy was significant in both conditions. The indirect path through physical function was evident in the dual-task condition only. Conclusion. Physical function can predict older adults' performance on high fidelity simulations of complex, real-world tasks. Perceptions of function (i.e., self-efficacy) may play an even greater role. The trial is registered with United States National Institutes of Health ClinicalTrials.gov (ID: NCT01472744; Fit & Active Seniors Trial).

  7. Discrete-Trial Functional Analysis of Problem Behavior and Functional Communication Training in Three Adults with a Dual Diagnosis of a Significant Intellectual Disability and a Mental Illness

    ERIC Educational Resources Information Center

    Chezan, Laura Claudia

    2012-01-01

    I conducted two studies. First, I examined the applicability of discrete-trial functional analysis (DTFA) for identifying the function of problem behavior in three adults with a dual diagnosis of a significant intellectual disability and a mental illness. Results indicated clear patterns of problem behavior for each participant. Second, I used a…

  8. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex

    PubMed Central

    Tsai, Ming-Feng; Phillips, Charles B; Ranaghan, Matthew; Tsai, Chen-Wei; Wu, Yujiao; Williams, Carole; Miller, Christopher

    2016-01-01

    Mitochondrial Ca2+ uptake, a process crucial for bioenergetics and Ca2+ signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca2+-activated Ca2+ channel, with the Ca2+ pore formed by the MCU protein and Ca2+-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca2+ permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca2+ landscape. DOI: http://dx.doi.org/10.7554/eLife.15545.001 PMID:27099988

  9. A Dual-Organic-Transistor-Based Tactile-Perception System with Signal-Processing Functionality.

    PubMed

    Zang, Yaping; Shen, Hongguang; Huang, Dazhen; Di, Chong-An; Zhu, Daoben

    2017-05-01

    Organic-device-based tactile-perception systems can open up new opportunities for the next generation of intelligent products. To meet the critical requirements of artificial perception systems, the efficient construction of organic smart elements with integrated sensing and signal processing functionalities is highly desired, but remains a challenge. This study presents a dual-organic-transistor-based tactile-perception element (DOT-TPE) with biomimetic functionality by the construction of organic synaptic transistors with integrated sensing transistors. The unique geometry of the DOT-TPE permits instantaneous sensing of pressure stimuli and synapse-like processing of an electric signal in a single element. More importantly, these organic-transistor-based tactile-perception elements can be built into arrays to serve as bionic tactile-perception systems. The combined biomimetic functionality of tactile-perception systems, together with their promising features of flexibility and large-area fabrication, makes this work represent a step forward toward novel e-skin devices for artificial intelligence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Functional Recurrent Mutations in the Human Mitochondrial Phylogeny: Dual Roles in Evolution and Disease

    PubMed Central

    Levin, Liron; Zhidkov, Ilia; Gurman, Yotam; Hawlena, Hadas; Mishmar, Dan

    2013-01-01

    Mutations frequently reoccur in the human mitochondrial DNA (mtDNA). However, it is unclear whether recurrent mtDNA nodal mutations (RNMs), that is, recurrent mutations in stems of unrelated phylogenetic nodes, are functional and hence selectively constrained. To answer this question, we performed comprehensive parsimony and maximum likelihood analyses of 9,868 publicly available whole human mtDNAs revealing 1,606 single nodal mutations (SNMs) and 679 RNMs. We then evaluated the potential functionality of synonymous, nonsynonymous and RNA SNMs and RNMs. For synonymous mutations, we have implemented the Codon Adaptation Index. For nonsynonymous mutations, we assessed evolutionary conservation, and employed previously described pathogenicity score assessment tools. For RNA genes’ mutations, we designed a bioinformatic tool which compiled evolutionary conservation and potential effect on RNA structure. While comparing the functionality scores of nonsynonymous and RNA SNMs and RNMs with those of disease-causing mtDNA mutations, we found significant difference (P < 0.001). However, 24 RNMs and 67 SNMs had comparable values with disease-causing mutations reflecting their potential function thus being the best candidates to participate in adaptive events of unrelated lineages. Strikingly, some functional RNMs occurred in unrelated mtDNA lineages that independently altered susceptibility to the same diseases, thus suggesting common functionality. To our knowledge, this is the most comprehensive analysis of selective signatures in the mtDNA not only within proteins but also within RNA genes. For the first time, we discover virtually all positively selected RNMs in our phylogeny while emphasizing their dual role in past evolutionary events and in disease today. PMID:23563965

  11. Functional recurrent mutations in the human mitochondrial phylogeny: dual roles in evolution and disease.

    PubMed

    Levin, Liron; Zhidkov, Ilia; Gurman, Yotam; Hawlena, Hadas; Mishmar, Dan

    2013-01-01

    Mutations frequently reoccur in the human mitochondrial DNA (mtDNA). However, it is unclear whether recurrent mtDNA nodal mutations (RNMs), that is, recurrent mutations in stems of unrelated phylogenetic nodes, are functional and hence selectively constrained. To answer this question, we performed comprehensive parsimony and maximum likelihood analyses of 9,868 publicly available whole human mtDNAs revealing 1,606 single nodal mutations (SNMs) and 679 RNMs. We then evaluated the potential functionality of synonymous, nonsynonymous and RNA SNMs and RNMs. For synonymous mutations, we have implemented the Codon Adaptation Index. For nonsynonymous mutations, we assessed evolutionary conservation, and employed previously described pathogenicity score assessment tools. For RNA genes' mutations, we designed a bioinformatic tool which compiled evolutionary conservation and potential effect on RNA structure. While comparing the functionality scores of nonsynonymous and RNA SNMs and RNMs with those of disease-causing mtDNA mutations, we found significant difference (P < 0.001). However, 24 RNMs and 67 SNMs had comparable values with disease-causing mutations reflecting their potential function thus being the best candidates to participate in adaptive events of unrelated lineages. Strikingly, some functional RNMs occurred in unrelated mtDNA lineages that independently altered susceptibility to the same diseases, thus suggesting common functionality. To our knowledge, this is the most comprehensive analysis of selective signatures in the mtDNA not only within proteins but also within RNA genes. For the first time, we discover virtually all positively selected RNMs in our phylogeny while emphasizing their dual role in past evolutionary events and in disease today.

  12. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon

    PubMed Central

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results. Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon–oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images. Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects. Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images

  13. Does extending the dual-task functional exercises workout improve postural balance in individuals with ID?

    PubMed

    Mikolajczyk, Edyta; Jankowicz-Szymanska, Agnieszka

    2015-03-01

    Maintaining postural balance, overcoming visual and motor coordination disorders and experiencing problems with low general fitness - typical of intellectually disabled individuals - adversely affect the performance quality of their activities of daily living (ADLs). Physical fitness and postural balance can be improved by taking part in special intervention programs. Our study was designed to test whether extending the dual-task intervention program (combining ADLs with balance exercises on unstable surfaces) from 12 to 24 weeks additionally improved postural balance in individuals with intellectual disability (ID). We also attempted to assess whether the effects of the above intervention program were still noticeable after 8 weeks of holidays, in which participants did not take any rehabilitation exercises. A total of 34 adolescents, aged 14-16 years (15.06±0.9), with moderate ID took part in our study. The experimental group (E) consisted of 17 individuals, who continued the intervention program originated 3 months earlier, and the control group (C) comprised the same number of participants. Postural balance was assessed on a stabilometric platform Alfa. Having extended the workout period by another 12 weeks, we noticed that the path length of the center of pressure (COP) covered by participants on tests with their eyes open and closed significantly shortened. After a lapse of 8 weeks from the completion of the program, the experimental group revealed a statistically significant decrease in the velocity along the medio-lateral (M/L) and anterior-posterior (A/P) axes. The remaining variables stayed at the same level and the control group did not demonstrate any statistically significant changes. Dual-task exercises, in which enhancing functional tasks of daily living is combined with a parallel stimulation of balance reactions, may improve static balance in persons with ID.

  14. Economical, green and dual-function pyridyl iodides as electrolyte components for high efficiency dye-sensitized solar cells.

    PubMed

    Zhang, Hong; Shi, Yantao; Wang, Liang; Wang, Chaolei; Zhou, Huawei; Guo, Wei; Ma, Tingli

    2013-10-11

    Pyridyl iodides were synthesized to serve as effective, economical, green and dual function additives for high efficiency and stable DSCs. Using commercial P25 as the photoanode, a high PCE of 7.81% was achieved with a pyridyl iodide-containing electrolyte. Meanwhile, DSCs based on our novel electrolytes demonstrated better stability.

  15. Musical Training, Bilingualism, and Executive Function: A Closer Look at Task Switching and Dual-Task Performance

    ERIC Educational Resources Information Center

    Moradzadeh, Linda; Blumenthal, Galit; Wiseheart, Melody

    2015-01-01

    This study investigated whether musical training and bilingualism are associated with enhancements in specific components of executive function, namely, task switching and dual-task performance. Participants (n = 153) belonging to one of four groups (monolingual musician, bilingual musician, bilingual non-musician, or monolingual non-musician)…

  16. Musical Training, Bilingualism, and Executive Function: A Closer Look at Task Switching and Dual-Task Performance

    ERIC Educational Resources Information Center

    Moradzadeh, Linda; Blumenthal, Galit; Wiseheart, Melody

    2015-01-01

    This study investigated whether musical training and bilingualism are associated with enhancements in specific components of executive function, namely, task switching and dual-task performance. Participants (n = 153) belonging to one of four groups (monolingual musician, bilingual musician, bilingual non-musician, or monolingual non-musician)…

  17. Two new native ß-glucosidases from Clavispora NRRL Y-50464 confer its dual function as cellobiose fermenting ethanologenic yeast

    USDA-ARS?s Scientific Manuscript database

    Clavispora NRRL Y-50464, a dual functional cellobiose fermenting and ethanologenic yeast strain, is a candidate biocatalyst for lower cost lignocellulose-to-ethanol production using simultaneous saccharification and fermentation. A ß-glucosidase BGL1 protein from this strain was recently reported an...

  18. A multi writable thiophene-based selective and reversible chromogenic fluoride probe with dual -NH functionality

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Siddharth; Kumar, Ajit; Pandey, Abha; Upadhyay, K. K.

    2017-01-01

    A chromogenic fluoride probe bearing bis imine groups having dual -NH functionality (BSB) has been designed, synthesised and structurally characterized by its single crystal X-ray diffraction studies. The BSB could visually and spectroscopically recognise F- with high selectivity over other anions by exhibiting intense chromogenic response (from colourless to red) for F- in acetonitrile solution. The UV-visible titration and 1H NMR titration experiments indicated that the observed changes occur via a combined process including hydrogen bonding and deprotonation between the BSB and F-. Moreover theoretical calculations at the Density Functional Theory (DFT) level shed further light upon probe design strategy and the nature of interactions between BSB and F-. The limit of detection and binding constant of BSB towards F- were found to be 6.9 × 10- 7 M and 1.42 ± 0.069 × 108 M- 2 respectively. Finally, by using F- and H+ as chemical inputs and the absorbance as output, a INHIBIT logic gate was constructed, which exhibits "Multi-write" ability without obvious degradation in its optical output.

  19. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    DOE PAGES

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-30

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP)more » chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.« less

  20. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    SciTech Connect

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-30

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.

  1. A multi writable thiophene-based selective and reversible chromogenic fluoride probe with dual -NH functionality.

    PubMed

    Vishwakarma, Siddharth; Kumar, Ajit; Pandey, Abha; Upadhyay, K K

    2017-01-05

    A chromogenic fluoride probe bearing bis imine groups having dual -NH functionality (BSB) has been designed, synthesised and structurally characterized by its single crystal X-ray diffraction studies. The BSB could visually and spectroscopically recognise F(-) with high selectivity over other anions by exhibiting intense chromogenic response (from colourless to red) for F(-) in acetonitrile solution. The UV-visible titration and (1)H NMR titration experiments indicated that the observed changes occur via a combined process including hydrogen bonding and deprotonation between the BSB and F(-). Moreover theoretical calculations at the Density Functional Theory (DFT) level shed further light upon probe design strategy and the nature of interactions between BSB and F(-). The limit of detection and binding constant of BSB towards F(-) were found to be 6.9×10(-7)M and 1.42±0.069×10(8)M(-2) respectively. Finally, by using F(-)and H(+) as chemical inputs and the absorbance as output, a INHIBIT logic gate was constructed, which exhibits "Multi-write" ability without obvious degradation in its optical output. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The dual-function CD150 receptor subfamily: the viral attraction.

    PubMed

    Sidorenko, Svetlana P; Clark, Edward A

    2003-01-01

    The CD150 subfamily within the CD2 family is a growing group of dual-function receptors that have within their cytoplasmic tails a characteristic signaling motif. The ITSM (immunoreceptor tyrosine-based switch motif) enables these receptors to bind to and be regulated by small SH2 domain adaptor proteins, including SH2D1A (SH2-containing adaptor protein SH2 domain protein 1A) and EAT-2 (EWS-activated transcript 2). A major signaling pathway through the prototypic receptor in this subfamily, CD150, leads to the activation of interferon-gamma, a key cytokine for viral immunity. As a result, many viruses have designed strategies to usurp or alter CD150 functions. Measles virus uses CD150 as a receptor and Molluscum contagiosum virus encodes proteins that are homologous to CD150. Thus, viruses use CD150 subfamily receptors to create a favorable environment to elude detection and destruction. Understanding the CD150 subfamily may lead to new strategies for vaccine development and antiviral therapies.

  3. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    NASA Astrophysics Data System (ADS)

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-01

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.

  4. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    PubMed Central

    Kuksenok, Olga; Balazs, Anna C.

    2015-01-01

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks. PMID:25924823

  5. A trilayer separator with dual function for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Song, Rensheng; Fang, Ruopian; Wen, Lei; Shi, Ying; Wang, Shaogang; Li, Feng

    2016-01-01

    In this article, we propose a trilayer graphene/polypropylene/Al2O3 (GPA) separator with dual function for high performance lithium-sulfur (Li-S) batteries. Graphene is coated on one side of polypropylene (PP) separator, which functions as a conductive layer and an electrolyte reservoir that allows for rapid electron and ion transport. Then Al2O3 particles are coated on the other side to further enhance thermal stability and safety of the graphene coated polypropylene (GCP) separator, which are touched with lithium metal anode in the Li-S battery. The GPA separator shows good thermal stability after heating at 157 °C for 10 min while both GCP and PP separators showing an obvious shrinkage about 10%. The initial discharge specific capacity of Li-S coin cell with a GPA separator could reach 1067.7 mAh g-1 at 0.2C. After 100 discharge/charge cycles, it can still deliver a reversible capacity of as high as 804.4 mAh g-1 with 75% capacity retention. The pouch cells further confirm that the trilayer design has great promise towards practical applications.

  6. Structure reveals function of the dual variable domain immunoglobulin (DVD-Ig™) molecule.

    PubMed

    Jakob, Clarissa G; Edalji, Rohinton; Judge, Russell A; DiGiammarino, Enrico; Li, Yingchun; Gu, Jijie; Ghayur, Tariq

    2013-01-01

    Several bispecific antibody-based formats have been developed over the past 25 years in an effort to produce a new generation of immunotherapeutics that target two or more disease mechanisms simultaneously. One such format, the dual-variable domain immunoglobulin (DVD-Ig™), combines the target binding domains of two monoclonal antibodies via flexible naturally occurring linkers, which yields a tetravalent IgG - like molecule. We report the structure of an interleukin (IL)12-IL18 DVD-Ig™ Fab (DFab) fragment with IL18 bound to the inner variable domain (VD) that reveals the remarkable flexibility of the DVD-Ig™ molecule and how the DVD-Ig™ format can function to bind four antigens simultaneously. An understanding of how the inner variable domain retains function is of critical importance for designing DVD-Ig™ molecules, and for better understanding of the flexibility of immunoglobulin variable domains and linkers, which may aid in the design of improved bi- and multi-specific biologics in general.

  7. Functional test of FOOTPRINT pedotransfer functions for the dual-permeability model MACRO

    NASA Astrophysics Data System (ADS)

    Moeys, J.; Jarvis, N. J.; Stenemo, F.; Hollis, J. M.; Dubus, I. G.; Larsbo, M.; Brown, C. D.; Bromilow, R.; Coquet, Y.; Vachier, P.

    2009-04-01

    Our ability to assess and predict pollution risks for surface waters and groundwater across larger areas (e.g. catchment and regional scales) relies on our capacity to estimate soil physical and hydrological properties and crop characteristics that are generally required as model parameters. ‘Pedotransfer' functions (PTF) can be used to estimate model parameters from more easily available soil survey data. The EU-FP6 European project FOOTPRINT (www.eu-footprint.org) has supported the development of a full set of PTF's to completely parameterise the pesticide fate model MACRO from only easily available site and soil data for a range of European agronomic, climatic and pedological scenarios The work presented here aimed at assessing the performance of the parameterisation procedures developed in the FOOTPRINT project for MACRO, from a functional point of view. We present a comparison of measured and simulated tracer leaching in medium- to long-term (2 months to 2 years) experiments driven by natural-transient rainfall conditions on 41 lysimeters, representing 15 soil types, located in Sweden, UK and France. For each experiment, the only information used to parameterize the model was a soil profile description, in which each horizon is characterized by its thickness, FAO master horizon type, texture class, organic carbon content and bulk density and knowledge of the tillage (till, no-till, harrowed) and cropping practices (crop type, and sowing dates). The average depth of the lysimeters was 1 meter, each profile containing an average of 4.6 horizons. The soil properties covered a large range of textures (1 to 78% clay), organic matter contents (0 to 29%) and bulk densities (550 to 1870 kg.m-3). Simulations were first conducted without any calibration of parameters. In a second step, we conducted simulations where two crop parameters were optimized (root depth and root water uptake efficiency), in order to estimate the impact of errors in the simulated water balance

  8. Creating conditional dual fluorescence labeled transgenic animals for studying function of small noncoding RNAs.

    PubMed

    Yang, Kun; Gao, Yun; Yang, Mingfu; Xu, Zuoshang; Chen, Qian

    2017-01-01

    Because the function of most noncoding (nc) RNAs is unknown, Cre-lox transgenic mice are useful tools to determine their functions in a tissue or developmental stage-specific manner. However, the technology faces challenges because expression of ncRNA-transgene lacks protein product. No antibody or peptide-tag can be used to trace ncRNA expression in mouse tissues in real time. Furthermore, transgene integration at different locus or orientations in the genome may result in recombination of genomic fragments in the Cre-lox system. Establishing a reliable method that can be used to determine the precise copy number and orientation of the transgene is critical to the field. We developed a fast and straightforward method to determine ncRNA-transgene copy number, orientation, and insertion site in the genome. Furthermore, upon tissue-specific expression of ncRNA, a Cre-loxP-mediated dual-fluorescence expression system facilitates fluorescence signal switching from green to red, which enables real-time monitoring of ncRNA expression by fluorescence signals. As proof of concept, we demonstrate that after microRNA (miRNA)-Flox mice crossed with Col2a1-Cre mice, miRNA transgene expression could be detected successfully by red fluorescence signals in various cartilaginous tissues. This method of creating small ncRNA transgenic mice facilitates both tissue-specific ncRNA expression and real-time visualization of its expression. It is particularly suitable for in vivo studies of the functional roles and lineage tracing of small ncRNA.

  9. Dual functions of autophagy in the response of breast tumor cells to radiation

    PubMed Central

    Bristol, Molly L.; Di, Xu; Beckman, Matthew J.; Wilson, Eden N.; Henderson, Scott C.; Maiti, Aparna; Fan, Zhen; Gewirtz, David A.

    2012-01-01

    In MCF-7 breast tumor cells, ionizing radiation promoted autophagy that was cytoprotective; pharmacological or genetic interference with autophagy induced by radiation resulted in growth suppression and/or cell killing (primarily by apoptosis). The hormonally active form of vitamin D, 1,25D3, also promoted autophagy in irradiated MCF-7 cells, sensitized the cells to radiation and suppressed the proliferative recovery that occurs after radiation alone. 1,25D3 enhanced radiosensitivity and promoted autophagy in MCF-7 cells that overexpress Her-2/neu as well as in p53 mutant Hs578t breast tumor cells. In contrast, 1,25D3 failed to alter radiosensitivity or promote autophagy in the BT474 breast tumor cell line with low-level expression of the vitamin D receptor. Enhancement of MCF-7 cell sensitivity to radiation by 1,25D3 was not attenuated by a genetic block to autophagy due largely to the promotion of apoptosis via the collateral suppression of protective autophagy. However, MCF-7 cells were protected from the combination of 1,25D3 with radiation using a concentration of chloroquine that produced minimal sensitization to radiation alone. The current studies are consistent with the premise that while autophagy mediates a cytoprotective function in irradiated breast tumor cells, promotion of autophagy can also confer radiosensitivity by vitamin D (1,25D3). As both cytoprotective and cytotoxic autophagy can apparently be expressed in the same experimental system in response to radiation, this type of model could be utilized to distinguish biochemical, molecular and/or functional differences in these dual functions of autophagy. PMID:22498493

  10. Interactive dual-volume rendering visualization with real-time fusion and transfer function enhancement

    NASA Astrophysics Data System (ADS)

    Macready, Hugh; Kim, Jinman; Feng, David; Cai, Weidong

    2006-03-01

    Dual-modality imaging scanners combining functional PET and anatomical CT constitute a challenge in volumetric visualization that can be limited by the high computational demand and expense. This study aims at providing physicians with multi-dimensional visualization tools, in order to navigate and manipulate the data running on a consumer PC. We have maximized the utilization of pixel-shader architecture of the low-cost graphic hardware and the texture-based volume rendering to provide visualization tools with high degree of interactivity. All the software was developed using OpenGL and Silicon Graphics Inc. Volumizer, tested on a Pentium mobile CPU on a PC notebook with 64M graphic memory. We render the individual modalities separately, and performing real-time per-voxel fusion. We designed a novel "alpha-spike" transfer function to interactively identify structure of interest from volume rendering of PET/CT. This works by assigning a non-linear opacity to the voxels, thus, allowing the physician to selectively eliminate or reveal information from the PET/CT volumes. As the PET and CT are rendered independently, manipulations can be applied to individual volumes, for instance, the application of transfer function to CT to reveal the lung boundary while adjusting the fusion ration between the CT and PET to enhance the contrast of a tumour region, with the resultant manipulated data sets fused together in real-time as the adjustments are made. In addition to conventional navigation and manipulation tools, such as scaling, LUT, volume slicing, and others, our strategy permits efficient visualization of PET/CT volume rendering which can potentially aid in interpretation and diagnosis.

  11. Dual functionalized graphene oxide serves as a carrier for delivering oligohistidine- and biotin-tagged biomolecules into cells.

    PubMed

    Jana, Batakrishna; Mondal, Goutam; Biswas, Atanu; Chakraborty, Indrani; Saha, Abhijit; Kurkute, Prashant; Ghosh, Surajit

    2013-11-01

    A versatile method of dual chemical functionalization of graphene oxide (GO) with Tris-[nitrilotris(acetic acid)] (Tris-NTA) and biotin for cellular delivery of oligohistidine- and biotin-tagged biomolecules is reported. Orthogonally functionalized GO surfaces with Tris-NTA and biotin to obtain a dual-functionalized GO (DFGO) are prepared and characterized by various spectroscopic and microscopic techniques. Fluorescence microscopic images reveal that DFGO surfaces are capable of binding oligohistidine-tagged biomolecules/proteins and avidin/biotin-tagged biomolecules/proteins orthogonally. The DFGO nanoparticles are non-cytotoxic in nature and can deliver oligohistidine- and biotin-tagged biomolecules simultaneously into the cell. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of dual-function ELISA for effective antigen and antibody detection against H7 avian influenza virus

    PubMed Central

    2013-01-01

    Background Outbreaks in poultry involving influenza virus from H7 subtype have resulted in human infections, thus causing a major concern for public health, as well as for the poultry industry. Currently, no efficient rapid test is available for large-scale detection of either antigen or antibody of H7 avian influenza viruses. Results In the present study, a dual function ELISA was developed for the effective detection of antigen and antibody against H7 AIVs. The test was established based on antigen-capture-ELISA and epitope blocking ELISA. The two Mabs 62 and 98 which were exploited in the assay were identified to recognize two conformational neutralizing epitopes on H7 HA1. Both of the epitopes exist in all of the human H7 strains, including the recent H7N9 strain from China and > 96.6% of avian H7 strains. The dual ELISA was able to detect all of the five H7 antigens tested without any cross reaction to other influenza subtypes. The antigen detection limit was less than 1 HA unit of H7. For antibody detection, the sensitivity and specificity of the dual ELISA was evaluated and compared to HI and microneutralization using immunized animal sera to different H7 strains and different subtypes of AIVs. Results indicated that antibodies to H7 were readily detected in immunized animal sera by the dual ELISA whereas specimens with antibodies to other AIVs yielded negative results. Conclusions This is the first dual-function ELISA reported for either antigen or antibody detection against H7 AIVs. The assay was highly sensitive and 100% specific in both functions rendering it effective for H7 diagnosis. PMID:24083616

  13. The pheromone frontalin and its dual function in the invasive bark beetle Dendroctonus valens.

    PubMed

    Liu, Zhudong; Xu, Bingbing; Miao, Zhenwang; Sun, Jianghua

    2013-07-01

    The red turpentine beetle, Dendroctonus valens LeConte, is one of the most destructive invasive forest pests in China, having killed more than 6 million pines since its first outbreak in 1999. Little is known about D. valens pheromone biology and no aggregation pheromone has yet been identified. Analysis by gas chromatograph/mass spectrometer of volatiles collected from live beetles in China showed that female beetles produce frontalin and males do not. Olfactory assays in the laboratory showed that males were attracted to frontalin at a wide range of concentrations, whereas females were attracted to it at a narrow range of concentrations. In field trials, 3-carene, a monoterpene kairomone from a pine tree selected to host the beetles attracted both sexes, and when frontalin was added, the total number of beetles captured increased by almost 200%. However, increasing concentrations of frontalin significantly decreased the percentage of female beetles trapped. These results suggest a new role of frontalin as an aggregation pheromone in addition to a female-produced sex pheromone, which was previously shown in a North American population. The dual functions of the pheromone frontalin produced by D. valens females, as well as its ecological significance for overcoming host resistance, are discussed.

  14. Dual Functionality of Myeloperoxidase in Rotenone-Exposed Brain-Resident Immune Cells

    PubMed Central

    Chang, Chi Young; Song, Mi Jeon; Jeon, Sae-Bom; Yoon, Hee Jung; Lee, Dae Kee; Kim, In-Hoo; Suk, Kyungho; Choi, Dong-Kug; Park, Eun Jung

    2011-01-01

    Rotenone exposure has emerged as an environmental risk factor for inflammation-associated neurodegenerative diseases. However, the underlying mechanisms responsible for the harmful effects of rotenone in the brain remain poorly understood. Herein, we report that myeloperoxidase (MPO) may have a potential regulatory role in rotenone-exposed brain-resident immune cells. We show that microglia, unlike neurons, do not undergo death; instead, they exhibit distinctive activated properties under rotenone-exposed conditions. Once activated by rotenone, microglia show increased production of reactive oxygen species, particularly HOCl. Notably, MPO, an HOCl-producing enzyme that is undetectable under normal conditions, is significantly increased after exposure to rotenone. MPO-exposed glial cells also display characteristics of activated cells, producing proinflammatory cytokines and increasing their phagocytic activity. Interestingly, our studies with MPO inhibitors and MPO-knockout mice reveal that MPO deficiency potentiates, rather than inhibits, the rotenone-induced activated state of glia and promotes glial cell death. Furthermore, rotenone-triggered neuronal injury was more apparent in co-cultures with glial cells from Mpo−/− mice than in those from wild-type mice. Collectively, our data provide evidence that MPO has dual functionality under rotenone-exposed conditions, playing a critical regulatory role in modulating pathological and protective events in the brain. PMID:21704008

  15. Dual functions of polyvinyl alcohol (PVA): fabricating particles and electrospinning nanofibers applied in controlled drug release

    NASA Astrophysics Data System (ADS)

    Qin, Xiao-Hong; Wu, De-Qun; Chu, Chih-Chang

    2013-01-01

    The fabrication of submicron size microsphere from 8-Phe-4 poly(ester amide) (PEA) using polyvinyl alcohol (PVA) as the emulsion was reported. The biodegradable microspheres were prepared by an oil-in-water emulsion/solvent evaporation technique, and PVA was used as the emulsion. Furthermore, the emulsion PVA was electrospun into nanofibrous mats, and 8-Phe-4 PEA microspheres were entrapped in the resultant mats. The dual functions of PVA to fabricate ideal nanofibrous mats which can entrap microspheres in them and to obtain 8-Phe-4 microspheres as emulsion in their potential application were demonstrated. The anti-cancer drug doxorubicin (DOX) was encapsulated in the 8-Phe-4 amino acid-based PEA microspheres and the entrapment efficiency is almost 100 %. At the same time, the DOX can be controlled released in PBS solution and in α-chymotrypsin solution. The cytotoxicity of PVA, PVA mats-entrapped 8-Phe-4 microspheres and PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres, was investigated. Hela cells were used to test the cytotoxicity of the DOX that released from the PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres for 2 days, and the cell viability is below 30 % when the 8-Phe-4 microspheres concentration is 1 mg/mL. It demonstrated that the PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres have a potential biomedical application.

  16. Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers.

    PubMed

    Zuo, Lei; Cui, Wen

    2013-10-01

    This paper proposes a novel retrofittable approach for dual-functional energy-harvesting and robust vibration control by integrating the tuned mass damper (TMD) and electromagnetic shunted resonant damping. The viscous dissipative element between the TMD and primary system is replaced by an electromagnetic transducer shunted with a resonant RLC circuit. An efficient gradient based numeric method is presented for the parameter optimization in the control framework for vibration suppression and energy harvesting. A case study is performed based on the Taipei 101 TMD. It is found that by tuning the TMD resonance and circuit resonance close to that of the primary structure, the electromagnetic resonant-shunt TMD achieves the enhanced effectiveness and robustness of double-mass series TMDs, without suffering from the significantly amplified motion stroke. It is also observed that the parameters and performances optimized for vibration suppression are close to those optimized for energy harvesting, and the performance is not sensitive to the resistance of the charging circuit or electrical load.

  17. Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries.

    PubMed

    Chen, Shuangqiang; Shen, Laifa; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2017-03-15

    To address the challenge of huge volume change and unstable solid electrolyte interface (SEI) of silicon in cycles, causing severe pulverization, this paper proposes a "double-shell" concept. This concept is designed to perform dual functions on encapsulating volume change of silicon and stabilizing SEI layer in cycles using double carbon shells. Double carbon shells coated Si nanoparticles (DCS-Si) are prepared. Inner carbon shell provides finite inner voids to allow large volume changes of Si nanoparticles inside of inner carbon shell, while static outer shell facilitates the formation of stable SEI. Most importantly, intershell spaces are preserved to buffer volume changes and alleviate mechanical stress from inner carbon shell. DCS-Si electrodes display a high rechargeable specific capacity of 1802 mAh g(-1) at a current rate of 0.2 C, superior rate capability and good cycling performance up to 1000 cycles. A full cell of DCS-Si//LiNi0.45 Co0.1 Mn1.45 O4 exhibits an average discharge voltage of 4.2 V, a high energy density of 473.6 Wh kg(-1) , and good cycling performance. Such double-shell concept can be applied to synthesize other electrode materials with large volume changes in cycles by simultaneously enhancing electronic conductivity and controlling SEI growth.

  18. Dual function of the McaS small RNA in controlling biofilm formation

    PubMed Central

    Jørgensen, Mikkel Girke; Thomason, Maureen K.; Havelund, Johannes; Valentin-Hansen, Poul; Storz, Gisela

    2013-01-01

    Many bacterial small RNAs (sRNAs) regulate gene expression through base-pairing with mRNAs, and it has been assumed that these sRNAs act solely by this one mechanism. Here we report that the multicellular adhesive (McaS) sRNA of Escherichia coli uniquely acts by two different mechanisms: base-pairing and protein titration. Previous work established that McaS base pairs with the mRNAs encoding master transcription regulators of curli and flagella synthesis, respectively, resulting in down-regulation and up-regulation of these important cell surface structures. In this study, we demonstrate that McaS activates synthesis of the exopolysaccharide β-1,6 N-acetyl-D-glucosamine (PGA) by binding the global RNA-binding protein CsrA, a negative regulator of pgaA translation. The McaS RNA bears at least two CsrA-binding sequences, and inactivation of these sites compromises CsrA binding, PGA regulation, and biofilm formation. Moreover, ectopic McaS expression leads to induction of two additional CsrA-repressed genes encoding diguanylate cyclases. Collectively, our study shows that McaS is a dual-function sRNA with roles in the two major post-transcriptional regulons controlled by the RNA-binding proteins Hfq and CsrA. PMID:23666921

  19. Chemically modified inulin microparticles serving dual function as a protein antigen delivery vehicle and immunostimulatory adjuvant.

    PubMed

    Gallovic, Matthew D; Montjoy, Douglas G; Collier, Michael A; Do, Clement; Wyslouzil, Barbara E; Bachelder, Eric M; Ainslie, Kristy M

    2016-03-01

    To develop a new subunit vaccine adjuvant, we chemically modified a naturally-occurring, immunostimulatory inulin polysaccharide to produce an acid-sensitive biopolymer (acetalated inulin, Ace-IN). Various hydrophobic Ace-IN polymers were formed into microparticles (MPs) by oil-in-water emulsions followed by solvent evaporation These Ace-IN MPs possessed tunable degradation characteristics that, unlike polyesters used in FDA-approved microparticulate formulations, had only pH-neutral hydrolytic byproducts. Macrophages were passively targeted with cytocompatible Ace-IN MPs. TNF-α production by macrophages treated with Ace-IN MPs could be altered by adjusting the polymers' chemistry. Mice immunized with Ace-IN MPs encapsulating a model ovalbumin (OVA) antigen showed higher production of anti-OVA IgG antibody levels relative to soluble antigen. The antibody titers were also comparable to an alum-based formulation. This proof-of-concept establishes the potential for chemically-modified inulin MPs to simultaneously enable dual functionality as a stimuli-controlled antigen delivery vehicle and immunostimulatory adjuvant.

  20. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  1. Dual function of MDM2 and MDMX toward the tumor suppressors p53 and RB

    PubMed Central

    Hernández-Monge, Jesús; Rousset-Roman, Adriana Berenice; Medina-Medina, Ixaura; Olivares-Illana, Vanesa

    2016-01-01

    The orchestrated crosstalk between the retinoblastoma (RB) and p53 pathways contributes to preserving proper homeostasis within the cell. The deregulation of one or both pathways is a common factor in the development of most types of human cancer. The proto-oncoproteins MDMX and MDM2 are the main regulators of the well- known tumor suppressor p53 protein. Under normal conditions, MDM2 and MDMX inhibit p53, either via repression of its transcriptional activity by protein-protein interaction, or via polyubiquitination as a result of MDM2-E3 ubiquitin ligase activity, for which MDM2 needs to dimerize with MDMX. Under genotoxic stress conditions, both become positive regulators of p53. The ATM-dependent phosphorylation of MDM2 and MDMX allow them to bind p53 mRNA, these interactions promote p53 translation. MDM2 and MDMX are also being revealed as effective regulators of the RB protein. MDM2 is able to degrade RB by two different mechanisms, that is, by ubiquitin dependent and independent pathways. MDMX enhances the ability of MDM2 to bind and degrade RB protein. However, MDMX also seems to stabilize RB through interaction and competition with MDM2. Here, we will contextualize the findings that suggest that the MDM2 and MDMX proteins have a dual function on both p53 and RB. PMID:28050229

  2. Dual function of MDM2 and MDMX toward the tumor suppressors p53 and RB.

    PubMed

    Hernández-Monge, Jesús; Rousset-Roman, Adriana Berenice; Medina-Medina, Ixaura; Olivares-Illana, Vanesa

    2016-09-01

    The orchestrated crosstalk between the retinoblastoma (RB) and p53 pathways contributes to preserving proper homeostasis within the cell. The deregulation of one or both pathways is a common factor in the development of most types of human cancer. The proto-oncoproteins MDMX and MDM2 are the main regulators of the well- known tumor suppressor p53 protein. Under normal conditions, MDM2 and MDMX inhibit p53, either via repression of its transcriptional activity by protein-protein interaction, or via polyubiquitination as a result of MDM2-E3 ubiquitin ligase activity, for which MDM2 needs to dimerize with MDMX. Under genotoxic stress conditions, both become positive regulators of p53. The ATM-dependent phosphorylation of MDM2 and MDMX allow them to bind p53 mRNA, these interactions promote p53 translation. MDM2 and MDMX are also being revealed as effective regulators of the RB protein. MDM2 is able to degrade RB by two different mechanisms, that is, by ubiquitin dependent and independent pathways. MDMX enhances the ability of MDM2 to bind and degrade RB protein. However, MDMX also seems to stabilize RB through interaction and competition with MDM2. Here, we will contextualize the findings that suggest that the MDM2 and MDMX proteins have a dual function on both p53 and RB.

  3. Targeting the mitochondrial genome via a dual function MITO-Porter: evaluation of mtDNA levels and mitochondrial function.

    PubMed

    Yamada, Yuma; Harashima, Hideyoshi

    2015-01-01

    Genetic mutations and defects in mitochondrial DNA (mtDNA) are associated with certain types of mitochondrial dysfunction, ultimately resulting in the occurrence of a variety of human diseases. For an effective mitochondrial gene therapy, it will be necessary to deliver therapeutic agents to the innermost mitochondrial space (the mitochondrial matrix), which contains the mtDNA pool. We recently developed a MITO-Porter, a liposome-based nano-carrier that delivers cargo to mitochondria via a membrane-fusion mechanism. Using propidium iodide, as a probe to detect mtDNA, we were able to confirm that the MITO-Porter delivered cargoes to mitochondrial matrices in living cells. More recently, we constructed a Dual Function (DF)-MITO-Porter, a liposome-based nanocarrier for mitochondrial delivery via a stepwise process. In this chapter, we describe the methodology used to deliver bioactive molecules to the mitochondrial matrix using the above DF-MITO-Porter, and the evaluation of mtDNA levels and mitochondrial activities in living cells.

  4. Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy.

    PubMed

    Kim, Jisu; Tung, Ching-Hsuan; Choi, Yongdoo

    2014-09-21

    A smart dual-targeted theranostic agent becomes highly fluorescent and phototoxic only when its linker is cleaved by tumor-associated lysosomal enzyme cathepsin B after internalization into folate receptor-positive cancer cells.

  5. The dual-function chaperone HycH improves assembly of the formate hydrogenlyase complex.

    PubMed

    Lindenstrauß, Ute; Skorupa, Philipp; McDowall, Jennifer S; Sargent, Frank; Pinske, Constanze

    2017-08-11

    The assembly of multi-protein complexes requires the concerted synthesis and maturation of its components and subsequently their co-ordinated interaction. The membrane-bound formate hydrogenlyase (FHL) complex is the primary hydrogen-producing enzyme in Escherichia coli and is composed of seven subunits mostly encoded within the hycA-I operon for [NiFe]-hydrogenase-3 (Hyd-3). The HycH protein is predicted to have an accessory function and is not part of the final structural FHL complex. In this work, a mutant strain devoid of HycH was characterised and found to have significantly reduced FHL activity due to the instability of the electron transfer subunits. HycH was shown to interact specifically with the unprocessed species of HycE, the catalytic hydrogenase subunit of the FHL complex, at different stages during the maturation and assembly of the complex. Variants of HycH were generated with the aim of identifying interacting residues and those that influence activity. The R70/71/K72, the Y79, the E81 and the Y128 variant exchanges interrupt the interaction with HycE without influencing the FHL activity. In contrast, FHL activity, but not the interaction with HycE, was negatively influenced by H37 exchanges with polar residues. Finally, a HycH Y30 variant was unstable. Surprisingly, an overlapping function between HycH with its homologous counterpart HyfJ from the operon encoding [NiFe]-hydrogenase-4 (Hyd-4) was identified and this is the first example of sharing maturation machinery components between Hyd-3 and Hyd-4 complexes. The data presented here show that HycH has a novel dual role as an assembly chaperone for a cytoplasmic [NiFe]-hydrogenase. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Combining bifunctional chelator with (3 + 2)-cycloaddition approaches: synthesis of dual-function technetium complexes.

    PubMed

    Braband, Henrik; Imstepf, Sebastian; Benz, Michael; Spingler, Bernhard; Alberto, Roger

    2012-04-02

    A new concept for the synthesis of dual-functionalized technetium (Tc) compounds is presented, on the basis of the reactivity of fac-{Tc(VII)O(3)}(+) complexes. The concept combines the "classical" bifunctional chelator (BFC) approach with the new ligand centered labeling strategy of fac-{TcO(3)}(+) complexes with alkenes ((3 + 2)-cycloaddition approach). To evidence this concept, fac-{(99)TcO(3)}(+) model complexes containing functionalized 1,4,7-triazacyclononane (tacn) derivatives N-benzyl-2-(1,4,7-triazonan-1-yl)acetamide (tacn-ba) and 2,2',2″-(1,4,7-triazonane-1,4,7-triyl)triacetic acid (nota·3H) were synthesized and characterized. Whereas [(99)TcO(3)(tacn-ba)](+) [2](+) can be synthesized following a established oxidation procedure starting from the Tc(V) complex [(99)TcO(glyc)(tacn-ba)](+) [1](+), a new synthetic pathway for the synthesis of [(99)TcO(3)(nota)](2-) [5](2-) had to be developed, starting from [(99)Tc(nota·3H)(CO)(3)](+) [4](+) and using sodium perborate tetrahydrate (NaBO(3)·4H(2)O) as oxidizing reagent. While [(99)TcO(3)(nota)](2-) [5](2-) is a very attractive candidate for the development of trisubstituted novel multifunctional radioprobes, (3 + 2)-cycloaddition reactions of [(99)TcO(3)(tacn-ba)](+) [2](+) with 4-vinylbenzenesulfonate (styrene-SO(3)(-)) demonstrated the suitability of monosubstituted tacn derivatives for the new mixed "BFC-(3 + 2)-cycloaddition" approach. Kinetic studies of this reaction lead to the conclusion that the alteration of the electronic structure of the nitrogen donors by, e.g., alkylation can be used to tune the rate of the (3 + 2)-cycloaddition.

  7. Copper-doped titanium dioxide nanoparticles as dual-functional labels for fabrication of electrochemical immunosensors.

    PubMed

    Zhang, Sen; Ma, Hongmin; Yan, Liangguo; Cao, Wei; Yan, Tao; Wei, Qin; Du, Bin

    2014-09-15

    Constructions of versatile electroactive labels are key issues in the development of electrochemical immunosensors. In this study, copper-doped titanium dioxide nanoparticle (Cu@TiO2) was synthesized and used as labels for fabrication of sandwich-type electrochemical immunosensors on glassy carbon electrode (GCE). Due to the presence of copper ions, Cu@TiO2 shows a strong response current when coupled to an electrode. The prepared nanocomposite also shows high electrocatalytic activity towards reduction of hydrogen peroxide (H2O2). The dual functionality of Cu@TiO2 enables the fabrication of immunosensor using different detection modes, that is, square wave voltammetry (SWV) or chronoamperometry (CA). While Cu@TiO2 was used as labels of secondary antibodies (Ab2), carboxyl functionalized graphene oxide (CFGO) was used as electrode materials to immobilize primary antibodies (Ab1). Using human immunoglobulin G (IgG) as a model analyte, the immunosensor shows high sensitivity, acceptable stability and good reproducibility for both detection modes. Under optimal conditions, a linear range from 0.1 pg/mL to 100 ng/mL with a detection limit of 0.052 pg/mL was obtained for SWV analysis. For CA analysis, a wider linear range from 0.01 pg/mL to 100 ng/mL and a lower detection limit of 0.0043 pg/mL were obtained. The proposed metal ion-based enzyme-free and noble metal-free immunosensor may have promising applications in clinical diagnoses and many other fields.

  8. Dual effect of local anesthetics on the function of excitable rod outer segment disk membrane

    SciTech Connect

    Mashimo, T.; Abe, K.; Yoshiya, I.

    1986-04-01

    The effects of local anesthetics and a divalent cation, Ca2+, on the function of rhodopsin were estimated from the measurements of light-induced proton uptake. The light-induced proton uptake by rhodopsin in the rod outer segment disk membrane was enhanced at lower pH (4) but depressed at higher pHs (6 to 8) by the tertiary amine local anesthetics lidocaine, bupivacaine, tetracaine, and dibucaine. The order of local anesthetic-induced depression of the proton uptake followed that of their clinical anesthetic potencies. The depression of the proton uptake versus the concentration of the uncharged form of local anesthetic nearly describes the same curve for small and large dose of added anesthetic. Furthermore, a neutral local anesthetic, benzocaine, depressed the proton uptake at all pHs between 4 and 7. These results indicate that the depression of the proton uptake is due to the effect of only the uncharged form. It is hypothesized that the uncharged form of local anesthetics interacts hydrophobically with the rhodopsin in the disk membrane. The dual effect of local anesthetics on the proton uptake, on the other hand, suggests that the activation of the function of rhodopsin may be caused by the charged form. There was no significant change in the light-induced proton uptake by rhodopsin when 1 mM of Ca2+ was introduced into the disk membrane at varying pHs in the absence or presence of local anesthetics. This fact indicates that Ca2+ ion does not influence the diprotonating process of metarhodopsin; neither does it interfere with the local anesthetic-induced changes in the rhodopsin molecule.

  9. A dual RF resonator system for high-field functional magnetic resonance imaging of small animals.

    PubMed

    Ludwig, R; Bodgdanov, G; King, J; Allard, A; Ferris, C F

    2004-01-30

    A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals.

  10. Musical training, bilingualism, and executive function: a closer look at task switching and dual-task performance.

    PubMed

    Moradzadeh, Linda; Blumenthal, Galit; Wiseheart, Melody

    2015-07-01

    This study investigated whether musical training and bilingualism are associated with enhancements in specific components of executive function, namely, task switching and dual-task performance. Participants (n = 153) belonging to one of four groups (monolingual musician, bilingual musician, bilingual non-musician, or monolingual non-musician) were matched on age and socioeconomic status and administered task switching and dual-task paradigms. Results demonstrated reduced global and local switch costs in musicians compared with non-musicians, suggesting that musical training can contribute to increased efficiency in the ability to shift flexibly between mental sets. On dual-task performance, musicians also outperformed non-musicians. There was neither a cognitive advantage for bilinguals relative to monolinguals, nor an interaction between music and language to suggest additive effects of both types of experience. These findings demonstrate that long-term musical training is associated with improvements in task switching and dual-task performance. Copyright © 2014 Cognitive Science Society, Inc.

  11. Dependence of light-emitting and photovoltaic properties of dual-function organic diodes on carrier-transporting layers

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Nyeon; Choi, Mun Soo

    2013-10-01

    Dual-function photovoltaic organic light-emitting diodes (PVOEDs) have been investigated in this work. The PVOLEDs emit light when forward biased and generate electricity when backward biased. This dual function is based on the half-gap junction composed of 5,6,11,12-tetraphenylnaphthacene (rubrene) and C 60. The device structure was optimized through experiments using various organic materials for the electron-transporting layer (ETL) and electron-injection layer (EIL). Through this work, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), C 60 and LiF were selected as the ETL, electron-accepting layer and EIL, respectively. Using this device structure, we obtained a current efficiency of 0.27 cd/A for the light-emitting mode and a power-conversion efficiency of 1.95% for the photovoltaic mode.

  12. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy.

    PubMed

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H; Zhang, Keqing; Thomas, Gail D; Duan, Dongsheng

    2013-09-15

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.

  13. Evaluation of bishexadecyltrimethyl ammonium palladium tetrachloride based dual functional colloidal carrier as an antimicrobial and anticancer agent.

    PubMed

    Kaur, Gurpreet; Kumar, Sandeep; Dilbaghi, Neeraj; Kaur, Baljinder; Kant, Ravi; Guru, Santosh Kumar; Bhushan, Shashi; Jaglan, Sundeep

    2016-04-21

    We have developed a dual function carrier using bishexadecyltrimethyl ammonium palladium tetrachloride, which has anticancer as well as antibacterial activity, using a ligand insertion method with a simple and easy work procedure. The complex is prepared by a simple and cost effective method using hexadecyltrimethyl ammonium chloride and palladium chloride under controlled stoichiometry. Herein, we report the aggregation (self assembly) of the metallosurfactant having palladium as a counter ion, in aqueous medium along with its binding affinity with bovine serum albumin. The palladium surfactant has exhibited excellent antimicrobial efficacy against fungus and bacteria (both Gram-positive and Gram-negative bacteria). Cytotoxicity of palladium surfactant against cancerous (Human leukemia HL-60, pancreatic MIA-Pa-Ca-2 and prostate cancer PC-3) and healthy cells (fR2 human breast epithelial cells) was also evaluated using MTT assay. The present dual functional moiety shows a low IC50 value and has potential to be used as an anticancer agent. Our dual function carrier which itself possesses antimicrobial and anticancer activity represents a simple and effective system and can also be utilized as a drug carrier in the future.

  14. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation.

    PubMed

    Lee, Seung Hwan; Yu, Seunggun; Shahzad, Faisal; Kim, Woo Nyon; Park, Cheolmin; Hong, Soon Man; Koo, Chong Min

    2017-09-21

    Lightweight dual-functional materials with high EMI shielding performance and thermal conductivity are of great importance in modern cutting-edge applications, such as mobile electronics, automotive, aerospace, and military. Unfortunately, a clear material solution has not emerged yet. Herein, we demonstrate a simple and effective way to fabricate lightweight metal-based polymer composites with dual-functional ability of excellent EMI shielding effectiveness and thermal conductivity using expandable polymer bead-templated Cu hollow beads. The low-density Cu hollow beads (ρ ∼ 0.44 g cm(-3)) were fabricated through electroless plating of Cu on the expanded polymer beads with ultralow density (ρ ∼ 0.02 g cm(-3)). The resulting composites that formed a continuous 3D Cu network with a very small Cu content (∼9.8 vol%) exhibited excellent EMI shielding (110.7 dB at 7 GHz) and thermal conductivity (7.0 W m(-1) K(-1)) with isotropic features. Moreover, the densities of the composites are tunable from 1.28 to 0.59 g cm(-3) in accordance with the purpose of their applications. To the best of our knowledge, the resulting composites are the best lightweight dual-functional materials with exceptionally high EMI SE and thermal conductivity performance among synthetic polymer composites.

  15. Potts model partition functions for self-dual families of strip graphs

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Chiuan; Shrock, Robert

    2001-12-01

    We consider the q-state Potts model on families of self-dual strip graphs GD of the square lattice of width Ly and arbitrarily great length Lx, with periodic longitudinal boundary conditions. The general partition function Z and the T=0 antiferromagnetic special case P (chromatic polynomial) have the respective forms ∑ j=1 NF, Ly, λcF, Ly, j( λF, Ly, j) Lx, with F= Z, P. For arbitrary Ly, we determine (i) the general coefficient cF, Ly, j in terms of Chebyshev polynomials, (ii) the number nF( Ly, d) of terms with each type of coefficient, and (iii) the total number of terms NF, Ly, λ. We point out interesting connections between the nZ( Ly, d) and Temperley-Lieb algebras, and between the NF, Ly, λ and enumerations of directed lattice animals. Exact calculations of P are presented for 2⩽ Ly⩽4. In the limit of infinite length, we calculate the ground state degeneracy per site (exponent of the ground state entropy), W( q). Generalizing q from Z+ to C, we determine the continuous locus B in the complex q plane where W( q) is singular. We find the interesting result that for all Ly values considered, the maximal point at which B crosses the real q-axis, denoted qc, is the same, and is equal to the value for the infinite square lattice, qc=3. This is the first family of strip graphs of which we are aware that exhibits this type of universality of qc.

  16. Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces.

    PubMed

    Xu, Li-Chong; Wo, Yaqi; Meyerhoff, Mark E; Siedlecki, Christopher A

    2017-03-15

    In separate prior studies, physical topographic surface modification or nitric oxide (NO) release has been demonstrated to each be an effective approach to inhibit and control bacterial adhesion and biofilm formation on polymeric surfaces. Such approaches can prevent biomaterial-associated infection without causing the antibiotic resistance of the strain. In this work, both techniques were successfully integrated and applied to a polyurethane (PU) biomaterial surface that bears ordered pillar topographies (400/400nm and 500/500nm patterns) at the top surface and a S-nitroso-N-acetylpenicillamine (SNAP, NO donor) doped sub-layer in the middle, via a soft lithography two-stage replication process. Upon placing the SNAP textured PU films into PBS at 37°C, the decomposition of SNAP within polymer film initiates NO release with a lifetime of up to 10days at flux levels >0.5×10(-10)molmin(-1)cm(-2) for a textured polyurethane layer containing 15wt% SNAP. The textured surface reduces the accessible surface area and the opportunity of bacteria-surface interaction, while the NO release from the same surface further inhibits bacterial growth and biofilm formation. Such dual functionality surfaces are shown to provide a synergistic effect on inhibition of Staphylococcus epidermidis bacterial adhesion that is significantly greater than the inhibition of bacterial adhesion achieved by either single treatment approach alone. Longer term experiments to observe biofilm formation demonstrate that the SNAP doped-textured PU surface can inhibit the biofilm formation for >28d and provide a practical approach to improve the biocompatibility of current biomimetic biomaterials and thereby reduce the risk of pathogenic infection.

  17. Thermally Cured Dual Functional Viologen-Based All-in-One Electrochromic Devices with Panchromatic Modulation.

    PubMed

    Kao, Sheng-Yuan; Lu, Hsin-Che; Kung, Chung-Wei; Chen, Hsin-Wei; Chang, Ting-Hsiang; Ho, Kuo-Chuan

    2016-02-17

    Vinyl benzyl viologen (VBV) was synthesized and utilized to obtain all-in-one thermally cured electrochromic devices (ECDs). The vinyl moiety of VBV monomer could react with methyl methacrylate (MMA) to yield bulky VBV/poly(methyl methacrylate) (PMMA) chains and even cross-linked network without the assistance of additional cross-linker. Both the bulky VBV/PMMA chains and the resulting polymer network can hinder the aggregation of the viologens and reduce the possibility of dimerization, rendering enhanced cycling stability. Large transmittance changes (ΔT) over 60% at both 570 and 615 nm were achieved when the VBV-based ECD was switched from 0 V to a low potential bias of 0.5 V. Ultimately, the dual functional of VBV molecules, serving simultaneously as a promising electrochromic material and a cross-linker, is fully utilized in the proposed electrochromic system, making its fabrication process much easier. Negligible decays in ΔT at both wavelengths were observed for the cured ECD after being subjected to 1000 repetitive cycles, while 17.1% and 22.0% decays were noticed at 570 and 615 nm, respectively, for the noncured ECD. In addition, the low voltage-driven feature of the VBV-based ECD enables it to be incorporated with phenyl viologen (PV), further expanding the absorption range of the ECD. Panchromatic characteristic of the proposed PV/VBV-based ECD was demonstrated while exhibiting ΔT over 60% at both wavelengths. Only 5.3% and 6.9% decays, corresponding at 570 and 615 nm, respectively, were observed in the PV/VBV-based ECD after 10 000 continuous cycles at bleaching/coloring voltages of 0/0.5 V with an interval of 10 s for both bleaching and coloring processes.

  18. The dual-functional capability of cytokine-induced killer cells and application in tumor immunology.

    PubMed

    Zhang, Qiang; Liu, Xiao-yan; Zhang, Teng; Zhang, Xin-feng; Zhao, Lin; Long, Fei; Liu, Zhuang-kai; Wang, En-hua

    2015-05-01

    Cytokine-induced killer (CIK) cells represent a heterogeneous cell population, including a large majority of CD3+CD56+ cells, a relatively minor fractions of typical T cells (CD3+CD56-), and natural killer (NK) cells (CD3-CD56+). In order to elucidate the tumor killing mechanism of these three subpopulations of CIK cells, this review summarized the concordances and differences among CD3+CD56+ CIK cells, CD3-CD56+ NK cells and CD3+CD56- T cells to the following aspects: the effects of cell surface molecules, mechanisms of tumor killing, and clinical applications of these cells in immunotherapy. NK cells can be classified into CD56brightCD16- NK cells, which produce cytokines in response to monokine co-stimulation, and the CD56dimCD16+ NK cells, which contribute to lysing susceptible target. Also, the immunity of NK cells is mainly regulated by several immune-receptors, such as ACR, ICR, NCR and KIRs. T cells require TCR and co-stimulatory molecules for initiation of T cell activation. The CD3+CD56+ CIK cells co-express with T-cell marker CD3 and NK cell marker CD56 to appear the most potent cytotoxicity and high impact on adoptive cellular immunotherapy. These CIK subpopulations share some similar tumor killing mechanisms. LFA-1 not only mediates the binding of NK cells to target cells through its ligand ICAM-1 to localize actin accumulation but also acts as a co-stimulatory receptor on NK cells. LFA-1 also functions as co-stimulatory receptor for T cells to transmit intracellular signals from the TCR to LFA-1. Furthermore, cytotoxic effect of CD3+CD56+ CIK cells is blocked by antibodies directly against LFA-1 and its counter receptor, ICAM-1. Clinically, antibody-dependent cell-mediated cytotoxicity (ADCC) is shown in both NK cells and T cells for tumor killing while dendritic cells are another main regulator for the activation of three subpopulations. In summary, CD3+CD56+ CIK cells have dual-functional capability as T-cell subsets which acquire NK cells function

  19. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine

    NASA Astrophysics Data System (ADS)

    Wang, Scarlet Xiaoyan; Michiels, Johan; Ariën, Kevin K.; New, Roger; Vanham, Guido; Roitt, Ivan

    2016-07-01

    efficacy in reducing viral replication in vitro. Thus, dual function liposomes may lead to a novel strategy for the prophylaxis of HIV/AIDS by combining the neutralizing activity of Vhh with antiviral effects of high drug concentrations.

  20. The pesticin receptor of Yersinia enterocolitica: a novel virulence factor with dual function.

    PubMed

    Rakin, A; Saken, E; Harmsen, D; Heesemann, J

    1994-07-01

    The iron-repressible outer membrane protein FyuA of Yersinia enterocolitica operates as a receptor with dual function: (i) as a receptor for the Y. pestis bacteriocin pesticin, and (ii) as a receptor for yersiniabactin, a siderophore that is produced by mouse-virulent Y. enterocolitica strains of biogroup IB. Cloning of the FyuA-encoding gene was achieved by mobilization of a genomic cosmid library of the pesticin-sensitive and mouse-virulent Y. enterocolitica O:8 strain WA into the pesticin-resistant WA fyuA mutant and subsequent in vivo selection of transconjugants for the ability to survive and multiply in mice (phenotype mouse virulence). The reisolated transconjugants which survived in mice for 3 d harboured a unique cosmid and phenotypically were pesticin sensitive. From this cosmid a 2650 bp SalI-PstI fragment conferring pesticin sensitivity was subcloned. Sequencing of this DNA fragment revealed a single open reading frame of 2022 bp, which encodes a deduced polypeptide of 673 amino acids with a predicted molecular mass of 73,677 Da. Cleavage of a putative signal sequence composed of 22 amino acids should lead to a mature protein of 651 amino acids with a molecular mass of 71,368 Da. The open reading frame is preceded by a sequence which shares homology with the postulated consensus Fur iron-repressor protein-binding site. FyuA shows homology to other iron-regulated TonB-dependent outer membrane proteins with receptor functions (e.g. BtuB, CirA, FepA, IutA, FhuA, FoxA, FcuA). On the basis of multiple alignment of amino acid sequences of FyuA and other TonB-dependent receptors, a phylogenetic tree was constructed, demonstrating that FyuA probably belongs to the citrate subfamily or represents a new subfamily of TonB-dependent receptors. Moreover, by complementation of the WA fyuA mutant by the cloned fyuA gene, yersiniabactin uptake and mouse virulence were restored. These studies demonstrate that the cloned pesticin/yersiniabactin receptor FyuA of Y

  1. Dual Sensory Loss and Depressive Symptoms: The Importance of Hearing, Daily Functioning, and Activity Engagement

    PubMed Central

    Kiely, Kim M.; Anstey, Kaarin J.; Luszcz, Mary A.

    2013-01-01

    Background: The association between dual sensory loss (DSL) and mental health has been well established. However, most studies have relied on self-report data and lacked measures that would enable researchers to examine causal pathways between DSL and depression. This study seeks to extend this research by examining the effects of DSL on mental health, and identify factors that explain the longitudinal associations between sensory loss and depressive symptoms. Methods: Piecewise linear-mixed models were used to analyze 16-years of longitudinal data collected on up to five occasions from 1611 adults (51% men) aged between 65 and 103 years. Depressive symptoms were assessed by the Centre for Epidemiological Studies Depression (CES-D). Vision loss (VL) was defined by corrected visual acuity >0.3 logMAR in the better eye, blindness, or glaucoma. Hearing loss (HL) was defined by pure-tone average (PTA) >25 dB in the better hearing ear. Analyses were adjusted for socio-demographics, medical conditions, lifestyle behaviors, activities of daily living (ADLs), cognitive function, and social engagement. Results: Unadjusted models indicated that higher levels of depressive symptoms were associated with HL (B = 1.16, SE = 0.33) and DSL (B = 2.15, SE = 0.39) but not VL. Greater rates of change in depressive symptoms were also evident after the onset of HL (B = 0.16, SE = 0.06, p < 0.01) and DSL (B = 0.30, SE = 0.09, p < 0.01). The associations between depressive symptoms and sensory loss were explained by difficulties with ADLs, and social engagement. Conclusion: Vision and HL are highly prevalent among older adults and their co-occurrence may compound their respective impacts on health, functioning, and activity engagement, thereby exerting strong effects on the mental health and wellbeing of those affected. There is therefore a need for rehabilitation programs to be sensitive to the combined effects of sensory loss on individuals

  2. Dual sensory loss and depressive symptoms: the importance of hearing, daily functioning, and activity engagement.

    PubMed

    Kiely, Kim M; Anstey, Kaarin J; Luszcz, Mary A

    2013-01-01

    The association between dual sensory loss (DSL) and mental health has been well established. However, most studies have relied on self-report data and lacked measures that would enable researchers to examine causal pathways between DSL and depression. This study seeks to extend this research by examining the effects of DSL on mental health, and identify factors that explain the longitudinal associations between sensory loss and depressive symptoms. Piecewise linear-mixed models were used to analyze 16-years of longitudinal data collected on up to five occasions from 1611 adults (51% men) aged between 65 and 103 years. Depressive symptoms were assessed by the Centre for Epidemiological Studies Depression (CES-D). Vision loss (VL) was defined by corrected visual acuity >0.3 logMAR in the better eye, blindness, or glaucoma. Hearing loss (HL) was defined by pure-tone average (PTA) >25 dB in the better hearing ear. Analyses were adjusted for socio-demographics, medical conditions, lifestyle behaviors, activities of daily living (ADLs), cognitive function, and social engagement. Unadjusted models indicated that higher levels of depressive symptoms were associated with HL (B = 1.16, SE = 0.33) and DSL (B = 2.15, SE = 0.39) but not VL. Greater rates of change in depressive symptoms were also evident after the onset of HL (B = 0.16, SE = 0.06, p < 0.01) and DSL (B = 0.30, SE = 0.09, p < 0.01). The associations between depressive symptoms and sensory loss were explained by difficulties with ADLs, and social engagement. Vision and HL are highly prevalent among older adults and their co-occurrence may compound their respective impacts on health, functioning, and activity engagement, thereby exerting strong effects on the mental health and wellbeing of those affected. There is therefore a need for rehabilitation programs to be sensitive to the combined effects of sensory loss on individuals.

  3. State of charge modeling of lithium-ion batteries using dual exponential functions

    NASA Astrophysics Data System (ADS)

    Kuo, Ting-Jung; Lee, Kung-Yen; Huang, Chien-Kang; Chen, Jau-Horng; Chiu, Wei-Li; Huang, Chih-Fang; Wu, Shuen-De

    2016-05-01

    A mathematical model is developed by fitting the discharging curve of LiFePO4 batteries and used to investigate the relationship between the state of charge and the closed-circuit voltage. The proposed mathematical model consists of dual exponential terms and a constant term which can fit the characteristics of dual equivalent RC circuits closely, representing a LiFePO4 battery. One exponential term presents the stable discharging behavior and the other one presents the unstable discharging behavior and the constant term presents the cut-off voltage.

  4. On Complex Zeros of the q-Potts Partition Function for a Self-dual Family of Graphs

    NASA Astrophysics Data System (ADS)

    Billiot, J.-M.; Corset, F.; Fontenas, E.

    2010-06-01

    This paper deals with the location of the complex zeros of q-Potts partition function for a class of self-dual graphs. For this class of graphs, as the form of the eigenvalues is known, the regions of the complex plane can be focused on the sets where there is only one dominant eigenvalue in particular containing the positive half plane. Thus, in these regions, the analyticity of the free energy per site can be derived easily. Next, some examples of graphs with their Tutte polynomial having few eigenvalues are given. The case of the cycle with an edge having a high order of multiplicity is presented in detail. In particular, we show that the well known conjecture of Chen et al. is false in the finite case. Furthermore we obtain a sequence of self-dual graphs for which the unit circle does not belong to the accumulation sets of the zeros.

  5. A Concise Access to C2-Symmetric Chiral 4-Pyrrolidinopyridine Catalysts with Dual Functional Side Chains.

    PubMed

    Mishiro, Kenji; Takeuchi, Hironori; Furuta, Takumi; Kawabata, Takeo

    2016-07-01

    A practical method was developed for the preparation of a diastereomeric library of C2-symmetric chiral 4-pyrrolidinopyridine catalysts with dual amide side chains. Use of a racemic precursor is the key to the concise production of catalysts with diverse stereochemisty.

  6. Function, Type, and Distribution of Teacher Questions in Dual-Language Preschool Read Alouds

    ERIC Educational Resources Information Center

    Gort, Mileidis; Pontier, Ryan W.; Sembiante, Sabrina F.

    2012-01-01

    This exploratory study investigated the nature and distribution of dual-language preschool teachers' questions across parallel Spanish- and English-medium read-aloud activities. The notions of comprehensible input (Krashen, 1985) and language output (Swain, 1985), along with a reciprocal interaction model of teaching (Cummins, 2000), guided our…

  7. Using the Time-Lagged Function of Dual-Aperture Scintillometer Measurements to Obtain the Crosswind

    NASA Astrophysics Data System (ADS)

    van Dinther, D.; Hartogensis, O.

    2013-12-01

    In this study the so-called crosswind (U⊥), the wind component perpendicular on a path, is determined from scintillometer measurements. A scintillometer is a device consisting of a transmitter and receiver, typically spaced a few hundred meters to a few kilometers apart. The dual-aperture scintillometer used in this study consists of two transmitters and two receivers installed next to each other. The transmitters emit light with a certain intensity which is refracted by the eddies in the atmosphere. The eddy field in between the transmitters and receivers constantly changes leading to intensity fluctuations of the light at the receivers side, which gives the scintillometer signal. The driving phenomenon of the changing eddy field is wind. The scintillometer path is ~ 100 m and the spacing in between the apertures is ~ 10 cm therefore the eddy field is mainly changed due to U⊥. A scintillometer obtains a path averaged U⊥, which for some applications (e.g. at airports) is an advantage compared to other wind measurement devices. Applying Taylor's frozen turbulence assumption the signals of the two scintillometers should be the same except for a small time shift between the two signals, from which U⊥ can be determined. This time shift can be obtained from the time-lagged-correlation function of the two signals (r12 (τ)). Four methods were used to obtain U⊥; the peak method, the Briggs method, the zero-slope method, and the correlation method. The last one is a new method introduced in this study, which obtains U⊥ by comparing r12 (τ) of a measurement to r12 (τ) of Lawrence et al. (1972) theoretical model. U⊥ values obtained from the scintillometer were validated against sonic anemometer measurements. The best results were obtained by the zero-slope method and the correlation method. The zero-slope method gave the best results for low U⊥ values (< 2 m s-1), while the correlation method gave the best results for high U⊥ values (> 2 m s-1). The

  8. Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline

    PubMed Central

    Field, Katie J; Rimington, William R; Bidartondo, Martin I; Allinson, Kate E; Beerling, David J; Cameron, Duncan D; Duckett, Jeffrey G; Leake, Jonathan R; Pressel, Silvia

    2016-01-01

    Most land plants form mutualistic associations with arbuscular mycorrhizal fungi of the Glomeromycota, but recent studies have found that ancient plant lineages form mutualisms with Mucoromycotina fungi. Simultaneous associations with both fungal lineages have now been found in some plants, necessitating studies to understand the functional and evolutionary significance of these tripartite associations for the first time. We investigate the physiology and cytology of dual fungal symbioses in the early-diverging liverworts Allisonia and Neohodgsonia at modern and Palaeozoic-like elevated atmospheric CO2 concentrations under which they are thought to have evolved. We found enhanced carbon cost to liverworts with simultaneous Mucoromycotina and Glomeromycota associations, greater nutrient gain compared with those symbiotic with only one fungal group in previous experiments and contrasting responses to atmospheric CO2 among liverwort–fungal symbioses. In liverwort–Mucoromycotina symbioses, there is increased P-for-C and N-for-C exchange efficiency at 440 p.p.m. compared with 1500 p.p.m. CO2. In liverwort–Glomeromycota symbioses, P-for-C exchange is lower at ambient CO2 compared with elevated CO2. No characteristic cytologies of dual symbiosis were identified. We provide evidence of a distinct physiological niche for plant symbioses with Mucoromycotina fungi, giving novel insight into why dual symbioses with Mucoromycotina and Glomeromycota fungi persist to the present day. PMID:26613340

  9. Managing Student Behavior in Dual Immersion Classrooms: A Study of Class-Wide Function-Related Intervention Teams.

    PubMed

    Hansen, Blake D; Caldarella, Paul; Williams, Leslie; Wills, Howard P

    2017-09-01

    Classroom management in dual immersion classrooms includes unique challenges. The teacher must instruct and correct in the L2 language, in which students are beginning learners, and effective classroom management strategies appropriate to the L2 context. Class-Wide Function-Related Intervention Teams (CW-FIT) is a positive classroom management program that teaches social skills and uses group contingencies to improve behavior. The present study examined the ability of French immersion teachers to implement CW-FIT in the L2, including the effects of CW-FIT on teacher praise and reprimand rates and as well as on students' classroom behavior. Social validity was also assessed. A single-subject multiple baseline design with embedded reversals was used to evaluate impact in second-, third-, and fourth-grade dual immersion classrooms. Results indicated that dual immersion teachers were able to implement CW-FIT in L2 with fidelity. The intervention significantly increased teacher praise and improved classroom on-task behavior. Changes in teacher reprimand rates were inconsistent. Students and teachers reported CW-FIT to be socially valid.

  10. Improved ankle and knee control with a dual-channel functional electrical stimulation system in chronic hemiplegia. A case report.

    PubMed

    Springer, S; Khamis, S; Laufer, Y

    2014-04-01

    The aim of tis report is to describe the effects of a dual-channel functional electrical stimulation (FES) system applied daily as an orthotic device to the dorsiflexors and hamstrings muscles in a subject with chronic hemiparesis. Prior to the application of FES, the patient's gait was characterized by a footdrop and knee hyperextension during stance. measurements of gait performance were collected before FES application, after a conditioning period of six weeks, and following ten months of daily use. Outcomes included lower limb kinematics and temporal gait measures. The kinematic assessments indicated significant benefits for gait with the dorsiflexors and hamstrings FES, as compared to no stimulation and peroneal FES alone. In addition ot improved ankle control, knee hyperextension was reduced during stance, and the self-selected comfortable gait velocity increased following ten months of daily use. The results of this report suggest that dual-channel FES for the dorsiflexors and hamstrings muscles may affect ankle and knee control beyond that witch can be attributed to peroneal stimulation alone. The positive effects observed in this case study point to the potential of dual-channel FES as a viable treatment options in the rehabilitation of patients with similar impairments.

  11. Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline.

    PubMed

    Field, Katie J; Rimington, William R; Bidartondo, Martin I; Allinson, Kate E; Beerling, David J; Cameron, Duncan D; Duckett, Jeffrey G; Leake, Jonathan R; Pressel, Silvia

    2016-06-01

    Most land plants form mutualistic associations with arbuscular mycorrhizal fungi of the Glomeromycota, but recent studies have found that ancient plant lineages form mutualisms with Mucoromycotina fungi. Simultaneous associations with both fungal lineages have now been found in some plants, necessitating studies to understand the functional and evolutionary significance of these tripartite associations for the first time. We investigate the physiology and cytology of dual fungal symbioses in the early-diverging liverworts Allisonia and Neohodgsonia at modern and Palaeozoic-like elevated atmospheric CO2 concentrations under which they are thought to have evolved. We found enhanced carbon cost to liverworts with simultaneous Mucoromycotina and Glomeromycota associations, greater nutrient gain compared with those symbiotic with only one fungal group in previous experiments and contrasting responses to atmospheric CO2 among liverwort-fungal symbioses. In liverwort-Mucoromycotina symbioses, there is increased P-for-C and N-for-C exchange efficiency at 440 p.p.m. compared with 1500 p.p.m. CO2. In liverwort-Glomeromycota symbioses, P-for-C exchange is lower at ambient CO2 compared with elevated CO2. No characteristic cytologies of dual symbiosis were identified. We provide evidence of a distinct physiological niche for plant symbioses with Mucoromycotina fungi, giving novel insight into why dual symbioses with Mucoromycotina and Glomeromycota fungi persist to the present day.

  12. Evolutionarily Conserved Dual Lysine Motif Determines the Non-Chaperone Function of Secreted Hsp90alpha in Tumor Progression

    PubMed Central

    Sahu, Divya; Hou, Yingping; Tsen, Fred; Tong, Chang; O’Brien, Kathryn; Situ, Alan J.; Schmidt, Thomas; Chen, Mei; Ying, Qilong; Ulmer, Tobias S.; Woodley, David T.; Li, Wei

    2016-01-01

    Both intracellular and extracellular heat shock protein-90 (Hsp90) family proteins (α and β) have been shown to support tumor progression. The tumor-promoting activity of the intracellular Hsp90 proteins is attributed to their N-terminal ATPase-driven chaperone function. What determines the extracellular function of secreted Hsp90 was unclear. Here we show that knocking out Hsp90α nullifies tumor cell abilities to migrate, invade and metastasize without affecting cell survival and growth. Knocking out Hsp90β leads to cell death. Extracellular supplementation with recombinant Hsp90α, but not Hsp90β, protein recovers the tumorigenicity of Hsp90α-knockout cells. Sequential mutagenesis identifies two evolutionarily conserved lysine residues, lys-270 and lys-277, in Hsp90α subfamily that determine the extracellular Hsp90α function. Hsp90β subfamily lacks the dual lysine motif and does not show the same extracellular function. Substitutions of gly-262 and thr-269 in Hsp90β with lysines convert Hsp90β to act as Hsp90α outside the cells. Monoclonal antibody, 1G6-D7, against the dual lysine region of secreted Hsp90α blocks de novo tumor formation and significantly inhibits expansion of already formed tumors. This study suggests an alternative therapeutic approach to selectively target the extracellular Hsp90α to the conventional approach targeting the ATPase of intracellular Hsp90α and Hsp90β in cancer. PMID:27721406

  13. Effect of dual modification of sonication and γ-irradiation on physicochemical and functional properties of lentil (Lens culinaris L.) starch.

    PubMed

    Majeed, Toiba; Wani, Idrees Ahmed; Hussain, Peerzada Rashid

    2017-03-21

    Starch isolated from lentil was subjected to two treatments namely sonication and, a dual treatment of sonication and irradiation at a dose of 5kGy. Lentil yielded 26.12±1.56g starch/100g of lentil. Chemical composition of native starch revealed 7.83±0.28% moisture, 0.23±0.30% protein, 0.35±0.05% fat and 0.10±0.00% ash. The results revealed that pasting properties of lentil starch were not affected upon sonication. However, these decreased significantly (p≤0.05) upon dual treatments. Amylose content of native starch was 31.16±1.80g/100g which showed a decrease upon sonication and dual treatments. Sonication and dual treatments (sonication and irradiation) decreased hunter 'L' value while 'a' and 'b' values showed an increase. Syneresis decreased more or less insignificantly upon sonication. However, a significant decrease in syneresis was observed after 120h storage following dual treatments. Sonication did not decrease the functional properties significantly while as dual treatment induced a significant decrease in functional properties. FT-IR analysis revealed a decrease in the intensities of OH, CH and OC stretches and CH2 bending upon sonication and dual treatments.

  14. Determination of liquid's molecular interference function based on X-ray diffraction and dual-energy CT in security screening.

    PubMed

    Zhang, Li; YangDai, Tianyi

    2016-08-01

    A method for deriving the molecular interference function (MIF) of an unknown liquid for security screening is presented. Based on the effective atomic number reconstructed from dual-energy computed tomography (CT), equivalent molecular formula of the liquid is estimated. After a series of optimizations, the MIF and a new effective atomic number are finally obtained from the X-ray diffraction (XRD) profile. The proposed method generates more accurate results with less sensitivity to the noise and data deficiency of the XRD profile.

  15. Staining-free gel electrophoresis-based multiplex enzyme assay using DNA and peptide dual-functionalized gold nanoparticles.

    PubMed

    Zhao, Wenting; Yao, Chunlei; Luo, Xiaoteng; Lin, Li; Hsing, I-Ming

    2012-04-01

    We report a simple staining-free gel electrophoresis method to simultaneously probe protease and nuclease. Utilizing gold nanoparticles (Au-NPs) dual-functionalized with DNA and peptide, the presence and concentration of nuclease and protease are determined concurrently from the relative position and intensity of the bands in the staining-free gel electrophoresis. The use of Au-NPs eliminates the need for staining processes and enables naked eye detection, while a mononucleotide-mediated approach facilitates the synthesis of DNA/peptide conjugated Au-NPs and simplifies the operation procedures. Multiplex detection and quantification of DNase I and trypsin are successfully demonstrated.

  16. Practice-related optimization and transfer of executive functions: a general review and a specific realization of their mechanisms in dual tasks.

    PubMed

    Strobach, Tilo; Salminen, Tiina; Karbach, Julia; Schubert, Torsten

    2014-11-01

    Improvements in performing demanding and complex task situations are typically related to the optimization of executive functions and efficient behavioral control. The present study systematizes and reviews the optimization of different executive function types: Shifting, Inhibition, Updating, and Dual tasking. In particular, we focus on optimisations of these functions with training and on transfer effects of related training skills to non-trained situations. The aim of the study's empirical part (see also Appendix) was to investigate the specific mechanisms of executive functions in the context of Dual tasking, leading to improved dual-task performance after practice. More specifically, we tested the Efficient Task Instantiation (ETI) model that includes specific assumptions regarding practice-related improvements of executive task coordination skills: Dual-task performance is improved with practice because of an efficient and conjoint instantiation of sets of relevant task information in working memory at the onset of a dual task. According to our knowledge, the ETI model is one of the first that allows illustrating the contribution of cognitive mechanisms underlying practice-related improvements in performing dual tasks and the impact of task coordination skills on this performance.

  17. Walking in School-Aged Children in a Dual-Task Paradigm Is Related to Age But Not to Cognition, Motor Behavior, Injuries, or Psychosocial Functioning

    PubMed Central

    Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander

    2016-01-01

    Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158

  18. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    PubMed

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  19. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers.

    PubMed

    Han, Li-Bo; Li, Yuan-Bao; Wang, Hai-Yun; Wu, Xiao-Min; Li, Chun-Li; Luo, Ming; Wu, Shen-Jie; Kong, Zhao-Sheng; Pei, Yan; Jiao, Gai-Li; Xia, Gui-Xian

    2013-11-01

    LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase-box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits.

  20. On the Interpretation of Response Time vs Onset Asynchrony Functions: Application to Dual-Task and Precue-Utilization Paradigms.

    PubMed

    Schwarz, Wolfgang; Ischebeck, Anja

    2001-06-01

    The central bottleneck model of dual-task performance (H. Pashler and J. C. Johnston, 1998, Quarterly Journal of Experimental Psychology, 46A, 51-82) and the serial processing model of precue utilization (R. Gottsdanker, 1992, Acta Psychologica, 79, 21-43) are based on a common formal structure: They both represent response time as RT(tau)=max(X-tau, Y)+Z, where X, Y, Z denote the duration of certain processing stages specified by the models and tau denotes the onset asynchrony (SOA) between two stimuli. We consider this model within a stochastic framework in which the stage durations are random variables following an arbitrary joint distribution and derive properties of the function relating E[RT(tau)] to SOA. We present a distribution-free result which relates the slope of this function to the distribution of the random durations of the assumed processing stages. Our results allow for a direct, model-based interpretation of data from related experiments; specifically, they show how the slope of the SOA-function depends on experimental factors which selectively influence individual processing stages. We explain the implications of our results for models of dual-task performance and precue utilization and illustrate their application to data obtained by M. C. Smith (1969, Acta Psychologica, 30, 220-231) and R. Gottsdanker (1992, loc. cit.) Copyright 2001 Academic Press.

  1. Dual-functional Lipid-like Nanoparticles for Delivery of mRNA and MRI Contrast Agent†

    PubMed Central

    Luo, X.; Li, B.; Zhang, X.; Zhao, W.; Bratasz, A.; Deng, B.; McComb, D. W.

    2017-01-01

    Multi-functional nanomaterials possess unique properties, facilitating both therapeutic and diagnostic applications among others. Herein, we developed dual-functional lipid-like nanoparticles for simultaneous delivery of mRNA and magnetic resonance imaging (MRI) contrast agent in order to express functional proteins and provide real-time visualization. TT3-Gd18 LLNs was identified as a lead formulation, which was able to encapsulate 91% of mRNA and 74% of Gd. This formulation showed comparable or slightly higher delivery efficiency of mRNA compared to the initial TT3 LLNs. Moreover, strong MRI signal was observed in cell pellets treated with TT3-Gd18 LLNs. More importantly, TT3-Gd18 LLNs demonstrated efficient delivery of mRNA and Gd contrast agent in vivo. PMID:28067926

  2. Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy.

    PubMed

    Liu, Renfa; Jing, Lijia; Peng, Dong; Li, Yong; Tian, Jie; Dai, Zhifei

    2015-01-01

    The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loading content of Mn(II) chelates makes the nanoparticles attractive T1 contrast agent in magnetic resonance imaging (MRI). In vivo photoacoustic imaging (PAI) results showed that the nanoparticles could be efficiently accumulated in tumor site in 24 h after systematic administration, which was further validated by MRI tests. The subsequent photothermal therapy of cancer in vivo was achieved without inducing any observed side effects. Therefore, the copper sulfide nanoparticles functionalized with Mn(II) chelate hold great promise as a theranostic nanomedicine for MR/PA dual-modal imaging guided photothermal therapy of cancer.

  3. Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy

    PubMed Central

    Liu, Renfa; Jing, Lijia; Peng, Dong; Li, Yong; Tian, Jie; Dai, Zhifei

    2015-01-01

    The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loading content of Mn(II) chelates makes the nanoparticles attractive T1 contrast agent in magnetic resonance imaging (MRI). In vivo photoacoustic imaging (PAI) results showed that the nanoparticles could be efficiently accumulated in tumor site in 24 h after systematic administration, which was further validated by MRI tests. The subsequent photothermal therapy of cancer in vivo was achieved without inducing any observed side effects. Therefore, the copper sulfide nanoparticles functionalized with Mn(II) chelate hold great promise as a theranostic nanomedicine for MR/PA dual-modal imaging guided photothermal therapy of cancer. PMID:26284144

  4. Dual-functional Polyurea Microcapsules for Chronic Wound Care Dressings: Sustained Drug Delivery and Non-leaching Infection Control

    NASA Astrophysics Data System (ADS)

    He, Wei

    A new design of dual-functional polyurea microcapsules was proposed for chronic wound dressings to provide both non-leaching infection control and sustained topical drug delivery functionalities. Quaternary ammonium functionalized polyurea microcapsules (MCQs) were synthesized under mild conditions through an interfacial crosslinking reaction between branched polyethylenimine (PEI) and 2,4-toluene diisocyanate (TDI) in a dimethylformamide/cyclohexane emulsion. An in-situ modification method was developed to endow non-leaching surface antimicrobial properties to MCQs via bonding antimicrobial surfactants to surface isocyanate residues on the polyurea shells. The resultant robust MCQs with both non-leaching antimicrobial properties and sustained drug releasing properties have potential applications in medical textiles, such as chronic wound dressings, for infection control and drug delivery.

  5. AV interval optimization using pressure volume loops in dual chamber pacemaker patients with maintained systolic left ventricular function.

    PubMed

    Eberhardt, Frank; Hanke, Thorsten; Fitschen, Joern; Heringlake, Matthias; Bode, Frank; Schunkert, Heribert; Wiegand, Uwe K H

    2012-08-01

    Atrioventricular (AV) interval optimization is often deemed too time-consuming in dual-chamber pacemaker patients with maintained LV function. Thus the majority of patients are left at their default AV interval. To quantify the magnitude of hemodynamic improvement following AV interval optimization in chronically paced dual chamber pacemaker patients. A pressure volume catheter was placed in the left ventricle of 19 patients with chronic dual chamber pacing and an ejection fraction >45 % undergoing elective coronary angiography. AV interval was varied in 10 ms steps from 80 to 300 ms, and pressure volume loops were recorded during breath hold. The average optimal AV interval was 152 ± 39 ms compared to 155 ± 8 ms for the average default AV interval (range 100-240 ms). The average improvement in stroke work following AV interval optimization was 935 ± 760 mmHg/ml (range 0-2,908; p < 0.001), which translates into an average improvement of 14 ± 9 % (range 0-28). A 10 ms variation of the AV interval changes the average stroke work by 207 ± 162 mmHg/ml. AV interval optimization also leads to improved systolic dyssynchrony indices (17.7 ± 7.0 vs. 19.4 ± 7.1 %; p = 0.01). The overall hemodynamic effect of AV interval optimization in patients with maintained LV function is in the same range as for patients undergoing cardiac resynchronization therapy for several parameters. The positive effect of AV interval optimization also applies to patients who have been chronically paced for years.

  6. Dual Functional Polymer Interlayer for Facilitating Ion Transport and Reducing Charge Recombination in Dye-Sensitized Solar Cells.

    PubMed

    Wang, Ying-Chiao; Li, Shao-Sian; Wen, Cheng-Yen; Chen, Liang-Yih; Ho, Kuo-Chuan; Chen, Chun-Wei

    2016-12-14

    Dye-sensitized solar cells (DSSCs) present low-cost alternatives to conventional wafer-based inorganic solar cells and have remarkable power conversion efficiency. To further enhance performance, we propose a new DSSC architecture with a novel dual-functional polymer interlayer that prevents charge recombination and facilitates ionic conduction, as well as maintaining dye loading and regeneration. Poly(vinylidene fluoride-trifluoroethylene) (p(VDF-TrFE)) was coated on the outside of a dye-sensitized TiO2 photoanode by a simple solution process that did not sacrifice the amount of adsorbed dye molecules in the DSSC device. Light-intensity-modulated photocurrent and photovoltage spectroscopy revealed that the proposed p(VDF-TrFE)-coated anode yielded longer electron lifetime and improved the injection of photogenerated electrons into TiO2, thereby reducing the electron transport time. Comparative cyclic voltammetry and UV-visible absorption spectroscopy based on a ferrocene-ferrocenium external standard material demonstrated that p(VDF-TrFE) enhanced the power conversion efficiency from 7.67% to 9.11%. This dual functional p(VDF-TrFE) interlayer is a promising candidate for improving the performance of DSSCs and can also be employed in other electrochemical devices.

  7. Solenoid assembly with beam focusing and radiation shielding functions for the 9/6 MeV dual energy linac

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Ju, Jinsik; Joo, Youngwoo; Lee, Byeong-No; Lee, Soo Min; Kim, Jae Hyun; Buaphad, Pikad; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Song, Ki Beak; Lee, Seung Hyun; Kim, Heesoo

    2016-09-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing a Container Inspection System (CIS) by using a dual-energy (9/6 MeV) S-band (= 2856 MHz) electron linear accelerator. The key components of the CIS are the electron linear accelerator (including an electron gun, an accelerating structure, an RF power source, cooling chillers, vacuum pumps, magnet power supplies, and two solenoid magnets with beam focusing and shielding functions), a tungsten target for X-ray generation, an X-ray collimator, a detector array, and a container moving system. Generally, in accelerators, beam focusing is mainly done by solenoids operating in the region of a few MeV to keep the shape of transverse beam symmetrically round so as to reduce the loss of electrons, which increases the beam current and the beam power. In addition, a specially-designed component is needed to protect against the radiation due to the lost electrons. In this paper, we describe the design, fabrication, and optimization of two specially- designed solenoids with focusing and radiation shielding functions for a dual-energy S-band electron linear accelerator for a CIS.

  8. Targeted Delivery of Anticancer Agents via a Dual Function Nanocarrier with an Interfacial Drug-Interactive Motif

    PubMed Central

    2015-01-01

    We have developed a dual-function drug carrier, polyethylene glycol (PEG)-derivatized farnesylthiosalicylate (FTS). Here we report that incorporation of a drug-interactive motif (Fmoc) into PEG5k–FTS2 led to further improvement in both drug loading capacity and formulation stability. Doxorubicin (DOX) formulated in PEG5k–Fmoc–FTS2 showed sustained release kinetics slower than those of DOX loaded in PEG5k–FTS2. The maximum tolerated dose of DOX- or paclitaxel (PTX)-loaded PEG5k–Fmoc–FTS2 was significantly higher than that of the free drug. Pharmacokinetics and biodistribution studies showed that DOX/PEG5k–Fmoc–FTS2 mixed micelles were able to retain DOX in the bloodstream for a significant amount of time and efficiently deliver the drug to tumor sites. More importantly, drug (DOX or PTX)-loaded PEG5k–Fmoc–FTS2 led to superior antitumor activity over other treatments including drugs formulated in PEG5k–FTS2 in breast cancer and prostate cancer models. Our improved dual function carrier with a built-in drug-interactive motif represents a simple and effective system for targeted delivery of anticancer agents. PMID:25325795

  9. Preparation of a silver nanoparticle-based dual-functional sensor using a complexation-reduction method.

    PubMed

    Mi, Fwu-Long; Wu, Shao-Jung; Zhong, Wen-Qi; Huang, Cheng-Yu

    2015-09-07

    A dual-functional sensor based on silver nanoparticles was synthesized by a two-stage procedure consisting of a low-temperature chitosan-Ag(+) complexation followed by a high-temperature reduction of the complex to form chitosan-capped silver nanoparticles (CS-capped Ag NPs). The surface plasmon resonance (SPR) absorption and fluorescence emission of the silver nanoparticles were influenced by the concentration and degradation time of chitosan, and the temperatures of the complexation and reduction reactions. The SPR absorption band was blue-shifted while the intensities of emission and absorption were decreased after reacting the silver nanoparticles with Hg(2+) ions. The silver nanoparticles reacted with Hg(2+) were characterized by high resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and surface-enhanced Raman scattering spectroscopy (SERS). The results suggested that the particle growth and aggregation of the silver nanoparticles were caused by the adsorption of Hg(2+) and deposition of Hg(0) on the nanoparticle surface. Direct correlations of the SPR absorption and fluorescence emission with the concentration of Hg(2+) were useful for quantitative analysis of Hg(2+). It was possible to use the dual-functional silver nanoparticles as a colorimetric and fluorescent sensor for sensitive and selective detection of Hg(2+) ions.

  10. Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training.

    PubMed

    Bisson, E; Contant, B; Sveistrup, H; Lajoie, Y

    2007-02-01

    Virtual reality (VR) training has been used successfully to rehabilitate functional balance and mobility in both traumatic brain injury (TBI) survivors and elderly subjects. Similarly, computer-based biofeedback (BF) training has resulted in decreased sway during quiet stance and decreased reaction times during a dual-task reaction time paradigm in elderly subjects. The objective of this study was to determine the effect of VR and BF training on balance and reaction time in older adults. Two groups of twelve healthy older adults completed 10-week training programs consisting of two 30-min sessions per week. VR training required that participants lean sideways to juggle a virtual ball. Participants in the BF group viewed a red dot representing their center of gravity on a screen and were required to move the dot to the four corners of the monitor. Measures of functional balance and mobility (Community Balance and Mobility Scale [CB&M]), sway during quiet stance, and reaction time during a dual task paradigm were recorded before training, as well as 1 week and 1 month after the end of the program. Both groups showed significant improvements on the CB&M, as well as decreased reaction times with training. Postural sway during quiet stance did not change significantly.

  11. Functional Results of Intercondylar Fractures of the Humerus Fixed with Dual Y-Plate; A Technical Note  

    PubMed Central

    Mahapatra, Swagat; Abraham, Vineet Thomas

    2017-01-01

    Objective: To evaluate and report the functional results of surgical management of intercondylar fractures of the humerus in adults using a novel dual plating technique. Methods: A total number of 60 patients with Riseborough and Radin type II, III, and IV intercondylar humerus fractures were operated with open reduction through a Trans-olecranon approach and internal fixation using two plates in inverted-Y configuration. Patients were followed for 3 weeks, 3 and 6 months were evaluated using the Mayo Elbow performance score and Quick-DASH score. Results: There were 50(83.33%)men and 10 (16.67%)women with mean age of 34.9 ± 12.63 years. 63.3% of the cases were following Motor vehicle accident and rest following fall. The right upper limb was more commonly affected than the left side. Riseborough and Radin type II fractures accounted for 3.33% of cases; type III fractures accounted for 50% of cases and type IV accounted for 46.67%. Excellent to Good results were seen in almost 80% of cases as per the Mayo Elbow performance score at 6-month follow-up. Quick-DASH scores for the series at 6-month follow-up was on average of 15.96 ± 9.92. Conclusion: Dual plating in inverted Y configuration offers a reliable fixation, which permits early mobilization and good functional outcome. PMID:28246622

  12. Computerized Dual-Task Testing of Gait and Visuospatial Cognitive Functions; Test-Retest Reliability and Validity

    PubMed Central

    Szturm, Tony J.; Sakhalkar, Vedant S.; Kanitkar, Anuprita; Nankar, Mayur

    2017-01-01

    The common occurrence of age decline in mobility and cognition does cause a decrease in the level of physical activity and an increased falls risk. Consequently, dual -task (DT) assessment that simultaneously addresses both mobility skills and cognitive functions are important because, continued difficulties and fall injuries will have a sizable impact in this population. The first objective of the present study was to assess test-retest reliability of a computerized DT treadmill walking protocol and concurrent outcome measures of gait and visuospatial executive function in a group of healthy older adults. Secondly, discriminative validity was evaluated by examining the effect of DT conditions (single task vs. dual-task) on; (a) spatiotemporal gait measures (average and coefficient of variation) and (b) visuomotor and visuospatial executive performance measures. Twenty-five community-dwelling individuals median age 65 (range 61–67) were recruited from a Fitness Facility. Participants performed a computerized visuomotor tracking task and a visuospatial executive game task in standing and while treadmill walking. Testing was conducted on two occasions, 1 week apart. Moderate to high test-retest reliability (ICC values of 0.65–0.88) were observed for spatiotemporal gait variables. No significant differences between the group means were observed between test periods in any gait variable. Moderate test-retest reliability (ICC values of 0.6–0.65) was observed for measures of visuomotor and visuospatial executive performance during treadmill walking. Significant DT effects were observed for both spatiotemporal gait variables and visuospatial executive performance measures. This study demonstrates the reliability and reproducibility of the computer-based assessment tool for dual task treadmill walking. The high to moderate ICC values and the lack of systematic errors in the measures indicate that this tool has the ability to repeatedly record reliable data from

  13. ``Green'' functionalization of magnetic nanoparticles via tea polyphenol for magnetic resonance/fluorescent dual-imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Wen; Lai, Kuilin; Liu, Kexia; Xia, Rui; Gao, Fabao; Wu, Yao; Gu, Zhongwei

    2014-01-01

    Tea polyphenol serves as an environmentally friendly ligand-exchange molecule to synthesize multifunctional metal-doped superparamagnetic iron oxide nanoparticles via a catechol-metal coordination interaction. The resultant particles not only exhibit excellent hydrophilicity and protein adsorption resistance, but also are applicable as magnetic resonance/fluorescent dual-imaging probes due to their high T2 relaxivity, autofluorescence and large cellular uptake.Tea polyphenol serves as an environmentally friendly ligand-exchange molecule to synthesize multifunctional metal-doped superparamagnetic iron oxide nanoparticles via a catechol-metal coordination interaction. The resultant particles not only exhibit excellent hydrophilicity and protein adsorption resistance, but also are applicable as magnetic resonance/fluorescent dual-imaging probes due to their high T2 relaxivity, autofluorescence and large cellular uptake. Electronic supplementary information (ESI) available: Additional information and figures (Fig. S1-S7), including experimental sections, characterization of the products, protein corona analysis, cytotoxicity and cellular uptake quantification. See DOI: 10.1039/c3nr05003c

  14. A dual-route account for access to grammatical gender: evidence from functional MRI.

    PubMed

    Heim, Stefan; Alter, Kai; Friederici, Angela D

    2005-12-01

    Research investigating the neural correlates of grammatical gender processing has provided contradictory evidence with respect to activation in the left inferior frontal gyrus (IFG). A possible account for these discrepancies is a dual-route model proposing explicit vs implicit access to the gender information. In this event-related fMRI experiment, we investigated this issue by taking into account different processing strategies reported by the subjects. The participants performed two tasks, a gender judgement of German nouns and a non-lexical baseline task (spacing of consonant letter strings). Depending on the reported strategy (silent production of the definite determiner or direct access to the gender information), different patterns of activation in the left IFG were observed. Direct access to gender information yielded activation in the inferior tip of BA 44, whereas the verbalisation strategy elicited activation in the superior portion of BA 44, BA 45/47, and the fronto-median wall. These results speak in favour of a dual-route account for modelling the access to grammatical gender information during language comprehension.

  15. Effect of a dual-task net-step exercise on cognitive and gait function in older adults.

    PubMed

    Kitazawa, Kazutoshi; Showa, Satoko; Hiraoka, Akira; Fushiki, Yasuhiro; Sakauchi, Humio; Mori, Mitsuru

    2015-01-01

    Participation in generally recommended aerobics or strength exercises may be challenging for older adults. Therefore, it is necessary to consider the types and levels of physical activities suited for them to improve their cognitive and gait function and adherence to exercise programs. This has prompted efforts to identify exercises that require less physical strength and frequency of performance, while still offering cognitive and health benefits. Here, we aimed to assess the effect of a novel dual-task net-step exercise (NSE) performed once a week for 8 consecutive weeks on improvements in cognitive performance and gait function in an older population. In this pretest/posttest experimental case control study, 60 healthy older adults (mean age 76.4 years) were recruited from community-dwelling people and separated randomly into 2 groups: a dual-task NSE group and a control group. The NSE group was asked to walk across a net without stepping on the ropes or being caught in the net. Two computer panel-type cognitive functional assessments, the Touch-M and Touch Panel-Type Dementia Assessment Scale, were administered at baseline and after 8 weeks of intervention to determine the effects of NSE. Improvements in gait function were also evaluated using Timed Up and Go test scores. Mixed-effect models with repeated measures (group × time) (analysis of variance, F test) were used to test the effects of NSE. Adjustments were made for covariates including age and sex (analysis of covariance). The NSE group showed significant improvement in cognitive performance (6.8% change; total Touch-M score 5.4 points; P = .04) and gait performance (11.5% change; Timed Up and Go time -0.98 second; P < .001) over the 8-week period. In the control group, there was no significant improvement. This study shows that dual-task NSE is capable of improving cognitive and gait performance in healthy older adults. Our results indicate that NSE offers an option for a large segment of the older

  16. Analysis of Genotoxic and Cytotoxic Responses Induced by Simulated Space Radiation Qualities by Use of Recombinant Bacteria Carrying a Dual-Function Dual-Reporter Construct

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Hellweg, Christine; Zahoor, Ahmed; Testard, Isabelle; Reitz, Guenther

    Along with the long-term space exploration come various potential health risks due to unique physical factors of the space environment. Space radiation is one of the primary environmental hazards associated with space flight. In order to deal with space-related risk radiation exposure must be properly characterised and quantified, and biological effects of charged particles have to be analysed in ground based research, especially as astronauts are subjected to a differing radiation quality in space than they receive on Earth. For risk assessment, the mutagenic potential of the heavy ion component of the galactic cosmic radiation is of major concern for tumour induction as radiation late effects. The recombinant SWITCH test is based on TA1535 Salmonella typhimurium cells transformed with a dual-function dual-reporter vector harbouring (a) the genes for bioluminescence production from Photobacterium leiognathi under the control of a DNA-damage inducible promoter and (b) the gene for green fluorescent protein from the jellyfish Aequorea victoria under the control of a constitutive promoter. Suchlike genetically modified organism report on the presence of genotoxic conditions by dose dependent increase of bioluminescence induction and on the presence of cytotoxic conditions by dose dependent decrease in GFP fluorescence. By this, it is possible to analyse bacterial inactivation and mutation induction by ionizing radiation in parallel in the same cell within short time. Experiments with heavy ions have been performed with the SWITCH test at GANIL with the following accelerated heavy ions: 35 MeV/u (72 keV/µm) and 75 MeV/u (37 keV/µm) carbon, 95 MeV/u argon (377 keV/µm), 95 MeV/u neon (98 keV/µm), 75 MeV/u nickel (967 keV/µm) and 29 MeV/u lead (10238 keV/µm). The results obtained clearly show that the numbers of hits (particles per cm2 ) necessary to inactivate the bacteria (cytotoxicity) depend on LET. The higher the ionisation capacity of the accelerated ion, the

  17. Dual function armchair graphene nanoribbon-based spin-photodetector: Optical spin-valve and light helicity detector

    SciTech Connect

    Ostovari, Fatemeh; Moravvej-Farshi, Mohammad Kazem

    2014-08-18

    We show an armchair graphene nanoribbon channel connected between asymmetric ferromagnetic source-drain structure—i.e., p-type Co/Au/graphene source and n-type Co/Cu/graphene drain—can operate as dual function spin-photodetector, under zero external biases at room temperature. It can function as an optical spin-valve with magnetoresistance of greater than 60% and responsivity as high as 25.12 A/mW, when irradiated by an un-polarized light of energy ∼3.03 eV. Under a circularly polarized illumination, this optical spin-valve can also operate as a light helicity detector. The calculated magnetoresistances for right and left circularly polarized lights are both greater than 60%.

  18. Evolutionarily conserved dual lysine motif determines the non-chaperone function of secreted Hsp90alpha in tumour progression.

    PubMed

    Zou, M; Bhatia, A; Dong, H; Jayaprakash, P; Guo, J; Sahu, D; Hou, Y; Tsen, F; Tong, C; O'Brien, K; Situ, A J; Schmidt, T; Chen, M; Ying, Q; Ulmer, T S; Woodley, D T; Li, W

    2017-04-01

    Both intracellular and extracellular heat shock protein-90 (Hsp90) family proteins (α and β) have been shown to support tumour progression. The tumour-supporting activity of the intracellular Hsp90 is attributed to their N-terminal ATPase-driven chaperone function. What molecular entity determines the extracellular function of secreted Hsp90 and the distinction between Hsp90α and Hsp90β was unclear. Here we demonstrate that CRISPR/Case9 knocking out Hsp90α nullifies tumour cells' ability to migrate, invade and metastasize without affecting the cell survival and growth. Knocking out Hsp90β leads to tumour cell death. Extracellular supplementation with recombinant Hsp90α, but not Hsp90β, protein recovers tumourigenicity of the Hsp90α-knockout cells. Sequential mutagenesis identifies two evolutionarily conserved lysine residues, lys-270 and lys-277, in the Hsp90α subfamily that determine the extracellular Hsp90α function. Hsp90β subfamily lacks the dual lysine motif and the extracellular function. Substitutions of gly-262 and thr-269 in Hsp90β with lysines convert Hsp90β to a Hsp90α-like protein. Newly constructed monoclonal antibody, 1G6-D7, against the dual lysine region of secreted Hsp90α inhibits both de novo tumour formation and expansion of already formed tumours in mice. This study suggests an alternative therapeutic approach to target Hsp90 in cancer, that is, the tumour-secreted Hsp90α, instead of the intracellular Hsp90α and Hsp90β.

  19. Dual functional, polymeric self-assembled monolayers as a facile platform for construction of patterns of biomolecules.

    PubMed

    Park, Sangjin; Lee, Kyung-Bok; Choi, Insung S; Langer, Robert; Jon, Sangyong

    2007-10-23

    We report a facile approach to the construction of patterns of biomolecules based on polymeric self-assembled monolayers (pSAMs) that possess dual functions: "bio-reactive (post-functionalizable)" and "bio-inert (anti-biofouling)" properties. To prepare pSAMs on Si/SiO2 wafers were synthesized new random copolymers by radical polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA), 3-(trimethoxysilyl)propyl methacrylate (TMSMA), and N-acryloxysuccinimide (NAS), and referred to as poly(TMSMA-r-PEGMA-r-NAS). Poly(TMSMA-r-PEGMA-r-NAS) was designed to play triple roles: "surface-reactive", "bio-reactive", and "bio-inert" ones. The pSAMs of poly(TMSMA-r-PEGMA-r-NAS) were formed on Si/SiO2 wafers with 1 h incubation of the substrates in the polymer solution, which showed approximately a 1 nm-thick film as measured by ellipsometry. After the formation of the pSAMs, the feasibility of the pSAMs as a dual functional surface (bio-inert and bio-reactive properties) was examined. The ability of the pSAMs to block nonspecific adsorption of proteins was evaluated against bovine serum albumin as a model protein. High-resolution N(1s) X-ray photoelectron spectroscopy (XPS) analysis on the protein adsorption revealed that significant reduction up to approximately 97% was observed compared to the unmodified Si/SiO2 wafer. In addition, micropatterns of streptavidin with high signal-to-noise ratios were achieved using microcontact printing (microCP) of NH2-bearing biotin onto the pSAMs of poly(TMSMA-r-PEGMA-r-NAS) on glass slides, which suggests that other biomolecules could also be efficiently immobilized onto the pSAMs with high specificity while minimizing nonspecific adsorption. On the other hand, the surface density of both bio-reactive and anti-biofouling functionality could be tailored by simply changing initial feed ratios of each monomer in the polymer synthesis: different molar ratios of the bio-reactive group (NAS: 33%, 20%, and 10%, respectively) were

  20. Design and Functional Validation of a Mechanism for Dual-Spinning CubeSats

    NASA Technical Reports Server (NTRS)

    Peters, Eric; Dave, Pratik; Kingsbury, Ryan; Marinan, Anne; Wise, Evan; Pong, Chris; Prinkey, Meghan; Cahoy, Kerri; Miller, David W.; Sklair, Devon

    2014-01-01

    The mission of the Micro-sized Microwave Atmospheric Satellite (MicroMAS) is to collect useful atmospheric images using a miniature passive microwave radiometer payload hosted on a low-cost CubeSat platform. In order to collect this data, the microwave radiometer payload must rotate to scan the ground-track perpendicular to the satellite's direction of travel. A custom motor assembly was developed to facilitate the rotation of the payload while allowing the spacecraft bus to remained fixed in the local-vertical, local-horizontal (LVLH) frame for increased pointing accuracy. This paper describes the mechanism used to enable this dual-spinning operation for CubeSats, and the lessons learned during the design, fabrication, integration, and testing phases of the mechanism's development lifecycle.

  1. From ATP to PTP and Back: A Dual Function for the Mitochondrial ATP Synthase.

    PubMed

    Bernardi, Paolo; Di Lisa, Fabio; Fogolari, Federico; Lippe, Giovanna

    2015-05-22

    Mitochondria not only play a fundamental role in heart physiology but are also key effectors of dysfunction and death. This dual role assumes a new meaning after recent advances on the nature and regulation of the permeability transition pore, an inner membrane channel whose opening requires matrix Ca(2+) and is modulated by many effectors including reactive oxygen species, matrix cyclophilin D, Pi (inorganic phosphate), and matrix pH. The recent demonstration that the F-ATP synthase can reversibly undergo a Ca(2+)-dependent transition to form a channel that mediates the permeability transition opens new perspectives to the field. These findings demand a reassessment of the modifications of F-ATP synthase that take place in the heart under pathological conditions and of their potential role in determining the transition of F-ATP synthase from and energy-conserving into an energy-dissipating device.

  2. Tetralogy of Fallot Cardiac Function Evaluation and Intelligent Diagnosis Based on Dual-Source Computed Tomography Cardiac Images.

    PubMed

    Cai, Ken; Rongqian, Yang; Li, Lihua; Xie, Zi; Ou, Shanxing; Chen, Yuke; Dou, Jianhong

    2016-05-01

    Tetralogy of Fallot (TOF) is the most common complex congenital heart disease (CHD) of the cyanotic type. Studies on ventricular functions have received an increasing amount of attention as the development of diagnosis and treatment technology for CHD continues to advance. Reasonable options for imaging examination and accurate assessment of preoperative and postoperative left ventricular functions of TOF patients are important in improving the cure rate of TOF radical operation, therapeutic evaluation, and judgment prognosis. Therefore, with the aid of dual-source computed tomography (DSCT), cardiac images with high temporal resolution and high definition, we measured the left ventricular time-volume curve using image data and calculating the left ventricular function parameters to conduct the preliminary evaluation on TOF patients. To comprehensively evaluate the cardiac function, the segmental ventricular wall function parameters were measured, and the measurement results were mapped to a bull's eye diagram to realize the standardization of segmental ventricular wall function evaluation. Finally, we introduced a new clustering method based on auto-regression model parameters and combined this method with Euclidean distance measurements to establish an intelligent diagnosis of TOF. The results of this experiment show that the TOF evaluation and the intelligent diagnostic methods proposed in this article are feasible. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. Triple Antibiotic Polymer Nanofibers for Intracanal Drug Delivery: Effects on Dual Species Biofilm and Cell Function.

    PubMed

    Pankajakshan, Divya; Albuquerque, Maria T P; Evans, Joshua D; Kamocka, Malgorzata M; Gregory, Richard L; Bottino, Marco C

    2016-10-01

    Root canal disinfection and the establishment of an intracanal microenvironment conducive to the proliferation/differentiation of stem cells play a significant role in regenerative endodontics. This study was designed to (1) investigate the antimicrobial efficacy of triple antibiotic-containing nanofibers against a dual-species biofilm and (2) evaluate the ability of dental pulp stem cells (DPSCs) to adhere to and proliferate on dentin upon nanofiber exposure. Seven-day-old dual-species biofilm established on dentin specimens was exposed for 3 days to the following: saline (control), antibiotic-free nanofibers (control), and triple antibiotic-containing nanofibers or a saturated triple antibiotic paste (TAP) solution (50 mg/mL in phosphate buffer solution). Bacterial viability was assessed using the LIVE/DEAD assay (Molecular Probes, Inc, Eugene, OR) and confocal laser scanning microscopy. For cytocompatibility studies, dentin specimens after nanofiber or TAP (1 g/mL in phosphate buffer solution) exposure were evaluated for cell adhesion and spreading by actin-phalloidin staining. DPSC proliferation was assessed on days 1, 3, and 7. Statistics were performed, and significance was set at the 5% level. Confocal laser scanning microscopy showed significant bacterial death upon antibiotic-containing nanofiber exposure, differing significantly (P < .05) from antibiotic-free fibers and the control (saline). DPSCs showed enhanced adhesion/spreading on dentin specimens treated with antibiotic-containing nanofibers when compared with its TAP counterparts. The DPSC proliferation rate was similar on days 1 and 3 in antibiotic-free nanofibers, triple antibiotic-containing nanofibers, and TAP-treated dentin. Proliferation was higher (9-fold) on dentin treated with antibiotic-containing nanofibers on day 7 compared with TAP. Triple antibiotic-containing polymer nanofibers led to significant bacterial death, whereas they did not affect DPSC attachment and proliferation on

  4. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs.

    PubMed

    Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  5. Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information.

    PubMed

    Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan

    2012-01-01

    Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images.

  6. Numerical investigation of ion-energy-distribution functions in single and dual frequency capacitively coupled plasma reactors.

    PubMed

    Georgieva, V; Bogaerts, A; Gijbels, R

    2004-02-01

    Ion-energy-distribution functions (IEDFs) are numerically investigated in capacitively coupled (cc) radio frequency (rf) Ar/CF(4)/N(2) discharges by a one-dimensional particle-in-cell/Monte Carlo model. The simulation considers electron-neutral collisions, various kinds of collisions of ions (Ar+, CF+3, N+2, F-, and CF-3) with neutral, positive-negative ion, and electron-ion recombination. The influence of pressure, applied voltage amplitude, and applied frequency on the Ar+, CF+3, and N+2 IEDFs is presented. The dependence on the frequency regime is investigated by simulations of the Ar/CF(4)/N(2) mixture in single (13.56 MHz) and dual frequency (2+27 MHz or 1+27 MHz) cc reactors. A comparison of the simulation results with analytical calculations in a collisionless rf sheath is discussed. The results show that the IEDFs shift toward the low energies with increasing pressure or decreasing applied voltage amplitude. The Ar+ and N+2 IEDFs exhibit secondary maxima due to the charge transfer collisions. The CF+3 IEDF has a peak at high energies in consistency with the average sheath potential drop. The IEDFs in the dual frequency regime are broad and bimodal.

  7. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs

    PubMed Central

    Bhatia, Ayesha; O’Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T.; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5–treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing. PMID:27382602

  8. Age-Related Differences in Reorganization of Functional Connectivity for a Dual Task with Increasing Postural Destabilization.

    PubMed

    Huang, Cheng-Ya; Lin, Linda L; Hwang, Ing-Shiou

    2017-01-01

    The aged brain may not make good use of central resources, so dual task performance may be degraded. From the brain connectome perspective, this study investigated dual task deficits of older adults that lead to task failure of a suprapostural motor task with increasing postural destabilization. Twelve younger (mean age: 25.3 years) and 12 older (mean age: 65.8 years) adults executed a designated force-matching task from a level-surface or a stabilometer board. Force-matching error, stance sway, and event-related potential (ERP) in the preparatory period were measured. The force-matching accuracy and the size of postural sway of the older adults tended to be more vulnerable to stance configuration than that of the young adults, although both groups consistently showed greater attentional investment on the postural task as sway regularity increased in the stabilometer condition. In terms of the synchronization likelihood (SL) of the ERP, both younger and older adults had net increases in the strengths of the functional connectivity in the whole brain and in the fronto-sensorimotor network in the stabilometer condition. Also, the SL in the fronto-sensorimotor network of the older adults was greater than that of the young adults for both stance conditions. However, unlike the young adults, the older adults did not exhibit concurrent deactivation of the functional connectivity of the left temporal-parietal-occipital network for postural-suprapostural task with increasing postural load. In addition, the older adults potentiated functional connectivity of the right prefrontal area to cope with concurrent force-matching with increasing postural load. In conclusion, despite a universal negative effect on brain volume conduction, our preliminary results showed that the older adults were still capable of increasing allocation of neural sources, particularly via compensatory recruitment of the right prefrontal loop, for concurrent force-matching under the challenging postural

  9. Age-Related Differences in Reorganization of Functional Connectivity for a Dual Task with Increasing Postural Destabilization

    PubMed Central

    Huang, Cheng-Ya; Lin, Linda L.; Hwang, Ing-Shiou

    2017-01-01

    The aged brain may not make good use of central resources, so dual task performance may be degraded. From the brain connectome perspective, this study investigated dual task deficits of older adults that lead to task failure of a suprapostural motor task with increasing postural destabilization. Twelve younger (mean age: 25.3 years) and 12 older (mean age: 65.8 years) adults executed a designated force-matching task from a level-surface or a stabilometer board. Force-matching error, stance sway, and event-related potential (ERP) in the preparatory period were measured. The force-matching accuracy and the size of postural sway of the older adults tended to be more vulnerable to stance configuration than that of the young adults, although both groups consistently showed greater attentional investment on the postural task as sway regularity increased in the stabilometer condition. In terms of the synchronization likelihood (SL) of the ERP, both younger and older adults had net increases in the strengths of the functional connectivity in the whole brain and in the fronto-sensorimotor network in the stabilometer condition. Also, the SL in the fronto-sensorimotor network of the older adults was greater than that of the young adults for both stance conditions. However, unlike the young adults, the older adults did not exhibit concurrent deactivation of the functional connectivity of the left temporal-parietal-occipital network for postural-suprapostural task with increasing postural load. In addition, the older adults potentiated functional connectivity of the right prefrontal area to cope with concurrent force-matching with increasing postural load. In conclusion, despite a universal negative effect on brain volume conduction, our preliminary results showed that the older adults were still capable of increasing allocation of neural sources, particularly via compensatory recruitment of the right prefrontal loop, for concurrent force-matching under the challenging postural

  10. LSD1 dual function in mediating epigenetic corruption of the vitamin D signaling in prostate cancer.

    PubMed

    Battaglia, Sebastiano; Karasik, Ellen; Gillard, Bryan; Williams, Jennifer; Winchester, Trisha; Moser, Michael T; Smiraglia, Dominic J; Foster, Barbara A

    2017-01-01

    Lysine-specific demethylase 1A (LSD1) is a key regulator of the androgen (AR) and estrogen receptors (ER), and LSD1 levels correlate with tumor aggressiveness. Here, we demonstrate that LSD1 regulates vitamin D receptor (VDR) activity and is a mediator of 1,25(OH)2-D3 (vitamin D) action in prostate cancer (PCa). Athymic nude mice were xenografted with CWR22 cells and monitored weekly after testosterone pellet removal. Expression of LSD1 and VDR (IHC) were correlated with tumor growth using log-rank test. TRAMP tumors and prostates from wild-type (WT) mice were used to evaluate VDR and LSD1 expression via IHC and western blotting. The presence of VDR and LSD1 in the same transcriptional complex was evaluated via immunoprecipitation (IP) using nuclear cell lysate. The effect of LSD1 and 1,25(OH)2-D3 on cell viability was evaluated in C4-2 and BC1A cells via trypan blue exclusion. The role of LSD1 in VDR-mediated gene transcription was evaluated for Cdkn1a, E2f1, Cyp24a1, and S100g via qRT-PCR-TaqMan and via chromatin immunoprecipitation assay. Methylation of Cdkn1a TSS was measured via bisulfite sequencing, and methylation of a panel of cancer-related genes was quantified using methyl arrays. The Cancer Genome Atlas data were retrieved to identify genes whose status correlates with LSD1 and DNA methyltransferase 1 (DNMT1). Results were correlated with patients' survival data from two separate cohorts of primary and metastatic PCa. LSD1 and VDR protein levels are elevated in PCa tumors and correlate with faster tumor growth in xenograft mouse models. Knockdown of LSD1 reduces PCa cell viability, and gene expression data suggest a dual coregulatory role of LSD1 for VDR, acting as a coactivator and corepressor in a locus-specific manner. LSD1 modulates VDR-dependent transcription by mediating the recruitment of VDR and DNMT1 at the TSS of VDR-targeted genes and modulates the epigenetic status of transcribed genes by altering H3K4me2 and H3K9Ac and DNA methylation

  11. Targeted Aucore-Agshell nanorods as a dual-functional contrast agent for photoacoustic imaging and photothermal therapy

    PubMed Central

    Shi, Yiwen; Peng, Dong; Wang, Kun; Chai, Xinyu; Ren, Qiushi; Tian, Jie; Zhou, Chuanqing

    2016-01-01

    Optimizing contrast enhancement is essential for producing specific signals in biomedical imaging and therapy. The potential of using Aucore-Agshell nanorods (Au@Ag NRs) as a dual-functional theranostic contrast agent is demonstrated for effective cancer imaging and treatments. Due to its strong NIR absorption and high efficiency of photothermal conversion, effects of both photoacoustic tomography (PAT) and photothermal therapy (PTT) are enhanced significantly. The PAT signal grows by 45.3% and 82% in the phantom and in vivo experiments, respectively, when compared to those using Au NRs. In PTT, The maximum increase of tissue temperature treated with Au@Ag NRs is 22.8 °C, twice that with Au NRs. Results of the current study show the feasibility of using Au@Ag NRs for synergetic PAT with PTT. And it will enhance the potential application on real-time PAT guided PTT, which will greatly benefit the customized PTT treatment of cancer. PMID:27231624

  12. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants.

    PubMed

    Liu, Yangyang; Moon, Su-Young; Hupp, Joseph T; Farha, Omar K

    2015-12-22

    The nanocrystals of a porphyrin-based zirconium(IV) metal-organic framework (MOF) are used as a dual-function catalyst for the simultaneous detoxification of two chemical warfare agent simulants at room temperature. Simulants of nerve agent (such as GD, VX) and mustard gas, dimethyl 4-nitrophenyl phosphate and 2-chloroethyl ethyl sulfide, have been hydrolyzed and oxidized, respectively, to nontoxic products via a pair of pathways catalyzed by the same MOF. Phosphotriesterase-like activity of the Zr6-containing node combined with photoactivity of the porphyrin linker gives rise to a versatile MOF catalyst. In addition, bringing the MOF crystals down to the nanoregime leads to acceleration of the catalysis.

  13. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics.

    PubMed

    Li, Wei; Torres, David; Díaz, Ramón; Wang, Zhengjun; Wu, Changsheng; Wang, Chuan; Lin Wang, Zhong; Sepúlveda, Nelson

    2017-05-16

    Ferroelectret nanogenerators were recently introduced as a promising alternative technology for harvesting kinetic energy. Here we report the device's intrinsic properties that allow for the bidirectional conversion of energy between electrical and mechanical domains; thus extending its potential use in wearable electronics beyond the power generation realm. This electromechanical coupling, combined with their flexibility and thin film-like form, bestows dual-functional transducing capabilities to the device that are used in this work to demonstrate its use as a thin, wearable and self-powered loudspeaker or microphone patch. To determine the device's performance and applicability, sound pressure level is characterized in both space and frequency domains for three different configurations. The confirmed device's high performance is further validated through its integration in three different systems: a music-playing flag, a sound recording film and a flexible microphone for security applications.

  14. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics

    PubMed Central

    Li, Wei; Torres, David; Díaz, Ramón; Wang, Zhengjun; Wu, Changsheng; Wang, Chuan; Lin Wang, Zhong; Sepúlveda, Nelson

    2017-01-01

    Ferroelectret nanogenerators were recently introduced as a promising alternative technology for harvesting kinetic energy. Here we report the device's intrinsic properties that allow for the bidirectional conversion of energy between electrical and mechanical domains; thus extending its potential use in wearable electronics beyond the power generation realm. This electromechanical coupling, combined with their flexibility and thin film-like form, bestows dual-functional transducing capabilities to the device that are used in this work to demonstrate its use as a thin, wearable and self-powered loudspeaker or microphone patch. To determine the device's performance and applicability, sound pressure level is characterized in both space and frequency domains for three different configurations. The confirmed device's high performance is further validated through its integration in three different systems: a music-playing flag, a sound recording film and a flexible microphone for security applications. PMID:28508862

  15. Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids

    PubMed Central

    Song, Ji Eun; Cho, Eun Chul

    2016-01-01

    We present a straightforward approach with high moldability for producing dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures that reversibly change volumes and colors in response to temperature and ion variations. Heating of a mixture of hybrid colloids (gold nanoparticles assembled on a hydrogel colloid) and hydrogel colloids rapidly induces (within 30 min) the formation of hydrogel architectures resembling mold shapes (cylinder, fish, butterfly). The biomimetic fish and butterfly display reversible changes in volumes and colors with variations of temperature and ionic conditions in aqueous solutions. The cylindrical plasmonic valves installed in flow tubes rapidly control water flow rate in on-off manner by responding to these stimuli. They also report these changes in terms of their colors. Therefore, the approach presented here might be helpful in developing new class of biomimetic and flow control systems where liquid conditions should be visually notified (e.g., glucose or ion concentration changes). PMID:27703195

  16. Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids

    NASA Astrophysics Data System (ADS)

    Song, Ji Eun; Cho, Eun Chul

    2016-10-01

    We present a straightforward approach with high moldability for producing dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures that reversibly change volumes and colors in response to temperature and ion variations. Heating of a mixture of hybrid colloids (gold nanoparticles assembled on a hydrogel colloid) and hydrogel colloids rapidly induces (within 30 min) the formation of hydrogel architectures resembling mold shapes (cylinder, fish, butterfly). The biomimetic fish and butterfly display reversible changes in volumes and colors with variations of temperature and ionic conditions in aqueous solutions. The cylindrical plasmonic valves installed in flow tubes rapidly control water flow rate in on-off manner by responding to these stimuli. They also report these changes in terms of their colors. Therefore, the approach presented here might be helpful in developing new class of biomimetic and flow control systems where liquid conditions should be visually notified (e.g., glucose or ion concentration changes).

  17. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics

    NASA Astrophysics Data System (ADS)

    Li, Wei; Torres, David; Díaz, Ramón; Wang, Zhengjun; Wu, Changsheng; Wang, Chuan; Lin Wang, Zhong; Sepúlveda, Nelson

    2017-05-01

    Ferroelectret nanogenerators were recently introduced as a promising alternative technology for harvesting kinetic energy. Here we report the device's intrinsic properties that allow for the bidirectional conversion of energy between electrical and mechanical domains; thus extending its potential use in wearable electronics beyond the power generation realm. This electromechanical coupling, combined with their flexibility and thin film-like form, bestows dual-functional transducing capabilities to the device that are used in this work to demonstrate its use as a thin, wearable and self-powered loudspeaker or microphone patch. To determine the device's performance and applicability, sound pressure level is characterized in both space and frequency domains for three different configurations. The confirmed device's high performance is further validated through its integration in three different systems: a music-playing flag, a sound recording film and a flexible microphone for security applications.

  18. Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson's disease.

    PubMed

    Kim, Chun-Hyung; Han, Baek-Soo; Moon, Jisook; Kim, Deog-Joong; Shin, Joon; Rajan, Sreekanth; Nguyen, Quoc Toan; Sohn, Mijin; Kim, Won-Gon; Han, Minjoon; Jeong, Inhye; Kim, Kyoung-Shim; Lee, Eun-Hye; Tu, Yupeng; Naffin-Olivos, Jacqueline L; Park, Chang-Hwan; Ringe, Dagmar; Yoon, Ho Sup; Petsko, Gregory A; Kim, Kwang-Soo

    2015-07-14

    Parkinson's disease (PD), primarily caused by selective degeneration of midbrain dopamine (mDA) neurons, is the most prevalent movement disorder, affecting 1-2% of the global population over the age of 65. Currently available pharmacological treatments are largely symptomatic and lose their efficacy over time with accompanying severe side effects such as dyskinesia. Thus, there is an unmet clinical need to develop mechanism-based and/or disease-modifying treatments. Based on the unique dual role of the nuclear orphan receptor Nurr1 for development and maintenance of mDA neurons and their protection from inflammation-induced death, we hypothesize that Nurr1 can be a molecular target for neuroprotective therapeutic development for PD. Here we show successful identification of Nurr1 agonists sharing an identical chemical scaffold, 4-amino-7-chloroquinoline, suggesting a critical structure-activity relationship. In particular, we found that two antimalarial drugs, amodiaquine and chloroquine stimulate the transcriptional function of Nurr1 through physical interaction with its ligand binding domain (LBD). Remarkably, these compounds were able to enhance the contrasting dual functions of Nurr1 by further increasing transcriptional activation of mDA-specific genes and further enhancing transrepression of neurotoxic proinflammatory gene expression in microglia. Importantly, these compounds significantly improved behavioral deficits in 6-hydroxydopamine lesioned rat model of PD without any detectable signs of dyskinesia-like behavior. These findings offer proof of principle that small molecules targeting the Nurr1 LBD can be used as a mechanism-based and neuroprotective strategy for PD.

  19. CD44 Receptor Targeting and Endosomal pH-Sensitive Dual Functional Hyaluronic Acid Micelles for Intracellular Paclitaxel Delivery.

    PubMed

    Liu, Yanhua; Zhou, Chengming; Wang, Wenping; Yang, Jianhong; Wang, Hao; Hong, Wei; Huang, Yu

    2016-12-05

    A novel CD44 receptor targeting and endosome pH-sensitive dual functional hyaluronic acid-deoxycholic acid-histidine (HA-DOCA-His) micellar system was designed for intracellular paclitaxel (PTX) delivery. The HA-DOCA-His micelles exhibited desirable endosome pH (5.0-6.0)-induced aggregation and deformation behavior verified by size distribution, critical micellar concentration, and zeta potential changes. The HA-DOCA-His micelles presented excellent encapsulation efficiency and loading capacity of 90.0% and 18.9% for PTX, respectively. The PTX release from HA-DOCA-His micelles was pH-dependent, with more rapid PTX release at pH 6.0 and 5.0 than those at pH 7.4 and 6.5. The cellular uptake performance of HA-DOCA-His micelles was enhanced comparing with pH-insensitive HA-DOCA micelles by qualitative and quantitative measurements. HA-DOCA-His micelles could be taken up via CD44-receptor mediated endocytosis, transported into endosomes, and triggered drug release to cytoplasm. In vitro cytotoxicity study exhibited PTX-loaded HA-DOCA-His micelles were more active in tumor cell growth inhibition in MCF-7 cells at pH 5.8 than those at pH 6.8 and pH 7.4. A superior antitumor efficacy was demonstrated with HA-DOCA-His micelles in a MCF-7 breast tumor model. These indicated that the dual functional HA-DOCA-His micelles combined targeted intracellular delivery and endosomal release strategies could be developed as a promising nanocarrier for anticancer efficacy improvement of PTX.

  20. Fabrication of quantum dot/silica core-shell particles immobilizing Au nanoparticles and their dual imaging functions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshio; Matsudo, Hiromu; Li, Ting-ting; Shibuya, Kyosuke; Kubota, Yohsuke; Oikawa, Takahiro; Nakagawa, Tomohiko; Gonda, Kohsuke

    2016-03-01

    The present work proposes preparation methods for quantum dot/silica (QD/SiO2) core-shell particles that immobilize Au nanoparticles (QD/SiO2/Au). A colloid solution of QD/SiO2 core-shell particles with an average size of 47.0 ± 6.1 nm was prepared by a sol-gel reaction of tetraethyl orthosilicate in the presence of the QDs with an average size of 10.3 ± 2.1 nm. A colloid solution of Au nanoparticles with an average size of 17.9 ± 1.3 nm was prepared by reducing Au3+ ions with sodium citrate in water at 80 °C. Introduction of amino groups to QD/SiO2 particle surfaces was performed using (3-aminopropyl)-triethoxysilane (QD/SiO2-NH2). The QD/SiO2/Au particles were fabricated by mixing the Au particle colloid solution and the QD/SiO2-NH2 particle colloid solution. Values of radiant efficiency and computed tomography for the QD/SiO2/Au particle colloid solution were 2.23 × 107 (p/s/cm2/sr)/(μW/cm2) at a QD concentration of 8 × 10-7 M and 1180 ± 314 Hounsfield units and an Au concentration of 5.4 × 10-2 M. The QD/SiO2/Au particle colloid solution was injected into a mouse chest wall. Fluorescence emitted from the colloid solution could be detected on the skin covering the chest wall. The colloid solution could also be X-ray-imaged in the chest wall. Consequently, the QD/SiO2/Au particle colloid solution was found to have dual functions, i.e., fluorescence emission and X-ray absorption in vivo, which makes the colloid solution suitable to function as a contrast agent for dual imaging processes.

  1. Analysis of competition between transformation pathways in the functioning of biotic abstract dual automata.

    PubMed

    Popa, Radu; Cimpoiasu, Vily M

    2013-05-01

    Properties of avenues of transformation and their mutualism with forms of organization in dynamic systems are essential for understanding the evolution of prebiotic order. We have analyzed competition between two avenues of transformation in an A↔B system, using the simulation approach called BiADA (Biotic Abstract Dual Automata). We discuss means of avoiding common pitfalls of abstract system modeling and benefits of BiADA-based simulations. We describe the effect of the availability of free energy, energy sink magnitude, and autocatalysis on the evolution of energy flux and order in the system. Results indicate that prebiotic competition between avenues of transformation was more stringent in energy-limited environments. We predict that in such conditions the efficiency of autocatalysis during competition between alternative system states will increase for systems with forms of organization having short half-lives and thus information that is time-sensitive to energy starvation. Our results also offer a potential solution to Manfred Eigen's error catastrophe dilemma. In the conditions discussed above, the exponential growth of quasi species is curbed through the removal of less competitive "genetic" variants via energy starvation. We propose that one of the most important achievements (and selective edges) of a dynamic network during competition in energy-limited or energy-variable environments was the capacity to correlate the internal energy flux and the need for free energy with the availability of free energy in the environment.

  2. Synthesis of highly active and dual-functional electrocatalysts for methanol oxidation and oxygen reduction reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Zhang, Geng; Xu, Guangran; Li, Yingjun; Liu, Baocang; Gong, Xia; Zheng, Dafang; Zhang, Jun; Wang, Qin

    2016-12-01

    The promising Pt-based ternary catalyst is crucial for polymer electrolyte membrane fuel cells (PEMFCs) due to improving catalytic activity and durability for both methanol oxidation reaction and oxygen reduction reaction. In this work, a facile strategy is used for the synthesis ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities catalysts. The ternary RuMPt alloys exhibit enhanced specific and mass activity, positive half-wave potential, and long-term stability, compared with binary Pt-based alloy and the commercial Pt/C catalyst, which is attributed to the high electron density and upshifting of the d-band center for Pt atoms, and synergistic catalytic effects among Pt, M, and Ru atoms by introducing a transition metal. Impressively, the ternary RuCoPt catalyst exhibits superior mass activity (801.59 mA mg-1) and positive half-wave potential (0.857 V vs. RHE) towards MOR and ORR, respectively. Thus, the RuMPt nanocomposite is a very promising material to be used as dual electrocatalyst in the application of PEMFCs.

  3. Dual growth factor releasing multi-functional nanofibers for wound healing.

    PubMed

    Xie, Zhiwei; Paras, Christian B; Weng, Hong; Punnakitikashem, Primana; Su, Lee-Chun; Vu, Khanh; Tang, Liping; Yang, Jian; Nguyen, Kytai T

    2013-12-01

    The objective of this research is to develop a dual growth factor-releasing nanoparticle-in-nanofiber system for wound healing applications. In order to mimic and promote the natural healing procedure, chitosan and poly(ethylene oxide) were electrospun into nanofibrous meshes as mimics of extracellular matrix. Vascular endothelial growth factor (VEGF) was loaded within nanofibers to promote angiogenesis in the short term. In addition, platelet-derived growth factor-BB (PDGF-BB) encapsulated poly(lactic-co-glycolic acid) nanoparticles were embedded inside nanofibers to generate a sustained release of PDGF-BB for accelerated tissue regeneration and remodeling. In vitro studies revealed that our nanofibrous composites delivered VEGF quickly and PDGF-BB in a relayed manner, supported fibroblast growth and exhibited anti-bacterial activities. A preliminary in vivo study performed on normal full thickness rat skin wound models demonstrated that nanofiber/nanoparticle scaffolds significantly accelerated the wound healing process by promoting angiogenesis, increasing re-epithelialization and controlling granulation tissue formation. For later stages of healing, evidence also showed quicker collagen deposition and earlier remodeling of the injured site to achieve a faster full regeneration of skin compared to the commercial Hydrofera Blue® wound dressing. These results suggest that our nanoparticle-in-nanofiber system could provide a promising treatment for normal and chronic wound healing.

  4. Dual-channel in-situ optical imaging system for quantifying lipid uptake and lymphatic pump function

    NASA Astrophysics Data System (ADS)

    Kassis, Timothy; Kohan, Alison B.; Weiler, Michael J.; Nipper, Matthew E.; Cornelius, Rachel; Tso, Patrick; Brandon Dixon, J.

    2012-08-01

    Nearly all dietary lipids are transported from the intestine to venous circulation through the lymphatic system, yet the mechanisms that regulate this process remain unclear. Elucidating the mechanisms involved in the functional response of lymphatics to changes in lipid load would provide valuable insight into recent implications of lymphatic dysfunction in lipid related diseases. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. The imaging platform provides the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. Utilizing post-acquisition image processing algorithms, we can quantify correlations between vessel pump function, lymph flow, and lipid concentration of mesenteric lymphatic vessels in situ. All image analysis is automated with customized LabVIEW virtual instruments; local flow is measured through lymphocyte velocity tracking, vessel contraction through measurements of the vessel wall displacement, and lipid uptake through fluorescence intensity tracking of an orally administered fluorescently labelled fatty acid analogue, BODIPY FL C16. This system will prove to be an invaluable tool for scientists studying intestinal lymphatic function in health and disease, and those investigating strategies for targeting the lymphatics with orally delivered drugs to avoid first pass metabolism.

  5. Dual-compartment neurofluidic system for electrophysiological measurements in physically segregated and functionally connected neuronal cell culture.

    PubMed

    Kanagasabapathi, Thirukumaran T; Ciliberti, Davide; Martinoia, Sergio; Wadman, Wytse J; Decré, Michel M J

    2011-01-01

    We developed a dual-compartment neurofluidic system with inter-connecting microchannels to connect neurons from their respective compartments, placed on a planar microelectrode arrays. The design and development of the compartmented microfluidic device for neuronal cell culture, protocol for sustaining long-term cultures, and neurite growth through microchannels in such a closed compartment device are presented. Using electrophysiological measurements of spontaneous network activity in the compartments and selective pharmacological manipulation of cells in one compartment, the biological origin of network activity and the fluidic isolation between the compartments are demonstrated. The connectivity between neuronal populations via the microchannels and the crossing-over of neurites are verified using transfection experiments and immunofluorescence staining. In addition to the neurite cross-over to the adjacent compartment, functional connectivity between cells in both the compartments is verified using cross-correlation (CC) based techniques. Bidirectional signal propagation between the compartments is demonstrated using functional connectivity maps. CC analysis and connectivity maps demonstrate that the two neuronal populations are not only functionally connected within each compartment but also with each other and a well connected functional network was formed between the compartments despite the physical barrier introduced by the microchannels.

  6. Dual-Compartment Neurofluidic System for Electrophysiological Measurements in Physically Segregated and Functionally Connected Neuronal Cell Culture

    PubMed Central

    Kanagasabapathi, Thirukumaran T.; Ciliberti, Davide; Martinoia, Sergio; Wadman, Wytse J.; Decré, Michel M. J.

    2011-01-01

    We developed a dual-compartment neurofluidic system with inter-connecting microchannels to connect neurons from their respective compartments, placed on a planar microelectrode arrays. The design and development of the compartmented microfluidic device for neuronal cell culture, protocol for sustaining long-term cultures, and neurite growth through microchannels in such a closed compartment device are presented. Using electrophysiological measurements of spontaneous network activity in the compartments and selective pharmacological manipulation of cells in one compartment, the biological origin of network activity and the fluidic isolation between the compartments are demonstrated. The connectivity between neuronal populations via the microchannels and the crossing-over of neurites are verified using transfection experiments and immunofluorescence staining. In addition to the neurite cross-over to the adjacent compartment, functional connectivity between cells in both the compartments is verified using cross-correlation (CC) based techniques. Bidirectional signal propagation between the compartments is demonstrated using functional connectivity maps. CC analysis and connectivity maps demonstrate that the two neuronal populations are not only functionally connected within each compartment but also with each other and a well connected functional network was formed between the compartments despite the physical barrier introduced by the microchannels. PMID:22025913

  7. Evaluation of mitochondrial function and membrane integrity by dual fluorescent staining for assessment of sperm status in rats.

    PubMed

    Kato, Masashi; Makino, Sachiko; Kimura, Hitoshi; Ota, Takao; Furuhashi, Tadakazu; Nagamura, Yoichi

    2002-02-01

    Dual fluorescent staining (DFS) with calcein acetoxy methyl ester (CAM), which labels the cellular esterase activity that is a major component of energy metabolism in cellular mitochondria, and with ethidium homodimer-1 (EthD-1) was used to evaluate mitochondrial function and membrane integrity in rat spermatozoa. The spermatozoa stained by DFS could be classified into three different populations microscopically when excited at 490 nm after 60 min incubation. 1) Spermatozoa, which were stained with CAM alone and had maintained either mitochondrial function or membrane integrity, were identified as live during incubation. 2) Spermatozoa, which were stained with EthD-1 alone and had lost either mitochondrial function or membrane integrity, were identified as already dead at the beginning of incubation. 3) Spermatozoa, which were stained with both CAM and EthD-1 and had maintained mitochondrial function with membrane breached, were identified as having died during incubation. Two toxicological tests, an in vitro triton X-100 experiment and an in vivo nitrobenzene experiment, were done. All spermatozoa were immobilized and lost either mitochondrial function or membrane integrity by 1.0% triton X-100 treatment. Almost no motile sperm were found at 0.1% in the triton X-100 group and in the groups treated with 60 and 40 mg/kg/day of nitrobenzene, and these spermatozoa maintained their mitochondrial function but had their membrane breached. In conclusion, the DFS procedure, which uses CAM and EthD-1, can clearly and visually identify the population of viable and dead spermatozoa simultaneously by fluorescence microscopy in rats. This is a useful technique to characterize sperm status, which is determined by the mitochondrial function assessed by CAM and membrane integrity evaluated by EthD-1.

  8. Chromate (CrO(4)(2-)) and copper (Cu2+) adsorption by dual-functional ion exchange resins made from agricultural by-products.

    PubMed

    Marshall, Wayne E; Wartelle, Lynda H

    2006-07-01

    Ion exchange resins commonly have a single functionality for either cations or anions. Resins that have a dual functionality for both cations and anions are uncommon. The objective of this study was to create dual-functional ion exchange resins derived from soybean hulls, sugarcane bagasse and corn stover. Dual-functional resins were prepared by two separate two-step processes. In the first two-step process, by-products were reacted with a solution of citric acid in order to impart additional negative charge, and then reacted with the cross-linking reagent dimethyloldihydroxyethylene urea (DMDHEU) and a quaternary amine (choline chloride) to add positive charge to the lignocellulosic material. In the second two-step process, the order of reaction was reversed, with positive charge added first, followed by the addition of negative charge. These combined reactions added both cationic and anionic character to the by-products as evidenced by the increased removal from solution of copper (Cu(2+)) cation and the chromate (CrO(4)(2-)) anion compared to unmodified by-products. The order of reaction appeared to slightly favor the functionality that was added last. That is, if negative charge was added last, the resulting resin sequestered more copper ion than a comparable resin where the negative charge was added first and vice-versa. Cu(2+) and CrO(4)(2-) were used as marker ions in a solution that contained both competing cations and anions. The dual-functional resins adsorbed as much as or more of the marker ions compared to commercial cation or anion exchange resins used for comparison. None of the commercial resins exhibited dual-functional properties to the same extent as the by-product-based resins.

  9. Functional dual hydrophilic dendrimer-modified metal-organic framework for the selective enrichment of N-glycopeptides.

    PubMed

    Wang, Yanan; Wang, Jiaxi; Gao, Mingxia; Zhang, Xiangmin

    2017-04-08

    Analysis of protein glycosylation remains a significant challenge due to the low abundance of glycoproteins or N-glycopeptides. Here we have synthesized an amino-functionalized metal-organic framework (MOF) MIL-101(Cr)-NH2 whose surface is grafted with a hydrophilic dendrimer poly(amidoamine) (PAMAM) for N-glycopeptide enrichment based on the hydrophilic interactions. The selected substrate MOF MIL-101(Cr) owns high surface area which provides nice support for peptide adsorption. In addition, the MOF displayed a good hydrophilic property after being modified with amino groups. Most importantly, the grafted hydrophilic dendrimer PAMAM was firstly applied in the post-synthetic modification (PSM) of MOFs. And this functionalization route using macromolecular dendrimer opens a new perspective in MOFs design. Owing to its long dendritic chains and abundant amino groups, our material displayed dual hydrophilic property. In the enrichment of standard glycoprotein horseradish peroxidase (HRP) digestion, the functional MOF material was shown to have low detection limit (1 fmol/μL) and good selectivity when the concentration of nonglycopeptides was 100 fold higher than the target N-glycopeptides. All the results proved that MIL-101(Cr)-NH2 @PAMAM has great potential in the glycoproteome analysis. This article is protected by copyright. All rights reserved.

  10. Peroxiredoxin 1 (Prx1) is a dual function enzyme by possessing Cys-independent catalase-like activity.

    PubMed

    Sun, Cen-Cen; Dong, Wei-Ren; Shao, Tong; Li, Jiang-Yuan; Zhao, Jing; Nie, Li; Xiang, Li-Xin; Zhu, Guan; Shao, Jian-Zhong

    2017-02-20

    Peroxiredoxin (Prx) was previously known as a Cys-dependent thioredoxin. However, we unexpected observed that Prx1 from the green spotted puffer fish Tetraodon nigroviridis (TnPrx1) was able to reduce H2O2 in a manner independent on the Cys peroxidation and reductants. This study aimed to validate the novel function for Prx1, delineate the biochemical features and explore its antioxidant role in cells. We have confirmed that Prx1 from the puffer fish and humans truly possesses a catalase-like activity that is independent of Cys residues and reductants, but dependent on iron. We have identified that the GVL motif was essential to the catalase-like (CAT) activity of Prx1, but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and generated mutants lacking POX and/or CAT activities for individual functional validation. We discovered that the TnPrx1 POX and CAT activities possessed different kinetic features in reducing H2O2 The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species (ROS) and the phosphorylation of p38 in HEK-293T cells treated with H2O2 Prx1 is a dual function enzyme by acting as POX and CAT with varied affinities towards ROS. This study extends our knowledge on Prx1 and provides new opportunities to further study the biological roles of this family of antioxidants.

  11. Peroxiredoxin 1 (Prx1) is a dual-function enzyme by possessing Cys-independent catalase-like activity

    PubMed Central

    Sun, Cen-Cen; Dong, Wei-Ren; Shao, Tong; Li, Jiang-Yuan; Zhao, Jing; Nie, Li

    2017-01-01

    Peroxiredoxin (Prx) was previously known as a Cys-dependent thioredoxin. However, we unexpectedly observed that Prx1 from the green spotted puffer fish Tetraodon nigroviridis (TnPrx1) was able to reduce H2O2 in a manner independent of Cys peroxidation and reductants. This study aimed to validate a novel function for Prx1, delineate the biochemical features and explore its antioxidant role in cells. We have confirmed that Prx1 from the puffer fish and humans truly possesses a catalase (CAT)-like activity that is independent of Cys residues and reductants, but dependent on iron. We have identified that the GVL motif was essential to the CAT-like activity of Prx1, but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and generated mutants lacking POX and/or CAT-like activities for individual functional validation. We discovered that the TnPrx1 POX and CAT-like activities possessed different kinetic features in the reduction of H2O2. The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species (ROS) and the phosphorylation of p38 in HEK-293T cells treated with H2O2. Prx1 is a dual-function enzyme by acting as POX and CAT with varied affinities towards ROS. This study extends our knowledge on Prx1 and provides new opportunities to further study the biological roles of this family of antioxidants. PMID:28219939

  12. The dual role of Andean topography in primary divergence: functional and neutral variation among populations of the hummingbird, Metallura tyrianthina.

    PubMed

    Benham, Phred M; Witt, Christopher C

    2016-01-22

    The ridges and valleys of the Andes create physical barriers that limit animal dispersal and cause deterministic local variation in rainfall. This has resulted in physical isolation of animal populations and variation in habitats, each of which has likely contributed to the evolution of high species diversity in the region. However, the relative influences of geographic isolation, ecoclimatic conditions, and their potential interactions remain poorly understood. To address this, we compared patterns of genetic and morphological diversity in Peruvian populations of the hummingbird Metallura tyrianthina. Phylogenetic and variation partitioning analyses showed that geographic isolation rather than climatic dissimilarity explained the greatest proportion of genetic variance. In contrast, bill length variation was explained by climatic seasonality, but not by genetic divergence. We found that mutation-scaled migration rate (m) between persistently humid and semi-humid environments was nearly 20 times higher when the habitats were contiguous (m = 39.9) than when separated by a barrier, the Cordillera de Vilcanota (m = 2.1). Moreover, the population experiencing more gene flow exhibited a lesser degree of bill length divergence despite similar differences in climate. Geographic isolation is necessary for genetic divergence. Ecological differences, represented here by climate characteristics, are necessary for functional divergence. Gene flow appears to hinder the evolution of functional traits toward local adaptive optima. This suggests that functional diversification requires geographic isolation followed or accompanied by a shift in ecological conditions. Andean topography causes both isolation and climatic variation, underscoring its dual role in biotic diversification.

  13. Dual-function sRNA encoded peptide SR1P modulates moonlighting activity of B. subtilis GapA

    PubMed Central

    Gimpel, Matthias; Brantl, Sabine

    2016-01-01

    ABSTRACT SR1 is a dual-function sRNA from B. subtilis that acts as a base-pairing regulatory RNA and as a peptide-encoding mRNA. Both functions of SR1 are highly conserved. Previously, we uncovered that the SR1 encoded peptide SR1P binds the glycolytic enzyme GapA resulting in stabilization of gapA mRNA. Here, we demonstrate that GapA interacts with RNases Y and J1, and this interaction was RNA-independent. About 1% of GapA molecules purified from B. subtilis carry RNase J1 and about 2% RNase Y. In contrast to the GapA/RNase Y interaction, the GapA/RNaseJ1 interaction was stronger in the presence of SR1P. GapA/SR1P-J1/Y displayed in vitro RNase activity on known RNase J1 substrates. Moreover, the RNase J1 substrate SR5 has altered half-lives in a ΔgapA strain and a Δsr1 strain, suggesting in vivo functions of the GapA/SR1P/J1 interaction. Our results demonstrate that the metabolic enzyme GapA moonlights in recruiting RNases while GapA bound SR1P promotes binding of RNase J1 and enhances its activity. PMID:27449348

  14. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair.

    PubMed

    Morales, Julio C; Richard, Patricia; Rommel, Amy; Fattah, Farjana J; Motea, Edward A; Patidar, Praveen L; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N; Chiang, Cheng-Ming; Manley, James L; Boothman, David A

    2014-04-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair.

  15. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair

    PubMed Central

    Morales, Julio C.; Richard, Patricia; Rommel, Amy; Fattah, Farjana J.; Motea, Edward A.; Patidar, Praveen L.; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N.; Chiang, Cheng-Ming; Manley, James L.; Boothman, David A.

    2014-01-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair. PMID:24589584

  16. Neural precursor-specific expression of multiple Drosophila genes is driven by dual enhancer modules with overlapping function

    PubMed Central

    Miller, Steven W.; Rebeiz, Mark; Atanasov, Jenny E.

    2014-01-01

    Transcriptional cis-regulatory modules (CRMs), or enhancers, are responsible for directing gene expression in specific territories and cell types during development. In some instances, the same gene may be served by two or more enhancers with similar specificities. Here we show that the utilization of dual, or “shadow”, enhancers is a common feature of genes that are active specifically in neural precursor (NP) cells in Drosophila. By genome-wide computational discovery of statistically significant clusters of binding motifs for both proneural activator (P) proteins and basic helix–loop–helix (bHLH) repressor (R) factors (a “P+R” regulatory code), we have identified NP-specific enhancer modules associated with multiple genes expressed in this cell type. These CRMs are distinct from those previously identified for the corresponding gene, establishing the existence of a dual-enhancer arrangement in which both modules reside close to the gene they serve. Using wild-type and mutant reporter gene constructs in vivo, we show that P sites in these modules mediate activation by proneural factors in “proneural cluster” territories, whereas R sites mediate repression by bHLH repressors, which serves to restrict expression specifically to NP cells. To our knowledge, our results identify the first direct targets of these bHLH repressors. Finally, using genomic rescue constructs for neuralized (neur), we demonstrate that each of the gene's two NP-specific enhancers is sufficient to rescue neur function in the lateral inhibition process by which adult sensory organ precursor (SOP) cells are specified, but that deletion of both enhancers results in failure of this event. PMID:25404315

  17. Phenylamine-functionalized mesoporous silica supported PdAg nanoparticles: a dual heterogeneous catalyst for formic acid/CO2-mediated chemical hydrogen delivery/storage.

    PubMed

    Mori, Kohsuke; Masuda, Shinya; Tanaka, Hiromasa; Yoshizawa, Kazunari; Che, Michel; Yamashita, Hiromi

    2017-04-25

    A PdAg-based nanoparticle catalyst supported on the mesoporous silica material, SBA-15, modified with a weakly basic phenylamine functional group has been developed as a dual heterogeneous catalyst for the H2 delivery and H2 storage reactions mediated by formic acid and carbon dioxide.

  18. Phase 1-2 Study of Dual-Energy Computed Tomography for Assessment of Pulmonary Function in Radiation Therapy Planning.

    PubMed

    Bahig, Houda; Campeau, Marie-Pierre; Lapointe, Andréanne; Bedwani, Stephane; Roberge, David; de Guise, Jacques; Blais, Danis; Vu, Toni; Lambert, Louise; Chartrand-Lefebvre, Carl; Lord, Martin; Filion, Edith

    2017-10-01

    To quantify lung function according to a dual-energy computed tomography (DECT)-derived iodine map in patients treated with radiation therapy for lung cancer, and to assess the dosimetric impact of its integration in radiation therapy planning. Patients treated with stereotactic ablative radiation therapy for early-stage or intensity modulated radiation therapy for locally advanced lung cancer were prospectively enrolled in this study. A DECT in treatment position was obtained at time of treatment planning. The relative contribution of each voxel to the total lung function was based on iodine distribution. The composition of each voxel was determined on the basis of a 2-material decomposition. The DECT-derived lobar function was compared with single photon emission computed tomography/computed tomography (SPECT/CT). A functional map was integrated in the treatment planning system using 6 subvolumes of increasing iodine distribution levels. Percent lung volume receiving 5 Gy (V5), V20, and mean dose (MLD) to whole lungs (anatomic) versus functional lungs were compared. Twenty-five patients with lung cancer, including 18 patients treated with stereotactic ablative radiation therapy and 7 patients with intensity modulated radiation therapy (locally advanced), were included. Eighty-four percent had chronic obstructive pulmonary disease. Median (range) forced expiratory volume in 1 second was 62% of predicted (29%-113%), and median diffusing capacity of the lung for carbon monoxide was 56% (39%-91%). There was a strong linear correlation between DECT- and SPECT/CT-derived lobar function (Pearson coefficient correlation r=0.89, P<.00001). Mean (range) differences in V5, V20, and MLD between anatomic and functional lung volumes were 16% (0%-48%, P=.03), 5% (1%-15%, P=.12), and 15% (1%-43%, P=.047), respectively. Lobar function derived from a DECT iodine map correlates well with SPECT/CT, and its integration in lung treatment planning is associated with significant

  19. Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid.

    PubMed

    Quyen, Thi Dinh; Vu, Chi Hai; Le, Giang Thi Thu

    2012-03-01

    The lipase subfamilies I.1 and I.2 show more than 33% homology in the amino acid sequences and most members share another common property that their genes are clustered with the secondary genes whose protein products are required for folding the lipase into an active conformation and secretion into the culture medium. In previous studies, the lipase (LipA) and its chaperone (LipB) from Ralstonia sp. M1 were overexpressed in E. coli and the lipase was successfully refolded in vitro. The purpose of this study was to enhance the production of the active lipase LipA from Ralstonia sp. M1 in the heterologous host E. coli without in vitro refolding process, using two-plasmid co-expression systems and dual expression cassette plasmid systems. To produce more active lipase from Ralstonia sp. M1 in E. coli without in vitro refolding process but with the help of overexpression of the chaperone (LipB1 and LipB3 corresponding to 56-aa truncated and 26-aa truncated chaperone LipB), six different expression systems including 2 two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) and 4 dual expression cassette plasmid systems (BL21/pELipAB-LipB1a, BL21/pELipAB-LipB3a, BL21/pELipA-LipB1a, and BL21/pELipA-LipB3a) were constructed. The two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) produced the active lipase at a level of 4 times as high as the single expression cassette plasmid system E. coli BL21/pELipABa did. For the first time, the dual expression cassette plasmid systems BL21/pELipAB-LipB1a and BL21/pELipAB-LipB3a yielded 29- and 19-fold production of the active lipase in comparison with the single expression cassette plasmid system E. coli BL21/pELipABa, respectively. Although the lipase amount was equally expressed in all these expression systems (40% of total cellular protein) and only a small fraction of the overexpressed lipase was folded in vivo into the functional lipase in

  20. Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid

    PubMed Central

    2012-01-01

    into the functional lipase in soluble form whereas the main fraction was still inactive in the form of inclusion bodies. Another controversial finding was that the dual expression cassette plasmid systems E. coli BL21/pELipAB-LipB1a and E. coli/pELipAB-LipB3a secreted the active lipase into the culture medium of 51 and 29 times as high as the single expression cassette plasmid system E. coli pELipABa did, respectively, which has never been reported before. Another interesting finding was that the lipase form LipA6xHis (mature lipase fused with 6× histidine tag) expressed in the dual expression cassette plasmid systems (BL21/pELipA-LipB1a and BL21/pELipA-LipB3a) showed no lipase activity although the expression level of the lipase and two chaperone forms LipB1 and LipB3 in these systems remained as high as that in E. coli BL21/pELipABa + pELipB1k, BL21/pELipABa + pELipB3k, BL21/pELipAB-LipB1a, and BL21/pELipAB-LipB3a. The addition of Neptune oil or detergents into the LB medium increased the lipase production and secretion by up to 94%. Conclusions Our findings demonstrated that a dual expression cassette plasmid system E. coli could overproduce and secrete the active chaperone-dependent lipase (subfamilies I.1 and I.2) in vivo and an improved dual expression cassette plasmid system E. coli could be potentially applied for industrial-scale production of subfamily I.1 and I.2 lipases. PMID:22380513

  1. Lysine Specific Demethylase 1 has Dual Functions as a Major Regulator of Androgen Receptor Transcriptional Activity

    PubMed Central

    Cai, Changmeng; He, Housheng Hansen; Gao, Shuai; Chen, Sen; Yu, Ziyang; Gao, Yanfei; Chen, Shaoyong; Chen, Mei Wei; Zhang, Jesse; Ahmed, Musaddeque; Wang, Yang; Metzger, Eric; Schüle, Roland; Liu, X. Shirley; Brown, Myles; Balk, Steven P.

    2014-01-01

    SUMMARY Lysine Specific Demethylase 1 (LSD1, KDM1A) functions as a transcriptional corepressor through demethylation of histone 3 lysine 4 (H3K4), but has coactivator function on some genes through unclear mechanisms. We show that LSD1, interacting with CoREST, associates with and coactivates androgen receptor (AR) on a large fraction of androgen-stimulated genes. A subset of these AR/LSD1-associated enhancer sites have histone 3 threonine 6 phosphorylation (H3T6ph), and these sites are further enriched for androgen-stimulated genes. Significantly, despite its coactivator activity, LSD1 still mediates H3K4me2 demethylation at these androgen-stimulated enhancers. FOXA1 is also associated with LSD1 at AR regulated enhancer sites, and a FOXA1 interaction with LSD1 enhances binding of both proteins at these sites. These findings show LSD1 functions broadly as a regulator of AR function, that it maintains a transcriptional repression function at AR-regulated enhancers through H3K4 demethylation, and has a distinct AR-linked coactivator function mediated by demethylation of other substrates. PMID:25482560

  2. Dual-Functionalized Graphene Oxide Based siRNA Delivery System for Implant Surface Biomodification with Enhanced Osteogenesis.

    PubMed

    Zhang, Li; Zhou, Qing; Song, Wen; Wu, Kaimin; Zhang, Yumei; Zhao, Yimin

    2017-09-27

    Surface functionalization by small interfering RNA (siRNA) is a novel strategy for improved implant osseointegration. A gene delivery system with safety and high transfection activity is a crucial factor for an siRNA-functionalized implant to exert its biological function. To this end, polyethylene glycol (PEG) and polyethylenimine (PEI) dual-functionalized graphene oxide (GO; nGO-PEG-PEI) may present a promising siRNA vector. In this study, nanosized nGO-PEG-PEI was prepared and optimized for siRNA delivery. Titania nanotubes (NTs) fabricated by anodic oxidation were biomodified with nGO-PEG-PEI/siRNA by cathodic electrodeposition, designated as NT-GPP/siRNA. NT-GPP/siRNA possessed benign cytocompatibility, as evaluated by cell adhesion and proliferation. Cellular uptake and knockdown efficiency of the NT-GPP/siRNA were assessed by MC3T3-E1 cells, which exhibited high siRNA delivery efficiency and sustained target gene silencing. Casein kinase-2 interacting protein-1 (Ckip-1) is a negative regulator of bone formation. siRNA-targeting Ckip-1 (siCkip-1) was introduced to the implant, and a series of in vitro and in vivo experiments were carried out to evaluate the osteogenic capacity of NT-GPP/siCkip-1. NT-GPP/siCkip-1 dramatically improved the in vitro osteogenic differentiation of MC3T3-E1 cells in terms of improved osteogenesis-related gene expression, and increased alkaline phosphatase (ALP) production, collagen secretion, and extracellular matrix (ECM) mineralization. Moreover, NT-GPP/siCkip-1 led to apparently enhanced in vivo osseointegration, as indicated by histological staining and EDX line scanning. Collectively, these findings suggest that NT-GPP/siRNA represents a practicable and promising approach for implant functionalization, showing clinical potential for dental and orthopedic applications.

  3. The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals

    PubMed Central

    2010-01-01

    Background Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals, thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity, structure and substrate specificity of these membrane channel proteins are largely unknown. Results The screening and isolation of transcripts from the zebrafish (Danio rerio) genome revealed eighteen sequences structurally related to the four subfamilies of tetrapod aquaporins, i.e., aquaporins (AQP0, -1 and -4), water and glycerol transporters or aquaglyceroporins (Glps; AQP3 and AQP7-10), a water and urea transporter (AQP8), and two unorthodox aquaporins (AQP11 and -12). Phylogenetic analyses of nucleotide and deduced amino acid sequences demonstrated dual paralogy between teleost and human aquaporins. Three of the duplicated zebrafish isoforms have unlinked loci, two have linked loci, while DrAqp8 was found in triplicate across two chromosomes. Genomic sequencing, structural analysis, and maximum likelihood reconstruction, further revealed the presence of a putative pseudogene that displays hybrid exons similar to tetrapod AQP5 and -1. Ectopic expression of the cloned transcripts in Xenopus laevis oocytes demonstrated that zebrafish aquaporins and Glps transport water or water, glycerol and urea, respectively, whereas DrAqp11b and -12 were not functional in oocytes. Contrary to humans and some rodents, intrachromosomal duplicates of zebrafish AQP8 were water and urea permeable, while the genomic duplicate only transported water. All aquaporin transcripts were expressed in adult tissues and found to have divergent expression patterns. In some tissues, however, redundant expression of transcripts encoding two duplicated paralogs seems to occur. Conclusion The zebrafish genome encodes the largest repertoire of functional vertebrate

  4. Simultaneous dual-functioning InGaN/GaN multiple-quantum-well diode for transferrable optoelectronics

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Yuan, Jialei; Zhang, Shuai; Liu, Yuhuai; Wang, Yongjin

    2017-10-01

    We propose a wafer-level procedure for the fabrication of 1.5-mm-diameter dual functioning InGaN/GaN multiple-quantum-well (MQW) diodes on a GaN-on-silicon platform for transferrable optoelectronics. Nitride semiconductor materials are grown on (111) silicon substrates with intermediate Al-composition step-graded buffer layers, and membrane-type MQW-diode architectures are obtained by a combination of silicon removal and III-nitride film backside thinning. Suspended MQW-diodes are directly transferred from silicon to foreign substrates such as metal, glass and polyethylene terephthalate by mechanically breaking the support beams. The transferred MQW-diodes display strong electroluminescence under current injection and photodetection under light irradiation. Interestingly, they demonstrate a simultaneous light-emitting light-detecting function, endowing the 1.5-mm-diameter MQW-diode with the capability of producing transferrable optoelectronics for adjustable displays, wearable optical sensors, multifunctional energy harvesting, flexible light communication and monolithic photonic circuit.

  5. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework

    NASA Astrophysics Data System (ADS)

    Huang, Ren-Wu; Wei, Yong-Sheng; Dong, Xi-Yan; Wu, Xiao-Hui; Du, Chen-Xia; Zang, Shuang-Quan; Mak, Thomas C. W.

    2017-07-01

    Silver(I) chalcogenide/chalcogenolate clusters are promising photofunctional materials for sensing, optoelectronics and solar energy harvesting applications. However, their instability and poor room-temperature luminescent quantum yields have hampered more extensive study. Here, we graft such clusters to adaptable bridging ligands, enabling their interconnection and the formation of rigid metal-organic frameworks. By controlling the spatial separation and orientation of the clusters, they then exhibit enhanced stability (over one year) and quantum yield (12.1%). Ultrafast dual-function fluorescence switching (<1 s) is also achieved, with turn-off triggered by O2 and multicoloured turn-on by volatile organic compounds. Single-crystal X-ray diffraction of the inclusion materials, obtained by single-crystal-to-single-crystal transformation, enables precise determination of the position of the small molecules within the framework, elucidating the switching mechanism. The work enriches the cluster-based metal-organic framework portfolio, bridges the gap between silver chalcogenide/chalcogenolate clusters and metal-organic frameworks, and provides a foundation for further development of functional silver-cluster-based materials.

  6. Translationally Controlled Tumor Protein, a Dual Functional Protein Involved in the Immune Response of the Silkworm, Bombyx mori

    PubMed Central

    Hua, Xiaoting; Song, Liang; Xia, Qingyou

    2013-01-01

    Insect gut immunity is the first line of defense against oral infection. Although a few immune-related molecules in insect intestine has been identified by genomics or proteomics approach with comparison to well-studied tissues, such as hemolymph or fat body, our knowledge about the molecular mechanism underlying the gut immunity which would involve a variety of unidentified molecules is still limited. To uncover additional molecules that might take part in pathogen recognition, signal transduction or immune regulation in insect intestine, a T7 phage display cDNA library of the silkworm midgut is constructed. By use of different ligands for biopanning, Translationally Controlled Tumor Protein (TCTP) has been selected. BmTCTP is produced in intestinal epithelial cells and released into the gut lumen. The protein level of BmTCTP increases at the early time points during oral microbial infection and declines afterwards. In vitro binding assay confirms its activity as a multi-ligand binding molecule and it can further function as an opsonin that promotes the phagocytosis of microorganisms. Moreover, it can induce the production of anti-microbial peptide via a signaling pathway in which ERK is required and a dynamic tyrosine phosphorylation of certain cytoplasmic membrane protein. Taken together, our results characterize BmTCTP as a dual-functional protein involved in both the cellular and the humoral immune response of the silkworm, Bombyx mori. PMID:23894441

  7. Functional Assessment of Disease-Associated Regulatory Variants In Vivo Using a Versatile Dual Colour Transgenesis Strategy in Zebrafish

    PubMed Central

    Bhatia, Shipra; Gordon, Christopher T.; Foster, Robert G.; Melin, Lucie; Abadie, Véronique; Baujat, Geneviève; Vazquez, Marie-Paule; Amiel, Jeanne; Lyonnet, Stanislas; van Heyningen, Veronica; Kleinjan, Dirk A.

    2015-01-01

    Disruption of gene regulation by sequence variation in non-coding regions of the genome is now recognised as a significant cause of human disease and disease susceptibility. Sequence variants in cis-regulatory elements (CREs), the primary determinants of spatio-temporal gene regulation, can alter transcription factor binding sites. While technological advances have led to easy identification of disease-associated CRE variants, robust methods for discerning functional CRE variants from background variation are lacking. Here we describe an efficient dual-colour reporter transgenesis approach in zebrafish, simultaneously allowing detailed in vivo comparison of spatio-temporal differences in regulatory activity between putative CRE variants and assessment of altered transcription factor binding potential of the variant. We validate the method on known disease-associated elements regulating SHH, PAX6 and IRF6 and subsequently characterise novel, ultra-long-range SOX9 enhancers implicated in the craniofacial abnormality Pierre Robin Sequence. The method provides a highly cost-effective, fast and robust approach for simultaneously unravelling in a single assay whether, where and when in embryonic development a disease-associated CRE-variant is affecting its regulatory function. PMID:26030420

  8. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework.

    PubMed

    Huang, Ren-Wu; Wei, Yong-Sheng; Dong, Xi-Yan; Wu, Xiao-Hui; Du, Chen-Xia; Zang, Shuang-Quan; Mak, Thomas C W

    2017-07-01

    Silver(i) chalcogenide/chalcogenolate clusters are promising photofunctional materials for sensing, optoelectronics and solar energy harvesting applications. However, their instability and poor room-temperature luminescent quantum yields have hampered more extensive study. Here, we graft such clusters to adaptable bridging ligands, enabling their interconnection and the formation of rigid metal-organic frameworks. By controlling the spatial separation and orientation of the clusters, they then exhibit enhanced stability (over one year) and quantum yield (12.1%). Ultrafast dual-function fluorescence switching (<1 s) is also achieved, with turn-off triggered by O2 and multicoloured turn-on by volatile organic compounds. Single-crystal X-ray diffraction of the inclusion materials, obtained by single-crystal-to-single-crystal transformation, enables precise determination of the position of the small molecules within the framework, elucidating the switching mechanism. The work enriches the cluster-based metal-organic framework portfolio, bridges the gap between silver chalcogenide/chalcogenolate clusters and metal-organic frameworks, and provides a foundation for further development of functional silver-cluster-based materials.

  9. The narrow sheath duplicate genes: sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development.

    PubMed Central

    Scanlon, M J; Chen, K D; McKnight CC, I V

    2000-01-01

    The narrow sheath mutant of maize displays a leaf and plant stature phenotype controlled by the duplicate factor mutations narrow sheath1 and narrow sheath2. Mutant leaves fail to develop a lateral domain that includes the leaf margins. Genetic data are presented to show that the narrow sheath mutations map to duplicated chromosomal regions, reflecting an ancestral duplication of the maize genome. Genetic and cytogenetic evidence indicates that the original mutation at narrow sheath2 is associated with a chromosomal inversion on the long arm of chromosome 4. Meristematic sectors of dual aneuploidy were generated, producing plants genetically mosaic for NARROW SHEATH function. These mosaic plants exhibited characteristic half-plant phenotypes, in which leaves from one side of the plant were of nonmutant morphology and leaves from the opposite side were of narrow sheath mutant phenotype. The data suggest that the narrow sheath duplicate genes may perform ancestrally conserved, redundant functions in the development of a lateral domain in the maize leaf. PMID:10880496

  10. Bridging Adhesion of a Protein onto an Inorganic Surface Using Self-Assembled Dual-Functionalized Spheres.

    PubMed

    Sato, Sota; Ikemi, Masatoshi; Kikuchi, Takashi; Matsumura, Sachiko; Shiba, Kiyotaka; Fujita, Makoto

    2015-10-14

    For the bridging adhesion of different classes of materials in their intact functional states, the adhesion of biomolecules onto inorganic surfaces is a necessity. A new molecular design strategy for bridging adhesion was demonstrated by the introduction of two independent recognition groups on the periphery of spherical complexes self-assembled from metal ions (M) and bidentate ligands (L). These dual-functionalized M12L24 spheres were quantitatively synthesized in one step from two ligands, bearing either a biotin for streptavidin recognition or a titania-binding aptamer, and Pd(II) ions. The selective recognition of titania surfaces was achieved by ligands with hexapeptide aptamers (Arg-Lys-Leu-Pro-Asp-Ala: minTBP-1), whose fixation ability was enhanced by the accumulation effect on the surface of the M12L24 spheres. These well-defined spherical structures can be specifically tailored to promote interactions with both titania and streptavidin simultaneously without detrimentally affecting either recognition motif. The irreversible immobilization of the spheres onto titania was revealed quantitatively by quartz crystal microbalance measurements, and the adhesion of streptavidin to the titania surface mediated by the biotin surrounding the spheres was visually demonstrated by lithographic patterning experiments.

  11. A single-point mutation enhances dual functionality of a scorpion toxin.

    PubMed

    Wang, Xueli; Gao, Bin; Zhu, Shunyi

    2016-01-01

    Scorpion venom represents a tremendous, hitherto partially explored peptide library that has been proven to be useful not only for understanding ion channels but also for drug design. MeuTXKα3 is a functionally unknown scorpion toxin-like peptide. Here we describe new transcripts of this gene arising from alternative polyadenylation and its biological function as well as a mutant with a single-point substitution at site 30. Native-like MeuTXKα3 and its mutant were produced in Escherichia coli and their toxic function against Drosophila Shaker K(+) channel and its mammalian counterparts (rKv1.1-rKv1.3) were assayed by two-electrode voltage clamp technique. The results show that MeuTXKα3 is a weak toxin with a wide-spectrum of activity on both Drosophila and mammalian K(+) channels. The substitution of a proline at site 30 by an asparagine, an evolutionarily conserved functional residue in the scorpion α-KTx family, led to an increased activity on rKv1.2 and rKv1.3 but a decreased activity on the Shaker channel without changing the potency on rKv1.1, suggesting a key role of this site in species selectivity of scorpion toxins. MeuTXKα3 was also active on a variety of bacteria with lethal concentrations ranging from 4.66 to 52.01μM and the mutant even had stronger activity on some of these bacterial species. To the best of our knowledge, this is the first report on a bi-functional short-chain peptide in the lesser Asian scorpion venom. Further extensive mutations of MeuTXKα3 at site 30 could help improve its K(+) channel-blocking and antibacterial functions.

  12. Semiclassical partition function for strings dual to Wilson loops with small cusps in ABJM

    NASA Astrophysics Data System (ADS)

    Aguilera-Damia, Jeremías; Correa, Diego H.; Silva, Guillermo A.

    2015-03-01

    We compute the 1-loop partition function for strings in , whose worldsheets end along a line with small cusp angles in the boundary of AdS. We obtain these 1-loop results in terms of the vacuum energy for on-shell modes. Our results verify the proposal by Lewkowycz and Maldacena in arXiv:1312.5682 for the exact Bremsstrahlung function up to the next to leading order in the strong coupling expansion. The agreement is observed for cusps distorting either the 1/2 BPS or the 1/6 BPS Wilson line.

  13. Single and dual incision technique for acute distal biceps rupture: clinical and functional outcomes

    PubMed Central

    Guglielmino, Claudia; Massimino, Paolo; Ioppolo, Francesco; Castorina, Sergio; Musumeci, Giuseppe; Di Giunta, Angelo

    2016-01-01

    Summary Background Distal bicep tendon injuries are a traumatic event though rather rare. The pathogenesis is not entirely clear. The most common cause for injury is an unexpected load on the biceps when the elbow is in an extended position. Although several studies have provided insight into the pathogenetic processes of the lesion, the literature suggests to treat all injuries surgically (whether partial or total) if there is high functional demand. Methods Between January 2006 and March 2016 were studied 20 patients surgically treated for a disconnected distal bicep, 15 with a total lesion and 5 with a partial lesion. The patients were divided into 2 groups. Surgical access with single incision was performed on 13 patients while a double surgical access was performed on 7 patients. The clinical and functional results were studied using an Ewald System Score (ESS). Results In both groups, the most rapid improvement was achieved for the parameters of pain and deformity with excellent results, while those of function and movement were normalized as gradual and progressive over next 2 months. Conclusion The clinical and functional outcomes during the follow-up examination after surgery showed excellent results in patients treated with both types of surgical procedures. PMID:28217566

  14. The Dual Function of "usted:" Forms of Address in Bogota, Colombia.

    ERIC Educational Resources Information Center

    Uber, Diane Ringer

    1985-01-01

    Shows that "usted" has two functions: showing lack of solidarity and showing extreme solidarity, with "tu" falling somewhere in between on the continuum. Discusses the increasing use of "tu," especially among younger people, and presents some possible reasons for this. (SED)

  15. Functional synthetic Antennapedia genes and the dual roles of YPWM motif and linker size in transcriptional activation and repression

    PubMed Central

    Papadopoulos, Dimitrios K.; Reséndez-Pérez, Diana; Cárdenas-Chávez, Diana L.; Villanueva-Segura, Karina; Canales-del-Castillo, Ricardo; Felix, Daniel A.; Fünfschilling, Raphael; Gehring, Walter J.

    2011-01-01

    Segmental identity along the anteroposterior axis of bilateral animals is specified by Hox genes. These genes encode transcription factors, harboring the conserved homeodomain and, generally, a YPWM motif, which binds Hox cofactors and increases Hox transcriptional specificity in vivo. Here we derive synthetic Drosophila Antennapedia genes, consisting only of the YPWM motif and homeodomain, and investigate their functional role throughout development. Synthetic peptides and full-length Antennapedia proteins cause head-to-thorax transformations in the embryo, as well as antenna-to-tarsus and eye-to-wing transformations in the adult, thus converting the entire head to a mesothorax. This conversion is achieved by repression of genes required for head and antennal development and ectopic activation of genes promoting thoracic and tarsal fates, respectively. Synthetic Antennapedia peptides bind DNA specifically and interact with Extradenticle and Bric-à-brac interacting protein 2 cofactors in vitro and ex vivo. Substitution of the YPWM motif by alanines abolishes Antennapedia homeotic function, whereas substitution of YPWM by the WRPW repressor motif, which binds the transcriptional corepressor Groucho, allows all proteins to act as repressors only. Finally, naturally occurring variations in the size of the linker between the homeodomain and YPWM motif enhance Antennapedia repressive or activating efficiency, emphasizing the importance of linker size, rather than sequence, for specificity. Our results clearly show that synthetic Antennapedia genes are functional in vivo and therefore provide powerful tools for synthetic biology. Moreover, the YPWM motif is necessary—whereas the entire N terminus of the protein is dispensable—for Antennapedia homeotic function, indicating its dual role in transcriptional activation and repression by recruiting either coactivators or corepressors. PMID:21712439

  16. Synthesis and characterization of dual-functionalized core-shell fluorescent microspheres for bioconjugation and cellular delivery.

    PubMed

    Behrendt, Jonathan M; Nagel, David; Chundoo, Evita; Alexander, Lois M; Dupin, Damien; Hine, Anna V; Bradley, Mark; Sutherland, Andrew J

    2013-01-01

    The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins.

  17. Dual Functions of ASCIZ in the DNA Base Damage Response and Pulmonary Organogenesis

    PubMed Central

    Tenis, Nora; Hammet, Andrew; Hewitt, Kimberly; Ng, Jane-Lee; McNees, Carolyn J.; Kozlov, Sergei V.; Oka, Hayato; Kobayashi, Masahiko; Conlan, Lindus A.; Cole, Timothy J.; Yamamoto, Ken-ichi; Taniguchi, Yoshihito; Takeda, Shunichi; Lavin, Martin F.; Heierhorst, Jörg

    2010-01-01

    Zn2+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion or knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis. PMID:20975950

  18. [Quantification of left ventricular function and mass in dual-source CT (DSCT).].

    PubMed

    Arraiza, M; Bastarrika, G; Zudaire, B; Pueyo, J; Villanueva, A

    2009-01-01

    To evaluate the interobserver agreement in quantifying left ventricular function and mass and to assess the accuracy of conventional manual contour tracing compared to semiautomatic segmentation analysis software. Twenty consecutive subjects who underwent cardiac DSCT with retrospective ECG-gating were included. Two different multiphase image reconstructions were done in 5% steps throughout the entire cardiac cycle (0-95% of the R-R interval) with effective slice thickness of 1mm in the axial plane and 8mm in the short-axis orientation. Left ventricular function and mass were calculated by two independent observers, tracing endocardial and epicardial borders manually and using a semiautomatic software tool (Circulation II, Siemens). Ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), cardiac output (CO), and myocardial mass were evaluated by two independent observers blind to each other's assessments. The interobserver agreement and the reliability of the different segmentation methods were calculated. The time required for manual contouring and semiautomatic contour tracing was also registered. We found an excellent correlation (r>0.94; p<0.05) between the two independent observers for the quantification of left ventricular function and mass. Left ventricular functional parameters derived from semiautomatic contour software and conventional manual tracing method were not significantly different (p>0.05). The semiautomatic contour detection algorithm overestimated LV mass significantly compared with the manual contouring method (mean difference 29.45+/-1.64g; p<0.05). The time needed to calculate these parameters with the semiautomatic tool was significantly lower (248.85+/-99.8s) than with manual contouring (452.7+/-73.92s) (p<0.05). Interobserver agreement for quantifying left ventricular function and mass using DSCT is excellent. Despite overestimating left ventricular mass, the semiautomatic software tool allows

  19. Dual bronchodilation in COPD: lung function and patient-reported outcomes - a review.

    PubMed

    Price, David; Østrem, Anders; Thomas, Mike; Welte, Tobias

    2017-01-01

    Several fixed-dose combinations (FDCs) of long-acting bronchodilators (a long-acting muscarinic antagonist [LAMA] plus a long-acting β2-agonist [LABA]) are available for the treatment of COPD. Studies of these FDCs have demonstrated substantial improvements in lung function (forced expiratory volume in 1 second) in comparison with their respective constituent monocomponents. Improvements in patient-reported outcomes (PROs), such as symptoms and health status, as well as exacerbation rates, have been reported compared with a LABA or LAMA alone, but results are less consistent. The inconsistencies may in part be owing to differences in study design, methods used to assess study end points, and patient populations. Nevertheless, these observations tend to support an association between improvements in forced expiratory volume in 1 second and improvements in symptom-based outcomes. In order to assess the effects of FDCs on PROs and evaluate relationships between PROs and changes in lung function, we performed a systematic literature search of publications reporting randomized controlled trials of FDCs. Results of this literature search were independently assessed by two reviewers, with a third reviewer resolving any conflicting results. In total, 22 Phase III randomized controlled trials of FDC bronchodilators in COPD were identified, with an additional study including a post-literature search (ten for indacaterol-glycopyrronium once daily, eight for umeclidinium-vilanterol once daily, three for tiotropium-olodaterol once daily, and two for aclidinium-formoterol twice daily). Results from these studies demonstrated that the LAMA-LABA FDCs significantly improved lung function compared with their component monotherapies or other single-agent treatments. Furthermore, LABA-LAMA combinations also generally improved symptoms and health status versus monotherapies, although some discrepancies between lung function and PROs were observed. Overall, the safety profiles of the

  20. Dual functions of ASCIZ in the DNA base damage response and pulmonary organogenesis.

    PubMed

    Jurado, Sabine; Smyth, Ian; van Denderen, Bryce; Tenis, Nora; Hammet, Andrew; Hewitt, Kimberly; Ng, Jane-Lee; McNees, Carolyn J; Kozlov, Sergei V; Oka, Hayato; Kobayashi, Masahiko; Conlan, Lindus A; Cole, Timothy J; Yamamoto, Ken-Ichi; Taniguchi, Yoshihito; Takeda, Shunichi; Lavin, Martin F; Heierhorst, Jörg

    2010-10-21

    Zn²(+)-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn²(+)-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis.

  1. Dual bronchodilation in COPD: lung function and patient-reported outcomes – a review

    PubMed Central

    Price, David; Østrem, Anders; Thomas, Mike; Welte, Tobias

    2017-01-01

    Several fixed-dose combinations (FDCs) of long-acting bronchodilators (a long-acting muscarinic antagonist [LAMA] plus a long-acting β2-agonist [LABA]) are available for the treatment of COPD. Studies of these FDCs have demonstrated substantial improvements in lung function (forced expiratory volume in 1 second) in comparison with their respective constituent monocomponents. Improvements in patient-reported outcomes (PROs), such as symptoms and health status, as well as exacerbation rates, have been reported compared with a LABA or LAMA alone, but results are less consistent. The inconsistencies may in part be owing to differences in study design, methods used to assess study end points, and patient populations. Nevertheless, these observations tend to support an association between improvements in forced expiratory volume in 1 second and improvements in symptom-based outcomes. In order to assess the effects of FDCs on PROs and evaluate relationships between PROs and changes in lung function, we performed a systematic literature search of publications reporting randomized controlled trials of FDCs. Results of this literature search were independently assessed by two reviewers, with a third reviewer resolving any conflicting results. In total, 22 Phase III randomized controlled trials of FDC bronchodilators in COPD were identified, with an additional study including a post-literature search (ten for indacaterol–glycopyrronium once daily, eight for umeclidinium–vilanterol once daily, three for tiotropium–olodaterol once daily, and two for aclidinium–formoterol twice daily). Results from these studies demonstrated that the LAMA–LABA FDCs significantly improved lung function compared with their component monotherapies or other single-agent treatments. Furthermore, LABA–LAMA combinations also generally improved symptoms and health status versus monotherapies, although some discrepancies between lung function and PROs were observed. Overall, the safety

  2. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    PubMed Central

    Bircher, Chad; Shao, Yiping

    2012-01-01

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators’ internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm2 cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be

  3. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    SciTech Connect

    Bircher, Chad; Shao Yiping

    2012-02-15

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 x 1.5 and 2.0 x 2.0 mm{sup 2} cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be used

  4. Dual characterization of critical fluctuations: Density functional theory & nonlinear dynamics close to a tangent bifurcation

    NASA Astrophysics Data System (ADS)

    Riquelme-Galván, Mauricio; Robledo, Alberto

    2017-02-01

    We improve on the description of the relationship that exists between critical clusters in thermal systems and intermittency near the onset of chaos in low-dimensional systems. We make use of the statistical-mechanical language of inhomogeneous systems and of the renormalization group (RG) method in nonlinear dynamics to provide a more accurate, formal, approach to the subject. The description of this remarkable correspondence encompasses, on the one hand, the density functional formalism, where classical and quantum mechanical analogues match the procedure for one-dimensional clusters, and, on the other, the RG fixed-point map of functional compositions that captures the essential dynamical behavior. We provide details of how the above-referred theoretical approaches interrelate and discuss the implications of the correspondence between the high-dimensional (degrees of freedom) phenomenon and low-dimensional dynamics.

  5. Dual function of a nuclear factor I binding site in MMTV transcription regulation.

    PubMed Central

    Buetti, E; Kühnel, B; Diggelmann, H

    1989-01-01

    Using linker-scanning mutagenesis we had previously identified four elements within the MMTV LTR which are necessary for transcriptional stimulation by glucocorticoid hormones. Two of them overlapped with regions to which the glucocorticoid receptor binds in vitro. The third element contained a NF-I binding site, and the fourth the TATA box. Here we show that mutations that abolish in vitro binding of NF-I had a negative effect also on the basal activity of the MMTV promoter of LTR-containing plasmids stably integrated in Ltk- fibroblasts. The analysis of double mutants altered in the NF-I plus either one of the receptor binding elements further demonstrated that the NF-I site functionally cooperated with the proximal (-120) element, which alone was extremely inefficient in stimulation. The stronger distal (-181/-172) element was independent of NF-I and showed functional cooperativity with the proximal hormone-binding element. Images PMID:2542892

  6. A dual molecular analogue tuner for dissecting protein function in mammalian cells

    PubMed Central

    Brosh, Ran; Hrynyk, Iryna; Shen, Jessalyn; Waghray, Avinash; Zheng, Ning; Lemischka, Ihor R.

    2016-01-01

    Loss-of-function studies are fundamental for dissecting gene function. Yet, methods to rapidly and effectively perturb genes in mammalian cells, and particularly in stem cells, are scarce. Here we present a system for simultaneous conditional regulation of two different proteins in the same mammalian cell. This system harnesses the plant auxin and jasmonate hormone-induced degradation pathways, and is deliverable with only two lentiviral vectors. It combines RNAi-mediated silencing of two endogenous proteins with the expression of two exogenous proteins whose degradation is induced by external ligands in a rapid, reversible, titratable and independent manner. By engineering molecular tuners for NANOG, CHK1, p53 and NOTCH1 in mammalian stem cells, we have validated the applicability of the system and demonstrated its potential to unravel complex biological processes. PMID:27230261

  7. Dual-Function Air Cathode for Metal-Air Batteries with Pulse-Power Capability

    DTIC Science & Technology

    2013-01-28

    conformal nanoscale coatings of manganese oxide ( MnO x ) exhibit both energy storage and conversion function by providing electrocatalytic activity...at the nanoscale MnO x coating— oxygen reduction to sustain long-term energy delivery and faradaic electron/cation charge-storage reactions to...2 ) and z (60–540 μ m). [ 15 ] Ultrathin ( ∼ 10 nm), conformal coatings of Na + -birnessite-type MnO x are applied to the interior and exterior

  8. A twisted wire-shaped dual-function energy device for photoelectric conversion and electrochemical storage.

    PubMed

    Sun, Hao; You, Xiao; Deng, Jue; Chen, Xuli; Yang, Zhibin; Chen, Peining; Fang, Xin; Peng, Huisheng

    2014-06-23

    A wire-shaped energy device that can perform photoelectric conversion and electrochemical storage was developed through a simple but effective twisting process. The energy wire exhibited a high energy conversion efficiency of 6.58 % and specific capacitance of 85.03 μF cm(-1) or 2.13 mF cm(-2), and the two functions were alternately realized without sacrificing either performance.

  9. Dual surface-functionalized Janus nanocomposites for targeted stimulus responsive drug delivery.

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Wang, Yilong; Pauletti, Giovanni; Shi, Donglu

    2014-03-01

    A novel superparamagnetic Janus nanocomposite (SJNC) of polystyrene/Fe3O4@SiO2 was designed and developed for the first time using a miniemulsion method. Both surfaces were readily functionalized for bio-medical application. Folic acid (FA) and doxorubicin (DOX) were conjugated stepwise to the surfaces. It was found that SJNCs achieved cell-targeted drug delivery in a pH-responsive manner.

  10. Pph13 and orthodenticle define a dual regulatory pathway for photoreceptor cell morphogenesis and function.

    PubMed

    Mishra, Monalisa; Oke, Ashwini; Lebel, Cindy; McDonald, Elizabeth C; Plummer, Zachary; Cook, Tiffany A; Zelhof, Andrew C

    2010-09-01

    The function and integrity of photoreceptor cells are dependent upon the creation and maintenance of specialized apical structures: membrane discs/outer segments in vertebrates and rhabdomeres in insects. We performed a molecular and morphological comparison of Drosophila Pph13 and orthodenticle (otd) mutants to investigate the transcriptional network controlling the late stages of rhabdomeric photoreceptor cell development and function. Although Otd and Pph13 have been implicated in rhabdomere morphogenesis, we demonstrate that it is necessary to remove both factors to completely eliminate rhabdomere formation. Rhabdomere absence is not the result of degeneration or a failure of initiation, but rather the inability of the apical membrane to transform and elaborate into a rhabdomere. Transcriptional profiling revealed that Pph13 plays an integral role in promoting rhabdomeric photoreceptor cell function. Pph13 regulates Rh2 and Rh6, and other phototransduction genes, demonstrating that Pph13 and Otd control a distinct subset of Rhodopsin-encoding genes in adult visual systems. Bioinformatic, DNA binding and transcriptional reporter assays showed that Pph13 can bind and activate transcription via a perfect Pax6 homeodomain palindromic binding site and the Rhodopsin core sequence I (RCSI) found upstream of Drosophila Rhodopsin genes. In vivo studies indicate that Pph13 is necessary and sufficient to mediate the expression of a multimerized RCSI reporter, a marker of photoreceptor cell specificity previously suggested to be regulated by Pax6. Our studies define a key transcriptional regulatory pathway that is necessary for late Drosophila photoreceptor development and will serve as a basis for better understanding rhabdomeric photoreceptor cell development and function.

  11. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair.

    PubMed

    Babu, Mohan; Beloglazova, Natalia; Flick, Robert; Graham, Chris; Skarina, Tatiana; Nocek, Boguslaw; Gagarinova, Alla; Pogoutse, Oxana; Brown, Greg; Binkowski, Andrew; Phanse, Sadhna; Joachimiak, Andrzej; Koonin, Eugene V; Savchenko, Alexei; Emili, Andrew; Greenblatt, Jack; Edwards, Aled M; Yakunin, Alexander F

    2011-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks and 5'-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.

  12. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair

    PubMed Central

    Babu, Mohan; Beloglazova, Natalia; Flick, Robert; Graham, Chris; Skarina, Tatiana; Nocek, Boguslaw; Gagarinova, Alla; Pogoutse, Oxana; Brown, Greg; Binkowski, Andrew; Phanse, Sadhna; Joachimiak, Andrzej; Koonin, Eugene V.; Savchenko, Alexei; Emili, Andrew; Greenblatt, Jack; Edwards, Aled M.; Yakunin, Alexander F.

    2011-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks, and 5′-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair. PMID:21219465

  13. An α-helical core encodes the dual functions of the chlamydial protein IncA.

    PubMed

    Ronzone, Erik; Wesolowski, Jordan; Bauler, Laura D; Bhardwaj, Anshul; Hackstadt, Ted; Paumet, Fabienne

    2014-11-28

    Chlamydia is an intracellular bacterium that establishes residence within parasitophorous compartments (inclusions) inside host cells. Chlamydial inclusions are uncoupled from the endolysosomal pathway and undergo fusion with cellular organelles and with each other. To do so, Chlamydia expresses proteins on the surface of the inclusion using a Type III secretion system. These proteins, termed Incs, are located at the interface between host and pathogen and carry out the functions necessary for Chlamydia survival. Among these Incs, IncA plays a critical role in both protecting the inclusion from lysosomal fusion and inducing the homotypic fusion of inclusions. Within IncA are two regions homologous to eukaryotic SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) domains referred to as SNARE-like domain 1 (SLD1) and SNARE-like domain 2 (SLD2). Using a multidisciplinary approach, we have discovered the functional core of IncA that retains the ability to both inhibit SNARE-mediated fusion and promote the homotypic fusion of Chlamydia inclusions. Circular dichroism and analytical ultracentrifugation experiments show that this core region is composed almost entirely of α-helices and assembles into stable homodimers in solution. Altogether, we propose that both IncA functions are encoded in a structured core domain that encompasses SLD1 and part of SLD2.

  14. Nxnl2 splicing results in dual functions in neuronal cell survival and maintenance of cell integrity

    PubMed Central

    Jaillard, Céline; Mouret, Aurélie; Niepon, Marie-Laure; Clérin, Emmanuelle; Yang, Ying; Lee-Rivera, Irene; Aït-Ali, Najate; Millet-Puel, Géraldine; Cronin, Thérèse; Sedmak, Tina; Raffelsberger, Wolfgang; Kinzel, Bernd; Trembleau, Alain; Poch, Olivier; Bennett, Jean; Wolfrum, Uwe; Lledo, Pierre-Marie; Sahel, José-Alain; Léveillard, Thierry

    2012-01-01

    The Rod-derived Cone Viability Factors, RdCVF and RdCVF2, have potential therapeutical interests for the treatment of inherited photoreceptor degenerations. In the mouse lacking Nxnl2, the gene encoding RdCVF2, the progressive decline of the visual performance of the cones in parallel with their degeneration arises due to loss of trophic support from RdCVF2. Contrarily, the progressive loss of rod visual function of the Nxnl2−/− mouse results from a decrease in outer segment length, mediated by a cell-autonomous mechanism involving the putative thioredoxin protein RdCVF2L, the second spliced product of the Nxnl2 gene. This novel signaling mechanism extends to olfaction as shown by the progressive impairment of olfaction in aged Nxnl2−/− mice and the protection of olfactory neurons by RdCVF2. This study shows that Nxnl2 is a bi-functional gene involved in the maintenance of both the function and the viability of sensory neurons. PMID:22343139

  15. An α-Helical Core Encodes the Dual Functions of the Chlamydial Protein IncA*

    PubMed Central

    Ronzone, Erik; Wesolowski, Jordan; Bauler, Laura D.; Bhardwaj, Anshul; Hackstadt, Ted; Paumet, Fabienne

    2014-01-01

    Chlamydia is an intracellular bacterium that establishes residence within parasitophorous compartments (inclusions) inside host cells. Chlamydial inclusions are uncoupled from the endolysosomal pathway and undergo fusion with cellular organelles and with each other. To do so, Chlamydia expresses proteins on the surface of the inclusion using a Type III secretion system. These proteins, termed Incs, are located at the interface between host and pathogen and carry out the functions necessary for Chlamydia survival. Among these Incs, IncA plays a critical role in both protecting the inclusion from lysosomal fusion and inducing the homotypic fusion of inclusions. Within IncA are two regions homologous to eukaryotic SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) domains referred to as SNARE-like domain 1 (SLD1) and SNARE-like domain 2 (SLD2). Using a multidisciplinary approach, we have discovered the functional core of IncA that retains the ability to both inhibit SNARE-mediated fusion and promote the homotypic fusion of Chlamydia inclusions. Circular dichroism and analytical ultracentrifugation experiments show that this core region is composed almost entirely of α-helices and assembles into stable homodimers in solution. Altogether, we propose that both IncA functions are encoded in a structured core domain that encompasses SLD1 and part of SLD2. PMID:25324548

  16. The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function

    PubMed Central

    Chikar, JA; Hendricks, JL; Richardson-Burns, SM; Raphael, Y; Pfingst, BE; Martin, DC

    2011-01-01

    Cochlear implants provide hearing by electrically stimulating the auditory nerve. Implant function can be hindered by device design variables, including electrode size and electrode-to-nerve distance, and cochlear environment variables, including the degeneration of the auditory nerve following hair cell loss. We have developed a dual component cochlear implant coating to improve both the electrical function of the implant and the biological stability of the inner ear, thereby facilitating the long-term perception of sound through a cochlear implant. This coating is a combination of an arginine-glycine-aspartic acid (RGD)-functionalized alginate hydrogel and the conducting polymer poly(3, 4-ethylenedioxythiophene) (PEDOT). Both in vitro and in vivo assays on the effects of these electrode coatings demonstrated improvements in device performance. We found that the coating reduced electrode impedance, improved charge delivery, and locally released significant levels of a trophic factor into cochlear fluids. This coating is non-cytotoxic, clinically relevant, and has the potential to significantly improve the cochlear implant user’s experience. PMID:22182748

  17. Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR

    PubMed Central

    Chang, Chih-Chiang; Lin, Li-Ying; Zou, Xiao-Wei; Huang, Chieh-Chen; Chan, Nei-Li

    2015-01-01

    The mer operon confers bacterial resistance to inorganic mercury (Hg2+) and organomercurials by encoding proteins involved in sensing, transport and detoxification of these cytotoxic agents. Expression of the mer operon is under tight control by the dual-function transcriptional regulator MerR. The metal-free, apo MerR binds to the mer operator/promoter region as a repressor to block transcription initiation, but is converted into an activator upon Hg2+-binding. To understand how MerR interacts with Hg2+ and how Hg2+-binding modulates MerR function, we report here the crystal structures of apo and Hg2+-bound MerR from Bacillus megaterium, corresponding respectively to the repressor and activator conformation of MerR. To our knowledge, the apo-MerR structure represents the first visualization of a MerR family member in its intact and inducer-free form. And the Hg2+-MerR structure offers the first view of a triligated Hg2+-thiolate center in a metalloprotein, confirming that MerR binds Hg2+ via trigonal planar coordination geometry. Structural comparison revealed the conformational transition of MerR is coupled to the assembly/disassembly of a buried Hg2+ binding site, thereby providing a structural basis for the Hg2+-mediated functional switching of MerR. The pronounced Hg2+-induced repositioning of the MerR DNA-binding domains suggests a plausible mechanism for the transcriptional regulation of the mer operon. PMID:26150423

  18. A Neuronal Activity-Dependent Dual Function Chromatin-Modifying Complex Regulates Arc Expression1,2,3

    PubMed Central

    Oey, Nicodemus E.; Leung, How Wing; Ezhilarasan, Rajaram; Zhou, Lei; Beuerman, Roger W.; VanDongen, Hendrika M.A.

    2015-01-01

    Abstract Chromatin modification is an important epigenetic mechanism underlying neuroplasticity. Histone methylation and acetylation have both been shown to modulate gene expression, but the machinery responsible for mediating these changes in neurons has remained elusive. Here we identify a chromatin-modifying complex containing the histone demethylase PHF8 and the acetyltransferase TIP60 as a key regulator of the activity-induced expression of Arc, an important mediator of synaptic plasticity. Clinically, mutations in PHF8 cause X-linked mental retardation while TIP60 has been implicated in the pathogenesis of Alzheimer’s disease. Within minutes of increased synaptic activity, this dual function complex is rapidly recruited to the Arc promoter, where it specifically counteracts the transcriptionally repressive histone mark H3K9me2 to facilitate the formation of the transcriptionally permissive H3K9acS10P, thereby favoring transcriptional activation. Consequently, gain-of-function of the PHF8−TIP60 complex in primary rat hippocampal neurons has a positive effect on early activity-induced Arc gene expression, whereas interfering with the function of this complex abrogates it. A global proteomics screen revealed that the majority of common interactors of PHF8 and TIP60 were involved in mRNA processing, including PSF, an important molecule involved in neuronal gene regulation. Finally, we proceeded to show, using super-resolution microscopy, that PHF8 and TIP60 interact at the single molecule level with PSF, thereby situating this chromatin modifying complex at the crossroads of transcriptional activation. These findings point toward a mechanism by which an epigenetic pathway can regulate neuronal activity-dependent gene transcription, which has implications in the development of novel therapeutics for disorders of learning and memory. PMID:26464965

  19. Dual Functional Roles of Molecular Beacon as a MicroRNA Detector and Inhibitor.

    PubMed

    Li, Wai Ming; Chan, Ching-Man; Miller, Andrew L; Lee, Chow H

    2017-03-03

    MicroRNAs are essential in many cellular processes. The ability to detect microRNAs is important for understanding its function and biogenesis. This study is aimed at using a molecular beacon to detect miR-430 in developing zebrafish embryos as a proof of principle. miR-430 is crucial for the clearance of maternal mRNA during maternal zygotic transition in embryonic development. Despite its known function, the temporal and spatial expression of miR-430 remains unclear. We used various imaging techniques, including laser scanning confocal microscopy, spinning disk, and lightsheet microscopy, to study the localization of miR-430 and any developmental defects possibly caused by the molecular beacon. Our results show that miR-430 is expressed early in development and is localized in distinct cytoplasmic granules where its target mRNA can be detected. We also show that the designed molecular beacon can inhibit the function of miR-430 and cause developmental defect in the brain, notochord, heart, and kidney, depending on the delivery site within the embryo, suggesting that miR-430 plays a diverse role in embryonic morphogenesis. When compared with morpholino, molecular beacon is 2 orders of magnitude more potent in inhibiting miR-430. Thus, our results reveal that in addition to being used as a valuable tool for the detection of microRNAs in vivo, molecular beacons can also be employed to inhibit microRNAs in a specific manner. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Identification of Transcriptional Targets of the Dual Function Transcription Factor/Phosphatase Eyes Absent

    PubMed Central

    Jemc, Jennifer; Rebay, Ilaria

    2007-01-01

    Drosophila eye specification and development relies on a collection of transcription factors termed the retinal determination gene network (RDGN). Two members of this network, Eyes absent (EYA) and Sine oculis (SO), form a transcriptional complex in which EYA provides the transactivation function while SO provides the DNA binding activity. EYA also functions as a protein tyrosine phosphatase, raising the question of whether transcriptional output is dependent or independent of phosphatase activity. To explore this, we used microarrays together with binding site analysis, quantitative real-time PCR, chromatin immunoprecipitation, genetics and in vivo expression analysis to identify new EYA-SO targets. In parallel, we examined the expression profiles of tissue expressing phosphatase mutant eya and found that reducing phosphatase activity did not globally impair transcriptional output. Among the targets identified by our analysis was the cell cycle regulatory gene, string (stg), suggesting that EYA and SO may influence cell proliferation through transcriptional regulation of stg. Future investigation into the regulation of stg and other EYA-SO targets identified in this study will help elucidate the transcriptional circuitries whereby output from the RDGN integrates with other signaling inputs to coordinate retinal development. PMID:17714699

  1. Optimized enzymatic dual functions of PaPrx protein by proton irradiation

    PubMed Central

    Park, Chul-Hong; Lee, Seung Sik; Kim, Kye Ryung; Jung, Myung Hwan; Lee, Sang Yeol; Cho, Eun Ju; Singh, Sudhir; Chung, Byung Yeoup

    2014-01-01

    We investigated the effects of proton irradiation on the function and structure of the Pseudomonas aeruginosa peroxiredoxin (PaPrx). Polyacrylamide gel demonstrated that PaPrx proteins exposed to proton irradiation at several doses exhibited simultaneous formation of high molecular weight (HMW) complexes and fragmentation. Size-exclusion chromatography (SEC) analysis revealed that the number of fragments and very low molecular weight (LMW) structures increased as the proton irradiation dose increased. The peroxidase activity of irradiated PaPrx was preserved, and its chaperone activity was significantly increased by increasing the proton irradiation dose. The chaperone activity increased about 3–4 fold after 2.5 kGy proton irradiation, compared with that of non-irradiated PaPrx, and increased to almost the maximum activity after 10 kGy proton irradiation. We previously obtained functional switching in PaPrx proteins, by using gamma rays and electron beams as radiation sources, and found that the proteins exhibited increased chaperone activity but decreased peroxidase activity. Interestingly, in this study we newly found that proton irradiation could enhance both peroxidase and chaperone activities. Therefore, we can suggest proton irradiation as a novel protocol for conserved 2-Cys protein engineering. PMID:23753570

  2. Molecular Basis for the Dual Function of Eps8 on Actin Dynamics: Bundling and Capping

    PubMed Central

    Hazelwood, Larnele; Disanza, Andrea; Liu, HongJun; Perlade, Emilie; Malabarba, Maria Grazia; Pasqualato, Sebastiano; Maiolica, Alessio; Confalonieri, Stefano; Le Clainche, Christophe; Offenhauser, Nina; Block, Jennifer; Rottner, Klemens; Di Fiore, Pier Paolo; Carlier, Marie-France; Volkmann, Niels; Hanein, Dorit; Scita, Giorgio

    2010-01-01

    Actin capping and cross-linking proteins regulate the dynamics and architectures of different cellular protrusions. Eps8 is the founding member of a unique family of capping proteins capable of side-binding and bundling actin filaments. However, the structural basis through which Eps8 exerts these functions remains elusive. Here, we combined biochemical, molecular, and genetic approaches with electron microscopy and image analysis to dissect the molecular mechanism responsible for the distinct activities of Eps8. We propose that bundling activity of Eps8 is mainly mediated by a compact four helix bundle, which is contacting three actin subunits along the filament. The capping activity is mainly mediated by a amphipathic helix that binds within the hydrophobic pocket at the barbed ends of actin blocking further addition of actin monomers. Single-point mutagenesis validated these modes of binding, permitting us to dissect Eps8 capping from bundling activity in vitro. We further showed that the capping and bundling activities of Eps8 can be fully dissected in vivo, demonstrating the physiological relevance of the identified Eps8 structural/functional modules. Eps8 controls actin-based motility through its capping activity, while, as a bundler, is essential for proper intestinal morphogenesis of developing Caenorhabditis elegans. PMID:20532239

  3. Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study.

    PubMed

    Ashton, Jeffrey R; Clark, Darin P; Moding, Everett J; Ghaghada, Ketan; Kirsch, David G; West, Jennifer L; Badea, Cristian T

    2014-01-01

    To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. Primary lung tumors were generated in LSL-Kras(G12D); p53(FL/FL) mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed-two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R(2) = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a single scan. As confirmed by ex

  4. Functional characterization of avidins in amphioxus Branchiostoma japonicum: Evidence for a dual role in biotin-binding and immune response.

    PubMed

    Guo, Xiaomin; Xin, Jiajing; Wang, Peng; Du, Xiaoyuan; Ji, Guangdong; Gao, Zhan; Zhang, Shicui

    2017-05-01

    Avidin is well known for its high affinity to biotin and has been found in many egg-laying vertebrate species. However, little is known about avidin in invertebrate species to date. Here we clearly showed the presence of two avidin genes, Bjavidin1 and Bjavidin2, in the amphioxus Branchiostoma japonicum, the first ones in non-vertebrate animals. We also showed that the expression of both Bjavidin1 and Bjavidin2 were inducible by progesterone, LTA and LPS. Moreover, we demonstrated for the first time that in addition to biotin-binding, the recombinant proteins rBjAVIDIN1 and rBjAVIDIN2 were not only able to interact with Gram-positive and negative bacteria as well as their conserved surface components LTA and LPS but also to enhance phagocytosis of bacteria by macrophages, suggesting that BjAVIDIN1 and BjAVIDIN2 both function as pattern recognition receptors and opsonins. It is thus clear that avidin may play a dual role in biotin-binding and immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The effect of tin and antimony addition on the performance of dual function cracking catalyst (DFCC) mixtures

    SciTech Connect

    Occelli, M.L. ); Naraghi, S.M.; Krishnan, V.; Suib, S.L. )

    1992-05-01

    In 1976, the Phillips Petroleum Company successfully demonstrated that the addition of certain organo-antimony compounds to a metal-contaminated heavy gas oil reduced the deleterious effects that metals such as Ni and V have on gasoline yields, coke, and hydrogen selectivities. Nickel has little effect on the activity of a fluidized cracking catalyst (FCC) but generates large amounts of gases, placing severe demands on capabilities of gas compressors. Marketed by Phillips Petroleum Company. Phil-Ad CA antimony organics have been shown to reduce by 50% gas formation due to metal contaminants, especially nickel. However, Sb, when introduced into a fluidized cracking unit, could reduce and form SbH[sub 3], stibine, that like arsine (AsH[sub 3]) is a highly toxic compound. Procedures for the safe usage of Sb in refining operations have been outlined; when used properly, Sb-containing passivating agents did not generate any detectable stibine. Recently, it has been reported that at microactivity test conditions, the additions of diluents (such as aluminas and layered magnesium silicates) capable of selectively sorbing metal contaminants from gas oils can form dual function cracking catalysts (DFCC) that retain most of their useful cracking activity even in the presence of as much as 1.0-1.5% V. It is the purpose of this paper to report the stability of Sb- and Sn-loaded alumina particles and the effects that the addition of metal passivation compounds such as Sb and Sn have on the performance of DFCC mixtures.

  6. Balancing polymer hydrophobicity for ligand presentation and siRNA delivery in dual function CXCR4 inhibiting polyplexes.

    PubMed

    Wang, Y; Li, J; Chen, Y; Oupický, D

    2015-07-01

    In the present study, a series of copolymers (PAMD-Ch) was synthesized by grafting polymeric Plerixafor/AMD3100 (PAMD) with different amounts of cholesterol and the effect of cholesterol modification on siRNA delivery was investigated. PAMD-Ch/siRNA polyplexes exhibited improved colloidal and enzymatic stability when compared with PAMD/siRNA polyplexes containing no cholesterol. PAMD-Ch with low (17 wt%) and medium (25 wt%) cholesterol content exhibited CXCR4 antagonism comparable to unmodified PAMD. Cholesterol modification increased cell uptake of siRNA polyplexes and significantly decreased sensitivity of siRNA transfection to the presence of serum. When used to deliver anticancer siRNA against polo-like kinase 1 (PLK1), polyplexes based on PAMD-Ch with 17 wt% cholesterol exhibited the highest cancer cell killing activity both in serum-free and serum-containing conditions. Overall, the results of this study validate cholesterol modified PAMD as dual-function delivery vectors suitable for efficient delivery of anticancer siRNA and simultaneous CXCR4 inhibition for combined anticancer therapies.

  7. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition.

    PubMed

    Si, Meiru; Wang, Yao; Zhang, Bing; Zhao, Chao; Kang, Yiwen; Bai, Haonan; Wei, Dawei; Zhu, Lingfang; Zhang, Lei; Dong, Tao G; Shen, Xihui

    2017-07-25

    The type VI secretion system was recently reported to be involved in zinc acquisition, but the underlying mechanism remains unclear. Here, we report that Burkholderia thailandensis T6SS4 is involved in zinc acquisition via secretion of a zinc-scavenging protein, TseZ, that interacts with the outer membrane heme transporter HmuR. We find that HmuR is a redox-regulated dual-functional transporter that transports heme iron under normal conditions but zinc upon sensing extracellular oxidative stress, triggered by formation of an intramolecular disulfide bond. Acting as the first line of defense against oxidative stress, HmuR not only guarantees an immediate response to the changing environment but also provides a fine-tuned mechanism that allows a gradual response to perceived stress. The T6SS/HmuR-mediated active zinc transport system is also involved in bacterial virulence and contact-independent bacterial competition. We describe a sophisticated bacterial zinc acquisition mechanism affording insights into the role of metal ion transport systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Balancing polymer hydrophobicity for ligand presentation and siRNA delivery in dual function CXCR4 inhibiting polyplexes

    PubMed Central

    Wang, Y.; Li, J.; Chen, Y.; Oupický, D.

    2015-01-01

    In the present study, a series of copolymers (PAMD-Ch) was synthesized by grafting polymeric Plerixafor/AMD3100 (PAMD) with different amounts of cholesterol and the effect of cholesterol modification on siRNA delivery was investigated. PAMD-Ch/siRNA polyplexes exhibited improved colloidal and enzymatic stability when compared with PAMD/siRNA polyplexes containing no cholesterol. PAMD-Ch with low (17 wt%) and medium (25 wt%) cholesterol content exhibited CXCR4 antagonism comparable to unmodified PAMD. Cholesterol modification increased cell uptake of siRNA polyplexes and significantly decreased sensitivity of siRNA transfection to the presence of serum. When used to deliver anticancer siRNA against polo-like kinase 1 (PLK1), polyplexes based on PAMD-Ch with 17 wt% cholesterol exhibited the highest cancer cell killing activity both in serum-free and serum-containing conditions. Overall, the results of this study validate cholesterol modified PAMD as dual-function delivery vectors suitable for efficient delivery of anticancer siRNA and simultaneous CXCR4 inhibition for combined anticancer therapies. PMID:26146552

  9. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    PubMed

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  10. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties

    PubMed Central

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-01

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning. PMID:28067299

  11. Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities.

    PubMed

    Zhi, Zelun; Su, Yajuan; Xi, Yuewei; Tian, Liang; Xu, Miao; Wang, Qianqian; Padidan, Sara; Li, Peng; Huang, Wei

    2017-03-29

    In recent years, microbial colonization on the surface of biomedical implants/devices has become a severe threat to human health. Herein, surface-immobilized guanidine derivative block copolymers create an antimicrobial and antifouling dual-functional coating. We report the preparation of an antimicrobial and antifouling block copolymer by the conjugation of polyhexanide (PHMB) with either allyl glycidyl ether or allyloxy polyethylene glycol (APEG; MW 1200 and 2400). The allyl glycidyl ether modified PHMB (A-PHMB) and allyloxy polyethylene glycol1200/2400 modified PHMB (APEG1200/2400-PHMB) copolymers were grafted onto a silicone rubber surface as a bottlebrush-like coating, respectively, using a plasma-UV-assisted surface-initiated polymerization. Both A-PHMB and APEG1200/2400-PHMB coatings exhibited excellent broad-spectrum antimicrobial properties against Gram-negative/positive bacteria and fungi. The APEG2400-PHMB coating displayed an improved antibiofilm as well as antifouling properties and a long reusable cycle, compared with two other coatings, due to its abundant PEG blocks among those copolymers. Also, the APEG2400-PHMB-coated silicone coupons were biocompatible toward mammalian cells, as revealed by in vitro hemocompatibile and cytotoxic assays. An in vivo study showed a significant decline of Escherichia coli colonies with a 5-log reduction, indicating the APEG2400-PHMB coating surface worked effectively in the rodent subcutaneous infection model. This PHMB-based block copolymer coating is believed to be an effective strategy to prevent biomaterial-associated infections.

  12. Graphene oxide as a dual-function conductive binder for PEEK-derived microporous carbons in high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Christine H. J.; Zhang, Hongbo; Liu, Jie

    2015-06-01

    Microporous carbons (MPCs) are promising electrode materials for supercapacitors because of their high surface area and accessible pores. However, their low electrical conductivity and mechanical instability result in limited power density and poor cycle life. This work proposes a unique two-layered film made of polyetheretherketone-derived MPCs and reduced graphene oxide (rGO) as an electrode for supercapacitors. Electrochemical characterizations of films show that such a layered structure is more effective in increasing the accessibility of ions to the hydrophilic MPCs and establishing conductive paths through the rGO network than a simple mixed composite film. The two-layered structure increases the capacitance by ˜124% (237 F g-1) with excellent cycling stability (˜93% after 6000 cycles). More importantly, we demonstrate that such performance improvements result from an optimal balance between electrical conductivity and ion accessibility, which maximizes the synergistic effects of MPC and rGO. The MPCs, which are exposed to the surface, provide a highly accessible surface area for ion adsorption. The rGO serves a dual function as a conductive filler to increase the electrical conductivity and as a binder to interconnect individual MPC particles into a robust and flexible film. These findings provide a rational basis for the design of MPC-based electrodes in high performance supercapacitors.

  13. Dual-functional aniline-assisted wet-chemical synthesis of bismuth telluride nanoplatelets and their thermoelectric performance

    NASA Astrophysics Data System (ADS)

    Li, Changcun; Kong, Fangfang; Liu, Congcong; Liu, Huixuan; Hu, Yongjing; Wang, Tongzhou; Xu, Jingkun; Jiang, Fengxing

    2017-06-01

    The wet-chemical approach is of great significance for the synthesis of two-dimensional (2D) bismuth telluride nanoplatelets as a potential thermoelectric (TE) material. Herein, we proposed a simple and effective solution method with the assistance of aniline for the fabrication of bismuth telluride nanoplatelets at a low temperature of 100 °C. The choice of aniline with its dual function avoided the simultaneous use of a capping regent and a toxic reductant. The as-synthesized nanoplatelets have a large size of more than 900 × 500 nm2 and a small thickness of 15.4 nm. The growth of bismuth telluride nanoplatelets are related to the Bi/Te ratio of precursors indicating that a larger content of the Bi precursor is more conducive to the formation of 2D nanoplatelets. The bismuth telluride nanoplatelets pressed into a pellet show a smaller electrical resistivity (˜6.5 × 10-3 Ω · m) and a larger Seebeck coefficient (-135 μV K-1), as well as a lower thermal conductivity (0.27 W m-1 K-1) than those of nanoparticles. The next goal is to further reduce the electrical resistivity and optimize the TE performance by disposing of the residual reactant of aniline adsorbed on the surface of the nanoplatelets.

  14. Functional evaluation of hemodynamic response during neural activation using optical microangiography integrated with dual-wavelength laser speckle imaging

    PubMed Central

    Qin, Jia; Shi, Lei; Wang, Hequn; Reif, Roberto; Wang, Ruikang K.

    2014-01-01

    Abstract. Evaluation of spatiotemporal hemodynamic and metabolic responses during neural activation is crucial in studying brain function. We explore the use of a noninvasive multifunctional optical imaging system to measure these responses in a mouse brain upon electrically stimulated neural activation, with the cranium left intact. The system is developed by integrating an optical microangiography (OMAG) imaging system with a dual-wavelength laser speckle imaging (DW-LSI) system. The DW-LSI, running at an image acquisition speed of ∼100  Hz, is used to extract the large-scale two-dimensional map, revealing the localized response of blood flow, hemoglobin concentration, and metabolic rate of oxygen change. Guided by DW-LSI, the OMAG is, however, used to image the response of individual blood vessels with its unique depth-resolved capability. We show that the integrated system is capable of investigating neural activation, thus is potentially valuable in the preclinical study of the mechanism of neurovascular coupling. PMID:24549439

  15. Prediction of postoperative pulmonary function: preliminary comparison of single-breath dual-energy xenon CT with three conventional methods.

    PubMed

    Yanagita, Hisami; Honda, Norinari; Nakayama, Mitsuo; Watanabe, Wataru; Shimizu, Yuji; Osada, Hisato; Nakada, Kei; Okada, Takemichi; Ohno, Hitoshi; Takahashi, Takeo; Otani, Katharina

    2013-06-01

    To assess the use of xenon ventilation maps (Xe-images) for predicting postoperative pulmonary function. After study approval by the institutional review board, written informed consent was obtained from 30 patients with lung tumors who underwent pre- and postoperative spirometry, pulmonary perfusion SPECT and dual-energy CT (80 kV and 140 kV/Sn) after single-breath inspiration of 35 % xenon. Xe-images were calculated by three-material decomposition. Sum of pixel values of the part to be resected (A) and of the whole lung (B) on Xe-images or lung perfusion SPECT, and volumes or the number of segments of the part to be resected (A) and of the whole lung (B) on Xe-images were enumerated, respectively. We multiplied (1 - A/B) by each preoperative value from spirometry for prediction. Predictions by each of the four methods were compared with postoperative values. Predicted values for vital capacity (VC), forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) by the four methods regressed significantly with measured values (R (2) = 0.56-0.77, p < 0.001 for all). Analysis of Xe-images can predict postoperative VC, FVC and FEV1 with accuracy comparable to that of CT volumetry.

  16. Molecular dynamics study of carbon nanotube as a potential dual-functional inhibitor of HIV-1 integrase.

    PubMed

    Zhang, Zhishun; Wang, Bingqiang; Wan, Bo; Yu, Long; Huang, Qiang

    2013-07-12

    HIV-1 integrase (IN) plays an important role in integrating viral DNA into human genome, which has been considered as the drug target for anti-AIDS therapy. The appearance of drug-resistance mutants urgently requires novel inhibitors that act on non-active site of HIV-1 IN. Nanoparticles have such unique geometrical and chemical properties, which inspires us that nanoparticles like nanotubes may serve as better HIV-1 IN inhibitors than the conventional inhibitors. To test this hypothesis, we performed molecular dynamics (MD) simulation to study the binding of a carbon nanotube (CNT) to a full-length HIV-1 IN. The results showed that the CNT could stably bind to the C-terminal domain (CTD) of HIV-1 IN. The CNT also induced a domain-shift which disrupted the binding channel for viral DNA. Further MD simulation showed that a HIV-1 IN inhibitor, 5ClTEP was successfully sealed inside the uncapped CNT. These results indicate that the CNT may serve as a potential dual-functional HIV-1 IN inhibitor, not only inducing conformation change as an allosteric inhibitor but also carrying small-molecular inhibitors as a drug delivery system. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery.

    PubMed

    Yamada, Yuma; Furukawa, Ryo; Yasuzaki, Yukari; Harashima, Hideyoshi

    2011-08-01

    Mitochondrial dysfunction is associated with a variety of human diseases including inherited mitochondrial diseases, neurodegenerative disorders, diabetes mellitus, and cancer. Effective medical therapies for mitochondrial diseases will ultimately require an optimal drug delivery system, which will likely be achieved through innovations in the nanotechnology of intracellular trafficking. To achieve efficient mitochondrial drug delivery, two independent processes, i.e., "cytoplasmic delivery through the cell membrane" and "mitochondrial delivery through the mitochondrial membrane" are required. In previous studies, we developed an octaarginine (R8) modified nano carrier for efficient cytoplasmic delivery, showing that R8-modified liposomes were internalized into cells efficiently. On the other hand, we also constructed MITO-Porter for the mitochondrial delivery of macromolecules, a liposome-based carrier that delivers cargos to mitochondria via membrane fusion. Here, we report the development of a dual function MITO-Porter (DF-MITO-Porter), based on the concept of integrating both R8-modified liposomes and MITO-Porter. We show that the DF-MITO-Porter effectively delivers exogenous macro-biomolecules into the mitochondrial matrix, and provide a demonstration of its potential use in therapies aimed at mitochondrial DNA.

  18. Development of dual-function microbeads embedded with quantum dots and iron oxide nanocrystals for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sathe, Tushar; Nie, Shuming

    2007-02-01

    Nanomaterials, such as semiconductor Quantum Dots (QD) and Iron Oxide nanocrystals possess unique properties that are not available in their bulk phase. Some of these properties include the narrow emission spectra, superior brightness and higher photostability of QDs, and the superparamagnetic properties of Iron Oxide nanocrystals. In the past decade, these two nanomaterials have separately seen widespread use in a variety of biomedical applications ranging from multiplexed biomolecular detection to isolation and magnetic manipulation of disease cells and molecules respectively. Here, we describe a method for combining QDs and Iron Oxide nanocrystals into a micron-sized host material in a rapid fashion. The resulting beads are dual functional, i.e. they are optically encoded, and can be manipulated with a permanent magnet. The beads have great potential in biomedical applications because of the combined ability to enrich and detect multiple target molecules from heterogeneous and diluted biological samples. The development of multifunctional composite materials by combining novel nanomaterials is bound to open avenues for ultrasensitive and quantitative bioassays.

  19. Silver nanoparticles-containing dual-function hydrogels based on a guar gum-sodium borohydride system

    PubMed Central

    Dai, Lei; Nadeau, Ben; An, Xingye; Cheng, Dong; Long, Zhu; Ni, Yonghao

    2016-01-01

    Dual-function hydrogels, possessing both stimuli-responsive and self-healing properties, have recently attracted attention of both chemists and materials scientists. Here we report a new paradigm using natural polymer (guar gum, GG) and sodium borohydride (NaBH4), for the preparation of silver nanoparticles (AgNPs)-containing smart hydrogels in a simple, fast and economical way. NaBH4 performs as a reducing agent for AgNPs synthesis using silver nitrate (AgNO3) as the precursor. Meanwhile, sodium metaborate (NaBO2) (from NaBH4) behaves as a cross-linking agent between GG molecular chains. The AgNPs/GG hydrogels with excellent viscoelastic properties can be obtained within 3 min at room temperature without the addition of other cross-linkers. The resultant AgNPs/GG hydrogels are flowable and injectable, and they possess excellent pH/thermal responsive properties. Additionally, they exhibit rapid self-healing capacity. This work introduces a facile and scale-up way to prepare a class of hydrogels that can have great potential to biomedical and other industrial applications. PMID:27819289

  20. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-01

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  1. A dual-functional asymmetric squaraine-based low band gap hole transporting material for efficient perovskite solar cells.

    PubMed

    Paek, Sanghyun; Rub, Malik Abdul; Choi, Hyeju; Kosa, Samia A; Alamry, Khalid A; Cho, Jin Woo; Gao, Peng; Ko, Jaejung; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja

    2016-03-28

    We demonstrate for the first time an asymmetric squaraine-based low band-gap hole transporting material, which acted as both light harvesting and hole transporting layers in methylammonium lead triiodide perovskite solar cells. Opto-electrochemical characterization revealed extremely high molar extinction coefficients of the absorption bands in the low energy region and prominent space charge delocalization due to its electronically asymmetric nature. A suitable band alignment of the squaraine HOMO level with the valence band edge of the perovskite, and the conduction band of the TiO2 with LUMO of the perovskite allowed a cascade of hole extraction and electron injection, respectively. Red-shifted absorption was observed for both HTMs in thin films coated on the perovskite, and the optimized devices exhibited an impressive PCE of 14.7% under full sunlight illumination (100 mW cm(-2), AM1.5 G). The efficiency value is comparable to that of the devices using a state-of-the-art spiro-OMeTAD hole transport layer under similar conditions. Ambient stability after 300 h revealed that 88% of the initial efficiency remained for , and almost no change for , indicating that the devices had good long-term stability thus suggesting that the asymmetric squaraines have great potential as a dual-functional HTM for high performance perovskite solar cells.

  2. Novel dual-function lens with microscopic and vari-focus capability incorporated with an aberration-suppression aspheric lens.

    PubMed

    Fuh, Yiin-Kuen; Chen, Pin-Wen

    2015-08-24

    Substantial aberrations are ubiquitous in many conventional adaptive lenses due to the existence of deformable interface and thus inevitably compromise the optical performance. In this paper, we introduce a novel concept of dual-function fluidic lenses (DFFL) with a built-in aspheric polydimethylsiloxane lens (APL) to enable the design of a compact optical system with tunable imaging and aberration suppression properties. This is achieved by varying both hydrostatic pressures (i.e. adjusting the injected liquid volume change) such that a widely tunable focal length and the simultaneously integrated APL for aberrations correction. DFFL can transform to 4 modes: microscopic mode (APL only), APL/concave mode, APL/plano mode, and APL/convex mode. Focal tunability of DFFL from 12/8 mm to about 90/65 mm (DI water/ethanol) is demonstrated without any mechanical moving components. Aberration characterization is carried out systematically and the low cost, high performance microscopic mode can be easily achieved by actuating the contact between APL and PDMS membrane. In addition, DFFL turning to microscopic mode (focal length 7.32 mm and magnification 50X) can rival the images quality of commercial microscopes.

  3. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA

    SciTech Connect

    Walden, William E.; Selezneva, Anna I.; Dupuy, Jérôme; Volbeda, Anne; Fontecilla-Camps, Juan C.; Theil, Elizabeth C.; Volz1, Karl

    2011-07-27

    Iron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs), to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex shows an open protein conformation compared with that of cytosolic aconitase. The extended, L-shaped IRP1 molecule embraces the IRE stem-loop through interactions at two sites separated by {approx}30 angstroms, each involving about a dozen protein:RNA bonds. Extensive conformational changes related to binding the IRE or an iron-sulfur cluster explain the alternate functions of IRP1 as an mRNA regulator or enzyme.

  4. The dual function of flavodiiron proteins: oxygen and/or nitric oxide reductases.

    PubMed

    Romão, Célia V; Vicente, João B; Borges, Patrícia T; Frazão, Carlos; Teixeira, Miguel

    2016-03-01

    Flavodiiron proteins have emerged in the last two decades as a newly discovered family of oxygen and/or nitric oxide reductases widespread in the three life domains, and present in both aerobic and anaerobic organisms. Herein we present the main features of these fascinating enzymes, with a particular emphasis on the metal sites, as more appropriate for this special issue in memory of the exceptional bioinorganic scientist R. J. P. Williams who pioneered the notion of (metal) element availability-driven evolution. We also compare the flavodiiron proteins with the other oxygen and nitric oxide reductases known until now, highlighting how throughout evolution Nature arrived at different solutions for similar functions, in some cases adding extra features, such as energy conservation. These enzymes are an example of the (bioinorganic) unpredictable diversity of the living world.

  5. Dual functions of TiC nanoparticles on tribological performance of Al/graphite composites

    NASA Astrophysics Data System (ADS)

    Fallahdoost, Hamid; Nouri, Alireza; Azimi, Amin

    2016-06-01

    In this study, the effect of TiC nanoparticles as a reinforcement on the mechanical and tribological properties of Aluminum-based self lubricating composite was investigated. The microstructure, relative density, hardness, and tribological properties of Al/graphite and Al/TiC/graphite composites were examined as a function of graphite content. The tribo-surfaces of the samples were analyzed using SEM and EDS elemental mapping. The results indicated that the addition of TiC nanoparticles not only decreased the wear rate and coefficient of friction of the composites, but also facilitated the formation of a stable graphite layer at longer sliding distances and high sliding velocities by forming a durable graphite/TiC composite on the tribo-surface. Therefore, the stability of graphite layer can be considered as a possible cause for decrease in wear rate of the Al/TiC/graphite composite.

  6. Preparation of a novel weak cation exchange/hydrophobic interaction chromatography dual-function polymer-based stationary phase for protein separation using "thiol-ene click chemistry".

    PubMed

    Yang, Fan; Bai, Quan; Zhao, Kailou; Gao, Dong; Tian, Lei

    2015-02-01

    A novel dual-function mixed-mode stationary phase based on poly(glycidyl methacrylate-co-ethylene dimethacrylate) microspheres was synthesized by thiol-ene click chemistry and characterized by infrared spectroscopy and elemental analysis. The new system displays both hydrophobic interaction chromatography (HIC) character in a high salt concentration mobile phase, and weak cation exchange (WCX) chromatography character in a low salt concentration mobile phase. It can be used to separate proteins in both ion-exchange chromatography (IEC) mode and HIC mode. The resolution and selectivity of the stationary phase were evaluated in both HIC mode and IEC mode using protein standards. In comparison with the conventional WCX and HIC columns, the results were satisfactory and acceptable. Protein mass and bioactivity recoveries of more than 96% can be achieved in both HIC mode and IEC mode using this column. The results indicate that the novel dual-function mixed-mode column in many cases can replace the use of two individual WCX and HIC columns. In addition, the effects on protein separation of different ligand structures in the dual-function stationary phase and the pH of the mobile phase used were also investigated in detail. The results show that electrostatic interaction of the ligand with proteins must match the hydrophobicity of the ligand, which is an important factor to prepare the dual-function stationary phase. On the basis of this dual-function mixed-mode chromatography column, a new two-dimensional liquid chromatography technology with a single column system was also developed in this study, and was used to renature and purify recombinant human interferon-γ from inclusion bodies. The mass recovery, purity, and specific bioactivity obtained for the purified recombinant human interferon-γ were 87.2%, 92.4%, and 2.8 × 10(7) IU/mg, respectively, in IEC mode, and 83.4%, 95.2%, and 4.3 × 10(7) IU/mg, respectively, in HIC mode. The results indicate that the

  7. Cation-Specific Conformations in a Dual-Function Ion-Pumping Microbial Rhodopsin.

    PubMed

    da Silva, Giordano F Z; Goblirsch, Brandon R; Tsai, Ah-Lim; Spudich, John L

    2015-06-30

    A recently discovered rhodopsin ion pump (DeNaR, also known as KR2) in the marine bacterium Dokdonia eikasta uses light to pump protons or sodium ions from the cell depending on the ionic composition of the medium. In cells suspended in a KCl solution, DeNaR functions as a light-driven proton pump, whereas in a NaCl solution, DeNaR conducts light-driven sodium ion pumping, a novel activity within the rhodopsin family. These two distinct functions raise the questions of whether the conformations of the protein differ in the presence of K(+) or Na(+) and whether the helical movements that result in the canonical E → C conformational change in other microbial rhodopsins are conserved in DeNaR. Visible absorption maxima of DeNaR in its unphotolyzed (dark) state show an 8 nm difference between Na(+) and K(+) in decyl maltopyranoside micelles, indicating an influence of the cations on the retinylidene photoactive site. In addition, electronic paramagnetic resonance (EPR) spectra of the dark states reveal repositioning of helices F and G when K(+) is replaced with Na(+). Furthermore, the conformational changes assessed by EPR spin-spin dipolar coupling show that the light-induced transmembrane helix movements are very similar to those found in bacteriorhodopsin but are altered by the presence of Na(+), resulting in a new feature, the clockwise rotation of helix F. The results establish the first observation of a cation switch controlling the conformations of a microbial rhodopsin and indicate specific interactions of Na(+) with the half-channels of DeNaR to open an appropriate path for ion translocation.

  8. Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery.

    PubMed

    Lu, Yang; Gu, Sui; Guo, Jing; Rui, Kun; Chen, Chunhua; Zhang, Sanpei; Jin, Jun; Yang, Jianhua; Wen, Zhaoyin

    2017-05-03

    The lithium-sulfur battery is one of the most prospective chemistries in secondary energy storage field due to its high energy density and high theoretical capacity. However, the dissolution of polysulfides in liquid electrolytes causes the shuttle effect, and the rapid decay of lithium sulfur battery has greatly hindered its practical application. Herein, combination of sulfonated reduced graphene oxide (SRGO) interlayer on the separator is adopted to suppress the shuttle effect. We speculate that this SRGO layer plays two roles: physically blocking the migration of polysulfide as ion selective layer and anchoring lithium polysulfide by the electronegative sulfonic group. Lewis acid-base theory and density functional theory (DFT) calculations indicate that sulfonic groups have a strong tendency to interact with lithium ions in the lithium polysulfide. Hence, the synergic effect involved by the sulfonic group contributes to the enhancement of the battery performance. Furthermore, the uniformly distributed sulfonic groups working as active sites which could induce the uniform distribution of sulfur, alleviating the excessive growth of sulfur and enhancing the utilization of active sulfur. With this interlayer, the prototype battery exhibits a high reversible discharge capacity of more than 1300 mAh g(-1) and good capacity retention of 802 mAh g(-1) after 250 cycles at 0.5 C rate. After 60 cycles at different rates from 0.2 to 4 C, the cell with this functional separator still recovered a high specific capacity of 1100 mAh g(-1) at 0.2 C. The results demonstrate a promising interlayer design toward high performance lithium-sulfur battery with longer cycling life, high specific capacity, and rate capability.

  9. Dual host-defence functions of SPLUNC2/PSP and synthetic peptides derived from the protein.

    PubMed

    Gorr, Sven-Ulrik; Abdolhosseini, Mahsa; Shelar, Anuradha; Sotsky, Julie

    2011-08-01

    PSP (parotid secretory protein)/SPLUNC2 (short palate, lung and nasal epithelium clone 2) is expressed in human salivary glands and saliva. The protein exists as an N-glycosylated and non-glycosylated form and both appear to induce agglutination of bacteria, a major antibacterial function for salivary proteins. Both forms of PSP/SPLUNC2 bind LPS (lipopolysaccharide), suggesting that the protein may also play an anti-inflammatory role. Based on the predicted structure of PSP/SPLUNC2 and the location of known antibacterial and anti-inflammatory peptides in BPI (bactericidal/permeability-increasing protein) and LBP (LPS-binding protein), we designed GL13NH2 and GL13K, synthetic peptides that capture these proposed functions of PSP/SPLUNC2. GL13NH3 agglutinates bacteria, leading to increased clearance by macrophages and reduced spread of infection in a plant model. GL13K kills bacteria with a minimal inhibitory concentration of 5-10 μg/ml, kills bacteria in biofilm and retains activity in 150 mM NaCl and 50% saliva. Both peptides block endotoxin action, but only GL13K appears to bind endotoxin. The peptides do not cause haemolysis, haemagglutination in serum, inhibit mammalian cell proliferation or induce an inflammatory response in macrophages. These results suggest that the GL13NH2 and the modified peptide GL13K capture the biological activity of PSP/SPLUNC2 and can serve as lead compounds for the development of novel antimicrobial and anti-inflammatory peptides.

  10. The dual PPARα/γ agonist aleglitazar increases the number and function of endothelial progenitor cells: implications for vascular function and atherogenesis

    PubMed Central

    Werner, C M; Schirmer, S H; Gensch, C; Pavlickova, V; Pöss, J; Wright, M B; Böhm, M; Laufs, U

    2014-01-01

    Background and Purpose Aleglitazar is a dual PPARα/γ agonist but little is known about its effects on vascular function and atherogenesis. Hence, we characterized its effects on circulating angiogenic cells (CAC), neoangiogenesis, endothelial function, arteriogenesis and atherosclerosis in mice. Experimental Approach C57Bl/6 wild-type (WT, normal chow), endothelial NOS (eNOS)−/− (normal chow) and ApoE−/− (Western-type diet) mice were treated with aleglitazar (10 mg·kg−1·day−1, i.p.) or vehicle. Key Results Aleglitazar enhanced expression of PPARα and PPARγ target genes, normalized glucose tolerance and potently reduced hepatic fat in ApoE−/− mice. In WT mice, but not in eNOS−/−, aleglitazar up-regulated Sca-1/VEGFR2-positive CAC in the blood and bone marrow and up-regulated diLDL/lectin-positive CAC. Aleglitazar augmented CAC migration and enhanced neoangiogenesis. In ApoE−/− mice, aleglitazar up-regulated CAC number and function, reduced markers of vascular inflammation and potently improved perfusion restoration after hindlimb ischaemia and aortic endothelium-dependent vasodilatation. This was associated with markedly reduced formation of atherosclerotic plaques. In human cultured CAC from healthy donors and patients with coronary artery disease with or without diabetes mellitus, aleglitazar increased migration and colony-forming units in a concentration-dependent manner. Furthermore, oxidative stress-induced CAC apoptosis and expression of p53 were reduced, while telomerase activity and expression of phospho-eNOS and phospho-Akt were elevated. Comparative agonist and inhibitor experiments revealed that aleglitazar's effects on CAC migration and colony-forming units were mediated by both PPARα and PPARγ signalling and required Akt. Conclusions and Implications Aleglitazar augments the number, function and survival of CAC, which correlates with improved vascular function, enhanced arteriogenesis and prevention of atherosclerosis

  11. Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells.

    PubMed

    He, Ming; Pang, Xinchang; Liu, Xueqin; Jiang, Beibei; He, Yanjie; Snaith, Henry; Lin, Zhiqun

    2016-03-18

    Extending the spectral absorption of organolead halide perovskite solar cells from visible into near-infrared (NIR) range renders the minimization of non-absorption loss of solar photons with improved energy alignment. Herein, we report on, for the first time, a viable strategy of capitalizing on judiciously synthesized monodisperse NaYF4 :Yb/Er upconversion nanoparticles (UCNPs) as the mesoporous electrode for CH3 NH3 PbI3 perovskite solar cells and more importantly confer perovskite solar cells to be operative under NIR light. Uniform NaYF4 :Yb/Er UCNPs are first crafted by employing rationally designed double hydrophilic star-like poly(acrylic acid)-block-poly(ethylene oxide) (PAA-b-PEO) diblock copolymer as nanoreactor, imparting the solubility of UCNPs and the tunability of film porosity during the manufacturing process. The subsequent incorporation of NaYF4 :Yb/Er UCNPs as the mesoporous electrode led to a high efficiency of 17.8 %, which was further increased to 18.1 % upon NIR irradiation. The in situ integration of upconversion materials as functional components of perovskite solar cells offers the expanded flexibility for engineering the device architecture and broadening the solar spectral use. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dual functionality of O-GlcNAc transferase is required for Drosophila development.

    PubMed

    Mariappa, Daniel; Zheng, Xiaowei; Schimpl, Marianne; Raimi, Olawale; Ferenbach, Andrew T; Müller, H-Arno J; van Aalten, Daan M F

    2015-12-01

    Post-translational modification of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) catalysed by O-GlcNAc transferase (OGT) has been linked to regulation of diverse cellular functions. OGT possesses a C-terminal glycosyltransferase catalytic domain and N-terminal tetratricopeptide repeats that are implicated in protein-protein interactions. Drosophila OGT (DmOGT) is encoded by super sex combs (sxc), mutants of which are pupal lethal. However, it is not clear if this phenotype is caused by reduction of O-GlcNAcylation. Here we use a genetic approach to demonstrate that post-pupal Drosophila development can proceed with negligible OGT catalysis, while early embryonic development is OGT activity-dependent. Structural and enzymatic comparison between human OGT (hOGT) and DmOGT informed the rational design of DmOGT point mutants with a range of reduced catalytic activities. Strikingly, a severely hypomorphic OGT mutant complements sxc pupal lethality. However, the hypomorphic OGT mutant-rescued progeny do not produce F2 adults, because a set of Hox genes is de-repressed in F2 embryos, resulting in homeotic phenotypes. Thus, OGT catalytic activity is required up to late pupal stages, while further development proceeds with severely reduced OGT activity. © 2015 The Authors.

  13. Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis

    PubMed Central

    Belinson, Haim; Savage, Adam K.; Fadrosh, Douglas; Kuo, Yien-Ming; Lin, Din; Valladares, Ricardo; Nusse, Ysbrand; Wynshaw-Boris, Anthony; Lynch, Susan V.; Locksley, Richard M.

    2016-01-01

    Homeostasis of the gastrointestinal (GI) tract is controlled by complex interactions between epithelial and immune cells and the resident microbiota. Here, we studied the role of Wnt signaling in GI homeostasis using Disheveled 1 knockout (Dvl1–/–) mice, which display an increase in whole gut transit time. This phenotype is associated with a reduction and mislocalization of Paneth cells and an increase in CD8+ T cells in the lamina propria. Bone marrow chimera experiments demonstrated that GI dysfunction requires abnormalities in both epithelial and immune cells. Dvl1–/– mice exhibit a significantly distinct GI microbiota, and manipulation of the gut microbiota in mutant mice rescued the GI transit abnormality without correcting the Paneth and CD8+ T cell abnormalities. Moreover, manipulation of the gut microbiota in wild-type mice induced a GI transit abnormality akin to that seen in Dvl1–/– mice. Together, these data indicate that microbiota manipulation can overcome host dysfunction to correct GI transit abnormalities. Our findings illustrate a mechanism by which the epithelium and immune system coregulate gut microbiota composition to promote normal GI function. PMID:27525310

  14. Fluorescence-Magnetism Functional EuS Nanocrystals with Controllable Morphologies for Dual Bioimaging.

    PubMed

    Sun, Yuanqing; Wang, Dandan; Zhao, Tianxin; Jiang, Yingnan; Zhao, Yueqi; Wang, Chuanxi; Sun, Hongchen; Yang, Bai; Lin, Quan

    2016-12-14

    Multiple functions incorporated in one single component material offer important applications in biosystems. Here we prepared a divalent state of rare earth EuS nanocrystals (NCs), which provides luminescent and magnetic properties, using both 1-Dodecanethiol (DT) and oleylamine (OLA) as reducing agents. The resultant EuS NCs exhibit controllable shapes, uniform size, and bright luminescence with a quantum yield as high as 3.5%. OLA as a surface ligand plays an important role in tunable morphologies, such as nanowires, nanorods, nanospheres et al. Another attractive nature of the EuS NCs is their paramagnetism at room temperature. In order to expand the biological applications, the resultant EuS NCs were modified with amphiphilic block copolymer F127 and transferred from oil to water phase. The excellent biocompatibility of EuS NCs is demonstrated as well as preservation of their luminescence and paramagnetic properties. The EuS NCs offer multifunction and great advantages of bright luminescence, paramagnetic, controllable morphologies, and good biocompatibility promising applications in the field of simultaneous magnetic resonance and fluorescence bioimaging.

  15. Dual function of suppressor of fused in Hh pathway activation and mouse spinal cord patterning.

    PubMed

    Liu, Jinling; Heydeck, Westley; Zeng, Huiqing; Liu, Aimin

    2012-02-15

    The morphogen Sonic hedgehog, one of the Hedgehog (Hh) family of secreted proteins, plays a key role in patterning the mammalian spinal cord along its dorsoventral (D/V) axis through the activation of Glioma-associated oncogene (Gli) family of transcription factors. Suppressor of Fused (Sufu), a Gli-interacting protein, modulates the D/V patterning of the spinal cord by antagonizing Hh signaling. The molecular mechanisms underlying the function of Sufu in Hh pathway activation and spinal cord D/V patterning remain controversial, particularly in light of recent findings that Sufu protects Gli2 and Gli3 proteins from proteasomal degradation. In the current study, we show that Hh pathway activation and dorsal expansion of ventral spinal cord cell types in the absence of Sufu depend on the activator activities of all three Gli family proteins. We also show that Sufu plays a positive role in the maximal activation of Hh signaling that defines the ventral-most cell fate in the mammalian spinal cord, likely through protecting Gli2 and Gli3 proteins from degradation. Finally, by altering the level of Gli3 repressor on a background of reduced Gli activator activities, we reveal an important contribution of Gli3 repressor activity to the Hh pathway activation and the D/V patterning of the spinal cord.

  16. Dual functionality of O-GlcNAc transferase is required for Drosophila development

    PubMed Central

    Mariappa, Daniel; Zheng, Xiaowei; Schimpl, Marianne; Raimi, Olawale; Ferenbach, Andrew T.; Müller, H.-Arno J.; van Aalten, Daan M. F.

    2015-01-01

    Post-translational modification of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) catalysed by O-GlcNAc transferase (OGT) has been linked to regulation of diverse cellular functions. OGT possesses a C-terminal glycosyltransferase catalytic domain and N-terminal tetratricopeptide repeats that are implicated in protein–protein interactions. Drosophila OGT (DmOGT) is encoded by super sex combs (sxc), mutants of which are pupal lethal. However, it is not clear if this phenotype is caused by reduction of O-GlcNAcylation. Here we use a genetic approach to demonstrate that post-pupal Drosophila development can proceed with negligible OGT catalysis, while early embryonic development is OGT activity-dependent. Structural and enzymatic comparison between human OGT (hOGT) and DmOGT informed the rational design of DmOGT point mutants with a range of reduced catalytic activities. Strikingly, a severely hypomorphic OGT mutant complements sxc pupal lethality. However, the hypomorphic OGT mutant-rescued progeny do not produce F2 adults, because a set of Hox genes is de-repressed in F2 embryos, resulting in homeotic phenotypes. Thus, OGT catalytic activity is required up to late pupal stages, while further development proceeds with severely reduced OGT activity. PMID:26674417

  17. A Novel Dual Expression Platform for High Throughput Functional Screening of Phage Libraries in Product like Format

    PubMed Central

    Mugabe, Sheila; Gao, Changshou; Tkaczyk, Christine; Mazor, Yariv; Pavlik, Peter; Wu, Herren; Dall’Acqua, William; Chowdhury, Partha Sarathi

    2015-01-01

    High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for

  18. Effects of a measurement floor on Mueller matrix measurements in a dual rotating retarder polarimeter bidirectional scatter distribution function system.

    PubMed

    Nauyoks, Stephen E; Marciniak, Michael A

    2015-06-20

    Since a measurement of the bidirectional scatter distribution function (BSDF) of a material is proportional to the intensity of the scattered light, a BSDF measurement system with the addition of a dual rotating retarder polarimeter can be used to calculate the Mueller matrix of a scatterer. One advantage of a BSDF system using a laser source is its large dynamic range, which allows the measurement of scattered light both near to and away from the specular region. As BSDF measurements move away from the specular region and into a more diffuse-scatter region, the measured signal decreases and may approach the system's measurement floor. Therefore, BSDF and Mueller-matrix measurements are dependent not only on the scatter from the sample but also on the noise floor of the system. By analyzing numerically created bidirectional reflectance distribution function data, we show that since the noise floor of a system is typically constant, the Mueller-matrix measurement at the noise floor appears to be that of a perfect depolarizer. Therefore, as the BSDF measurement space moves away from the high-signal region and the noise floor is approached, the Mueller matrix assigned to the sample artificially approaches that of a perfect depolarizer. The rate and location in scatter-angle space of this shift is dependent on the BSDF of the material and on the signal-to-noise ratio in the system. Therefore, caution must be taken when drawing conclusions about measured Mueller matrices for scattered light, particularly in measurement regions where the measured signal approaches the system floor.

  19. Synthesis and biomedical applications of functionalized fluorescent and magnetic dual reporter nanoparticles as obtained in the miniemulsion process

    NASA Astrophysics Data System (ADS)

    Holzapfel, Verena; Lorenz, Myriam; Kilian Weiss, Clemens; Schrezenmeier, Hubert; Landfester, Katharina; Mailänder, Volker

    2006-09-01

    As superparamagnetic nanoparticles capture new applications and markets, the flexibility and modifications of these nanoparticles are increasingly important aspects. Therefore a series of magnetic polystyrene particles encapsulating magnetite nanoparticles (10-12 nm) in a hydrophobic poly(styrene-co-acrylic acid) shell was synthesized by a three-step miniemulsion process. A high amount of iron oxide was incorporated by this process (typically 30-40% (w/w)). As a second reporter, a fluorescent dye was also integrated in order to obtain 'dual reporter particles'. Finally, polymerization of the monomer styrene yielded nanoparticles in the range 45-70 nm. By copolymerization of styrene with the hydrophilic acrylic acid, the amount of carboxyl groups on the surface was varied. The characterization of the latexes included dynamic light scattering, transmission electron microscopy, surface charge and magnetic measurements. For biomedical evaluation, the nanoparticles were incubated with different cell types. The introduction of carboxyl groups on the particle surfaces enabled the uptake of nanoparticles as demonstrated by the detection of the fluorescent signal by fluorescent activated cell sorter (FACS) and laser scanning microscopy. The quantity of iron in the cells that is required for most biomedical applications (like detection by magnetic resonance imaging) has to be significantly higher, as can be achieved by the uptake of magnetite encapsulated nanoparticles functionalized only with carboxyl groups. A further increase of uptake can be accomplished by transfection agents like poly-L-lysine or other positively charged polymers. This functionality was also engrafted into the surface of the nanoparticles by covalently coupling lysine to the carboxyl groups. The amount of iron that can be transfected was even higher than with the nanoparticles with a transfection agent added and this only physically adsorbed. Furthermore, the subcellular localization of these

  20. Amino acid derivative-mediated detoxification and functionalization of dual cure dental restorative material for dental pulp cell mineralization.

    PubMed

    Minamikawa, Hajime; Yamada, Masahiro; Iwasa, Fuminori; Ueno, Takeshi; Deyama, Yoshiaki; Suzuki, Kuniaki; Yawaka, Yasutaka; Ogawa, Takahiro

    2010-10-01

    Current dental restorative materials are only used to fill the defect of hard tissues, such as dentin and enamel, because of their cytotoxicity. Therefore, exposed dental pulp tissues in deep cavities must be first covered by a pulp capping material like calcium hydroxide to form a layer of mineralized tissue. However, this tissue mineralization is based on pathological reaction and triggers long-lasting inflammation, often causing clinical problems. This study tested the ability of N-acetyl cysteine (NAC), amino acid derivative, to reduce cytotoxicity and induce mineralized tissue conductivity in resin-modified glass ionomer (RMGI), a widely used dental restorative material having dual cure mechanism. Rat dental pulp cells were cultured on untreated or NAC-supplemented RMGI. NAC supplementation substantially increased the percentage of viable cells from 46.7 to 73.3% after 24-h incubation. Cell attachment, spreading, proliferative activity, and odontoblast-related gene and protein expressions increased significantly on NAC-supplemented RMGI. The mineralization capability of cells, which was nearly suppressed on untreated RMGI, was induced on NAC-supplemented RMGI. These improved behaviors and functions of dental pulp cells on NAC-supplemented RMGI were associated with a considerable reduction in the production of intracellular reactive oxygen species and with the increased level of intracellular glutathione reserves. These results demonstrated that NAC could detoxify and functionalize RMGIs via two different mechanisms involving in situ material detoxification and antioxidant cell protection. We believe that this study provides a new approach for developing dental restorative materials that enables mineralized tissue regeneration.

  1. Evaluation of benzaldehyde derivatives from Morinda officinalis as anti-mite agents with dual function as acaricide and mite indicator.

    PubMed

    Yang, Ji-Yeon; Kim, Min-Gi; Park, Jun-Hwan; Hong, Seong-Tshool; Lee, Hoi-Seon

    2014-12-01

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by SFTS virus with 12-30% fatality rate. Despite severity of the disease, any medication or treatment for SFTS has not developed yet. One approach to prevent SFTS spreading is to control the arthropod vector carrying SFTS virus. We report that 2-methylbenzaldehyde analogues from M. officinalis have a dual function as acaricide against Dermatophagoides spp. and Haemaphysalis longicornis and indicator (color change) against Dermatophagoides spp. Based on the LD50 values, 2,4,5-trimethylbenzaldehyde (0.21, 0.19, and 0.68 μg/cm(3)) had the highest fumigant activity against D. farinae, D. pteronyssinus, and H. longicornis, followed by 2,3-dimethylbenzaldehyde (0.46, 0.44, and 0.79 μg/cm(3)), 2,4-dimethylbenzaldehyde (0.66, 0.59, and 0.95 μg/cm(3)), 2,5-dimethylbenzaldehyde (0.65, 0.68, and 0.88 μg/cm(3)), 2-methylbenzaldehyde (0.95, 0.87, and 1.28 μg/cm(3)), 3-methylbenzaldehyde (0.99, 0.93, and 1.38 μg/cm(3)), 4-methylbenzaldehyde (1.17, 1.15, and 3.67 μg/cm(3)), and M. officinalis oil (7.05, 7.00, and 19.70 μg/cm(3)). Furthermore, color alteration of Dermatophagoides spp. was shown to be induced, from colorless to dark brown, by the treatment of 2,3-dihydroxybenzaldehyde. These finding indicated that 2-methylbenzaldehyde analogues could be developed as functional agent associated with the arthropod vector of SFTS virus and allergen.

  2. Evaluation of benzaldehyde derivatives from Morinda officinalis as anti-mite agents with dual function as acaricide and mite indicator

    PubMed Central

    Yang, Ji-Yeon; Kim, Min-Gi; Park, Jun-Hwan; Hong, Seong-Tshool; Lee, Hoi-Seon

    2014-01-01

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by SFTS virus with 12–30% fatality rate. Despite severity of the disease, any medication or treatment for SFTS has not developed yet. One approach to prevent SFTS spreading is to control the arthropod vector carrying SFTS virus. We report that 2–methylbenzaldehyde analogues from M. officinalis have a dual function as acaricide against Dermatophagoides spp. and Haemaphysalis longicornis and indicator (color change) against Dermatophagoides spp. Based on the LD50 values, 2,4,5–trimethylbenzaldehyde (0.21, 0.19, and 0.68 μg/cm3) had the highest fumigant activity against D. farinae, D. pteronyssinus, and H. longicornis, followed by 2,3–dimethylbenzaldehyde (0.46, 0.44, and 0.79 μg/cm3), 2,4–dimethylbenzaldehyde (0.66, 0.59, and 0.95 μg/cm3), 2,5–dimethylbenzaldehyde (0.65, 0.68, and 0.88 μg/cm3), 2–methylbenzaldehyde (0.95, 0.87, and 1.28 μg/cm3), 3–methylbenzaldehyde (0.99, 0.93, and 1.38 μg/cm3), 4–methylbenzaldehyde (1.17, 1.15, and 3.67 μg/cm3), and M. officinalis oil (7.05, 7.00, and 19.70 μg/cm3). Furthermore, color alteration of Dermatophagoides spp. was shown to be induced, from colorless to dark brown, by the treatment of 2,3–dihydroxybenzaldehyde. These finding indicated that 2–methylbenzaldehyde analogues could be developed as functional agent associated with the arthropod vector of SFTS virus and allergen. PMID:25434408

  3. The use of PIB-PET as a dual pathological and functional biomarker in AD.

    PubMed

    Forsberg, Anton; Engler, Henry; Blomquist, Gunnar; Långström, Bengt; Nordberg, Agneta

    2012-03-01

    Amyloid imaging with positron emission tomography (PET) is presently used in Alzheimer's disease (AD) research. In this study we investigated the possibility to use early frames (ePIB) of the PIB scans as a rough index of CBF by comparing normalised early PIB values with cerebral glucose metabolism (rCMRglc). PIB-PET and FDG-PET were performed in 37 AD patients, 21 subjects with mild cognitive impairment (MCI) and 6 healthy controls (HC). The patients were divided based on their PIB retention (amyloid load) as either PIB positive (PIB+) or PIB negative (PIB-). Data of the unidirectional influx K(1) from a subset of the subjects including 7 AD patients and 3 HC was used for correlative analysis. Data was analysed using regions of interest (ROI) analysis. A strong, positive correlation was observed across brain regions between K(1) and ePIB (r=0.70; p≤0.001). The ePIB values were significantly lower in the posterior cingulate (p≤0.001) and the parietal cortices (p=0.002) in PIB+ subjects compared to PIB-, although the group difference were stronger for rCMRglc in cortical areas (p≤0.001). Strong positive correlations between ePIB and rCMRglc were observed in all cortical regions analysed, especially in the posterior cingulate and parietal cortices (p≤0.001). A single dynamic PIB-PET scan may provide information about pathological and functional changes (amyloidosis and impaired blood flow). This might be important for diagnosis of AD, enrichment of patients in clinical trials and evaluation of treatment effects. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.

  4. Executive function deficits in team sport athletes with a history of concussion revealed by a visual-auditory dual task paradigm.

    PubMed

    Tapper, Anthony; Gonzalez, Dave; Roy, Eric; Niechwiej-Szwedo, Ewa

    2017-02-01

    The purpose of this study was to examine executive functions in team sport athletes with and without a history of concussion. Executive functions comprise many cognitive processes including, working memory, attention and multi-tasking. Past research has shown that concussions cause difficulties in vestibular-visual and vestibular-auditory dual-tasking, however, visual-auditory tasks have been examined rarely. Twenty-nine intercollegiate varsity ice hockey athletes (age = 19.13, SD = 1.56; 15 females) performed an experimental dual-task paradigm that required simultaneously processing visual and auditory information. A brief interview, event description and self-report questionnaires were used to assign participants to each group (concussion, no-concussion). Eighteen athletes had a history of concussion and 11 had no concussion history. The two tests involved visuospatial working memory (i.e., Corsi block test) and auditory tone discrimination. Participants completed both tasks individually, then simultaneously. Two outcome variables were measured, Corsi block memory span and auditory tone discrimination accuracy. No differences were shown when each task was performed alone; however, athletes with a history of concussion had a significantly worse performance on the tone discrimination task in the dual-task condition. In conclusion, long-term deficits in executive functions were associated with a prior history of concussion when cognitive resources were stressed. Evaluations of executive functions and divided attention appear to be helpful in discriminating participants with and without a history concussion.

  5. Preparation of a weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography stationary phase for protein separation using click chemistry.

    PubMed

    Zhao, Kailou; Yang, Fan; Xia, Hongjun; Wang, Fei; Song, Qingguo; Bai, Quan

    2015-03-01

    In this study, 3-diethylamino-1-propyne was covalently bonded to the azide-silica by a click reaction to obtain a novel dual-function mixed-mode chromatography stationary phase for protein separation with a ligand containing tertiary amine and two ethyl groups capable of electrostatic and hydrophobic interaction functionalities, which can display hydrophobic interaction chromatography character in a high-salt-concentration mobile phase and weak anion exchange character in a low-salt-concentration mobile phase employed for protein separation. As a result, it can be employed to separate proteins with weak anion exchange and hydrophobic interaction modes, respectively. The resolution and selectivity of the stationary phase were evaluated in both hydrophobic interaction and ion exchange modes with standard proteins, respectively, which can be comparable to that of conventional weak anion exchange and hydrophobic interaction chromatography columns. Therefore, the synthesized weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography column can be used to replace two corresponding conventional weak anion exchange and hydrophobic interaction chromatography columns to separate proteins. Based on this mixed-mode chromatography stationary phase, a new off-line two-dimensional liquid chromatography technology using only a single dual-function mixed-mode chromatography column was developed. Nine kinds of tested proteins can be separated completely using the developed method within 2.0 h.

  6. Novel Dual-Functional Membrane for Controlling Carbon Dioxide Emissions from Fossil Fuel Power Plants

    SciTech Connect

    C. Brinker; George Xomeritakis; C.-Y. Tsai; Ying-Bing Jiang

    2009-04-30

    CO{sub 2} captured from coal-fired power plants represents three-quarters of the total cost of an entire carbon sequestration process. Conventional amine absorption or cryogenic separation requires high capital investment and is very energy intensive. Our novel membrane process is energy efficient with great potential for economical CO{sub 2} capture. Three classes of microporous sol-gel derived silica-based membranes were developed for selective CO{sub 2} removal under simulated flue gas conditions (SFG), e.g. feed of 10% vol. CO{sub 22} in N{sub 2}, 1 atm total pressure, T = 50-60 C, RH>50%, SO2>10 ppm. A novel class of amine-functional microporous silica membranes was prepared using an amine-derivatized alkoxysilane precursor, exhibiting enhanced (>70) CO{sub 2}:N{sub 2} selectivity in the presence of H{sub 2}O vapor, but its CO{sub 2} permeance was lagging (<1 MPU). Pure siliceous membranes showed higher CO{sub 2} permeance (1.5-2 MPU) but subsequent densification occurred under prolonged SFG conditions. We incorporated NiO in the microporous network up to a loading of Ni:Si = 0.2 to retard densification and achieved CO2 permeance of 0.5 MPU and CO{sub 2}:N{sub 2} selectivity of 50 after 163 h exposure to SFG conditions. However, CO{sub 2} permeance should reach greater than 2.0 MPU in order to achieve the cost of electricity (COE) goal set by DOE. We introduced the atomic layer deposition (ALD), a molecular deposition technique that substantially reduces membrane thickness with intent to improve permeance and selectivity. The deposition technique also allows the incorporation of Ni or Ag cations by proper selection of metallorganic precursors. In addition, preliminary economic analysis provides a sensitivity study on the performance and cost of the proposed membranes for CO{sub 2} capture. Significant progress has been made toward the practical applications for CO{sub 2} capture. (1 MPU = 1.0 cm{sup 3}(STP){center_dot}cm-2{center_dot}min-1{center_dot}atm-1)

  7. Impactful study of dual work function, underlap and hetero gate dielectric on TFET with different drain doping profile for high frequency performance estimation and optimization

    NASA Astrophysics Data System (ADS)

    Yadav, Dharmendra Singh; Sharma, Dheeraj; Raad, Bhagwan Ram; Bajaj, Varun

    2016-08-01

    This manuscript presents a comparative study of different combination for the dual workfunction gate material, underlap and hetero gate dielectric tunnel field-effect transistors (TFET's). Their performances have been analyzed in terms of ON-state current, ambipolar behaviour and RF response along with different drain doping profile. For this, the Dual work function of gate provides enhancement in ON-state current by reducing the tunnel barrier width at source/channel interface. Whereas, the underlap of gate is done near to the drain region, helps in reduction of ambipolar conduction by creating deficiency of hole for the conduction, which is major hurdle for TFET. Further, the combinations of the dual workfunction and underlap give combine advantages of both such as improve ON-state current and suppressed ambipolar current. Apart from this, the combination of hetero gate dielectric dual workfunction under lapping leads to superior device performance in terms of ON-state current and ambipolar behaviour. The use of hetero gate dielectric and Gaussian doping profile with gate underlap reduces the gate to drain capacitance that also improves the RF parameters of the device.

  8. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities.

    PubMed

    García-Mora, Patricia; Martín-Martínez, Mercedes; Angeles Bonache, María; González-Múniz, Rosario; Peñas, Elena; Frias, Juana; Martinez-Villaluenga, Cristina

    2017-04-15

    The objective was to identify peptides with dual antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities released from lentil proteins by Savinase®. The influence of gastrointestinal digestion on peptide bioactivity was also assayed. Fragments from vicilin, convicilin and legumin were the most abundant peptides identified. Peptides LLSGTQNQPSFLSGF, NSLTLPILRYL, TLEPNSVFLPVLLH showed the highest antioxidant (0.013-1.432μmol Trolox eq./μmol peptide) and ACE inhibitory activities (IC50=44-120μM). Gastrointestinal digestion of peptides improved their dual activity (10-14μmol Trolox eq./μmol peptide; IC50=11-21μM). In general, C-terminal heptapeptide was crucial for their dual activity. ACE inhibition relies on the formation of hydrogen bonds between C-terminal residues of lentil peptides and residues of the ACE catalytic site. The present study helps clarifying the relationship between structure and dual antioxidant/antihypertensive activity of lentil peptides opening new opportunities to food industry such as the application of lentil protein hydrolysates as ingredients for development of functional foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast

    PubMed Central

    Wang, Xu; Liu, Z. Lewis; Weber, Scott A.; Zhang, Xiaoping

    2016-01-01

    Yeast strain Clavispora NRRL Y-50464 is able to produce cellulosic ethanol from lignocellulosic materials without addition of external β-glucosidase by simultaneous saccharification and fermentation. A β-glucosidase BGL1 protein from this strain was recently reported supporting its cellobiose utilization capability. Here, we report two additional new β-glucosidase genes encoding enzymes designated as BGL2 and BGL3 from strain NRRL Y-50464. Quantitative gene expression was analyzed and the gene function of BGL2 and BGL3 was confirmed by heterologous expression using cellobiose as a sole carbon source. Each gene was cloned and partially purified protein obtained separately for direct enzyme assay using varied substrates. Both proteins showed the highest specific activity at pH 5 and relatively strong affinity with a Km of 0.08 and 0.18 mM for BGL2 and BGL3, respectively. The optimum temperature was found to be 50°C for BGL2 and 55°C for BGL3. Both proteins were able to hydrolyze 1,4 oligosaccharides evaluated in this study. They also showed a strong resistance to glucose product inhibition with a Ki of 61.97 and 38.33 mM for BGL2 and BGL3, respectively. While BGL3 was sensitive showing a significantly reduced activity to 4% ethanol, BGL2 demonstrated tolerance to ethanol. Its activity was enhanced in the presence of ethanol but reduced at concentrations greater than 16%. The presence of the fermentation inhibitors furfural and HMF did not affect the enzyme activity. Our results suggest that a β-glucosidase gene family exists in Clavispora NRRL Y-50464 with at least three members in this group that validate its cellobiose hydrolysis functions for lower-cost cellulosic ethanol production. Results of this study confirmed the cellobiose hydrolysis function of strain NRRL Y-50464, and further supported this dual functional yeast as a candidate for lower-cost cellulosic ethanol production and next-generation biocatalyst development in potential industrial

  10. Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO

    NASA Astrophysics Data System (ADS)

    Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.

    2012-02-01

    Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisation usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the

  11. Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO

    NASA Astrophysics Data System (ADS)

    Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.

    2012-07-01

    Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the

  12. A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application

    NASA Astrophysics Data System (ADS)

    Singh, Jay; Roychoudhury, Appan; Srivastava, Manish; Solanki, Pratima R.; Lee, Dong Won; Lee, Seung Hee; Malhotra, B. D.

    2013-12-01

    nanorods has been electrophoretically deposited (EPD) onto an indium-tin-oxide (ITO) glass substrate. The n-Tm2O3 nanorods are found to provide improved sensing characteristics to the electrode interface in terms of electroactive surface area, diffusion coefficient, charge transfer rate constant and electron transfer kinetics. The structural and morphological studies of n-Tm2O3 nanorods have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopic techniques. This interfacial platform has been used for fabrication of a total cholesterol biosensor by immobilizing cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto a Tm2O3 nanostructured surface. The results of response studies of the fabricated ChEt-ChOx/n-Tm2O3/ITO bioelectrode show a broad linear range of 8-400 mg dL-1, detection limit of 19.78 mg (dL cm-2)-1, and high sensitivity of 0.9245 μA (mg per dL cm-2)-1 with a response time of 40 s. Further, this bioelectrode has been utilized for estimation of total cholesterol with negligible interference (3%) from analytes present in human serum samples. The utilization of this n-Tm2O3 modified electrode for enzyme-based biosensor analysis offers an efficient strategy and a novel interface for application of the rare earth metal oxide materials in the field of electrochemical sensors and bioelectronic devices. Electronic supplementary information (ESI) available: XPS spectra of n-Tm2O3, differential pulse voltammograms, magnitude of potential difference as a function of scan rate (10-100 mV s-1), effect of working potential, amount of enzyme used for immobilization, amount of enzyme loading, effect of interferents, response time, effect of temperature, determination of cholesterol in serum samples and photometric enzyme activity studies. See DOI: 10.1039/c3nr05043b

  13. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response.

    PubMed

    Jiang, Lei; Li, Li; He, Xiaodan; Yi, Qiangying; He, Bin; Cao, Jun; Pan, Weisan; Gu, Zhongwei

    2015-06-01

    Mitochondrion-orientated transportation of smart liposomes has been developed as a promising strategy to deliver anticancer drugs directly to tumor sites, and these have a tremendous potential for killing cancer cells, especially those with multidrug resistance (MDR). Herein we report a novel dual-functional liposome system possessing both extracellular pH response and mitochondrial targeting properties to enhance drug accumulation in mitochondria and trigger apoptosis of drug-resistant cancer cells. Briefly, peptide D[KLAKLAK]2 (KLA) was modified with 2, 3-dimethylmaleic anhydride (DMA) and combined with 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to yield a DSPE-KLA-DMA (DKD) lipid. This dual-functional DKD was then mixed with other commercially available lipids to fabricate liposomes. In vitro anticancer efficacy of this liposome system was evaluated in human lung cancer A549 cells and drug-resistant lung cancer A549/Taxol cells. At tumor extracellular pH (∼6.8), liposomes could reverse their surface charge (negative to positive), facilitating liposome internalization. After cellular uptake, KLA peptide directed delivery-enabled selective accumulation of these liposomes into mitochondria and favored release of their cargo paclitaxel (PTX) into desired sites. Specifically, enhanced apoptosis of MDR cancer cells through mitochondrial signaling pathways was evidenced by release of cytochrome c and increased activity of caspase-9 and -3. These dual-functional liposomes had the greatest efficacy for treating A549 cells and A549/Taxol cells in vitro, and in treating drug-resistant lung cancer A549/Taxol cells xenografted onto nude mice (tumor growth inhibition 86.7%). In conclusion, dual-functional liposomes provide a novel and versatile approach for overcoming MDR in cancer treatment.

  14. A dual-functional asymmetric squaraine-based low band gap hole transporting material for efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Paek, Sanghyun; Rub, Malik Abdul; Choi, Hyeju; Kosa, Samia A.; Alamry, Khalid A.; Cho, Jin Woo; Gao, Peng; Ko, Jaejung; Asiri, Abdullah M.; Nazeeruddin, Mohammad Khaja

    2016-03-01

    We demonstrate for the first time an asymmetric squaraine-based low band-gap hole transporting material, which acted as both light harvesting and hole transporting layers in methylammonium lead triiodide perovskite solar cells. Opto-electrochemical characterization revealed extremely high molar extinction coefficients of the absorption bands in the low energy region and prominent space charge delocalization due to its electronically asymmetric nature. A suitable band alignment of the squaraine HOMO level with the valence band edge of the perovskite, and the conduction band of the TiO2 with LUMO of the perovskite allowed a cascade of hole extraction and electron injection, respectively. Red-shifted absorption was observed for both HTMs in thin films coated on the perovskite, and the optimized devices exhibited an impressive PCE of 14.7% under full sunlight illumination (100 mW cm-2, AM1.5 G). The efficiency value is comparable to that of the devices using a state-of-the-art spiro-OMeTAD hole transport layer under similar conditions. Ambient stability after 300 h revealed that 88% of the initial efficiency remained for JK-216D, and almost no change for JK-217D, indicating that the devices had good long-term stability thus suggesting that the asymmetric squaraines have great potential as a dual-functional HTM for high performance perovskite solar cells.We demonstrate for the first time an asymmetric squaraine-based low band-gap hole transporting material, which acted as both light harvesting and hole transporting layers in methylammonium lead triiodide perovskite solar cells. Opto-electrochemical characterization revealed extremely high molar extinction coefficients of the absorption bands in the low energy region and prominent space charge delocalization due to its electronically asymmetric nature. A suitable band alignment of the squaraine HOMO level with the valence band edge of the perovskite, and the conduction band of the TiO2 with LUMO of the perovskite allowed

  15. Magnetic multiwall carbon nanotubes modified with dual hydroxy functional ionic liquid for the solid-phase extraction of protein.

    PubMed

    Chen, Jing; Wang, Yuzhi; Huang, Yanhua; Xu, Kaijia; Li, Na; Wen, Qian; Zhou, Yigang

    2015-05-21

    A novel adsorbent based on silica-coated magnetic multiwall carbon nanotubes (MWCNTs) surface modified by dual hydroxy functional ionic liquid (FIL) ([OH]-FIL-m-MWCNTs@SiO2) has been designed and used for the purification of lysozyme (Lys) by magnetic solid-phase extraction (MSPE). Fourier transform infrared spectroscopy (FTIR), a vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were employed to characterize [OH]-FIL-m-MWCNTs@SiO2. After extraction, the concentration of Lys was determined by a UV-Vis spectrophotometer at 278 nm. A series of single-factor experiments were carried out to identify the optimal conditions of the extraction and the extraction amount could reach up to 94.6 mg g(-1). The RSD of the precision, the repeatability and the stability experiments were 0.37% (n = 3), 0.47% (n = 3) and 0.52% (n = 3), respectively. Comparison of [OH]-FIL-m-MWCNTs@SiO2 with silica-coated magnetic Fe3O4 (Fe3O4@SiO2), silica-coated magnetic multiwall carbon nanotubes (m-MWCNTs@SiO2) and alkyl quaternary ammonium ionic liquid-modified on m-MWCNTs@SiO2 was carried out by extracting Lys. The extraction of bovine serum albumin (BSA), trypsin (Try) and ovalbumin (OVA) was also done by the proposed method. Desorption of Lys was carried out by 0.005 mol L(-1) Na2HPO4-1 mol L(-1) NaCl as the eluent solution and the desorption ratio reached 91.6%. Nearly 97.8% of the [OH]-FIL-m-MWCNTs@SiO2 could be recovered from each run, and the extraction amount decreased less after five runs. The circular dichroism spectral experiment analysis indicated that the secondary structure of Lys was unchanged after extraction.

  16. Dual-Functional Carbon Dots Pattern on Paper Chips for Fe(3+) and Ferritin Analysis in Whole Blood.

    PubMed

    Hu, Shan-Wen; Qiao, Shu; Xu, Bi-Yi; Peng, Xiang; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-02-07

    Though microfluidic paper analytical devices (μPADs) have attracted paramounting attentions in recent years as promising devices for low cost point-of-care tests, their real applications for blood analysis are still challenged by integrating sample preparation with different detection modes on a same μPAD. Herein, we developed a novel μPAD, which well coupled automatic serum extraction with reliable dual mode iron health tests: fluorescent analysis for Fe(3+) and colorimetric ELISA for ferritin. All these functions are made available by in situ carbon dots (CDs) and AuNPs sequential patterning techniques. For CDs immobilization, hydrothermal reaction was taken on paper, to which a patterned through-hole polydimethylsiloxane (PDMS) mask was applied. None fluorescence CDs (nF-CDs) were generated on exposed regions, while the fluorescent CDs (F-CDs) were generated simultaneously on covered regions. Sensitive serum iron quantification was realized on the F-CDs modified regions, where Fe(3+) ion can selectively quench the fluorescence of F-CDs. For AuNPs immobilization, electroless plating was taken on nF-CDs modified regions. The resulting AuNPs on nF-CDs layer on one hand triggered the coagulation of blood cells and thus led to the longest ever wicking distance for serum separation, on the other hand facilitated colorimetric enzyme linked immunosorbent assay (ELISA) for detection of serum ferritin. Combining the two readings, the μPAD can provide reliable measurement for serum iron and serum ferritin in whole blood. Furthermore, as CDs and AuNPs modified μPAD has the features of easy handling, low-cost, lightweight, and disposability, it is accounting for a promising prototype for whole blood point-of-care analysis.

  17. Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod.

    PubMed

    Wang, Feihu; Shen, Yuanyuan; Zhang, Wenjun; Li, Min; Wang, Yun; Zhou, Dejian; Guo, Shengrong

    2014-12-28

    Controlled-release systems capable of responding to external stimuli and/or unique internal environments have received great interests in site-specific gene and/or drug delivery. In this work, a functionalized gene nanocarrier for dual-stimuli triggered cytosolic gene delivery is developed and showing high gene delivery efficacy with low cytotoxicity. The nanocarrier is prepared by conjugating gold nanorod (GNR) with multiple disulfide cross-linked short PEIs to harness the advantageous properties of GNR based near infrared (NIR) laser induced photothermal heating and intracellular stimuli-triggered degradability of disulfide cross-linked short PEIs (DSPEI). The DSPEI is further grafted with a poly(ethylene glycol) (PEG) section to afford high carrier stability in cell cultures and a terminal RGD peptide for specific targeting of cancer cells. The nanocarrier is found to effectively condense plasmid DNA to form a highly stable GNR-DSPEI-PEG-RGD/DNA complex with tumor cell-targeting ability that can be efficiently uptaken by cancer cells. Moreover, the loaded genes can be effectively released from the complex triggered by the high intracellular glutathione content and/or by photothermal effect of NIR irradiation at 808 nm. Interestingly, the GNRs-based complex can easily escape from intracellular endo-/lyso-somal compartments and release the gene load into the cytosol upon exposure to NIR irradiation, resulting in significantly improved gene transfection efficiency. Our new gene carrier exhibits high gene transfection efficiency, comparable to or even better than that of high MW PEIs, but with a much lower cytotoxicity. Additionally, neither the GNR-based carrier nor the laser treatment shows any significant evidence of cytotoxicity. This work demonstrates a promising strategy for intracellular stimuli triggered, photothermal controllable gene delivery system, which can be further applied to many other nanomedicine fields.

  18. Characterization of U-97775 as a GABAA receptor ligand of dual functionality in cloned rat GABAA receptor subtypes.

    PubMed Central

    Im, H. K.; Im, W. B.; Pregenzer, J. F.; Carter, D. B.; Jacobsen, E. J.; Hamilton, B. J.

    1995-01-01

    1. U-97775 (tert-butyl 7-chloro-4,5-dihydro-5-[(1-(3,4,5-trimethyl)piperazino)carbonyl]- imidazo[1,5-a])quinoxaline-3-carboxylate) is a novel GABAA receptor ligand of dual functionality and was characterized for its interactions with cloned rat GABAA receptors expressed in human embryonic kidney cells. 2. The drug produced a bell-shaped dose-response profile in the alpha 1 beta 2 gamma 2 receptor subtype as monitored with GABA-induced Cl- currents in the whole cell patch-clamp technique. At low concentrations (< 0.5 microM), U-97775 enhanced the currents with a maximal increase of 120% as normalized to 5 microM GABA response (control). An agonist interaction of U-97775 with the benzodiazepine site is suggested, because Ro 15-1788 (an antagonist at the benzodiazepine site) abolished the current increase and [3H]-flunitrazepam binding was inhibited by U-97775 with a Ki of 1.2 nM. 3. The enhancement of GABA currents progressively disappeared as the U-97775 concentration was raised above 1 microM, and the current amplitude was reduced to 40% below the control at 10 microM U-97775. The current inhibition by U-97775 (10 microM) was not affected by Ro 15-1788. It appears that U-97775 interacts with a second site on GABA receptors, distinct from the benzodiazepine site, to reverse its agonistic activity on the benzodiazepine site and also to inhibit GABA currents. 4. U-97775 at low concentrations reduced and at high concentrations enhanced [35S]-TBPS binding. Ro 15-1788 selectively blocked the effect of U-97775 at low concentrations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7647975

  19. Rapid detection of Aβ aggregation and inhibition by dual functions of gold nanoplasmic particles: catalytic activator and optical reporter.

    PubMed

    Choi, Inhee; Lee, Luke P

    2013-07-23

    One of the primary pathological hallmarks of Alzheimer's diseases (AD) is amyloid-β (Aβ) aggregation and its extracellular accumulation. However, current in vitro Aβ aggregation assays require time-consuming and labor-intensive steps, which delay the process of drug discovery and understanding the mechanism of Aβ induced neurotoxicity. Here, we propose a rapid detection method for studying Aβ aggregation and inhibition under an optimized acidic perturbation condition by dual functions of gold nanoplasmonic particles (GNPs): (1) catalytic activator and (2) optical reporter. Because of roles of GNPs as effective nucleation sites for fast-catalyzing Aβ aggregation and colorimetric optical reporters for tracking Aβ aggregation, we accomplished the fast aggregation assay in less than 1 min by the naked eyes. Our detection method is based on spontaneous clustering of unconjugated (unmodified) GNPs along with the aggregated Aβ network under an aggregation-promoting condition. As a proof-of-concept demonstration, we employed the acidic perturbation permitting rapid cooperative assemblies of GNPs and Aβ peptides via their surface charge modulation. Under the optimized acidic perturbation condition around pH 2 to 3, we characterized the concentration-dependent colorimetric responses for aggregation at physiologically relevant Aβ concentration levels (from 100 μM to 10 nM). We also demonstrated the GNP/acidic condition-based rapid inhibition assay of Aβ aggregation by using well-known binding reagents such as antibody and serum albumin. The proposed methodology can be a powerful alternative method for screening drugs for AD as well as studying molecular biophysics of protein aggregations, and further extended to explore other protein conformational diseases such as neurodegenerative disease.

  20. Image-based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain.

    PubMed

    Maass, Clemens; Baer, Matthias; Kachelriess, Marc

    2009-08-01

    Dual energy CT (DECT) measures the object of interest using two different x-ray spectra in order to provide energy-selective CT images or in order to get the material decomposition of the object. Today, two decomposition techniques are known. Image-based DECT uses linear combinations of reconstructed images to get an image that contains material-selective DECT information. Rawdata-based DECT correctly treats the available information by passing the rawdata through a decomposition function that uses information from both rawdata sets to create DECT specific (e.g., material-selective) rawdata. Then the image reconstruction yields material-selective images. Rawdata-based image decomposition generally obtains better image quality; however, it needs matched rawdata sets. This means that physically the same lines need to be measured for each spectrum. In today's CT scanners, this is not the case. The authors propose a new image-based method to combine mismatched rawdata sets for DECT information. The method allows for implementation in a scanner's rawdata precorrection pipeline or may be used in image domain. They compare the ability of the three methods (image-based standard method, proposed method, and rawdata-based standard method) to perform material decomposition and to provide monochromatic images. Thereby they use typical clinical and preclinical scanner arrangements including circular cone-beam CT and spiral CT. The proposed method is found to perform better than the image-based standard method and is inferior to the rawdata-based method. However, the proposed method can be used with the frequent case of mismatched data sets that exclude rawdata-based methods.

  1. Image-based dual energy CT using optimized precorrection functions: A practical new approach of material decomposition in image domain.

    PubMed

    Maaß, Clemens; Baer, Matthias; Kachelrieß, Marc

    2009-08-01

    Dual energy CT (DECT) measures the object of interest using two different x-ray spectra in order to provide energy-selective CT images or in order to get the material decomposition of the object. Today, two decomposition techniques are known. Image-based DECT uses linear combinations of reconstructed images to get an image that contains material-selective DECT information. Rawdata-based DECT correctly treats the available information by passing the rawdata through a decomposition function that uses information from both rawdata sets to create DECT specific (e.g., material-selective) rawdata. Then the image reconstruction yields material-selective images. Rawdata-based image decomposition generally obtains better image quality; however, it needs matched rawdata sets. This means that physically the same lines need to be measured for each spectrum. In today's CT scanners, this is not the case. The authors propose a new image-based method to combine mismatched rawdata sets for DECT information. The method allows for implementation in a scanner's rawdata precorrection pipeline or may be used in image domain. They compare the ability of the three methods (image-based standard method, proposed method, and rawdata-based standard method) to perform material decomposition and to provide monochromatic images. Thereby they use typical clinical and preclinical scanner arrangements including circular cone-beam CT and spiral CT. The proposed method is found to perform better than the image-based standard method and is inferior to the rawdata-based method. However, the proposed method can be used with the frequent case of mismatched data sets that exclude rawdata-based methods. © 2009 American Association of Physicists in Medicine.

  2. A dual positional specific lipoxygenase functions in the generation of flavor compounds during climacteric ripening of apple

    PubMed Central

    Schiller, Doreen; Contreras, Carolina; Vogt, Jörg; Dunemann, Frank; Defilippi, Bruno G; Beaudry, Randolph; Schwab, Wilfried

    2015-01-01

    Lipoxygenase (LOX) is an important contributor to the formation of aroma-active C6 aldehydes in apple (Malus × domestica) fruit upon tissue disruption but little is known about its role in autonomously produced aroma volatiles from intact tissue. We explored the expression of 22 putative LOX genes in apple throughout ripening, but only six LOXs were expressed in a ripening-dependent manner. Recombinant LOX1:Md:1a, LOX1:Md:1c, LOX2:Md:2a and LOX2:Md:2b proteins showed 13/9-LOX, 9-LOX, 13/9-LOX and 13-LOX activity with linoleic acid, respectively. While products of LOX1:Md:1c and LOX2:Md:2b were S-configured, LOX1:Md:1a and LOX2:Md:2a formed 13(R)-hydroperoxides as major products. Site-directed mutagenesis of Gly567 to an alanine converted the dual positional specific LOX1:Md:1a to an enzyme with a high specificity for 9(S)-hydroperoxide formation. The high expression level of the corresponding MdLOX1a gene in stored apple fruit, the genetic association with a quantitative trait locus for fruit ester and the remarkable agreement in regio- and stereoselectivity of the LOX1:Md:1a reaction with the overall LOX activity found in mature apple fruits, suggest a major physiological function of LOX1:Md:1a during climacteric ripening of apples. While LOX1:Md:1c, LOX2:Md:2a and LOX2:Md:2b may contribute to aldehyde production in immature fruit upon cell disruption our results furnish additional evidence that LOX1:Md:1a probably regulates the availability of precursors for ester production in intact fruit tissue. PMID:26504564

  3. A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots.

    PubMed

    Huang, Yuanyuan; Zhou, Jin; Feng, Hui; Zheng, Jieyu; Ma, Hui-Min; Liu, Weidong; Tang, Cong; Ao, Hang; Zhao, Meizhi; Qian, Zhaosheng

    2016-12-15

    A convenient, fluorescent dual-channel chemosensor on the basis of bis(3-pyridylmethyl)amine-functionalized carbon quantum dots (BPMA-CQDs) nanoprobe was constructed, and it can discriminatively detect glutathione from its analogues cysteine and homocysteine based on two distinctive strategies. Two distinct fluorescence responses of BPMA-CQDs probe to Cu(II) and Ag(I) were identified and further employed to achieve selective detection of Cu(II) and Ag(I) respectively. Based on the BPMA-CQDs/Cu(II) conjugate, discriminative detection of GSH was achieved in terms of correlation between the amounts of GSH and fluorescence recovery. The addition of GSH into BPMA-CQDs/Cu(II) system induces the reduction of Cu(II) to Cu(I), which could efficiently block PET process resulting in the following fluorescence recovery. Based on the BPMA-CQDs/Ag(I) conjugate, GSH assay could also be established on the basis of fluorescence response to GSH. The introduction of GSH into the preceding system triggers the competitive coordination to Ag(I) between BPMA and GSH, and silver ions are finally taken away by GSH from the probe, where the fluorescence is restored to its original weak state. Both of the detection strategies can achieve discriminative detection of GSH from Cys and Hcy. The assays showed good stability and repeatability, and covered a broad linear range of up to 13.3μM with a lowest detection limit of 42.0nM. Moreover, both of them were utilized to monitor GSH level in live cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The effect of dual-functional hyaluronic acid-vitamin E succinate micelles on targeting delivery of doxorubicin

    PubMed Central

    Wang, Jinling; Ma, Wenzhuan; Guo, Qiang; Li, Ying; Hu, Zhongdong; Zhu, Zhixiang; Wang, Xiaohui; Zhao, Yunfang; Chai, Xingyun; Tu, Pengfei

    2016-01-01

    Tumor-targeted delivery system has been developed as an attractive strategy for effective tumor therapy. In this study, in order to enhance the antitumor effects of doxorubicin (DOX), amphiphilic hyaluronic acid (HA)-conjugated vitamin E succinate (VES) copolymers (HA-VES) with different degrees of substitution (DS) were prepared with synergistic antitumor effects and active targeting activities, and utilized as nanocarriers for the efficient delivery of DOX. DOX-loaded HA-VES polymeric micelles (HA-VES/DOX) self-assembled from dual-functional HA-VES copolymer and exhibited excellent loading efficiency and superior colloidal stability. In vitro, HA-VES/DOX displayed enhanced cytotoxicity with synergistic anticancer effects of HA-VES copolymer, high apoptosis-inducing activities of tumor cells, and reversal effects of DOX on multidrug resistance, in comparison with DOX. Also, in vitro cellular uptake and subcellular localization studies revealed that HA-VES/DOX could more efficiently internalize into cancer cells and selectively release DOX within lysosomes, thereby enhancing the distribution of DOX in nuclei and facilitating its interactions with DNA. Specifically, HA-VES/DOX decreased the activity of CD44 mRNA and improved the targeting efficiency on MCF-7 cells, based on the active recognition between HA and CD44 receptor. More importantly, HA-VES/DOX displayed better tumor accumulation and targeting, and enhanced antitumor efficacy with reduced systemic toxicity in 4T1 tumor-bearing mice. In summary, the developed HA-VES–based drug delivery system, which increased drug targeting on the tumor site and exhibited preferable anticancer activity, could hold great potential as an effective and promising strategy for efficient tumor therapy. PMID:27853369

  5. Phosphorylation controls a dual-function polybasic nuclear localization sequence in the adapter protein SH2B1β to regulate its cellular function and distribution.

    PubMed

    Maures, Travis J; Su, Hsiao-Wen; Argetsinger, Lawrence S; Grinstein, Sergio; Carter-Su, Christin

    2011-05-01

    An intriguing question in cell biology is what targets proteins to, and regulates their translocation between, specific cellular locations. Here we report that the polybasic nuclear localization sequence (NLS) required for nuclear entry of the adapter protein and candidate human obesity gene product SH2B1β, also localizes SH2B1β to the plasma membrane (PM), most probably via electrostatic interactions. Binding of SH2B1β to the PM also requires its dimerization domain. Phosphorylation of serine residues near this polybasic region, potentially by protein kinase C, releases SH2B1β from the PM and enhances nuclear entry. Release of SH2B1β from the PM and/or nuclear entry appear to be required for SH2B1β enhancement of nerve growth factor (NGF)-induced expression of urokinase plasminogen activator receptor gene and neurite outgrowth of PC12 cells. Taken together, our results provide strong evidence that the polybasic NLS region of SH2B1 serves the dual function of localizing SH2B1 to both the nucleus and the PM, the latter most probably through electrostatic interactions that are enhanced by SH2B1β dimerization. Cycling between the different cellular compartments is a consequence of the phosphorylation and dephosphorylation of serine residues near the NLS and is important for physiological effects of SH2B1, including NGF-induced gene expression and neurite outgrowth.

  6. Dual NEP/ECE inhibition improves endothelial function in mesenteric resistance arteries of 32-week-old SHR.

    PubMed

    Lemkens, Pieter; Spijkers, Leon Ja; Meens, Merlijn J; Nelissen, Jelly; Janssen, Ben; Peters, Stephan Lm; Schiffers, Paul Mh; De Mey, Jo Gr

    2017-03-16

    Endothelin 1 (ET-1), a potent vasoconstrictor, pro-mitogenic and pro-inflammatory peptide, may promote development of endothelial dysfunction and arterial remodeling. ET-1 can be formed through cleavage of big-ET-1 by endothelin-converting enzyme (ECE) or neutral endopeptidase (NEP). We investigated whether chronic treatment with the novel dual NEP/ECE inhibitor SOL1 improves functional and structural properties of resistance-sized arteries of 32-week-old male spontaneously hypertensive rats (SHR). SHR received a chronic 4-week treatment with SOL1, losartan or hydralazine. We then compared effects of inhibition of NO synthase (NOS) (100 μM l-NAME), blockade of ETA- and ETB-receptors (10 μM bosentan) and stimulation of the endothelium with 0.001-10 μM acetylcholine (ACh) in isolated third-order mesenteric resistance arteries. Losartan and hydralazine significantly lowered blood pressure. Losartan decreased the media-to-lumen ratio of resistance arteries. l-NAME (1) increased arterial contractile responses to K(+) (5.9-40 mM) in the losartan, SOL1 and vehicle group and (2) increased the sensitivity to phenylephrine (PHE; 0.16-20 μM) in the SOL1 group but not in the losartan, hydralazine and vehicle group. Relaxing responses to ACh in the absence or presence of l-NAME during contractions induced by either 10 μM PHE or 40 mM K(+) were not altered by any in vivo treatment. Acute treatment with bosentan did, however, significantly improve maximal relaxing responses involving endothelium-derived nitric oxide and -hyperpolarizing factors in the SOL1 group but not in the losartan, hydralazine or vehicle group. Thus, chronic inhibition of NEP/ECE improved basal endothelial function but did not alter blood pressure, resistance artery structure and stimulated endothelium-dependent relaxing responses in 32-week-old SHR.Hypertension Research advance online publication, 16 March 2017; doi:10.1038/hr.2017.38.

  7. Dual-Task Processing as a Measure of Executive Function: A Comparison between Adults with Williams and Down Syndromes

    ERIC Educational Resources Information Center

    Kittler, Phyllis M.; Krinsky-McHale, Sharon J.; Devenny, Darlynne A.

    2008-01-01

    Behavioral phenotypes of individuals with Williams syndrome and individuals with Down syndrome have been contrasted in relation to short-term memory. People with Down syndrome are stronger visuospatially and those with Williams syndrome are stronger verbally. We examined short-term memory, then explored whether dual-task processing further…

  8. Pyrene-based dual-mode fluorescence switches and logic gates that function in solution and film.

    PubMed

    Zhou, Weidong; Li, Yongjun; Li, Yuliang; Liu, Huibiao; Wang, Shu; Li, Cuihong; Yuan, Mingjian; Liu, Xiaofeng; Zhu, Daoben

    2006-07-17

    A dual-mode fluorescence switch controlled by external inputs such as protons and metal ions is described, and each state corresponds to a specific fluorescent emission peak. Based on the reversible changes of the fluorescence emission of the switch responding to different external stimuli, the corresponding integrated logic gates and communication networks have been constructed in solid film or in solution.

  9. Effects of Physical-Cognitive Dual Task Training on Executive Function and Gait Performance in Older Adults: A Randomized Controlled Trial.

    PubMed

    Falbo, S; Condello, G; Capranica, L; Forte, R; Pesce, C

    2016-01-01

    Physical and cognitive training seem to counteract age-related decline in physical and mental function. Recently, the possibility of integrating cognitive demands into physical training has attracted attention. The purpose of this study was to evaluate the effects of twelve weeks of designed physical-cognitive training on executive cognitive function and gait performance in older adults. Thirty-six healthy, active individuals aged 72.30 ± 5.84 years were assigned to two types of physical training with major focus on physical single task (ST) training (n = 16) and physical-cognitive dual task (DT) training (n = 20), respectively. They were tested before and after the intervention for executive function (inhibition, working memory) through Random Number Generation and for gait (walking with/without negotiating hurdles) under both single and dual task (ST, DT) conditions. Gait performance improved in both groups, while inhibitory performance decreased after exercise training with ST focus but tended to increase after training with physical-cognitive DT focus. Changes in inhibition performance were correlated with changes in DT walking performance with group differences as a function of motor task complexity (with/without hurdling). The study supports the effectiveness of group exercise classes for older individuals to improve gait performance, with physical-cognitive DT training selectively counteracting the age-related decline in a core executive function essential for daily living.

  10. Effects of Physical-Cognitive Dual Task Training on Executive Function and Gait Performance in Older Adults: A Randomized Controlled Trial

    PubMed Central

    Falbo, S.; Condello, G.; Capranica, L.; Forte, R.

    2016-01-01

    Physical and cognitive training seem to counteract age-related decline in physical and mental function. Recently, the possibility of integrating cognitive demands into physical training has attracted attention. The purpose of this study was to evaluate the effects of twelve weeks of designed physical-cognitive training on executive cognitive function and gait performance in older adults. Thirty-six healthy, active individuals aged 72.30 ± 5.84 years were assigned to two types of physical training with major focus on physical single task (ST) training (n = 16) and physical-cognitive dual task (DT) training (n = 20), respectively. They were tested before and after the intervention for executive function (inhibition, working memory) through Random Number Generation and for gait (walking with/without negotiating hurdles) under both single and dual task (ST, DT) conditions. Gait performance improved in both groups, while inhibitory performance decreased after exercise training with ST focus but tended to increase after training with physical-cognitive DT focus. Changes in inhibition performance were correlated with changes in DT walking performance with group differences as a function of motor task complexity (with/without hurdling). The study supports the effectiveness of group exercise classes for older individuals to improve gait performance, with physical-cognitive DT training selectively counteracting the age-related decline in a core executive function essential for daily living. PMID:28053985

  11. Dynamic behavior of hydrogen bonds from pure closed shell to shared shell interaction regions elucidated by AIM dual functional analysis.

    PubMed

    Hayashi, Satoko; Matsuiwa, Kohei; Kitamoto, Masayuki; Nakanishi, Waro

    2013-02-28

    The dynamic behavior of hydrogen bonds (HBs) was clarified for the wide range of interactions applying AIM dual functional analysis. Plots of H(b)(r(c)) versus H(b)(r(c)) - V(b)(r(c))/2 are analyzed in the polar (R, θ) representation, where H(b)(r(c)) and V(b)(r(c)) are total electron and potential energy densities at bond critical points, respectively, for the fully optimized structures. Data of the fully optimized structure and four perturbed ones around it are plotted for each interaction, which give a specific curve. The curve is analyzed by (θ(p), κ(p)): θ(p) corresponds to the tangent line from the y-direction and κ(p) is the curvature. Whereas (R, θ) correspond to the static nature, (θ(p), κ(p)) represent the dynamic nature of interactions. Indeed, HBs can be classified only by one parameter of θ, but θ(p) supplies more information necessary for better understanding of HBs. Although H(2)Se-*-HSeH and H(3)N-*-HNH(2) show the nature of pure CS (closed shell) of the vdW-type, H(2)S-*-HSH and H(2)O-*-HOH contain the nature of pure CS other than the vdW-type (HB-typical). The regular CS nature is observed for B-*-HF (B = HF, H(2)Se, H(2)S, H(2)O, and H(2)C═O). The HF-*-HF interaction is described as HB-typical, whereas others are by CT(MC)-type. The nature of H(3)N-*-HX (X = F, Cl, Br) is regular CS of the CT(TBP)-type. HBs in charged species, such as [HOH-*-OH](-) and [H(2)O-*-H-*-OH(2)], show the weak covalent nature of SS (shard shell). The dynamic behavior of HBs helps us to understand HBs in more detail, in addition to the static behavior.

  12. Breeding goals for the Kenya dual purpose goat. II. Estimation of economic values for production and functional traits.

    PubMed

    Bett, R C; Kosgey, I S; Bebe, B O; Kahi, A K

    2007-10-01

    Economic values for production traits (milk yield, MY, kg; 12-month sale weight, LW, kg; consumable meat percentage, CMP) and functional traits (doe live weight, DoWT, kg; number of kids weaned, NKW; kidding frequency, KF; kidding rate, KR, %; doe weaning rate, DoWR, %; doe survival rate, DoSR, %; post-weaning survival rate, PoSR, %; pre-weaning survival rate, PrSR, % and; residual feed intake of yearlings, RFIgamma, kg and does RFId, kg) were estimated for the Kenya Dual Purpose goat (KDPG) for systems under two bases of evaluation. The production systems included smallholder low-potential (SLP), smallholder medium-potential (SMP) and smallholder high-potential (SHP), while the bases of evaluation considered were fixed flock-size and fixed feed resource. Under both bases of evaluation, economic values were highest in SMP apart from the economic values for feed intake-related traits (RFIy and RFId). In SMP, the economic values under fixed flock-size scenario were KSh 71.61 (LW), 20.90 (MY), 45.20 (CMP), 13.68 (NKW), 3.61 (KF), 6.52 (KR), 12.39 (DoWR), 22.96 (DoSR), 22.87 (PoSR), 13.18 (PrSR), -2.76 (RFIy) and -3.00 (RFId). The corresponding economic values under fixed feed resources scenario were KSh 73.28, 29.39, 45.20, 16.91, 4.76, 9.45, 13.84, 25.67, 25.15, 16.19, -2.76 and -3.00. Generally in all production systems, economic values for most traits were higher under fixed feed resource than under fixed flock-size scenario. In all systems, the economic values for most of the traits were sensitive to changes in prices of feed, milk and meat. The positive economic values for most traits under fixed flock-size scenario and fixed feed resource indicates that a unit increase in genetic merit for the traits would have a positive effect on the profitability of the systems.

  13. Dual-Energy Micro-CT Functional Imaging of Primary Lung Cancer in Mice Using Gold and Iodine Nanoparticle Contrast Agents: A Validation Study

    PubMed Central

    Ashton, Jeffrey R.; Clark, Darin P.; Moding, Everett J.; Ghaghada, Ketan; Kirsch, David G.; West, Jennifer L.; Badea, Cristian T.

    2014-01-01

    Purpose To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. Methods Primary lung tumors were generated in LSL-KrasG12D; p53FL/FL mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed–two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. Results Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R2 = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. Conclusions Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a

  14. Cellular functions of the dual-targeted catalytic subunit of telomerase, telomerase reverse transcriptase--potential role in senescence and aging.

    PubMed

    Ale-Agha, Niloofar; Dyballa-Rukes, Nadine; Jakob, Sascha; Altschmied, Joachim; Haendeler, Judith

    2014-08-01

    Over the last 40 years it has become clear that telomeres, the end of the chromosomes, and the enzyme telomerase reverse transcriptase (TERT), which is required to counteract their shortening, play a pivotal role in senescence and aging. However, over the last years several studies demonstrated that TERT belongs to the group of dual-targeted proteins. It contains a bipartite nuclear localization signal as well as a mitochondrial targeting sequence and, under physiological conditions, is found in both organelles in several cell types including terminally differentiated, post-mitotic cells. The canonical function of TERT is to prevent telomere erosion and thereby the development of replicative senescence and genetic instability. Besides telomere extension, TERT exhibits other non-telomeric activities such as cell cycle regulation, modulation of cellular signaling and gene expression, augmentation of proliferative lifespan as well as DNA damage responses. Mitochondrial TERT is able to reduce reactive oxygen species, mitochondrial DNA damage and apoptosis. Because of the localization of TERT in the nucleus and in the mitochondria, it must have different functions in the two organelles as mitochondrial DNA does not contain telomeric structures. However, the organelle-specific functions are not completely understood. Strikingly, the regulation by phosphorylation of TERT seems to reveal multiple parallels. This review will summarize the current knowledge about the cellular functions and post-translational regulation of the dual-targeted protein TERT. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Rapid asymmetric evolution of a dual-coding tumor suppressor INK4a/ARF locus contradicts its function

    PubMed Central

    Szklarczyk, Radek; Heringa, Jaap; Pond, Sergei Kosakovsky; Nekrutenko, Anton

    2007-01-01

    INK4a/ARF tumor suppressor locus encodes two protein products, INK4a and ARF, essential for controlling tumorigenesis and mutated in more than half of human cancers. There is no resemblance between the two proteins: their coding regions are assembled by alternative splicing of two mutually exclusive 5′ exons into a constitutive one containing overlapping out-of-phase reading frames. We show that the dual-coding arrangement conflicts with the high cost of mutations within INK4a/ARF. Unexpectedly, the locus evolves rapidly and asymmetrically, with ARF accumulating the majority of amino acid replacements. Rapid evolution drives both INK4a and ARF proteins out of sync with other members of the RB and p53 tumor suppressor pathways, both of which are controlled by the locus. Yet, the asymmetric behavior may be an intrinsic property of dual-coding exons: INK4a/ARF closely mimics the evolution of 90 newly identified genes with similar dual-coding structure. Thus, the strong link between mutations in INK4a/ARF and cancer may be a direct consequence of the architecture of the locus. PMID:17652172

  16. Gadolinium-functionalized aggregation-induced emission dots as dual-modality probes for cancer metastasis study.

    PubMed

    Li, Kai; Ding, Dan; Prashant, Chandrasekharan; Qin, Wei; Yang, Chang-Tong; Tang, Ben Zhong; Liu, Bin

    2013-12-01

    Understanding the localization and engraftment of tumor cells at postintravasation stage of metastasis is of high importance in cancer diagnosis and treatment. Advanced fluorescent probes and facile methodologies for cell tracing play a key role in metastasis studies. In this work, we design and synthesize a dual-modality imaging dots with both optical and magnetic contrast through integration of a magnetic resonance imaging reagent, gadolinium(III), into a novel long-term cell tracing probe with aggregation-induced emission (AIE) in far-red/near-infrared region. The obtained fluorescent-magnetic AIE dots have both high fluorescence quantum yield (25%) and T1 relaxivity (7.91 mM(-1) s(-1) ) in aqueous suspension. After further conjugation with a cell membrane penetrating peptide, the dual-modality dots can be efficiently internalized into living cells. The gadolinium(III) allows accurate quantification of biodistribution of cancer cells via intraveneous injection, while the high fluorescence provides engraftment information of cells at single cellular level. The dual-modality AIE dots show obvious synergistic advantages over either single imaging modality and hold great promises in advanced biomedical studies.

  17. Dual-Function Au@Y2O3:Eu(3+) Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar Cells.

    PubMed

    Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo

    2017-07-28

    In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y2O3:Eu(3+) phosphor (Au@Y2O3:Eu(3+)) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y2O3:Eu(3+) phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y2O3:Eu(3+) film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.

  18. Brown adipose tissue in humans: detection and functional analysis using PET (positron emission tomography), MRI (magnetic resonance imaging), and DECT (dual energy computed tomography).

    PubMed

    Borga, Magnus; Virtanen, Kirsi A; Romu, Thobias; Leinhard, Olof Dahlqvist; Persson, Anders; Nuutila, Pirjo; Enerbäck, Sven

    2014-01-01

    If the beneficial effects of brown adipose tissue (BAT) on whole body metabolism, as observed in nonhuman experimental models, are to be translated to humans, tools that accurately measure how BAT influences human metabolism will be required. This chapter discusses such techniques, how they can be used, what they can measure and also some of their limitations. The focus is on detection and functional analysis of human BAT and how this can be facilitated by applying advanced imaging technology such as positron emission tomography, magnetic resonance imaging, and dual energy computed tomography. © 2014 Elsevier Inc. All rights reserved.

  19. The dual role of oxygen functions in coal pretreatment and liquefaction: Crosslinking and cleavage reactions. First annual report, April 1, 1991--March 31, 1992

    SciTech Connect

    Serio, M.A.; Kroo, E.; Teng, H.; Charpenay, S.; Solomon, P.R.

    1992-08-01

    The overall objective of this project is elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project will be an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectivity modified coals in order to provide specific information relevant to the reactions of real coals. The investigations will include liquefaction experiments in microautoclave reactors along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts will be made to incorporate the results of experiments on the different systems into a liquefaction model.

  20. The Dual Functions of WLIM1a in Cell Elongation and Secondary Wall Formation in Developing Cotton Fibers[C][W

    PubMed Central

    Han, Li-Bo; Li, Yuan-Bao; Wang, Hai-Yun; Wu, Xiao-Min; Li, Chun-Li; Luo, Ming; Wu, Shen-Jie; Kong, Zhao-Sheng; Pei, Yan; Jiao, Gai-Li; Xia, Gui-Xian

    2013-01-01

    LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase–box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits. PMID:24220634

  1. Ultrasound-targeted microbubble destruction combined with dual targeting of HSP72 and HSC70 inhibits HSP90 function and induces extensive tumor-specific apoptosis.

    PubMed

    Wang, Hanghui; Song, Yixin; Hao, Dingjun; Bai, Min; Jin, Lifang; Gu, Jiying; Su, Yijin; Liu, Long; Jia, Chao; Du, Lianfang

    2014-07-01

    The specific and efficient delivery of small interfering RNA (siRNA) into cancer cells in vivo remains a major obstacle. In this study, we investigated whether ultrasound-targeted microbubble destruction (UTMD) combined with dual targeting of HSP72 and HSC70 in prostate cancer cell lines improve the specific and efficient cell uptake of siRNA, inhibit HSP90 function and induce extensive tumor-specific apoptosis. VCaP cells were transfected with siRNA oligonucleotides. Cell viability assays were used to evaluate the safety of UTMD. The expression of HSP70, HSP90, caspase-8, caspase-3, PARP-1 and cleaved caspase-3 were determined by quantitative PCR and western blotting. Apoptosis and transfection efficiency were detected by flow cytometry. We found that HSP72, HSC70 and HSP90 expression was absent or weak in normal prostate epithelial cells (RWPE-1), and became uniformly and strongly expressed in prostate cancer cells (VCaP). VCaP and RWPE-1 cells expressed very low levels of caspase-8, caspase-3, PARP-1 and cleaved caspase-3. UTMD combined with dual targeting of HSP72 and HSC70 siRNA impoved the efficiency of transfection, cell uptake of siRNA, downregulated HSP70 and HSP90 expression in VCaP cells on the mRNA and protein levels, and upregulated major apoptotic markers (PARP-1, caspase-8, caspase-3 and cleaved caspase-3), thus, inducing extensive tumor-specific apoptosis. The Cell Counting Kit-8 assay showed decreased cellular viability in the HSP72/HSC70-siRNA silenced group. These results suggest that the combination of UTMD with dual targeting of HSP72 and HSC70 may improve the specific and efficient cell uptake of siRNA, inhibit HSP90 function and induce extensive tumor-specific apoptosis, indicating a novel, potential means for targeting therapeutic strategy to prostate cancer cells.

  2. Dual blockade of HER2 in HER2-overexpressing tumor cells does not completely eliminate HER3 function

    PubMed Central

    Garrett, Joan T.; Sutton, Cammie R.; Kuba, María Gabriela; Cook, Rebecca S .; Arteaga, Carlos L.

    2012-01-01

    Purpose Dual blockade of HER2 with trastuzumab with lapatinib or with pertuzumab is a superior treatment approach compared to single agent HER2 inhibitors. However, many HER2-overexpressing breast cancers still escape from this combinatorial approach. Inhibition of HER2 and downstream phosphatidylinositol-3 kinase (PI3K)/AKT causes a transcriptional and post-translational upregulation of HER3 which, in turn, counteracts the antitumor action of the HER2-directed therapies. We hypothesized that suppression of HER3 would synergize with dual blockade of HER2 in breast cancer cells sensitive and refractory to HER2 antagonists. Experimental Design Inhibition of HER2/HER3 in HER2+ breast cancer cell lines was evaluated by western blot. We analyzed drug-induced apoptosis and 2- and 3-dimensional growth in vitro. Growth inhibition of PI3K was examined in vivo in xenografts treated with combinations of trastuzumab, lapatinib, and the HER3 neutralizing monoclonal antibody U3-1287. Results Treatment with U3-1287 blocked the upregulation of total and phosphorylated HER3 that followed treatment with lapatinib and trastuzumab and, in turn, enhanced the anti-tumor action of the combination against trastuzumab-sensitive and -resistant cells. Mice bearing HER2+ xenografts treated with lapatinib, trastuzumab, and U3-1287 exhibited fewer recurrences and better survival compared to mice treated with lapatinib and trastuzumab. Conclusions Dual blockade of HER2 with trastuzumab and lapatinib does not eliminate the compensatory upregulation of HER3. Therapeutic inhibitors of HER3 should be considered as part of multi-drug combinations aimed at completely and rapidly disabling the HER2 network in HER2-overexpressing breast cancers. PMID:23224399

  3. A Pivotal Role for Pro-335 in Balancing the Dual Functions of Munc18-1 Domain-3a in Regulated Exocytosis*

    PubMed Central

    Han, Gayoung Anna; Park, Seungmee; Bin, Na-Ryum; Jung, Chang Hun; Kim, Byungjin; Chandrasegaram, Prashanth; Matsuda, Maiko; Riadi, Indira; Han, Liping; Sugita, Shuzo

    2014-01-01

    Munc18-1 plays essential dual roles in exocytosis: (i) stabilizing and trafficking the central SNARE protein, syntaxin-1 (i.e. chaperoning function), by its domain-1; and (ii) priming/stimulating exocytosis by its domain-3a. Here, we examine whether or not domain-3a also plays a significant role in the chaperoning of syntaxin-1 and, if so, how these dual functions of domain-3a are regulated. We demonstrate that introduction of quintuple mutations (K332E/K333E/P335A/Q336A/Y337L) in domain-3a of Munc18-1 abolishes its ability to bind syntaxin-1 and fails to rescue the level and trafficking of syntaxin-1 as well as to restore exocytosis in Munc18-1/2 double knockdown cells. By contrast, a quadruple mutant (K332E/K333E/Q336A/Y337L) sparing the Pro-335 residue retains all of these capabilities. A single point mutant of P335A reduces the ability to bind syntaxin-1 and rescue syntaxin-1 levels. Nonetheless, it surprisingly outperforms the wild type in the rescue of exocytosis. However, when additional mutations in the neighboring residues are combined with P335A mutation (K332E/K333E/P335A, P335A/Q336A/Y337L), the ability of the Munc18-1 variants to chaperone syntaxin-1 and to rescue exocytosis is strongly impaired. Our results indicate that residues from Lys-332 to Tyr-337 of domain-3a are intimately tied to the chaperoning function of Munc18-1. We also propose that Pro-335 plays a pivotal role in regulating the balance between the dual functions of domain-3a. The hinged conformation of the α-helix containing Pro-335 promotes the syntaxin-1 chaperoning function, whereas the P335A mutation promotes its priming function by facilitating the α-helix to adopt an extended conformation. PMID:25326390

  4. Dual Functioning Thieno-Pyrrole Fused BODIPY Dyes for NIR Optical Imaging and Photodynamic Therapy: Singlet Oxygen Generation without Heavy Halogen Atom Assistance.

    PubMed

    Watley, Ryan L; Awuah, Samuel G; Bio, Moses; Cantu, Robert; Gobeze, Habtom B; Nesterov, Vladimir N; Das, Sushanta K; D'Souza, Francis; You, Youngjae

    2015-06-01

    We discovered a rare phenomenon wherein a thieno-pyrrole fused BODIPY dye (SBDPiR690) generates singlet oxygen without heavy halogen atom substituents. SBDPiR690 generates both singlet oxygen and fluorescence. To our knowledge, this is the first example of such a finding. To establish a structure-photophysical property relationship, we prepared SBDPiR analogs with electron-withdrawing groups at the para-position of the phenyl groups. The electron-withdrawing groups increased the HOMO-LUMO energy gap and singlet oxygen generation. Among the analogs, SBDPiR688, a CF3 analog, had an excellent dual functionality of brightness (82290 m(-1)  cm(-1) ) and phototoxic power (99170 m(-1)  cm(-1) ) comparable to those of Pc 4, due to a high extinction coefficient (211 000 m(-1)  cm(-1) ) and balanced decay (Φflu =0.39 and ΦΔ =0.47). The dual functionality of the lead compound SBDPiR690 was successfully applied to preclinical optical imaging and for PDT to effectively control a subcutaneous tumor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Differential gene expression along the animal-vegetal axis in the ascidian embryo is maintained by a dual functional protein Foxd.

    PubMed

    Tokuhiro, Shin-Ichi; Tokuoka, Miki; Kobayashi, Kenji; Kubo, Atsushi; Oda-Ishii, Izumi; Satou, Yutaka

    2017-05-01

    In many animal embryos, a specific gene expression pattern is established along the animal-vegetal axis soon after zygotic transcription begins. In the embryo of the ascidian Ciona intestinalis, soon after the division that separates animal and vegetal hemispheres into distinct blastomeres, maternal Gata.a and β-catenin activate specific genes in the animal and vegetal blastomeres, respectively. On the basis of these initial distinct gene expression patterns, gene regulatory networks promote animal cells to become ectodermal tissues and vegetal cells to become endomesodermal tissues and a part of the nerve cord. In the vegetal hemisphere, β-catenin directly activates Foxd, an essential transcription factor gene for specifying endomesodermal fates. In the present study, we found that Foxd also represses the expression of genes that are activated specifically in the animal hemisphere, including Dmrt1, Prdm1-r.a (Bz1), Prdm1-r.b (Bz2), and Otx. A reporter assay showed that Dmrt1 expression was directly repressed by Foxd, and a chromatin immunoprecipitation assay showed that Foxd was bound to the upstream regions of Dmrt1, Prdm1-r.a, Prdm1-r.b, and Otx. Thus, Foxd has a dual function of activating specific gene expression in the vegetal hemisphere and of repressing the expression of genes that are normally expressed in the animal hemisphere. This dual function stabilizes the initial patterning along the animal-vegetal axis by β-catenin and Gata.a.

  6. Examining the role of endogenous orexins in hypothalamus-pituitary-adrenal axis endocrine function using transient dual orexin receptor antagonism in the rat.

    PubMed

    Steiner, Michel A; Sciarretta, Carla; Brisbare-Roch, Catherine; Strasser, Daniel S; Studer, Rolf; Jenck, Francois

    2013-04-01

    The orexin neuropeptide system regulates wakefulness and contributes to physiological and behavioral stress responses. Moreover, a role for orexins in modulating hypothalamus-pituitary-adrenal (HPA) axis activity has been proposed. Brain penetrating dual orexin receptor (OXR) antagonists such as almorexant decrease vigilance and have emerged as a novel therapeutic class for the treatment of insomnia. Almorexant was used here as a pharmacological tool to examine the role of endogenous orexin signaling in HPA axis endocrine function under natural conditions. After confirming the expression of prepro-orexin and OXR-1 and OXR-2 mRNA in hypothalamus, pituitary and adrenal glands, the effects of systemic almorexant were investigated on peripheral HPA axis hormone release in the rat under baseline, stress and pharmacological challenge conditions. Almorexant did not alter basal or stress-induced corticosterone release despite affecting wake and sleep stages (detected by radiotelemetric electroencephalography/electromyography) during the stress exposure. Moreover, almorexant did not affect the release of adrenocorticotropin (ACTH) and corticosterone at different time points along the diurnal rhythm, nor corticotrophin-releasing hormone (CRH)- and ACTH-stimulated neuroendocrine responses, measured in vivo under stress-free conditions. These results illustrate that dual OXR antagonists, despite modulating stress-induced wakefulness, do not interfere with endocrine HPA axis function in the rat. They converge to suggest that endogenous orexin signaling plays a minor role in stress hormone release under basal conditions and under challenge.

  7. Dual-beam ELF wave generation as a function of power, frequency, modulation waveform, and receiver location

    NASA Astrophysics Data System (ADS)

    Agrawal, D.; Moore, R. C.

    2012-12-01

    Dual-beam ELF wave generation experiments performed at the High-frequency Active Auroral Research Program (HAARP) HF transmitter are used to investigate the dependence of the generated ELF wave magnitude on HF power, HF frequency, modulation waveform, and receiver location. During the experiments, two HF beams transmit simultaneously: one amplitude modulated (AM) HF beam modulates the conductivity of the lower ionosphere at ELF frequencies while a second HF beam broadcasts a continuous waveform (CW) signal, modifying the efficiency of ELF conductivity modulation and thereby the efficiency of ELF wave generation. We report experimental results for different ambient ionospheric conditions, and we interpret the observations in the context of a newly developed dual-beam HF heating model. A comparison between model predictions and experimental observations indicates that the theoretical model includes the essential physics involved in multifrequency HF heating of the lower ionosphere. In addition to the HF transmission parameters mentioned above, the model is used to predict the dependence of ELF wave magnitude on the polarization of the CW beam and on the modulation frequency of the modulated beam. We consider how these effects vary with ambientD-region electron density and electron temperature.

  8. Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multi-Enzyme Functionalized Carbon Nanospheres

    SciTech Connect

    Du, Dan; Zou, Zhexiang; Shin, Yongsoon; Wang, Jun; Wu, Hong; Engelhard, Mark H.; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-03-30

    A novel electrochemical immunosensor for sensitive detection of cancer biomarker α fetoprotein (AFP) is described that uses a graphene sheet sensor platform and functionalized carbon nanospheres (CNSs) labeling with horseradish peroxidase-secondary antibodies (HRP-Ab2). Greatly enhanced sensitivity for the cancer biomarker is based on a dual signal amplification strategy: first, the synthesized CNSs yielded a homogeneous and narrow size distribution, which allowed several binding events of HRP-Ab2 on each nanosphere. Enhanced sensitivity was achieved by introducing the multi-bioconjugates of HRP-Ab2-CNSs onto the electrode surface through sandwich immunoreactions. Secondly, functionalized graphene sheets used for the biosensor platform increased the surface area to capture a large amount of primary antibodies (Ab1), thus amplifying the detection response. This amplification strategy is a promising platform for clinical screening of cancer biomarkers and point-of-care diagnostics.

  9. Effectiveness of dual-task functional power training for preventing falls in older people: study protocol for a cluster randomised controlled trial.

    PubMed

    Daly, Robin M; Duckham, Rachel L; Tait, Jamie L; Rantalainen, Timo; Nowson, Caryl A; Taaffe, Dennis R; Sanders, Kerrie; Hill, Keith D; Kidgell, Dawson J; Busija, Lucy

    2015-03-27

    Falls are a major public health concern with at least one third of people aged 65 years and over falling at least once per year, and half of these will fall repeatedly, which can lead to injury, pain, loss of function and independence, reduced quality of life and even death. Although the causes of falls are varied and complex, the age-related loss in muscle power has emerged as a useful predictor of disability and falls in older people. In this population, the requirements to produce explosive and rapid movements often occurs whilst simultaneously performing other attention-demanding cognitive or motor tasks, such as walking while talking or carrying an object. The primary aim of this study is to determine whether dual-task functional power training (DT-FPT) can reduce the rate of falls in community-dwelling older people. The study design is an 18-month cluster randomised controlled trial in which 280 adults aged ≥65 years residing in retirement villages, who are at increased risk of falling, will be randomly allocated to: 1) an exercise programme involving DT-FPT, or 2) a usual care control group. The intervention is divided into 3 distinct phases: 6 months of supervised DT-FPT, a 6-month 'step down' maintenance programme, and a 6-month follow-up. The primary outcome will be the number of falls after 6, 12 and 18 months. Secondary outcomes will include: lower extremity muscle power and strength, grip strength, functional assessments of gait, reaction time and dynamic balance under single- and dual-task conditions, activities of daily living, quality of life, cognitive function and falls-related self-efficacy. We will also evaluate the cost-effectiveness of the programme for preventing falls. The study offers a novel approach that may guide the development and implementation of future community-based falls prevention programmes that specifically focus on optimising muscle power and dual-task performance to reduce falls risk under 'real life' conditions in older

  10. OFF-ON-OFF Dual Emission at Visible and UV Wavelengths from Carbazole Functionalized β-Diketonate Europium(III) Complex.

    PubMed

    Imai, Yuki; Kawai, Tsuyoshi; Yuasa, Junpei

    2016-06-23

    This work demonstrates dual emission "OFF-ON-OFF" switching at visible and UV wavelengths of a carbazole functionalized β-diketone (LH) by a simple change of a europium(III) ion (Eu(3+)) concentration in the submicromolar concentration range. In the presence of 0.25 equiv of Eu(3+) (5 μM), LH forms a luminescent 4:1 complex ([Eu(3+)(L(-))4](-)) exhibiting dual emission at 357 and 613 nm resulting from the local excitation of the carbazole ring and ligand-sensitized luminescence from the Eu(3+)-β-diketonate unit, respectively. The 4:1 complex begins to convert into a 2:1 complex ([Eu(3+)(L(-))2](+)) via a 3:1 complex [Eu(3+)(L(-))3] above a molar ratio ([Eu(3+)]/[LH]) of 0.25, which provides the opportunity for binding of solvent methanol molecules to the vacant site of the Eu(3+) ion in the complex ([Eu(3+)(L(-))2(MeOH)n](+)). The OH oscillators of coordinated methanol molecules facilitate the nonradiative pathway of the Eu(3+) emission; hence the emission at 613 nm almost disappears above the 0.50 equivalent of Eu(3+) (11 μM), while the UV emission at 357 nm remains mostly constant over the whole concentration range.

  11. A novel strategy for dual-channel detection of metallothioneins and mercury based on the conformational switching of functional chimera aptamer.

    PubMed

    Tang, Xian; Wang, Yong-Sheng; Xue, Jin-Hua; Zhou, Bin; Cao, Jin-Xiu; Chen, Si-Han; Li, Ming-Hui; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin

    2015-03-25

    A novel strategy for dual-channel detection of metallothioneins (MTs) and Hg(2+) has been proposed. In the absence of Hg(2+), the functional chimera aptamer (FCA) designed can form an intact G-quadruplex with flexibility, which was demonstrated to have peroxidase-like activities upon hemin binding. In the presence of Hg(2+), the formation of T-Hg(2+)-T complex results in the conformational switching of FCA, which lost the peroxidase-like activities and cannot catalyze the oxidation of ABTS by H2O2. Upon addition of MTs in this solution, MTs could interact with Hg(2+) to form a MTs-Hg(2+) complex, leading to the recovery of the G-quadruplex DNAzyme. The color and absorbance of the sensing system were also changed accordingly. In the optimizing condition, ΔA was directly proportional to the concentration ranging from 8.84 nM to 1.0 μM for Hg(2+), and 7.82 nM to 0.462 μM for MTs with the detection limits of 2.65 nM and 2.34 nM, respectively. The proposed dual-channel method avoids the label steps in common methods, and allows direct analysis of the samples without costly instruments, and is reliable, inexpensive and sensitive. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface–functionalized nanoparticles

    PubMed Central

    Xiao, Bo; Zhang, Mingzhen; Viennois, Emilie; Zhang, Yuchen; Wei, Na; Baker, Mark T.; Jung, Yunjin; Merlin, Didier

    2015-01-01

    Nanomedicine options for colon cancer therapy have been limited by the lack of suitable carriers capable of delivering sufficient drug into tumors to cause lethal toxicity. To circumvent this limitation, we fabricated a camptothecin (CPT)-loaded poly(lactic-co-glycolic acid) nanoparticle (NP) with dual-surface functionalization—Pluronic F127 and chitosan—for inhibiting multi-drug resistant gene 1 (MDR1) expression and enhancing tumor uptake. The resultant spherical NPs-P/C had a desirable particle size (~268 nm), slightly positive zeta-potential, and the ability to efficiently down-regulate the expression of MDR1. In vitro cytotoxicity tests revealed that the 24 and 48 h IC50 values of NPs-P/C1 were 2.03 and 0.67 µM, respectively, which were much lower than those for free CPT and other NPs. Interestingly, NPs-P/C1 showed the highest cellular uptake efficiency (approximately 85.5%) among the different drug formulations. Most importantly, treatment of colon tumor-bearing mice with various drug formulations confirmed that the introduction of Pluronic F127 and chitosan to the NP surface significantly enhanced the therapeutic efficacy of CPT, induced tumor cell apoptosis, and reduced systemic toxicity. Collectively, these findings suggest that our one-step–fabricated, dual-surface–functionalized NPs may hold promise as a readily scalable and effective drug carrier with clinical potential in colon cancer therapy. PMID:25701040

  13. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States.

    PubMed

    Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente

    2017-04-29

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.

  14. Biomolecular Interaction Assays Identified Dual Inhibitors of Glutaminase and Glutamate Dehydrogenase That Disrupt Mitochondrial Function and Prevent Growth of Cancer Cells.

    PubMed

    Zhu, Min; Fang, Jinzhang; Zhang, Jingjing; Zhang, Zheng; Xie, Jianhui; Yu, Yan; Ruan, Jennifer Jin; Chen, Zhao; Hou, Wei; Yang, Gensheng; Su, Weike; Ruan, Benfang Helen

    2017-02-07

    Glutaminase (KGA/isoenzyme GAC) is an emerging and important drug target for cancer. Traditional methods for assaying glutaminase activity are coupled with several other enzymes. Such coupled assays do not permit the direct and stringent characterization of specific glutaminase inhibitors. Ebselen was identified as a potent 9 nM KGA inhibitor in the KGA/glutamate oxidase (GO)/horse radish peroxidase (HRP) coupled assay but showed very weak activity in inhibiting the growth of glutamine-dependent cancer cells. For rigorous characterization, we developed a direct kinetic binding assay for KGA using bio-layer interferometry (BLI) as the detection method; Ebselen was identified as a GDH inhibitor but not a KGA inhibitor. Furthermore, we designed and synthesized several benzo[d][1,2]selenazol-3(2H)-one dimers which were subjected to SAR analysis by several glutaminolysis specific biochemical and cell based assays. Novel glutamate dehydrogenase (GDH) or dual KGA/GDH inhibitors were discovered from the synthetic compounds; the dual inhibitors completely disrupt mitochondrial function and demonstrate potent anticancer activity with a minimum level of toxicity.

  15. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States

    PubMed Central

    Vargas-Melendez, Leandro; Boada, Beatriz L.; Boada, Maria Jesus L.; Gauchia, Antonio; Diaz, Vicente

    2017-01-01

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33% of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle’s parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle’s roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle’s states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm. PMID:28468252

  16. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1.

    PubMed

    Gao, Yanyan; Zhao, Yaping; Zhang, Juechao; Lu, Yang; Liu, Xin; Geng, Pengyu; Huang, Baiqu; Zhang, Yu; Lu, Jun

    2016-01-27

    Although the involvement of protein arginine methyltransferase 1 (PRMT1) in tumorigenesis has been reported, its roles in breast cancer progression and metastasis has not been elucidated. Here we identified PRMT1 as a key regulator of the epithelial-mesenchymal transition (EMT) in breast cancer. We showed that the EMT program induced by PRMT1 endowed the human mammary epithelial cells with cancer stem cell properties. Moreover, PRMT1 promoted the migratory and invasive behaviors in breast cancer cells. We also demonstrated that abrogation of PRMT1 expression in breast cancer cells abated metastasis in vivo in mouse model. In addition, knockdown of PRMT1 arrested cell growth in G1 tetraploidy and induced cellular senescence. Mechanistically, PRMT1 impacted EMT process and cellular senescence by mediating the asymmetric dimethylation of arginine 3 of histone H4 (H4R3me2as) at the ZEB1 promoter to activate its transcription, indicating the essential roles of this epigenetic control both in EMT and in senescence. Thus, we unraveled a dual function of PRMT1 in modulation of both EMT and senescence via regulating ZEB1. This finding points to the potent value of PRMT1 as a dual therapeutic target for preventing metastasis and for inhibiting cancer cell growth in malignant breast cancer patients.

  17. Power, efficiency, ecological function and ecological coefficient of performance of an irreversible Dual-Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiang; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2017-05-01

    Finite time thermodynamic (FTT) theory is applied to perform performance analysis for an air-standard irreversible Dual-Miller cycle (DMC) based on the power output (P), thermal efficiency (η, ecological function (E) and ecological coefficient of performance (ECOP) criteria by considering nonlinear variable specific heat ratio, piston friction loss, heat transfer loss and other internal irreversible losses. Relationships between different performance characteristics are obtained via numerical calculations. Effects of pressure ratio and stroke length on each criterion are analyzed, and performance characteristics with different optimization objective are compared. The results show that pressure ratio has little influence on performance characteristics, but stroke length has great influence on performance characteristics. Moreover P, η, E and ECOP decrease with increasing stroke length, but when stroke length increases to a certain value, E is less than 0 whatever value of compression ratio takes. Choosing the E and ECOP as optimization objectives is more significant by comparing with other performance indexes.

  18. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst

    NASA Astrophysics Data System (ADS)

    Shen, Lijuan; Wu, Weiming; Liang, Ruowen; Lin, Rui; Wu, Ling

    2013-09-01

    Proper design and preparation of high-performance and stable dual functional photocatalytic materials remains a significant objective of research. In this work, highly dispersed Pd nanoparticles of about 3-6 nm in diameter are immobilized in the metal-organic framework (MOF) UiO-66(NH2) via a facile one-pot hydrothermal method. The resulting Pd@UiO-66(NH2) nanocomposite exhibits an excellent reusable and higher visible light photocatalytic activity for reducing Cr(vi) compared with UiO-66(NH2) owing to the high dispersion of Pd nanoparticles and their close contact with the matrix, which lead to the enhanced light harvesting and more efficient separation of photogenerated electron-hole pairs. More significantly, the Pd@UiO-66(NH2) could be used for simultaneous photocatalytic degradation of organic pollutants, like methyl orange (MO) and methylene blue (MB), and reduction of Cr(vi) with even further enhanced activity in the binary system, which could be attributed to the synergetic effect between photocatalytic oxidation and reduction by individually consuming photogenerated holes and electrons. This work represents the first example of using the MOFs-based materials as dual functional photocatalyst to remove different categories of pollutants simultaneously. Our finding not only proves great potential for the design and application of MOFs-based materials but also might bring light to new opportunities in the development of new high-performance photocatalysts.Proper design and preparation of high-performance and stable dual functional photocatalytic materials remains a significant objective of research. In this work, highly dispersed Pd nanoparticles of about 3-6 nm in diameter are immobilized in the metal-organic framework (MOF) UiO-66(NH2) via a facile one-pot hydrothermal method. The resulting Pd@UiO-66(NH2) nanocomposite exhibits an excellent reusable and higher visible light photocatalytic activity for reducing Cr(vi) compared with UiO-66(NH2) owing to the

  19. An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material

    NASA Astrophysics Data System (ADS)

    Xiao, Yaoming; Han, Gaoyi; Chang, Yunzhen; Zhou, Haihan; Li, Miaoyu; Li, Yanping

    2014-12-01

    High performance dual function of polyaniline (PANI) with brachyplast structure is synthesized by using a two-step cyclic voltammetry (CV) approach onto the fluorinated tin oxide (FTO) glass substrate, which acts as the sensitizer and p-type hole-transporting material (p-HTM) for the all-solid-state perovskite-sensitized solar cell (ass-PSSC) due to its π-π* transition and the localized polaron. The ass-PSSC based on the PANI delivers a photovoltaic conversion efficiency of 7.34%, and reduces from 7.34% to 6.71% after 1000 h, thereby 91.42% of the energy conversion efficiency is kept, indicating the device has a good long-term stability.

  20. 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu2+

    NASA Astrophysics Data System (ADS)

    Wang, Enze; Zhou, Yanmei; Huang, Qi; Pang, Lanfang; Qiao, Han; Yu, Fang; Gao, Bin; Zhang, Junli; Min, Yinghao; Ma, Tongsen

    2016-01-01

    A dual-function optical chemosensor (RBF) was designed and easily synthesized by condensation reaction of 5-Hydroxymethylfurfural and rhodamine B hydrazide. RBF exhibited highly sensitive, highly selective and quick response to acidic pH. The fluorescence intensity of RBF exhibited a more than 41-fold increase within the pH range from 7.50 to 3.73 with a pKa value of 5.02, which could be successfully applied to monitor intracellular pH in living PC12 cells and HeLa cells. Additionally, the spectroscopy of UV-Vis and EDTA-adding experiments indicated that RBF was a highly selective and reversible colorimetric chemosensor for Cu2+ in Tris-HCl (10 mM, pH = 7.2) aqueous buffer solution as well as other metal ions had no obvious interference. Moreover, RBF has been successfully applied to detect Cu2+ in real water samples.

  1. A Pterin-Dependent Signaling Pathway Regulates a Dual-Function Diguanylate Cyclase-Phosphodiesterase Controlling Surface Attachment in Agrobacterium tumefaciens

    PubMed Central

    Feirer, Nathan; Xu, Jing; Allen, Kylie D.; Koestler, Benjamin J.; Bruger, Eric L.; Waters, Christopher M.; White, Robert H.

    2015-01-01

    ABSTRACT The motile-to-sessile transition is an important lifestyle switch in diverse bacteria and is often regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). In general, high c-di-GMP concentrations promote attachment to surfaces, whereas cells with low levels of signal remain motile. In the plant pathogen Agrobacterium tumefaciens, c-di-GMP controls attachment and biofilm formation via regulation of a unipolar polysaccharide (UPP) adhesin. The levels of c-di-GMP in A. tumefaciens are controlled in part by the dual-function diguanylate cyclase-phosphodiesterase (DGC-PDE) protein DcpA. In this study, we report that DcpA possesses both c-di-GMP synthesizing and degrading activities in heterologous and native genetic backgrounds, a binary capability that is unusual among GGDEF-EAL domain-containing proteins. DcpA activity is modulated by a pteridine reductase called PruA, with DcpA acting as a PDE in the presence of PruA and a DGC in its absence. PruA enzymatic activity is required for the control of DcpA and through this control, attachment and biofilm formation. Intracellular pterin analysis demonstrates that PruA is responsible for the production of a novel pterin species. In addition, the control of DcpA activity also requires PruR, a protein encoded directly upstream of DcpA with a predicted molybdopterin-binding domain. PruR is hypothesized to be a potential signaling intermediate between PruA and DcpA through an as-yet-unidentified mechanism. This study provides the first prokaryotic example of a pterin-mediated signaling pathway and a new model for the regulation of dual-function DGC-PDE proteins. PMID:26126849

  2. An integrated dual functional recognition/amplification bio-label for the one-step impedimetric detection of Micro-RNA-21.

    PubMed

    Azzouzi, Sawsen; Mak, Wing Cheung; Kor, Kamalodin; Turner, Anthony P F; Ali, Mounir Ben; Beni, Valerio

    2017-06-15

    Alteration in expression of miRNAs has been correlated with different cancer types, tumour stage and response to treatments. In this context, a structurally responsive oligonucleotide-based electrochemical impedimetric biosensor has been developed for the simple and sensitive detection of miRNA-21. A highly specific biotinylated DNA/LNA molecular beacon (MB) probe was conjugated with gold nanoparticles (AuNPs) to create an integrated, dual function bio-label (biotin-MB-AuNPs) for both biorecognition and signal generation. In the presence of target miRNA-21, hybridisation takes place resulting in the "activation" of the biotin-MB; this event makes the biotin group, which was previously "protected" by the steric hindrance of the MB stem-loop structure, accessible. The activated biotin-MB-AuNPs/miRNA complexes become available for capture, via supramolecular interaction, onto a nentravidin-modified electrode for electrochemical transduction. The binding event results in a decrease of the charge transfer resistance at the working electrode/electrolyte interface. The biosensor responded linearly in the range 1-1000 pM of miRNA-21, with a limit of detection of 0.3 pM, good reproducibility (Relative Standard deviation (RSD) =3.3%) and high selectivity over other miRNAs (i.e. miRNA-221 and miRNA-205) sequences. Detection of miRNA-21 in spiked serum samples at clinically relevant levels (low pM range) was also demonstrated, thus illustrating the potential of the biosensor for point-of-care clinical applications. The proposed biosensor design, based on the combination of a neutravidin transducing surface and the dual-function biotin-MB-AuNPs bio-label, provides a simple and robust approach for detection of short-length nucleic acid targets, such as miRNAs.

  3. The interplay between cognitive and motor functioning in healthy older adults: findings from dual-task studies and suggestions for intervention.

    PubMed

    Schaefer, Sabine; Schumacher, Vera

    2011-01-01

    Reaching late adulthood is accompanied by losses in physical and mental resources, but lifestyle choices seem to have a considerable influence on the aging trajectory. This review deals with the interplay between cognitive and motor functioning in old age, focusing on two different lines of research, namely (a) dual-task studies requiring participants to perform a cognitive and a motor task simultaneously, and (b) intervention studies investigating whether increases in physical fitness also lead to improvements in cognitive performance. Dual-task studies indicate that healthy older adults show greater performance reductions in both domains than young adults when performing a cognitive and a motor task simultaneously. In addition, older adults often tend to protect their motor functioning at the expense of the cognitive task when the situation involves a threat to balance. This can be considered an adaptive behavior since fall-related injuries can have severe consequences. Fitness intervention studies which increased the aerobic fitness of previously sedentary older adults have demonstrated impressive performance improvements in the cognitive domain, especially for tasks involving executive control processes. These findings are interesting in light of cognitive intervention studies, which often fail to find significant transfer effects to tasks that have not been trained directly. The authors argue that future research should compare the effects of cognitive and aerobic fitness interventions in older adults, and they present a study design in which cognition and fitness are trained sequentially as well as simultaneously. Finally, methodological issues involved in this type of research and potential applications to applied settings are discussed. Copyright © 2010 S. Karger AG, Basel.

  4. A novel dual-functional biosensor for fluorometric detection of inorganic pyrophosphate and pyrophosphatase activity based on globulin stabilized gold nanoclusters.

    PubMed

    Xu, Shenghao; Feng, Xiuying; Gao, Teng; Wang, Ruizhi; Mao, Yaning; Lin, Jiehua; Yu, Xijuan; Luo, Xiliang

    2017-03-15

    A novel ultrasensitive dual-functional biosensor for highly sensitive detection of inorganic pyrophosphate (PPi) and pyrophosphatase (PPase) activity was developed based on the fluorescent variation of globulin protected gold nanoclusters (Glo@Au NCs) with the assistance of Cu(2+). Glo@Au NCs and PPi were used as the fluorescent indicator and substrate for PPase activity evaluation, respectively. In the presence of Cu(2+), the fluorescence of the Glo@Au NCs will be quenched owing to the formation of Cu(2+)-Glo@Au NCs complex, while PPi can restore the fluorescence of the Cu(2+)-Glo@Au NCs complex because of its higher binding affinity with Cu(2+). As PPase can catalyze the hydrolysis of PPi, it will lead to the release of Cu(2+) and re-quench the fluorescence of the Glo@Au NCs. Based on this mechanism, quantitative evaluation of the PPi and PPase activity can be achieved ranging from 0.05 μM to 218.125 μM for PPi and from 0.1 to 8 mU for PPase, with detection limits of 0.02 μM and 0.04 mU, respectively, which is much lower than that of other PPi and PPase assay methods. More importantly, this ultrasensitive dual-functional biosensor can also be successfully applied to evaluate the PPase activity in human serum, showing great promise for practical diagnostic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. An expandable prosthesis with dual cage-and-plate function in a single device for vertebral body replacement: clinical experience on 14 cases with vertebral tumors.

    PubMed

    Ramírez, Juan J; Chiquete, Erwin; Ramírez, Juan J; Gómez-Limón, Ernesto; Ramírez, Juan M

    2010-08-01

    An expandable vertebral body prosthesis with dual cage-and-plate function in a single device (JR prosthesis) was designed to test the hypothesis that this modular system can provide the biomechanical requirements for immediate and durable spine stabilization after corpectomy. Cadaver assays were performed with a stainless steal device to test fixation and adequacy to the human spine anatomy. Then, 14 patients with vertebral tumors (eight metastatic) underwent corpectomy and vertebral body replacement with a titanium-made JR prosthesis. All patients had neurological deficit, severe pain and spine instability prior to surgery. Mean pain score before surgery on a visual analog scale decreased from 7.6-3.0 points after operation (p = 0.002). All patients achieved at least one grade of improvement in the Frankel score (p = 0.003), excepting the three patients with Frankel grade A before surgery. Two patients with renal cell carcinoma died during the following 4 days after surgery. The remaining patients attained a painless and stable spine immediately, which was maintained for long periods (mean follow-up: 25.4 months). No significant infections or implant failures were registered. A nonfatal case of inferior vena cava surgical injury was observed (repaired during surgery without further complications). In conclusion, the JR prosthesis stabilizes the spine immediately after surgery and for the rest of the patients' life. To our knowledge, this is the first report on the clinical experience of any expandable vertebral body prosthesis with dual cage-and-plate function in a single device. Copyright © 2010 IMSS. Published by Elsevier Inc. All rights reserved.

  6. Estimating Age Distributions of Base Flow in Watersheds Underlain by Single and Dual Porosity Formations Using Groundwater Transport Simulation and Weighted Weibull Functions

    NASA Astrophysics Data System (ADS)

    Sanford, W. E.

    2015-12-01

    Age distributions of base flow to streams are important to estimate for predicting the timing of water-quality responses to changes in distributed inputs of nutrients or pollutants at the land surface. Simple models of shallow aquifers will predict exponential age distributions, but more realistic 3-D stream-aquifer geometries will cause deviations from an exponential curve. In addition, in fractured rock terrains the dual nature of the effective and total porosity of the system complicates the age distribution further. In this study shallow groundwater flow and advective transport were simulated in two regions in the Eastern United States—the Delmarva Peninsula and the upper Potomac River basin. The former is underlain by layers of unconsolidated sediment, while the latter consists of folded and fractured sedimentary rocks. Transport of groundwater to streams was simulated using the USGS code MODPATH within 175 and 275 watersheds, respectively. For the fractured rock terrain, calculations were also performed along flow pathlines to account for exchange between mobile and immobile flow zones. Porosities at both sites were calibrated using environmental tracer data (3H, 3He, CFCs and SF6) in wells and springs, and with a 30-year tritium record from the Potomac River. Carbonate and siliciclastic rocks were calibrated to have mobile porosity values of one and six percent, and immobile porosity values of 18 and 12 percent, respectively. The age distributions were fitted to Weibull functions. Whereas an exponential function has one parameter that controls the median age of the distribution, a Weibull function has an extra parameter that controls the slope of the curve. A weighted Weibull function was also developed that potentially allows for four parameters, two that control the median age and two that control the slope, one of each weighted toward early or late arrival times. For both systems the two-parameter Weibull function nearly always produced a substantially

  7. The Streptococcus pyogenes orphan protein tyrosine phosphatase, SP-PTP, possesses dual specificity and essential virulence regulatory functions.

    PubMed

    Kant, Sashi; Agarwal, Shivani; Pancholi, Preeti; Pancholi, Vijay

    2015-08-01

    Group A Streptococcus (GAS) is a human pathogen that causes high morbidity and mortality. GAS lacks a gene encoding tyrosine kinase but contains one encoding tyrosine phosphatase (SP-PTP). Thus, GAS is thought to lack tyrosine phosphorylation, and the physiological significance of SP-PTP is, therefore, questionable. Here, we demonstrate that SP-PTP possesses dual phosphatase specificity for Tyr- and Ser/Thr-phosphorylated GAS proteins, such as Ser/Thr kinase (SP-STK) and the SP-STK-phosphorylated CovR and WalR proteins. Phenotypic analysis of GAS mutants lacking SP-PTP revealed that the phosphatase activity per se positively regulates growth, cell division and the ability to adhere to and invade host cells. Furthermore, A549 human lung cells infected with GAS mutants lacking SP-PTP displayed increased Ser-/Thr-/Tyr-phosphorylation. SP-PTP also differentially regulates the expression of ∼50% of the total GAS genes, including several virulence genes potentially through the two-component regulators, CovR, WalR and PTS/HPr regulation of Mga. Although these mutants exhibit attenuated virulence, a GAS mutant overexpressing SP-PTP is hypervirulent. Our study provides the first definitive evidence for the presence and importance of Tyr-phosphorylation in GAS and the relevance of SP-PTP as an important therapeutic target.

  8. Soluble alpha-enolase activates monocytes by CD14-dependent TLR4 signalling pathway and exhibits a dual function

    PubMed Central

    Guillou, Clément; Fréret, Manuel; Fondard, Emeline; Derambure, Céline; Avenel, Gilles; Golinski, Marie-Laure; Verdet, Mathieu; Boyer, Olivier; Caillot, Frédérique; Musette, Philippe; Lequerré, Thierry; Vittecoq, Olivier

    2016-01-01

    Rheumatoid arthritis (RA) is the most common form of chronic inflammatory rheumatism. Identifying auto-antigens targeted by RA auto-antibodies is of major interest. Alpha-enolase (ENO1) is considered to be a pivotal auto-antigen in early RA but its pathophysiologic role remains unknown. The main objective of this study was to investigate the in vitro effects of soluble ENO1 on peripheral blood mononuclear cells (PBMC) from healthy donors and RA patients in order to determine the potential pathogenic role of ENO1. ELISA, transcriptomic analysis, experiments of receptor inhibition and flow cytometry analysis were performed to determine the effect, the target cell population and the receptor of ENO1. We showed that ENO1 has the ability to induce early production of pro-inflammatory cytokines and chemokines with delayed production of IL-10 and to activate the innate immune system. We demonstrated that ENO1 binds mainly to monocytes and activates the CD14-dependent TLR4 pathway both in healthy subjects and in RA patients. Our results establish for the first time that ENO1 is able to activate in vitro the CD14-dependent TLR4 pathway on monocytes involving a dual mechanism firstly pro-inflammatory and secondly anti-inflammatory. These results contribute to elucidating the role of this auto-antigen in the pathophysiologic mechanisms of RA. PMID:27025255

  9. Dual functions of gold nanorods as photothermal agent and autofluorescence enhancer to track cell death during plasmonic photothermal therapy.

    PubMed

    Kannadorai, Ravi Kumar; Chiew, Geraldine Giap Ying; Luo, Kathy Qian; Liu, Quan

    2015-02-01

    Gold nanorods have the potential to localize the treatment procedure by hyperthermia and influence the fluorescence. The longitudinal plasmon peak contributes to the photothermal effect by converting light to heat. When these nanorods are PEGylated, it not only makes it biocompatible but also acts as a spacer layer during fluorescence enhancement. When the PEGylated nanorods are internalized inside the cells through endocytosis, the transverse plasmonic peak combined with the enhanced absorption and scattering properties of the nanorods can enhance the autofluorescence emission intensity from the cell. The autofluorescence from the mitochondria inside cells which reflects the respiratory status of the cell was enhanced two times by the presence of nanorods within the cell. At four minutes, the nanorods incubated cells reached the hyperthermic temperature when illuminated continuously with near infrared laser. The cell viability test and autofluorescence intensity curve showed a similar trend indicating the progress of cell death over time. This is the first report to the best of our knowledge to suggest the potential of exploiting the dual capabilities of gold nanorods as photothermal agents and autofluorescence enhancer to track cell death.

  10. Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death

    PubMed Central

    Welsbie, Derek S.; Yang, Zhiyong; Ge, Yan; Mitchell, Katherine L.; Zhou, Xinrong; Martin, Scott E.; Berlinicke, Cynthia A.; Hackler, Laszlo; Fuller, John; Fu, Jie; Cao, Li-hui; Han, Bing; Auld, Douglas; Xue, Tian; Hirai, Syu-ichi; Germain, Lucie; Simard-Bisson, Caroline; Blouin, Richard; Nguyen, Judy V.; Davis, Chung-ha O.; Enke, Raymond A.; Boye, Sanford L.; Merbs, Shannath L.; Marsh-Armstrong, Nicholas; Hauswirth, William W.; DiAntonio, Aaron; Nickells, Robert W.; Inglese, James; Hanes, Justin; Yau, King-Wai; Quigley, Harry A.; Zack, Donald J.

    2013-01-01

    Glaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs. In cultured RGCs, DLK signaling is both necessary and sufficient for cell death. DLK undergoes robust posttranscriptional up-regulation in response to axonal injury in vitro and in vivo. Using a conditional knockout approach, we confirmed that DLK is required for RGC JNK activation and cell death in a rodent model of optic neuropathy. In addition, tozasertib, a small molecule protein kinase inhibitor with activity against DLK, protects RGCs from cell death in rodent glaucoma and traumatic optic neuropathy models. Together, our results establish a previously undescribed drug/drug target combination in glaucoma, identify an early marker of RGC injury, and provide a starting point for the development of more specific neuroprotective DLK inhibitors for the treatment of glaucoma, nonglaucomatous forms of optic neuropathy, and perhaps other CNS neurodegenerations. PMID:23431148

  11. A Dual Functional Electroactive and Fluorescent Probe for Coupled Measurements of Vesicular Exocytosis with High Spatial and Temporal Resolution.

    PubMed

    Liu, Xiaoqing; Savy, Alexandra; Maurin, Sylvie; Grimaud, Laurence; Darchen, François; Quinton, Damien; Labbé, Eric; Buriez, Olivier; Delacotte, Jérôme; Lemaître, Frédéric; Guille-Collignon, Manon

    2017-02-20

    In this work, Fluorescent False Neurotransmitter 102 (FFN102), a synthesized analogue of biogenic neurotransmitters, was demonstrated to show both pH-dependent fluorescence and electroactivity. To study secretory behaviors at the single-vesicle level, FFN102 was employed as a new fluorescent/electroactive dual probe in a coupled technique (amperometry and total internal reflection fluorescence microscopy (TIRFM)). We used N13 cells, a stable clone of BON cells, to specifically accumulate FFN102 into their secretory vesicles, and then optical and electrochemical measurements of vesicular exocytosis were experimentally achieved by using indium tin oxide (ITO) transparent electrodes. Upon stimulation, FFN102 started to diffuse out from the acidic intravesicular microenvironment to the neutral extracellular space, leading to fluorescent emissions and to the electrochemical oxidation signals that were simultaneously collected from the ITO electrode surface. The correlation of fluorescence and amperometric signals resulting from the FFN102 probe allows real-time monitoring of single exocytotic events with both high spatial and temporal resolution. This work opens new possibilities in the investigation of exocytotic mechanisms.

  12. A dual targeted β-defensin and exome sequencing approach to identify, validate and functionally characterise genes associated with bull fertility.

    PubMed

    Whiston, Ronan; Finlay, Emma K; McCabe, Matthew S; Cormican, Paul; Flynn, Paul; Cromie, Andrew; Hansen, Peter J; Lyons, Alan; Fair, Sean; Lonergan, Patrick; O' Farrelly, Cliona; Meade, Kieran G

    2017-09-25

    Bovine fertility remains a critical issue underpinning the sustainability of the agricultural sector. Phenotypic records collected on >7,000 bulls used in artificial insemination (AI) were used to identify 160 reliable and divergently fertile bulls for a dual strategy of targeted sequencing (TS) of fertility-related β-defensin genes and whole exome sequencing (WES). A haplotype spanning multiple β-defensin genes and containing 94 SNPs was significantly associated with fertility and functional analysis confirmed that sperm from bulls possessing the haplotype showed significantly enhanced binding to oviductal epithelium. WES of all exons in the genome in 24 bulls of high and low fertility identified 484 additional SNPs significantly associated with fertility. After validation, the most significantly associated SNP was located in the FOXJ3 gene, a transcription factor which regulates sperm function in mice. This study represents the first comprehensive characterisation of genetic variation in bovine β-defensin genes and functional analysis supports a role for β-defensins in regulating bull sperm function. This first application of WES in AI bulls with divergent fertility phenotypes has identified a novel role for the transcription factor FOXJ3 in the regulation of bull fertility. Validated genetic variants associated with bull fertility could prove useful for improving reproductive outcomes in cattle.

  13. Functional Magnetic Resonance Imaging Clinical Trial of a Dual-Processing Treatment Protocol for Substance-Dependent Adults

    ERIC Educational Resources Information Center

    Matto, Holly C.; Hadjiyane, Maria C.; Kost, Michelle; Marshall, Jennifer; Wiley, Joseph; Strolin-Goltzman, Jessica; Khatiwada, Manish; VanMeter, John W.

    2014-01-01

    Objectives: Empirical evidence suggests substance dependence creates stress system dysregulation which, in turn, may limit the efficacy of verbal-based treatment interventions, as the recovering brain may not be functionally capable of executive level processing. Treatment models that target implicit functioning are necessary. Methods: An RCT was…

  14. Functional Magnetic Resonance Imaging Clinical Trial of a Dual-Processing Treatment Protocol for Substance-Dependent Adults

    ERIC Educational Resources Information Center

    Matto, Holly C.; Hadjiyane, Maria C.; Kost, Michelle; Marshall, Jennifer; Wiley, Joseph; Strolin-Goltzman, Jessica; Khatiwada, Manish; VanMeter, John W.

    2014-01-01

    Objectives: Empirical evidence suggests substance dependence creates stress system dysregulation which, in turn, may limit the efficacy of verbal-based treatment interventions, as the recovering brain may not be functionally capable of executive level processing. Treatment models that target implicit functioning are necessary. Methods: An RCT was…

  15. Near infrared fluorescent dual ligand functionalized Au NCs based multidimensional sensor array for pattern recognition of multiple proteins and serum discrimination.

    PubMed

    Xu, Shenghao; Gao, Teng; Feng, Xiuying; Fan, Xiaojian; Liu, Gufan; Mao, Yaning; Yu, Xijuan; Lin, Jiehua; Luo, Xiliang

    2017-11-15

    Here, a multidimensional sensor array capable of analyzing various proteins and discriminating between serums from different stages of breast cancer patients were developed based on six kinds of near infrared fluorescent dual ligand functionalized Au NCs (functionalized with different amino acids) as sensing receptors. These six kinds of different amino acids functionalized Au NCs were synthesized for the first time within 2h due to the direct donation of delocalized electrons of electron-rich atoms or groups of the ligands to the Au core. Based on this, ten proteins could be simultaneously and effectively discriminated by this "chemical nose/tongue" sensor array. Linear discrimination analysis (LDA) of the response patterns showed successful differentiation of the analytes at concentrations as low as 10nM with high identification accuracy. Isothermal titration calorimetry (ITC) experiment illustrates that Au NCs interacted with proteins mainly by hydrogen bonding and van der Waals forces. Furthermore, the greatest highlight of this sensor array is demonstrated by successfully discriminating between serums from different stages of breast cancer patients (early, middle and late) and healthy people, suggesting great potential for auxiliary diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Auditory and visual impairments in patients with blast-related traumatic brain injury: Effect of dual sensory impairment on Functional Independence Measure.

    PubMed

    Lew, Henry L; Garvert, Donn W; Pogoda, Terri K; Hsu, Pei-Te; Devine, Jennifer M; White, Daniel K; Myers, Paula J; Goodrich, Gregory L

    2009-01-01

    The frequencies of hearing impairment (HI), vision impairment (VI), or dual (hearing and vision) sensory impairment (DSI) in patients with blast-related traumatic brain injury (TBI) and their effects on functional recovery are not well documented. In this preliminary study of 175 patients admitted to a Polytrauma Rehabilitation Center, we completed hearing and vision examinations and obtained Functional Independence Measure (FIM) scores at admission and discharge for 62 patients with blast-related TBI. We diagnosed HI only, VI only, and DSI in 19%, 34%, and 32% of patients, respectively. Only 15% of the patients had no sensory impairment in either auditory or visual modality. An analysis of variance showed a group difference for the total and motor FIM scores at discharge (p < 0.04). Regression model analyses demonstrated that DSI significantly contributed to reduced gain in total ( t = -2.25) and motor ( t = -2.50) FIM scores ( p < 0.05). Understanding the long-term consequences of sensory impairments in the functional recovery of patients with blast-related TBI requires further research.

  17. Clinical application of dual-source CT in the evaluation of patients with lung cancer: correlation with perfusion scintigraphy and pulmonary function tests.

    PubMed

    Fraioli, F; Serra, G; Liberali, S; Fiorelli, A; Liparulo, V; Zaccagna, F; Ciccariello, G; Catalano, C; Passariello, R

    2011-09-01

    This study was done to assess the diagnostic potential of dual-source computed tomography (DSCT) in the functional evaluation of lung cancer patients undergoing surgical resection. The CT data were compared with pulmonary perfusion scintigraphy and pulmonary function tests (PFTs). All patients were evaluated with DSCT, scintigraphy and PFTs. The DSCT scan protocol was as follows: two tubes (80 and 140 kV; Care Dose protocol); 70 cc of contrast material (5 cc/s); 5- to 6-s scan time; 0.6 mm collimation. After the automatic calculation of lung perfusion with DSCT and quantification of air volumes and emphysema with dedicated software applications, the perfusional CT studies were compared with scintigraphy using a visual score for perfusion defects; CT air volumes and emphysema were compared with PFTs. The values of accuracy, sensitivity, specificity and positive (PPV) and negative (NPV) predictive values of DSCT compared with perfusion scintigraphy as the reference standard were: 0.88, 0.84, 0.90, 0.93 and 0.88, respectively. The McNemar test did not identify significant differences either between the two imaging techniques (p=0.07) or between CT and PFTs (p=0.09). DSCT is a robust and promising technique that provides important and accurate information on lung function.

  18. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon: Results of a preliminary study.

    PubMed

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results.Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon-oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images.Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects.Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected

  19. lcrR, a low-Ca2(+)-response locus with dual Ca2(+)-dependent functions in Yersinia pestis.

    PubMed Central

    Barve, S S; Straley, S C

    1990-01-01

    The low-Ca2+ response (Lcr) of Yersinia includes a regulatory cascade and a set of virulence-related proteins, one of which is the V antigen. The regulatory genes modulate both bacterial growth and expression of the virulence-related proteins in response to temperature and the presence of Ca2+ and nucleotides. In this study we defined a new Lcr locus, lcrR, in Yersinia pestis KIM. An lcrR mutant, obtained by insertion mutagenesis, failed to grow at 37 degrees C whether Ca2+ was present or not. However, it grew normally in the presence of ATP, showing that the Ca2(+)- and nucleotide-responsive mechanisms are separate in Y. pestis. The lcrR mutant was avirulent in mice, probably due to its compromised growth at 37 degrees C. beta-Galactosidase measurements and Northern (RNA blot) analysis revealed that lcrR transcription was regulated primarily by temperature. The DNA sequence of the lcrR locus contained a single open reading frame of 441 bases that could encode a protein with a molecular weight of 16,470 and a pI of 10.73. Expression of an lcrR-containing clone in Escherichia coli yielded a 16,000-molecular-weight protein. At 37 degrees C, the lcrR mutant strongly expressed V antigen and initiated lcrGVH transcription whether Ca2+ was present or not, indicating that this mutant had lost the transcriptional downregulation of lcrGVH shown by the parent in the presence of Ca2+. In the absence of Ca2+, the mutant failed to express LcrG, even though lcrGVH mRNA initiated upstream of lcrG at the normal sites. These data suggest that the lcrR locus is necessary for the regulation of LcrG expression in the absence of Ca2+. Therefore, this locus has a dual regulatory role in the low-Ca2+ response. Images PMID:1695896

  20. Interaction of Klebsiella oxytoca and Burkholderia cepacia in dual-species batch cultures and biofilms as a function of growth rate and substrate concentration.

    PubMed

    Komlos, J; Cunningham, A B; Camper, A K; Sharp, R R

    2005-01-01

    Dual-species microbial interactions have been extensively reported for batch and continuous culture environments. However, little research has been performed on dual-species interaction in a biofilm. This research examined the effects of growth rate and substrate concentration on dual-species population densities in batch and biofilm reactors. In addition, the feasibility of using batch reactor kinetics to describe dual-species biofilm interactions was explored. The scope of the research was directed toward creating a dual-species biofilm for the biodegradation of trichloroethylene, but the findings are a significant contribution to the study of dual-species interactions in general. The two bacterial species used were Burkholderia cepacia PR1-pTOM(31c), an aerobic organism capable of constitutively mineralizing trichloroethylene (TCE), and Klebsiella oxytoca, a highly mucoid, facultative anaerobic organism. The substrate concentrations used were different dilutions of a nutrient-rich medium resulting in dissolved organic carbon (DOC) concentrations on the order of 30, 70, and 700 mg/L. Presented herein are single- and dual-species population densities and growth rates for these two organisms grown in batch and continuous-flow biofilm reactors. In batch reactors, planktonic growth rates predicted dual-species planktonic species dominance, with the faster-growing organism (K. oxytoca) outcompeting the slower-growing organism (B. cepacia). In a dual-species biofilm, however, dual-species planktonic growth rates did not predict which organism would have the higher dual-species biofilm population density. The relative fraction of each organism in a dual-species biofilm did correlate with substrate concentration, with B. cepacia having a greater proportional density in the dual-species culture with K. oxytoca at low (30 and 70 mg/L DOC) substrate concentrations and K. oxytoca having a greater dual-species population density at a high (700 mg/L DOC) substrate

  1. Semi-automatic measurement of left ventricular function on dual source computed tomography using five different software tools in comparison with magnetic resonance imaging.

    PubMed

    de Jonge, G J; van der Vleuten, P A; Overbosch, J; Lubbers, D D; Jansen-van der Weide, M C; Zijlstra, F; van Ooijen, P M A; Oudkerk, M

    2011-12-01

    To compare left ventricular (LV) function assessment using five different software tools on the same dual source computed tomography (DSCT) datasets with the results of MRI. Twenty-six patients, undergoing cardiac contrast-enhanced DSCT were included (20 men, mean age 59±12 years). Reconstructions were made at every 10% of the RR-interval. Function analysis was performed with five different, commercially available workstations. In all software tools, semi-automatic LV function measurements were performed, with manual corrections if necessary. Within 0-22 days, all 26 patients were scanned on a 1.5 T MRI-system. Bland-Altman analysis was performed to calculate limits of agreement between DSCT and MRI. Pearson's correlation coefficient was calculated to assess the correlation between the different DSCT software tools and MRI. Repeated measurements were performed to determine intraobserver and interobserver variability. For all five DSCT workstations, mean LV functional parameters correlated well with measurements on MRI. Bland-Altman analysis of the comparison of DSCT and MRI showed acceptable limits of agreement. Best correlation and limits of agreement were obtained by DSCT software tools with software algorithms comparable to MRI software. The five different DSCT software tools we examined have interchangeable results of LV functional parameters compared to regularly analysed results by MRI. The best correlation and the narrowest limits of agreement were found when the same software algorithm was used for both DSCT and MRI examinations, therefore our advice for clinical practice is to always evaluate images with the same type of post-processing tools in follow-up. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Pharmacological dual inhibition of tumor and tumor-induced functional limitations in transgenic model of breast cancer.

    PubMed

    Wang, Ruizhong; Bhat-Nakshatri, Poornima; Padua, Maria B; Prasad, Mayuri S; Anjanappa, Manjushree; Jacobson, Max; Finnearty, Courtney; Sefcsik, Victoria; McElyea, Kyle; Redmond, Rachael; Sandusky, George E; Penthala, Narsimha; Crooks, Peter A; Liu, Jianguo; Zimmers, Teresa; Nakshatri, Harikrishna

    2017-10-04

    Breast cancer progression is associated with systemic effects including functional limitations and sarcopenia without the appearance of overt cachexia. Autocrine/paracrine actions of cytokines/chemokines produced by cancer cells mediate cancer progression and functional limitations. The cytokine-inducible transcription factor NF-κB could be central to this process, as it displays oncogenic functions and is integral to the Pax7:MyoD:Pgc-1β:miR-486 myogenesis axis. We tested this possibility using the MMTV-PyMT transgenic mammary tumor model and the NF-κB inhibitor dimethylaminoparthenolide (DMAPT). We observed deteriorating physical and functional conditions in PyMT+ mice with disease progression. Compared to wild type mice, tumor-bearing PyMT+ mice showed decreased fat mass, impaired rotarod performance, and reduced grip strength as well as increased extracellular matrix (ECM) deposition in muscle. Contrary to acute cachexia models described in the literature, mammary tumor progression was associated with reduction in skeletal muscle stem/satellite-specific transcription factor Pax7. Additionally, we observed tumor-induced reduction in Pgc-1β in muscle, which controls mitochondrial biogenesis. DMAPT treatment starting at 6-8 weeks age prior to mammary tumor occurrence delayed mammary tumor onset and tumor growth rates without affecting metastasis. DMAPT overcame cancer-induced functional limitations and improved survival, which was accompanied with restoration of Pax7, Pgc-1β, and mitochondria levels and reduced ECM levels in skeletal muscles. In addition, DMAPT restored circulating levels of six out of 13 cancer-associated cytokines/chemokines changes to levels seen in healthy animals. These results reveal a pharmacological approach for overcoming cancer-induced functional limitations and the above noted cancer/drug-induced changes in muscle gene expression could be utilized as biomarkers of functional limitations. Copyright ©2017, American Association for

  3. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation.

    PubMed

    Sathe, Tushar R; Agrawal, Amit; Nie, Shuming

    2006-08-15

    Mesoporous beads are promising materials for embedding functional nanoparticles because of their nanometer-sized pores and large surface areas. Here we report the development of silica microbeads embedded with both semiconductor quantum dots (QD) and iron oxide (Fe3O4) nanocrystals as a new class of dual-function carriers for optical encoding and magnetic separation. The embedding (doping) process is carried out by either simultaneous or sequential addition of quantum dots and iron oxide (Fe3O4) nanocrystals in solution. The doping process is fast and quantitative, but the incorporated iron oxide strongly attenuates the signal intensity of QD fluorescence. We find that this attenuation is not due to conventional fluorescence quenching but is caused by the broad optical absorption spectrum of mixed-valence Fe3O4. For improved biocompatibility and reduced nonspecific binding, the encoded beads are further coated with amphiphilic polymers such as octylamine poly(acrylic acid). The results indicate that the polymer-coated beads are well suited for target capturing and enrichment, yielding magnetic separation efficiencies higher than 99%. By combining the multiplexing capability of QDs with the superparamagnetic properties of iron oxide nanocrystals, this class of encoded beads is expected to find broad applications in high-throughput and multiplexed biomolecular assays.

  4. Dual functions of 2D WS2 and MoS2-WS2 monolayers coupled with a Ag3PO4 photocatalyst

    NASA Astrophysics Data System (ADS)

    Wei, Zeng-Xi; Huang, Wei-Qing; Xu, Liang; Hu, Wangyu; Peng, P.; Huang, Gui-Fang

    2016-09-01

    The photocatalytic performance of semiconductors can be improved by coupling two-dimensional (2D) layered materials. Understanding the underlying mechanism of this phenomenon at the electronic level is important for the development of photocatalysts with a high efficiency. Here, we first present a theoretical elucidation of the dual functions of 2D layered material as a sensitizer and a co-catalyst by performing density functional theory calculations, taking WS2 and a lateral heterogeneous WS2-MoS2 monolayer as examples to couple with a promising photocatalyst Ag3PO4. The band alignment of a staggered type-II is formed between Ag3PO4 and the 2D monolayer with the latter possessing the higher electron affinity, resulting in the robust separation of photoexcited charge carriers between them, and indicating that the 2D monolayer is an effective sensitizer. Interestingly, the W (Mo) atoms, which are catalytically inert in the isolated 2D monolayer, turn into catalytic active sites, making the 2D monolayer a highly active co-catalyst in hybrids. A better photocatalytic performance in the coupled lateral heterogeneous WS2-MoS2 monolayer and Ag3PO4 can be expected. The calculated results can be rationalized by available experiments. These findings provide theoretical evidence supporting the experimental reports and may be used as a foundation for developing highly efficient 2D layered materials-based photocatalysts.

  5. Dual function of the nuclear export signal of the Borna disease virus nucleoprotein in nuclear export activity and binding to viral phosphoprotein.

    PubMed

    Yanai, Mako; Sakai, Madoka; Makino, Akiko; Tomonaga, Keizo

    2017-07-11

    Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N. BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV. Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.

  6. Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity.

    PubMed

    Takahara, Hiroyuki; Hacquard, Stéphane; Kombrink, Anja; Hughes, H Bleddyn; Halder, Vivek; Robin, Guillaume P; Hiruma, Kei; Neumann, Ulla; Shinya, Tomonori; Kombrink, Erich; Shibuya, Naoto; Thomma, Bart P H J; O'Connell, Richard J

    2016-09-01

    The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large repertoire of candidate-secreted effectors containing LysM domains, but the role of such proteins in the pathogenicity of any Colletotrichum species is unknown. Here, we characterized the function of two effectors, ChELP1 and ChELP2, which are transcriptionally activated during the initial intracellular biotrophic phase of infection. Using immunocytochemistry, we found that ChELP2 is concentrated on the surface of bulbous biotrophic hyphae at the interface with living host cells but is absent from filamentous necrotrophic hyphae. We show that recombinant ChELP1 and ChELP2 bind chitin and chitin oligomers in vitro with high affinity and specificity and that both proteins suppress the chitin-triggered activation of two immune-related plant mitogen-activated protein kinases in the host Arabidopsis. Using RNAi-mediated gene silencing, we found that ChELP1 and ChELP2 are essential for fungal virulence and appressorium-mediated penetration of both Arabidopsis epidermal cells and cellophane membranes in vitro. The findings suggest a dual role for these LysM proteins as effectors for suppressing chitin-triggered immunity and as proteins required for appressorium function. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Robust specification of sensory neurons by dual functions of charlatan, a Drosophila NRSF/REST-like repressor of extramacrochaetae and hairy.

    PubMed

    Yamasaki, Yasutoyo; Lim, Young-Mi; Niwa, Nao; Hayashi, Shigeo; Tsuda, Leo

    2011-08-01

    Sensory bristle formation in Drosophila is a well-characterized system for studying sensory organ development at the molecular level. The master proneural genes of the achaete-scute (ac-sc) complex, which encode basic-helix-loop-helix (bHLH) transcription factors, are necessary and sufficient for sensory bristle formation. charlatan (chn) was originally identified as a transcriptional activator of ac-sc gene expression through interaction with its enhancer, an activity that promotes sensory bristle development. In contrast, Chn was also identified as a functional homologue of mammalian neuron-restrictive silencing factor or RE1 silencing transcription factor (NRSF/REST), an important transcriptional repressor during vertebrate neurogenesis and stem cell development that acts through epigenetic gene silencing. Here, we report that Chn acts as a repressor of extramacrochaetae (emc) and hairy, molecules that inhibit ac-sc expression. This double-negative mechanism, together with direct activation via the achaete enhancer, increases expression of achaete and ensures robust development of sensory neurons. A mutation in the C-terminal repressor motif of Chn, which causes Chn to lose its repression activity, converted Chn to an activator of emc and hairy, suggesting that Chn is a dual functional regulator of transcription. Because chn-like sequences are found among arthropods, regulation of neuronal development by Chn-like molecules may be widely conserved.

  8. Why there is more to protein evolution than protein function: splicing, nucleosomes and dual-coding sequence.

    PubMed

    Warnecke, Tobias; Weber, Claudia C; Hurst, Laurence D

    2009-08-01

    There is considerable variation in the rate at which different proteins evolve. Why is this? Classically, it has been considered that the density of functionally important sites must predict rates of protein evolution. Likewise, amino acid choice is usually assumed to reflect optimal protein function. In the present article, we briefly review evidence suggesting that this protein function-centred view is too simplistic. In particular, we concentrate on how selection acting during the protein's production history can also affect protein evolutionary rates and amino acid choice. Exploring the role of selection at the DNA and RNA level, we specifically address how the need (i) to specify exonic splice enhancer motifs in pre-mRNA, and (ii) to ensure nucleosome positioning on DNA have an impact on amino acid choice and rates of evolution. For both, we review evidence that sequence affected by more than one coding demand is particularly constrained. Strikingly, in mammals, splicing-related constraints are quantitatively as important as expression parameters in predicting rates of protein evolution. These results indicate that there is substantially more to protein evolution than protein functional constraints.

  9. Core-Corona Functionalization of Diblock Copolymer Micelles by Heterogeneous Metal Nanoparticles for Dual Modality in Chemical Reactions.

    PubMed

    Jo, Seong Ho; Kim, Hyun Woo; Song, Minkyung; Je, Nam Jin; Oh, Sung-Hoon; Chang, Byoung-Yong; Yoon, Jinhwan; Kim, Joo Hyun; Chung, Bonghoon; Yoo, Seong Il

    2015-08-26

    Nanoscale assemblies composed of different types of nanoparticles (NPs) can reveal interesting aspects about material properties beyond the functions of individual constituent NPs. This research direction may also represent current challenges in nanoscience toward practical applications. With respect to the assembling method, synthetic or biological nanostructures can be utilized to organize heterogeneous NPs in specific sites via chemical or physical interactions. However, those assembling methods often encounter uncontrollable particle aggregation or phase separation. In this study, we anticipated that the self-segregating properties of block copolymer micelles could be particularly useful for organizing heterogeneous NPs, because the presence of chemically distinct domains such as the core and the corona can facilitate the selective placement of constituent NPs in separate domains. Here, we simultaneously functionalized the core and the corona of micelles by Au NPs and Ag NPs, which exhibited plasmonic and catalytic functions, respectively. Our primary question is whether these plasmonic and catalytic functions can be combined in the assembled structures to engineer the kinetics of a model chemical reaction. To test this hypothesis, the catalytic reduction of 4-nitrophenol was selected to evaluate the collective properties of the micellar assemblies in a chemical reaction.

  10. PspB and PspC of Yersinia enterocolitica are dual function proteins: regulators and effectors of the phage-shock-protein response.

    PubMed

    Maxson, Michelle E; Darwin, Andrew J

    2006-03-01

    The phage-shock-protein (Psp) stress-response system is conserved in many bacteria and has been linked to important phenotypes in Escherichia coli, Salmonella enterica and also Yersinia enterocolitica, where it is essential for virulence. It is activated by specific extracytoplasmic stress events such as the mislocalization of secretin proteins. From studies of the Psp system in E. coli, the cytoplasmic membrane proteins PspB and PspC have only been proposed to act as positive regulators of psp gene expression. However, in this study we show that PspB and PspC of Y. enterocolitica are dual function proteins, acting both as regulators and effectors of the Psp system. Consistent with the current model, they positively control psp gene expression in response to diverse inducing cues. PspB and PspC must work together to achieve this regulatory function, and bacterial two-hybrid (BACTH) analysis demonstrated a specific interaction between them, which was confirmed by in vivo cross-linking. We also show that PspB and PspC play a second role in supporting growth when a secretin protein is overexpressed. This function is independent from their role as regulators of psp gene expression. Furthermore, whereas PspB and PspC must work together for their regulatory function, they can apparently act independently to support growth during secretin production. This study expands the current understanding of the roles played by PspB and PspC, and demonstrates that they cannot be considered only as positive regulators of psp gene expression in Y. enterocolitica.

  11. Dual function of Ixr1 in transcriptional regulation and recognition of cisplatin-DNA adducts is caused by differential binding through its two HMG-boxes.

    PubMed

    Vizoso-Vázquez, A; Lamas-Maceiras, M; Fernández-Leiro, R; Rico-Díaz, A; Becerra, M; Cerdán, M E

    2017-02-01

    Ixr1 is a transcriptional factor involved in the response to hypoxia, which is also related to DNA repair. It binds to DNA through its two in-tandem high mobility group box (HMG-box) domains. Each function depends on recognition of different DNA structures, B-form DNA at specific consensus sequences for transcriptional regulation, or distorted DNA, like cisplatin-DNA adducts, for DNA repair. However, the contribution of the HMG-box domains in the Ixr1 protein to the formation of different protein-DNA complexes is poorly understood. We have biophysically and biochemically characterized these interactions with specific DNA sequences from the promoters regulated by Ixr1, or with cisplatin-DNA adducts. Both HMG-boxes are necessary for transcriptional regulation, and they are not functionally interchangeable. The in-tandem arrangement of their HMG-boxes is necessary for functional folding and causes sequential cooperative binding to specific DNA sequences, with HMG-box A showing a higher contribution to DNA binding and bending than the HMG-box B. Binding of Ixr1 HMG boxes to specific DNA sequences is entropy driven, whereas binding to platinated DNA is enthalpy driven for HMG-box A and entropy driven for HMG-box B. This is the first proof that HMG-box binding to different DNA structures is associated with predictable thermodynamic differences. Based on our study, we present a model to explain the dual function of Ixr1 in the regulation of gene expression and recognition of distorted DNA structures caused by cisplatin treatment.

  12. Heteroatom-Guided, Palladium-Catalyzed, Site-Selective C-H Arylation of 4H-Chromenes: Diastereoselective Assembly of the Core Structure of Myristinin B through Dual C-H Functionalization.

    PubMed

    Pawar, Govind Goroba; Tiwari, Virendra Kumar; Jena, Himanshu Sekhar; Kapur, Manmohan

    2015-06-26

    A highly site-selective, heteroatom-guided, palladium-catalyzed direct arylation of 4H-chromenes is reported. The C-H functionalization is driven not only by the substituents and structure of the substrate but also by the coupling partner being used. The diastereoselective assembly of the core structure of Myristinin B has been achieved by using a dual C-H functionalization strategy for regioselective direct arylation.

  13. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms.

    PubMed

    Kulkarni, Bhagyashree; Surnar, Bapurao; Jayakannan, Manickam

    2016-03-14

    Multipurpose polymer nanoscaffolds for cellular imaging and delivery of anticancer drug are urgently required for the cancer therapy. The present investigation reports a new polymer drug delivery concept based on biodegradable polycaprolactone (PCL) and highly luminescent π-conjugated fluorophore as dual functional nanocarrier for cellular imaging and delivery vehicles for anticancer drug to cancer cells. To accomplish this goal, a new substituted caprolactone monomer was designed, and it was subjected to ring opening polymerization using a blue luminescent bishydroxyloligo-phenylenevinylene (OPV) fluorophore as an initiator. A series of A-B-A triblock copolymer building blocks with a fixed OPV π-core and variable chain biodegradable PCL arm length were tailor-made. These triblocks self-assembled in organic solvents to produce well-defined helical nanofibers, whereas in water they produced spherical nanoparticles (size ∼150 nm) with blue luminescence. The hydrophobic pocket of the polymer nanoparticle was found to be an efficient host for loading water insoluble anticancer drug such as doxorubicin (DOX). The photophysical studies revealed that there was no cross-talking between the OPV and DOX chromophores, and their optical purity was retained in the nanoparticle assembly for cellular imaging. In vitro studies revealed that the biodegradable PCL arm was susceptible to enzymatic cleavage at the intracellular lysosomal esterase under physiological conditions to release the loaded drugs. The nascent nanoparticles were found to be nontoxic to cancer cells, whereas the DOX-loaded nanoparticles accomplished more than 80% killing in HeLa cells. Confocal microscopic analysis confirmed the cell penetrating ability of the blue luminescent polymer nanoparticles and their accumulation preferably in the cytoplasm. The DOX loaded red luminescent polymer nanoparticles were also taken up by the cells, and the drug was found to be accumulated at the perinuclear environment

  14. Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response.

    PubMed

    Fang, Fei Fei; Liu, Ying Dan; Choi, Hyoung Jin; Seo, Yongsok

    2011-09-01

    The dispersion stability of soft magnetic carbonyl iron (CI)-based magnetorheological (MR) fluids was improved by applying a unique functional coating composed of a conducting polyaniline layer and a multiwalled carbon nanotube nest to the surfaces of the CI particles via conventional dispersion polymerization, followed by facile solvent casting. The coating morphology and thickness were analyzed by SEM and TEM imaging. Chemical composition of the polyaniline layer was detected by Raman spectroscope, which also confirmed the coating performance successfully. The influence of the functional coating on the magnetic properties was investigated by measuring the MR performance and sedimentation properties using a vibrating sample magnetometer, rotational rheometer, and Turbiscan apparatus. Improved dispersion characteristics of the MR fluid were observed.

  15. A facile approach to prepare a dual functionalized DNA based material in a bio-deep eutectic solvent.

    PubMed

    Mondal, Dibyendu; Bhatt, Jitkumar; Sharma, Mukesh; Chatterjee, Shruti; Prasad, Kamalesh

    2014-04-18

    DNA (Salmon testes) was functionalized by Fe3O4 nanoparticles and protonated layered dititanate sheets (H2·Ti2O5·H2O) in a mixture of choline chloride and ethylene glycol (a deep eutectic solvent) to yield a hybrid material having magnetic and antibacterial properties. Ti sheets were found to interact with the phosphate moieties, while Fe interacted with the base pair of DNA in the hybrid material.

  16. Dual redundant core memory systems

    NASA Technical Reports Server (NTRS)

    Hull, F. E.

    1972-01-01

    Electronic memory system consisting of series redundant drive switch circuits, triple redundant majority voted memory timing functions, and two data registers to provide functional dual redundancy is described. Signal flow through the circuits is illustrated and equence of events which occur within the memory system is explained.

  17. A dual role for integrin-linked kinase in platelets: regulating integrin function and α-granule secretion

    PubMed Central

    Sage, Tanya; Stevens, Joanne M.; Jordan, Peter A.; Jones, Sarah; Barrett, Natasha E.; St-Arnaud, Rene; Frampton, Jonathan; Dedhar, Shoukat; Gibbins, Jonathan M.

    2008-01-01

    Integrin-linked kinase (ILK) has been implicated in the regulation of a range of fundamental biological processes such as cell survival, growth, differentiation, and adhesion. In platelets ILK associates with β1- and β3-containing integrins, which are of paramount importance for the function of platelets. Upon stimulation of platelets this association with the integrins is increased and ILK kinase activity is up-regulated, suggesting that ILK may be important for the coordination of platelet responses. In this study a conditional knockout mouse model was developed to examine the role of ILK in platelets. The ILK-deficient mice showed an increased bleeding time and volume, and despite normal ultrastructure the function of ILK-deficient platelets was decreased significantly. This included reduced aggregation, fibrinogen binding, and thrombus formation under arterial flow conditions. Furthermore, although early collagen stimulated signaling such as PLCγ2 phosphorylation and calcium mobilization were unaffected in ILK-deficient platelets, a selective defect in α-granule, but not dense-granule, secretion was observed. These results indicate that as well as involvement in the control of integrin affinity, ILK is required for α-granule secretion and therefore may play a central role in the regulation of platelet function. PMID:18772455

  18. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit

    PubMed Central

    Hatzold, Julia; Beleggia, Filippo; Herzig, Hannah; Altmüller, Janine; Nürnberg, Peter; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias

    2016-01-01

    The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression. DOI: http://dx.doi.org/10.7554/eLife.14277.001 PMID:27240166

  19. Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function.

    PubMed

    Stingl, J C; Brockmöller, J; Viviani, R

    2013-03-01

    Polymorphic drug-metabolizing enzymes (DMEs) are responsible for the metabolism of the majority of psychotropic drugs. By explaining a large portion of variability in individual drug metabolism, pharmacogenetics offers a diagnostic tool in the burgeoning era of personalized medicine. This review updates existing evidence on the influence of pharmacogenetic variants on drug exposure and discusses the rationale for genetic testing in the clinical context. Dose adjustments based on pharmacogenetic knowledge are the first step to translate pharmacogenetics into clinical practice. However, also clinical factors, such as the consequences on toxicity and therapeutic failure, must be considered to provide clinical recommendations and assess the cost-effectiveness of pharmacogenetic treatment strategies. DME polymorphisms are relevant not only for clinical pharmacology and practice but also for research in psychiatry and neuroscience. Several DMEs, above all the cytochrome P (CYP) enzymes, are expressed in the brain, where they may contribute to the local biochemical homeostasis. Of particular interest is the possibility of DMEs playing a physiological role through their action on endogenous substrates, which may underlie the reported associations between genetic polymorphisms and cognitive function, personality and vulnerability to mental disorders. Neuroimaging studies have recently presented evidence of an effect of the CYP2D6 polymorphism on basic brain function. This review summarizes evidence on the effect of DME polymorphisms on brain function that adds to the well-known effects of DME polymorphisms on pharmacokinetics in explaining the range of phenotypes that are relevant to psychiatric practice.

  20. Serial changes in anatomy and ventricular function on dual-source cardiac computed tomography after the Norwood procedure for hypoplastic left heart syndrome.

    PubMed

    Goo, Hyun Woo

    2017-09-06

    Accurate evaluation of anatomy and ventricular function after the Norwood procedure in hypoplastic left heart syndrome is important for treatment planning and prognostication, but echocardiography and cardiac MRI have limitations. To assess serial changes in anatomy and ventricular function on dual-source cardiac CT after the Norwood procedure for hypoplastic left heart syndrome. In 14 consecutive patients with hypoplastic left heart syndrome, end-systolic and end-diastolic phase cardiac dual-source CT was performed before and early (average: 1 month) after the Norwood procedure, and repeated late (median: 4.5 months) after the Norwood procedure in six patients. Ventricular functional parameters and indexed morphological measurements including pulmonary artery size, right ventricular free wall thickness, and ascending aorta size on cardiac CT were compared between different time points. Moreover, morphological features including ventricular septal defect, endocardial fibroelastosis and coronary ventricular communication were evaluated on cardiac CT. Right ventricular function and volumes remained unchanged (indexed end-systolic and end-diastolic volumes: 38.9±14.0 vs. 41.1±21.5 ml/m(2), P=0.7 and 99.5±30.5 vs. 105.1±33.0 ml/m(2), P=0.6; ejection fraction: 60.1±7.3 vs. 63.8±7.0%, P=0.1, and indexed stroke volume: 60.7±18.0 vs. 64.0±15.6 ml/m(2), P=0.5) early after the Norwood procedure, but function was decreased (ejection fraction: 64.2±2.6 vs. 58.1±7.1%, P=0.01) and volume was increased (indexed end-systolic and end-diastolic volumes: 39.2±14.9 vs. 68.9±20.6 ml/m(2), P<0.003 and 107.8±36.5 vs. 162.9±36.2 ml/m(2), P<0.006, and indexed stroke volume: 68.6±21.7 vs. 94.0±21.3 ml/m(2), P=0.02) later. Branch pulmonary artery size showed a gradual decrease without asymmetry after the Norwood procedure. Right and left pulmonary artery stenoses were identified in 21.4% (3/14) of the patients. Indexed right ventricular free wall thickness showed a

  1. A dual extremum principle for a population equation

    NASA Technical Reports Server (NTRS)

    Chan, W. L.; Leininger, G. G.

    1974-01-01

    A dual extremum principle for the Verhulst-Pearl population equation is constructed using a complementary variational technique. The dual formulation utilizes a minimum principle recently developed by Leitmann to convert the functional optimization problem into a parameter optimization problem.

  2. Dual functions of the AML1/Evi-1 chimeric protein in the mechanism of leukemogenesis in t(3;21) leukemias.

    PubMed Central

    Tanaka, T; Mitani, K; Kurokawa, M; Ogawa, S; Tanaka, K; Nishida, J; Yazaki, Y; Shibata, Y; Hirai, H

    1995-01-01

    The chromosomal translocation t(3;21)(q26;q22), which is found in blastic crisis in chronic myelogenous leukemias and myelodysplastic syndrome-derived leukemias, produces AML1/Evi-1 chimeric transcription factor and is thought to play important roles in acute leukemic transformation of hemopoietic stem cells. We report here the functional analyses of AML1/Evi-1. It was revealed that AML1/Evi-1 itself does not alter the transactivation level through mouse polyomavirus enhancer-binding protein 2 (PEBP2; PEA2) sites (binding site of AML1) but dominantly suppresses the transactivation by intact AML1, which is assumed to be a stimulator of myeloid cell differentiation. DNA-binding competition is a putative mechanism of such dominant negative effects of AML1/Evi-1 because it binds to PEBP2 sites with higher affinity than AML1 does. Furthermore, AML1/Evi-1 stimulated c-fos promoter transactivation and increased AP-1 activity, as Evi-1 (which is not normally expressed in hemopoietic cells) did. Experiments using deletion mutants of AML1/Evi-1 showed that these two functions are mutually independent because the dominant negative effects on intact AML1 and the stimulation of AP-1 activity are dependent on the runt domain (DNA-binding domain of AML1) and the zinc finger domain near the C terminus, respectively. Furthermore, we showed that AML1/Evi-1 blocks granulocytic differentiation, otherwise induced by granulocyte colony-stimulating factor, of 32Dcl3 myeloid cells. It was also suggested that both AML1-derived and Evi-1-derived portions of the fusion protein play crucial roles in this differentiation block. We conclude that the leukemic cell transformation in t(3;21) leukemias is probably caused by these dual functions of AML1/Evi-1 chimeric protein. PMID:7739522

  3. Individualized dual antiplatelet therapy based on platelet function testing in patients undergoing percutaneous coronary intervention: a meta-analysis of randomized controlled trials.

    PubMed

    Zhou, Yijiang; Wang, Yanwei; Wu, Yutao; Huang, Chaoyang; Yan, Hui; Zhu, Weiguo; Xu, Weiwei; Zhang, Li; Zhu, Jianhua

    2017-06-15

    High on-treatment platelet reactivity (HPR) represents a strong risk factor for thrombotic events after PCI. We aim to evaluate the efficacy and safety of individualizing intensified dual antiplatelet therapy (DAPT) in PCI-treated patients with HPR based on platelet function testing (PFT). Electronic databases were searched for randomized control trials that reported the clinical outcomes of using an intensified antiplatelet protocol with P2Y12 receptor inhibitor comparing with standard maintenance dose of clopidogrel on the basis of platelet function testing. Clinical endpoints were assessed. From 2005 to 2016, thirteen clinical studies comprising 7290 patients were included for analysis. Compared with standard antiplatelet therapy with clopidogrel, the intensified protocol based on platelet function testing was associated with a significant reduction in major adverse cardiovascular events (RR:0.55, 95% CI: 0.36-0.84, p = 0.005), cardiovascular death (RR:0.60, 95% CI: 0.38-0.96, p = 0.03), stent thrombosis (RR:0.58, 95% CI: 0.36-0.93, p = 0.02) and target vessel revascularization (RR:0.33, 95% CI: 0.14-0.76, p = 0.009). No significant difference was found in the rate of bleeding events between intensified and standard protocol. Compared with standard clopidogrel therapy, individualized intensified antiplatelet therapy on the basis of platelet reactivity testing reduces the incidence of cardiovascular events in patient undergoing PCI, without increasing the risk of bleeding.

  4. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    SciTech Connect

    Mold, C.; Cooper, N.R.; Nemerow, G.R.

    1986-06-01

    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into /sup 14/C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV.

  5. The structure of bradyzoite-specific enolase from Toxoplasma gondii reveals insights into its dual cytoplasmic and nuclear functions

    SciTech Connect

    Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.; Minasov, George; Anderson, Wayne F.; Tomavo, Stanislas; Ngô, Huân M.

    2015-03-01

    The second crystal structure of a parasite protein preferentially enriched in the brain cyst of T. gondii has been solved at 2.75 Å resolution. Bradyzoite enolase 1 is reported to have differential functions as a glycolytic enzyme and a transcriptional regulator in bradyzoites. In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.

  6. MS_RHII-RSD, a Dual-Function RNase HII-(p)ppGpp Synthetase from Mycobacterium smegmatis

    PubMed Central

    Murdeshwar, Maya S.

    2012-01-01

    In the noninfectious soil saprophyte Mycobacterium smegmatis, intracellular levels of the stress alarmones guanosine tetraphosphate and guanosine pentaphosphate, together termed (p)ppGpp, are regulated by the enzyme RelMsm. This enzyme consists of a single, bifunctional polypeptide chain that is capable of both synthesizing and hydrolyzing (p)ppGpp. The relMsm knockout strain of M. smegmatis (ΔrelMsm) is expected to show a (p)ppGpp null [(p)ppGpp0] phenotype. Contrary to this expectation, the strain is capable of synthesizing (p)ppGpp in vivo. In this study, we identify and functionally characterize the open reading frame (ORF), MSMEG_5849, that encodes a second functional (p)ppGpp synthetase in M. smegmatis. In addition to (p)ppGpp synthesis, the 567-amino-acid-long protein encoded by this gene is capable of hydrolyzing RNA·DNA hybrids and bears similarity to the conventional RNase HII enzymes. We have classified this protein as actRelMsm in accordance with the recent nomenclature proposed and have named it MS_RHII-RSD, indicating the two enzymatic activities present [RHII, RNase HII domain, originally identified as domain of unknown function 429 (DUF429), and RSD, RelA_SpoT nucleotidyl transferase domain, the SYNTH domain responsible for (p)ppGpp synthesis activity]. MS_RHII-RSD is expressed and is constitutively active in vivo and behaves like a monofunctional (p)ppGpp synthetase in vitro. The occurrence of the RNase HII and (p)ppGpp synthetase domains together on the same polypeptide chain is suggestive of an in vivo role for this novel protein as a link connecting the essential life processes of DNA replication, repair, and transcription to the highly conserved stress survival pathway, the stringent response. PMID:22636779

  7. Dual-acting, function-responsive, and high drug payload nanospheres for combining simplicity and efficacy in both self-targeted multi-drug co-delivery and synergistic anticancer effect.

    PubMed

    Li, Yang; Lin, Jinyan; Liu, Guihua; Ma, Jinyuan; Xie, Liya; Guo, Fuqiang; Zhu, Xuan; Hou, Zhenqing

    2016-10-15

    Recently, the global trend in the field of nanomedicine has been toward the design of highly sophisticated drug delivery systems with specific targeting and synergistic therapeutic functions for improving therapeutic efficacy. But offering sophistication generally increases their complexity that might be disadvantageous in pharmaceutical development. We hypothesize that using a macromolecular prodrug with a dual role will be conductive to integrating its dual function into self-targeted multidrug co-delivery and combination cancer therapy. In this paper, the on-off switching function-responsive, macromolecular methotrexate (MTX) prodrug-self-targeted, controlled-/sustained-release, and high drug-loading hydroxylcamptothecin (HCPT) drug nanospheres were prepared and characterized. The self-targeting system can co-deliver multi-drug to different action sites with distinct anticancer mechanisms to specifically target folate receptors-overexpressing cancer cells with synergistic therapeutic efficiency. Copyright © 2016. Published by Elsevier B.V.

  8. Dual functions of α-ketoglutarate dehydrogenase E2 in the Krebs cycle and mitochondrial DNA inheritance in Trypanosoma brucei.

    PubMed

    Sykes, Steven E; Hajduk, Stephen L

    2013-01-01

    The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis.

  9. A dual function for chaperones SSB–RAC and the NAC nascent polypeptide–associated complex on ribosomes

    PubMed Central

    Koplin, Ansgar; Preissler, Steffen; Ilina, Yulia; Koch, Miriam; Scior, Annika; Erhardt, Marc

    2010-01-01

    The yeast Hsp70/40 system SSB–RAC (stress 70 B–ribosome-associated complex) binds to ribosomes and contacts nascent polypeptides to assist cotranslational folding. In this study, we demonstrate that nascent polypeptide–associated complex (NAC), another ribosome-tethered system, is functionally connected to SSB–RAC and the cytosolic Hsp70 network. Simultaneous deletions of genes encoding NAC and SSB caused conditional loss of cell viability under protein-folding stress conditions. Furthermore, NAC mutations revealed genetic interaction with a deletion of Sse1, a nucleotide exchange factor regulating the cytosolic Hsp70 network. Cells lacking SSB or Sse1 showed protein aggregation, which is enhanced by additional loss of NAC; however, these mutants differ in their potential client repertoire. Aggregation of ribosomal proteins and biogenesis factors accompanied by a pronounced deficiency in ribosomal particles and translating ribosomes only occurs in ssbΔ and nacΔssbΔ cells, suggesting that SSB and NAC control ribosome biogenesis. Thus, SSB–RAC and NAC assist protein folding and likewise have important functions for regulation of ribosome levels. These findings emphasize the concept that ribosome production is coordinated with the protein-folding capacity of ribosome-associated chaperones. PMID:20368618

  10. Characterization of mouse lysophosphatidic acid acyltransferase 3: an enzyme with dual functions in the testis1s⃞

    PubMed Central

    Yuki, Koichi; Shindou, Hideo; Hishikawa, Daisuke; Shimizu, Takao

    2009-01-01

    Glycerophospholipids are structural and functional components of cellular membranes as well as precursors of various lipid mediators. Using acyl-CoAs as donors, glycerophospholipids are formed by the de novo pathway (Kennedy pathway) and modified in the remodeling pathway (Lands' cycle). Various acyltransferases, including two lysophosphatidic acid acyltransferases (LPAATs), have been discovered from a 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family. Proteins of this family contain putative acyltransferase motifs, but their biochemical properties and physiological roles are not completely understood. Here, we demonstrated that mouse LPAAT3, previously known as mouse AGPAT3, possesses strong LPAAT activity and modest lysophosphatidylinositol acyltransferase activity with a clear preference for arachidonoyl-CoA as a donor. This enzyme is highly expressed in the testis, where CDP-diacylglycerol synthase 1 preferring 1-stearoyl-2-arachidonoyl-phosphatidic acid as a substrate is also highly expressed. Since 1-stearoyl-2-arachidonoyl species are the main components of phosphatidylinositol, mouse LPAAT3 may function in both the de novo and remodeling pathways and contribute to effective biogenesis of 1-stearoyl-2-arachidonoyl-phosphatidylinositol in the testis. Additionally, the expression of this enzyme in the testis increases significantly in an age-dependent manner, and β-estradiol may be an important regulator of this enzyme's induction. Our findings identify this acyltransferase as an alternative important enzyme to produce phosphatidylinositol in the testis. PMID:19114731

  11. Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons.

    PubMed

    Calderari, Sophie; Ria, Massimiliano; Gérard, Christelle; Nogueira, Tatiane C; Villate, Olatz; Collins, Stephan C; Neil, Helen; Gervasi, Nicolas; Hue, Christophe; Suarez-Zamorano, Nicolas; Prado, Cécilia; Cnop, Miriam; Bihoreau, Marie-Thérèse; Kaisaki, Pamela J; Cazier, Jean-Baptiste; Julier, Cécile; Lathrop, Mark; Werner, Michel; Eizirik, Decio L; Gauguier, Dominique

    2017-09-11

    The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q<0.05; enrichment range 1.40-9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting β-cells and neurons and underline the existence of trans‑nosology pathways in diabetes and its co-morbidities. Copyright © 2017. Published by Elsevier Inc.

  12. Dual functions of Macpiwi1 in transposon silencing and stem cell maintenance in the flatworm Macrostomum lignano

    PubMed Central

    Zhou, Xin; Battistoni, Giorgia; El Demerdash, Osama; Gurtowski, James; Wunderer, Julia; Falciatori, Ilaria; Ladurner, Peter; Schatz, Michael C.; Hannon, Gregory J.; Wasik, Kaja A.

    2015-01-01

    PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations. PMID:26323280

  13. How does a protein with dual mitotic spindle and extracellular matrix receptor functions affect tumor susceptibility and progression?

    PubMed Central

    Tolg, Cornelia; McCarthy, James B

    2011-01-01

    The mechanisms responsible for the oncogenic effects of the hyaluronan (HA) receptor and mitotic spindle binding protein, RHAMM, are poorly understood. On one hand, extracellular RHAMM interacts with HA and cellsurface receptors such as CD44 to coordinately activate the MAPK/ERK1,2 pathway, thus contributing to the spread and proliferation of tumor cells. On the other hand, intracellular RHAMM decorates mitotic spindles and is necessary for spindle formation and progression through G2/M and overexpression or loss of RHAMM can result in multipole spindles and chromosome missegregation. The deregulation of these intracellular functions could lead to genomic instability and fuel tumor progression. This suggests that both extracellular and intracellular RHAMM can promote tumor progression. Intracellular RHAMM can bind directly to ERK1 to form complexes with ERK2, MEK1 and ERK1,2 substrates, and we present a model whereby RHAMM's function is as a scaffold protein, controlling activation and targeting of ERK1,2 to specific substrates. PMID:21655434

  14. Inhibition of Ninjurin 1 restores erectile function through dual angiogenic and neurotrophic effects in the diabetic mouse

    PubMed Central

    Yin, Guo Nan; Choi, Min Ji; Kim, Woo Jean; Kwon, Mi-Hye; Song, Kang-Moon; Park, Jin-Mi; Das, Nando Dulal; Kwon, Ki-Dong; Batbold, Dulguun; Oh, Goo Taeg; Koh, Gou Young; Kim, Kyu-Won; Ryu, Ji-Kan; Suh, Jun-Kyu

    2014-01-01

    Penile erection is a neurovascular phenomenon, and erectile dysfunction (ED) is caused mainly by vascular risk factors or diseases, neurologic abnormalities, and hormonal disturbances. Men with diabetic ED often have severe endothelial dysfunction and peripheral nerve damage, which result in poor response to oral phosphodiesterase-5 inhibitors. Nerve injury-induced protein 1 (Ninjurin 1, Ninj1) is known to be involved in neuroinflammatory processes and to be related to vascular regression during the embryonic period. Here, we demonstrate in streptozotocin-induced diabetic mice that inhibition of the Ninj1 pathway by administering Ninj1-neutralizing antibody (Ninj1-Ab) or by using Ninj1-knockout mice successfully restored erectile function through enhanced penile angiogenesis and neural regeneration. Angiopoietin-1 (Ang1) expression was down-regulated and angiopoietin-2 expression was up-regulated in the diabetic penis compared with that in controls, and these changes were reversed by treatment with Ninj1-Ab. Ninj1 blockade-mediated penile angiogenesis and neural regeneration as well as recovery of erectile function were abolished by inhibition of Ang1–Tie2 (tyrosine kinase with Ig and epidermal growth factor homology domain-2) signaling with soluble Tie2 antibody or Ang1 siRNA. The present results suggest that inhibition of the Ninj1 pathway will be a novel therapeutic strategy for treating ED. PMID:24979788

  15. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions

    PubMed Central

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He, Jr-Hau; Lee, Si-Chen

    2016-01-01

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<±1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device. PMID:27052322

  16. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions.

    PubMed

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He, Jr-Hau; Lee, Si-Chen

    2016-04-07

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<± 1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device.

  17. The structure of bradyzoite-specific enolase from Toxoplasma gondii reveals insights into its dual cytoplasmic and nuclear functions

    PubMed Central

    Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.; Minasov, George; Anderson, Wayne F.; Tomavo, Stanislas; Ngô, Huân M.

    2015-01-01

    In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts. PMID:25760592

  18. Dual functions of Macpiwi1 in transposon silencing and stem cell maintenance in the flatworm Macrostomum lignano.

    PubMed

    Zhou, Xin; Battistoni, Giorgia; El Demerdash, Osama; Gurtowski, James; Wunderer, Julia; Falciatori, Ilaria; Ladurner, Peter; Schatz, Michael C; Hannon, Gregory J; Wasik, Kaja A

    2015-11-01

    PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations. © 2015 Zhou et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Optimization and extraction of functional information from in vitro flow models using dual-beam spectral-domain optical coherence tomography cross-correlation analysis.

    PubMed

    Daly, Susan M; Silien, Christophe; Leahy, Martin J

    2013-10-01

    As in vivo flow behavior can be pulsatile, intermittent, and/or otherwise changeable with time, the ability to provide clinicians with a means of real-time visualization and functional assessment of structures is of particular importance. The discernment of pulsatile flow behavior using a dual-beam spectral domain optical coherence tomography system (db-SdOCT) by quasi-simultaneous measurement by two planes of illumination is demonstrated. By cross-correlation analysis, it is possible to compute velocity metrics pertaining to flowing particle motion, without a priori angular knowledge. This is the first application of cross-correlation-based dynamic assessment for the extraction of pulsatile behavior in an in vitro environment using an optimized db-SdOCT system. The experimental results outlined have shown the db-SdOCT system and its associated algorithms to be successful in the discernment of intermittent pulsatile flow behavior in in vitro models, concurrent to yielding velocity values in good agreement with that of the applied flow rate.

  20. Copper-Nitride Nanowires Array: An Efficient Dual-Functional Catalyst Electrode for Sensitive and Selective Non-Enzymatic Glucose and Hydrogen Peroxide Sensing.

    PubMed

    Wang, Zao; Cao, Xiaoqin; Liu, Danni; Hao, Shuai; Kong, Rongmei; Du, Gu; Asiri, Abdullah M; Sun, Xuping

    2017-04-11

    It is highly attractive to develop non-noble-metal nanoarray architecture as a 3D-catalyst electrode for molecular detection due to its large specific surface area and easy accessibility to target molecules. Here, we report the development of a copper-nitride nanowires array on copper foam (Cu3 N NA/CF) as a dual-functional catalyst electrode for efficient glucose oxidation in alkaline solutions and hydrogen peroxide (H2 O2 ) reduction in neutral solutions. Electrochemical tests indicate that such Cu3 N NA/CF possesses superior non-enzymatic sensing ability toward rapid glucose and H2 O2 detection with high selectivity. At 0.40 V, this sensor offers a high sensitivity of 14 180 μA mm cm(-2) for glucose detection, with a wide linear range from 1 μm to 2 mm, a low detection limit of 13 nm (S/N=3), and satisfactory stability and reproducibility. Its application in determining glucose in human blood serum is also demonstrated. Amperometric H2 O2 sensing can also been realized with a sensitivity of 7600 μA mm cm(-2) , a linear range from 0.1 μm to 10 mm, and a detection limit of 8.9 nm (S/N=3). This 3D-nanoarray architecture holds great promise as an attractive sensing platform toward electrochemical small molecules detection.

  1. Sensitive immunosensor for tumor necrosis factor α based on dual signal amplification of ferrocene modified self-assembled peptide nanowire and glucose oxidase functionalized gold nanorod.

    PubMed

    Sun, Zhifang; Deng, Liu; Gan, Hao; Shen, Rujuan; Yang, Minghui; Zhang, Yi

    2013-01-15

    Sensitive electrochemical immunosensor for the detection of protein biomarker tumor necrosis factor α (TNF-α) was reported that uses ferrocene carboxylic acid (Fc) functionalized self-assembled peptide nanowire (Fc-PNW) as sensor platform and glucose oxidase (GOx) modified gold nanorod (GNR) as label. Greatly enhanced sensitivity is achieved based on a dual signal amplification strategy: first, the synthesized Fc-PNW used as the sensor platform increased the loading of primary anti-TNF-α antibody (Ab(1)) onto electrode surface due to its large surface area. At the same time, the Fc moiety on the nanowire is used as a mediator for GOx to catalyze the glucose reaction. Second, multiple GOx and secondary anti-TNF-α antibody (Ab(2)) molecules are bounded onto each GNR to increase the sensitivity of the immunosensor. After the preparation of the immunosensor based on the traditional sandwich protocol, the response of the immunosensor towards glucose was used as a signal to differentiate various concentrations of TNF-α. The resulting immunosensor has high sensitivity, wide linear range (0.005-10ng/mL) and good selectivity. This immunosensor preparation strategy is a promising platform for clinical screening of protein biomarkers.

  2. Preparation of dual-function starch-based flocculants for the simultaneous removal of turbidity and inhibition of Escherichia coli in water.

    PubMed

    Huang, Mu; Wang, Yawen; Cai, Jun; Bai, Junfeng; Yang, Hu; Li, Aimin

    2016-07-01

    A dual-function starch-based flocculant, carboxymethyl-starch-graft-aminomethylated-polyacrylamide (CMS-g-APAM), was designed and prepared by a simple method. The structure and solution properties of CMS-g-APAM were characterized by fourier transform infrared spectroscopy, (1)H nuclear magnetic resonance, and zeta-potential measurements. CMS-g-APAM was then applied to flocculate a kaolin suspension and an Escherichia coli suspension as well as a combination thereof. At suitable pH conditions, the starch-based flocculant not only effectively removed turbidity but it also disrupted bacterial cells. Interpretation of the zeta potential and floc properties (floc size and two-dimensional fractal structure) showed that, for the aforementioned three effluents, simple charge neutralization was the dominant mechanism of flocculation in acidic medium whereas an additional contribution from a patching effect was determined under neutral conditions. Three-dimensional excitation-emission matrix spectra and direct surface morphology observation under a scanning electron microscope both illuminated that the antibacterial activity of CMS-g-APAM involved the partial destruction of the cell wall of Escherichia coli. The mechanism can be attributed to the effective interaction between the tertiary amine group of the flocculant and the negatively charged surface of the bacterium.

  3. Surface functionalization of microgrooved titanium with dual growth factor-releasing nanoparticles for synergistic osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Lee, Suk Won; Lee, Hong Jae; Lee, Jae Won; Kim, Kyung-Hee; Kang, Jong-Ho; Lee, Myung Hyun; Lee, Sang Cheon

    2015-11-01

    We demonstrate that dual release of bone morphogenic protein-2 (BMP-2) and insulin-like growth factor-1 (IGF-1) by catechol-functionalized adhesive polymer nanoparticles on microgrooved titanium (Ti) surface enhances in vitro osteoblastic differentiation of human mesenchymal stem cells (MSCs). The nanoparticles consisted of three distinct domains, surface Ti-adhesive catechol groups, anionic poly(L-aspartic acid) (PAsp) shells, and hydrophobic poly(L-phenylalanine) (PPhe) cores. The immobilization of the adhesive nanoparticles onto microgrooved Ti surface was verified using various surface analytical tools, such as field-emission scanning electron microscopy (Fe-SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement. The nanoparticles were immobilized both on the groove bottom surface and the ridge top surface with a similar anchoring density. A fluorescence microscope visualized that BMP-2 and IGF-1 of positive charges were efficiently loaded onto the negatively charged PAsp shells of immobilized nanoparticles. We confirmed the enhanced osteoblastic differentiation of MSCs by presenting the expression results of major osteoblast marker genes and proteins. In addition, overall significant correlations between the experimental results verified the validity of our study. The proposed combined surface of microgrooves and growth factor-releasing nanoparticles can be used as a strong osteogenic promoter on various biomaterial surfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Derivatization following hollow-fiber microextraction with tetramethylammonium acetate as a dual-function reagent for the determination of benzoic acid and sorbic acid by GC.

    PubMed

    Sun, Yang; Wang, Xiaoqing; Huang, Yilei; Pan, Zaifa; Wang, Lili

    2013-07-01

    Derivatization at the injection port following hollow-fiber-based liquid-liquid-liquid microextraction with tetramethylammonium acetate as a dual-function reagent, i.e. an acceptor and derivatization reagent, for the determination of benzoic acid (BA) and sorbic acid (SA) in real samples by GC was developed. BA and SA were extracted from aqueous samples to an organic phase impregnated into the pores of the hollow fiber wall, and then back-extracted to the acceptor solution located inside the lumen of the hollow fiber. Upon injection, the extracted analytes were quantitatively derivatized to their methyl esters with tetramethylammonium acetate in the GC injection port. Several parameters related to the derivatization and extraction efficiency were optimized. The linearity was satisfactory over a concentration range of 0.1-50 mg/L with r > 0.993 for both analytes. The LODs were 2.0 μg/L for SA and 20 μg/L for BA. The recoveries (83-116%) and precisions (RSDs of 1.2-11.4% (n = 3)) were examined by analyzing real spiked samples. The enrichment factors of BA and SA were 300 and 425. The results demonstrated that this is a simple, rapid, accurate, and sensitive method for the determination of BA and SA in various samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. New ruthenium sensitizers featuring bulky ancillary ligands combined with a dual functioned coadsorbent for high efficiency dye-sensitized solar cells.

    PubMed

    Shi, Yongbo; Liang, Mao; Wang, Lina; Han, Hongyu; You, Lingshan; Sun, Zhe; Xue, Song

    2013-01-01

    Two ruthenium complexes featuring bulky ancillary ligands, XS48 and XS49, were synthesized and studied as dyes in dye-sensitized solar cells (DSCs). Both dyes exhibit higher solar-to-electrical energy conversion efficiency when compared to a commonly used N3 sensitizer under the same conditions. To examine the influence of the bulky ancillary ligands and alleviate the electron recombination in cells, we have developed a dual functioned truxene-based coadsorbent (MXD1) as an alternative candidate to chenodeoxycholic acid (CDCA). This coadsorbent not only effectively shields the back electron transfer from the TiO(2) to I(3)(-) ions but also enhances the light harvesting ability in the short wavelength regions. The photovoltaic performance of XS48-sensitized DSC was independent of the coadsorbents, while XS49 with large bulky ancillary ligand presented better performance when coadsorbent was employed. Interestingly, the simultaneous adsorption-to-sequential adsorption of XS48/49 and MXD1 has caused a notably improved photovoltage, which can be primarily ascribed to the enhanced dye adsorption and retardation of charge recombination. These results not only provide a new vision on how ancillary ligands affect the performance of ruthenium complexes but also open up a new way to achieve further efficiency enhancement of ruthenium complexes.

  6. Optimization of air-borne butyl acetate adsorption on dual-function Ag-Y adsorbent-catalyst using response surface methodology.

    PubMed

    Bhatia, Subhash; Wong, Cheng Teng; Abdullah, Ahmad Zuhairi

    2009-05-30

    The low concentration and high flow rate of air-borne butyl acetate (BA) could be effectively removed using combined adsorption-catalytic oxidation system. Ag-Y (Si/Al=80) dual-function adsorbent was investigated for the adsorption step of 1000 ppm of butyl acetate at gas hourly space velocity of 13,000 h(-1) at ambient temperature under dry and humid feeds. A central composite design (CCD) coupled with response surface methodology (RSM) was employed to obtain the optimum process conditions and the interactions between process variables were demonstrated and elucidated. Humidity and increasing organic concentration shortened the adsorption service time. The effect of moisture was more pronounced at low BA concentration. The interactions between the BA concentration and humidity were statistically significant at 95% confidence level. The optimum conditions were found to be at 4500 ppm of BA with 37 min saturation time to give 58 mg BA/g as adsorption capacity. The simulated data fitted the experimental data satisfactorily. The simulated data also correctly demonstrated the overall behaviors of the adsorption process.

  7. Simple fabrication of carbon/TiO2 composite nanotubes showing dual functions with adsorption and photocatalytic decomposition of Rhodamine B.

    PubMed

    Im, Ji Hyuk; Yang, Seung Jae; Yun, Chang Hun; Park, Chong Rae

    2012-01-27

    Carbon/TiO2 composite nanotubes were fabricated via a very simple electrospinning process and their dual functionalities of adsorptivity and photocatalytic activity were evaluated using Rhodamine B (RhB) as a model organic pollutant. A poly(vinyl alcohol) (PVA) aqueous solution was directly electrospun into a coagulation bath containing titanium (IV) tetraisopropoxide (TTIP) solution so that PVA-core/TiO2-shell composite nanofibers were formed through the in situ sol-gel reaction of TTIP. The carbon/TiO2 composite nanotubes were then fabricated by heat treatment of composite nanofibers under nitrogen atmosphere. By using several characterization methods, we confirmed that the resultant nanotubes consisted of anatase TiO2 nanocrystallites embedded in a carbonaceous matrix. The prepared nanotubes exhibited fast adsorption of RhB with high capacity compared with a commercial porous carbon, and they also showed the photocatalytic decomposition activity for the dye molecules under UV irradiation comparable to the degradation by P-25 and ST-01 (commercial TiO2). Finally, the carbon/TiO2 composite nanotubes exhibited several cycle performances of adsorption-photodegradation for RhB. This indicates that the composite nanotubes can adsorb and photodecompose organic pollutants repeatedly without additional activating processes.

  8. Simple fabrication of carbon/TiO2 composite nanotubes showing dual functions with adsorption and photocatalytic decomposition of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Im, Ji Hyuk; Yang, Seung Jae; Yun, Chang Hun; Park, Chong Rae

    2012-01-01

    Carbon/TiO2 composite nanotubes were fabricated via a very simple electrospinning process and their dual functionalities of adsorptivity and photocatalytic activity were evaluated using Rhodamine B (RhB) as a model organic pollutant. A poly(vinyl alcohol) (PVA) aqueous solution was directly electrospun into a coagulation bath containing titanium (IV) tetraisopropoxide (TTIP) solution so that PVA-core/TiO2-shell composite nanofibers were formed through the in situ sol-gel reaction of TTIP. The carbon/TiO2 composite nanotubes were then fabricated by heat treatment of composite nanofibers under nitrogen atmosphere. By using several characterization methods, we confirmed that the resultant nanotubes consisted of anatase TiO2 nanocrystallites embedded in a carbonaceous matrix. The prepared nanotubes exhibited fast adsorption of RhB with high capacity compared with a commercial porous carbon, and they also showed the photocatalytic decomposition activity for the dye molecules under UV irradiation comparable to the degradation by P-25 and ST-01 (commercial TiO2). Finally, the carbon/TiO2 composite nanotubes exhibited several cycle performances of adsorption-photodegradation for RhB. This indicates that the composite nanotubes can adsorb and photodecompose organic pollutants repeatedly without additional activating processes.

  9. Optical and electrochemical dual channel sensing of Cu2 + using functionalized furo[2,3-d]pyrimidines-2,4[1H,3H]-diones

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Kumawat, Lokesh Kumar; Bhatt, Priyanka; Jha, Anjali; Agarwal, Shilpi; Sharma, Anuj; Gupta, Vinod Kumar

    2017-06-01

    Owing to their easy accessibility and high degree of structural and functional diversity, many multicomponent reactions (MCRs) have been a rich source of conjugate π-systems, functionalised chromophores (or fluorophore) and redox active molecules. Despite their high explorative potential and practical benefits, only a few MCR products have been so far investigated for their metal sensing abilities. In the present report, two furopyrimidinones (FPys) based molecular systems have been synthesized by [4 + 1] cycloaddition based MCR sequence. Designed chemosensors displayed optic (absorption spectra) as well as electroanalytical (ion selective electrode) response toward Cu2 + ion in solution and membrane phase respectively (dual channel sensing). Different aspects of both the sensing phenomena such as selectivity, association constants, detection limit, membrane composition etc. were studied in detail using UV-Vis spectroscopy, NMR titration and cell assembly. Both the compounds showed excellent performance characteristics such as high selectivity, acceptable affinity and low detection limits (10- 7 M) in both sensing assays with potential utility in the area of sample monitoring.

  10. Hydroxyethyl cellulose doped with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as an effective dual functional hole-blocking layer for polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Liang; Chen, Yun

    2017-07-01

    We report a doping method to improve the performance of solution-processed polymer light-emitting diodes (PLEDs). Doping 12 wt% copper(II) phthalocyanine-tetrasulfonated acid tetrasodium salt (TS-CuPc) into hydroxyethyl cellulose (HEC) as a dual functional hole-blocking layer (df-HBL) of multilayer PLED (glass/ITO/PEDOT:PSS/HY-PPV/TS-CuPc-doped HEC/LiF/Al) significantly enhanced maximum luminance, maximum current and power efficiency over that without the df-HBL (10,319 cd/m2, 2.98 cd/A and 1.24 lm/W) to (29,205 cd/m2, 13.27 cd/A and 9.56 lm/W). CV measurements reveal that HEC possesses a powerful hole-blocking capability. Topography and conductivity AFM images show that doping TS-CuPc increases the interfacial contact area and interfacial conductivity, which can overcome the insulating nature of HEC and thus further facilitate electron injection. Enhancements in device performance are attributed to the improved carrier balance and recombination in the presence of df-HBL, confirmed in electron-only and hole-only devices. Moreover, apparently raised open-circuit voltages provide further evidence that enhanced electron injection is indeed realized by the df-HBL. This study demonstrates an effective approach to develop highly efficient PLEDs.

  11. The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni.

    PubMed

    Dugar, Gaurav; Svensson, Sarah L; Bischler, Thorsten; Wäldchen, Sina; Reinhardt, Richard; Sauer, Markus; Sharma, Cynthia M

    2016-05-27

    The widespread CsrA/RsmA protein regulators repress translation by binding GGA motifs in bacterial mRNAs. CsrA activity is primarily controlled through sequestration by multiple small regulatory RNAs. Here we investigate CsrA activity control in the absence of antagonizing small RNAs by examining the CsrA regulon in the human pathogen Campylobacter jejuni. We use genome-wide co-immunoprecipitation combined with RNA sequencing to show that CsrA primarily binds flagellar mRNAs and identify the major flagellin mRNA (flaA) as the main CsrA target. The flaA mRNA is translationally repressed by CsrA, but it can also titrate CsrA activity. Together with the main C. jejuni CsrA antagonist, the FliW protein, flaA mRNA controls CsrA-mediated post-transcriptional regulation of other flagellar genes. RNA-FISH reveals that flaA mRNA is expressed and localized at the poles of elongating cells. Polar flaA mRNA localization is translation dependent and is post-transcriptionally regulated by the CsrA-FliW network. Overall, our results suggest a role for CsrA-FliW in spatiotemporal control of flagella assembly and localization of a dual-function mRNA.

  12. The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni

    PubMed Central

    Dugar, Gaurav; Svensson, Sarah L.; Bischler, Thorsten; Wäldchen, Sina; Reinhardt, Richard; Sauer, Markus; Sharma, Cynthia M.

    2016-01-01

    The widespread CsrA/RsmA protein regulators repress translation by binding GGA motifs in bacterial mRNAs. CsrA activity is primarily controlled through sequestration by multiple small regulatory RNAs. Here we investigate CsrA activity control in the absence of antagonizing small RNAs by examining the CsrA regulon in the human pathogen Campylobacter jejuni. We use genome-wide co-immunoprecipitation combined with RNA sequencing to show that CsrA primarily binds flagellar mRNAs and identify the major flagellin mRNA (flaA) as the main CsrA target. The flaA mRNA is translationally repressed by CsrA, but it can also titrate CsrA activity. Together with the main C. jejuni CsrA antagonist, the FliW protein, flaA mRNA controls CsrA-mediated post-transcriptional regulation of other flagellar genes. RNA-FISH reveals that flaA mRNA is expressed and localized at the poles of elongating cells. Polar flaA mRNA localization is translation dependent and is post-transcriptionally regulated by the CsrA-FliW network. Overall, our results suggest a role for CsrA-FliW in spatiotemporal control of flagella assembly and localization of a dual-function mRNA. PMID:27229370

  13. A functional near-infrared spectroscopy study of lexical decision task supports the dual route model and the phonological deficit theory of dyslexia.

    PubMed

    Sela, Itamar; Izzetoglu, Meltem; Izzetoglu, Kurtulus; Onaral, Banu

    2014-01-01

    The dual route model (DRM) of reading suggests two routes of reading development: the phonological and the orthographic routes. It was proposed that although the two routes are active in the process of reading; the first is more involved at the initial stages of reading acquisition, whereas the latter needs more reading training to mature. A number of studies have shown that deficient phonological processing is a core deficit in developmental dyslexia. According to the DRM, when the Lexical Decision Task (LDT) is performed, the orthographic route should also be involved when decoding words, whereas it is clear that when decoding pseudowords the phonological route should be activated. Previous functional near-infrared spectroscopy (fNIR) studies have suggested that the upper left frontal lobe is involved in decision making in the LDT. The current study used fNIR to compare left frontal lobe activity during LDT performance among three reading-level groups: 12-year-old children, young adult dyslexic readers, and young adult typical readers. Compared to typical readers, the children demonstrated lower activity under the word condition only, whereas the dyslexic readers showed lower activity under the pseudoword condition only. The results provide evidence for upper left frontal lobe involvement in LDT and support the DRM and the phonological deficit theory of dyslexia.

  14. Controlled Architecture of Dual-Functional Block Copolymer Brushes on Thin-Film Composite Membranes for Integrated "Defending" and "Attacking" Strategies against Biofouling.

    PubMed

    Ye, Gang; Lee, Jongho; Perreault, François; Elimelech, Menachem

    2015-10-21

    We report a new macromolecular architecture of dual functional block copolymer brushes on commercial thin-film composite (TFC) membranes for integrated "defending" and "attacking" strategies against biofouling. Mussel-inspired catechol chemistry is used for a convenient immobilization of initiator molecules to the membrane surface with the aid of polydopamine (PDA). Zwitterionic polymer brushes with strong hydration capacity and quaternary ammonium salt (QAS) polymer brushes with bactericidal ability are sequentially grafted on TFC membranes via activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP), an environmentally benign and controlled polymerization method. Measurement of membrane intrinsic transport properties in reverse osmosis experiments shows that the modified TFC membrane maintains the same water permeability and salt selectivity as the pristine TFC membrane. Chemical force microscopy and protein/bacterial adhesion studies are carried out for a comprehensive evaluation of the biofouling resistance and antimicrobial ability, demonstrating low biofouling propensity and excellent bacterial inactivation for the modified TFC membrane. We conclude that this polymer architecture, with complementary "defending" and "attacking" capabilities, can effectively prevent the attachment of biofoulants and formation of biofilms and thereby significantly mitigate biofouling on TFC membranes.

  15. Dual Functional Core-Shell Fluorescent Ag2S@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment.

    PubMed

    Wang, Ning; Wei, Xing; Zheng, An-Qi; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2017-03-24

    A dual functional fluorescent core-shell Ag2S@Carbon nanostructure is prepared by a hydrothermally assisted multi-amino synthesis approach with folic acid (FA), polyethylenimine (PEI), and mannoses (Mans) as carbon and nitrogen sources (FA-PEI-Mans-Ag2S nanocomposite shortly as Ag2S@C). The nanostructure exhibits strong fluorescent emission at λex/λem = 340/450 nm with a quantum yield of 12.57 ± 0.52%. Ag2S@C is bound to E. coli O157:H7 via strong interaction with the Mans moiety in Ag2S@C with FimH proteins on the fimbriae tip in E. coli O157:H7. Fluorescence emission from Ag2S@C/E. coli conjugate is closely related to the content of E. coli O157:H7. Thus, a novel procedure for fluorescence assay of E. coli O157:H7 is developed, offering a detection limit of 330 cfu mL(-1). Meanwhile, the Ag2S@C nanostructure exhibits excellent antibacterial performance against E. coli O157:H7. A 99.9% sterilization rate can be readily achieved for E. coli O157:H7 at a concentration of 10(6)-10(7) cfu mL(-1) with 3.3 or 10 μg mL(-1) of Ag2S@C with an interaction time of 5 or 0.5 min, respectively.

  16. Mastocarcinoma therapy synergistically promoted by lysosome dependent apoptosis specifically evoked by 5-Fu@nanogel system with passive targeting and pH activatable dual function.

    PubMed

    Zhu, Xiandi; Sun, Yn; Chen, Di; Li, Jingfeng; Dong, Xia; Wang, Jie; Chen, Huaiwen; Wang, Ying; Zhang, Fulei; Dai, Jinaxin; Pirraco, Rogério P; Guo, Shangjing; Marques, Alexandra P; Reis, Rui L; Li, Wei

    2017-03-22

    This manuscript describes a synergistic therapy for mastocarcinoma by pH and temperature dual-sensitive nanogel, and effects of microstructure, composition and properties of nanogel on the cellular response mechanism. The extracellular internalization of nanogels was obviously enhanced, due to the passive targeting function at T>VPTT. Interestingly, the increased cytotoxicity was further synergistically enhanced by an unexpected apoptosis as evoked by the 5-fluorouracil loaded nanogel (FLNG). The systemically evaluation of the effectors generated from different sub-cellular organelles including endosome, lysosome, autophagosome confirmed that it was a lysomal dependent apoptosis. Such specific apoptosis was mainly attributed to its activatable protonated PEI at low pH, which caused lysosomal membrane destruction and lysosomal enzyme cathepsin B (Cat B) leakage. This Cat B was then translocated to the mitochondria resulting in mitochondrial membrane permeability increase and mitochondrial membrane potential (MMP) decrease, followed by cytochrome c (Cyt C) release. Cyt C was the main molecule that evoked apoptosis as reflected by overexpression of caspase 9. Additionally, such lysosome dependent, apoptosis was further enhanced by the passive cellular targeting at T>VPTT. Thus, the tumor growth inhibition was synergistically enhanced by the extracellular temperature dependent passive targeting and intracellular pH activatable lysosomal dependent apoptosis.

  17. From the dual function lead AP2238 to AP2469, a multi-target-directed ligand for the treatment of Alzheimer's disease.

    PubMed

    Tarozzi, Andrea; Bartolini, Manuela; Piazzi, Lorna; Valgimigli, Luca; Amorati, Riccardo; Bolondi, Cecilia; Djemil, Alice; Mancini, Francesca; Andrisano, Vincenza; Rampa, Angela

    2014-04-01

    The development of drugs with different pharmacological properties appears to be an innovative therapeutic approach for Alzheimer's disease. In this article, we describe a simple structural modification of AP2238, a first dual function lead, in particular the introduction of the catechol moiety performed in order to search for multi-target ligands. The new compound AP2469 retains anti-acetylcholinesterase (AChE) and beta-site amyloid precursor protein cleaving enzyme (BACE)1 activities compared to the reference, and is also able to inhibit Aβ 42 self-aggregation, Aβ 42 oligomer-binding to cell membrane and subsequently reactive oxygen species formation in both neuronal and microglial cells. The ability of AP2469 to interfere with Aβ 42 oligomer-binding to neuron and microglial cell membrane gives this molecule both neuroprotective and anti-inflammatory properties. These findings, together with its strong chain-breaking antioxidant performance, make AP2469 a potential drug able to modify the course of the disease.

  18. Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly(o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag.

    PubMed

    Chen, Xiaojun; Zhang, Qi; Qian, Chunhua; Hao, Ning; Xu, Lin; Yao, Cheng

    2015-02-15

    Mucin 1 (MUC 1), as a most studied mucin, has become a useful marker for identifying breast cancer in the early stages. In this work, a novel method for the determination of MUC 1 in serum was developed based on a sandwich-type electrochemical aptasensor, which combined a dual signal amplification strategy of poly(o-phenylenediamine)-Au nanoparticles (PoPD-AuNPs) hybrid film as carrier and AuNPs functionalized silica/multiwalled carbon nanotubes core-shell nanocomposites (AuNPs/SiO2@MWCNTs) as tracing tag. The PoPD-AuNPs film provides a suitable microenvironment for stabilizing the primary aptamer (Apt) assembly, and the AuNPs/SiO2@MWCNTs enhances the surface area for immobilizing abundant secondary Apts as well as load large amounts of electrochemical probe thionine (Thi). In the presence of MUC 1, the sandwich-type recognition reacted on the aptasensor surface, and the Thi-AuNPs/SiO2@MWCNTs nanoprobes were captured onto the electrode surface to form biocomplex. AuNPs and MWCNTs could facilitate the electron transfer from Thi to the electrode, thus amplifying the detection response. Under the optimized experimental conditions, the proposed sensing strategy provided a wider linear dynamic range over three orders of magnitude with the detection limit down to 1 pM. Moreover, the aptasensor demonstrated good precision, acceptable stability and reproducibility.

  19. From the dual function lead AP2238 to AP2469, a multi-target-directed ligand for the treatment of Alzheimer's disease

    PubMed Central

    Tarozzi, Andrea; Bartolini, Manuela; Piazzi, Lorna; Valgimigli, Luca; Amorati, Riccardo; Bolondi, Cecilia; Djemil, Alice; Mancini, Francesca; Andrisano, Vincenza; Rampa, Angela

    2014-01-01

    The development of drugs with different pharmacological properties appears to be an innovative therapeutic approach for Alzheimer's disease. In this article, we describe a simple structural modification of AP2238, a first dual function lead, in particular the introduction of the catechol moiety performed in order to search for multi-target ligands. The new compound AP2469 retains anti-acetylcholinesterase (AChE) and beta-site amyloid precursor protein cleaving enzyme (BACE)1 activities compared to the reference, and is also able to inhibit Aβ42 self-aggregation, Aβ42 oligomer-binding to cell membrane and subsequently reactive oxygen species formation in both neuronal and microglial cells. The ability of AP2469 to interfere with Aβ42 oligomer-binding to neuron and microglial cell membrane gives this molecule both neuroprotective and anti-inflammatory properties. These findings, together with its strong chain-breaking antioxidant performance, make AP2469 a potential drug able to modify the course of the disease. PMID:25505579

  20. MnAl Layered Double Hydroxide Nanoparticles as a Dual-Functional Platform for Magnetic Resonance Imaging and siRNA Delivery.

    PubMed

    Zuo, Huali; Chen, Weiyu; Li, Bei; Xu, Kewei; Cooper, Helen; Gu, Zi; Xu, Zhi Ping

    2017-08-01

    Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese-based layered double hydroxide nanoparticles (Mn-LDH) were examined as an effective anticancer drug/gene delivery system and for T1 -weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn-LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro-2a cells (N2a). Mn-LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell-death siRNA (CD-siRNA) delivered with Mn-LDH more efficiently kills brain cancer cells than the free CD-siRNA. Moreover, Mn-LDH can act as excellent contrast agents for MRI, with an r1 value of 4.47 mm(-1)  s(-1) , which is even higher than that of commercial contrast agents based on Gd complexes (r1 =3.4 mm(-1)  s(-1) ). Altogether, the high delivery efficacy and MRI contrast capability make dual-functional Mn-LDH potential bimodal agents for simultaneous cancer diagnosis and therapy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Upconversion-luminescent/magnetic dual-functional sub-20 nm core-shell SrF2:Yb,Tm@CaF2:Gd heteronanoparticles.

    PubMed

    Li, Ai-Hua; Lü, Mengyun; Yang, Jun; Chen, Lin; Cui, Xiaohong; Sun, Zhijun

    2016-04-07

    Sub-20 nm core-shell and water-soluble SrF2:Yb,Tm@CaF2:Gd heteronanoparticles with both upconversion luminescence (UCL) and magnetic resonance imaging (MRI) capabilities were designed and synthesized via a two-step hydrothermal method. In the design of the heteronanoparticles, SrF2:Yb,Tm nanoparticles with high UCL efficiency are chosen as the core material for strong UCL output; and by epitaxially coating the SrF2:Yb,Tm core particles with inert and biocompatible shells of CaF2:Gd, the core-shell heteronanoparticles are endowed with a magnetic capability (longitudinal relaxivity of 2.4 mM(-1) s(-1)) for MRI, as well as an enhancement of the near infrared (NIR) UCL by 9.2 times. The aqueous dispersion of SrF2:Yb,Tm@CaF2:Gd heteronanoparticles with a concentration of 2.6 wt% can emit NIR UCL so as to be easily detected with a fiber optical spectrometer under illumination of a 975 nm laser diode with a power density of 8.8 W cm(-2). Such a dispersion with a Gd(3+) concentration of 0.0143 mM in the shell region of the heteronanoparticles can also generate the detectable quickening of longitudinal relaxation. The results promise the strong potential of this nanomaterial for applications in bioimaging as a dual-functional probe.

  2. An integrative technique based on synergistic coremoval and sequential recovery of copper and tetracycline with dual-functional chelating resin: roles of amine and carboxyl groups.

    PubMed

    Ling, Chen; Liu, Fu-Qiang; Xu, Chao; Chen, Tai-Peng; Li, Ai-Min

    2013-11-27

    A novel chelating resin (R-AC) bearing dual-functional groups (amino and carboxyl groups) was self-synthesized and it showed superior properties on synergistic coremoval of Cu(II) and tetracycline (TC) to commercial resins (amine, carboxyl, and hydrophobic types), which was deeply investigated by equilibrium and kinetic tests in binary, preloading, and saline systems. The adsorption of TC on R-AC was markedly enhanced when coexisted with Cu(II), up to 13 times of that in sole system, whereas Cu(II) uptake seldom decreased in the copresence of TC. Decomplexing-bridging, which included [Cu-TC] decomplexing and [R-Cu] bridging for TC, was demonstrated as the leading mechanism for the synergistic coremoval of Cu(II) and TC. Carboxyl groups of R-AC played a dominant role in decomplexing of [Cu-TC] complex and releasing free TC. Cu(II) coordinated with amine groups of R-AC was further proved to participate in bridging interaction with free TC, and the bridging stoichiometric ratio ([NH-Cu]: TC) possibly was 2:1. About 96.9% of TC and 99.3% of Cu could be sequentially recovered with dilute NaOH followed by HCl. Considering stable application for five cycles in simulated and practical wastewater, R-AC shows great potential in green and simple coremoval of antibiotic and heavy metal ions.

  3. Separation of input function for rapid measurement of quantitative CMRO2 and CBF in a single PET scan with a dual tracer administration method

    NASA Astrophysics Data System (ADS)

    Kudomi, Nobuyuki; Watabe, Hiroshi; Hayashi, Takuya; Iida, Hidehiro

    2007-04-01

    Cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood flow (CBF) images can be quantified using positron emission tomography (PET) by administrating 15O-labelled water (H152O) and oxygen (15O2). Conventionally, those images are measured with separate scans for three tracers C15O for CBV, H152O for CBF and 15O2 for CMRO2, and there are additional waiting times between the scans in order to minimize the influence of the radioactivity from the previous tracers, which results in a relatively long study period. We have proposed a dual tracer autoradiographic (DARG) approach (Kudomi et al 2005), which enabled us to measure CBF, OEF and CMRO2 rapidly by sequentially administrating H152O and 15O2 within a short time. Because quantitative CBF and CMRO2 values are sensitive to arterial input function, it is necessary to obtain accurate input function and a drawback of this approach is to require separation of the measured arterial blood time-activity curve (TAC) into pure water and oxygen input functions under the existence of residual radioactivity from the first injected tracer. For this separation, frequent manual sampling was required. The present paper describes two calculation methods: namely a linear and a model-based method, to separate the measured arterial TAC into its water and oxygen components. In order to validate these methods, we first generated a blood TAC for the DARG approach by combining the water and oxygen input functions obtained in a series of PET studies on normal human subjects. The combined data were then separated into water and oxygen components by the present methods. CBF and CMRO2 were calculated using those separated input functions and tissue TAC. The quantitative accuracy in the CBF and CMRO2 values by the DARG approach did not exceed the acceptable range, i.e., errors in those values were within 5%, when the area under the curve in the input function