Phaechamud, T.; Choncheewa, C.
2015-01-01
The objective of this investigation was to prepare the shellac wax matrix tablets by fusion and molding technique incorporated with Lutrol in different ratios to modify the hydrophobicity of matrix tablet. The matrix tablets with single drug were loaded either with propranolol hydrochloride or hydrochlorothiazide as hydrophilic and hydrophobic model drugs, and a dual drug formula was also prepared. The single and dual drug release patterns were studied in a dissolution apparatus using distilled water as medium. Propranolol hydrochloride released from matrix was easier than hydrochlorothiazide. Drug release from shellac wax matrix could be enhanced by incorporation of Lutrol. However retardation of drug release from some matrix tablets was evident for the systems that could form dispersion in the dissolution medium. The gel network from high content of Lutrol was hexagonal which was a dense and more compact structure than the other structures found when low amounts of Lutrol were present in the formula. Therefore, the formulae with high content of Lutrol could prolong drug release more efficiently than those containing low content of Lutrol. Hence shellac wax matrix could modulate the drug release with the addition of Lutrol. Sustainable dual drug release was also obtained from these developed matrix tablets. Thus shellac wax-Lutrol component could be used as a potential matrix tablet prepared with fusion and molding technique with excellent controlled drug release. PMID:25767320
On the origin of dual Lax pairs and their r-matrix structure
NASA Astrophysics Data System (ADS)
Avan, Jean; Caudrelier, Vincent
2017-10-01
We establish the algebraic origin of the following observations made previously by the authors and coworkers: (i) A given integrable PDE in 1 + 1 dimensions within the Zakharov-Shabat scheme related to a Lax pair can be cast in two distinct, dual Hamiltonian formulations; (ii) Associated to each formulation is a Poisson bracket and a phase space (which are not compatible in the sense of Magri); (iii) Each matrix in the Lax pair satisfies a linear Poisson algebra a la Sklyanin characterized by the same classical r matrix. We develop the general concept of dual Lax pairs and dual Hamiltonian formulation of an integrable field theory. We elucidate the origin of the common r-matrix structure by tracing it back to a single Lie-Poisson bracket on a suitable coadjoint orbit of the loop algebra sl(2 , C) ⊗ C(λ ,λ-1) . The results are illustrated with the examples of the nonlinear Schrödinger and Gerdjikov-Ivanov hierarchies.
Qu, Jian-Bo; Xu, Yu-Liang; Liu, Jun-Yi; Zeng, Jing-Bin; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo
2016-04-08
Dual thermo- and pH-responsive chromatography has been proposed using poly(N-isopropylacrylamide-co-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAM-co-BMA-co-DMAPAAM)) brushes grafted gigaporous polystyrene microspheres (GPM) as matrix. Atom transfer radical polymerization (ATRP) initiator was first coupled onto GPM through Friedel-Crafts acylation with 2-bromoisobutyryl bromide. The dual-responsive polymer brushes were then grafted onto GPM via surface-initiated ATRP. The surface composition, gigaporous structure, protein adsorption and dual-responsive chromatographic properties of the matrix (GPM-P(NIPAM-co-BMA-co-DMAPAAM) were characterized in detail. Results showed that GPM were successfully grafted with thermoresponsive cationic polymer brushes and that the gigaporous structure was well maintained. A column packed with GPM-P(NIPAM-co-BMA-co-DMAPAAM presented low backpressure, good permeability and appreciable thermo-responsibility. By changing pH of the mobile phase and temperature of the column in turn, the column can separate three model proteins at the mobile phase velocity up to 2528cmh(-1). A separation mechanism of this matrix was also proposed. All results indicate that the dual thermo- and pH-responsive chromatography matrix has great potentials in 'green' high-speed protein chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.
Dual resin bonded joints in polyetheretherketone (PEEK) matrix composites
NASA Astrophysics Data System (ADS)
Zelenak, Steve; Radford, Donald W.; Dean, Michael W.
1993-04-01
The paper describes applications of the dual resin (miscible polymer) bonding technique (Smiley, 1989) developed as an alternative to traditional bonding approaches to joining thermoplastic matrix composite subassemblies into structures. In the experiments, the performance of joint geometries, such as those that could be used to assemble large truss structures in space, are investigated using truss joint models consisting of woven carbon fiber/PEEK tubes of about 1 mm wall thickness. Specific process conditions and hand-held hardware used to apply heat and pressure were chosen to simulate a field asembly technique. Results are presented on tube/cruciform double lap shear tests, pinned-pinned tube compression tests, and single lap shear bond tests of joints obtained using the dual resin bonding technique.
Dual-phase Cr-Ta alloys for structural applications
Liu, Chain T.; Brady, Michael P.; Zhu, Jiahong; Tortorelli, Peter F.
2001-01-01
Dual phase alloys of chromium containing 2 to 11 atomic percent tantalum with minor amounts of Mo, Cr, Ti, Y, La, Cr, Si and Ge are disclosed. These alloys contain two phases including Laves phase and Cr-rich solid solution in either eutectic structures or dispersed Laves phase particles in the Cr-rich solid solution matrix. The alloys have superior mechanical properties at high temperature and good oxidation resistance when heated to above 1000.degree. C. in air.
Mueller matrix imaging study to detect the dental demineralization
NASA Astrophysics Data System (ADS)
Chen, Qingguang; Shen, Huanbo; Wang, Binqiang
2018-01-01
Mueller matrix is an optical parameter invasively to reveal the structure information of anisotropic material. Dental tissue has the ordered structure including dental enamel prism and dentinal tubule. The ordered structure of teeth surface will be destroyed by demineralization. The structure information has the possibility to reflect the dental demineralization. In the paper, the experiment setup was built to obtain the Mueller matrix images based on the dual- wave plate rotation method. Two linear polarizer and two quarter-wave plate were rotated by electric control revolving stage respectively to capture 16 images at different group of polarization states. Therefore, Mueller matrix image can be calculated from the 16 images. On this basis, depolarization index, the diattenuation index and retardance index of the Mueller matrix were analyzed by Lu-Chipman polarization decomposition method. Mueller matrix images of artificial demineralized enamels at different stages were analyzed and the results show the possibility to detect the dental demineralization using Mueller matrix imaging method.
A modified dual-level algorithm for large-scale three-dimensional Laplace and Helmholtz equation
NASA Astrophysics Data System (ADS)
Li, Junpu; Chen, Wen; Fu, Zhuojia
2018-01-01
A modified dual-level algorithm is proposed in the article. By the help of the dual level structure, the fully-populated interpolation matrix on the fine level is transformed to a local supported sparse matrix to solve the highly ill-conditioning and excessive storage requirement resulting from fully-populated interpolation matrix. The kernel-independent fast multipole method is adopted to expediting the solving process of the linear equations on the coarse level. Numerical experiments up to 2-million fine-level nodes have successfully been achieved. It is noted that the proposed algorithm merely needs to place 2-3 coarse-level nodes in each wavelength per direction to obtain the reasonable solution, which almost down to the minimum requirement allowed by the Shannon's sampling theorem. In the real human head model example, it is observed that the proposed algorithm can simulate well computationally very challenging exterior high-frequency harmonic acoustic wave propagation up to 20,000 Hz.
Uncertainty in dual permeability model parameters for structured soils.
Arora, B; Mohanty, B P; McGuire, J T
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface ( K sa ) and macropore tortuosity ( l f ) but also of other parameters of the matrix and macropore domains.
Uncertainty in dual permeability model parameters for structured soils
NASA Astrophysics Data System (ADS)
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.
Research on Submarine Pipeline Steel with High Performance
NASA Astrophysics Data System (ADS)
Ren, Yi; Liu, Wenyue; Zhang, Shuai; Wang, Shuang; Gao, Hong
Submarine pipeline steel has largely uniform elongation, low yield ratio and good balance between high strength and high plasticity because of the microstructure with dual phase. In this work, the microstructure and properties of the submarine pipeline steel are studied. The results show that the matrix structure is consisted of ferrite, bainite and martensite -austenite islands. The structure has a tight relationship with the thermal-mechanical controlled process. Fine dual phase shows good plasticity and low yield ratio, which can support the good balance between high strength and high plasticity.
Predicting drug-target interactions by dual-network integrated logistic matrix factorization
NASA Astrophysics Data System (ADS)
Hao, Ming; Bryant, Stephen H.; Wang, Yanli
2017-01-01
In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.
Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release.
Bini, Rafael A; Silva, Mônica F; Varanda, Laudemir C; da Silva, Marcelo A; Dreiss, Cécile A
2017-09-01
We developed a nanocomposite gel composed of gelatin and poly(3-hydroxybutyrate) polymeric nanoparticles (PNP) to be used as an injectable gel for the contemporaneous, dual sustained release of bioactive molecules. The hydrogel matrix was formed by a very simple process, using either the physical gelation of gelatin or the natural enzyme transglutaminase to covalently cross-link the gelatin chains in the presence of embedded PNP. Oscillatory rheological measurements showed that the addition of the PNP induced an increase in the storage modulus compared to pure gelatin gels, for both physical and chemical gels. Micrographs from scanning electron microscopy revealed that the presence of PNP disrupted the native structure of the gelatin chains in the hydrogel matrix. Dual drug encapsulation was achieved with curcumin (CM) in the PNP and naproxen sodium(NS) in the gelatin matrix. In vitro release studies showed that the hydrogel matrix acts both as a physical and chemical barrier, delaying the diffusion of the drugs. An initial burst release was observed in the first hours of the measurement, and around 90% was released on the third day for naproxen sodium. In free PNP, 82% of curcumin was relased after four days, while when PNP were embedded in the gelatin matrix only 40% was released over the same time period. Overall, these simple, sustainable soft nanocomposites show potential as an injectable co-sustained drug release system. Copyright © 2017 Elsevier B.V. All rights reserved.
1995-01-01
The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation. PMID:7593177
Quark-parton model from dual topological unitarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen-Tannoudji, G.; El Hassouni, A.; Kalinowski, J.
1979-06-01
Topology, which occurs in the topological expansion of quantum chromodynamics (QCD) and in the dual topological unitarization (DTU) schemes, allows us to establish a quantitative correspondence between QCD and the dual S-matrix approaches. This topological correspondence, proposed by Veneziano and made more explicit in a recent paper for current-induced reactions, provides a clarifying and unifying quark-parton interpretation of soft inclusive processes. Precise predictions for inclusive cross sections in hadron-hadron collisions, structure functions of hadrons, and quark fragmentation functions including absolute normalizations are shown to agree with data. On a more theoretical ground the proposed scheme suggests a new approach tomore » the confinement problem.« less
Certain topological properties and duals of the domain of a triangle matrix in a sequence space
NASA Astrophysics Data System (ADS)
Altay, Bilâl; Basar, Feyzi
2007-12-01
The matrix domain of the particular limitation methods Cesàro, Riesz, difference, summation and Euler were studied by several authors. In the present paper, certain topological properties and [beta]- and [gamma]-duals of the domain of a triangle matrix in a sequence space have been examined as an application of the characterization of the related matrix classes.
Marto, J A; White, F M; Seldomridge, S; Marshall, A G
1995-11-01
Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratap, Surender; Sarkar, Niladri, E-mail: niladri@pilani.bits-pilani.ac.in
Self-Consistent Quantum Method using Schrodinger-Poisson equations have been used for determining the Channel electron density of Nano-Scale MOSFETs for 6nm and 9nm thick channels. The 6nm thick MOSFET show the peak of the electron density at the middle where as the 9nm thick MOSFET shows the accumulation of the electrons at the oxide/semiconductor interface. The electron density in the channel is obtained from the diagonal elements of the density matrix; [ρ]=[1/(1+exp(β(H − μ)))] A Tridiagonal Hamiltonian Matrix [H] is constructed for the oxide/channel/oxide 1D structure for the dual gate MOSFET. This structure is discretized and Finite-Difference method is used formore » constructing the matrix equation. The comparison of these results which are obtained by Quantum methods are done with Semi-Classical methods.« less
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
NASA Astrophysics Data System (ADS)
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
Nosoudi, Nasim; Chowdhury, Aniqa; Siclari, Steven; Karamched, Saketh; Parasaram, Vaideesh; Parrish, Joe; Gerard, Patrick; Vyavahare, Narendra
2016-01-01
Degeneration of elastic lamina and vascular calcification are common features of vascular pathology such as aortic aneurysms. We tested whether dual therapy with targeted nanoparticles (NPs) can remove mineral deposits (by delivery of a chelating agent, ethylene diamine tetraacetic acid (EDTA)) and restore elastic lamina (by delivery of a polyphenol, pentagalloyl glucose (PGG)) to reverse moderate aneurysm development. EDTA followed by PGG NP delivery led to reduction in macrophage recruitment, matrix metalloproteinase (MMP) activity, elastin degradation and calcification in the aorta as compared to delivery of control blank NPs. Such dual therapy restored vascular elastic lamina and improved vascular function as observed by improvement in circumferential strain. Therefore, dual targeted therapy may be an attractive option to remove mineral deposits and restore healthy arterial structures in moderately developed aneurysms. PMID:27698934
NASA Astrophysics Data System (ADS)
Jerbi, Chahir; Fourno, André; Noetinger, Benoit; Delay, Frederick
2017-05-01
Single and multiphase flows in fractured porous media at the scale of natural reservoirs are often handled by resorting to homogenized models that avoid the heavy computations associated with a complete discretization of both fractures and matrix blocks. For example, the two overlapping continua (fractures and matrix) of a dual porosity system are coupled by way of fluid flux exchanges that deeply condition flow at the large scale. This characteristic is a key to realistic flow simulations, especially for multiphase flow as capillary forces and contrasts of fluid mobility compete in the extraction of a fluid from a capacitive matrix then conveyed through the fractures. The exchange rate between fractures and matrix is conditioned by the so-called mean matrix block size which can be viewed as the size of a single matrix block neighboring a single fracture within a mesh of a dual porosity model. We propose a new evaluation of this matrix block size based on the analysis of discrete fracture networks. The fundaments rely upon establishing at the scale of a fractured block the equivalence between the actual fracture network and a Warren and Root network only made of three regularly spaced fracture families parallel to the facets of the fractured block. The resulting matrix block sizes are then compared via geometrical considerations and two-phase flow simulations to the few other available methods. It is shown that the new method is stable in the sense it provides accurate sizes irrespective of the type of fracture network investigated. The method also results in two-phase flow simulations from dual porosity models very close to that from references calculated in finely discretized networks. Finally, calculations of matrix block sizes by this new technique reveal very rapid, which opens the way to cumbersome applications such as preconditioning a dual porosity approach applied to regional fractured reservoirs.
Zheng, Tingting; Zhang, Rui; Zhang, Qingfeng; Tan, Tingting; Zhang, Kui; Zhu, Jun-Jie; Wang, Hui
2013-09-18
We have developed a robust enzymatic peptide cleavage-based assay for the ultrasensitive dual-channel detection of matrix metalloproteinase-2 (MMP-2) in human serum using gold-quantum dot (Au-QD) core-satellite nanoprobes.
NASA Astrophysics Data System (ADS)
Zhang, Liangyin; Chen, Michael Z. Q.; Li, Chanying
2017-07-01
In this paper, two new pairs of dual continuous-time algebraic Riccati equations (CAREs) and dual discrete-time algebraic Riccati equations (DAREs) are proposed. The dual DAREs are first studied with some nonsingularity assumptions on the system matrix and the parameter matrix. Then, in the case of singular matrices, a generalised inverse is introduced to deal with the dual DARE problem. These dual AREs can easily lead us to an iterative procedure for finding the anti-stabilising solutions, especially to DARE, by means of that for the stabilising solutions. Furthermore, we provide the counterpart results on the set of all solutions to DARE inspired by the results for CARE. Two examples are presented to illustrate the theoretical results.
The dual personalities of matrix metalloproteinases in inflammation.
Le, Nghia T V; Xue, Meilang; Castelnoble, Laura A; Jackson, Christopher J
2007-01-01
Collagen, gelatin, elastin, fibronectin, proteoglycans and vitronectin are just a few proteins which form the "mesh" that holds a multicellular organism together. The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade the extracellular matrix. Over several decades it has been clearly established that MMPs are the key molecules associated with matrix remodeling. The remodeling of this matrix is important for physiological and pathological processes such as pregnancy, wound repair, cancer and arthritis. The identification of new non-matrix MMP substrates involved in inflammation, highlights the diverse role of MMPs. These enzymes can enhance leukocyte invasion and regulate the inflammatory activity of serine proteases, cytokines and chemokines. Interestingly, the MMP family appears to have a "dual personality" in that several MMPs such as MMP-2 and -9 can favour either anti- or pro-inflammatory action, respectively. The extent of this dual functionality of MMPs is yet to be realized. Elucidating these processes may assist in the development of drugs for the treatment of inflammatory diseases such as arthritis, cancer and chronic wounds.
Lee, Keehoon; Lee, Kang-Mu; Kim, Donggeun
2017-01-01
ABSTRACT Biofilms are microbial communities that inhabit various surfaces and are surrounded by extracellular matrices (ECMs). Clinical microbiologists have shown that the majority of chronic infections are caused by biofilms, following the introduction of the first biofilm infection model by J. W. Costerton and colleagues (J. Lam, R. Chan, K. Lam, and J. W. Costerton, Infect Immun 28:546–556, 1980). However, treatments for chronic biofilm infections are still limited to surgical removal of the infected sites. Pseudomonas aeruginosa and Enterococcus faecalis are two frequently identified bacterial species in biofilm infections; nevertheless, the interactions between these two species, especially during biofilm growth, are not clearly understood. In this study, we observed phenotypic changes in a dual-species biofilm of P. aeruginosa and E. faecalis, including a dramatic increase in biofilm matrix thickness. For clear elucidation of the spatial distribution of the dual-species biofilm, P. aeruginosa and E. faecalis were labeled with red and green fluorescence, respectively. E. faecalis was located at the lower part of the dual-species biofilm, while P. aeruginosa developed a structured biofilm on the upper part. Mutants with altered exopolysaccharide (EPS) productions were constructed in order to determine the molecular basis for the synergistic effect of the dual-species biofilm. Increased biofilm matrix thickness was associated with EPSs, not extracellular DNA. In particular, Pel and Psl contributed to interspecies and intraspecies interactions, respectively, in the dual-species P. aeruginosa and E. faecalis biofilm. Accordingly, targeting Pel and Psl might be an effective part of eradicating P. aeruginosa polymicrobial biofilms. IMPORTANCE Chronic infection is a serious problem in the medical field. Scientists have observed that chronic infections are closely associated with biofilms, and the vast majority of infection-causing biofilms are polymicrobial. Many studies have reported that microbes in polymicrobial biofilms interact with each other and that the bacterial interactions result in elevated virulence, in terms of factors, such as infectivity and antibiotic resistance. Pseudomonas aeruginosa and Enterococcus faecalis are frequently isolated pathogens in chronic biofilm infections. Nevertheless, while both bacteria are known to be agents of numerous nosocomial infections and can cause serious diseases, interactions between the bacteria in biofilms have rarely been examined. In this investigation, we aimed to characterize P. aeruginosa and E. faecalis dual-species biofilms and to determine the molecular factors that cause synergistic effects, especially on the matrix thickening of the biofilm. We suspect that our findings will contribute to the development of more efficient methods for eradicating polymicrobial biofilm infections. PMID:28842537
Lee, Keehoon; Lee, Kang-Mu; Kim, Donggeun; Yoon, Sang Sun
2017-11-01
Biofilms are microbial communities that inhabit various surfaces and are surrounded by extracellular matrices (ECMs). Clinical microbiologists have shown that the majority of chronic infections are caused by biofilms, following the introduction of the first biofilm infection model by J. W. Costerton and colleagues (J. Lam, R. Chan, K. Lam, and J. W. Costerton, Infect Immun 28:546-556, 1980). However, treatments for chronic biofilm infections are still limited to surgical removal of the infected sites. Pseudomonas aeruginosa and Enterococcus faecalis are two frequently identified bacterial species in biofilm infections; nevertheless, the interactions between these two species, especially during biofilm growth, are not clearly understood. In this study, we observed phenotypic changes in a dual-species biofilm of P. aeruginosa and E. faecalis , including a dramatic increase in biofilm matrix thickness. For clear elucidation of the spatial distribution of the dual-species biofilm, P. aeruginosa and E. faecalis were labeled with red and green fluorescence, respectively. E. faecalis was located at the lower part of the dual-species biofilm, while P. aeruginosa developed a structured biofilm on the upper part. Mutants with altered exopolysaccharide (EPS) productions were constructed in order to determine the molecular basis for the synergistic effect of the dual-species biofilm. Increased biofilm matrix thickness was associated with EPSs, not extracellular DNA. In particular, Pel and Psl contributed to interspecies and intraspecies interactions, respectively, in the dual-species P. aeruginosa and E. faecalis biofilm. Accordingly, targeting Pel and Psl might be an effective part of eradicating P. aeruginosa polymicrobial biofilms. IMPORTANCE Chronic infection is a serious problem in the medical field. Scientists have observed that chronic infections are closely associated with biofilms, and the vast majority of infection-causing biofilms are polymicrobial. Many studies have reported that microbes in polymicrobial biofilms interact with each other and that the bacterial interactions result in elevated virulence, in terms of factors, such as infectivity and antibiotic resistance. Pseudomonas aeruginosa and Enterococcus faecalis are frequently isolated pathogens in chronic biofilm infections. Nevertheless, while both bacteria are known to be agents of numerous nosocomial infections and can cause serious diseases, interactions between the bacteria in biofilms have rarely been examined. In this investigation, we aimed to characterize P. aeruginosa and E. faecalis dual-species biofilms and to determine the molecular factors that cause synergistic effects, especially on the matrix thickening of the biofilm. We suspect that our findings will contribute to the development of more efficient methods for eradicating polymicrobial biofilm infections. Copyright © 2017 American Society for Microbiology.
Dual-Use system architecture for a space situational awareness system in Japan
NASA Astrophysics Data System (ADS)
Otani, Y.; Kohtake, N.; Ohkami, Y.
The use of outer space plays a vital role in both defense and civil fields. Since the separation of space activities between civil and defense applications is extremely inefficient, the Dual-Use concept has been considered fundamental for promoting the effective use of space. To the best of the authors' knowledge, most previous studies on Dual-Use focused on the technological aspects, and very few on a system engineering approach to Dual-Use. This left some important issues untouched such as the operational aspects of a system of systems, which need to be understood in a more generic context. This paper presents the results of a conceptual study, system design and management analysis of Dual-Use system architecture. First, an outline of the Dual-Use concept will be described and a definition of Dual-Use given. The effectiveness of applying the Dual-Use system concept to Space Situational Awareness (SSA) for both defense and civil users as a system of systems will then be discussed and investigated with a stakeholders analysis, context diagram and design structure matrix method. It has demonstrated that there is a need for a Dual-Use SSA Data Center which works as a binder between defense and civil systems as well as a data policy for constructing a Dual-Use SSA system.
Yang, You; Sun, Jing; Liu, Xiaolu; Guo, Zhenzhen; He, Yunhu; Wei, Dan; Zhong, Meiling; Guo, Likun; Zhang, Xingdong
2017-01-01
Abstract Native tissue is naturally comprised of highly-ordered cell-matrix assemblies in a multi-hierarchical way, and the nano/submicron alignment of fibrous matrix is found to be significant in supporting cellular functionalization. In this study, a self-designed wet-spinning device appended with a rotary receiving pool was used to continuously produce shear-patterned hydrogel microfibers with aligned submicron topography. The process that the flow-induced shear force reshapes the surface of hydrogel fiber into aligned submicron topography was systematically analysed. Afterwards, the effect of fiber topography on cellular longitudinal spread and elongation was investigated by culturing rat neuron-like PC12 cells and human osteosarcoma MG63 cells with the spun hydrogel microfibers, respectively. The results suggested that the stronger shear flow force would lead to more distinct aligned submicron topography on fiber surface, which could induce cell orientation along with fiber axis and therefore form the cell-matrix dual-alignment. Finally, a multi-hierarchical tissue-like structure constructed by dual-oriented cell-matrix assemblies was fabricated based on this wet-spinning method. This work is believed to be a potentially novel biofabrication scheme for bottom-up constructing of engineered linear tissue, such as nerve bundle, cortical bone, muscle and hepatic cord. PMID:29026644
Abd-Elhameed, Waleed M.; Doha, Eid H.; Bassuony, Mahmoud A.
2014-01-01
Two numerical algorithms based on dual-Petrov-Galerkin method are developed for solving the integrated forms of high odd-order boundary value problems (BVPs) governed by homogeneous and nonhomogeneous boundary conditions. Two different choices of trial functions and test functions which satisfy the underlying boundary conditions of the differential equations and the dual boundary conditions are used for this purpose. These choices lead to linear systems with specially structured matrices that can be efficiently inverted, hence greatly reducing the cost. The various matrix systems resulting from these discretizations are carefully investigated, especially their complexities and their condition numbers. Numerical results are given to illustrate the efficiency of the proposed algorithms, and some comparisons with some other methods are made. PMID:24616620
Herickhoff, Carl D; Light, Edward D; Bing, Kristin F; Mukundan, Srinivasan; Grant, Gerald A; Wolf, Patrick D; Smith, Stephen W
2009-04-01
In this study, we investigated the feasibility of an intracranial catheter transducer with dual-mode capability of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. Feasibility is demonstrated in two ways: first by using a 50-element linear array transducer (17 mm x 3.1 mm aperture) operating at 4.4 MHz with our Volumetrics diagnostic scanner and custom, electrical impedance-matching circuits to achieve a temperature rise over 4 degrees C in excised pork muscle, and second, by designing and constructing a 12 Fr, integrated matrix and linear-array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements diced on a 0.2 mm pitch, with a total aperture size of 8.4 mm x 2.3 mm. This 3.64 MHz array achieved a 3.5 degrees C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav catheter as a gold standard in experiments assessing image quality and therapeutic potential and both probes were used in an in vivo canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.
Herickhoff, Carl D.; Light, Edward D.; Bing, Kristin F.; Mukundan, Srinivasan; Grant, Gerald A.; Wolf, Patrick D.; Smith, Stephen W.
2010-01-01
In this study, we investigated the feasibility of an intracranial catheter transducer with dual-mode capability of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. Feasibility is demonstrated in two ways: first by using a 50-element linear array transducer (17 mm × 3.1 mm aperture) operating at 4.4 MHz with our Volumetrics diagnostic scanner and custom electrical impedance matching circuits to achieve a temperature rise over 4°C in excised pork muscle, and second by designing and constructing a 12 Fr, integrated matrix and linear array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements diced on a 0.2 mm pitch, with a total aperture size of 8.4 mm × 2.3 mm. This array achieved a 3.5°C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav™ catheter as a gold standard in experiments assessing image quality and therapeutic potential, and both probes were used in a canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating. PMID:19630251
Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin
2015-08-27
Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows usmore » to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.« less
Two-polarity magnetization in the Manson impact breccia
NASA Technical Reports Server (NTRS)
Steiner, M. B.; Shoemaker, E. M.
1993-01-01
A preliminary paleomagnetic study of the impact breccia matrix and clasts has produced surprising results--nearly antipodal normal and reversed polarity magnetic vectors are observed in different portions of the core. Near-antipodal magnetizations within a segment of matrix and within individual samples rule out core inversion as the explanation of the dual polarity. In both the dense and the sandy matrix breccias, the magnetizations of clasts and matrix within the same core segment are identical; this negative 'conglomerate test' indicates that magnetization originated after impact. Paleomagnetic study of the Manson Impact Structure is an attempt to refine the Ar-40/Ar-39 age (65.7 +/- 1 m.y.) that suggests Manson to be a Cretaceous-Tertiary boundary impact. Refinement is possible because the boundary occurs within a reversed polarity interval (29R) of only 0.5 m.y. duration. The two breccia types in the Manson structure were both examined: one of a very dense matrix and apparently partially melted, and the breccia stratigraphically below it of granular or 'sandy' chloritic matrix. Samples were taken from the matrixes and a wide variety of clast compositions, including granite, diabase, gneiss, amphibolite, and melted granite. Currently, measurements have been made on 22 samples, using 30-35 steps of either alternating field (AF) or thermal demagnetization.
Fischer, Thomas; Riedl, Rainer
2017-04-01
Invited for this month's cover picture is the group of Professor Rainer Riedl from the Institute of Chemistry and Biotechnology at the Zurich University of Applied Sciences (ZHAW), Switzerland. The cover picture depicts the structure-based design of a drug-like small molecule inhibitor of matrix metalloproteinase-13 (MMP-13) with a combined dual binding motif. The targeted introduction of a single fluoro atom was of vital importance for the optimization of the inhibitor. For more details, read the full text of the Communication at 10.1002/open.201600158.
NASA Astrophysics Data System (ADS)
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-02-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Quantum spectral curve for ( q, t)-matrix model
NASA Astrophysics Data System (ADS)
Zenkevich, Yegor
2018-02-01
We derive quantum spectral curve equation for ( q, t)-matrix model, which turns out to be a certain difference equation. We show that in Nekrasov-Shatashvili limit this equation reproduces the Baxter TQ equation for the quantum XXZ spin chain. This chain is spectral dual to the Seiberg-Witten integrable system associated with the AGT dual gauge theory.
Random Matrix Approach for Primal-Dual Portfolio Optimization Problems
NASA Astrophysics Data System (ADS)
Tada, Daichi; Yamamoto, Hisashi; Shinzato, Takashi
2017-12-01
In this paper, we revisit the portfolio optimization problems of the minimization/maximization of investment risk under constraints of budget and investment concentration (primal problem) and the maximization/minimization of investment concentration under constraints of budget and investment risk (dual problem) for the case that the variances of the return rates of the assets are identical. We analyze both optimization problems by the Lagrange multiplier method and the random matrix approach. Thereafter, we compare the results obtained from our proposed approach with the results obtained in previous work. Moreover, we use numerical experiments to validate the results obtained from the replica approach and the random matrix approach as methods for analyzing both the primal and dual portfolio optimization problems.
NASA Astrophysics Data System (ADS)
Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.
2017-12-01
Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.
NASA Astrophysics Data System (ADS)
Maldacena, Juan; Milekhin, Alexey
2018-04-01
The D0 brane, or BFSS, matrix model is a quantum mechanical theory with an interesting gravity dual. We consider a variant of this model where we treat the SU( N) symmetry as a global symmetry, rather than as a gauge symmetry. This variant contains new non-singlet states. We consider the impact of these new states on its gravity dual. We argue that the gravity dual is essentially the same as the one for the original matrix model. The non-singlet states have higher energy at strong coupling and are therefore dynamically suppressed.
Self-consistent field for fragmented quantum mechanical model of large molecular systems.
Jin, Yingdi; Su, Neil Qiang; Xu, Xin; Hu, Hao
2016-01-30
Fragment-based linear scaling quantum chemistry methods are a promising tool for the accurate simulation of chemical and biomolecular systems. Because of the coupled inter-fragment electrostatic interactions, a dual-layer iterative scheme is often employed to compute the fragment electronic structure and the total energy. In the dual-layer scheme, the self-consistent field (SCF) of the electronic structure of a fragment must be solved first, then followed by the updating of the inter-fragment electrostatic interactions. The two steps are sequentially carried out and repeated; as such a significant total number of fragment SCF iterations is required to converge the total energy and becomes the computational bottleneck in many fragment quantum chemistry methods. To reduce the number of fragment SCF iterations and speed up the convergence of the total energy, we develop here a new SCF scheme in which the inter-fragment interactions can be updated concurrently without converging the fragment electronic structure. By constructing the global, block-wise Fock matrix and density matrix, we prove that the commutation between the two global matrices guarantees the commutation of the corresponding matrices in each fragment. Therefore, many highly efficient numerical techniques such as the direct inversion of the iterative subspace method can be employed to converge simultaneously the electronic structure of all fragments, reducing significantly the computational cost. Numerical examples for water clusters of different sizes suggest that the method shall be very useful in improving the scalability of fragment quantum chemistry methods. © 2015 Wiley Periodicals, Inc.
Duality in left-right symmetric seesaw mechanism.
Akhmedov, E Kh; Frigerio, M
2006-02-17
We consider type I + II seesaw mechanism, where the exchanges of both right-handed neutrinos and isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework and assuming the mass matrix of light neutrinos m(v) and the Dirac-type Yukawa couplings to be known, we find the triplet Yukawa coupling matrix f, which carries the information about the masses and mixing of the right-handed neutrinos. We show that in this case there exists a duality: for any solution f, there is a dual solution [symbol: see text] = m(v)/nu(L) - f, where nu(L) is the vacuum expectation value of the triplet Higgs boson. Thus, unlike in pure type I (II) seesaw, there is no unique allowed structure for the matrix f. For n lepton generations the number of solutions is 2(n). We develop an exact analytic method of solving the seesaw nonlinear matrix equation for f.
Govender, Mershen; Choonara, Yahya E; van Vuuren, Sandy; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness
2016-09-01
A delayed-release dual delivery system for amoxicillin and the probiotic Lactobacillus acidophilus was developed and evaluated. Statistical optimization of a cross-linked denatured ovalbumin protective matrix was first synthesized using a Box-Behnken experimental design prior to encapsulation with glyceryl monostereate. The encapsulated ovalbumin matrix was thereafter incorporated with amoxicillin in a gastro-resistant capsule. In vitro characterization and stability analysis of the ovalbumin and encapsulated components were also performed Results: Protection of L. acidophilus probiotic against the bactericidal effects of amoxicillin within the dual formulation was determined. The dual formulation in this study proved effective and provides insight into current microbiome research to identify, classify and use functional healthy bacteria to develop novel probiotic delivery technologies.
The fast algorithm of spark in compressive sensing
NASA Astrophysics Data System (ADS)
Xie, Meihua; Yan, Fengxia
2017-01-01
Compressed Sensing (CS) is an advanced theory on signal sampling and reconstruction. In CS theory, the reconstruction condition of signal is an important theory problem, and spark is a good index to study this problem. But the computation of spark is NP hard. In this paper, we study the problem of computing spark. For some special matrixes, for example, the Gaussian random matrix and 0-1 random matrix, we obtain some conclusions. Furthermore, for Gaussian random matrix with fewer rows than columns, we prove that its spark equals to the number of its rows plus one with probability 1. For general matrix, two methods are given to compute its spark. One is the method of directly searching and the other is the method of dual-tree searching. By simulating 24 Gaussian random matrixes and 18 0-1 random matrixes, we tested the computation time of these two methods. Numerical results showed that the dual-tree searching method had higher efficiency than directly searching, especially for those matrixes which has as much as rows and columns.
Using a double-doping strategy to improve physical properties of nanostructured CdO films
NASA Astrophysics Data System (ADS)
Aydin, R.; Sahin, B.
2018-06-01
In this present study nanostructured dually doped samples of Cd1‑x‑yMgxMyO (M: Sn, Pb, Bi) are synthesized by SILAR method. The effects of the mono and dual doping on the structural, morphological and optoelectronic characteristics of CdO nanoparticles are examined. The SEM images verify that deposited CdO films are nano-sized. Also the SEM computations demonstrated that the morphological surface structures of the films were influenced from the Mg mono doping and (Mg, Sn), (Mg, Pb) and (Mg, Bi) dual doping. The XRD designs specified that all the CdO samples have polycrystalline structure exhibiting cubic crystal form with dominant peaks of (111) and (220). The results display that Mg and (Mg, Sn), (Mg, Pb) and (Mg, Bi) ions were successfully doped into CdO film matrix. The UV spectroscopy results show that the optical energy band gap of the CdO films, ranging from 2.21 to 2.66 eV, altered with the dopant materials.
Mohammed, Marwan Mansoor Ali; Pettersen, Veronika Kuchařová; Nerland, Audun H; Wiker, Harald G; Bakken, Vidar
2017-04-01
The Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis are members of a complex dental biofilm associated with periodontal disease. In this study, we cultured F. nucleatum and P. gingivalis as mono- and dual-species biofilms, and analyzed the protein composition of the biofilms extracellular polymeric matrix (EPM) by high-resolution liquid chromatography-tandem mass spectrometry. Label-free quantitative proteomic analysis was used for identification of proteins and sequence-based functional characterization for their classification and prediction of possible roles in EPM. We identified 542, 93 and 280 proteins in the matrix of F. nucleatum, P. gingivalis, and the dual-species biofilm, respectively. Nearly 70% of all EPM proteins in the dual-species biofilm originated from F. nucleatum, and a majority of these were cytoplasmic proteins, suggesting an enhanced lysis of F. nucleatum cells. The proteomic analysis also indicated an interaction between the two species: 22 F. nucleatum proteins showed differential levels between the mono and dual-species EPMs, and 11 proteins (8 and 3 from F. nucleatum and P. gingivalis, respectively) were exclusively detected in the dual-species EPM. Oxidoreductases and chaperones were among the most abundant proteins identified in all three EPMs. The biofilm matrices in addition contained several known and hypothetical virulence proteins, which can mediate adhesion to the host cells and disintegration of the periodontal tissues. This study demonstrated that the biofilm matrix of two important periodontal pathogens consists of a multitude of proteins whose amounts and functionalities vary largely. Relatively high levels of several of the detected proteins might facilitate their potential use as targets for the inhibition of biofilm development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Yijun; Yang, Limei; Hou, Jiaying; Zou, Qing; Gao, Qi; Yao, Wenhui; Yao, Qizheng; Zhang, Ji
2018-02-12
The dual-target inhibitors tend to improve the response rate in treating tumors, comparing with the single-target inhibitors. Matrix metalloproteinase-2 (MMP-2) and histone deacetylase-6 (HDAC-6) are attractive targets for cancer therapy. In this study, the hierarchical virtual screening of dual MMP-2/HDAC-6 inhibitors from natural products is investigated. The pharmacophore model of MMP-2 inhibitors is built based on ligands, but the pharmacophore model of HDAC-6 inhibitors is built based on the experimental crystal structures of multiple receptor-ligand complexes. The reliability of these two pharmacophore models is validated subsequently. The hierarchical virtual screening, combining these two different pharmacophore models of MMP-2 and HDAC-6 inhibitors with molecular docking, is carried out to identify the dual MMP-2/HDAC-6 inhibitors from a database of natural products. The four potential dual MMP-2/HDAC-6 inhibitors of natural products, STOCK1 N-46177, STOCK1 N-52245, STOCK1 N-55477, and STOCK1 N-69706, are found. The studies of binding modes show that the screened four natural products can simultaneously well bind with the MMP-2 and HDAC-6 active sites by different kinds of interactions, to inhibit the MMP-2 and HDAC-6 activities. In addition, the ADMET properties of screened four natural products are assessed. These found dual MMP-2/HDAC-6 inhibitors of natural products could serve as the lead compounds for designing the new dual MMP-2/HDAC-6 inhibitors having higher biological activities by carrying out structural modifications and optimizations in the future studies.
Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons
NASA Astrophysics Data System (ADS)
Chanyal, B. C.
2017-12-01
In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eres, Gyula
Chemical vapor infiltration is a convenient method for synthesizing carbon nanotube (CNT)-reinforced ceramic coatings. The thickness over which infiltration is relatively uniform is limited by gas phase diffusion in the pore structure. These effects were investigated in two types of silicon nitride matrix composites. With CNTs that were distributed uniformly on the substrate surface dense coatings were limited to thicknesses of several microns. With dual structured CNT arrays produced by photolithography coatings up to 400 gm thick were obtained with minimal residual porosity. Gas transport into these dual structured materials was facilitated by creating micron sized channels between "CNT pillars"more » (i.e. each pillar consisted of a large number of individual CNTs). The experimental results are consistent with basic comparisons between the rates of gas diffusion and silicon nitride growth in porous structures. This analysis also provides a general insight into optimizing infiltration conditions during the fabrication of thick CNT-reinforced composite coatings. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Soref, Richard; Hendrickson, Joshua
2015-12-14
Silicon-on-insulator Mach-Zehnder interferometer structures that utilize a photonic crystal nanobeam waveguide in each of two connecting arms are proposed here as efficient 2 × 2 resonant, wavelength-selective electro-optical routing switches that are readily cascaded into on-chip N × N switching networks. A localized lateral PN junction of length ~2 μm within each of two identical nanobeams is proposed as a means of shifting the transmission resonance by 400 pm within the 1550 nm band. Using a bias swing ΔV = 2.7 V, the 474 attojoules-per-bit switching mechanism is free-carrier sweepout due to PN depletion layer widening. Simulations of the 2 × 2 outputs versus voltage are presented. Dual-nanobeam designs are given for N × N data-routing matrix switches, electrooptical logic unit cells, N × M wavelength selective switches, and vector matrix multipliers. Performance penalties are analyzed for possible fabrication induced errors such as non-ideal 3-dB couplers, differences in optical path lengths, and variations in photonic crystal cavity resonances.
NASA Astrophysics Data System (ADS)
Etemadi, Reihaneh; Pillai, Krishna M.; Rohatgi, Pradeep K.; Hamidi, Sajad Ahmad
2015-05-01
This is the first such study on porosity formation phenomena observed in dual-scale fiber preforms during the synthesis of metal matrix composites (MMCs) using the gas pressure infiltration process. In this paper, different mechanisms of porosity formation during pressure infiltration of Al-Si alloys into Nextel™ 3D-woven ceramic fabric reinforcements (a dual-porosity or dual-scale porous medium) are studied. The effect of processing conditions on porosity content of the ceramic fabric infiltrated by the alloys through the gas PIP (PIP stands for "Pressure Infiltration Process" in which liquid metal is injected under pressure into a mold packed with reinforcing fibers.) is investigated. Relative density (RD), defined as the ratio of the actual MMC density and the density obtained at ideal 100 pct saturation of the preform, was used to quantify the overall porosity. Increasing the infiltration temperature led to an increase in RD due to reduced viscosity of liquid metal and enhanced wettability leading to improved feedability of the liquid metal. Similarly, increasing the infiltration pressure led to enhanced penetration of fiber tows and resulted in higher RD and reduced porosity. For the first time, the modified Capillary number ( Ca*), which is found to predict formation of porosity in polymer matrix composites quite well, is employed to study porosity in MMCs made using PIP. It is observed that in the high Ca* regime which is common in PIP, the overall porosity shows a strong downward trend with increasing Ca*. In addition, the effect of matrix shrinkage on porosity content of the samples is studied through using a zero-shrinkage Al-Si alloy as the matrix; usage of this alloy as the matrix led to a reduction in porosity content.
Niu, Shuzhang; Lv, Wei; Zhou, Guangmin; He, Yanbing; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu
2015-12-28
Nitrogen and sulfur co-doped porous carbon spheres (NS-PCSs) were prepared using L-cysteine to control the structure and functionalization during the hydrothermal reaction of glucose and the subsequent activation process. As the sulfur hosts in Li-S batteries, NS-PCSs combine strong physical confinement and surface chemical interaction to improve the affinity of polysulfides to the carbon matrix.
Nambu sigma model and effective membrane actions
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter
2012-07-01
We propose an effective action for a p‧-brane with open p-branes ending on it. The action has dual descriptions similar to the commutative and non-commutative ones of the DBI action for D-branes and open strings. The Poisson structure governing the non-commutativity of the D-brane is replaced by a Nambu structure and the open-closed string relations are generalized to the case of p-branes utilizing a novel Nambu sigma model description of p-branes. In the case of an M5-brane our action interpolates between M5-actions already proposed in the literature and matrix-model like actions involving Nambu structures.
Soft decoding a self-dual (48, 24; 12) code
NASA Technical Reports Server (NTRS)
Solomon, G.
1993-01-01
A self-dual (48,24;12) code comes from restricting a binary cyclic (63,18;36) code to a 6 x 7 matrix, adding an eighth all-zero column, and then adjoining six dimensions to this extended 6 x 8 matrix. These six dimensions are generated by linear combinations of row permutations of a 6 x 8 matrix of weight 12, whose sums of rows and columns add to one. A soft decoding using these properties and approximating maximum likelihood is presented here. This is preliminary to a possible soft decoding of the box (72,36;15) code that promises a 7.7-dB theoretical coding under maximum likelihood.
Wu, Shanshan; Wu, Siying; Yi, Zheyuan; Zeng, Fei; Wu, Weizhen; Qiao, Yuan; Zhao, Xingzhong; Cheng, Xing; Tian, Yanqing
2018-02-13
In this study, we developed fluorescent dual pH and oxygen sensors loaded in multi-well plates for in-situ and high-throughput monitoring of oxygen respiration and extracellular acidification during microbial cell growth for understanding metabolism. Biocompatible PHEMA-co-PAM materials were used as the hydrogel matrix. A polymerizable oxygen probe (OS2) derived from PtTFPP and a polymerizable pH probe (S2) derived from fluorescein were chemically conjugated into the matrix to solve the problem of the probe leaching from the matrix. Gels were allowed to cure directly on the bottom of 96-well plates at room-temperature via redox polymerization. The influence of matrix's composition on the sensing behaviors was investigated to optimize hydrogels with enough robustness for repeatable use with good sensitivity. Responses of the dual sensing hydrogels to dissolved oxygen (DO) and pH were studied. These dual oxygen-pH sensing plates were successfully used for microbial cell-based screening assays, which are based on the measurement of fluorescence intensity changes induced by cellular oxygen consumption and pH changes during microbial growth. This method may provide a real-time monitoring of cellular respiration, acidification, and a rapid kinetic assessment of multiple samples for cell viability as well as high-throughput drug screening. All of these assays can be carried out by a conventional plate reader.
Wang, Chong; Wang, Min
2012-10-01
Electrospun tissue engineering scaffolds are attractive due to their distinctive advantages over other types of scaffolds. As both osteoinductivity and osteoconductivity play crucial roles in bone tissue engineering, scaffolds possessing both properties are desirable. In this investigation, novel bicomponent scaffolds were constructed via dual-source dual-power electrospinning (DSDPES). One scaffold component was emulsion electrospun poly(D,L-lactic acid) (PDLLA) nanofibers containing recombinant human bone morphogenetic protein (rhBMP-2), and the other scaffold component was electrospun calcium phosphate (Ca-P) particle/poly(lactic-co-glycolic acid) (PLGA) nanocomposite fibers. The mass ratio of rhBMP-2/PDLLA fibers to Ca-P/PLGA fibers in bicomponent scaffolds could be controlled in the DSDPES process by adjusting the number of syringes used to supply solutions for electrospinning. Through process optimization, both types of fibers could be evenly distributed in bicomponent scaffolds. The structure and properties of each type of fibers in the scaffolds were studied. The morphological and structural properties and wettability of scaffolds were assessed. The effects of emulsion composition for rhBMP-2/PDLLA fibers and mass ratio of fibrous components in bicomponent scaffolds on in vitro release of rhBMP-2 from scaffolds were investigated. In vitro degradation of scaffolds was also studied by monitoring their morphological changes, weight losses and decreases in average molecular weight of fiber matrix polymers.
On the stiffness matrix of the intervertebral joint: application to total disk replacement.
O'Reilly, Oliver M; Metzger, Melodie F; Buckley, Jenni M; Moody, David A; Lotz, Jeffrey C
2009-08-01
The traditional method of establishing the stiffness matrix associated with an intervertebral joint is valid only for infinitesimal rotations, whereas the rotations featured in spinal motion are often finite. In the present paper, a new formulation of this stiffness matrix is presented, which is valid for finite rotations. This formulation uses Euler angles to parametrize the rotation, an associated basis, which is known as the dual Euler basis, to describe the moments, and it enables a characterization of the nonconservative nature of the joint caused by energy loss in the poroviscoelastic disk and ligamentous support structure. As an application of the formulation, the stiffness matrix of a motion segment is experimentally determined for the case of an intact intervertebral disk and compared with the matrices associated with the same segment after the insertion of a total disk replacement system. In this manner, the matrix is used to quantify the changes in the intervertebral kinetics associated with total disk replacements. As a result, this paper presents the first such characterization of the kinetics of a total disk replacement.
Development of a spectroscopic Mueller matrix imaging ellipsometer for nanostructure metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiuguo; Du, Weichao; Yuan, Kui
2016-05-15
In this paper, we describe the development of a spectroscopic Mueller matrix imaging ellipsometer (MMIE), which combines the great power of Mueller matrix ellipsometry with the high spatial resolution of optical microscopy. A dual rotating-compensator configuration is adopted to collect the full 4 × 4 imaging Mueller matrix in a single measurement. The light wavelengths are scanned in the range of 400–700 nm by a monochromator. The instrument has measurement accuracy and precision better than 0.01 for all the Mueller matrix elements in both the whole image and the whole spectral range. The instrument was then applied for the measurementmore » of nanostructures combined with an inverse diffraction problem solving technique. The experiment performed on a photoresist grating sample has demonstrated the great potential of MMIE for accurate grating reconstruction from spectral data collected by a single pixel of the camera and for efficient quantification of geometrical profile of the grating structure over a large area with pixel resolution. It is expected that MMIE will be a powerful tool for nanostructure metrology in future high-volume nanomanufacturing.« less
Wave multiple scattering by a finite number of unclosed circular cylinders
NASA Technical Reports Server (NTRS)
Veliyev, E. I.; Veremey, V. V.
1984-01-01
The boundary value problem of plane H-polarized electromagnetic wave multiple scattering by a finite number of unclosed circular cylinders is solved. The solution is obtained by two different methods: the method of successive scattering and the method of partial matrix inversion for simultaneous dual equations. The advantages of the successive scattering method are shown. Computer calculations of the suface currents and the total cross section are presented for the structure of two screens.
Aspects of the inverse problem for the Toda chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlowski, K. K., E-mail: karol.kozlowski@u-bourgogne.fr
We generalize Babelon's approach to equations in dual variables so as to be able to treat new types of operators which we build out of the sub-constituents of the model's monodromy matrix. Further, we also apply Sklyanin's recent monodromy matrix identities so as to obtain equations in dual variables for yet other operators. The schemes discussed in this paper appear to be universal and thus, in principle, applicable to many models solvable through the quantum separation of variables.
Chen, Yen-Ming; Chen, Li-Hua; Li, Meng-Pei; Li, Hsing-Fen; Higuchi, Akon; Kumar, S. Suresh; Ling, Qing-Dong; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Chang, Yung; Benelli, Giovanni; Murugan, Kadarkarai; Umezawa, Akihiro
2017-01-01
Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells. PMID:28332572
Chen, Yen-Ming; Chen, Li-Hua; Li, Meng-Pei; Li, Hsing-Fen; Higuchi, Akon; Kumar, S Suresh; Ling, Qing-Dong; Alarfaj, Abdullah A; Munusamy, Murugan A; Chang, Yung; Benelli, Giovanni; Murugan, Kadarkarai; Umezawa, Akihiro
2017-03-23
Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.
NASA Astrophysics Data System (ADS)
Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu
2012-09-01
SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.
Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models
NASA Astrophysics Data System (ADS)
March, Rafael; Doster, Florian; Geiger, Sebastian
2018-03-01
Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.
Character expansion methods for matrix models of dually weighted graphs
NASA Astrophysics Data System (ADS)
Kazakov, Vladimir A.; Staudacher, Matthias; Wynter, Thomas
1996-04-01
We consider generalized one-matrix models in which external fields allow control over the coordination numbers on both the original and dual lattices. We rederive in a simple fashion a character expansion formula for these models originally due to Itzykson and Di Francesco, and then demonstrate how to take the large N limit of this expansion. The relationship to the usual matrix model resolvent is elucidated. Our methods give as a by-product an extremely simple derivation of the Migdal integral equation describing the large N limit of the Itzykson-Zuber formula. We illustrate and check our methods by analysing a number of models solvable by traditional means. We then proceed to solve a new model: a sum over planar graphys possessing even coordination numbers on both the original and the dual lattice. We conclude by formulating the equations for the case of arbitrary sets of even, self-dual coupling constants. This opens the way for studying the deep problems of phase transitions from random to flat lattices. January 1995
Recent Selected Papers of Northwestern Polytechnical University in Two Parts, Part II.
1981-08-28
OF CONTENTS Page Dual Properties of Elastic Structures 1 Matrix Analysis of Wings 76 On a Method for the Determination of Plane Stress Fracture...I= Ea]{(x, v,z) j l~i l’m mini The equation above means that the cisplacement function vector determines the strain function vector. (Assumption II...means that the distributed load function vector is determined by the stress function vector. In Section 1, there was an analysis of a three
a Triangular Deformation of the Two-Dimensional POINCARÉ Algebra
NASA Astrophysics Data System (ADS)
Khorrami, M.; Shariati, A.; Abolhassani, M. R.; Aghamohammadi, A.
Contracting the h-deformation of SL(2, ℝ), we construct a new deformation of two-dimensional Poincaré's algebra, the algebra of functions on its group and its differential structure. It is seen that these dual Hopf algebras are isomorphic to each other. It is also shown that the Hopf algebra is triangular, and its universal R-matrix is also constructed explicitly. We then find a deformation map for the universal enveloping algebra, and at the end, give the deformed mass shells and Lorentz transformation.
Dual-scale topology optoelectronic processor.
Marsden, G C; Krishnamoorthy, A V; Esener, S C; Lee, S H
1991-12-15
The dual-scale topology optoelectronic processor (D-STOP) is a parallel optoelectronic architecture for matrix algebraic processing. The architecture can be used for matrix-vector multiplication and two types of vector outer product. The computations are performed electronically, which allows multiplication and summation concepts in linear algebra to be generalized to various nonlinear or symbolic operations. This generalization permits the application of D-STOP to many computational problems. The architecture uses a minimum number of optical transmitters, which thereby reduces fabrication requirements while maintaining area-efficient electronics. The necessary optical interconnections are space invariant, minimizing space-bandwidth requirements.
Cho, Hongsik; Bhatti, Fazal-Ur-Rehman; Yoon, Tae Won; Hasty, Karen A.; Stuart, John M.; Yi, Ae-Kyung
2016-01-01
Detection and intervention at an early stage is a critical factor to impede arthritis progress. Here we present a non-invasive method to detect inflammatory changes in joints of arthritic mice. Inflammation was monitored by dual fluorescence optical imaging for near-infrared fluorescent (750F) matrix-metalloproteinase activatable agent and allophycocyanin-conjugated anti-mouse CD11b. Increased intensity of allophycocyanin (indication of macrophage accumulation) and 750F (indication of matrix-metalloproteinase activity) showed a biological relationship with the arthritis severity score and the histopathology score of arthritic joints. Our results demonstrate that this method can be used to detect early stages of arthritis with minimum intervention in small animal models. PMID:27231625
A new lumped-parameter approach to simulating flow processes in unsaturated dual-porosity media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S.
We have developed a new lumped-parameter dual-porosity approach to simulating unsaturated flow processes in fractured rocks. Fluid flow between the fracture network and the matrix blocks is described by a nonlinear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. This equation is a generalization of the Warren-Root equation, but unlike the Warren-Root equation, is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into a computational module, compatible with the TOUGH simulator, to serve as a source/sink term for fracture elements.more » The new approach achieves accuracy comparable to simulations in which the matrix blocks are discretized, but typically requires an order of magnitude less computational time.« less
Taglialegna, Agustina; Navarro, Susanna; Ventura, Salvador; Garnett, James A.; Matthews, Steve; Penades, José R.; Lasa, Iñigo; Valle, Jaione
2016-01-01
Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria. PMID:27327765
In silico study on the effects of matrix structure in controlled drug release
NASA Astrophysics Data System (ADS)
Villalobos, Rafael; Cordero, Salomón; Maria Vidales, Ana; Domínguez, Armando
2006-07-01
Purpose: To study the effects of drug concentration and spatial distribution of the medicament, in porous solid dosage forms, on the kinetics and total yield of drug release. Methods: Cubic networks are used as models of drug release systems. They were constructed by means of the dual site-bond model framework, which allows a substrate to have adequate geometrical and topological distribution of its pore elements. Drug particles can move inside the networks by following a random walk model with excluded volume interactions between the particles. The drug release time evolution for different drug concentration and different initial drug spatial distribution has been monitored. Results: The numerical results show that in all the studied cases, drug release presents an anomalous behavior, and the consequences of the matrix structural properties, i.e., drug spatial distribution and drug concentration, on the drug release profile have been quantified. Conclusions: The Weibull function provides a simple connection between the model parameters and the microstructure of the drug release device. A critical modeling of drug release from matrix-type delivery systems is important in order to understand the transport mechanisms that are implicated, and to predict the effect of the device design parameters on the release rate.
Dual-radiolabeled nanoparticle probes for depth-independent in vivo imaging of enzyme activation
NASA Astrophysics Data System (ADS)
Black, Kvar C. L.; Zhou, Mingzhou; Sarder, Pinaki; Kuchuk, Maryna; Al-Yasiri, Amal Y.; Gunsten, Sean P.; Liang, Kexian; Hennkens, Heather M.; Akers, Walter J.; Laforest, Richard; Brody, Steven L.; Cutler, Cathy S.; Achilefu, Samuel
2018-02-01
Quantitative and noninvasive measurement of protease activities has remained an imaging challenge in deep tissues such as the lungs. Here, we designed a dual-radiolabeled probe for reporting the activities of proteases such as matrix metalloproteinases (MMPs) with multispectral single photon emission computed tomography (SPECT) imaging. A gold nanoparticle (NP) was radiolabeled with 125I and 111In and functionalized with an MMP9-cleavable peptide to form a multispectral SPECT imaging contrast agent. In another design, incorporation of 199Au radionuclide into the metal crystal structure of gold NPs provided a superior and stable reference signal in lungs, and 111In was linked to the NP surface via a protease-cleavable substrate, which can serve as an enzyme activity reporter. This work reveals strategies to correlate protease activities with diverse pathologies in a tissue-depth independent manner.
Construction of self-dual codes in the Rosenbloom-Tsfasman metric
NASA Astrophysics Data System (ADS)
Krisnawati, Vira Hari; Nisa, Anzi Lina Ukhtin
2017-12-01
Linear code is a very basic code and very useful in coding theory. Generally, linear code is a code over finite field in Hamming metric. Among the most interesting families of codes, the family of self-dual code is a very important one, because it is the best known error-correcting code. The concept of Hamming metric is develop into Rosenbloom-Tsfasman metric (RT-metric). The inner product in RT-metric is different from Euclid inner product that is used to define duality in Hamming metric. Most of the codes which are self-dual in Hamming metric are not so in RT-metric. And, generator matrix is very important to construct a code because it contains basis of the code. Therefore in this paper, we give some theorems and methods to construct self-dual codes in RT-metric by considering properties of the inner product and generator matrix. Also, we illustrate some examples for every kind of the construction.
String Theory on five dimensional Anti de Sitter space-times: Fundamental aspects and applications
NASA Astrophysics Data System (ADS)
Hofman, Diego M.
2009-12-01
In this thesis we study basic properties and applications of String Theory on AdS5 backgrounds. We do this in the framework of the AdS/CFT Correspondence and use our results to learn about four dimensional Conformal Field Theories. The first part of this work deals fundamentally with the problem of solving the exact spectrum of anomalous dimensions of planar N = 4 Super Yang Mills theory for all values of the 't Hooft coupling lambda. We study the problem for operators of large SO(6) charge J and identify the string configurations dual to magnons in the spin chain picture of the gauge theory. We name these states Giant Magnons. Furthermore we study their interactions and discuss the implications of the spectrum of states on the analytic structure of the exact scattering matrix of the theory. It is found that BPS states account for all the poles present in the full S-matrix. We also study the spectrum of Giant Magnons attached to D3-branes (Giant Gravitons). The dual operators in N = 4 SYM are long strings of SO(6) scalars connected to baryonic operators constructed of order N fields. The problem turns out to be mapped to solving the mulitparticle spectrum of a spin chain with non trivial boundary conditions. We study the properties of the boundary reflection matrix in detail and write equations that determine the associated phase factor. The second part of this work deals with applications of this type of string theories to the collider physics of conformal theories. We study infrared safe observables in the CFT given by energy correlation functions. We discuss the short distance behavior of these objects and explain that this physics is controlled by non local light ray operators. We find the dual String Theory description of these observables and use these results to study the strong coupling physics of conformal theories. We also describe the precise string states dual to the light ray operators. We argue that the energy operators that account for the energy measured at a calorimeter in a collider experiment should always be positive in any UV complete Quantum Field Theory. This fact has consequences in the higher derivative terms in the gravity action of the dual description. Finally, we discuss a proposed bound for the central charges of CFTs that is a consequence of the energy positivity condition.
A new lumped-parameter model for flow in unsaturated dual-porosity media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Robert W.; Hadgu, Teklu; Bodvarsson, Gudmundur S.
A new lumped-parameter approach to simulating unsaturated flow processes in dual-porosity media such as fractured rocks or aggregated soils is presented. Fluid flow between the fracture network and the matrix blocks is described by a non-linear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. Unlike a Warren-Root-type equation, this equation is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into an existing unsaturated flow simulator, to serve as a source/sink term for fracture gridblocks. Flow processes are then simulated usingmore » only fracture gridblocks in the computational grid. This new lumped-parameter approach has been tested on two problems involving transient flow in fractured/porous media, and compared with simulations performed using explicit discretization of the matrix blocks. The new procedure seems to accurately simulate flow processes in unsaturated fractured rocks, and typically requires an order of magnitude less computational time than do simulations using fully-discretized matrix blocks. [References: 37]« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin
Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows usmore » to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.« less
NASA Technical Reports Server (NTRS)
Obrien, Charles J.
1993-01-01
Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.
Li, Zhiming; Tasan, Cemal Cem; Springer, Hauke; Gault, Baptiste; Raabe, Dierk
2017-01-12
High-entropy alloys (HEAs) consisting of multiple principle elements provide an avenue for realizing exceptional mechanical, physical and chemical properties. We report a novel strategy for designing a new class of HEAs incorporating the additional interstitial element carbon. This results in joint activation of twinning- and transformation-induced plasticity (TWIP and TRIP) by tuning the matrix phase's instability in a metastable TRIP-assisted dual-phase HEA. Besides TWIP and TRIP, such alloys benefit from massive substitutional and interstitial solid solution strengthening as well as from the composite effect associated with its dual-phase structure. Nanosize particle formation and grain size reduction are also utilized. The new interstitial TWIP-TRIP-HEA thus unifies all metallic strengthening mechanisms in one material, leading to twice the tensile strength compared to a single-phase HEA with similar composition, yet, at identical ductility.
Bekhit, Adnan A; Farghaly, Ahmed M; Shafik, Ragab M; Elsemary, Mona Ma; El-Shoukrofy, Mai S; Bekhit, Alaa El-Din A; Ibrahim, Tamer M
2017-06-01
New triazolotetrahydrobenzothienopyrimidinone derivatives were synthesized. Their structures were confirmed, and their anti-inflammatory, antimicrobial activities and ulcerogenic potentials were evaluated. Compounds 7a, 10a and 11a showed minimal ulcerogenic effect and high selectivity toward human recombinant COX-2 over COX-1 enzyme with IC 50 values of 1.39, 1.22 and 0.56 μM, respectively. Their docking outcome correlated with their biological activity and confirmed the high selectivity binding toward COX-2. Compound 12b displayed antimicrobial activity comparable to that of ampicillin against Escherichia coli while compounds 6 and 11c were similar to ampicillin against Staphylococcus aureus. In addition, compounds 7a, 9a, 10b and 11c showed dual anti-inflammatory/antimicrobial activities. This work represents a promising matrix for developing new potential anti-inflammatory, antimicrobial and dual antimicrobial/anti-inflammatory candidates. [Formula: see text].
NASA Astrophysics Data System (ADS)
Li, Zhiming; Tasan, Cemal Cem; Springer, Hauke; Gault, Baptiste; Raabe, Dierk
2017-01-01
High-entropy alloys (HEAs) consisting of multiple principle elements provide an avenue for realizing exceptional mechanical, physical and chemical properties. We report a novel strategy for designing a new class of HEAs incorporating the additional interstitial element carbon. This results in joint activation of twinning- and transformation-induced plasticity (TWIP and TRIP) by tuning the matrix phase’s instability in a metastable TRIP-assisted dual-phase HEA. Besides TWIP and TRIP, such alloys benefit from massive substitutional and interstitial solid solution strengthening as well as from the composite effect associated with its dual-phase structure. Nanosize particle formation and grain size reduction are also utilized. The new interstitial TWIP-TRIP-HEA thus unifies all metallic strengthening mechanisms in one material, leading to twice the tensile strength compared to a single-phase HEA with similar composition, yet, at identical ductility.
A three-axis force sensor for dual finger haptic interfaces.
Fontana, Marco; Marcheschi, Simone; Salsedo, Fabio; Bergamasco, Massimo
2012-10-10
In this work we present the design process, the characterization and testing of a novel three-axis mechanical force sensor. This sensor is optimized for use in closed-loop force control of haptic devices with three degrees of freedom. In particular the sensor has been conceived for integration with a dual finger haptic interface that aims at simulating forces that occur during grasping and surface exploration. The sensing spring structure has been purposely designed in order to match force and layout specifications for the application. In this paper the design of the sensor is presented, starting from an analytic model that describes the characteristic matrix of the sensor. A procedure for designing an optimal overload protection mechanism is proposed. In the last part of the paper the authors describe the experimental characterization and the integrated test on a haptic hand exoskeleton showing the improvements in the controller performances provided by the inclusion of the force sensor.
NASA Astrophysics Data System (ADS)
Wang, Tonghe; Zhu, Lei
2016-09-01
Conventional dual-energy CT (DECT) reconstruction requires two full-size projection datasets with two different energy spectra. In this study, we propose an iterative algorithm to enable a new data acquisition scheme which requires one full scan and a second sparse-view scan for potential reduction in imaging dose and engineering cost of DECT. A bilateral filter is calculated as a similarity matrix from the first full-scan CT image to quantify the similarity between any two pixels, which is assumed unchanged on a second CT image since DECT scans are performed on the same object. The second CT image from reduced projections is reconstructed by an iterative algorithm which updates the image by minimizing the total variation of the difference between the image and its filtered image by the similarity matrix under data fidelity constraint. As the redundant structural information of the two CT images is contained in the similarity matrix for CT reconstruction, we refer to the algorithm as structure preserving iterative reconstruction (SPIR). The proposed method is evaluated on both digital and physical phantoms, and is compared with the filtered-backprojection (FBP) method, the conventional total-variation-regularization-based algorithm (TVR) and prior-image-constrained-compressed-sensing (PICCS). SPIR with a second 10-view scan reduces the image noise STD by a factor of one order of magnitude with same spatial resolution as full-view FBP image. SPIR substantially improves over TVR on the reconstruction accuracy of a 10-view scan by decreasing the reconstruction error from 6.18% to 1.33%, and outperforms TVR at 50 and 20-view scans on spatial resolution with a higher frequency at the modulation transfer function value of 10% by an average factor of 4. Compared with the 20-view scan PICCS result, the SPIR image has 7 times lower noise STD with similar spatial resolution. The electron density map obtained from the SPIR-based DECT images with a second 10-view scan has an average error of less than 1%.
Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests
Lessoff, S.C.; Konikow, Leonard F.
1997-01-01
Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.
Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers
NASA Astrophysics Data System (ADS)
Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.
2017-12-01
Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In addition to the VE-3D model, we explore simplifications of the rock matrix domain by using sugar-cube and matchstick conceptualizations and develop VE-dual porosity and VE-matchstick models. These vertically-integrated dual-permeability and dual-porosity models provide a range of computationally efficient tools to model CO2 storage in fractured saline aquifers.
Qiao, Dongling; Yu, Long; Liu, Hongsheng; Zou, Wei; Xie, Fengwei; Simon, George; Petinakis, Eustathios; Shen, Zhiqi; Chen, Ling
2016-06-25
Combined analytical techniques were used to explore the effects of alkali treatment on the multi-scale structure and digestion behavior of starches with different amylose/amylopectin ratios. Alkali treatment disrupted the amorphous matrix, and partial lamellae and crystallites, which weakened starch molecular packing and eventually enhanced the susceptibility of starch to alkali. Stronger alkali treatment (0.5% w/w) made this effect more prominent and even transformed the dual-phase digestion of starch into a triple-phase pattern. Compared with high-amylose starch, regular maize starch, which possesses some unique structure characteristics typically as pores and crystallite weak points, showed evident changes of hierarchical structure and in digestion rate. Thus, alkali treatment has been demonstrated as a simple method to modulate starch hierarchical structure and thus to realize the rational development of starch-based food products with desired digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ufodike, Chukwuzubelu Okenwa
Recently, the interest for renewable resources for fibers particularly of plant origin has been increasing. Reduction of use of traditional textile materials is now considered more critical due to the increasing environmental concern. Natural fibers are renewable, biodegradable, recyclable, and lightweight materials with high specific modulus, in competition with man-made fossil materials and fiberglass. Natural fibers are used for preparation of functionalized textiles to achieve smart and intelligent properties. However, the incorporation of these fibers in composite systems has been challenging due to their hydrophilic nature. Nevertheless, the fact that these biodegradable materials can be manipulated at a nano-scale to complement desired objective and application has made them a favorable option. The idea behind this project is to explore ways to convert green waste to high value materials and to utilize natural building blocks to design textile reinforcement materials. In this work, cellulose nanofibrils (CNF) supplied from the University of Maine were hydrophobized by silylation and characterized using Fourier-Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, and Thermogravimetric analysis (TGA). Results from FTIR spectroscopy showed a formation of Si-O-C bonds, indicating better fiber-matrix adhesion. Raman spectroscopy showed disruption of hydrogen bonding which indicates interference of parallel nanocellulose fiber adhesion to neighboring fibrils. The TGA suggests that the thermal stability of the functionalized CNF is higher than that of the corresponding neat sample, which could be a result of stable Si bond formation. The raw materials (neat and functionalized) were encapsulated in a polystyrene matrix through a solvent and non-solvent precipitation process, and then extruded using single and dual heat processing. The extruded thin filaments were tested according to the ASTM D638 (tensile test of plastics). Results showed an increasing Ultimate Tensile Strength (UTS) and Elastic Modulus, with peak values attributed to the dual-heat processing up to 79% and 69% increase respectively at 5wt% loading. Further increase was seen at 10wt% loading up to 112MPa UTS, and modulus up to 10.7GPa for the dual-heat processing. The UTS increase is assumed to be a result of linear arrangement of CNF in the matrix during the extrusion process. The results revealed the strong reinforcing ability of CNF and their compatibility with thermoplastic matrix if functionalized.
Thermodynamically consistent model of brittle oil shales under overpressure
NASA Astrophysics Data System (ADS)
Izvekov, Oleg
2016-04-01
The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.
Lee, Seo H; Chun, Yong S; Park, Heung K; Kim, Yang W; Cheon, Young W
2018-04-17
Elevation of a conjoined fascial flap composed of the pectoralis major, serratus anterior, and external oblique fascia is a type of surgical technique using autologous tissue to cover the lower pole after immediate one-stage direct-to-implant (DTI) breast reconstruction. However, volumetric breast implants hinder use of this technique alone. For better structural stability and more aesthetically favorable breast contour in large breasts, we have devised a technique involving dual coverage of the lower pole by a conjoined fascial flap and acellular dermal matrix (ADM). Twenty Asian patients underwent DTI breast reconstruction from March 2013 to May 2014. ADM was used to cover the inferomedial quadrant of the breast, and a conjoined fascial flap was elevated to cover the remaining inferolateral quadrant. Both patient- and plastic surgeon-reported outcome measures were assessed using questionnaires. For every domain of the patient- and plastic surgeon-reported questionnaires, the mean scores were between satisfied and very satisfied. Two patients developed a seroma and one patient developed partial skin flap necrosis. Both seromas resolved after a series of aspirations. The necrotic skin flap was revised under local anesthesia 3 weeks after the reconstructive surgery. The use of dual coverage of the inferior pole with a conjoined fascial flap and ADM for immediate DTI among patients with large breasts is supported by high scores in both patient- and plastic surgeon-reported outcome measures, as well as low complication rates. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Colloid transport in dual-permeability media
NASA Astrophysics Data System (ADS)
Leij, Feike J.; Bradford, Scott A.
2013-07-01
It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.
Marshall, Garrett J; Thompson, Scott M; Shamsaei, Nima
2016-06-01
An OPTOMEC Laser Engineered Net Shaping (LENS(™)) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti-6Al-4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials.
Marshall, Garrett J.; Thompson, Scott M.; Shamsaei, Nima
2016-01-01
An OPTOMEC Laser Engineered Net Shaping (LENS™) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti–6Al–4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials. PMID:27054180
NASA Astrophysics Data System (ADS)
Zarubin, V. S.; Sergeeva, E. S.
2017-11-01
This paper outlines simulation models that represent the quantitative interdependencies between the thermal conductivity and the thermoelastic properties of composites, on the one hand, and their porous structure and matrix properties, as well as the volume fraction of their reinforcing inclusions, on the other hand. As the reinforcing inclusions, randomly-oriented anisotropic single-wall carbon nanotubes (SWNT) are taken. The key means for constructing the simulation models are the self-matching method and the dual variational formulation of the thermal conductivity/thermoelasticity problem for a non-homogeneous solid body. With the simulation models presented below, it is possible to estimate the effect the nanocomposite porosity has on the thermoelastic properties and thermal conductivity of nanocomposites.
Ye, Weihua; Spånning, Erika; Unnerståle, Sofia; Gotthold, David; Glaser, Elzbieta; Mäler, Lena
2012-10-01
Most mitochondrial proteins are synthesized in the cytosol as precursor proteins containing an N-terminal targeting peptide and are imported into mitochondria through the import machineries, the translocase of the outer mitochondrial membrane (TOM) and the translocase of the inner mitochondrial membrane (TIM). The N-terminal targeting peptide of precursor proteins destined for the mitochondrial matrix is recognized by the Tom20 receptor and plays an important role in the import process. Protein import is usually organelle specific, but several plant proteins are dually targeted into mitochondria and chloroplasts using an ambiguous dual targeting peptide. We present NMR studies of the dual targeting peptide of Thr-tRNA synthetase and its interaction with Tom20 in Arabidopsis thaliana. Our findings show that the targeting peptide is mostly unstructured in buffer, with a propensity to form α-helical structure in one region, S6-F27, and a very weak β-strand propensity for Q34-Q38. The α-helical structured region has an amphiphilic character and a φχχφφ motif, both of which have previously been shown to be important for mitochondrial import. Using NMR we have mapped out two regions in the peptide that are important for Tom20 recognition: one of them, F9-V28, overlaps with the amphiphilic region, and the other comprises residues L30-Q39. Our results show that the targeting peptide may interact with Tom20 in several ways. Furthermore, our results indicate a weak, dynamic interaction. The results provide for the first time molecular details on the interaction of the Tom20 receptor with a dual targeting peptide. © 2012 The Authors Journal compilation © 2012 FEBS.
Lai, Yen-Ho; Chiang, Chih-Sheng; Kao, Tzu-Hsun; Chen, San-Yuan
2018-01-01
Deep penetration of large-sized drug nanocarriers into tumors is important to improve the efficacy of tumor therapy. In this study, we developed a size-changeable "Trojan Horse" nanocarrier (THNC) composed of paclitaxel (PTX)-loaded Greek soldiers (GSs; ~20 nm) assembled in an amphiphilic gelatin matrix with hydrophilic losartan (LST) added. With amphiphilic gelatin matrix cleavage by matrix metalloproteinase-2, LST showed fast release of up to 60% accumulated drug at 6 h, but a slow release kinetic (~20%) was detected in the PTX from the GSs, indicating that THNCs enable controllable release of LST and PTX drugs for penetration into the tumor tissue. The in vitro cell viability in a 3D tumor spheroid model indicated that the PTX-loaded GSs liberated from THNCs showed deeper penetration as well as higher cytotoxicity, reducing a tumor spheroid to half its original size and collapsing the structure of the tumor microenvironment. The results demonstrate that the THNCs with controlled drug release and deep penetration of magnetic GSs show great potential for cancer therapy.
Representation learning via Dual-Autoencoder for recommendation.
Zhuang, Fuzhen; Zhang, Zhiqiang; Qian, Mingda; Shi, Chuan; Xie, Xing; He, Qing
2017-06-01
Recommendation has provoked vast amount of attention and research in recent decades. Most previous works employ matrix factorization techniques to learn the latent factors of users and items. And many subsequent works consider external information, e.g., social relationships of users and items' attributions, to improve the recommendation performance under the matrix factorization framework. However, matrix factorization methods may not make full use of the limited information from rating or check-in matrices, and achieve unsatisfying results. Recently, deep learning has proven able to learn good representation in natural language processing, image classification, and so on. Along this line, we propose a new representation learning framework called Recommendation via Dual-Autoencoder (ReDa). In this framework, we simultaneously learn the new hidden representations of users and items using autoencoders, and minimize the deviations of training data by the learnt representations of users and items. Based on this framework, we develop a gradient descent method to learn hidden representations. Extensive experiments conducted on several real-world data sets demonstrate the effectiveness of our proposed method compared with state-of-the-art matrix factorization based methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sorption of small molecules in polymeric media
NASA Astrophysics Data System (ADS)
Camboni, Federico; Sokolov, Igor M.
2016-12-01
We discuss the sorption of penetrant molecules from the gas phase by a polymeric medium within a model which is very close in spirit to the dual sorption mode model: the penetrant molecules are partly dissolved within the polymeric matrix, partly fill the preexisting voids. The only difference with the initial dual sorption mode situation is the assumption that the two populations of molecules are in equilibrium with each other. Applying basic thermodynamics principles we obtain the dependence of the penetrant concentration on the pressure in the gas phase and find that this is expressed via the Lambert W-function, a different functional form than the one proposed by dual sorption mode model. The Lambert-like isotherms appear universally at low and moderate pressures and originate from the assumption that the internal energy in a polymer-penetrant-void ternary mixture is (in the lowest order) a bilinear form in the concentrations of the three components. Fitting the existing data shows that in the domain of parameters where the dual sorption mode model is typically applied, the Lambert function, which describes the same behavior as the one proposed by the gas-polymer matrix model, fits the data equally well.
NASA Astrophysics Data System (ADS)
Liu, Ying-gang; Liu, Xin; Ma, Cheng-ju; Zhou, Yu-min
2018-03-01
Through using micro-machining method for optical fiber sensor, a kind of miniature, compact and composite structural all-fiber sensor is presented. Based on manufacturing two micro-holes with certain distance in ordinary single-mode fiber Bragg grating (FBG) by excimer laser processing technique, we fabricate a dual Fabry-Perot-FBG (FP-FBG) composite fiber interferometric sensor, which can be used in simultaneous measurement for liquid's refractive index (RI) and temperature change. Due to every micro-hole and the dual micro-holes in fiber acting as different Fabry-Perot (FP) cavities, this kind of sensor has not only different RI sensitivities but also different temperature sensitivities, which are corresponding to the wavelength shifts of the fine interference fringes and spectral envelope, respectively. The experimental results show that the spectral wavelength shift keep better linear response for temperature and RI change, so that we can select the higher temperature and RI sensitivities as well as the analyzed sensitivities of FBG to utilize them for constituting a sensitivity coefficients matrix. Finally, the variations of liquid's temperature and RI are detected effectively, and the resolutions can reach to 0.1 °C and 1.0 ×10-5 RIU. These characteristics are what other single-type sensors don't have, so that this kind of all-fiber dual FP-FBG composite fiber interferometric sensor can be used in extremely tiny liquid environment for measuring different physical quantities simultaneously.
Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T; Handler, William B; Chronik, Blaine A; Ibrahim, Tamer S
2015-11-01
To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. One set of a four-element, 2 × 2 Tic-Tac-Toe head coil structure was selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents were quantitatively studied in the time and frequency domains. The RF characteristics were studied using the finite difference time domain method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in vivo human subjects. The eddy current simulation method was verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding significantly distorted the gradient fields. Echo-planar images, B1+ maps, and S matrix measurements verified that the proposed slot pattern suppressed the eddy currents while maintaining the RF characteristics of the transmit coil. The presented dual-optimization method could be used to design RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. © 2014 Wiley Periodicals, Inc.
Zhao, Xian-En; Yan, Ping; Wang, Renjun; Zhu, Shuyun; You, Jinmao; Bai, Yu; Liu, Huwei
2016-08-01
Quantitative analysis of cholesterol and its metabolic steroid hormones plays a vital role in diagnosing endocrine disorders and understanding disease progression, as well as in clinical medicine studies. Because of their extremely low abundance in body fluids, it remains a challenging task to develop a sensitive detection method. A hyphenated technique of dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) was proposed for cleansing, enrichment and sensitivity enhancement. 4'-Carboxy-substituted rosamine (CSR) was synthesized and used as derivatization reagent. An ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for determination of cholesterol and its metabolic steroid hormones in the multiple reaction monitoring mode. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS were all optimized. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.08-0.15 pg mL(-1) ) were achieved. Through the combination of dual-UADLLME and MAD, a determination method for cholesterol and its metabolic steroid hormones in human plasma, serum and urine samples was developed and validated with high sensitivity, selectivity, accuracy and perfect matrix effect results. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Characterization and optimization of flexible dual mode sensor based on Carbon Micro Coils
NASA Astrophysics Data System (ADS)
Dat Nguyen, Tien; Kim, Taeseung; Han, Hyoseung; Shin, Hyun Yeong; Nguyen, Canh Toan; Phung, Hoa; Ryeol Choi, Hyouk
2018-01-01
Carbon Microcoils (CMCs) is a 3D helical micro structure grown via a chemical vapor deposition process. It is noted that composites in which CMCs are embedded in polymer matrixes, called CMC sheets, experience a drastic change of electrical impedance depending on the proximity and contact of external objects. In this paper, a dual functional sensor, that is, tactile and proximity sensor fabricated with CMC/silicone composite is presented to demonstrate the advanced characteristics of CMCs sheets. Characteristics of sensor responses depending on CMC compositions are investigated and optimal conditions are determined. The candidates of polymer matrices are also investigated. As the results, the CMC sheet consisting of Ecoflex 30, CMC 30 {{wt}} % , and multiwall carbon nanotubes 1 {{wt}} % shows the most appropriate tactile sensing characteristics with more than 1 mm of thickness. The proximity sensing capability is the maximum when the 1.5 {{wt}} % CMC content is mixed with Dragon skin 30 silicone substrate. Finally, multiple target objects are recognized with the results and their feasibilities are experimentally validated.
Lee, SangWook; Lee, Jong Hyun; Kwon, Hyuck Gi; Laurell, Thomas; Jeong, Ok Chan; Kim, Soyoun
2018-01-01
Here, we report a sol-gel integrated affinity microarray for on-chip matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that enables capture and identification of prostate?specific antigen (PSA) in samples. An anti-PSA antibody (H117) was mixed with a sol?gel, and the mixture was spotted onto a porous silicon (pSi) surface without additional surface modifications. The antibody easily penetrates the sol-gel macropore fluidic network structure, making possible high affinities. To assess the capture affinity of the platform, we performed a direct assay using fluorescein isothiocyanate-labeled PSA. Pure PSA was subjected to on-chip MALDI-TOF-MS analysis, yielding three clear mass peptide peaks (m/z = 1272, 1407, and 1872). The sol-gel microarray platform enables dual readout of PSA both fluorometric and MALDI-TOF MS analysis in biological samples. Here we report a useful method for a means for discovery of biomarkers in complex body fluids.
A Three-Axis Force Sensor for Dual Finger Haptic Interfaces
Fontana, Marco; Marcheschi, Simone; Salsedo, Fabio; Bergamasco, Massimo
2012-01-01
In this work we present the design process, the characterization and testing of a novel three-axis mechanical force sensor. This sensor is optimized for use in closed-loop force control of haptic devices with three degrees of freedom. In particular the sensor has been conceived for integration with a dual finger haptic interface that aims at simulating forces that occur during grasping and surface exploration. The sensing spring structure has been purposely designed in order to match force and layout specifications for the application. In this paper the design of the sensor is presented, starting from an analytic model that describes the characteristic matrix of the sensor. A procedure for designing an optimal overload protection mechanism is proposed. In the last part of the paper the authors describe the experimental characterization and the integrated test on a haptic hand exoskeleton showing the improvements in the controller performances provided by the inclusion of the force sensor. PMID:23202012
Dual lumen transducer probes for real-time 3-D interventional cardiac ultrasound.
Lee, Warren; Idriss, Salim F; Wolf, Patrick D; Smith, Stephen W
2003-09-01
We have developed dual lumen probes incorporating a forward-viewing matrix array transducer with an integrated working lumen for delivery of tools in real-time 3-D (RT3-D) interventional echocardiography. The probes are of 14 Fr and 22 Fr sizes, with 112 channel 2-D arrays operating at 5 MHz. We obtained images of cardiac anatomy and simultaneous interventional device delivery with an in vivo sheep model, including: manipulation of a 0.36-mm diameter guidewire into the coronary sinus, guidance of a transseptal puncture using a 1.2-mm diameter Brockenbrough needle, and guidance of a right ventricular biopsy using 3 Fr biopsy forceps. We have also incorporated the 22 Fr probe within a 6-mm surgical trocar to obtain apical four-chamber ultrasound (US) scans from a subcostal position. Combining the imaging catheter with a working lumen in a single device may simplify cardiac interventional procedures by allowing clinicians to easily visualize cardiac structures and simultaneously direct interventional tools in a RT3-D image.
Tomasik, Andrzej; Jacheć, Wojciech; Wojciechowska, Celina; Kawecki, Damian; Białkowska, Beata; Romuk, Ewa; Gabrysiak, Artur; Birkner, Ewa; Kalarus, Zbigniew; Nowalany-Kozielska, Ewa
2015-05-01
Dual chamber pacing is known to have detrimental effect on cardiac performance and heart failure occurring eventually is associated with increased mortality. Experimental studies of pacing in dogs have shown contractile dyssynchrony leading to diffuse alterations in extracellular matrix. In parallel, studies on experimental ischemia/reperfusion injury have shown efficacy of valsartan to inhibit activity of matrix metalloproteinase-9, to increase the activity of tissue inhibitor of matrix metalloproteinase-3 and preserve global contractility and left ventricle ejection fraction. To present rationale and design of randomized blinded trial aimed to assess whether 12 month long administration of valsartan will prevent left ventricle remodeling in patients with preserved left ventricle ejection fraction (LVEF ≥ 40%) and first implantation of dual chamber pacemaker. A total of 100 eligible patients will be randomized into three parallel arms: placebo, valsartan 80 mg/daily and valsartan 160 mg/daily added to previously used drugs. The primary endpoint will be assessment of valsartan efficacy to prevent left ventricle remodeling during 12 month follow-up. We assess patients' functional capacity, blood plasma activity of matrix metalloproteinases and their tissue inhibitors, NT-proBNP, tumor necrosis factor alpha, and Troponin T. Left ventricle function and remodeling is assessed echocardiographically: M-mode, B-mode, tissue Doppler imaging. If valsartan proves effective, it will be an attractive measure to improve long term prognosis in aging population and increasing number of pacemaker recipients. ClinicalTrials.org (NCT01805804). Copyright © 2015 Elsevier Inc. All rights reserved.
Yuan, Chunxue; Saito, Shohei; Camacho, Cristopher; Irle, Stephan; Hisaki, Ichiro; Yamaguchi, Shigehiro
2013-06-19
We have designed and synthesized a π-conjugated system that consists of a flexible and nonplanar π joint and two emissive rigid and planar wings. This molecular system exhibits respectively red, green, and blue (RGB) emission from a single-component luminophore in different environments, namely in polymer matrix, in solution, and in crystals. The flexible unit gives rise to a dynamic conformational change in the excited state from a nonplanar V-shaped structure to a planar structure, leading to a dual fluorescence of blue and green colors. The rigid and planar moieties favor the formation of a two-fold π-stacked array of the V-shaped molecules in the crystalline state, which produces a red excimer-like emission. These RGB emissions are attained without changing the excitation energy.
NASA Astrophysics Data System (ADS)
Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang
2017-10-01
The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.
An Unstructured Finite Volume Approach for Structural Dynamics in Response to Fluid Motions.
Xia, Guohua; Lin, Ching-Long
2008-04-01
A new cell-vortex unstructured finite volume method for structural dynamics is assessed for simulations of structural dynamics in response to fluid motions. A robust implicit dual-time stepping method is employed to obtain time accurate solutions. The resulting system of algebraic equations is matrix-free and allows solid elements to include structure thickness, inertia, and structural stresses for accurate predictions of structural responses and stress distributions. The method is coupled with a fluid dynamics solver for fluid-structure interaction, providing a viable alternative to the finite element method for structural dynamics calculations. A mesh sensitivity test indicates that the finite volume method is at least of second-order accuracy. The method is validated by the problem of vortex-induced vibration of an elastic plate with different initial conditions and material properties. The results are in good agreement with existing numerical data and analytical solutions. The method is then applied to simulate a channel flow with an elastic wall. The effects of wall inertia and structural stresses on the fluid flow are investigated.
ERIC Educational Resources Information Center
Jaeggi, Susanne M.; Studer-Luethi, Barbara; Buschkuehl, Martin; Su, Yi-Fen; Jonides, John; Perrig, Walter J.
2010-01-01
We have previously demonstrated that training on a dual n-back task results in improvements in fluid intelligence ("Gf") as measured by matrix reasoning tasks. Here, we explored the underlying mechanisms of this transfer effect in two studies, and we evaluated the transfer potential of a single n-back task. In the first study, we demonstrated that…
Composited dual summability methods of the new kind
NASA Astrophysics Data System (ADS)
Caner, Aysun; Başar, Feyzi
2012-08-01
Following Section 4.8 of Başsar [Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, İstanbul-2012, ISBN: 978-1-60805-252-3], we define the duality relation of the new kind between a pair of infinite matrices. Our focus is the dual summability methods derived by the Euler means of order r. By means of a strongly regular triangle matrix C = (cnk), we obtain the composited matrices. The main purpose of this study is to give some inclusion theorems concerning the composited and original dual summability methods defined by the Euler means of order r.
NASA Astrophysics Data System (ADS)
Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo
2012-04-01
Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in Cambridge: personal recollections C. Montonen; Part VI. The Superstring: 35. Introduction to Part VI; 36. Supersymmetry in string theory F. Gliozzi; 37. Gravity from strings: personal reminiscences of early developments T. Yoneya; 38. From the Nambu-Goto to the σ-model action L. Brink; 39. Locally supersymmetric action for superstring P. Di Vecchia; 40. Personal recollections E. Cremmer; 41. The scientific contributions of Joël Scherk J. H. Schwarz; Part VII. Preparing the String Renaissance: 42. Introduction to Part VII; 43. From strings to superstrings: a personal perspective M. B. Green; 44. Quarks, strings and beyond A. M. Polyakov; 45. The rise of the superstring theory A. Cappelli and F. Colomo; Appendices; Index.
Zhao, Xian-En; Lv, Tao; Zhu, Shuyun; Qu, Fei; Chen, Guang; He, Yongrui; Wei, Na; Li, Guoliang; Xia, Lian; Sun, Zhiwei; Zhang, Shijuan; You, Jinmao; Liu, Shu; Liu, Zhiqiang; Sun, Jing; Liu, Shuying
2016-03-11
This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4'-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yong; LaBolle, Eric; Reeves, Donald M
2012-07-01
Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the currentmore » dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other continuum to the mass in the current continuum. Numerical examples show that this method is limited to certain ranges of parameters, due to an intrinsic assumption of an equilibrium concentration profile in the matrix blocks in building the transfer probability. Subsequently, this method fails in describing mass transfer for parameter combinations that violate this assumption, including small diffusion coefficients (i.e., the free-water molecular diffusion coefficient 1×10-11 meter2/second), relatively large fracture spacings (such as meter), and/or relatively large matrix retardation coefficients (i.e., ). These “outliers” in parameter range are common in UGTA applications. To address the above limitations, we then developed a Direct Numerical Simulation (DNS)-Reflective method. The novel DNS-Reflective method can directly track the particle dynamics across the fracture/matrix interface using a random walk, without any empirical assumptions. This advantage should make the DNS-Reflective method feasible for a wide range of parameters. Numerical tests of the DNS-Reflective, however, show that the method is computationally very demanding, since the time step must be very small to resolve particle transfer between fractures and matrix blocks. To improve the computational efficiency of the DNS approach, we then adopted Roubinet et al.’s method [2009], which uses first passage time distributions to simulate dual-domain mass transfer. The DNS-Roubinet method was found to be computationally more efficient than the DNS-Reflective method. It matches the analytical solution for the whole range of major parameters (including diffusion coefficient and fracture aperture values that are considered “outliers” for Liu et al.’s transfer probability method [2000]) for a single fracture system. The DNS-Roubinet method, however, has its own disadvantage: for a parallel fracture system, the truncation of the first passage time distribution creates apparent errors when the fracture spacing is small, and thus it tends to erroneously predict breakthrough curves (BTCs) for the parallel fracture system. Finally, we adopted the transient range approach proposed by Pan and Bodvarsson [2002] in RWHet. In this method, particle transfer between fractures and matrix blocks can be resolved without using very small time steps. It does not use any truncation of the first passage time distribution for particles. Hence it does not have the limitation identified above for the DNS-Reflective method and the DNS-Roubinet method. Numerical results were checked against analytical solutions, and also compared to DCPTV2.0 [Pan, 2002]. This version of RWHet (called RWHet-Pan&Bodvarsson in this report) can accurately capture contaminant transport in fractured porous media for a full range of parameters without any practical or theoretical limitations.« less
Simultaneous measurement for strain and temperature based on the twisted-tapering fiber structure
NASA Astrophysics Data System (ADS)
Ni, Wenjun; Lu, Ping; Liu, Deming; Zhang, Jiangshan
2017-10-01
A novel special fiber fabrication method based on a common single mode fiber (SMF) for dual-parameters measurement has been proposed and experimentally demonstrated. The fabrication setup is based on a three dimensional electric displacement platform which can realize the function of twisting and tapering at the same time. The proposed novel structure simultaneously undergoes the aforementioned two processes. Then a twisted-tapering fiber structure is formed. There are two dominant resonant wavelengths in the spectrum. Thus, simultaneous measurement for strain and temperature can be achieved. The following result shows that the strain measurement can be achieved by intensity demodulation, with the sensitivity of -0.01565 dB/μɛ and 0.00705 dB/μɛ corresponding to the dip1 and dip2, respectively. Therefore, the total sensitivity of the strain is 0.0227 dB/μɛ. Moreover, the cross impacts of the wavelength shift are - 0.772 pm/μɛ and 0.895 pm/μɛ. Similarly, the wavelength demodulation is selected to temperature measurement. The temperature sensitivity of 50.53pm/°C and 45.12pm/°C are obtained. The cross sensitivity of the intensity variation are 0.04058dB/°C and 0.02031 dB/°C. As a result, the dual-parameters can be described to a cross matrix of the sensitivity value. The proposed sensor has a great potential for engineering applications due to its compact structure, simple manufacture and low cost.
Superparamagnetic enhancement of thermoelectric performance.
Zhao, Wenyu; Liu, Zhiyuan; Sun, Zhigang; Zhang, Qingjie; Wei, Ping; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; He, Danqi; Ji, Pengxia; Zhu, Wanting; Nie, Xiaolei; Su, Xianli; Tang, Xinfeng; Shen, Baogen; Dong, Xiaoli; Yang, Jihui; Liu, Yong; Shi, Jing
2017-09-13
The ability to control chemical and physical structuring at the nanometre scale is important for developing high-performance thermoelectric materials. Progress in this area has been achieved mainly by enhancing phonon scattering and consequently decreasing the thermal conductivity of the lattice through the design of either interface structures at nanometre or mesoscopic length scales or multiscale hierarchical architectures. A nanostructuring approach that enables electron transport as well as phonon transport to be manipulated could potentially lead to further enhancements in thermoelectric performance. Here we show that by embedding nanoparticles of a soft magnetic material in a thermoelectric matrix we achieve dual control of phonon- and electron-transport properties. The properties of the nanoparticles-in particular, their superparamagnetic behaviour (in which the nanoparticles can be magnetized similarly to a paramagnet under an external magnetic field)-lead to three kinds of thermoelectromagnetic effect: charge transfer from the magnetic inclusions to the matrix; multiple scattering of electrons by superparamagnetic fluctuations; and enhanced phonon scattering as a result of both the magnetic fluctuations and the nanostructures themselves. We show that together these effects can effectively manipulate electron and phonon transport at nanometre and mesoscopic length scales and thereby improve the thermoelectric performance of the resulting nanocomposites.
Kang, Won-Ho; Nguyen, Hien Van; Park, Chulhun; Choi, Youn-Woong; Lee, Beom-Jin
2017-05-01
This study was designed to develop a once-daily controlled-release matrix tablet of aceclofenac 200mg (AFC-CR) with dual release characteristics and to investigate the role of an alkalizer in enhancing drug solubility and reducing the occurrence of gastroduodenal mucosal lesions. Two formulation approaches were employed, namely a monolithic matrix tablet and a bilayered tablet. In vitro dissolution studies of AFC-CR tablets were carried out in simulated intestinal fluid (pH6.8 buffer). The in vivo pharmacokinetic studies and drug safety of the immediate-release reference tablet Airtal® 100mg (Daewoong Co., Korea) and the optimized AFC-CR tablet were compared in beagle dogs under fasted condition. The optimally selected AFC-CR formulation displayed the desired dual release characteristics in simulated intestinal fluid with satisfactory micromeritic properties. The swelling action of the optimal matrix tablet, which was visualized by near-infrared (NIR) chemical imaging, occurred rapidly following hydration. Incorporation of sodium carbonate (Na 2 CO 3 ) was found to enhance the release rate of the AFC-CR bilayered tablets at early stages and increase the microenvironmental pH (pH M ). A pharmacokinetic study in beagle dogs indicated a higher drug plasma concentration and a sustained-release pattern for the AFC-CR tablet compared to the Airtal® tablet. AFC-CR was also superior to Airtal® in terms of in vivo drug safety, since no beagle dog receiving AFC-CR experienced gastrointestinal bleeding. The significant enhancement of drug safety was attributed to the size reduction and the increase of pH M of drug particles by means of incorporation of the alkalizer. These findings provide a scientific rationale for developing a novel controlled-release matrix tablet with enhanced patient compliance and better pain control. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Barcena, Jorge; Garmendia, Iñaki; Triantou, Kostoula; Mergia, Konstatina; Perez, Beatriz; Florez, Sonia; Pinaud, Gregory; Bouilly, Jean-Marc; Fischer, Wolfgang P. P.
2017-05-01
A new thermal protection system for atmospheric earth re-entry is proposed. This concept combines the advantages of both reusable and ablative materials to establish a new hybrid concept with advanced capabilities. The solution consists of the design and the integration of a dual shield resulting on the overlapping of an external thin ablative layer with a Ceramic Matrix Composite (CMC) thermo-structural core. This low density ablative material covers the relatively small heat peak encountered during re-entry the CMC is not able to bear. On the other hand the big advantage of the CMC based TPS is of great benefit which can deal with the high integral heat for the bigger time period of the re-entry. To verify the solution a whole testing plan is envisaged, which as part of it includes thermal shock test by infra-red heating (heating flux up to 1 MW/m2) and vibration test under launcher conditions (Volna and Ariane 5). Sub-scale tile samples (100×100 mm2) representative of the whole system (dual ablator/ceramic layers, insulation, stand-offs) are specifically designed, assembled and tested (including the integration of thermocouples). Both the thermal and the vibration test are analysed numerically by simulation tools using Finite Element Models. The experimental results are in good agreement with the expected calculated parameters and moreover the solution is qualified according to the specified requirements.
NASA Astrophysics Data System (ADS)
Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo
2016-12-01
The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
A novel compact dual-wideband BPF with multiple transmission zeros and super wide upper stopband
NASA Astrophysics Data System (ADS)
Mirzaee, Milad; Nosrati, Mehdi
2013-05-01
In this article, a novel miniaturised dual-wideband bandpass filter (DWB-BPF) based on two different resonators including a quasi-spiral loaded multiple-mode resonator (QSL-MMR) and L-shaped transmission line (LS-TL) is presented. At the first step, in order to design a single wideband BPF filter with controllable transmission zeros near the centre frequency, the open circuit impedance parameter of quasi-spiral loaded resonator Z21 is determined in terms of ABCD matrix. Then an equivalent circuit model of the proposed structure is derived and the impedance characteristic and electrical length of LS-TLs to achieve a DWB-BPF with excellent selectivity are calculated through even- and odd-mode analysis. The proposed filter possesses both compact and simple structure as well as two wide passbands with fractional bandwidth (FBW) of 70% and 22.8% for its first and second passbands, respectively. The proposed technique creates two transmission zeros at the lower and upper stopbands of each passband resulting in a very sharp roll-off accompanied by a wide stopband. Notably, the circuit size is reduced and the bandwidth is enhanced in comparison with its conventional counterparts. The theoretical performance of the filter is verified by the experimental one where a good agreement is reported between them.
Self-duality in higher dimensions
NASA Astrophysics Data System (ADS)
Bilge, A. H.; Dereli, T.; Kocak, S.
2017-01-01
Let ω be a 2-form on a 2n dimensional manifold. In previous work, we called ω “strong self-dual, if the eigenvalues of its matrix with respect to an orthonormal frame are equal in absolute value. In a series of papers, we showed that strong self-duality agrees with previous definitions; in particular if ω is strong self-dual, then, in 2n dimensions, ωn is proportional to its Hodge dual ω and in 4n dimensions, ωn is Hodge self-dual. We also obtained a local expression of the Bonan 4-form on 8 manifolds with Spin 7 holonomy, as the sum of the squares of any orthonormal basis of a maximal linear subspace of strong self-dual 2-forms. In the present work we generalize the notion of strong self-duality to odd dimensional manifolds and we express the dual of the Fundamental 3-form 7 manifolds with G 2 holonomy, as a sum of the squares of an orthonormal basis of a maximal linear subspace of strong self-dual 2-forms.
Apparent mass matrix of standing subjects exposed to multi-axial whole-body vibration.
Tarabini, Marco; Solbiati, Stefano; Saggin, Bortolino; Scaccabarozzi, Diego
2016-08-01
This paper describes the experimental characterisation of the apparent mass matrix of eight male subjects in standing position and the identification of nonlinearities under both mono-axial and dual-axis whole-body vibration. The nonlinear behaviour of the response was studied using the conditioned response techniques considering models of increasing complexity. Results showed that the cross-axis terms are comparable to the diagonal terms. The contribution of the nonlinear effects are minor and can be endorsed to the change of modal parameters during the tests. The nonlinearity generated by the vibration magnitude is more evident in the subject response, since magnitude-dependent effects in the population are overlaid by the scatter in the subjects' biometric data. The biodynamic response is influenced by the addition of a secondary vibration axis and, in case of dual-axis vibrations, the overall magnitude has a marginal contribution. Practitioner Summary: We have measured both the diagonal and cross-axis elements of the apparent mass matrix. The effect of nonlinearities and the simultaneous presence of vibration along two axes are smaller than the inter-subject variability.
Zhou, Hongyu; Attard, Thomas L.; Dhiradhamvit, Kittinan; ...
2014-11-07
In this paper, the crashworthiness characteristics of rectangular tubes made from a Carbon-fiber reinforced Hybrid-Polymeric Matrix (CHMC) composite were investigated using quasi-static and impact crush tests. The hybrid matrix formulation of the CHMC was created by combining an epoxy-based thermosetting polymer with a lightly crosslinked polyurea elastomer at various cure-time intervals and volumetric ratios. The load–displacement responses of both CHMC and carbon-fiber reinforced epoxy (CF/epoxy) specimens were obtained under various crushing speeds; and crashworthiness parameters, such as the average crushing force and specific energy absorption (SEA), were calculated using subsequent load–displacement relationships. The CHMC maintained a high level of structuralmore » integrity and post-crush performance, relative to traditional CF/epoxy. The influence of the curing time and volumetric ratios of the polyurea/epoxy dual-hybridized matrix system on the crashworthiness parameters was also investigated. The results reveal that the load carrying capacity and total energy absorption tend to increase with greater polyurea thickness and lower elapsed reaction curing time of the epoxy although this is typically a function of the loading rate. In conclusion, the mechanism by which the CHMC provides increased damage tolerance was also investigated using scanning electron microscopy (SEM).« less
NASA Astrophysics Data System (ADS)
Shao, W.; Bogaard, T.; Bakker, M.; Berti, M.; Savenije, H. H. G.
2016-12-01
The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately.
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-05-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.
G-DYN Multibody Dynamics Engine
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, James C.; Broderick, Daniel
2011-01-01
G-DYN is a multi-body dynamic simulation software engine that automatically assembles and integrates equations of motion for arbitrarily connected multibody dynamic systems. The algorithm behind G-DYN is based on a primal-dual formulation of the dynamics that captures the position and velocity vectors (primal variables) of each body and the interaction forces (dual variables) between bodies, which are particularly useful for control and estimation analysis and synthesis. It also takes full advantage of the spare matrix structure resulting from the system dynamics to numerically integrate the equations of motion efficiently. Furthermore, the dynamic model for each body can easily be replaced without re-deriving the overall equations of motion, and the assembly of the equations of motion is done automatically. G-DYN proved an essential software tool in the simulation of spacecraft systems used for small celestial body surface sampling, specifically in simulating touch-and-go (TAG) maneuvers of a robotic sampling system from a comet and asteroid. It is used extensively in validating mission concepts for small body sample return, such as Comet Odyssey and Galahad New Frontiers proposals.
Quasi-normal modes from non-commutative matrix dynamics
NASA Astrophysics Data System (ADS)
Aprile, Francesco; Sanfilippo, Francesco
2017-09-01
We explore similarities between the process of relaxation in the BMN matrix model and the physics of black holes in AdS/CFT. Focusing on Dyson-fluid solutions of the matrix model, we perform numerical simulations of the real time dynamics of the system. By quenching the equilibrium distribution we study quasi-normal oscillations of scalar single trace observables, we isolate the lowest quasi-normal mode, and we determine its frequencies as function of the energy. Considering the BMN matrix model as a truncation of N=4 SYM, we also compute the frequencies of the quasi-normal modes of the dual scalar fields in the AdS5-Schwarzschild background. We compare the results, and we finda surprising similarity.
Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix
NASA Technical Reports Server (NTRS)
Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.
1999-01-01
This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being studied at Langley; it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission flexibility restraints.
Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix
NASA Technical Reports Server (NTRS)
Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.
1999-01-01
This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being, studied at Langley, it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission Flexibility restraints.
3D CSEM inversion based on goal-oriented adaptive finite element method
NASA Astrophysics Data System (ADS)
Zhang, Y.; Key, K.
2016-12-01
We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with complex geological scenarios by applying it to the inversion of synthetic marine controlled source EM data generated for a complex 3D offshore model with significant seafloor topography.
NASA Astrophysics Data System (ADS)
Sekihara, Kensuke; Kawabata, Yuya; Ushio, Shuta; Sumiya, Satoshi; Kawabata, Shigenori; Adachi, Yoshiaki; Nagarajan, Srikantan S.
2016-06-01
Objective. In functional electrophysiological imaging, signals are often contaminated by interference that can be of considerable magnitude compared to the signals of interest. This paper proposes a novel algorithm for removing such interferences that does not require separate noise measurements. Approach. The algorithm is based on a dual definition of the signal subspace in the spatial- and time-domains. Since the algorithm makes use of this duality, it is named the dual signal subspace projection (DSSP). The DSSP algorithm first projects the columns of the measured data matrix onto the inside and outside of the spatial-domain signal subspace, creating a set of two preprocessed data matrices. The intersection of the row spans of these two matrices is estimated as the time-domain interference subspace. The original data matrix is projected onto the subspace that is orthogonal to this interference subspace. Main results. The DSSP algorithm is validated by using the computer simulation, and using two sets of real biomagnetic data: spinal cord evoked field data measured from a healthy volunteer and magnetoencephalography data from a patient with a vagus nerve stimulator. Significance. The proposed DSSP algorithm is effective for removing overlapped interference in a wide variety of biomagnetic measurements.
Unified pipe network method for simulation of water flow in fractured porous rock
NASA Astrophysics Data System (ADS)
Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua
2017-04-01
Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.
Dual-Functional Hydrazide-Reactive and Anhydride-Containing Oligomeric Hydrogel Building Blocks.
Kascholke, Christian; Loth, Tina; Kohn-Polster, Caroline; Möller, Stephanie; Bellstedt, Peter; Schulz-Siegmund, Michaela; Schnabelrauch, Matthias; Hacker, Michael C
2017-03-13
Biomimetic hydrogels are advanced biomaterials that have been developed following different synthetic routes. Covalent postfabrication functionalization is a promising strategy to achieve efficient matrix modification decoupled of general material properties. To this end, dual-functional macromers were synthesized by free radical polymerization of maleic anhydride with diacetone acrylamide (N-(1,1-dimethyl-3-oxobutyl)acrylamide) and pentaerythritol diacrylate monostearate. Amphiphilic oligomers (M n < 7.5 kDa) with anhydride contents of 7-20% offered cross-linking reactivity to yield rigid hydrogels with gelatinous peptides (E = 4-13 kPa) and good cell adhesion properties. Mildly reactive methyl ketones as second functionality remained intact during hydrogel formation and potential of covalent matrix modification was shown using hydrazide and hydrazine model compounds. Successful secondary dihydrazide cross-linking was demonstrated by an increase of hydrogel stiffness (>40%). Efficient hydrazide/hydrazine immobilization depending on solution pH, hydrogel ketone content as well as ligand concentration for bioconjugation was shown and reversibility of hydrazone formation was indicated by physiologically relevant hydrazide release over 7 days. Proof-of-concept experiments with hydrazido-functionalized hyaluronan demonstrated potential for covalent aECM immobilization. The presented dual-functional macromers have perspective as reactive hydrogel building blocks for various biomedical applications.
Almost commuting self-adjoint matrices: The real and self-dual cases
NASA Astrophysics Data System (ADS)
Loring, Terry A.; Sørensen, Adam P. W.
2016-08-01
We show that a pair of almost commuting self-adjoint, symmetric matrices is close to a pair of commuting self-adjoint, symmetric matrices (in a uniform way). Moreover, we prove that the same holds with self-dual in place of symmetric and also for paths of self-adjoint matrices. Since a symmetric, self-adjoint matrix is real, we get a real version of Huaxin Lin’s famous theorem on almost commuting matrices. Similarly, the self-dual case gives a version for matrices over the quaternions. To prove these results, we develop a theory of semiprojectivity for real C*-algebras and also examine various definitions of low-rank for real C*-algebras.
Brouyère, Serge
2006-01-10
In the Hesbaye region in Belgium, tracer tests performed in variably saturated fissured chalk rocks presented very contrasting results in terms of transit times, according to artificially controlled water recharge conditions prevailing during the experiments. Under intense recharge conditions, tracers migrated across the partially or fully saturated fissure network, at high velocity in accordance with the high hydraulic conductivity and low effective porosity (fracture porosity). At the same time, a portion of the tracer was temporarily retarded in the almost immobile water located in the matrix. Under natural infiltration conditions, the fissure network remained inactive. Tracers migrated downward through the matrix, at low velocity in relation with the low hydraulic conductivity and the large porosity of the matrix. Based on these observations, Brouyère et al. (2004a) [Brouyère, S., Dassargues, A., Hallet, V., 2004a. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation, J. Contam. Hydrol., 72 (1-4), 135-164, doi: 10.1016/j.conhyd.2003.10.009] proposed a conceptual model in order to explain the migration of solutes in variably saturated, dual-porosity, dual-permeability chalk. Here, mathematical and numerical modelling of tracer and contaminant migration in variably saturated fissured chalk is presented, considering the aforementioned conceptual model. A new mathematical formulation is proposed to represent the unsaturated properties of the fissured chalk in a more dynamic and appropriate way. At the same time, the rock water content is partitioned between mobile and immobile water phases, as a function of the water saturation of the chalk rock. The groundwater flow and contaminant transport in the variably saturated chalk is solved using the control volume finite element method. Modelling the field tracer experiments performed in the variably saturated chalk shows the adequacy and usefulness of the new conceptual, mathematical and numerical model.
Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang
2013-04-01
A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tree-level disk amplitude of three closed strings
NASA Astrophysics Data System (ADS)
Mousavi, Sepideh; Velni, Komeil Babaei
2018-05-01
It has been shown that the disk-level S-matrix elements of one Ramond-Ramond (RR) and two Neveu-Schwarz-Neveu-Schwarz (NSNS) states could be found by applying the Ward identity associated with the string duality and the gauge symmetry on a given component of the S matrix. These amplitudes have appeared as the components of six different T-dual multiplets. It is predicted in the literature that there are some nonzero disk-level scattering amplitudes, such as one RR (p -1 ) form with zero transverse index and two N S N S states, could not be captured by the T-dual Ward identity. We explicitly find this amplitude in terms of a minimal context of the integral functions by the insertion of one closed string RR vertex operator and two NSNS vertex operators. From the amplitude invariance under the Ward identity associated with the NSNS gauge transformations and T-duality, we also find some integral identities.
Matrix models for the black hole information paradox
NASA Astrophysics Data System (ADS)
Iizuka, Norihiro; Okuda, Takuya; Polchinski, Joseph
2010-02-01
We study various matrix models with a charge-charge interaction as toy models of the gauge dual of the AdS black hole. These models show a continuous spectrum and power-law decay of correlators at late time and infinite N, implying information loss in this limit. At finite N, the spectrum is discrete and correlators have recurrences, so there is no information loss. We study these models by a variety of techniques, such as Feynman graph expansion, loop equations, and sum over Young tableaux, and we obtain explicitly the leading 1/ N 2 corrections for the spectrum and correlators. These techniques are suggestive of possible dual bulk descriptions. At fixed order in 1/ N 2 the spectrum remains continuous and no recurrence occurs, so information loss persists. However, the interchange of the long-time and large- N limits is subtle and requires further study.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.
2012-01-01
A continuum-level, dual internal state variable, thermodynamically based, work potential model, Schapery Theory, is used capture the effects of two matrix damage mechanisms in a fiber-reinforced laminated composite: microdamage and transverse cracking. Matrix microdamage accrues primarily in the form of shear microcracks between the fibers of the composite. Whereas, larger transverse matrix cracks typically span the thickness of a lamina and run parallel to the fibers. Schapery Theory uses the energy potential required to advance structural changes, associated with the damage mechanisms, to govern damage growth through a set of internal state variables. These state variables are used to quantify the stiffness degradation resulting from damage growth. The transverse and shear stiffness of the lamina are related to the internal state variables through a set of measurable damage functions. Additionally, the damage variables for a given strain state can be calculated from a set of evolution equations. These evolution equations and damage functions are implemented into the finite element method and used to govern the constitutive response of the material points in the model. Additionally, an axial failure criterion is included in the model. The response of a center-notched, buffer strip-stiffened panel subjected to uniaxial tension is investigated and results are compared to experiment.
NASA Astrophysics Data System (ADS)
Blöcher, Johanna; Kuraz, Michal
2017-04-01
In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.
Dual-band quantum well infrared photodetector with metallic structure
NASA Astrophysics Data System (ADS)
Wu, Yang; Liu, Hongmei; Li, Pingzhou
2018-02-01
The quantum efficiency of the dual bands quantum well infrared photodetectors(QWIP) has been widely concerned in recent years. A novel structure for the dual-band quantum well infrared detectors which is based on GaAs/AlGaAs designed in this paper is aimed to improve the absorption efficiency. The structure replaces the conventional grating with a metallic grating based on surface plasmon polaritons(SPPS), and we further insert a metal structure in the periodic quantum well layer. The simulation result shows that the use of the different shapes of the metal holes can remarkably improve the optical coupling efficiency due to the surface plasmon effect. By optimizing parameters of the structure, it can work in the dual infrared bands of 3-5um and 8-12um. Moreover, the absorption rate increased by 20% compared with traditional structure of Dual-band QWIP.
Scalar one-point functions and matrix product states of AdS/dCFT
NASA Astrophysics Data System (ADS)
de Leeuw, Marius; Kristjansen, Charlotte; Linardopoulos, Georgios
2018-06-01
We determine in a closed form all scalar one-point functions of the defect CFT dual to the D3-D5 probe brane system with k units of flux which amounts to calculating the overlap between a Bethe eigenstate of the integrable SO(6) spin chain and a certain matrix product state of bond dimension k. In particular, we show that the matrix product state is annihilated by all the parity odd charges of the spin chain which has recently been suggested as the criterion for such a state to correspond to an integrable initial state. Finally, we discuss the properties of the analogous matrix product state for the SO(5) symmetric D3-D7 probe brane set-up.
Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks
Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.
2014-01-01
Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks. PMID:24949877
Kunze, Markus; Berger, Johannes
2015-01-01
The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes. PMID:26441678
Ali Mohammed, Marwan Mansoor; Nerland, Audun H; Al-Haroni, Mohammed; Bakken, Vidar
2013-01-01
Biofilms are organized communities of microorganisms embedded in a self-produced extracellular polymeric matrix (EPM), often with great phylogenetic variety. Bacteria in the subgingival biofilm are key factors that cause periodontal diseases; among these are the Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis. The objectives of this study were to characterize the major components of the EPM and to test the effect of deoxyribonuclease I (DNase I) and proteinase K. F. nucleatum and P. gingivalis bacterial cells were grown in dynamic and static biofilm models. The effects of DNase I and proteinase K enzymes on the major components of the EPM were tested during biofilm formation and on mature biofilm. Confocal laser scanning microscopy was used in observing biofilm structure. Proteins and carbohydrates were the major components of the biofilm matrix, and extracellular DNA (eDNA) was also present. DNase I and proteinase K enzymes had little effect on biofilms in the conditions used. In the flow cell, F. nucleatum was able to grow in partially oxygenated conditions while P. gingivalis failed to form biofilm alone in similar conditions. F. nucleatum supported the growth of P. gingivalis when they were grown together as dual species biofilm. DNase I and proteinase K had little effect on the biofilm matrix in the conditions used. F. nucleatum formed biofilm easily and supported the growth of P. gingivalis, which preferred anaerobic conditions.
NASA Astrophysics Data System (ADS)
Nikitin, Anatoly G.; Karadzhov, Yuri
2011-07-01
We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.
The Grassmannian origin of dual superconformal invariance
NASA Astrophysics Data System (ADS)
Arkani-Hamed, Nima; Cachazo, Freddy; Cheung, Clifford
2010-03-01
A dual formulation of the S Matrix for mathcal {N} = 4 SYM has recently been presented, where all leading singularities of n-particle N k-2MHV amplitudes are given as an integral over the Grassmannian G( k, n), with cyclic symmetry, parity and superconformal invariance manifest. In this short note we show that the dual superconformal invariance of this object is also manifest. The geometry naturally suggests a partial integration and simple change of variable to an integral over G( k - 2, n). This change of variable precisely corresponds to the mapping between usual momentum variables and the “momentum twistors” introduced by Hodges, and yields an elementary derivation of the momentumtwistor space formula very recently presented by Mason and Skinner, which is manifestly dual superconformal invariant. Thus the G( k, n) Grassmannian formulation allows a direct understanding of all the important symmetries of mathcal {N} = 4 SYM scattering amplitudes.
NASA Astrophysics Data System (ADS)
Schonberg, William P.
1993-04-01
Results are presented from an experimental study in which Al dual-wall structures were tested, under various high-speed impact conditions, with a view to the effect of multilayer insulation thickness and location on perforation resistance. Attention is given to comparisons of the damage sustained by dual-wall systems with multilayer insulation blankets of various thicknesses and at various locations within the dual-wall system, under comparable impact loading conditions. The placement of the insulation has a significant effect on the ballistic limit of the dual-wall structures considered, while reducing insulation thickness by as much as a third did not.
NASA Astrophysics Data System (ADS)
Holliday, Kiel Steven
There is a significant buildup in plutonium stockpiles throughout the world, because of spent nuclear fuel and the dismantling of weapons. The radiotoxicity of this material and proliferation risk has led to a desire for destroying excess plutonium. To do this effectively, it must be fissioned in a reactor as part of a uranium free fuel to eliminate the generation of more plutonium. This requires an inert matrix to volumetrically dilute the fissile plutonium. Zirconia-magnesia dual phase ceramic has been demonstrated to be a favorable material for this task. It is neutron transparent, zirconia is chemically robust, magnesia has good thermal conductivity and the ceramic has been calculated to conform to current economic and safety standards. This dissertation contributes to the knowledge of zirconia-magnesia as an inert matrix fuel to establish behavior of the material containing a fissile component. First, the zirconia-magnesia inert matrix is synthesized in a dual phase ceramic containing a fissile component and a burnable poison. The chemical constitution of the ceramic is then determined. Next, the material performance is assessed under conditions relevant to an advanced fuel cycle. Reactor conditions were assessed with high temperature, high pressure water. Various acid solutions were used in an effort to dissolve the material for reprocessing. The ceramic was also tested as a waste form under environmental conditions, should it go directly to a repository as a spent fuel. The applicability of zirconia-magnesia as an inert matrix fuel and waste form was tested and found to be a promising material for such applications.
Universality in chaos: Lyapunov spectrum and random matrix theory.
Hanada, Masanori; Shimada, Hidehiko; Tezuka, Masaki
2018-02-01
We propose the existence of a new universality in classical chaotic systems when the number of degrees of freedom is large: the statistical property of the Lyapunov spectrum is described by random matrix theory. We demonstrate it by studying the finite-time Lyapunov exponents of the matrix model of a stringy black hole and the mass-deformed models. The massless limit, which has a dual string theory interpretation, is special in that the universal behavior can be seen already at t=0, while in other cases it sets in at late time. The same pattern is demonstrated also in the product of random matrices.
Universality in chaos: Lyapunov spectrum and random matrix theory
NASA Astrophysics Data System (ADS)
Hanada, Masanori; Shimada, Hidehiko; Tezuka, Masaki
2018-02-01
We propose the existence of a new universality in classical chaotic systems when the number of degrees of freedom is large: the statistical property of the Lyapunov spectrum is described by random matrix theory. We demonstrate it by studying the finite-time Lyapunov exponents of the matrix model of a stringy black hole and the mass-deformed models. The massless limit, which has a dual string theory interpretation, is special in that the universal behavior can be seen already at t =0 , while in other cases it sets in at late time. The same pattern is demonstrated also in the product of random matrices.
Brito, Natalie H; Noble, Kimberly G
2018-06-07
Family socioeconomic status (SES) is strongly associated with children's cognitive development, and past studies have reported socioeconomic disparities in both neurocognitive skills and brain structure across childhood. In other studies, bilingualism has been associated with cognitive advantages and differences in brain structure across the lifespan. The aim of the current study is to concurrently examine the joint and independent associations between family SES and dual-language use with brain structure and cognitive skills during childhood. A subset of data from the Pediatric Imaging, Neurocognition and Genetics (PING) study was analyzed; propensity score matching established an equal sample (N = 562) of monolinguals and dual-language users with similar socio-demographic characteristics (M age = 13.5, Range = 3-20 years). When collapsing across all ages, SES was linked to both brain structure and cognitive skills. When examining differences by age group, brain structure was significantly associated with both income and dual-language use during adolescence, but not earlier in childhood. Additionally, in adolescence, a significant interaction between dual-language use and SES was found, with no difference in cortical surface area (SA) between language groups of higher-SES backgrounds but significantly increased SA for dual-language users from lower-SES families compared to SES-matched monolinguals. These results suggest both independent and interacting associations between SES and dual-language use with brain development. To our knowledge, this is the first study to concurrently examine dual-language use and socioeconomic differences in brain structure during childhood and adolescence. © 2018 John Wiley & Sons Ltd.
Dual methods and approximation concepts in structural synthesis
NASA Technical Reports Server (NTRS)
Fleury, C.; Schmit, L. A., Jr.
1980-01-01
Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins.
ACCESS 3. Approximation concepts code for efficient structural synthesis: User's guide
NASA Technical Reports Server (NTRS)
Fleury, C.; Schmit, L. A., Jr.
1980-01-01
A user's guide is presented for ACCESS-3, a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure. This program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible. Four distinct optimizer options were added: interior point penalty function method (NEWSUMT); second order primal projection method (PRIMAL2); second order Newton-type dual method (DUAL2); and first order gradient projection-type dual method (DUAL1). A pure discrete and mixed continuous-discrete design variable capability, and zero order approximation of the stress constraints are also included.
NASA Astrophysics Data System (ADS)
Gomaa, Ahmed I.; Martinent, Cynthia; Hammami, Riadh; Fliss, Ismail; Subirade, Muriel
2017-11-01
Abstract Antimicrobial peptides have been proposed as a potential biopreservatives in pharmaceutical research and agribusiness. However, many limitations hinder their utilization, such as their vulnerability to proteolytic digestion and their potential interaction with other food ingredients in complex food systems. One approach to overcome such problems is developing formulations entrapping and thereby protecting the antimicrobial peptides. Liposome encapsulation is a strategy that could be implemented to combine protection of the antimicrobial activity of the peptides from proteolytic enzymes and the controlled release of the encapsulated active ingredients. The objective of this study was to develop dual-coated food grade liposome formulations for oral administration of bacteriocins. The formulations were developed from anionic and cationic phospholipids as models of negatively and positively charged liposomes, respectively. Liposomes were prepared by the hydration of lipid films. Subsequently, the liposomes were coated with two layers comprising a biopolymer network (pectin) and whey proteins (WPI) in order to further improve their stability and enable the gradual release of the developed liposomes. Liposomes were characterized for their size, charge, molecular structure, morphology, encapsulation efficiency and release. The results of FTIR, zeta potential, size distribution and transmission electron microscopy confirmed that the liposomes were efficiently coated. Ionic interactions were involved in the stabilization of the positively charged liposome formulations. Negatively charge liposome formulations were stabilized through weak interactions. The release study proved the efficiency of dual coating on the protection of liposomes against gastrointestinal digestion. This work is the first to study the encapsulation of antimicrobial peptides in dual-coated liposomes. Furthermore, the work successfully encapsulated MccJ25 in both negative and positive liposome models.
2014-04-03
reinforcements as well as nature of matrix reinforcement interface.2,8 In situ MMCs exhibit thermodynamic stability, good inter- facial bonding, and uniform...of these Ni-Ti-C composites. A dual-beam workstation (FEI Nova NanoSEM) equipped with a focused ion beam column employing a Gallium (Ga) liquid metal...commercially available solution thermodynamic models (PANDATTM from Compu- Therm), are shown in Fig. 5 a–d. The points corre- sponding to the Ni-17Ti-17C
Monte Carlo study of exact {ital S}-matrix duality in nonsimply laced affine Toda theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beccaria, M.
The ({ital g}{sub 2}{sup (1)},{ital d}{sub 4}{sup (3)}) pair of nonsimply laced affine Toda theories is studied from the point of view of nonperturbative duality. The classical spectrum of each member is composed of two massive scalar particles. The exact {ital S}-matrix prediction for the dual behavior of the coupling-dependent mass ratio is found to be in strong agreement with Monte Carlo data. {copyright} {ital 1996 The American Physical Society.}
New Results in {mathcal {N}}=2 N = 2 Theories from Non-perturbative String
NASA Astrophysics Data System (ADS)
Bonelli, Giulio; Grassi, Alba; Tanzini, Alessandro
2018-03-01
We describe the magnetic phase of SU(N) $\\mathcal{N}=2$ Super Yang-Mills theories in the self-dual Omega background in terms of a new class of multi-cut matrix models. These arise from a non-perturbative completion of topological strings in the dual four dimensional limit which engineers the gauge theory in the strongly coupled magnetic frame. The corresponding spectral determinants provide natural candidates for the tau functions of isomonodromy problems for flat spectral connections associated to the Seiberg-Witten geometry.
Bertolini, M M; Xu, H; Sobue, T; Nobile, C J; Del Bel Cury, A A; Dongari-Bagtzoglou, A
2015-08-01
Candida albicans and streptococci of the mitis group form communities in multiple oral sites, where moisture and nutrient availability can change spatially or temporally. This study evaluated structural and virulence characteristics of Candida-streptococcal biofilms formed on moist or semidry mucosal surfaces, and tested the effects of nutrient availability and hyphal morphotype on dual-species biofilms. Three-dimensional models of the oral mucosa formed by immortalized keratinocytes on a fibroblast-embedded collagenous matrix were used. Infections were carried out using Streptococcus oralis strain 34, in combination with a C. albicans wild-type strain, or pseudohyphal-forming mutant strains. Increased moisture promoted a homogeneous surface biofilm by C. albicans. Dual biofilms had a stratified structure, with streptococci growing in close contact with the mucosa and fungi growing on the bacterial surface. Under semidry conditions, Candida formed localized foci of dense growth, which promoted focal growth of streptococci in mixed biofilms. Candida biofilm biovolume was greater under moist conditions, albeit with minimal tissue invasion, compared with semidry conditions. Supplementing the infection medium with nutrients under semidry conditions intensified growth, biofilm biovolume and tissue invasion/damage, without changing biofilm structure. Under these conditions, the pseudohyphal mutants and S. oralis formed defective superficial biofilms, with most bacteria in contact with the epithelial surface, below a pseudohyphal mass, resembling biofilms growing in a moist environment. The presence of S. oralis promoted fungal invasion and tissue damage under all conditions. We conclude that moisture, nutrient availability, hyphal morphotype and the presence of commensal bacteria influence the architecture and virulence characteristics of mucosal fungal biofilms. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A novel dual-camera calibration method for 3D optical measurement
NASA Astrophysics Data System (ADS)
Gai, Shaoyan; Da, Feipeng; Dai, Xianqiang
2018-05-01
A novel dual-camera calibration method is presented. In the classic methods, the camera parameters are usually calculated and optimized by the reprojection error. However, for a system designed for 3D optical measurement, this error does not denote the result of 3D reconstruction. In the presented method, a planar calibration plate is used. In the beginning, images of calibration plate are snapped from several orientations in the measurement range. The initial parameters of the two cameras are obtained by the images. Then, the rotation and translation matrix that link the frames of two cameras are calculated by using method of Centroid Distance Increment Matrix. The degree of coupling between the parameters is reduced. Then, 3D coordinates of the calibration points are reconstructed by space intersection method. At last, the reconstruction error is calculated. It is minimized to optimize the calibration parameters. This error directly indicates the efficiency of 3D reconstruction, thus it is more suitable for assessing the quality of dual-camera calibration. In the experiments, it can be seen that the proposed method is convenient and accurate. There is no strict requirement on the calibration plate position in the calibration process. The accuracy is improved significantly by the proposed method.
Dual-plane ultrasound flow measurements in liquid metals
NASA Astrophysics Data System (ADS)
Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen
2013-05-01
An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.
UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites
Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco
2016-01-01
Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components. PMID:28773704
UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites.
Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco
2016-07-16
Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.
Oellig, Claudia
2016-05-06
Propolis is a very complex mixture of substances that is produced by honey bees and is known to be a rather challenging matrix for residue analysis. Besides resins, flavonoids and phenols, high amount of wax is co-extracted resulting in immense matrix effects. Therefore a suitable clean-up is crucial and indispensable. In this study, a reliable solid phase extraction (SPE) clean-up was developed for pesticide residue analysis in propolis. The clean-up success was quickly and easily monitored by high-performance thin-layer chromatography with different detection possibilities. The final method consists of the extraction of propolis with acetonitrile according to the QuEChERS method followed by an effective extract purification on dual-layer SPE cartridges with spherical hydrophobic polystyrene-divinylbenzene resin/primary secondary amine as sorbent and a mixture of toluene/acetone (95:5, v/v) for elution. Besides fat-soluble components like waxes, flavonoids, and terpenoids, more polar compounds like organic acids, fatty acids, sugars and anthocyanins were also removed to large extent. Method performance was assessed by recovery experiments at spiking levels of 0.5 and 1mg/kg (n=5) for fourteen pesticides that are relevant for propolis. Mean recoveries determined by HPLC-MS against solvent standards were between 40 and 101%, while calculation against matrix-matched standards provided recoveries of 79-104%. Precision of recovery, assessed by relative standard deviations, were below 9%. Thus, the developed dual-layer SPE clean-up enables the reliable pesticide residue analysis in propolis and provides a suitable alternative to time-consuming clean-up procedures proposed in literature. Copyright © 2016 Elsevier B.V. All rights reserved.
Discrete-continuous variable structural synthesis using dual methods
NASA Technical Reports Server (NTRS)
Schmit, L. A.; Fleury, C.
1980-01-01
Approximation concepts and dual methods are extended to solve structural synthesis problems involving a mix of discrete and continuous sizing type of design variables. Pure discrete and pure continuous variable problems can be handled as special cases. The basic mathematical programming statement of the structural synthesis problem is converted into a sequence of explicit approximate primal problems of separable form. These problems are solved by constructing continuous explicit dual functions, which are maximized subject to simple nonnegativity constraints on the dual variables. A newly devised gradient projection type of algorithm called DUAL 1, which includes special features for handling dual function gradient discontinuities that arise from the discrete primal variables, is used to find the solution of each dual problem. Computational implementation is accomplished by incorporating the DUAL 1 algorithm into the ACCESS 3 program as a new optimizer option. The power of the method set forth is demonstrated by presenting numerical results for several example problems, including a pure discrete variable treatment of a metallic swept wing and a mixed discrete-continuous variable solution for a thin delta wing with fiber composite skins.
Dual-systems and the development of reasoning: competence-procedural systems.
Overton, Willis F; Ricco, Robert B
2011-03-01
Dual-system, dual-process, accounts of adult cognitive processing are examined in the context of a self-organizing relational developmental systems approaches to cognitive growth. Contemporary adult dual-process accounts describe a linear architecture of mind entailing two split-off, but interacting systems; a domain general, content-free 'analytic' system (system 2) and a domain specific highly contextualized 'heuristic' system (system 1). In the developmental literature on deductive reasoning, a similar distinction has been made between a domain general competence (reflective, algorithmic) system and a domain specific procedural system. In contrast to the linear accounts offered by empiricist, nativist, and/or evolutionary explanations, the dual competence-procedural developmental perspective argues that the mature systems emerge through developmental transformations as differentiations and intercoordinations of an early relatively undifferentiated action matrix. This development, whose microscopic mechanism is action-in-the-world, is characterized as being embodied, nonlinear, and epigenetic. WIREs Cogni Sci 2011 2 231-237 DOI: 10.1002/wcs.120 For further resources related to this article, please visit the WIREs website. © 2010 John Wiley & Sons, Ltd.
Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables
NASA Astrophysics Data System (ADS)
Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.
2018-02-01
In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.
Using Covariance Matrix for Change Detection of Polarimetric SAR Data
NASA Astrophysics Data System (ADS)
Esmaeilzade, M.; Jahani, F.; Amini, J.
2017-09-01
Nowadays change detection is an important role in civil and military fields. The Synthetic Aperture Radar (SAR) images due to its independent of atmospheric conditions and cloud cover, have attracted much attention in the change detection applications. When the SAR data are used, one of the appropriate ways to display the backscattered signal is using covariance matrix that follows the Wishart distribution. Based on this distribution a statistical test for equality of two complex variance-covariance matrices can be used. In this study, two full polarization data in band L from UAVSAR are used for change detection in agricultural fields and urban areas in the region of United States which the first image belong to 2014 and the second one is from 2017. To investigate the effect of polarization on the rate of change, full polarization data and dual polarization data were used and the results were compared. According to the results, full polarization shows more changes than dual polarization.
Financial Impact of Dual Vendor, Matrix Pricing, and Sole-Source Contracting on Implant Costs.
Althausen, Peter L; Lapham, Joan; Mead, Lisa
2016-12-01
Implant costs comprise the largest proportion of operating room supply costs for orthopedic trauma care. Over the years, hospitals have devised several methods of controlling these costs with the help of physicians. With increasing economic pressure, these negotiations have a tremendous ability to decrease the cost of trauma care. In the past, physicians have taken no responsibility for implant pricing which has made cost control difficult. The reasons have been multifactorial. However, industry surgeon consulting fees, research support, and surgeon comfort with certain implant systems have played a large role in slowing adoption of cost-control measures. With the advent of physician gainsharing and comanagement agreements, physicians now have impetus to change. At our facility, we have used 3 methods for cost containment since 2009: dual vendor, matrix pricing, and sole-source contracting. Each has been increasingly successful, resulting in massive savings for the institution. This article describes the process and benefits of each model.
Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis.
Du, Jiang; Karimi, Afshin; Wu, Yijing; Korosec, Frank R; Grist, Thomas M; Mistretta, Charles A
2011-04-01
Time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA) provides contrast dynamics in the vasculature and allows vessel segmentation based on temporal correlation analysis. Here we present an automated vessel segmentation algorithm including automated generation of regions of interest (ROIs), cross-correlation and pooled sample covariance matrix analysis. The dynamic images are divided into multiple equal-sized regions. In each region, ROIs for artery, vein and background are generated using an iterative thresholding algorithm based on the contrast arrival time map and contrast enhancement map. Region-specific multi-feature cross-correlation analysis and pooled covariance matrix analysis are performed to calculate the Mahalanobis distances (MDs), which are used to automatically separate arteries from veins. This segmentation algorithm is applied to a dual-phase dynamic imaging acquisition scheme where low-resolution time-resolved images are acquired during the dynamic phase followed by high-frequency data acquisition at the steady-state phase. The segmented low-resolution arterial and venous images are then combined with the high-frequency data in k-space and inverse Fourier transformed to form the final segmented arterial and venous images. Results from volunteer and patient studies demonstrate the advantages of this automated vessel segmentation and dual phase data acquisition technique. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Teal, Paul D.; Eccles, Craig
2015-04-01
The two most successful methods of estimating the distribution of nuclear magnetic resonance relaxation times from two dimensional data are data compression followed by application of the Butler-Reeds-Dawson algorithm, and a primal-dual interior point method using preconditioned conjugate gradient. Both of these methods have previously been presented using a truncated singular value decomposition of matrices representing the exponential kernel. In this paper it is shown that other matrix factorizations are applicable to each of these algorithms, and that these illustrate the different fundamental principles behind the operation of the algorithms. These are the rank-revealing QR (RRQR) factorization and the LDL factorization with diagonal pivoting, also known as the Bunch-Kaufman-Parlett factorization. It is shown that both algorithms can be improved by adaptation of the truncation as the optimization process progresses, improving the accuracy as the optimal value is approached. A variation on the interior method viz, the use of barrier function instead of the primal-dual approach, is found to offer considerable improvement in terms of speed and reliability. A third type of algorithm, related to the algorithm known as Fast iterative shrinkage-thresholding algorithm, is applied to the problem. This method can be efficiently formulated without the use of a matrix decomposition.
NASA Astrophysics Data System (ADS)
Gong, J.; Rossen, W.
2015-12-01
We showed previously (Gong and Rossen, 2014a,b) that, if the fracture aperture distribution is broad enough in a naturally fractured reservoir, even one where the fracture network is well-connected, most fractures can be eliminated without significantly affecting the flow through the fracture network. During a waterflood or enhanced-oil-recovery (EOR) process, the production of oil depends on the supply of injected water or EOR agent. This suggests that the characteristic fracture spacing for the dual-porosity/dual-permeability simulation of waterflood or EOR in a naturally fractured reservoir should account not for all fractures but only the relatively small portion of the fracture network carrying almost all the injected water or EOR agent. In contrast, in primary production even a relatively small fracture represents an effective path for oil to flow to a production well. Thus in primary production the effective fracture spacing should include all the fractures. This distinction means that the "shape factor" in dual-porosity/dual-permeability reservoir simulators and the repeating unit in homogenization should depend on the process involved: specifically, it should be different for primary and secondary or tertiary recovery. We test this hypothesis in a simple representation of a fractured reservoir with a non-uniform distribution of fracture flow conductivities. We compare oil production, flow patterns in matrix, and the pattern of oil recovery around fractures with and without the "unimportant" fractures present. In primary production, all fractures which are much more permeable than matrix play a significant role in production. The shape factor or repeating-unit size should reflect the entire fracture distribution. In secondary or tertiary production, the role of fractures that carry relatively little flow depends on injection rate, the ratio of flow carried by the different fractures, and the permeability of matrix. In some cases, the appropriate shape factor or repeating-unit size for waterflood or EOR should reflect only those fractures that carry most of the flow. References:Gong, and Rossen, 14th ECMOR Conf., Catania, Sicily, 2014(a). Gong, and Rossen, Intl. Discrete Fracture Network Eng. Conf., Vancouver, Canada, 2014(b).
Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F
2016-02-01
The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F.
2016-02-01
The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.
Assessment of a new biomimetic scaffold and its effects on bone formation by OCT
NASA Astrophysics Data System (ADS)
Yang, Ying; Aydin, Halil M.; Piskin, Erhan; El Haj, Alicia J.
2009-02-01
The ultimate target of bone tissue engineering is to generate functional load bearing bone. By nature, the porous volume in the trabecular bone is occupied by osseous medulla. The natural bone matrix consists of hydroxyapatite (HA) crystals precipitated along the collagen type I fibres. The mineral phase renders bone strength while collagen provides flexibility. Without mineral component, bone is very flexible and can not bear loads, whereas it is brittle in the case of mineral phase without the collagen presence. In this study, we designed and prepared a new type of scaffold which mimics the features of natural bone. The scaffold consists of three different components, a biphasic polymeric base composed of two different biodegradable polymers prepared by using dual porogen approach and bioactive agents, i.e., collagen and HA particles which are distributed throughout the matrix only in the pore surfaces. Interaction of the bioactive scaffolds possessing very high porosity and interconnected pore structures with cells were investigated in a prolonged culture period by using an osteoblastic cell line. The mineral HA particles have a slight different refractive index from the other elements such as polymeric scaffolds and cell/matrix in a tissue engineering constructs, exhibiting brighter images in OCT. Thus, OCT renders a convenient means to assess the morphology and architecture of the blank biomimetic scaffolds. This study also takes a close observation of OCT images for the cultured cell-scaffold constructs in order to assess neo-formed minerals and matrix. The OCT assessments have been compared with the results from confocal and SEM analysis.
Comparison of dual-k spacer and single-k spacer for single NWFET and 3-stack NWFET
NASA Astrophysics Data System (ADS)
Ko, Hyungwoo; Kim, Jongsu; Kim, Minsoo; Kang, Myounggon; Shin, Hyungcheol
2018-02-01
The investigation of the Dual-k spacer through comparative analysis of single nanowire-FET(NWFET)/3-stack NWFET and underlap/overlap channel is conducted. It is known that the dug 3-stack NWFET has better delay characteristics than single NWFET with the use of high permittivity material of Cin in Dual-k spacer structure. In addition, there is no difference of delay between overlap and underlap channel when it used Dual-k spacer structure but underlap channel of Dual-k 3-stack NWFET shows better short channel immunity.
A Fine-Grained Pipelined Implementation for Large-Scale Matrix Inversion on FPGA
NASA Astrophysics Data System (ADS)
Zhou, Jie; Dou, Yong; Zhao, Jianxun; Xia, Fei; Lei, Yuanwu; Tang, Yuxing
Large-scale matrix inversion play an important role in many applications. However to the best of our knowledge, there is no FPGA-based implementation. In this paper, we explore the possibility of accelerating large-scale matrix inversion on FPGA. To exploit the computational potential of FPGA, we introduce a fine-grained parallel algorithm for matrix inversion. A scalable linear array processing elements (PEs), which is the core component of the FPGA accelerator, is proposed to implement this algorithm. A total of 12 PEs can be integrated into an Altera StratixII EP2S130F1020C5 FPGA on our self-designed board. Experimental results show that a factor of 2.6 speedup and the maximum power-performance of 41 can be achieved compare to Pentium Dual CPU with double SSE threads.
Toward holographic reconstruction of bulk geometry from lattice simulations
NASA Astrophysics Data System (ADS)
Rinaldi, Enrico; Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan; Vranas, Pavlos
2018-02-01
A black hole described in SU( N ) gauge theory consists of N D-branes. By separating one of the D-branes from others and studying the interaction between them, the black hole geometry can be probed. In order to obtain quantitative results, we employ the lattice Monte Carlo simulation. As a proof of the concept, we perform an explicit calculation in the matrix model dual to the black zero-brane in type IIA string theory. We demonstrate this method actually works in the high temperature region, where the stringy correction is large. We argue possible dual gravity interpretations.
Toward holographic reconstruction of bulk geometry from lattice simulations
Rinaldi, Enrico; Berkowitz, Evan; Hanada, Masanori; ...
2018-02-07
A black hole described in SU(N ) gauge theory consists of N D-branes. By separating one of the D-branes from others and studying the interaction between them, the black hole geometry can be probed. In order to obtain quantitative results, we employ the lattice Monte Carlo simulation. As a proof of the concept, we perform an explicit calculation in the matrix model dual to the black zero-brane in type IIA string theory. We demonstrate this method actually works in the high temperature region, where the stringy correction is large. We argue possible dual gravity interpretations.
Dual-Doppler lidar observation of horizontal convective rolls and near-surface streaks
NASA Astrophysics Data System (ADS)
Iwai, Hironori; Ishii, Shoken; Tsunematsu, Nobumitsu; Mizutani, Kohei; Murayama, Yasuhiro; Itabe, Toshikazu; Yamada, Izumi; Matayoshi, Naoki; Matsushima, Dai; Weiming, Sha; Yamazaki, Takeshi; Iwasaki, Toshiki
2008-07-01
Dual-Doppler lidar and heliborne sensors were used to investigate the three-dimensional (3D) structure of the wind field over Sendai Airport in June 2007. The 3D structures of several-hundred-meter-scale horizontal convective rolls (HCRs) in the sea-breeze layer were observed by the dual-Doppler lidar. The scale of the HCRs determined by the heliborne sensors roughly agreed with that determined by the dual-Doppler lidar. Analysis of the dual-Doppler lidar data showed that the region of upward flow in the HCRs originated in near-surface low-speed streaks. This structure is consistent with the results of large-eddy simulations of the atmospheric boundary layer. The aspect ratios of the HCRs were close to those predicted by linear theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Reuben T.
This project developed, characterized, and perfected a new type of highly tunable nanocrystalline silicon (nc-Si:H) incorporating quantum confined silicon nanoparticles (SiNPs). A dual zone deposition process and system were developed and demonstrated. The depositions of SiNPs, the amorphous phase, and co-deposited material were characterized and optimized. Material design and interpretation of results were guided by new theoretical tools that examined both the electronic structure and carrier dynamics of this hybrid material. Heterojunction and p-i-n solar cells were demonstrated and characterized. Photo-thin-film-transistors allowed mobility to be studied as a function SiNP density in the films. Rapid (hot) transfer of carriers frommore » the amorphous matrix to the quantum confined SiNPs was observed and connected to reduced photo-degradation. The results carry quantum confined Si dots from a novelty to materials that can be harnessed for PV and optoelectronic applications. The growth process is broadly extendable with alternative amorphous matrices, novel layered structures, and alternative NPs easily accessible. The hot carrier effects hold the potential for third generation photovoltaics.« less
A dual sensor for real-time monitoring of glucose and oxygen
Zhang, Liqiang; Su, Fengyu; Buizer, Sean; Lu, Hongguang; Gao, Weimin; Tian, Yanqing; Meldrum, Deirdre
2013-01-01
A dual glucose and oxygen sensor in a polymer format was developed. The dual sensor composed of a blue emitter as the glucose probe, a red emitter as an oxygen probe, and a yellow emitter as a built-in reference probe which does not respond to either glucose or oxygen. All the three probes were chemically immobilized in a polyacrylamide-based matrix. Therefore, the dual sensor possesses three well separated emission colors and ratiometric approach is applicable for analysis of the glucose and oxygen concentration at biological conditions. The sensor was applied for real-time monitoring of glucose and oxygen consumption of bacterial cells, Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis), and mammalian cells of mouse macrophage J774 and human cervical cancer HeLa cell lines. On the other hand, in order to achieve satisfactory sensing performance for glucose, compositions of the matrices among poly(2-hydroxyethyl methacrylate), polyacrylamide, and poly(6-aminohexyl methacrylamide) which is a linker polymer for grafting the glucose probe, were optimized. PMID:24090834
Properties and Residual Stresses in Angle-Ply Polymer Matrix Composites
1982-03-01
AMMRC TR 82-12 PROPERTIES AND RES l DUAL STRESSES IN ANGLE-PLY POLYMER MATR l X COMPOSITES March 1982 ABDEL A. FAHMY,, HARVEY A. WEST, and MARK...m D.e. Enl.r.d) PROPERTIES AND RESIDUAL STRESSES I N ANGLE-PLY F i n a l Report POLYMER MATRIX COMPOSITES REPORTDOCUMENTATlON PAGE I 7. AUTHOR...SUPPLEMENTARV NOTES L 19. KEY WORDS (Comclrm. m r.r.r. wd. 11 ner..sw and idenllfy by blocb nmb-r) Composites Thermal expansion Epoxy l a m i n a t e s
Antisymmetric Wilson loops in N = 4 SYM beyond the planar limit
NASA Astrophysics Data System (ADS)
Gordon, James
2018-01-01
We study the 1/2 -BPS circular Wilson loop in the totally antisymmetric representation of the gauge group in N = 4 supersymmetric Yang-Mills. This observable is captured by a Gaussian matrix model with appropriate insertion. We compute the first 1 /N correction at leading order in 't Hooft coupling by means of the matrix model loop equations. Disagreement with the 1-loop effective action of the holographically dual D5-brane suggests the need to account for gravitational backreaction on the string theory side.
A Block-LU Update for Large-Scale Linear Programming
1990-01-01
linear programming problems. Results are given from runs on the Cray Y -MP. 1. Introduction We wish to use the simplex method [Dan63] to solve the...standard linear program, minimize cTx subject to Ax = b 1< x <U, where A is an m by n matrix and c, x, 1, u, and b are of appropriate dimension. The simplex...the identity matrix. The basis is used to solve for the search direction y and the dual variables 7r in the following linear systems: Bky = aq (1.2) and
NASA Technical Reports Server (NTRS)
Gedney, Stephen D.; Lansing, Faiza
1993-01-01
The generalized Yee-algorithm is presented for the temporal full-wave analysis of planar microstrip devices. This algorithm has the significant advantage over the traditional Yee-algorithm in that it is based on unstructured and irregular grids. The robustness of the generalized Yee-algorithm is that structures that contain curved conductors or complex three-dimensional geometries can be more accurately, and much more conveniently modeled using standard automatic grid generation techniques. This generalized Yee-algorithm is based on the the time-marching solution of the discrete form of Maxwell's equations in their integral form. To this end, the electric and magnetic fields are discretized over a dual, irregular, and unstructured grid. The primary grid is assumed to be composed of general fitted polyhedra distributed throughout the volume. The secondary grid (or dual grid) is built up of the closed polyhedra whose edges connect the centroid's of adjacent primary cells, penetrating shared faces. Faraday's law and Ampere's law are used to update the fields normal to the primary and secondary grid faces, respectively. Subsequently, a correction scheme is introduced to project the normal fields onto the grid edges. It is shown that this scheme is stable, maintains second-order accuracy, and preserves the divergenceless nature of the flux densities. Finally, for computational efficiency the algorithm is structured as a series of sparse matrix-vector multiplications. Based on this scheme, the generalized Yee-algorithm has been implemented on vector and parallel high performance computers in a highly efficient manner.
Mechanical Properties of a Superalloy Disk with a Dual Grain Structure
NASA Technical Reports Server (NTRS)
Gayda, John; Gabb, Timothy; Kantzos, Peter
2003-01-01
Mechanical properties from an advanced, nickel-base superalloy disk, with a dual grain structure consisting of a fine grain bore and coarse grain rim, were evaluated. The dual grain structure was produced using NASA's low cost Dual Microstructure Heat Treatment (DMHT) process. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to a subsolvus (fine grain) heat treated disk, and a creep resistant rim comparable to a supersolvus (coarse grain) heat treated disk. Additional work on subsolvus solutioning before or after the DMHT conversion appears to be a viable avenue for further improvement in disk properties.
Combined investigation of Eddy current and ultrasonic techniques for composite materials NDE
NASA Technical Reports Server (NTRS)
Davis, C. W.; Nath, S.; Fulton, J. P.; Namkung, M.
1993-01-01
Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (eddy current (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. Eddy current and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences.
Neural correlates of motor-cognitive dual-tasking in young and old adults
Papegaaij, Selma; Hortobágyi, Tibor; Godde, Ben; Kaan, Wim A.; Erhard, Peter; Voelcker-Rehage, Claudia
2017-01-01
When two tasks are performed simultaneously, performance often declines in one or both tasks. These so-called dual-task costs are more pronounced in old than in young adults. One proposed neurological mechanism of the dual-task costs is that old compared with young adults tend to execute single-tasks with higher brain activation. In the brain regions that are needed for both tasks, the reduced residual capacity may interfere with performance of the dual-task. This competition for shared brain regions has been called structural interference. The purpose of the study was to determine whether structural interference indeed plays a role in the age-related decrease in dual-task performance. Functional magnetic resonance imaging (fMRI) was used to investigate 23 young adults (20–29 years) and 32 old adults (66–89 years) performing a calculation (serial subtraction by seven) and balance-simulation (plantar flexion force control) task separately or simultaneously. Behavioral performance decreased during the dual-task compared with the single-tasks in both age groups, with greater dual-task costs in old compared with young adults. Brain activation was significantly higher in old than young adults during all conditions. Region of interest analyses were performed on brain regions that were active in both tasks. Structural interference was apparent in the right insula, as quantified by an age-related reduction in upregulation of brain activity from single- to dual-task. However, the magnitude of upregulation did not correlate with dual-task costs. Therefore, we conclude that the greater dual-task costs in old adults were probably not due to increased structural interference. PMID:29220349
Phase transitions in Yang-Mills theories and their gravity duals
NASA Astrophysics Data System (ADS)
Marsano, Joseph Daniel
This thesis is a study of the thermal phase structure of systems that admit dual gauge theory and string theory descriptions. In a pair of examples, we explore the connection between perturbative Yang-Mills and gravitational thermodynamics which arises from the fact that these descriptions probe different corners of a single phase diagram. The structure that emerges from a detailed study of these isolated regions generally suggests a natural conjecture how they may be connected to one another within the full phase diagram. This permits the identification of interesting phenomena in the gauge and gravity regimes under a continuous change in parameters. We begin by studying the AdS5/CFT 4 system which, when the supergravity description is valid, exhibits a first order Hawking-Page phase transition as a function of temperature from a thermal gas of gravitons to a large black hole. In the perturbative Yang-Mills regime, we find that the free theory exhibits a weakly first order deconfinement transition whose precise nature at small nonzero coupling depends on the result of a nontrivial perturbative computation. It is conjectured that this deconfinement transition is continuously connected in the full phase diagram to the Hawking-Page transition at strong coupling, with the confined phase identified with the graviton gas and the deconfined phase identified with the black hole. We then turn to the study of Gregory-Laflamme (GL) black hole/black string transitions in supergravity and their realization in a setup that admits a dual description via the maximally supersymmetric Yang-Mills theory on T2. The thermodynamics of Yang-Mills theories on low dimensional tori is studied in detail revealing an intricate structure of which the GL transition at strong coupling is a small piece. We are led to conjecture that GL physics is continuously connected to deconfinement in maximally supersymmetric 0 + 1-dimensional gauged matrix quantum mechanics. This identification will then permit us to probe GL transitions from the gauge theory point of view and comment on some puzzles regarding their precise nature.
Impact of kerogen heterogeneity on sorption of organic pollutants. 2. Sorption equilibria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Yu, Z.Q.; Xiao, B.H.
2009-08-15
Phenanthrene and naphthalene sorption isotherms were measured for three different series of kerogen materials using completely mixed batch reactors. Sorption isotherms were nonlinear for each sorbate-sorbent system, and the Freundlich isotherm equation fit the sorption data well. The Freundlich isotherm linearity parameter n ranged from 0.192 to 0.729 for phenanthrene and from 0.389 to 0.731 for naphthalene. The n values correlated linearly with rigidity and aromaticity of the kerogen matrix, but the single-point, organic carbon-normalized distribution coefficients varied dramatically among the tested sorbents. A dual-mode sorption equation consisting of a linear partitioning domain and a Langmuir adsorption domain adequately quantifiedmore » the overall sorption equilibrium for each sorbent-sorbate system. Both models fit the data well, with r{sup 2} values of 0.965 to 0.996 for the Freundlich model and 0.963 to 0.997 for the dual-mode model for the phenanthrene sorption isotherms. The dual-mode model fitting results showed that as the rigidity and aromaticity of the kerogen matrix increased, the contribution of the linear partitioning domain to the overall sorption equilibrium decreased, whereas the contribution of the Langmuir adsorption domain increased. The present study suggested that kerogen materials found in soils and sediments should not be treated as a single, unified, carbonaceous sorbent phase.« less
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.
2017-12-01
The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.
ERIC Educational Resources Information Center
Cuthbert, Rob
The matrix structure as an alternative to the departmental structure for colleges and universities is discussed, and the matrix system at Middlesex Polytechnic in England is used as illustration. The major impact of the introduction of a matrix structure is its effect on teaching activities within the institution. The matrix structure formally…
Marginal deformations of gauge theories and their dual description
NASA Astrophysics Data System (ADS)
Kulaxizi, Manuela
Holography and its realization in string theory as the AdS/CFT correspondence, offers an equivalence between gauge theories and gravity that provides a means to explore the otherwise inaccessible large N and strong coupling region of SU(N) gauge theories. While considerable progress has been made in this area, a concrete method for specifying the gravitational background dual to a given gauge theory is still lacking. This is the question addressed in this thesis in the context of exactly marginal deformations of N = 4 SYM. First, a precise relation between the deformation of the superpotential and transverse space noncommutativity is established. In particular, the appropriate noncommutativity matrix theta is determined, relying solely on data from the gauge theory lagrangian and basic notions of the AdS/CFT correspondence. The set ( G , theta) of open string parameters, with G the metric of the transverse space, is then understood as a way to encode information pertaining to the moduli space of the gauge theory. It seems thus natural to expect that it may be possible to obtain the corresponding gravitational solution by mapping the open string fields ( G , theta) to the closed string ones (g, B). This hints at a purely algebraic method for constructing gravity duals to given conformal gauge theories. The idea is tested within the context of the beta-deformed theory where the dual gravity description is known and then used to construct the background for the rho-deformed theory up to third order in the deformation parameter rho. Discrepancy of the higher order in rho terms in the latter case is traced to the nonassociativity of the noncommutative matrix theta.
Parish, Chad M.; Unocic, Kinga A.; Tan, Lizhen; ...
2016-10-24
Here we irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ~50 dpa, ~15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ~8 nm, ~10 21 m -3 (CNA), and of ~3 nm, 10 23 m -3 (NFAs). STEM combined with multivariate statistical analysis data mining suggests thatmore » the precipitate-matrix interfaces in all alloys survived ~50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Finally, among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.« less
NASA Astrophysics Data System (ADS)
Belitsky, A. V.
2018-04-01
The form factor program for the regularized space-time S-matrix in planar maximally supersymmetric gauge theory, known as the pentagon operator product expansion, is formulated in terms of flux-tube excitations propagating on a dual two-dimensional world-sheet, whose dynamics is known exactly as a function of 't Hooft coupling. Both MHV and non-MHV amplitudes are described in a uniform, systematic fashion within this framework, with the difference between the two encoded in coupling-dependent helicity form factors expressed via Zhukowski variables. The nontrivial SU(4) tensor structure of flux-tube transitions is coupling independent and is known for any number of charged excitations from solutions of a system of Watson and Mirror equations. This description allows one to resum the infinite series of form factors and recover the space-time S-matrix exactly in kinematical variables at a given order of perturbation series. Recently, this was done for the hexagon. Presently, we successfully perform resummation for the seven-leg tree NMHV amplitude. To this end, we construct the flux-tube integrands of the fifteen independent Grassmann component of the heptagon with an infinite number of small fermion-antifermion pairs accounted for in NMHV two-channel conformal blocks.
A high efficiency dual-junction solar cell implemented as a nanowire array.
Yu, Shuqing; Witzigmann, Bernd
2013-01-14
In this work, we present an innovative design of a dual-junction nanowire array solar cell. Using a dual-diameter nanowire structure, the solar spectrum is separated and absorbed in the core wire and the shell wire with respect to the wavelength. This solar cell provides high optical absorptivity over the entire spectrum due to an electromagnetic concentration effect. Microscopic simulations were performed in a three-dimensional setup, and the optical properties of the structure were evaluated by solving Maxwell's equations. The Shockley-Queisser method was employed to calculate the current-voltage relationship of the dual-junction structure. Proper design of the geometrical and material parameters leads to an efficiency of 39.1%.
Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry.
Charlebois, Audrey; Jacques, Mario; Boulianne, Martine; Archambault, Marie
2017-04-01
Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Recently, it was shown to form mono-species biofilms, a structured community of bacterial cells enclosed in a self-produced extracellular matrix. Biofilms have been associated with tolerance to antibiotics, disinfectants, and physical and environmental stresses. Very little is known about the tolerance of C. perfringens biofilm toward disinfectants. In the present study, susceptibilities of C. perfringens biofilms to five types of commonly used disinfectants on farms and in food processing environments were analysed. In this paper, we show that C. perfringens mono-species biofilms can protect the bacterial cells from the action of potassium monopersulfate, quaternary ammonium chloride, hydrogen peroxide and glutaraldehyde solutions. However, sodium hypochlorite solution was shown to be effective on C. perfringens biofilms. Our investigation of dual-species biofilms of C. perfringens with the addition of Staphylococcus aureus or Escherichia coli demonstrated that overall, the mono-species biofilm of C. perfringens was more tolerant to all disinfectants than the dual-species biofilms. For the anaerobic grown biofilms, the mono-species biofilm of C. perfringens was more tolerant to sodium hypochlorite and quaternary ammonium chloride than the dual-species biofilms of C. perfringens with S. aureus or E. coli. This study demonstrates that C. perfringens biofilm is an effective protection mechanism to disinfectants commonly used on farms and in food processing environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency
NASA Astrophysics Data System (ADS)
Cao, Qing; Hong, Yang; Qi, Youcun; Wen, Yixin; Zhang, Jian; Gourley, Jonathan J.; Liao, Liang
2013-02-01
ABSTRACT This paper presents an empirical method for converting reflectivity from Ku-band (13.8 GHz) to S-band (2.8 GHz) for several hydrometeor species, which facilitates the incorporation of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements into quantitative precipitation estimation (QPE) products from the U.S. Next-Generation Radar (NEXRAD). The development of empirical dual-frequency relations is based on theoretical simulations, which have assumed appropriate scattering and microphysical models for liquid and solid hydrometeors (raindrops, snow, and ice/hail). Particle phase, shape, orientation, and density (especially for snow particles) have been considered in applying the T-matrix method to compute the scattering amplitudes. Gamma particle size distribution (PSD) is utilized to model the microphysical properties in the ice region, melting layer, and raining region of precipitating clouds. The variability of PSD parameters is considered to study the characteristics of dual-frequency reflectivity, especially the variations in radar dual-frequency ratio (DFR). The empirical relations between DFR and Ku-band reflectivity have been derived for particles in different regions within the vertical structure of precipitating clouds. The reflectivity conversion using the proposed empirical relations has been tested using real data collected by TRMM-PR and a prototype polarimetric WSR-88D (Weather Surveillance Radar 88 Doppler) radar, KOUN. The processing and analysis of collocated data demonstrate the validity of the proposed empirical relations and substantiate their practical significance for reflectivity conversion, which is essential to the TRMM-based vertical profile of reflectivity correction approach in improving NEXRAD-based QPE.
Agricultural Land Cover from Multitemporal C-Band SAR Data
NASA Astrophysics Data System (ADS)
Skriver, H.
2013-12-01
Henning Skriver DTU Space, Technical University of Denmark Ørsteds Plads, Building 348, DK-2800 Lyngby e-mail: hs@space.dtu.dk Problem description This paper focuses on land cover type from SAR data using high revisit acquisitions, including single and dual polarisation and fully polarimetric data, at C-band. The data set were acquired during an ESA-supported campaign, AgriSAR09, with the Radarsat-2 system. Ground surveys to obtain detailed land cover maps were performed during the campaign. Classification methods using single- and dual-polarisation data, and fully polarimetric data are used with multitemporal data with short revisit time. Results for airborne campaigns have previously been reported in Skriver et al. (2011) and Skriver (2012). In this paper, the short revisit satellite SAR data will be used to assess the trade-off between polarimetric SAR data and data as single or dual polarisation SAR data. This is particularly important in relation to the future GMES Sentinel-1 SAR satellites, where two satellites with a relatively wide swath will ensure a short revisit time globally. Questions dealt with are: which accuracy can we expect from a mission like the Sentinel-1, what is the improvement of using polarimetric SAR compared to single or dual polarisation SAR, and what is the optimum number of acquisitions needed. Methodology The data have sufficient number of looks for the Gaussian assumption to be valid for the backscatter coefficients for the individual polarizations. The classification method used for these data is therefore the standard Bayesian classification method for multivariate Gaussian statistics. For the full-polarimetric cases two classification methods have been applied, the standard ML Wishart classifier, and a method based on a reversible transform of the covariance matrix into backscatter intensities. The following pre-processing steps were performed on both data sets: The scattering matrix data in the form of SLC products were coregistered, converted to covariance matrix format and multilooked to a specific equivalent number of looks. Results The multitemporal data improve significantly the classification results, and single acquisition data cannot provide the necessary classification performance. The multitemporal data are especially important for the single and dual polarization data, but less important for the fully polarimetric data. The satellite data set produces realistic classification results based on about 2000 fields. The best classification results for the single-polarized mode provide classification errors in the mid-twenties. Using the dual-polarized mode reduces the classification error with about 5 percentage points, whereas the polarimetric mode reduces it with about 10 percentage points. These results show, that it will be possible to obtain reasonable results with relatively simple systems with short revisit time. This very important result shows that systems like the Sentinel-1 mission will be able to produce fairly good results for global land cover classification. References Skriver, H. et al., 2011, 'Crop Classification using Short-Revisit Multitemporal SAR Data', IEEE J. Sel. Topics in Appl. Earth Obs. Rem. Sens., vol. 4, pp. 423-431. Skriver, H., 2012, 'Crop classification by multitemporal C- and L-band single- and dual-polarization and fully polarimetric SAR', IEEE Trans. Geosc. Rem. Sens., vol. 50, pp. 2138-2149.
NASA Astrophysics Data System (ADS)
Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J.
2010-03-01
The marvelous simplicity and remarkable hidden symmetries recently uncovered in (Super) Yang-Mills and (Super)Gravity scattering amplitudes strongly suggests the existence of a “weak-weak” dual formulation of these theories where these structures are made more manifest at the expense of manifest locality. In this note we suggest that in four dimensions, this dual description lives in (2, 2) signature and is naturally formulated in twistor space. We begin at tree-level, by recasting the momentum-space BCFW recursion relation in a completely on-shell form that begs to be transformed into twistor space. Our transformation is strongly inspired by Witten’s twistor string theory, but differs in treating twistor and dual twistor variables on a more equal footing; a related transcription of the BCFW formula using only twistor space variables has been carried out independently by Mason and Skinner. Using both twistor and dual twistor variables, the three and four-point amplitudes are strikingly simple-for Yang-Mills theories they are “1” or “-1”. The BCFW computation of higher-order amplitudes can be represented by a simple set of diagrammatic rules, concretely realizing Penrose’s program of relating “twistor diagrams” to scattering amplitudes. More specifically, we give a precise definition of the twistor diagram formalism developed over the past few years by Andrew Hodges. The “Hodges diagram” representation of the BCFW rules allows us to compute amplitudes and study their remarkable properties in twistor space. For instance the diagrams for Yang-Mills theory are topologically disks and not trees, and reveal striking connections between amplitudes that are not manifest in momentum space. Twistor space also suggests a new representation of the amplitudes directly in momentum space, that is naturally determined by the Hodges diagrams. The BCFW rules and Hodges diagrams also enable a systematic twistorial formulation of gravity. All tree amplitudes can be combined into an “S-Matrix” scattering functional which is the natural holographic observable in asymptotically flat space; the BCFW formula turns into a simple quadratic equation for this “S-Matrix” in twistor space, providing a holographic description of mathcal{N} = 4 SYM and mathcal{N} = 8 Supergravity at tree level. We move on to initiate the exploration of loop amplitudes in (2, 2) signature and twistor space, beginning with a discussion of their IR behavior. We find that the natural pole prescriptions needed for transformation to twistor space make the amplitudes perfectly well-defined objects, free of IR divergences. Indeed in momentum space, the loop amplitudes so regulated vanish for generic momenta, and transformed to twistor space, are even simpler than their tree-level counterparts: the full 4-pt one-loop amplitudes in mathcal{N} = 4 SYM are simply equal to “1” or “0”! This further supports the idea that there exists a sharply defined object corresponding to the S-Matrix in (2, 2) signature, computed by a dual theory naturally living in twistor space.
NASA Astrophysics Data System (ADS)
Baranov, A. A.; Ermak, S. V.; Kulachenkov, N. K.; Petrenko, M. V.; Sagitov, E. A.; Semenov, V. V.
2017-11-01
This paper presents the results of investigation Stark shift effect influence on the long-term stability of a dual scheme of quantum magnetometers. Such scheme allows suppressing Stark shift components when a certain pumping light polarization is applied. As a result, long-term stability of a quantum sensor increases. However, when low-frequency (LF) and microwave fields are attached to a single vapor cell a coherence circulation in hyperfine structure of alkali atoms takes place. Physical origin of this effect is associated with the so called “dressed” atom theory, when atom is “dressed” by LF field. It yields in multiphoton absorption and resonance frequency shift. First estimates for this shift based on density matrix evolution formalism are provided in the paper.
Phosphonated Near-Infrared Fluorophores for Biomedical Imaging of Bone**
Hyun, Hoon; Wada, Hideyuki; Bao, Kai; Gravier, Julien; Yadav, Yogesh; Laramie, Matt; Henary, Maged; Frangioni, John V.
2014-01-01
The conventional method for creating targeted contrast agents is to conjugate separate targeting and fluorophore domains. In this study we report a new strategy based on incorporation of targeting moieties into the non-resonant structure of pentamethine and heptamethine indocyanines. Using the known affinity of phosphonates for bone minerals as a model system, we have synthesized two families of bifunctional molecules that target bone without the need for a traditional bisphosphonate. With peak fluorescence emission at ≈ 700 nm or ≈ 800 nm, these molecules can be used for FLARE dual-channel imaging. Longitudinal FLARE studies in mice demonstrate that phosphonated near-infrared fluorophores remain stable in bone for over 5 weeks, and histological analysis demonstrates incorporation into bone matrix. Taken together, we describe a new strategy for creating ultracompact, targeted, near-infrared fluorophores for various bioimaging applications. PMID:25139079
Industrial dual arm robot manipulator for precise assembly of mechanical parts
NASA Astrophysics Data System (ADS)
Park, Chanhun; Kim, Doohyung; Park, Kyoungtaik; Choi, Youngjin
2007-12-01
A new structure of dual arm robot manipulator which consists of two industrial 6-DOF arms and one 2-DOF Torso is introduced. Each industrial 6-DOF arm is able to be used as a stand-alone industrial 6-DOF robot manipulator and as a part of dual arm manipulator at the same time. These structures help the robot maker which is willing to succeed in the emerging dual arm robot market in order to have high competition for the current industrial robot market at same time. Self-collision detection algorithm for multi-arm robot and kinematics algorithms for the developed dual arm robot manipulator which are implemented in our controller are introduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Meng; Li, Guowang; Protasenko, Vladimir
2015-01-26
This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we demonstrate the effectiveness in studying strain in the vertical direction. This technique will enable the precise probing of properties of buried active layers in heterostructures, and can be extended in the future to vertical devices such as those used for optical emitters and for power electronics.
High strength, low carbon, dual phase steel rods and wires and process for making same
Thomas, Gareth; Nakagawa, Alvin H.
1986-01-01
A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.
Establishment and analysis of coupled dynamic model for dual-mass silicon micro-gyroscope
NASA Astrophysics Data System (ADS)
Wang, Zhanghui; Qiu, Anping; Shi, Qin; Zhang, Taoyuan
2017-12-01
This paper presents a coupled dynamic model for a dual-mass silicon micro-gyroscope (DMSG). It can quantitatively analyze the influence of left-right stiffness difference on the natural frequencies, modal matrix and modal coupling coefficient of the DMSG. The analytic results are verified by using the finite element method (FEM) simulation. The model shows that with the left-right stiffness difference of 1%, the modal coupling coefficient is 12% in the driving direction and 31% in the sensing direction. It also shows that in order to achieve good separation, the stiffness of base beam should be small enough in both the driving and sensing direction.
Interval-valued intuitionistic fuzzy matrix games based on Archimedean t-conorm and t-norm
NASA Astrophysics Data System (ADS)
Xia, Meimei
2018-04-01
Fuzzy game theory has been applied in many decision-making problems. The matrix game with interval-valued intuitionistic fuzzy numbers (IVIFNs) is investigated based on Archimedean t-conorm and t-norm. The existing matrix games with IVIFNs are all based on Algebraic t-conorm and t-norm, which are special cases of Archimedean t-conorm and t-norm. In this paper, the intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm are employed to aggregate the payoffs of players. To derive the solution of the matrix game with IVIFNs, several mathematical programming models are developed based on Archimedean t-conorm and t-norm. The proposed models can be transformed into a pair of primal-dual linear programming models, based on which, the solution of the matrix game with IVIFNs is obtained. It is proved that the theorems being valid in the exiting matrix game with IVIFNs are still true when the general aggregation operator is used in the proposed matrix game with IVIFNs. The proposed method is an extension of the existing ones and can provide more choices for players. An example is given to illustrate the validity and the applicability of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junsong; Hao, Shijie; Jiang, Daqiang
This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrixmore » and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.« less
Tijink, Marlon S L; Wester, Maarten; Sun, Junfen; Saris, Anno; Bolhuis-Versteeg, Lydia A M; Saiful, Saiful; Joles, Jaap A; Borneman, Zandrie; Wessling, Matthias; Stamatialis, Dimitris F
2012-07-01
Hemodialysis is a commonly used blood purification technique in patients requiring kidney replacement therapy. Sorbents could increase uremic retention solute removal efficiency but, because of poor biocompatibility, their use is often limited to the treatment of patients with acute poisoning. This paper proposes a novel membrane concept for combining diffusion and adsorption of uremic retention solutes in one step: the so-called mixed-matrix membrane (MMM). In this concept, adsorptive particles are incorporated in a macro-porous membrane layer whereas an extra particle-free membrane layer is introduced on the blood-contacting side of the membrane to improve hemocompatibility and prevent particle release. These dual-layer mixed-matrix membranes have high clean-water permeance and high creatinine adsorption from creatinine model solutions. In human plasma, the removal of creatinine and of the protein-bound solute para-aminohippuric acid (PAH) by single and dual-layer membranes is in agreement with the removal achieved by the activated carbon particles alone, showing that under these experimental conditions the accessibility of the particles in the MMM is excellent. This study proves that the combination of diffusion and adsorption in a single step is possible and paves the way for the development of more efficient blood purification devices, excellently combining the advantages of both techniques. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-09-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.
NASA Astrophysics Data System (ADS)
Philippot, C.; Bellavoine, M.; Dumont, M.; Hoummada, K.; Drillet, J.; Hebert, V.; Maugis, P.
2018-01-01
Compared with other dual-phase (DP) steels, initial microstructures of cold-rolled martensite-ferrite have scarcely been investigated, even though they represent a promising industrial alternative to conventional ferrite-pearlite cold-rolled microstructures. In this study, the influence of the heating rate (over the range of 1 to 10 K/s) on the development of microstructures in a microalloyed DP steel is investigated; this includes the tempering of martensite, precipitation of microalloying elements, recrystallization, and austenite formation. This study points out the influence of the degree of ferrite recrystallization prior to the austenite formation, as well as the importance of the cementite distribution. A low heating rate giving a high degree of recrystallization, leads to the formation of coarse austenite grains that are homogenously distributed in the ferrite matrix. However, a high heating rate leading to a low recrystallization degree, results in a banded-like structure with small austenite grains surrounded by large ferrite grains. A combined approach, involving relevant multiscale microstructural characterization and modeling to rationalize the effect of the coupled processes, highlights the role of the cold-worked initial microstructure, here a martensite-ferrite mixture: recrystallization and austenite formation commence in the former martensite islands before extending in the rest of the material.
Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K; Cai, Chang; Nagarajan, Srikantan S
2018-06-01
Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.
NASA Astrophysics Data System (ADS)
Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K.; Cai, Chang; Nagarajan, Srikantan S.
2018-06-01
Objective. Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. Approach. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Main results. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. Significance. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.
NASA Astrophysics Data System (ADS)
Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.
2016-05-01
A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.
Technology-Based Biliteracy Centers for the 21st Century Learner
ERIC Educational Resources Information Center
Mercuri, Sandra; Ramos, Laura
2014-01-01
The purpose of this reflective article is to present an alternative that incorporates the four language skills in all content areas through technology-based dual-language centers for emergent bilinguals at the elementary level. The authors propose a matrix to plan the centers and include three examples to facilitate language transfer in English…
AdS/CFT in string theory and M-theory
NASA Astrophysics Data System (ADS)
Gulotta, Daniel R.
The AdS/CFT correspondence is a powerful tool that can help shed light on the relationship between geometry and field theory. The first part of this thesis will focus on the construction of theories dual to Type IIB string theory on AdS5 × Y5, where Y5 is a toric Sasaki-Einstein manifold. This thesis will introduce a consistency condition called ``proper ordering'' and demonstrate that it is equivalent to several other previously known consistency conditions. It will then give an efficient algorithm that produces a consistent field theory for any toric Sasaki-Einstein Y5. The second part of this thesis will examine the large-N limit of the Kapustin-Willett-Yaakov matrix model. This model computes the S3 partition function for a CFT dual to M-theory on AdS4 × Y7. One of the main results will be a formula that relates the distribution of eigenvalues in the matrix model to the distribution of holomorphic operators on the cone over Y7. A variety of examples are given to support this formula.
NASA Astrophysics Data System (ADS)
Agrawal, A. P.; Carnegie, D. W.; Boerner, W.-M.
This paper presents an evaluation of polarimetric rain backscatter measurements collected with coherent dual polarization radar systems in the X (8.9 GHz) and Q (45GHz) bands, the first being operated in a pulsed mode and the second being a FM-CW system. The polarimetric measurement data consisted for each band of fifty files of time-sequential scattering matrix measurements expressed in terms of a linear (H, V) antenna polarization state basis. The rain backscattering takes place in a rain cell defined by the beam widths and down range distances of 275 ft through 325 ft and the scattering matrices were measured far below the hydrometeoric scattering center decorrelation time so that ensemble averaging of time-sequential scattering matrices may be applied. In the data evaluation great care was taken in determining: (1) polarimetric Doppler velocities associated with the motion of descending oscillating raindrops and/or eddies within the moving swaths of coastal rain showers, and (2) also the properties of the associated co/cross-polarization rain clutter nulls and their distributions on the Poincare polarization sphere.
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W., Jr.; Allamandola, L. J.
2004-01-01
The matrix-isolation technique has been employed to measure the mid-infrared spectra of phenazine (C12H8N2), a dual substituted Polycyclic Aromatic Nitrogen Heterocycle (PANH), in the neutral, cationic and anionic forms. The experimentally measured band frequencies and intensities are tabulated and compared with their calculated values as well as those of the non-substituted parent molecule, anthracene. The theoretical band positions and intensities were calculated using both the 3-31 G as well as the larger 6-3lG* Basis Sets. A comparison of the results can be found in the tables. The spectroscopic properties of phenazine and its cation are similar to those observed in mono-substituted PANHs, with one exception. The presence of a second nitrogen atom results in an additional enhancement of the cation's total integrated intensity, for the 1500-1000 cm(sup -1) (6.7 to 10 micron) region, over that observed for a mono-substituted PANH cation. The significance of this enhancement and the astrobiological implications of these results are discussed.
Solution of the determinantal assignment problem using the Grassmann matrices
NASA Astrophysics Data System (ADS)
Karcanias, Nicos; Leventides, John
2016-02-01
The paper provides a direct solution to the determinantal assignment problem (DAP) which unifies all frequency assignment problems of the linear control theory. The current approach is based on the solvability of the exterior equation ? where ? is an n -dimensional vector space over ? which is an integral part of the solution of DAP. New criteria for existence of solution and their computation based on the properties of structured matrices are referred to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability of ?, and it is in turn characterised by the set of quadratic Plücker relations (QPRs) describing the Grassmann variety of the corresponding projective space. Alternative new tests for decomposability of the multi-vector ? are given in terms of the rank properties of the Grassmann matrix, ? of the vector ?, which is constructed by the coordinates of ?. It is shown that the exterior equation is solvable (? is decomposable), if and only if ? where ?; the solution space for a decomposable ?, is the space ?. This provides an alternative linear algebra characterisation of the decomposability problem and of the Grassmann variety to that defined by the QPRs. Further properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of exterior equations are examined, and an alternative new characterisation of decomposability is given in terms of the dimension of its image space. The framework based on the Grassmann matrices provides the means for the development of a new computational method for the solutions of the exact DAP (when such solutions exist), as well as computing approximate solutions, when exact solutions do not exist.
NASA Astrophysics Data System (ADS)
Lee, Young-Gi; Kyhm, Kwangseuk; Choi, Nam-Soon; Ryu, Kwang Sun
A novel multi-functional dual-layer polymer electrolyte was prepared by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate (LiPF 6) solution. An incompatible layer is based on a microporous polyethylene (PE) and a compatible layer, based on a poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) is sub-microporous and compatible with an electrolyte solution. The Li electrode/the dual-layer polymer electrolyte/Li[Ni 0.15Li 0.23M n0.62]O 2 cell showed stable cycle performance under prolonged cycle number. This behavior is due to the enhanced compatibility between the matrix polymer and the liquid electrolytes within the submicroporous compatible layer, which could lead to a controlled Li + deposition on the Li anode surface by forming homegeneous electrolyte zone near the anode.
On some 3-point functions in the W 4 CFT and related braiding matrix
NASA Astrophysics Data System (ADS)
Furlan, P.; Petkova, V. B.
2015-12-01
We construct a class of 3-point constants in the sl(4) Toda conformal theory W 4, extending the examples in Fateev and Litvinov [1]. Their knowledge allows to determine the braiding/fusing matrix transforming 4-point conformal blocks of one fundamental, labelled by the 6-dimensional sl(4) representation, and three partially degenerate vertex operators. It is a 3 × 3 submatrix of the generic 6 × 6 fusing matrix consistent with the fusion rules for the particular class of representations. We check a braiding relation which has wider applications to conformal models with sl(4) symmetry. The 3-point constants in dual regions of central charge are compared in preparation for a BPS like relation in the widehat{sl}(4) WZW model.
Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics.
Ma, Bing; Ju, Xiao-Jie; Luo, Feng; Liu, Yu-Qiong; Wang, Yuan; Liu, Zhuang; Wang, Wei; Xie, Rui; Chu, Liang-Yin
2017-04-26
Facile fabrication of novel functional membranes with excellent dual thermo- and pH-responsive characteristics has been achieved by simply designing dual-layer composite membranes. pH-Responsive poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers and polystyrene blended with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) nanogels are respectively used to construct the top layer and bottom layer of composite membranes. The stretching/coiling conformation changes of the P4VP chains around the pK a (∼3.5-4.5) provide the composite membranes with extraordinary pH-responsive characteristics, and the volume phase transitions of PNIPAM nanogels at the pore/matrix interfaces in the bottom layer around the volume phase transition temperature (VPTT, ∼33 °C) provide the composite membranes with great thermoresponsive characteristics. The microstructures, permeability performances, and dual stimuli-responsive characteristics can be well tuned by adjusting the content of PNIPAM nanogels and the thickness of the PS-b-P4VP top layer. The water fluxes of the composite membranes can be changed in order of magnitude by changing the environment temperature and pH, and the dual thermo- and pH-responsive permeation performances of the composite membranes are satisfactorily reversible and reproducible. The membrane fabrication strategy in this work provides valuable guidance for further development of dual stimuli-responsive membranes or even multi stimuli-responsive membranes.
NASA Astrophysics Data System (ADS)
Tang, Y. B.; Li, M.; Bernabe, Y.
2014-12-01
We modeled the electrical transport behavior of dual-pore carbonate rocks in this paper. Based on experimental data of a carbonate reservoir in China, we simply considered the low porosity samples equivalent to the matrix (micro-pore system) of the high porosity samples. For modeling the bimodal porous media, we considered that the matrix is homogeneous and interconnected. The connectivity and the pore size distribution of macro-pore system are varied randomly. Both pore systems are supposed to act electrically in parallel, connected at the nodes, where the fluid exchange takes place, an approach previously used by Bauer et al. (2012). Then, the effect of the properties of matrix, the pore size distribution and connectivity of macro-pore system on petrophysical properties of carbonates can be investigated. We simulated electrical current through networks in three-dimensional simple cubic (SC) and body-center cubic (BCC) with different coordination numbers and different pipe radius distributions of macro-pore system. Based on the simulation results, we found that the formation factor obeys a "universal" scaling relationship (i.e. independent of lattice type), 1/F∝eγz, where γ is a function of the normalized standard deviation of the pore radius distribution of macro-pore system and z is the coordination number of macro-pore system. This relationship is different from the classic "universal power law" in percolation theory. A formation factor model was inferred on the basis of the scaling relationship mentioned above and several scale-invariant quantities (such as hydraulic radius rH and throat length l of macro-pore). Several methods were developed to estimate corresponding parameters of the new model with conventional core analyses. It was satisfactorily tested against experimental data, including some published experimental data. Furthermore, the relationship between water saturation and resistivity in dual-pore carbonates was discussed based on the new model.
Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure
Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL
2011-12-20
A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.
Spin Testing of Superalloy Disks With Dual Grain Structure
NASA Technical Reports Server (NTRS)
Hefferman, Tab M.
2006-01-01
This 24-month program was a joint effort between Allison Advanced Development Company (AADC), General Electric Aircraft (GEAE), and NASA Glenn Research Center (GRC). AADC led the disk and spin hardware design and analysis utilizing existing Rolls-Royce turbine disk forging tooling. Testing focused on spin testing four disks: two supplied by GEAE and two by AADC. The two AADC disks were made of Alloy 10, and each was subjected to a different heat treat process: one producing dual microstructure with coarse grain size at the rim and fine grain size at the bore and the other produced single fine grain structure throughout. The purpose of the spin tests was to provide data for evaluation of the impact of dual grain structure on disk overspeed integrity (yielding) and rotor burst criteria. The program culminated with analysis and correlation of the data to current rotor overspeed criteria and advanced criteria required for dual structure disks.
NASA Astrophysics Data System (ADS)
Luo, Hao; Cheng, Yong Zhi
2018-01-01
We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is
A fluorescent colorimetric pH sensor and the influences of matrices on sensing performances
Tian, Yanqing; Fuller, Emily; Klug, Summer; Lee, Fred; Su, Fengyu; Zhang, Liqiang; Chao, Shih-hui; Meldrum, Deirdre R.
2013-01-01
A fluorescent colorimetric pH sensor was developed by a polymerization of a monomeric fluorescein based green emitter (SM1) with a monomeric 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran derived red emitter (SM2) in poly(2-hydroxyethyl methacrylate)-co-polyacrylamide (PHEMA-co-PAM) matrices. Polymerized SM1 (PSM1) in the polymer matrices showed bright emissions at basic conditions and weak emissions at acidic conditions. Polymerized SM2 (PSM2) in the polymer matrices exhibited a vastly different response when compared to PSM1. The emissions of PSM2 are stronger under acidic conditions than those under basic conditions. When SM1 and SM2 were polymerized in the same polymer matrix, a dual emission sensor acting as a ratiometric pH sensor (PSM1,2) was successfully developed. Because the PSM1 and PSM2 exhibited different pH responses and separated emission windows, the changes in the emission colors were clearly observed in their dual color sensor of PSM1,2, which changed emission colors dramatically from green at pH 7 to red at pH 4, which was detected visually and/or by using a color camera under an excitation of 488 nm. In addition to the development of the dual color ratiometric pH sensor, we also studied the effects of different matrix compositions, crosslinkers, and charges on the reporting capabilities of the sensors (sensitivity and pKa). PMID:24078772
A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models.
Bono, N; Meghezi, S; Soncini, M; Piola, M; Mantovani, D; Fiore, Gianfranco Beniamino
2017-06-01
In the past decades, vascular tissue engineering has made great strides towards bringing engineered vascular tissues to the clinics and, in parallel, obtaining in-lab tools for basic research. Herein, we propose the design of a novel dual-mode bioreactor, useful for the fabrication (construct mode) and in vitro stimulation (culture mode) of collagen-based tubular constructs. Collagen-based gels laden with smooth muscle cells (SMCs) were molded directly within the bioreactor culture chamber. Based on a systematic characterization of the bioreactor culture mode, constructs were subjected to 10% cyclic strain at 0.5 Hz for 5 days. The effects of cyclic stimulation on matrix re-arrangement and biomechanical/viscoelastic properties were examined and compared vs. statically cultured constructs. A thorough comparison of cell response in terms of cell localization and expression of contractile phenotypic markers was carried out as well. We found that cyclic stimulation promoted cell-driven collagen matrix bi-axial compaction, enhancing the mechanical strength of strained samples with respect to static controls. Moreover, cyclic strain positively affected SMC behavior: cells maintained their contractile phenotype and spread uniformly throughout the whole wall thickness. Conversely, static culture induced a noticeable polarization of cell distribution to the outer rim of the constructs and a sharp reduction in total cell density. Overall, coupling the use of a novel dual-mode bioreactor with engineered collagen-gel-based tubular constructs demonstrated to be an interesting technology to investigate the modulation of cell and tissue behavior under controlled mechanically conditioned in vitro maturation.
A fluorescent colorimetric pH sensor and the influences of matrices on sensing performances.
Tian, Yanqing; Fuller, Emily; Klug, Summer; Lee, Fred; Su, Fengyu; Zhang, Liqiang; Chao, Shih-Hui; Meldrum, Deirdre R
2013-10-01
A fluorescent colorimetric pH sensor was developed by a polymerization of a monomeric fluorescein based green emitter ( SM1 ) with a monomeric 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran derived red emitter ( SM2 ) in poly(2-hydroxyethyl methacrylate)- co -polyacrylamide (PHEMA-co-PAM) matrices. Polymerized SM1 ( PSM1 ) in the polymer matrices showed bright emissions at basic conditions and weak emissions at acidic conditions. Polymerized SM2 ( PSM2 ) in the polymer matrices exhibited a vastly different response when compared to PSM1 . The emissions of PSM2 are stronger under acidic conditions than those under basic conditions. When SM1 and SM2 were polymerized in the same polymer matrix, a dual emission sensor acting as a ratiometric pH sensor ( PSM1,2 ) was successfully developed. Because the PSM1 and PSM2 exhibited different pH responses and separated emission windows, the changes in the emission colors were clearly observed in their dual color sensor of PSM1,2 , which changed emission colors dramatically from green at pH 7 to red at pH 4, which was detected visually and/or by using a color camera under an excitation of 488 nm. In addition to the development of the dual color ratiometric pH sensor, we also studied the effects of different matrix compositions, crosslinkers, and charges on the reporting capabilities of the sensors (sensitivity and p K a ).
NASA Astrophysics Data System (ADS)
Dalla Valle, Nicolas; Wutzler, Thomas; Meyer, Stefanie; Potthast, Karin; Michalzik, Beate
2017-04-01
Dual-permeability type models are widely used to simulate water fluxes and solute transport in structured soils. These models contain two spatially overlapping flow domains with different parameterizations or even entirely different conceptual descriptions of flow processes. They are usually able to capture preferential flow phenomena, but a large set of parameters is needed, which are very laborious to obtain or cannot be measured at all. Therefore, model inversions are often used to derive the necessary parameters. Although these require sufficient input data themselves, they can use measurements of state variables instead, which are often easier to obtain and can be monitored by automated measurement systems. In this work we show a method to estimate soil hydraulic parameters from high frequency soil moisture time series data gathered at two different measurement depths by inversion of a simple one dimensional dual-permeability model. The model uses an advection equation based on the kinematic wave theory to describe the flow in the fracture domain and a Richards equation for the flow in the matrix domain. The soil moisture time series data were measured in mesocosms during sprinkling experiments. The inversion consists of three consecutive steps: First, the parameters of the water retention function were assessed using vertical soil moisture profiles in hydraulic equilibrium. This was done using two different exponential retention functions and the Campbell function. Second, the soil sorptivity and diffusivity functions were estimated from Boltzmann-transformed soil moisture data, which allowed the calculation of the hydraulic conductivity function. Third, the parameters governing flow in the fracture domain were determined using the whole soil moisture time series. The resulting retention functions were within the range of values predicted by pedotransfer functions apart from very dry conditions, where all retention functions predicted lower matrix potentials. The diffusivity function predicted values of a similar range as shown in other studies. Overall, the model was able to emulate soil moisture time series for low measurement depths, but deviated increasingly at larger depths. This indicates that some of the model parameters are not constant throughout the profile. However, overall seepage fluxes were still predicted correctly. In the near future we will apply the inversion method to lower frequency soil moisture data from different sites to evaluate the model's ability to predict preferential flow seepage fluxes at the field scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, T; Dong, X; Petrongolo, M
Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimationmore » with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. The proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability. This work is supported by a Varian MRA grant.« less
Gravitational instantons admit hyper-Kähler structure
NASA Astrophysics Data System (ADS)
Aliev, A. N.; Nutku, Y.
1999-01-01
We construct the explicit form of three almost-complex structures that a Riemannian manifold with self-dual curvature admits and show that their Nijenhuis tensors vanish so that they are integrable. This proves that gravitational instantons with self-dual curvature admit hyper-Kähler structure. In order to arrive at the three vector-valued 1-forms defining almost-complex structure, we give a spinor description of real four-dimensional Riemannian manifolds with Euclidean signature in terms of two independent sets of two-component spinors. This is a version of the original Newman-Penrose formalism that is appropriate to the discussion of the mathematical, as well as physical properties of gravitational instantons. We shall build on the work of Goldblatt who first developed an NP formalism for gravitational instantons but we shall adopt it to differential forms in the NP basis to make the formalism much more compact. We shall show that the spin coefficients, connection 1-form, curvature 2-form, Ricci and Bianchi identities, as well as the Maxwell equations naturally split up into their self-dual and anti-self-dual parts corresponding to the two independent spin frames. We shall give the complex dyad as well as the spinor formulation of the almost-complex structures and show that they reappear under the guise of a triad basis for the Petrov classification of gravitational instantons. Completing the work of Salamon on hyper-Kähler structure, we show that the vanishing of the Nijenhuis tensor for all three almost-complex structures depends on the choice of a self-dual gauge for the connection which is guaranteed by virtue of the fact that the curvature 2-form is self-dual for gravitational instantons.
Fan, Gao-Chao; Ren, Xiao-Lin; Zhu, Cheng; Zhang, Jian-Rong; Zhu, Jun-Jie
2014-09-15
Dual co-sensitized structure of TiO2/CdS/CdSe was designed to develop a novel photoelectrochemical immunoassay for highly sensitive detection of human interleukin-6 (IL-6). To construct a sensing electrode, TiO2/CdS hybrid was prepared by successive adsorption and reaction of Cd(2+) and S(2-) ions on the surface of TiO2 and then was employed as matrix for immobilization of anti-IL-6 antibody, whereas CdSe QDs linked to IL-6 were used for signal amplification via the specific antibody-antigen immunoreaction between anti-IL-6 and IL-6-CdSe bioconjugate. Greatly enhanced sensitivity for IL-6 detection was derived from the new co-sensitization signal amplification strategy. First, the TiO2/CdS/CdSe co-sensitized structure extended the absorption range to long wavelength of white light, which adequately utilized the light energy. Second, the TiO2/CdS/CdSe co-sensitized structure possessed stepwise band-edge levels favoring ultrafast transfer of photogenerated electrons and significantly prompted the photoelectrochemical performance. Besides, the introduction of CdSe effectively prevented the recombination of photogenerated electrons in the conduction band of CdS, further causing an enhanced photocurrent. Accordingly, upon the co-sensitization strategy, a novel immunoassay based on the competitive binding of anti-IL-6 antibody with IL-6 antigen and IL-6-CdSe bioconjugate was developed, and it exhibited a wide linear range from 1.0 pg/mL to 100 ng/mL with a low detection limit of 0.38 pg/mL for IL-6 detection. The proposed co-sensitization strategy presented high sensitivity, reproducibility, specificity and stability, and also opened up a new promising platform for detection of other biomarkers. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schonberg, William P.
Traditional perforation-resistant wall design for long-duration spacecraft consists of a "bumper" that is placed a small distance away from the main "pressure wall" of a spacecraft compartment or module. This concept has been studied extensively as a means of reducing the perforation threat of hypervelocity projectiles such as meteoroids and orbital debris. If a dual-wall system is employed on an earth-orbiting spacecraft, then a blanket of multi-layer insulation (MLI) will typically be included within the dual-wall system for thermal protection purposes. This paper presents the results of an experimental study in which aluminum dual-wall structures were tested under a variety of high-speed impact conditions to study the effect of MLI thickness and location on perforation resistance. The results presented consist of test-by-test comparisons of the damage sustained by similar dual-wall systems with blanket MLI of various thicknesses and at various locations within the dual-wall systems under similar impact loading conditions. The analyses performed revealed that the placement of the MLI had a significant effect on the ballistic limit of the dual-wall structures considered while reducing the thickness of the MLI by as much as 1/3 did not.
Sreemany, Arpita; Bera, Melinda Kumar; Sarkar, Anindya
2017-12-30
The elaborate sampling and analytical protocol associated with conventional dual-inlet isotope ratio mass spectrometry has long hindered high-resolution climate studies from biogenic accretionary carbonates. Laser-based on-line systems, in comparison, produce rapid data, but suffer from unresolvable matrix effects. It is, therefore, necessary to resolve these matrix effects to take advantage of the automated laser-based method. Two marine bivalve shells (one aragonite and one calcite) and one fish otolith (aragonite) were first analysed using a CO 2 laser ablation system attached to a continuous flow isotope ratio mass spectrometer under different experimental conditions (different laser power, sample untreated vs vacuum roasted). The shells and the otolith were then micro-drilled and the isotopic compositions of the powders were measured in a dual-inlet isotope ratio mass spectrometer following the conventional acid digestion method. The vacuum-roasted samples (both aragonite and calcite) produced mean isotopic ratios (with a reproducibility of ±0.2 ‰ for both δ 18 O and δ 13 C values) almost identical to the values obtained using the conventional acid digestion method. As the isotopic ratio of the acid digested samples fall within the analytical precision (±0.2 ‰) of the laser ablation system, this suggests the usefulness of the method for studying the biogenic accretionary carbonate matrix. When using laser-based continuous flow isotope ratio mass spectrometry for the high-resolution isotopic measurements of biogenic carbonates, the employment of a vacuum-roasting step will reduce the matrix effect. This method will be of immense help to geologists and sclerochronologists in exploring short-term changes in climatic parameters (e.g. seasonality) in geological times. Copyright © 2017 John Wiley & Sons, Ltd.
Method for making field-structured memory materials
Martin, James E.; Anderson, Robert A.; Tigges, Chris P.
2002-01-01
A method of forming a dual-level memory material using field structured materials. The field structured materials are formed from a dispersion of ferromagnetic particles in a polymerizable liquid medium, such as a urethane acrylate-based photopolymer, which are applied as a film to a support and then exposed in selected portions of the film to an applied magnetic or electric field. The field can be applied either uniaxially or biaxially at field strengths up to 150 G or higher to form the field structured materials. After polymerizing the field-structure materials, a magnetic field can be applied to selected portions of the polymerized field-structured material to yield a dual-level memory material on the support, wherein the dual-level memory material supports read-and-write binary data memory and write once, read many memory.
Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura; ...
2015-12-31
Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and hosted in a clay rock formation. The thermo-hydro-mechanical results of the dual-structure model were compared with those of the standard single-structure BBM. The main difference between the simulation results from the two models is that the dual-structure model predicted a time to fully saturate the expansive clay barrier on the order of thousands of years, whereas the standard single-structure BBM yielded a time on the order of tens of years. These examples show that a dual-structure model, such as the one presented here, is necessary to properly model the thermo-hydro-mechanical behavior of expansive soils.« less
Design of dual action antibiotics as an approach to search for new promising drugs
NASA Astrophysics Data System (ADS)
Tevyashova, A. N.; Olsufyeva, E. N.; Preobrazhenskaya, M. N.
2015-01-01
The review is devoted to the latest achievements in the design of dual action antibiotics — heterodimeric (chimeric) structures based on antibacterial agents of different classes (fluoroquinolones, anthracyclines, oxazolidines, macrolides and so on). Covalent binding can make the pharmacokinetic characteristics of these molecules more predictable and improve the penetration of each component into the cell. Consequently, not only does the drug efficacy increase owing to inhibition of two targets but also the resistance to one or both antibiotics can be overcome. The theoretical grounds of elaboration, design principles and methods for the synthesis of dual action antibiotics are considered. The structures are classified according to the type of covalent spacer (cleavable or not) connecting the moieties of two agents. Dual action antibiotics with a spacer that can be cleaved in a living cell are considered as dual action prodrugs. Data on the biological action of heterodimeric compounds are presented and structure-activity relationships are analyzed. The bibliography includes 225 references.
NASA Astrophysics Data System (ADS)
Mao, Zepeng; Zhang, Jun
2018-06-01
The phase morphology of two elastomers (i.e., chlorinated polyethylene (CPE) and polybutadiene rubber (BR)) were devised to be a core-shell structure in acrylonitrile-styrene-acrylate (ASA) resin matrix, via the interfacial tension differences of polymer pairs. Selective extraction test and scanning electron microscopy (SEM) were utilized to verify this special phase morphology. The results demonstrated that the core-shell structure, BR core and CPE shell, significantly contributed to improve the low temperature toughness of ASA/CPE/BR ternary blends, which may be because the nonpolar BR core was segregated from polar ASA by the CPE shell. The CPE shell served dual functions: Not only did it play compatibilizing effect in the interface between BR and ASA matrix, but it also toughened the blends at 25 and 0 °C. The blends of ASA/CPE/BR (100/27/3, w/w/w) and ASA/CPE/BR (100/22/8, w/w/w) showed the peak impact strengths at about 28 and 9 kJ/m2 at 0 and -30 °C, respectively, which were higher than both that of ASA/CPE/BR (100/30/0, w/w/w) and ASA/CPE/BR (100/0/30, w/w/w). Moreover, the impact strength of ternary blends at room temperature kept at 40 kJ/m2 when BR content was lower than 10 phr. Other characterizations including contact angle measurement, dynamic mechanical thermal analysis (DMTA), morphology of impact-fractured surfaces, tensile properties, flexural properties, and Fourier transform infrared spectroscopy (FTIR) were measured as well.
Fast Electromagnetic Solvers for Large-Scale Naval Scattering Problems
2008-09-27
IEEE Trans. Antennas Propag., vol. 52, no. 8, pp. 2141–2146, 2004. [12] R. J. Burkholder and J. F. Lee, “Fast dual-MGS block-factorization algorithm...Golub and C. F. V. Loan, Matrix Computations. Baltimore: The Johns Hopkins University Press, 1996. [20] W. D. Li, W. Hong, and H. X. Zhou, “Integral
NASA Astrophysics Data System (ADS)
Nordström, Jan; Ghasemi, Fatemeh
2018-05-01
A few notational errors were recently discovered in the above publication. The notation used in the note is valid for fluxes of the form fL (u) =AL u ,fR (v) =AR v where AL =AR is m × m constant symmetric matrix.
Field investigation into unsaturated flow and transport in a fault: Model analyses
Liu, H.-H.; Salve, R.; Wang, J.-S.; Bodvarsson, G.S.; Hudson, D.
2004-01-01
Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model. ?? 2004 Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor)
2007-01-01
A reconstruction technique for reducing computation burden in the 3D image processes, wherein the reconstruction procedure comprises an inverse and a forward model. The inverse model uses a hybrid dual Fourier algorithm that combines a 2D Fourier inversion with a 1D matrix inversion to thereby provide high-speed inverse computations. The inverse algorithm uses a hybrid transfer to provide fast Fourier inversion for data of multiple sources and multiple detectors. The forward model is based on an analytical cumulant solution of a radiative transfer equation. The accurate analytical form of the solution to the radiative transfer equation provides an efficient formalism for fast computation of the forward model.
Generalized Knizhnik-Zamolodchikov equation for Ding-Iohara-Miki algebra
NASA Astrophysics Data System (ADS)
Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor
2017-07-01
We derive the generalization of the Knizhnik-Zamolodchikov equation (KZE) associated with the Ding-Iohara-Miki algebra Uq ,t(gl^ ^ 1) . We demonstrate that certain refined topological string amplitudes satisfy these equations and find that the braiding transformations are performed by the R matrix of Uq ,t(gl^ ^ 1) . The resulting system is the uplifting of the u^1 Wess-Zumino-Witten model. The solutions to the (q ,t ) KZE are identified with the (spectral dual of) building blocks of the Nekrasov partition function for five-dimensional linear quiver gauge theories. We also construct an elliptic version of the KZE and discuss its modular and monodromy properties, the latter being related to a dual version of the KZE.
A preliminary research on the mechanical properties of TiAl + Ti{sub 5}Si{sub 3} dual phase alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L.; Qiu, G.; Wu, J.
A sufficient Si addition to TiAl matrix has led to TiAl + Ti{sub 5}Si{sub 3} dual phase alloys, showing coupled-growth microstructure. Compression tests at R.T. as well as high temp indicated that the yield stress increased with increasing Ti{sub 5}Si{sub 3} volume fraction, and decreased at higher temperature. The reinforcement from Ti{sub 5}Si{sub 3} phase was obvious while high Si and Al contents resulted in low ductility. The fracture surfaces were quasi-cleavage. Further research should concern with the adjustment of the shape and amount of the second phase.
NASA Astrophysics Data System (ADS)
Hu, X.; Zhan, L.; Xia, Y.
2009-03-01
A novel optical filter based on enhanced transmission through metallic nano-slit is proposed for dual-wavelength fluorescence-spectrometry. A special structure, sampled-period slit array, is utilized to meet the requirement of dual-wavelength transmission in this system. Structure parameters on the transmission property are analyzed by means of Fourier transformation. With the features both to enhance the fluorescence generation and to enhance light transmission, in addition with the feasibility for miniaturization, integration on one chip, and mass production, the proposed filters are promising for the realization of dual-wavelength fluorescence-spectrometry in micro-total-analysis-system.
NASA Astrophysics Data System (ADS)
Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong
2014-04-01
An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.
NASA Astrophysics Data System (ADS)
Zhao, Wanqin; Wang, Wenjun; Mei, Xuesong; Jiang, Gedong; Liu, Bin
2014-06-01
Investigations on the morphological features of holes and grooves ablated on the surface of stainless steel using the picosecond dual-wavelength laser system with different powers combinations are presented based on the scarce researches on morphology of dual-wavelength laser ablation. The experimental results show the profiles of holes ablated by the visible beam appear V-shaped while those for the near-infrared have large openings and display U-shaped, which are independent of the ablation mechanism of ultrafast laser. For the dual-wavelength beam (a combination of visible beam and near-infrared), the holes resemble sunflower-like structures and have smoother ring patterns on the bottom. In general, the holes ablated by the dual-wavelength beam appear to have much flatter bottoms, linearly sloped side-walls and spinodal structures between the bottoms of the holes and the side-walls. Furthermore, through judiciously combining the powers of the dual-wavelength beam, high-quality grooves could be obtained with a flat worm-like structure at the bottom surface and less resolidified melt ejection edges. This study provides insight into optimizing ultrafast laser micromachining in order to obtain desired morphology.
Okwuosa, Tochukwu C; Pereira, Beatriz C; Arafat, Basel; Cieszynska, Milena; Isreb, Abdullah; Alhnan, Mohamed A
2017-02-01
Individualizing gastric-resistant tablets is associated with major challenges for clinical staff in hospitals and healthcare centres. This work aims to fabricate gastric-resistant 3D printed tablets using dual FDM 3D printing. The gastric-resistant tablets were engineered by employing a range of shell-core designs using polyvinylpyrrolidone (PVP) and methacrylic acid co-polymer for core and shell structures respectively. Filaments for both core and shell were compounded using a twin-screw hot-melt extruder (HME). CAD software was utilized to design a capsule-shaped core with a complementary shell of increasing thicknesses (0.17, 0.35, 0.52, 0.70 or 0.87 mm). The physical form of the drug and its integrity following an FDM 3D printing were assessed using x-ray powder diffractometry (XRPD), thermal analysis and HPLC. A shell thickness ≥0.52 mm was deemed necessary in order to achieve sufficient core protection in the acid medium. The technology proved viable for incorporating different drug candidates; theophylline, budesonide and diclofenac sodium. XRPD indicated the presence of theophylline crystals whilst budesonide and diclofenac sodium remained amorphous in the PVP matrix of the filaments and 3D printed tablets. Fabricated tablets demonstrated gastric resistant properties and a pH responsive drug release pattern in both phosphate and bicarbonate buffers. Despite its relatively limited resolution, FDM 3D printing proved to be a suitable platform for a single-process fabrication of delayed release tablets. This work reveals the potential of dual FDM 3D printing as a unique platform for personalising delayed release tablets to suit an individual patient's needs.
Covariance, correlation matrix, and the multiscale community structure of networks.
Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing
2010-07-01
Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.
Coherent Bichromatic Force Deflection of Molecules
NASA Astrophysics Data System (ADS)
Kozyryev, Ivan; Baum, Louis; Aldridge, Leland; Yu, Phelan; Eyler, Edward E.; Doyle, John M.
2018-02-01
We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X˜2Σ+↔A˜2Π1 /2 electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70 ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.
Torretta, Juan Pablo; Basilio, Alicia M
2009-01-01
The "talares" in eastern Buenos Aires province, Argentina, are coastal xerophitic forests structured by few arboreal species surrounded by a lower and moister soil matrix. We studied the reproductive parameters of the most representative arboreal species (Celtis tala, Scutia buxifolia, Jodina rhombifolia, and Schinus longifolia). Pollen dispersion was studied through floral visitor traps (biotic dispersion) and using gravimetric pollen collectors (abiotic dispersion). The reproductive success (fruit formation rate) of the focal species was studied by enclosing flowers with different mesh bags. The reproductive system varied among the different species. C. tala was anemophilous and selfcompatible. S. buxifolia was entomophilous and floral visitors dependant. J. rhombifolia was entomophylous, although spontaneous autogamy could favor reproduction in the absence of pollinators. Lastly, S. longifolia could be an ambophilous species (pollinated by insects and by the wind). This dual system may be the result of system flexibility mechanism or an evolutionary transition.
Novel Dual-Band Miniaturized Frequency Selective Surface based on Fractal Structures
NASA Astrophysics Data System (ADS)
Zhong, Tao; Zhang, Hou; Wu, Rui; Min, Xueliang
2017-01-01
A novel single-layer dual-band miniaturized frequency selective surface (FSS) based on fractal structures is proposed and analyzed in this paper. A prototype with enough dimensions is fabricated and measured in anechoic chamber, and the measured results provide good agreement with the simulated. The simulations and measurements indicate that the dual-band FSS with bandstop selectivity center at 3.95 GHz and 7.10 GHz, and the whole dimension of the proposed FSS cell is only 7×7 mm2, amount to 0.092λ0×0.092λ0, that λ0 is free space wavelength at first resonant frequency. In addition, the center frequencies have scarcely any changes for different polarizations and incidences. What's more, dual-band mechanism is analyzed clearly and it provides a new way to design novel miniaturized FSS structures.
Significance of duon mutations in cancer genomes
NASA Astrophysics Data System (ADS)
Yadav, Vinod Kumar; Smith, Kyle S.; Flinders, Colin; Mumenthaler, Shannon M.; de, Subhajyoti
2016-06-01
Functional mutations in coding regions not only affect the structure and function of the protein products, but may also modulate their expression in some cases. This class of mutations, recently dubbed “duon mutations” due to their dual roles, can potentially have major impacts on downstream pathways. However their significance in diseases such as cancer remain unclear. In a survey covering 4606 samples from 19 cancer types, and integrating allelic expression, overall mRNA expression, regulatory motif perturbation, and chromatin signatures in one composite index called REDACT score, we identified potential duon mutations. Several such mutations are detected in known cancer genes in multiple cancer types. For instance a potential duon mutation in TP53 is associated with increased expression of the mutant allelic gene copy, thereby possibly amplifying the functional effects on the downstream pathways. Another potential duon mutation in SF3B1 is associated with abnormal splicing and changes in angiogenesis and matrix degradation related pathways. Our findings emphasize the need to interrogate the mutations in coding regions beyond their obvious effects on protein structures.
Ultem((R))/ZIF-8 mixed matrix hollow fiber membranes for CO2/N-2 separations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Y; Johnson, JR; Karvan, O
2012-05-15
Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem((R)) 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13 wt% (17more » vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO2/N-2 gas pairs was observed for both pure gas and mixed gas feeds. (C) 2012 Elsevier B.V. All rights reserved.« less
Mechanical Behavior of a Hi-Nicalon(tm)/SiC Composite Having a Polycarbosilane Derived Matrix
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.
1999-01-01
Polymer infiltration of a rigidized preform, followed by pyrolysis to convert the polymer to a ceramic, potentially offers a lower cost alternative to CVD. It also offers more moderate temperature requirements than melt infiltration approaches, which should minimize potential fiber damage during processing. However, polymer infiltration and pyrolysis results in a more microcracked matrix. Preliminary mechanical property characterization, including elevated temperature (1204 C) tensile, 500 h stress rupture behavior and low cycle fatigue, was conducted on Hi-Nicalon (TM)/Si-C-(O) composites having a dual layer BN/SiC interface and a matrix derived by impregnation and pyrolysis of allylhydridopolycarbosilane (AHPCS). Microstructural evaluation of failure surfaces and of polished transverse and longitudinal cross sections of the failed specimens was used to identify predominant failure mechanisms. In stress rupture testing at 1093 C, the failure was interface dominated, while at 1204 C in both stress rupture and two hour hold/fatigue tests failure was matrix dominated, resulting in specimen delamination.
Tiny graviton matrix theory/SYM correspondence: Analysis of BPS states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali-Akbari, M.; Torabian, M.; Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran
2006-09-15
In this paper we continue analysis of the Matrix theory describing the DLCQ of type IIB string theory on AdS{sub 5}xS{sup 5} (and/or the plane-wave) background, i.e. the tiny graviton matrix theory (TGMT) [M. M. Sheikh-Jabbari, J. High Energy Phys. 09 (2004) 017.]. We study and classify 1/2, 1/4, and 1/8 BPS solutions of the TGMT which are generically of the form of rotating three-brane giants. These are branes whose shape are deformed three-spheres and hyperboloids. In lack of a classification of such ten-dimensional type IIb supergravity configurations, we focus on the dual N=4 four-dimensional 1/2, 1/4, and one 1/8more » BPS operators and show that they are in one-to-one correspondence with the states of the same set of quantum numbers in TGMT. This provides further evidence in support of the matrix theory.« less
NASA Astrophysics Data System (ADS)
Heath, J. E.; Dewers, T. A.; McPherson, B. J.; Wilson, T. H.; Flach, T.
2009-12-01
Understanding and characterizing transport properties of fine-grained rocks is critical in development of shale gas plays or assessing retention of CO2 at geologic storage sites. Difficulties arise in that both small scale (i.e., ~ nm) properties of the rock matrix and much larger scale fractures, faults, and sedimentological architecture govern migration of multiphase fluids. We present a multi-scale investigation of sealing and transport properties of the Kirtland Formation, which is a regional aquitard and reservoir seal in the San Juan Basin, USA. Sub-micron dual FIB/SEM imaging and reconstruction of 3D pore networks in core samples reveal a variety of pore types, including slit-shaped pores that are co-located with sedimentary structures and variations in mineralogy. Micron-scale chemical analysis and XRD reveal a mixture of mixed-layer smectite/illite, chlorite, quartz, and feldspar with little organic matter. Analysis of sub-micron digital reconstructions, mercury capillary injection pressure, and gas breakthrough measurements indicate a high quality sealing matrix. Natural full and partially mineralized fractures observed in core and in FMI logs include those formed from early soil-forming processes, differential compaction, and tectonic events. The potential impact of both fracture and matrix properties on large-scale transport is investigated through an analysis of natural helium from core samples, 3D seismic data and poro-elastic modeling. While seismic interpretations suggest considerable fracturing of the Kirtland, large continuous fracture zones and faults extending through the seal to the surface cannot be inferred from the data. Observed Kirtland Formation multi-scale transport properties are included as part of a risk assessment methodology for CO2 storage. Acknowledgements: The authors gratefully acknowledge the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory for sponsoring this project. The DOE’s Basic Energy Science Office funded the dual FIB/SEM analysis. The Kirtland Formation overlies the coal seams of the Fruitland into which CO2 has been injected as a Phase II demonstration of the Southwest Regional Partnership on Carbon Sequestration. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-ACOC4-94AL85000.
Operator-sum representation for bosonic Gaussian channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivan, J. Solomon; Sabapathy, Krishna Kumar; Simon, R.
2011-10-15
Operator-sum or Kraus representations for single-mode bosonic Gaussian channels are developed, and several of their consequences explored. The fact that the two-mode metaplectic operators acting as unitary purification of these channels do not, in their canonical form, mix the position and momentum variables is exploited to present a procedure which applies uniformly to all families in the Holevo classification. In this procedure the Kraus operators of every quantum-limited Gaussian channel can be simply read off from the matrix elements of a corresponding metaplectic operator. Kraus operators are employed to bring out, in the Fock basis, the manner in which themore » antilinear, unphysical matrix transposition map when accompanied by injection of a threshold classical noise becomes a physical channel, denoted D({kappa}) in the Holevo classification. The matrix transposition channels D({kappa}), D({kappa}{sup -1}) turn out to be a dual pair in the sense that their Kraus operators are related by the adjoint operation. The amplifier channel with amplification factor {kappa} and the beam-splitter channel with attenuation factor {kappa}{sup -1} turn out to be mutually dual in the same sense. The action of the quantum-limited attenuator and amplifier channels as simply scaling maps on suitable quasiprobabilities in phase space is examined in the Kraus picture. Consideration of cumulants is used to examine the issue of fixed points. The semigroup property of the amplifier and attenuator families leads in both cases to a Zeno-like effect arising as a consequence of interrupted evolution. In the cases of entanglement-breaking channels a description in terms of rank 1 Kraus operators is shown to emerge quite simply. In contradistinction, it is shown that there is not even one finite rank operator in the entire linear span of Kraus operators of the quantum-limited amplifier or attenuator families, an assertion far stronger than the statement that these are not entanglement breaking channels. A characterization of extremality in terms of Kraus operators, originally due to Choi, is employed to show that all quantum-limited Gaussian channels are extremal. The fact that almost every noisy Gaussian channel can be realized as a product of a pair of quantum-limited channels is used to construct a discrete set of linearly independent Kraus operators for these noisy Gaussian channels, including the classical noise channel, and these Kraus operators have a particularly simple structure.« less
Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo
2013-01-01
Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.
Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo
2013-01-01
Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115
A Natural Language for AdS/CFT Correlators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, A.Liam; /Boston U.; Kaplan, Jared
2012-02-14
We provide dramatic evidence that 'Mellin space' is the natural home for correlation functions in CFTs with weakly coupled bulk duals. In Mellin space, CFT correlators have poles corresponding to an OPE decomposition into 'left' and 'right' sub-correlators, in direct analogy with the factorization channels of scattering amplitudes. In the regime where these correlators can be computed by tree level Witten diagrams in AdS, we derive an explicit formula for the residues of Mellin amplitudes at the corresponding factorization poles, and we use the conformal Casimir to show that these amplitudes obey algebraic finite difference equations. By analyzing the recursivemore » structure of our factorization formula we obtain simple diagrammatic rules for the construction of Mellin amplitudes corresponding to tree-level Witten diagrams in any bulk scalar theory. We prove the diagrammatic rules using our finite difference equations. Finally, we show that our factorization formula and our diagrammatic rules morph into the flat space S-Matrix of the bulk theory, reproducing the usual Feynman rules, when we take the flat space limit of AdS/CFT. Throughout we emphasize a deep analogy with the properties of flat space scattering amplitudes in momentum space, which suggests that the Mellin amplitude may provide a holographic definition of the flat space S-Matrix.« less
Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline
NASA Astrophysics Data System (ADS)
Ho, Min-Hua; Hsu, Wei-Hong
In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.
NASA Astrophysics Data System (ADS)
Yun, Ho-Jin; Kim, Young-Su; Jeong, Kwang-Seok; Kim, Yu-Mi; Yang, Seung-dong; Lee, Hi-Deok; Lee, Ga-Won
2014-01-01
In this study, we fabricated dual-gate zinc oxide thin film transistors (ZnO TFTs) without additional processes and analyzed their stability characteristics under a negative gate bias stress (NBS) by comparison with conventional bottom-gate structures. The dual-gate device shows superior electrical parameters, such as subthreshold swing (SS) and on/off current ratio. NBS of VGS = -20 V with VDS = 0 was applied, resulting in a negative threshold voltage (Vth) shift. After applying stress for 1000 s, the Vth shift is 0.60 V in a dual-gate ZnO TFT, while the Vth shift is 2.52 V in a bottom-gate ZnO TFT. The stress immunity of the dual-gate device is caused by the change in field distribution in the ZnO channel by adding another gate as the technology computer aided design (TCAD) simulation shows. Additionally, in flicker noise analysis, a lower noise level with a different mechanism is observed in the dual-gate structure. This can be explained by the top side of the ZnO film having a larger crystal and fewer grain boundaries than the bottom side, which is revealed by the enhanced SS and XRD results. Therefore, the improved stability of the dual-gate ZnO TFT is greatly related to the E-field cancellation effect and crystal quality of the ZnO film.
Design of a dual band metamaterial absorber for Wi-Fi bands
NASA Astrophysics Data System (ADS)
Alkurt, Fatih Özkan; Baǧmancı, Mehmet; Karaaslan, Muharrem; Bakır, Mehmet; Altıntaş, Olcay; Karadaǧ, Faruk; Akgöl, Oǧuzhan; Ünal, Emin
2018-02-01
The goal of this work is to design and fabrication of a dual band metamaterial based absorber for Wireless Fidelity (Wi-Fi) bands. Wi-Fi has two different operating frequencies such as 2.45 GHz and 5 GHz. A dual band absorber is proposed and the proposed structure consists of two layered unit cells, and different sized square split ring (SSR) resonators located on each layers. Copper is used for metal layer and resonator structure, FR-4 is used as substrate layer in the proposed structure. This designed dual band metamaterial absorber is used in the wireless frequency bands which has two center frequencies such as 2.45 GHz and 5 GHz. Finite Integration Technique (FIT) based simulation software used and according to FIT based simulation results, the absorption peak in the 2.45 GHz is about 90% and the another frequency 5 GHz has absorption peak near 99%. In addition, this proposed structure has a potential for energy harvesting applications in future works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura
Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and hosted in a clay rock formation. The thermo-hydro-mechanical results of the dual-structure model were compared with those of the standard single-structure BBM. The main difference between the simulation results from the two models is that the dual-structure model predicted a time to fully saturate the expansive clay barrier on the order of thousands of years, whereas the standard single-structure BBM yielded a time on the order of tens of years. These examples show that a dual-structure model, such as the one presented here, is necessary to properly model the thermo-hydro-mechanical behavior of expansive soils.« less
Kular, Jaspreet K; Basu, Shouvik; Sharma, Ram I
2014-01-01
The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold. This review summarises the current knowledge of the composition, structure and functions of the extracellular matrix and introduces the effect of ageing on extracellular matrix remodelling and its contribution to cellular functions. Additionally, the current analytical technologies to study the extracellular matrix and extracellular matrix-related cellular processes are also reviewed.
CPW fed UWB antenna with enhanced bandwidth & dual band notch characteristics
NASA Astrophysics Data System (ADS)
Jangid, K. G.; Jain, P. K.; Sharma, B. R.; Saxena, V. K.; Kulhar, V. S.; Bhatnagar, D.
2018-05-01
This paper reports the design and performance of CPW fed UWB antenna having two U-shaped slots etched in the radiating structure. UWB performance of proposed structure is obtained through the truncated shape of the patch and L-slits etched in ground plane. By applying two U- shaped slots in a radiating patch, we achieved dual notch band characteristics. The proposed antenna is simulated by applying CST Microwave Studio simulator. This antenna provides wide impedance bandwidth of 12.585 GHz (2.74GHz - 15.325 GHz) with dual notched band characteristics. This antenna may be proved as a useful structure for modern wireless communication systems including UWB band.
Cyclic Spin Testing of Superalloy Disks With a Dual Grain Microstructure
NASA Technical Reports Server (NTRS)
Gayda, John; Kantzos, Pete
2005-01-01
An aggressive cyclic spin test program was run to verify the reliability of superalloy disks with a dual grain structure, fine grain bore and coarse grain rim, utilizing a disk design with web holes bisecting the grain size transition zone. Results of these tests were compared with conventional disks with uniform grain structures. Analysis of the test results indicated the cyclic performance of disks with a dual grain structure could be estimated to a level of accuracy which does not appear to prohibit the use of this technology in advanced gas turbine engines, although further refinement of lifing methodology is clearly warranted.
Channel characteristics and coordination in three-echelon dual-channel supply chain
NASA Astrophysics Data System (ADS)
Saha, Subrata
2016-02-01
We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.
NASA Technical Reports Server (NTRS)
Selberg, B. P.; Cronin, D. L.
1985-01-01
An analytical aerodynamic-structural airplane configuration study was conducted to assess performance gains achievable through advanced design concepts. The mission specification was for 350 mph, range of 1500 st. mi., at altitudes between 30,000 and 40,000 ft. Two payload classes were studied - 1200 lb (6 passengers) and 2400 lb (12 passengers). The configurations analyzed included canard wings, closely coupled dual wings, swept forward - swept rearward wings, joined wings, and conventional wing tail arrangements. The results illustrate substantial performance gains possible with the dual wing configuration. These gains result from weight savings due to predicted structural efficiencies. The need for further studies of structural efficiencies for the various advanced configurations was highlighted.
Guldiken, Rasim O.; Zahorian, Jaime; Yamaner, F. Y.; Degertekin, F. L.
2010-01-01
In this paper, we report measurement results on dual-electrode CMUT demonstrating electromechanical coupling coefficient (k2) of 0.82 at 90% of collapse voltage as well as 136% 3 dB one-way fractional bandwidth at the transducer surface around the design frequency of 8 MHz. These results are within 5% of the predictions of the finite element simulations. The large bandwidth is achieved mainly by utilizing a non-uniform membrane, introducing center mass to the design, whereas the dual-electrode structure provides high coupling coefficient in a large dc bias range without collapsing the membrane. In addition, the non-uniform membrane structure improves the transmit sensitivity of the dual-electrode CMUT by about 2dB as compared with a dual electrode CMUT with uniform membrane. PMID:19574135
αV-class integrins exert dual roles on α5β1 integrins to strengthen adhesion to fibronectin
Bharadwaj, Mitasha; Strohmeyer, Nico; Colo, Georgina P.; Helenius, Jonne; Beerenwinkel, Niko; Schiller, Herbert B.; Fässler, Reinhard; Müller, Daniel J.
2017-01-01
Upon binding to the extracellular matrix protein, fibronectin, αV-class and α5β1 integrins trigger the recruitment of large protein assemblies and strengthen cell adhesion. Both integrin classes have been functionally specified, however their specific roles in immediate phases of cell attachment remain uncharacterized. Here, we quantify the adhesion of αV-class and/or α5β1 integrins expressing fibroblasts initiating attachment to fibronectin (≤120 s) by single-cell force spectroscopy. Our data reveals that αV-class integrins outcompete α5β1 integrins. Once engaged, αV-class integrins signal to α5β1 integrins to establish additional adhesion sites to fibronectin, away from those formed by αV-class integrins. This crosstalk, which strengthens cell adhesion, induces α5β1 integrin clustering by RhoA/ROCK/myosin-II and Arp2/3-mediated signalling, whereas overall cell adhesion depends on formins. The dual role of both fibronectin-binding integrin classes commencing with an initial competition followed by a cooperative crosstalk appears to be a basic cellular mechanism in assembling focal adhesions to the extracellular matrix. PMID:28128308
Bali Prasad, Bhim; Jauhari, Darshika; Verma, Archana
2014-03-01
In simultaneous determination of group of elements, there are inter-metallic interactions which result in a non-linear relationship between the peak current and ionic concentration for each of the element, at bare (unmodified) electrode. To resolve this problem, we have resorted, for the first time, to develop a modified pencil graphite electrode using a typical ion imprinted polymer network (dual-ion imprinted polymer embedded in sol-gel matrix (inorganic-organic hybrid nano-material)) for the simultaneous analysis of a binary mixture of Cd(II) and Cu(II) ions, without any complication of inter-metallic interactions and competitive bindings, in real samples. The adequate resolution of differential pulse anodic stripping voltammetry peaks by 725 mV (cf, 615 mV with unmodified electrode), without any cross-reactivity and the stringent detection limits as low as, 0.050 and 0.034 ng mL(-1) (S/N=3) for Cd(II) and Cu(II) ions, respectively by the proposed sensor can be considered useful for the primitive diagnosis of several chronic diseases in clinical settings. Copyright © 2013 Elsevier B.V. All rights reserved.
In Vivo Dual Fluorescence Imaging to Detect Joint Destruction.
Cho, Hongsik; Bhatti, Fazal-Ur-Rehman; Lee, Sangmin; Brand, David D; Yi, Ae-Kyung; Hasty, Karen A
2016-10-01
Diagnosis of cartilage damage in early stages of arthritis is vital to impede the progression of disease. In this regard, considerable progress has been made in near-infrared fluorescence (NIRF) optical imaging technique. Arthritis can develop due to various mechanisms but one of the main contributors is the production of matrix metalloproteinases (MMPs), enzymes that can degrade components of the extracellular matrix. Especially, MMP-1 and MMP-13 have main roles in rheumatoid arthritis and osteoarthritis because they enhance collagen degradation in the process of arthritis. We present here a novel NIRF imaging strategy that can be used to determine the activity of MMPs and cartilage damage simultaneously by detection of exposed type II collagen in cartilage tissue. In this study, retro-orbital injection of mixed fluorescent dyes, MMPSense 750 FAST (MMP750) dye and Alexa Fluor 680 conjugated monoclonal mouse antibody immune-reactive to type II collagen, was administered in the arthritic mice. Both dyes were detected with different intensity according to degree of joint destruction in the animal. Thus, our dual fluorescence imaging method can be used to detect cartilage damage as well as MMP activity simultaneously in early stage arthritis. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Han, Tongcheng
2018-07-01
Understanding the electrical properties of rocks under varying pressure is important for a variety of geophysical applications. This study proposes an approach to modelling the pressure-dependent electrical properties of porous rocks based on an effective medium model. The so-named Textural model uses the aspect ratios and pressure-dependent volume fractions of the pores and the aspect ratio and electrical conductivity of the matrix grains. The pores were represented by randomly oriented stiff and compliant spheroidal shapes with constant aspect ratios, and their pressure-dependent volume fractions were inverted from the measured variation of total porosity with differential pressure using a dual porosity model. The unknown constant stiff and compliant pore aspect ratios and the aspect ratio and electrical conductivity of the matrix grains were inverted by best fitting the modelled electrical formation factor to the measured data. Application of the approach to three sandstone samples covering a broad porosity range showed that the pressure-dependent electrical properties can be satisfactorily modelled by the proposed approach. The results demonstrate that the dual porosity concept is sufficient to explain the electrical properties of porous rocks under pressure through the effective medium model scheme.
Controllable rotational inversion in nanostructures with dual chirality.
Dai, Lu; Zhu, Ka-Di; Shen, Wenzhong; Huang, Xiaojiang; Zhang, Li; Goriely, Alain
2018-04-05
Chiral structures play an important role in natural sciences due to their great variety and potential applications. A perversion connecting two helices with opposite chirality creates a dual-chirality helical structure. In this paper, we develop a novel model to explore quantitatively the mechanical behavior of normal, binormal and transversely isotropic helical structures with dual chirality and apply these ideas to known nanostructures. It is found that both direction and amplitude of rotation can be finely controlled by designing the cross-sectional shape. A peculiar rotational inversion of overwinding followed by unwinding, observed in some gourd and cucumber tendril perversions, not only exists in transversely isotropic dual-chirality helical nanobelts, but also in the binormal/normal ones when the cross-sectional aspect ratio is close to 1. Beyond this rotational inversion region, the binormal and normal dual-chirality helical nanobelts exhibit a fixed directional rotation of unwinding and overwinding, respectively. Moreover, in the binormal case, the rotation of these helical nanobelts is nearly linear, which is promising as a possible design for linear-to-rotary motion converters. The present work suggests new designs for nanoscale devices.
Engine performance analysis and optimization of a dual-mode scramjet with varied inlet conditions
NASA Astrophysics Data System (ADS)
Tian, Lu; Chen, Li-Hong; Chen, Qiang; Zhong, Feng-Quan; Chang, Xin-Yu
2016-02-01
A dual-mode scramjet can operate in a wide range of flight conditions. Higher thrust can be generated by adopting suitable combustion modes. Based on the net thrust, an analysis and preliminary optimal design of a kerosene-fueled parameterized dual-mode scramjet at a crucial flight Mach number of 6 were investigated by using a modified quasi-one-dimensional method and simulated annealing strategy. Engine structure and heat release distributions, affecting the engine thrust, were chosen as analytical parameters for varied inlet conditions (isolator entrance Mach number: 1.5-3.5). Results show that different optimal heat release distributions and structural conditions can be obtained at five different inlet conditions. The highest net thrust of the parameterized dual-mode engine can be achieved by a subsonic combustion mode at an isolator entrance Mach number of 2.5. Additionally, the effects of heat release and scramjet structure on net thrust have been discussed. The present results and the developed analytical method can provide guidance for the design and optimization of high-performance dual-mode scramjets.
Photoionization of the valence shells of the neutral tungsten atom
NASA Astrophysics Data System (ADS)
Ballance, C. P.; McLaughlin, B. M.
2015-04-01
Results from large-scale theoretical cross section calculations for the total photoionization (PI) of the 4f, 5s, 5p and 6s orbitals of the neutral tungsten atom using the Dirac Coulomb R-matrix approximation (DARC: Dirac-atomic R-matrix codes) are presented. Comparisons are made with previous theoretical methods and prior experimental measurements. In previous experiments a time-resolved dual laser approach was employed for the photo-absorption of metal vapours and photo-absorption measurements on tungsten in a solid, using synchrotron radiation. The lowest ground state level of neutral tungsten is 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J}, with J = 0, and requires only a single dipole matrix for PI. To make a meaningful comparison with existing experimental measurements, we statistically average the large-scale theoretical PI cross sections from the levels associated with the ground state 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J} (J = 0, 1, 2, 3, 4) levels and the 5{{d}5}6{{s} 7}{{S}3} excited metastable level. As the experiments have a self-evident metastable component in their ground state measurement, averaging over the initial levels allows for a more consistent and realistic comparison to be made. In the wider context, the absence of many detailed electron-impact excitation (EIE) experiments for tungsten and its multi-charged ion stages allows current PI measurements and theory to provide a road-map for future EIE, ionization and di-electronic cross section calculations by identifying the dominant resonance structure and features across an energy range of hundreds of eV.
Dual-coated lactic acid bacteria: an emerging innovative technology in the field of probiotics.
Alvarez-Calatayud, Guillermo; Margolles, Abelardo
2016-01-01
Probiotics are living micro-organisms that do not naturally have shelf life, and normally are weakly protected against the digestive action of the GI tract. A new dual coating technology has been developed in an effort to maximize survival, that is, to be able to reach the intestine alive and in sufficient numbers to confer the beneficial health effects on the host. Dual-coating of lactic acid bacteria (LAB) is the result of fourth-generation coating technology for the protection of these bacteria at least 100-fold or greater than the uncoated LAB. This innovative technique involves a first pH-dependent protein layer that protects bacteria from gastric acid and bile salt, and a second polysaccharide matrix that protects bacteria from external factors, such as humidity, temperature and pressure, as well as the digestive action during the passage through the GI tract. Dual-coated probiotic formulation is applicable to different therapeutic areas, including irritable bowel syndrome, atopic dermatitis, acute diarrhea, chronic constipation, Helicobacter pylori eradication, and prevention of antibiotic-associated diarrhea. An updated review of the efficacy of doubly coated probiotic strains for improving bacterial survival in the intestinal tract and its consequent clinical benefits in humans is here presented.
The Impact of Goal Setting and Empowerment on Governmental Matrix Organizations
1993-09-01
shared. In a study of matrix management, Eduardo Vasconcellos further describes various matrix structures in the Galbraith model. In a functional...Technology/LAR, Wright-Patterson AFB OH, 1992. Vasconcellos , Eduardo . "A Model For a Better Understanding of the Matrix Structure," IEEE Transactions on...project matrix, the project manager maintains more influence and the structure lies to the right-of center ( Vasconcellos , 1979:58). Different Types of
Crisp, Jessica L.; Savariar, Elamprakash N.; Glasgow, Heather L.; Ellies, Lesley G.; Whitney, Michael A.; Tsien, Roger. Y.
2014-01-01
Activatable cell penetrating peptides (ACPPs) provide a general strategy for molecular targeting by exploiting the extracellular protease activities associated with disease. Previous work used a matrix metalloproteinase (MMP-2 and 9) cleavable sequence in the ACPP to target contrast agents for tumor imaging and fluorescence guided surgery. To improve specificity and sensitivity for MMP-2, an integrin αvβ3 binding domain, cyclic-RGD, was covalently linked to the ACPP. This co-targeting strategy relies on the interaction of MMP-2 with integrin αvβ3, which are known to associate via MMP-2’s hemopexin domain. In U87MG glioblastoma cells in culture, dual targeting greatly improved ACPP uptake compared to either MMP or integrin αvβ3 targeting alone. In vivo, dual-targeted ACPP treatment resulted in tumor contrast of 7.8±1.6, a 10 fold higher tumor fluorescence compared to the negative control peptide, and increased probe penetration into the core of MDA-MB-231 tumors. This platform also significantly improved efficacy of the chemotherapeutic monomethylauristatin E (MMAE) in both MDA-MB-231 orthotopic human and syngeneic Py230 murine breast tumors. Treatment with cyclic-RGD-PLGC(Me)AG-MMAE-ACPP resulted in complete tumor regression in one quarter of MDA-MB-231 tumor bearing mice, compared to no survival in the control groups. This rational mechanism for amplified delivery of imaging and potent chemotherapeutic agents avoids the use of antibodies and may be of considerable generality. PMID:24737028
Crisp, Jessica L; Savariar, Elamprakash N; Glasgow, Heather L; Ellies, Lesley G; Whitney, Michael A; Tsien, Roger Y
2014-06-01
Activatable cell-penetrating peptides (ACPP) provide a general strategy for molecular targeting by exploiting the extracellular protease activities associated with disease. Previous work used a matrix metalloproteinase (MMP-2 and 9)-cleavable sequence in the ACPP to target contrast agents for tumor imaging and fluorescence-guided surgery. To improve specificity and sensitivity for MMP-2, an integrin α(v)β(3)-binding domain, cyclic-RGD, was covalently linked to the ACPP. This co-targeting strategy relies on the interaction of MMP-2 with integrin α(v)β(3), which are known to associate via the hemopexin domain of MMP-2. In U87MG glioblastoma cells in culture, dual targeting greatly improved ACPP uptake compared with either MMP or integrin α(v)β(3) targeting alone. In vivo, dual-targeted ACPP treatment resulted in tumor contrast of 7.8 ± 1.6, a 10-fold higher tumor fluorescence compared with the negative control peptide, and increased probe penetration into the core of MDA-MB-231 tumors. This platform also significantly improved efficacy of the chemotherapeutic monomethylauristatin E (MMAE) in both MDA-MB-231 orthotopic human and syngeneic Py230 murine breast tumors. Treatment with cyclic-RGD-PLGC(Me)AG-MMAE-ACPP resulted in complete tumor regression in one quarter of MDA-MB-231 tumor-bearing mice, compared with no survival in the control groups. This rational mechanism for amplified delivery of imaging and potent chemotherapeutic agents avoids the use of antibodies and may be of considerable generality. ©2014 American Association for Cancer Research.
Glenshaw, M; Deluca, N; Adams, R; Parry, C; Fritz, K; Du Preez, V; Voetsch, K; Lekone, P; Seth, P; Bachanas, P; Grillo, M; Kresina, T F; Pick, B; Ryan, C; Bock, N
2016-01-01
The association between harmful use of alcohol and HIV infection is well documented. To address this dual epidemic, the US President's Emergency Plan for AIDS Relief (PEPFAR) developed and implemented a multi-pronged approach primarily in Namibia and Botswana. We present the approach and preliminary results of the public health investigative and programmatic activities designed, initiated and supported by PEPFAR to combat the harmful use of alcohol and its association as a driver of HIV morbidity and mortality from 2008 to 2013. PEPFAR supported comprehensive alcohol programming using a matrix model approach that combined the socio-ecological framework and the Alcohol Misuse Prevention and Intervention Continuum. This structure enabled seven component objectives: (1) to quantify harmful use of alcohol through rapid assessments; (2) to develop and evaluate alcohol-based interventions; (3) to promote screening programs and alcohol abuse resource services; (4) to support stakeholder networks; (5) to support policy interventions and (6) structural interventions; and (7) to institutionalize universal prevention messages. Targeted PEPFAR support for alcohol activities resulted in several projects to address harmful alcohol use and HIV. Components are graphically conceptualized within the matrix model, demonstrating the intersections between primary, secondary and tertiary prevention activities and individual, interpersonal, community, and societal factors. Key initiative successes included leveraging alcohol harm prevention activities that enabled projects to be piloted in healthcare settings, schools, communities, and alcohol outlets. Primary challenges included the complexity of multi-sectorial programming, varying degrees of political will, and difficulties monitoring outcomes over the short duration of the program.
Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags
NASA Astrophysics Data System (ADS)
Karmakar, R.; Sur, A.; Kanoria, M.
2016-07-01
The aim of the present contribution is the determination of the thermoelastic temperatures, stress, displacement, and strain in an infinite isotropic elastic body with a spherical cavity in the context of the mechanism of the two-temperature generalized thermoelasticity theory (2TT). The two-temperature Lord-Shulman (2TLS) model and two-temperature dual-phase-lag (2TDP) model of thermoelasticity are combined into a unified formulation with unified parameters. The medium is assumed to be initially quiescent. The basic equations are written in the form of a vector matrix differential equation in the Laplace transform domain, which is then solved by the state-space approach. The expressions for the conductive temperature and elongation are obtained at small times. The numerical inversion of the transformed solutions is carried out by using the Fourier-series expansion technique. A comparative study is performed for the thermoelastic stresses, conductive temperature, thermodynamic temperature, displacement, and elongation computed by using the Lord-Shulman and dual-phase-lag models.
Bioinspired Diselenide-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery.
Shao, Dan; Li, Mingqiang; Wang, Zheng; Zheng, Xiao; Lao, Yeh-Hsing; Chang, Zhimin; Zhang, Fan; Lu, Mengmeng; Yue, Juan; Hu, Hanze; Yan, Huize; Chen, Li; Dong, Wen-Fei; Leong, Kam W
2018-05-28
Controlled delivery of protein therapeutics remains a challenge. Here, the inclusion of diselenide-bond-containing organosilica moieties into the framework of silica to fabricate biodegradable mesoporous silica nanoparticles (MSNs) with oxidative and redox dual-responsiveness is reported. These diselenide-bridged MSNs can encapsulate cytotoxic RNase A into the 8-10 nm internal pores via electrostatic interaction and release the payload via a matrix-degradation controlled mechanism upon exposure to oxidative or redox conditions. After surface cloaking with cancer-cell-derived membrane fragments, these bioinspired RNase A-loaded MSNs exhibit homologous targeting and immune-invasion characteristics inherited from the source cancer cells. The efficient in vitro and in vivo anti-cancer performance, which includes increased blood circulation time and enhanced tumor accumulation along with low toxicity, suggests that these cell-membrane-coated, dual-responsive degradable MSNs represent a promising platform for the delivery of bio-macromolecules such as protein and nucleic acid therapeutics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental input for the design of metallic glass/crystalline composites
NASA Astrophysics Data System (ADS)
Hutchinson, Nicholas Willis
Bulk metallic glasses often exhibit exceptional strength and large elastic strains, but the structural applications of bulk metallic glasses are limited by their extremely low tensile ductility. Below the glass transition temperature of the alloy, plastic deformation occurs primarily in narrow shear bands, which propagate unimpeded through the monolithic glass structure, resulting in catastrophic failure under tensile loading. A number of studies have added crystalline reinforcements to the glassy matrix in an effort to block shear band propagation and increase ductility. The reinforcements in these bulk metallic glass matrix composites (BMGMC's) can be added as ex situ particles or fibers infiltrated by the glass-forming liquid [1], or can be formed in situ, either via devitrification of the glass during post-processing [2] or as a second phase that precipitates from the melt during solidification [3]. The size, distribution, and mechanical properties of the reinforcement phase have significant impact on the ductility of the composite. However, surprisingly little quantitative microstructural information is available for BMGMC's, particularly those formed by precipitation from the melt. In this work, we examine two in situ BMGMC's in which a ductile crystalline phase precipitates during solidification of the melt, resulting in a complex dendritic structure embedded in a continuous glass matrix. A 3D serial sectioning process was used to image the microstructure at regular intervals by removing slices of material using a dual beam focused ion-scanning electron microscope (FIB). Due to the complex nature of the microstructure, measurements of key features were conducted using a 3D measurement method that was developed for this purpose. Experiments were also conducted to provide experimental input for the development and tuning of finite element models. Changes in the elastic modulus of the composite were evaluated over a range of stresses that encompassed the yield point of the composite. An interesting increase in the modulus was observed prior to yielding. The work is concluded with a study of the accumulation of strain within the composite microstructure during tensile loading. The strain was determined and evaluated by a digital image correlation method. [1] R. B. Dandliker, R. D. Conner, and W. L. Johnson, "Melt infiltration casting of bulk metallic-glass matrix composites," J. Mater. Res., vol. 13, no. 10, pp. 2896--2901, 1998. [2] J. Eckert, J. Das, S. Pauly, and C. Duhamel, "Mechanical Properties of Bulk Metallic Glasses and Composites," J. Mater. Res., vol. 22, no. 2, pp. 285--301, 2007. [3] D. C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M. D. Demetriou, and W. L. Johnson, "Designing metallic glass matrix composites with high toughness and tensile ductility.," Nature, vol. 451, no. 7182, pp. 1085--9, Feb. 2008.
Curley, J Lowry; Jennings, Scott R; Moore, Michael J
2011-02-11
Increasingly, patterned cell culture environments are becoming a relevant technique to study cellular characteristics, and many researchers believe in the need for 3D environments to represent in vitro experiments which better mimic in vivo qualities. Studies in fields such as cancer research, neural engineering, cardiac physiology, and cell-matrix interaction have shown cell behavior differs substantially between traditional monolayer cultures and 3D constructs. Hydrogels are used as 3D environments because of their variety, versatility and ability to tailor molecular composition through functionalization. Numerous techniques exist for creation of constructs as cell-supportive matrices, including electrospinning, elastomer stamps, inkjet printing, additive photopatterning, static photomask projection-lithography, and dynamic mask microstereolithography. Unfortunately, these methods involve multiple production steps and/or equipment not readily adaptable to conventional cell and tissue culture methods. The technique employed in this protocol adapts the latter two methods, using a digital micromirror device (DMD) to create dynamic photomasks for crosslinking geometrically specific poly-(ethylene glycol) (PEG) hydrogels, induced through UV initiated free radical polymerization. The resulting "2.5D" structures provide a constrained 3D environment for neural growth. We employ a dual-hydrogel approach, where PEG serves as a cell-restrictive region supplying structure to an otherwise shapeless but cell-permissive self-assembling gel made from either Puramatrix or agarose. The process is a quick simple one step fabrication which is highly reproducible and easily adapted for use with conventional cell culture methods and substrates. Whole tissue explants, such as embryonic dorsal root ganglia (DRG), can be incorporated into the dual hydrogel constructs for experimental assays such as neurite outgrowth. Additionally, dissociated cells can be encapsulated in the photocrosslinkable or self polymerizing hydrogel, or selectively adhered to the permeable support membrane using cell-restrictive photopatterning. Using the DMD, we created hydrogel constructs up to ~1mm thick, but thin film (<200 μm) PEG structures were limited by oxygen quenching of the free radical polymerization reaction. We subsequently developed a technique utilizing a layer of oil above the polymerization liquid which allowed thin PEG structure polymerization. In this protocol, we describe the expeditious creation of 3D hydrogel systems for production of microfabricated neural cell and tissue cultures. The dual hydrogel constructs demonstrated herein represent versatile in vitro models that may prove useful for studies in neuroscience involving cell survival, migration, and/or neurite growth and guidance. Moreover, as the protocol can work for many types of hydrogels and cells, the potential applications are both varied and vast.
Beyond patchwork precaution in the dual-use governance of synthetic biology.
Kelle, Alexander
2013-09-01
The emergence of synthetic biology holds the potential of a major breakthrough in the life sciences by transforming biology into a predictive science. The dual-use characteristics of similar breakthroughs during the twentieth century have led to the application of benignly intended research in e.g. virology, bacteriology and aerobiology in offensive biological weapons programmes. Against this background the article raises the question whether the precautionary governance of synthetic biology can aid in preventing this techno-science witnessing the same fate? In order to address this question, this paper proceeds in four steps: it firstly introduces the emerging techno-science of synthetic biology and presents some of its potential beneficial applications. It secondly analyses contributions to the bioethical discourse on synthetic biology as well as precautionary reasoning and its application to life science research in general and synthetic biology more specifically. The paper then identifies manifestations of a moderate precautionary principle in the emerging synthetic biology dual-use governance discourse. Using a dual-use governance matrix as heuristic device to analyse some of the proposed measures, it concludes that the identified measures can best be described as "patchwork precaution" and that a more systematic approach to construct a web of dual-use precaution for synthetic biology is needed in order to guard more effectively against the field's future misuse for harmful applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yaoyu; Li, Xiangping; Gu, Min, E-mail: mgu@swin.edu.au
2014-12-29
We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way formore » realizing functional nanostructures.« less
Di Pierro, Rossella; Preti, Emanuele; Vurro, Nicoletta; Madeddu, Fabio
2014-08-01
Although dual diagnosis has been a topic of great scientific interest for a long time, few studies have investigated the personality traits that characterize patients suffering from substance use disorders and co-occurring personality disorders through a dimensional approach. The present study aimed to evaluate structural personality profiles among dual-diagnosis inpatients to identify specific personality impairments associated with dual diagnosis. The present study involved 97 participants divided into three groups: 37 dual-diagnosis inpatients, 30 psychiatric outpatients and 30 nonclinical controls. Dimensions of personality functioning were assessed and differences between groups were tested using Kernberg's dimensional model of personality. Results showed that dual diagnosis was associated with the presence of difficulties in three main dimensions of personality functioning. Dual-diagnosis inpatients reported a poorly integrated identity with difficulties in the capacity to invest, poorly integrated moral values, and high levels of self-direct and other-direct aggression. The present study highlighted that a dimensional approach to the study of dual diagnosis may clarify the personality functioning of patients suffering from this pathological condition. The use of the dimensional approach could help to advance research on dual diagnosis, and it could have important implications on clinical treatment programs for dual-diagnosis inpatients. Copyright © 2014 Elsevier Inc. All rights reserved.
BCYCLIC: A parallel block tridiagonal matrix cyclic solver
NASA Astrophysics Data System (ADS)
Hirshman, S. P.; Perumalla, K. S.; Lynch, V. E.; Sanchez, R.
2010-09-01
A block tridiagonal matrix is factored with minimal fill-in using a cyclic reduction algorithm that is easily parallelized. Storage of the factored blocks allows the application of the inverse to multiple right-hand sides which may not be known at factorization time. Scalability with the number of block rows is achieved with cyclic reduction, while scalability with the block size is achieved using multithreaded routines (OpenMP, GotoBLAS) for block matrix manipulation. This dual scalability is a noteworthy feature of this new solver, as well as its ability to efficiently handle arbitrary (non-powers-of-2) block row and processor numbers. Comparison with a state-of-the art parallel sparse solver is presented. It is expected that this new solver will allow many physical applications to optimally use the parallel resources on current supercomputers. Example usage of the solver in magneto-hydrodynamic (MHD), three-dimensional equilibrium solvers for high-temperature fusion plasmas is cited.
Zhou, Guoxu; Yang, Zuyuan; Xie, Shengli; Yang, Jun-Mei
2011-04-01
Online blind source separation (BSS) is proposed to overcome the high computational cost problem, which limits the practical applications of traditional batch BSS algorithms. However, the existing online BSS methods are mainly used to separate independent or uncorrelated sources. Recently, nonnegative matrix factorization (NMF) shows great potential to separate the correlative sources, where some constraints are often imposed to overcome the non-uniqueness of the factorization. In this paper, an incremental NMF with volume constraint is derived and utilized for solving online BSS. The volume constraint to the mixing matrix enhances the identifiability of the sources, while the incremental learning mode reduces the computational cost. The proposed method takes advantage of the natural gradient based multiplication updating rule, and it performs especially well in the recovery of dependent sources. Simulations in BSS for dual-energy X-ray images, online encrypted speech signals, and high correlative face images show the validity of the proposed method.
Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deveci, Mehmet; Trott, Christian Robert; Rajamanickam, Sivasankaran
Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less
Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deveci, Mehmet; Rajamanickam, Sivasankaran; Trott, Christian Robert
Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scienti c computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less
NASA Astrophysics Data System (ADS)
Schonberg, William P.
1992-11-01
All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.
NASA Technical Reports Server (NTRS)
Schonberg, William P.
1992-01-01
All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.
The NASA satellite communication 20 x 20 matrix switches
NASA Technical Reports Server (NTRS)
Saunders, A. L.
1983-01-01
The characteristics of two matrix switches designed for high capacity satellite communications systems are described. The switches provide routing between 20 input and 20 output ports at an IF frequency during TDMA operations. Switching speeds of 10 nsec are projected for dual gate GaAs FETs. The two designs differed in the coupling configurations, bandwidth (2.69-1.2 GHz), off-state isolation (-54 to -40 dB), switching speeds (16-37 nsec), and gain ripple (5.3-2.2 dB). Both designs achieved a 2 nsec reconfiguration rate. Further development is required to reduce the ripple effects and attain the potential 2 nsec switching speed offered by the GaAs FETs.
Implementation of a Matrix Organizational Structure: A Case Study.
ERIC Educational Resources Information Center
Whorton, David M.
The implementation of a matrix structure as an alternative to the traditional collegial/bureaucratic form at a college of education in a medium-size state university is described. Matrix organizational structures are differentiated from hierarchical bureaucratic structures by dividing the organization's tasks into functional units across which an…
Structural Support of High-Performance Athletes' Education: Supporting Dual Careers in Greece
ERIC Educational Resources Information Center
Pavlidis, George; Gargalianos, Dimitris
2014-01-01
This article describes how the current Greek sport-education context seems to offer relatively poor dual-career support in comparison to other available structures in the world. This results in additional obstacles for Greek athletes who wish to educate themselves and an ambiguous prospect for their future. Consequently, the Greek…
Investigations into dual-grating THz-driven accelerators
NASA Astrophysics Data System (ADS)
Wei, Y.; Ischebeck, R.; Dehler, M.; Ferrari, E.; Hiller, N.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.
2018-01-01
Advanced acceleration technologies are receiving considerable interest in order to miniaturize future particle accelerators. One such technology is the dual-grating dielectric structures, which can support accelerating fields one to two orders of magnitude higher than the metal RF cavities in conventional accelerators. This opens up the possibility of enabling high accelerating gradients of up to several GV/m. This paper investigates numerically a quartz dual-grating structure which is driven by THz pulses to accelerate electrons. Geometry optimizations are carried out to achieve the trade-offs between accelerating gradient and vacuum channel gap. A realistic electron bunch available from the future Compact Linear Accelerator for Research and Applications (CLARA) is loaded into an optimized 100-period dual-grating structure for a detailed wakefield study. A THz pulse is then employed to interact with this CLARA bunch in the optimized structure. The computed beam quality is analyzed in terms of emittance, energy spread and loaded accelerating gradient. The simulations show that an accelerating gradient of 348 ± 12 MV/m with an emittance growth of 3.0% can be obtained.
NASA Astrophysics Data System (ADS)
Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang
2018-06-01
In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.
NASA Astrophysics Data System (ADS)
Annewandter, R.; Kalinowksi, M. B.
2009-04-01
An underground nuclear explosion injects radionuclids in the surrounding host rock creating an initial radionuclid distribution. In the case of fractured permeable media, cyclical changes in atmospheric pressure can draw gaseous species upwards to the surface, establishing a ratcheting pump effect. The resulting advective transport is orders of magnitude more significant than transport by molecular diffusion. In the 1990s the US Department of Energy funded the socalled Non-Proliferation Experiment conducted by the Lawrence Livermore National Laboratory to investigate this barometric pumping effect for verifying compliance with respect to the Comprehensive Nuclear Test Ban Treaty. A chemical explosive of approximately 1 kt TNT-equivalent has been detonated in a cavity located 390 m deep in the Rainier Mesa (Nevada Test Site) in which two tracer gases were emplaced. Within this experiment SF6 was first detected in soil gas samples taken near fault zones after 50 days and 3He after 325 days. For this paper a locally one-dimensional dual-porosity model for flow along the fracture and within the permeable matrix was used after Nilson and Lie (1990). Seepage of gases and diffusion of tracers between fracture and matrix are accounted. The advective flow along the fracture and within the matrix block is based on the FRAM filtering remedy and methodology of Chapman. The resulting system of equations is solved by an implicit non-iterative algorithm. Results on time of arrival and subsurface concentration levels for the CTBT-relevant xenons will be presented.
A multi-directional tracer test in the fractured Chalk aquifer of E. Yorkshire, UK.
Hartmann, S; Odling, N E; West, L J
2007-12-07
A multi-borehole radial tracer test has been conducted in the confined Chalk aquifer of E. Yorkshire, UK. Three different tracer dyes were injected into three injection boreholes and a central borehole, 25 m from the injection boreholes, was pumped at 330 m(3)/d for 8 days. The breakthrough curves show that initial breakthrough and peak times were fairly similar for all dyes but that recoveries varied markedly from 9 to 57%. The breakthrough curves show a steep rise to a peak and long tail, typical of dual porosity aquifers. The breakthrough curves were simulated using a 1D dual porosity model. Model input parameters were constrained to acceptable ranges determined from estimations of matrix porosity and diffusion coefficient, fracture spacing, initial breakthrough times and bulk transmissivity of the aquifer. The model gave equivalent hydraulic apertures for fractures in the range 363-384 microm, dispersivities of 1 to 5 m and matrix block sizes of 6 to 9 cm. Modelling suggests that matrix block size is the primary controlling parameter for solute transport in the aquifer, particularly for recovery. The observed breakthrough curves suggest results from single injection-borehole tracer tests in the Chalk may give initial breakthrough and peak times reasonably representative of the aquifer but that recovery is highly variable and sensitive to injection and abstraction borehole location. Consideration of aquifer heterogeneity suggests that high recoveries may be indicative of a high flow pathway adjacent, but not necessarily connected, to the injection and abstraction boreholes whereas low recoveries may indicate more distributed flow through many fractures of similar aperture.
Aguilar, Claudio; Vlamakis, Hera; Guzman, Alejandra; Losick, Richard; Kolter, Roberto
2010-05-18
Bacillus subtilis cells form multicellular biofilm communities in which spatiotemporal regulation of gene expression occurs, leading to differentiation of multiple coexisting cell types. These cell types include matrix-producing and sporulating cells. Extracellular matrix production and sporulation are linked in that a mutant unable to produce matrix is delayed for sporulation. Here, we show that the delay in sporulation is not due to a growth advantage of the matrix-deficient mutant under these conditions. Instead, we show that the link between matrix production and sporulation is through the Spo0A signaling pathway. Both processes are regulated by the phosphorylated form of the master transcriptional regulator Spo0A. When cells have low levels of phosphorylated Spo0A (Spo0A~P), matrix genes are expressed; however, at higher levels of Spo0A~P, sporulation commences. We have found that Spo0A~P levels are maintained at low levels in the matrix-deficient mutant, thereby delaying expression of sporulation-specific genes. This is due to the activity of one of the components of the Spo0A phosphotransfer network, KinD. A deletion of kinD suppresses the sporulation defect of matrix mutants, while its overproduction delays sporulation. Our data indicate that KinD displays a dual role as a phosphatase or a kinase and that its activity is linked to the presence of extracellular matrix in the biofilms. We propose a novel role for KinD in biofilms as a checkpoint protein that regulates the onset of sporulation by inhibiting the activity of Spo0A until matrix, or a component therein, is sensed.
Aguilar, Claudio; Vlamakis, Hera; Guzman, Alejandra; Losick, Richard; Kolter, Roberto
2010-01-01
ABSTRACT Bacillus subtilis cells form multicellular biofilm communities in which spatiotemporal regulation of gene expression occurs, leading to differentiation of multiple coexisting cell types. These cell types include matrix-producing and sporulating cells. Extracellular matrix production and sporulation are linked in that a mutant unable to produce matrix is delayed for sporulation. Here, we show that the delay in sporulation is not due to a growth advantage of the matrix-deficient mutant under these conditions. Instead, we show that the link between matrix production and sporulation is through the Spo0A signaling pathway. Both processes are regulated by the phosphorylated form of the master transcriptional regulator Spo0A. When cells have low levels of phosphorylated Spo0A (Spo0A~P), matrix genes are expressed; however, at higher levels of Spo0A~P, sporulation commences. We have found that Spo0A~P levels are maintained at low levels in the matrix-deficient mutant, thereby delaying expression of sporulation-specific genes. This is due to the activity of one of the components of the Spo0A phosphotransfer network, KinD. A deletion of kinD suppresses the sporulation defect of matrix mutants, while its overproduction delays sporulation. Our data indicate that KinD displays a dual role as a phosphatase or a kinase and that its activity is linked to the presence of extracellular matrix in the biofilms. We propose a novel role for KinD in biofilms as a checkpoint protein that regulates the onset of sporulation by inhibiting the activity of Spo0A until matrix, or a component therein, is sensed. PMID:20689749
The nuclear matrix prepared by amine modification
Wan, Katherine M.; Nickerson, Jeffrey A.; Krockmalnic, Gabriela; Penman, Sheldon
1999-01-01
The nucleus is spatially ordered by attachments to a nonchromatin nuclear structure, the nuclear matrix. The nuclear matrix and chromatin are intimately connected and integrated structures, and so a major technical challenge in nuclear matrix research has been to remove chromatin while retaining a native nuclear matrix. Most methods for removing chromatin require first a nuclease digestion and then a salt extraction to remove cut chromatin. We have hypothesized that cut chromatin is held in place by charge interactions involving nucleosomal amino groups. We have tested this hypothesis by chemically modifying amino groups after nuclease digestion. By using this protocol, chromatin could be effectively removed at physiological ionic strength. We compared the ultrastructure and composition of this nuclear matrix preparation with the traditional high-salt nuclear matrix and with the third nuclear matrix preparation that we have developed from which chromatin is removed after extensive crosslinking. All three matrix preparations reveal internal nuclear matrix structures that are built on a network of branched filaments of about 10 nm diameter. That such different chromatin-removal protocols reveal similar principles of nuclear matrix construction increases our confidence that we are observing important architectural elements of the native structure in the living cell. PMID:9927671
Comparison of two matrix data structures for advanced CSM testbed applications
NASA Technical Reports Server (NTRS)
Regelbrugge, M. E.; Brogan, F. A.; Nour-Omid, B.; Rankin, C. C.; Wright, M. A.
1989-01-01
The first section describes data storage schemes presently used by the Computational Structural Mechanics (CSM) testbed sparse matrix facilities and similar skyline (profile) matrix facilities. The second section contains a discussion of certain features required for the implementation of particular advanced CSM algorithms, and how these features might be incorporated into the data storage schemes described previously. The third section presents recommendations, based on the discussions of the prior sections, for directing future CSM testbed development to provide necessary matrix facilities for advanced algorithm implementation and use. The objective is to lend insight into the matrix structures discussed and to help explain the process of evaluating alternative matrix data structures and utilities for subsequent use in the CSM testbed.
Synthesis and Characterization of MAX Ceramics (MAXCERs)
NASA Astrophysics Data System (ADS)
Nelson, Johnny Carl
This research has focused on the design and development of novel multifunctional MAX reinforced ceramics (MAXCERs). These MAXCERs were manufactured with 1-50 vol% ratios of ceramics to MAX phases. Chapter II reports on the synthesis and tribological behavior of Ti3SiC2 matrix composites by incorporating (1 and 6 vol%) Al2O3, (1 and 5 vol%) BN, and (1 and 5 vol%) B4C ceramic particulate additives in the matrix. All the composites were fabricated by pressureless sintering by using 1 wt% Ni as a sintering agent at 1550 °C for 2 hours. SEM and XRD studies showed that Al2O3 is relatively inert in the Ti3SiC 2 matrix whereas BN and B4C reacted significantly with the Ti3 SiC2 matrix to form TiB2. Detailed tribological studies showed that Ti3SiC2-1wt%Ni (baseline) samples showed dual type tribological behavior where the friction coefficient (micro) was low ( 0.2) during stage 1, thereafter micro increased sharply and transitioned into stage 2 ( 0.8). The addition of Al2O3 as an additive had little effect on the tribological behavior, but the addition of B4C and BN was able to enhance the tribological behavior by increasing the transition distance (TD). Chapter III reports on the synthesis and tribological behavior of TiB2 matrix composites by incorporating (10, 30, and 50 vol%) Ti3SiC2 ceramic particulate additives in the matrix. The fabrication parameters were similar to the Ti3SiC2 samples from Chapter II. There was minimal reaction between the TiB2 and the Ti3SiC2. Detailed tribological studies showed that TiB2 (baseline) and TiB2-10%Ti 3SiC2 samples showed an average micro of 0.29 and 0.28, respectively. TiB2-30%Ti3SiC2 and TiB 2-50%Ti3SiC2 showed dual-type tribological behavior where micro was low ( 0.25) during stage 1, thereafter micro increased gradually and transitioned into stage 2 ( 0.6). Low wear rates were seen for all samples.
Unipolar Barrier Dual-Band Infrared Detectors
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Soibel, Alexander (Inventor); Khoshakhlagh, Arezou (Inventor); Gunapala, Sarath (Inventor)
2017-01-01
Dual-band barrier infrared detectors having structures configured to reduce spectral crosstalk between spectral bands and/or enhance quantum efficiency, and methods of their manufacture are provided. In particular, dual-band device structures are provided for constructing high-performance barrier infrared detectors having reduced crosstalk and/or enhance quantum efficiency using novel multi-segmented absorber regions. The novel absorber regions may comprise both p-type and n-type absorber sections. Utilizing such multi-segmented absorbers it is possible to construct any suitable barrier infrared detector having reduced crosstalk, including npBPN, nBPN, pBPN, npBN, npBP, pBN and nBP structures. The pBPN and pBN detector structures have high quantum efficiency and suppresses dark current, but has a smaller etch depth than conventional detectors and does not require a thick bottom contact layer.
Evaluating Process Improvement Courses of Action Through Modeling and Simulation
2017-09-16
changes to a process is time consuming and has potential to overlook stochastic effects. By modeling a process as a Numerical Design Structure Matrix...13 Methods to Evaluate Process Performance ................................................................15 The Design Structure...Matrix ......................................................................................16 Numerical Design Structure Matrix
Antibiofilm Effect of DNase against Single and Mixed Species Biofilm
Sharma, Komal
2018-01-01
Biofilms are aggregates of microorganisms that coexist in socially coordinated micro-niche in a self-produced polymeric matrix on pre-conditioned surfaces. The biofilm matrix reduces the efficacy of antibiofilm strategies. DNase degrades the extracellular DNA (e-DNA) present in the matrix, rendering the matrix weak and susceptible to antimicrobials. In the current study, the effect of DNase I was evaluated during biofilm formation (pre-treatment), on preformed biofilms (post-treatment) and both (dual treatment). The DNase I pre-treatment was optimized for P. aeruginosa PAO1 (model biofilm organism) at 10 µg/mL and post-treatment at 10 µg/mL with 15 min of contact duration. Inclusion of Mg2+ alongside DNase I post-treatment resulted in 90% reduction in biofilm within only 5 min of contact time (irrespective of age of biofilm). On extension of these findings, DNase I was found to be less effective against mixed species biofilm than individual biofilms. DNase I can be used as potent antibiofilm agent and with further optimization can be effectively used for biofilm prevention and reduction in situ. PMID:29562719
Khan, Muntazim Munir; Shishatskiy, Sergey; Filiz, Volkan
2018-01-01
This work reports on the preparation and gas transport performance of mixed matrix membranes (MMMs) based on the polymer of intrinsic microporosity (PIM-1) and potassium dodecahydrododecaborate (K2B12H12) as inorganic particles (IPs). The effect of IP loading on the gas separation performance of these MMMs was investigated by varying the IP content (2.5, 5, 10 and 20 wt %) in a PIM-1 polymer matrix. The derived MMMs were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single gas permeation tests and sorption measurement. The PIM1/K2B12H12 MMMs show good dispersion of the IPs (from 2.5 to 10 wt %) in the polymer matrix. The gas permeability of PIM1/K2B12H12 MMMs increases as the loading of IPs increases (up to 10 wt %) without sacrificing permselectivity. The sorption isotherm in PIM-1 and PIM1/K2B12H12 MMMs demonstrate typical dual-mode sorption behaviors for the gases CO2 and CH4. PMID:29301312
Ting, See-Yeun; Yan, Nicholas L; Schilke, Brenda A; Craig, Elizabeth A
2017-01-01
Proteins destined for the mitochondrial matrix are targeted to the inner membrane Tim17/23 translocon by their presequences. Inward movement is driven by the matrix-localized, Hsp70-based motor. The scaffold Tim44, interacting with the matrix face of the translocon, recruits other motor subunits and binds incoming presequence. The basis of these interactions and their functional relationships remains unclear. Using site-specific in vivo crosslinking and genetic approaches in Saccharomyces cerevisiae, we found that both domains of Tim44 interact with the major matrix-exposed loop of Tim23, with the C-terminal domain (CTD) binding Tim17 as well. Results of in vitro experiments showed that the N-terminal domain (NTD) is intrinsically disordered and binds presequence near a region important for interaction with Hsp70 and Tim23. Our data suggest a model in which the CTD serves primarily to anchor Tim44 to the translocon, whereas the NTD is a dynamic arm, interacting with multiple components to drive efficient translocation. DOI: http://dx.doi.org/10.7554/eLife.23609.001 PMID:28440746
Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites: Influence of Interface Modification
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1998-01-01
Unidirectional celsian matrix composites having 42-45 vol % of uncoated or BN-SIC coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01%, respectively, with ultimate strength as high as 960 MPa. The elastic Young modulus of the uncoated and coated fiber-reinforced composites were 184 +/- 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of composite with uncoated fibers is due to degradation of the fiber strength from mechanical damage during processing. Because both the coated- and uncoated-fiber-reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SIC dual layer is primarily the protection of fibers from mechanical damage during processing.
Method of joining metallic and composite components
NASA Technical Reports Server (NTRS)
Semmes, Edmund B. (Inventor)
2010-01-01
A method is provided for joining a metallic member to a structure made of a composite matrix material. One or more surfaces of a portion of the metallic member that is to be joined to the composite matrix structure is provided with a plurality of outwardly projecting studs. The surface including the studs is brought into engagement with a portion of an uncured composite matrix material so that fibers of the composite matrix material intertwine with the studs, and the metallic member and composite structure form an assembly. The assembly is then companion cured so as to join the metallic member to the composite matrix material structure.
Martin, Guillaume; Chapuis, Elodie; Goudet, Jérôme
2008-01-01
Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Qst–Fst) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2Fst/(1 − Fst)G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2Fst/(1 − Fst)] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Qst–Fst comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and potential extensions. PMID:18245845
Xu, Ziqiang
2013-01-01
A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984
14 CFR 23.511 - Ground load; unsymmetrical loads on multiple-wheel units.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CATEGORY AIRPLANES Structure Ground Loads § 23.511 Ground load; unsymmetrical loads on multiple-wheel units... coefficient of friction of 0.8 applied to the main gear and its supporting structure. (b) Unequal tire loads... distribution, to the dual wheels and tires in each dual wheel landing gear unit. (c) Deflated tire loads. For...
NASA Astrophysics Data System (ADS)
Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan
2018-07-01
We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.
Comparison study of image quality and effective dose in dual energy chest digital tomosynthesis
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Choi, Sunghoon; Lee, Haenghwa; Kim, Dohyeon; Choi, Seungyeon; Kim, Hee-Joung
2018-07-01
The present study aimed to introduce a recently developed digital tomosynthesis system for the chest and describe the procedure for acquiring dual energy bone decomposed tomosynthesis images. Various beam quality and reconstruction algorithms were evaluated for acquiring dual energy chest digital tomosynthesis (CDT) images and the effective dose was calculated with ion chamber and Monte Carlo simulations. The results demonstrated that dual energy CDT improved visualization of the lung field by eliminating the bony structures. In addition, qualitative and quantitative image quality of dual energy CDT using iterative reconstruction was better than that with filtered backprojection (FBP) algorithm. The contrast-to-noise ratio and figure of merit values of dual energy CDT acquired with iterative reconstruction were three times better than those acquired with FBP reconstruction. The difference in the image quality according to the acquisition conditions was not noticeable, but the effective dose was significantly affected by the acquisition condition. The high energy acquisition condition using 130 kVp recorded a relatively high effective dose. We conclude that dual energy CDT has the potential to compensate for major problems in CDT due to decomposed bony structures, which induce significant artifacts. Although there are many variables in the clinical practice, our results regarding reconstruction algorithms and acquisition conditions may be used as the basis for clinical use of dual energy CDT imaging.
A Dual Mode BPF with Improved Spurious Response Using DGS Cells Embedded on the Ground Plane of CPW
NASA Astrophysics Data System (ADS)
Weng, Min-Hang; Ye, Chang-Sin; Hung, Cheng-Yuan; Huang, Chun-Yueh
A novel dual mode bandpass filter (BPF) with improved spurious response is presented in this letter. To obtain low insertion loss, the coupling structure using the dual mode resonator and the feeding scheme using coplanar-waveguide (CPW) are constructed on the two sides of a dielectric substrate. A defected ground structure (DGS) is designed on the ground plane of the CPW to achieve the goal of spurious suppression of the filter. The filter has been investigated numerically and experimentally. Measured results show a good agreement with the simulated analysis.
Estimation of the axis of a screw motion from noisy data--a new method based on Plücker lines.
Kiat Teu, Koon; Kim, Wangdo
2006-01-01
The problems of estimating the motion and orientation parameters of a body segment from two n point-set patterns are analyzed using the Plücker coordinates of a line (Plücker lines). The aim is to find algorithms less complex than those in conventional use, and thus facilitating more accurate computation of the unknown parameters. All conventional techniques use point transformation to calculate the screw axis. In this paper, we present a novel technique that directly estimates the axis of a screw motion as a Plücker line. The Plücker line can be transformed via the dual-number coordinate transformation matrix. This method is compared with Schwartz and Rozumalski [2005. A new method for estimating joint parameters from motion data. Journal of Biomechanics 38, 107-116] in simulations of random measurement errors and systematic skin movements. Simulation results indicate that the methods based on Plücker lines (Plücker line method) are superior in terms of extremely good results in the determination of the screw axis direction and position as well as a concise derivation of mathematical statements. This investigation yielded practical results, which can be used to locate the axis of a screw motion in a noisy environment. Developing the dual transformation matrix (DTM) from noisy data and determining the screw axis from a given DTM is done in a manner analogous to that for handling simple rotations. A more robust approach to solve for the dual vector associated with DTM is also addressed by using the eigenvector and the singular value decomposition.
The controversial nuclear matrix: a balanced point of view.
Martelli, A M; Falcieri, E; Zweyer, M; Bortul, R; Tabellini, G; Cappellini, A; Cocco, L; Manzoli, L
2002-10-01
The nuclear matrix is defined as the residual framework after the removal of the nuclear envelope, chromatin, and soluble components by sequential extractions. According to several investigators the nuclear matrix provides the structural basis for intranuclear order. However, the existence itself and the nature of this structure is still uncertain. Although the techniques used for the visualization of the nuclear matrix have improved over the years, it is still unclear to what extent the isolated nuclear matrix corresponds to an in vivo existing structure. Therefore, considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the situation in living cells. Here, we summarize the experimental evidence in favor of, or against, the presence of a diffuse nucleoskeleton as a facilitating organizational nonchromatin structure of the nucleus.
Tambe, Suparna; Blott, Henning; Fülöp, Annabelle; Spang, Nils; Flottmann, Dirk; Bräse, Stefan; Hopf, Carsten; Junker, Hans-Dieter
2017-02-01
A key aspect for the further development of matrix-assisted laser desorption ionization (MALDI)-mass spectrometry (MS) is a better understanding of the working principles of MALDI matrices. To address this issue, a chemical compound library of 59 structurally related cinnamic acid derivatives was synthesized. Potential MALDI matrices were evaluated with sulfatides, a class of anionic lipids which are abundant in complex brain lipid mixtures. For each matrix relative mean S/N ratios of sulfatides were determined against 9-aminoacridine as a reference matrix using negative ion mass spectrometry with 355 and 337 nm laser systems. The comparison of matrix features with their corresponding relative mean S/N ratios for sulfatide detection identified correlations between matrix substitution patterns, their chemical functionality, and their MALDI-MS performance. Crystal structures of six selected matrices provided structural insight in hydrogen bond interactions in the solid state. Principal component analysis allowed the additional identification of correlation trends between structural and physical matrix properties like number of exchangeable protons at the head group, MW, logP, UV-Vis, and sulfatide detection sensitivity. Graphical abstract Design, synthesis and mass spectrometric evaluation of MALDI-MS matrix compound libraries allows the identification of matrix structure - MALDI-MS performance relationships using multivariate statistics as a tool.
Xing, Jie; Zang, Meitong; Liu, Huixiang
2017-11-15
Metabolite profiling of combination drugs in complex matrix is a big challenge. Development of an effective data mining technique for simultaneously extracting metabolites of one parent drug from both background matrix and combined drug-related signals could be a solution. This study presented a novel high resolution mass spectrometry (HRMS)-based data-mining strategy to fast and comprehensive metabolite identification of combination drugs in human. The model drug combination was verapamil-irbesartan (VER-IRB), which is widely used in clinic to treat hypertension. First, mass defect filter (MDF), as a targeted data mining tool, worked effectively except for those metabolites with similar MDF values. Second, the accurate mass-based background subtraction (BS), as an untargeted data-mining tool, was able to recover all relevant metabolites of VER-IRB from the full-scan MS dataset except for trace metabolites buried in the background noise and/or combined drug-related signals. Third, the novel ring double bond (RDB; valence values of elements in structure) filter, could show rich structural information in more sensitive full-scan MS chromatograms; however, it had a low capability to remove background noise and was difficult to differentiate the metabolites with RDB coverage. Fourth, an integrated strategy, i.e., untargeted BS followed by RDB, was effective for metabolite identification of VER and IRB, which have different RDB values. Majority of matrix signals were firstly removed using BS. Metabolite ions for each parent drug were then isolated from remaining background matrix and combined drug-related signals by imposing of preset RDB values/ranges around the parent drug and selected core substructures. In parallel, MDF was used to recover potential metabolites with similar RDB. As a result, a total of 74 metabolites were found for VER-IRB in human plasma and urine, among which ten metabolites have not been previously reported in human. The results demonstrated that the combination of accurate mass-based multiple data-mining techniques, i.e., untargeted background subtraction followed by ring double bond filtering in parallel with targeted mass defect filtering, can be a valuable tool for rapid metabolite profiling of combination drug. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Agevall, Lena; Broberg, Pernilla; Umans, Timurs
2018-01-01
This paper explores whether and in what way "dual learning" can develop understanding of the relationship between structure/judgement and explores audit student's perceptions of the audit profession. The Work Integrated Learning (WIL) module, serving as a tool of enabling dual learning, represents the context for this exploration. The…
Novel technique of source and drain engineering for dual-material double-gate (DMDG) SOI MOSFETS
NASA Astrophysics Data System (ADS)
Yadav, Himanshu; Malviya, Abhishek Kumar; Chauhan, R. K.
2018-04-01
The dual-metal dual-gate (DMDG) SOI has been used with Dual Sided Source and Drain Engineered 50nm SOI MOSFET with various high-k gate oxide. It has been scrutinized in this work to enhance its electrical performance. The proposed structure is designed by creating Dual Sided Source and Drain Modification and its characteristics are evaluated on ATLAS device simulator. The consequence of this dual sided assorted doping on source and drain side of the DMDG transistor has better leakage current immunity and heightened ION current with higher ION to IOFF Ratio. Which thereby vesting the proposed device appropriate for low power digital applications.
Iterative image-domain decomposition for dual-energy CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Tianye; Dong, Xue; Petrongolo, Michael
2014-04-15
Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm ismore » formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan©600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.« less
Thomas, G.; Ahn, J.H.; Kim, N.J.
1986-10-28
An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar[sub 3] temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics. 3 figs.
Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon
1986-01-01
An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.
Gangwar, Amit Kumar; Gupta, Ashish; Kedawat, Garima; Kumar, Pawan; Singh, Bhanu Pratap; Singh, Nidhi; Srivastava, Avanish K; Dhakate, Sanjay R; Gupta, Bipin Kumar
2018-05-23
Increasing counterfeiting of important data, currency, stamp papers, branded products etc., has become a major security threat which could lead to serious damage to the global economy. Consequences of such damage are compelling for researchers to develop new high-end security features to address full-proof solutions. Herein, we report a dual mode flexible highly luminescent white security paper and nanotaggants composed of nanophosphors incorporated in polymer matrix to form a nanofiber-based mat for anti-counterfeiting applications. The dual mode nanofibers are fabricated by electrospinning technique by admixing the composite of NaYF 4 :Eu 3+ @NaYF 4 :Yb 3+ , Er 3+ nanophosphors in the polyvinyl alcohol solution. This flexible polymer mat derived from nanofibers appears white in daylight, while emitting strong red (NaYF 4 :Eu 3+ ) and green (NaYF 4 :Yb 3+ , Er 3+ ) colors at excitation wavelengths of 254 nm and 980 nm, respectively. These luminescent nanofibers can also be encrypted as a new class of nanotaggants to protect confidential documents. These obtained results suggest that highly luminescent dual mode polymeric nanofiber-based flexible white security paper and nanotaggants could offer next-generation high-end unique security features against counterfeiting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ebbers, Joris J; Wijnberg, Nachoem M
2017-11-01
Project-based organizations in the film industry usually have a dual-leadership structure, based on a division of tasks between the dual leaders - the director and the producer - in which the former is predominantly responsible for the artistic and the latter for the commercial aspects of the film. These organizations also have a role hierarchically below and between the dual leaders: the 1st assistant director. This organizational constellation is likely to lead to role conflict and role ambiguity experienced by the person occupying that particular role. Although prior studies found negative effects of role conflict and role ambiguity, this study shows they can also have beneficial effects because they create space for defining the role expansively that, in turn, can be facilitated by the dual leaders defining their own roles more narrowly. In a more general sense, this study also shows the usefulness of analyzing the antecedents and consequences of roles, role definition, and role crafting in connection to the behavior of occupants of adjacent roles.
NASA Astrophysics Data System (ADS)
Sun, Yang; Liao, Kuo-Chih; Sun, Yinghua; Park, Jesung; Marcu, Laura
2008-02-01
A unique tissue phantom is reported here that mimics the optical and acoustical properties of biological tissue and enables testing and validation of a dual-modality clinical diagnostic system combining time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasound backscatter microscopy (UBM). The phantom consisted of contrast agents including silicon dioxide particles with a range of diameters from 0.5 to 10 μm acting as optical and acoustical scatterers, and FITC-conjugated dextran mimicking the endogenous fluorophore in tissue. The agents were encapsulated in a polymer bead attached to the end of an optical fiber with a 200 μm diameter using a UV-induced polymerization technique. A set of beads with fibers were then implanted into a gel-based matrix with controlled patterns including a design with lateral distribution and a design with successively changing depth. The configuration presented here allowed the validation of the hybrid fluorescence spectroscopic and ultrasonic system by detecting the lateral and depth distribution of the contrast agents, as well as for coregistration of the ultrasonic image with spectroscopic data. In addition, the depth of the beads in the gel matrix was changed to explore the effect of different concentration ratio of the mixture on the fluorescence signal emitted.
Kaufman, Paul L
2017-03-01
Intraocular pressure (IOP)-lowering has been demonstrated to slow the progression or onset of visual field loss in open-angle glaucoma (OAG) or ocular hypertension (OHT). Pharmacological lowering of IOP is the most common initial intervention in patients with OAG or OHT, however, many patients will require more than one therapy to achieve target IOP. Latanoprostene bunod is a novel nitric oxide (NO)-donating prostaglandin F2α analog for the reduction of IOP. Areas covered: Current knowledge concerning the mechanism of action of latanoprostene bunod is presented. Additionally, clinical safety and efficacy data from published Phase 1 (KRONUS), Phase 2 (VOYAGER, CONSTELLATION) and Phase 3 (APOLLO, LUNAR, JUPITER) studies are reviewed. Expert opinion: Latanoprostene bunod is a dual mechanism, dual pathway molecule, consisting of latanoprost acid, which is known to enhance uveoscleral (unconventional) outflow by upregulating matrix metalloproteinase expression and remodeling of the ciliary muscle's extracellular matrix, linked to an NO-donating moiety, which enhances trabecular meshwork/Schlemm's canal (conventional) outflow by inducing cytoskeletal relaxation via the soluble guanylyl cyclase-cyclic guanosine monophosphate (sGC-cGMP) signaling pathway. Latanoprostene bunod 0.024% solution applied topically once daily appears more effective in reducing IOP in OHT and OAG subjects than either latanoprost or timolol, with a side effect profile similar to that of latanoprost.
Probabilistic structural analysis by extremum methods
NASA Technical Reports Server (NTRS)
Nafday, Avinash M.
1990-01-01
The objective is to demonstrate discrete extremum methods of structural analysis as a tool for structural system reliability evaluation. Specifically, linear and multiobjective linear programming models for analysis of rigid plastic frames under proportional and multiparametric loadings, respectively, are considered. Kinematic and static approaches for analysis form a primal-dual pair in each of these models and have a polyhedral format. Duality relations link extreme points and hyperplanes of these polyhedra and lead naturally to dual methods for system reliability evaluation.
Development of a hybrid wave based-transfer matrix model for sound transmission analysis.
Dijckmans, A; Vermeir, G
2013-04-01
In this paper, a hybrid wave based-transfer matrix model is presented that allows for the investigation of the sound transmission through finite multilayered structures placed between two reverberant rooms. The multilayered structure may consist of an arbitrary configuration of fluid, elastic, or poro-elastic layers. The field variables (structural displacements and sound pressures) are expanded in terms of structural and acoustic wave functions. The boundary and continuity conditions in the rooms determine the participation factors in the pressure expansions. The displacement of the multilayered structure is determined by the mechanical impedance matrix, which gives a relation between the pressures and transverse displacements at both sides of the structure. The elements of this matrix are calculated with the transfer matrix method. First, the hybrid model is numerically validated. Next a comparison is made with sound transmission loss measurements of a hollow brick wall and a sandwich panel. Finally, numerical simulations show the influence of structural damping, room dimensions and plate dimensions on the sound transmission loss of multilayered structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...
2016-06-30
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism
Shih, Yu-Ru; Kang, Heemin; Rao, Vikram; Chiu, Yu-Jui; Kwon, Seong Keun; Varghese, Shyni
2017-01-01
Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor–host cell dynamics, tumor tropism, and hematopoietic cell transplantation. PMID:28484009
In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism.
Shih, Yu-Ru; Kang, Heemin; Rao, Vikram; Chiu, Yu-Jui; Kwon, Seong Keun; Varghese, Shyni
2017-05-23
Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor-host cell dynamics, tumor tropism, and hematopoietic cell transplantation.
NASA Astrophysics Data System (ADS)
Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli
2018-04-01
Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G = {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.
Multi-cut solutions in Chern-Simons matrix models
NASA Astrophysics Data System (ADS)
Morita, Takeshi; Sugiyama, Kento
2018-04-01
We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.
Mazziotti, David A
2016-10-07
A central challenge of physics is the computation of strongly correlated quantum systems. The past ten years have witnessed the development and application of the variational calculation of the two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T2 condition. Calculations are presented for metallic chains and a cadmium-selenide dimer. The low-scaling T2 condition will have significant applications in atomic and molecular, condensed-matter, and nuclear physics.
NASA Astrophysics Data System (ADS)
Mazziotti, David A.
2016-10-01
A central challenge of physics is the computation of strongly correlated quantum systems. The past ten years have witnessed the development and application of the variational calculation of the two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T 2 condition. Calculations are presented for metallic chains and a cadmium-selenide dimer. The low-scaling T 2 condition will have significant applications in atomic and molecular, condensed-matter, and nuclear physics.
An analysis of the wear behavior of SiC whisker reinforced alumina from 25 to 1200 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1991-01-01
A model is described for predicting the wear behavior of whisker reinforced ceramics. The model was successfully applied to a silicon carbide whisker reinforced alumina ceramic composite subjected to sliding contact. The model compares the friction forces on the whiskers due to sliding, which act to pull or push them out of the matrix, to the clamping or compressive forces on the whiskers due to the matrix, which act to hold the whiskers in the composite. At low temperatures, the whiskers are held strongly in the matrix and are fractured into pieces during the wear process along with the matrix. At elevated temperatures differential thermal expansion between the whiskers and matrix can cause loosening of the whiskers and lead to pullout during the wear process and to higher wear. The model, which represents the combination of elastic stress analysis and a friction heating analysis, predicts a transition temperature at which the strength of the whiskers equals the clamping force holding them in the matrix. Above the transition the whiskers are pulled out of the matrix during sliding, and below the transition the whiskers are simply fractured. The existence of the transition gives rise to a dual wear mode or mechanism behavior for this material which was observed in laboratory experiments. The results from this model correlate well with experimentally observed behavior indicating that the model may be useful in obtaining a better understanding of material behavior and in making material improvements.
An analysis of the wear behavior of SiC whisker-reinforced alumina from 25 to 1200 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1993-01-01
A model is described for predicting the wear behavior of whisker reinforced ceramics. The model was successfully applied to a silicon carbide whisker reinforced alumina ceramic composite subjected to sliding contact. The model compares the friction forces on the whiskers due to sliding, which act to pull or push them out of the matrix, to the clamping or compressive forces on the whiskers due to the matrix, which act to hold the whiskers in the composite. At low temperatures, the whiskers are held strongly in the matrix and are fractured into pieces during the wear process along with the matrix. At elevated temperatures differential thermal expansion between the whiskers and matrix can cause loosening of the whiskers and lead to pullout during the wear process and to higher wear. The model, which represents the combination of elastic stress analysis and a friction heating analysis, predicts a transition temperature at which the strength of the whiskers equals the clamping force holding them in the matrix. Above the transition the whiskers are pulled out of the matrix during sliding, and below the transition the whiskers are simply fractured. The existence of the transition gives rise to a dual wear mode or mechanism behavior for this material which was observed in laboratory experiments. The results from this model correlate well with experimentally observed behavior indicating that the model may be useful in obtaining a better understanding of material behavior and in making material improvements.
Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.; ...
2015-03-01
In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein inToxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops.more » The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated n vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Lastly, enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.« less
String Theory Origin of Dyonic N=8 Supergravity and Its Chern-Simons Duals.
Guarino, Adolfo; Jafferis, Daniel L; Varela, Oscar
2015-08-28
We clarify the higher-dimensional origin of a class of dyonic gaugings of D=4 N=8 supergravity recently discovered, when the gauge group is chosen to be ISO(7). This dyonically gauged maximal supergravity arises from consistent truncation of massive IIA supergravity on S^6, and its magnetic coupling constant descends directly from the Romans mass. The critical points of the supergravity uplift to new four-dimensional anti-de Sitter space (AdS4) massive type IIA vacua. We identify the corresponding three-dimensional conformal field theory (CFT3) duals as super-Chern-Simons-matter theories with simple gauge group SU(N) and level k given by the Romans mass. In particular, we find a critical point that uplifts to the first explicit N=2 AdS4 massive IIA background. We compute its free energy and that of the candidate dual Chern-Simons theory by localization to a solvable matrix model, and find perfect agreement. This provides the first AdS4/CFT3 precision match in massive type IIA string theory.
A dual-porosity model for simulating solute transport in oil shale
Glover, K.C.
1987-01-01
A model is described for simulating three-dimensional groundwater flow and solute transport in oil shale and associated geohydrologic units. The model treats oil shale as a dual-porosity medium by simulating flow and transport within fractures using the finite-element method. Diffusion of solute between fractures and the essentially static water of the shale matrix is simulated by including an analytical solution that acts as a source-sink term to the differential equation of solute transport. While knowledge of fracture orientation and spacing is needed to effectively use the model, it is not necessary to map the locations of individual fractures. The computer program listed in the report incorporates many of the features of previous dual-porosity models while retaining a practical approach to solving field problems. As a result the theory of solute transport is not extended in any appreciable way. The emphasis is on bringing together various aspects of solute transport theory in a manner that is particularly suited to the unusual groundwater flow and solute transport characteristics of oil shale systems. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Chen, Xi; Li, Yancheng; Li, Jianchun; Gu, Xiaoyu
2018-01-01
Time delay is a challenge issue faced by the real-time control application of the magnetorheological (MR) devices. Not to deal with it properly may jeopardize the effectiveness of the control, even lead to instability of the control system or catastrophic failure. This paper proposes a dual-loop adaptive control to address the response time delay associated with MR devices. In the proposed dual-loop control, the inner loop is designed to compensate the time delay of MR device induced by the PWM current driver. While the outer loop control can be any structural control algorithm with aims to reducing structural responses of a building during extreme loadings. Here an adaptive control strategy is adopted. To verify the proposed dual-loop control, a smart base isolation system employing magnetorheological elastomer base isolators is used as an example to illustrate the control effect. Numerical study is then conducted using a 5 -storey shear building model equipped with smart base isolation system. The result shows that with the implementation of the inner loop, the control current can instantly follow the control command which reduce the possibility of instability caused by the time delay. Comparative studies are conducted between three control strategies, i.e. dual-loop control, Lyapunov’s direct method based control and optimal passive base isolation control. The results of the study have demonstrated that the proposed dual-loop control strategy can achieve much better performance than the other two control strategies.
Dual-modality imaging of function and physiology
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce H.; Iwata, Koji; Wong, Kenneth H.; Wu, Max C.; Da Silva, Angela; Tang, Hamilton R.; Barber, William C.; Hwang, Andrew B.; Sakdinawat, Anne E.
2002-04-01
Dual-modality imaging is a technique where computed tomography or magnetic resonance imaging is combined with positron emission tomography or single-photon computed tomography to acquire structural and functional images with an integrated system. The data are acquired during a single procedure with the patient on a table viewed by both detectors to facilitate correlation between the structural and function images. The resulting data can be useful for localization for more specific diagnosis of disease. In addition, the anatomical information can be used to compensate the correlated radionuclide data for physical perturbations such as photon attenuation, scatter radiation, and partial volume errors. Thus, dual-modality imaging provides a priori information that can be used to improve both the visual quality and the quantitative accuracy of the radionuclide images. Dual-modality imaging systems also are being developed for biological research that involves small animals. The small-animal dual-modality systems offer advantages for measurements that currently are performed invasively using autoradiography and tissue sampling. By acquiring the required data noninvasively, dual-modality imaging has the potential to allow serial studies in a single animal, to perform measurements with fewer animals, and to improve the statistical quality of the data.
Akhtar, Mahmood H; Hussain, Khalil K; Gurudatt, N G; Chandra, Pranjal; Shim, Yoon-Bo
2018-09-30
Brain-derived neurotrophic factor (BDNF) was detected in the extracellular matrix of neuronal cells using a dual probe immunosensor (DPI), where one of them was used as a working and another bioconjugate loading probe. The working probe was fabricated by covalently immobilizing capture anti-BDNF (Cap Ab) on the gold nanoparticles (AuNPs)/conducting polymer composite layer. The bioconjugate probe was modified by drop casting a bioconjugate particles composed of conducting polymer self-assembled AuNPs, immobilized with detection anti-BDNF (Det Ab) and toluidine blue O (TBO). Each sensor layer was characterized using the surface analysis and electrochemical methods. Two modified probes were precisely faced each other to form a microfluidic channel structure and the gap between inside modified surfaces was about 19 µm. At optimized conditions, the DPI showed a linear dynamic range from 4.0 to 600.0 pg/ml with a detection limit of 1.5 ± 0.012 pg/ml. Interference effect of IgG, arginine, glutamine, serine, albumin, and fibrinogene were examined and stability of the developed biosensor was also investigated. The reliability of the DPI sensor was evaluated by monitoring the extracellular release of BDNF using exogenic activators (ethanol, K + , and nicotine) in neuronal and non-neuronal cells. In addition, the effect of nicotine onto neuroblastoma cancer cells (SH-SY5Y) was studied in detail. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Boyang; Jin, Longxu; Li, Guoning
2018-06-01
Visible light and infrared images fusion has been a significant subject in imaging science. As a new contribution to this field, a novel fusion framework of visible light and infrared images based on adaptive dual-channel unit-linking pulse coupled neural networks with singular value decomposition (ADS-PCNN) in non-subsampled shearlet transform (NSST) domain is present in this paper. First, the source images are decomposed into multi-direction and multi-scale sub-images by NSST. Furthermore, an improved novel sum modified-Laplacian (INSML) of low-pass sub-image and an improved average gradient (IAVG) of high-pass sub-images are input to stimulate the ADS-PCNN, respectively. To address the large spectral difference between infrared and visible light and the occurrence of black artifacts in fused images, a local structure information operator (LSI), which comes from local area singular value decomposition in each source image, is regarded as the adaptive linking strength that enhances fusion accuracy. Compared with PCNN models in other studies, the proposed method simplifies certain peripheral parameters, and the time matrix is utilized to decide the iteration number adaptively. A series of images from diverse scenes are used for fusion experiments and the fusion results are evaluated subjectively and objectively. The results of the subjective and objective evaluation show that our algorithm exhibits superior fusion performance and is more effective than the existing typical fusion techniques.
NASA Astrophysics Data System (ADS)
Yadav, B. K.; Tomar, J.; Harter, T.
2014-12-01
We investigate nitrate movement from non-point sources in deep, heterogeneous vadose zones, using multi-dimensional variably saturated flow and transport simulations. We hypothesize that porous media heterogeneity causes saturation variability that leads to preferential flow systems such that a significant portion of the vadose zone does not significantly contribute to flow. We solve Richards' equation and the advection-dispersion equation to simulate soil moisture and nitrate transport regimes in plot-scale experiments conducted in the San Joaquin Valley, California. We compare equilibrium against non-equilibrium (dual-porosity) approaches. In the equilibrium approach we consider each soil layer to have unique hydraulic properties as a whole, while in the dual-porosity approach we assume that large fractions of the porous flow domain are immobile. However we consider exchange of water and solute between mobile and immobile zone using the appropriate mass transfer terms. The results indicate that flow and transport in a nearly 16 m deep stratified vadose zone comprised of eight layers of unconsolidated alluvium experiences highly non-uniform, localized preferential flow and transport patterns leading to accelerated nitrate transfer. The equilibrium approach largely under-predicted the leaching of nitrate to groundwater while the dual-porosity approach showed higher rates of nitrate leaching, consistent with field observations. The dual-porosity approach slightly over-predicted nitrogen storage in the vadose zone, which may be the result of limited matrix flow or denitrification not accounted for in the model. Results of this study may be helpful to better predict fertilizer and pesticide retention times in deep vadose zone, prior to recharge into the groundwater flow system. Keywords: Nitrate, Preferential flow, Heterogeneous vadose zone, Dual-porosity approach
A Multiplex PCR Approach for Detecting Dual Infections and Recombinants Involving Major HIV Variants
Cappy, Pierre; De Oliveira, Fabienne; Gueudin, Marie; Alessandri-Gradt, Elodie
2016-01-01
The cocirculation of different HIV types and groups can lead to dual infections and recombinants, which hinder diagnosis and therapeutic management. We designed two multiplex PCRs (mPCRs) coupled with capillary electrophoresis to facilitate the detection of such infections. The first, MMO2, targets three variants (HIV-1/M, HIV-1/O, and HIV-2), and the second, MMO, targets HIV-1/M and HIV-1/O. These mPCRs were validated on DNA and RNA extracts from 19 HIV-1/M, 12 HIV-1/O, and 13 HIV-2 cultures and from mixtures simulating dual infections. They were then assessed with DNA and RNA extracts from samples of 47 clinical monoinfections and HIV-1/M+O dual infections or infections with HIV-1/MO recombinants. Both mPCRs had excellent specificity. Sensitivities ranged from 80 to 100% for in vitro samples and from 58 to 100% for clinical samples, with the results obtained depending on the material used and the region of the genome concerned. Sensitivity was generally lower for DNA than for RNA and for amplifications of the integrase and matrix regions. In terms of global detection (at least one target gene for each strain), both mPCRs yielded a detection rate of 100% for in vitro samples. MMO2 detected 100% of the clinical strains from DNA and 97% from RNA, whereas MMO detected 100% of the strains from both materials. Thus, for in vitro and clinical samples, MMO2 was a useful tool for detecting dual infections with HIV-1 and HIV-2 (referred to as HIV-1+HIV-2) and HIV-1/M+O, and MMO was useful for detecting both MO dual infections and MO mosaic patterns. PMID:26912747
Lu, Zhonghua; Arikatla, Venkata S; Han, Zhongqing; Allen, Brian F; De, Suvranu
2014-12-01
High-frequency electricity is used in the majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue. We present a real-time and physically realistic simulation of electrosurgery by modelling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide subfinite-element graphical rendering of vaporized tissue, a dual-mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization. We have demonstrated our physics-based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost. Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Liwang, E-mail: liwang.liu@hotmail.com; Meng, Lei; Wang, Ling
The temperature dependence of the fluorescence spectrum of CdSe−ZnS core–shell quantum dots embedded in a polystyrene matrix is characterized between 30 °C and 60 °C. The spectrally integrated photoluminescence intensity is found to linearly decrease with −1.3%/ °C. This feature is exploited in a dual coating-substrate-configuration, consisting of a layer of this nanocomposite material, acting as a temperature sensor with optical readout, on top of an optically absorbing and opaque layer, acting as a photothermal excitation source, and covering a substrate material or structure of interest. From the frequency dependence of the optically detected photothermal signal in the frequency range between 5 Hz andmore » 150 Hz, different thermal parameters of the constituent layers are determined. The fitted values of thermal properties of the different layers, determined in different scenarios in terms of the used a priori information about the layers, are found to be internally consistent, and consistent with literature values.« less
Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging
NASA Astrophysics Data System (ADS)
Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui
2018-01-01
We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis.
Advances in biomimetic regeneration of elastic matrix structures
Sivaraman, Balakrishnan; Bashur, Chris A.
2012-01-01
Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960
Micromechanical analysis on anisotropy of structured magneto-rheological elastomer
NASA Astrophysics Data System (ADS)
Li, R.; Zhang, Z.; Chen, S. W.; Wang, X. J.
2015-07-01
This paper investigates the equivalent elastic modulus of structured magneto-rheological elastomer (MRE) in the absence of magnetic field. We assume that both matrix and ferromagnetic particles are linear elastic materials, and ferromagnetic particles are embedded in matrix with layer-like structure. The structured composite could be divided into matrix layer and reinforced layer, in which the reinforced layer is composed of matrix and the homogenously distributed ferromagnetic particles in matrix. The equivalent elastic modulus of reinforced layer is analysed by the Mori-Tanaka method. Finite Element Method (FEM) is also carried out to illustrate the relationship between the elastic modulus and the volume fraction of ferromagnetic particles. The results show that the anisotropy of elastic modulus becomes noticeable, as the volume fraction of particles increases.
Deformed quantum double realization of the toric code and beyond
NASA Astrophysics Data System (ADS)
Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo
2016-09-01
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
Clustering Tree-structured Data on Manifold
Lu, Na; Miao, Hongyu
2016-01-01
Tree-structured data usually contain both topological and geometrical information, and are necessarily considered on manifold instead of Euclidean space for appropriate data parameterization and analysis. In this study, we propose a novel tree-structured data parameterization, called Topology-Attribute matrix (T-A matrix), so the data clustering task can be conducted on matrix manifold. We incorporate the structure constraints embedded in data into the non-negative matrix factorization method to determine meta-trees from the T-A matrix, and the signature vector of each single tree can then be extracted by meta-tree decomposition. The meta-tree space turns out to be a cone space, in which we explore the distance metric and implement the clustering algorithm based on the concepts like Fréchet mean. Finally, the T-A matrix based clustering (TAMBAC) framework is evaluated and compared using both simulated data and real retinal images to illus trate its efficiency and accuracy. PMID:26660696
NASA Astrophysics Data System (ADS)
Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Xu, Zhuo; Qu, Shaobo
2016-04-01
In this paper, we demonstrate a dual-band bandpass all-dielectric frequency selective surface (FSS), the building elements of which are high-permittivity ceramic particles rather than metallic patterns. With proper structural design and parameter adjustment, the resonant frequency can be tuned at will. Dual-band bandpass response can be realized due to the coupling between electric and magnetic resonances. As an example, a dual-band bandpass FSS is designed in Ku band, which is composed of two-dimensional periodic arrays of complementary quatrefoil structures (CQS) cut from dielectric plates. Moreover, cylindrical dielectric resonators are introduced and placed in the center of each CQS to broaden the bandwidth and to sharpen the cut-off frequency. Theoretical analysis shows that the bandpass response arises from impedance matching caused by electric and magnetic resonances. In addition, effective electromagnetic parameters and dynamic field distributions are presented to explain the mechanism of impedance matching. The proposed FSS has the merits of polarization independence, stable transmission, and sharp roll-off frequency. The method can also be used to design all-dielectric FSSs with continuum structures at other frequencies.
Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan
2018-05-09
As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.
Computationally efficient modeling and simulation of large scale systems
NASA Technical Reports Server (NTRS)
Jain, Jitesh (Inventor); Cauley, Stephen F. (Inventor); Li, Hong (Inventor); Koh, Cheng-Kok (Inventor); Balakrishnan, Venkataramanan (Inventor)
2010-01-01
A method of simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof. A matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure are obtained where the element values for each matrix include inductance L and inverse capacitance P. An adjacency matrix A associated with the interconnect structure is obtained. Numerical integration is used to solve first and second equations, each including as a factor the product of the inverse matrix X.sup.1 and at least one other matrix, with first equation including X.sup.1Y, X.sup.1A, and X.sup.1P, and the second equation including X.sup.1A and X.sup.1P.
NASA Astrophysics Data System (ADS)
Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.
2016-02-01
We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.
Improved cell for water-vapor electrolysis
NASA Technical Reports Server (NTRS)
Aylward, J. R.
1981-01-01
Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.
Stress Corrosion Cracking and Hydrogen Embrittlement of Thick Section High Strength Low Alloy Steel
1986-06-01
copper and especially molybdenum. Dual phase HSLA steels are comprised of islands of martensite or bainite in a ferrite matrix. The... Copper Steels", TransactionN AIME, Volume 105, pp. 133-166, 1933. 60. Creswick, W. E., "Commercial Development of a Rimmed Low Alloy Precipitation ... precipitates all serve to minimize the aggregate effects of hydrogen. 82 - ------- ------ - 3. MATERIAL 3.1 bSLA STEELS High strength low alloy
Buras, Andrzej J.; Gérard, Jean -Marc; Bardeen, William A.
2014-05-20
We review and update our results for K → π π decays and K⁰- K¯⁰ mixing obtained by us in the 1980s within an approach based on the dual representation of QCD as a theory of weakly interacting mesons for large N colours. In our analytic approach the dynamics behind the enhancement of ReA 0 and suppression of ReA 2, the so-called ΔI = 1/2 rule for K → π π decays, has a simple structure: the usual octet enhancement through quark-gluon renormalization group evolution down to the scales O(1 GeV) is continued as a meson evolution down to zeromore » momentum scales at which the factorization of hadronic matrix elements is at work. The inclusion of lowest-lying vector meson contributions in addition to the pseudoscalar ones and of Wilson coefficients in a momentum scheme improves significantly the matching between quark-gluon and meson evolutions. In particular, the anomalous dimension matrix governing the meson evolution exhibits the structure of the known anomalous dimension matrix in the quark-gluon evolution. The recent results on ReA 2 and ReA 0 from the RBC-UKQC collaboration give support for our approach. In particular, the signs of the two main contractions found numerically by these authors follow uniquely from our analytic approach. At NLO in 1/N we obtain R = ReA 0/ReA 2= 16.0±1.5 which amounts to an order of magnitude enhancement over the strict large N limit value √2. QCD penguins contribute at 15% level to this result. We also find B^ K = 0.73± 0.02, with the smallness of 1/N corrections to the large N value B^ K = 3/4 resulting within our approach from an approximate cancellation between pseudoscalar and vector meson one-loop contributions. We summarize the status of ΔM K in this approach.« less
The Candida albicans Biofilm Matrix: Composition, Structure and Function.
Pierce, Christopher G; Vila, Taissa; Romo, Jesus A; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L
2017-03-01
A majority of infections caused by Candida albicans -the most frequent fungal pathogen-are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections.
The Candida albicans Biofilm Matrix: Composition, Structure and Function
Pierce, Christopher G.; Vila, Taissa; Romo, Jesus A.; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L.
2017-01-01
A majority of infections caused by Candida albicans—the most frequent fungal pathogen—are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections. PMID:28516088
Tian, Xin; Meng, Fanbin; Meng, Fanchen; Chen, Xiangnan; Guo, Yifan; Wang, Ying; Zhu, Wenjun; Zhou, Zuowan
2017-05-10
In this study, we designed a dual-chirality hierarchical structure to achieve a synergistically enhanced effect in microwave absorption via the hybridization of nanomaterials. Herein, polyaniline (PANi) nanorods with tunable chirality are grown on helical carbon nanotubes (HCNTs), a typical nanoscale chiral structure, through in situ polymerization. The experimental results show that the hierarchical hybrids (PANi@HCNTs) exhibit distinctly dual chirality and a significant enhancement in electromagnetic (EM) losses compared to those of either pure PANi or HCNTs. The maximum reflection loss of the as-prepared hybrids can reach -32.5 dB at 8.9 GHz. Further analysis demonstrates that combinations of chiral acid-doped PANi and coiled HCNTs with molecular and nanoscale chirality lead to synergistic effects resulting from the dual chirality. The so-called cross-polarization may result in additional interactions with induced EM waves in addition to multiscaled relaxations from functional groups and interfacial polarizations, which can benefit EM absorption.
Low-frequency band gap of locally resonant phononic crystals with a dual-base plate.
Zuo, Shuguang; Huang, Haidong; Wu, Xudong; Zhang, Minghai; Ni, Tianxin
2018-03-01
To achieve a wider band gap and a lower cut-on frequency, a locally resonant phononic crystal (LRPC) with a dual-base plate is investigated in this paper. Compared with the LRPC with a single plate, the band structure of the LRPC with a dual-base plate is calculated using the method of plane wave expansion and verified by the finite element method. According to the analysis of the band curves of the LRPC with a dual-base plate, the mechanisms are explained. Next, the influences of the thickness of the plates, the stiffness of the springs, the mass of resonators, and the lattice constant are also investigated. The results show that the structural asymmetry between the upper and the lower plate is conducive to reducing the cut-on frequency and broadening the band gap effectively. The results indicate a different approach for the application of LRPC in vibration and noise control.
NASA Astrophysics Data System (ADS)
Jeong-hun, Yang; Chung, Kyoung-Jae; An, YoungHwa; Jung, Bong Ki; Jo, Jong Gab; Hwang, Y. S.
2012-10-01
A dual sensor probe array is designed and constructed for internal magnetic field measurement at Versatile Experiment Spherical Torus (VEST) at the Seoul National University. Simultaneous use of Hall sensors and chip inductors allows cross-calibration among the measurements and compensation for each other's weaknesses while their small sizes are expected to cause only mild plasma perturbations. Calibration of the dual sensor probe array, using a Helmholtz coil, shows good sensitivity for the magnetic field measurement of the VEST. Prior to Ohmic start-up, the magnetic field structure inside the vacuum chamber is measured by using the calibrated probe array. The dual sensor probe array is expected to be useful in analyzing the temporal magnetic field structure change during the magnetic reconnection and in reconstruction of the current profile during the discharge of the VEST device.
Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang
2015-07-01
Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.
Ebbers, Joris J; Wijnberg, Nachoem M
2017-01-01
Project-based organizations in the film industry usually have a dual-leadership structure, based on a division of tasks between the dual leaders – the director and the producer – in which the former is predominantly responsible for the artistic and the latter for the commercial aspects of the film. These organizations also have a role hierarchically below and between the dual leaders: the 1st assistant director. This organizational constellation is likely to lead to role conflict and role ambiguity experienced by the person occupying that particular role. Although prior studies found negative effects of role conflict and role ambiguity, this study shows they can also have beneficial effects because they create space for defining the role expansively that, in turn, can be facilitated by the dual leaders defining their own roles more narrowly. In a more general sense, this study also shows the usefulness of analyzing the antecedents and consequences of roles, role definition, and role crafting in connection to the behavior of occupants of adjacent roles. PMID:29081536
Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99.
Lee, Xiong An; Verma, Chandra; Sim, Adelene Y L
2017-08-01
Mdm2 and MdmX share high structural similarity in their N-terminal domains, yet dual inhibitors are challenging to design due to differences in the conformations of the binding pockets, and notably of the proposed gatekeeper residue, Y100/99. Analysis of crystal structures and molecular dynamics (MD) simulations of complexes of Mdm2 and MdmX resulted in the identification of a water molecule with a long residence time that appears to be modulated by the conformation of Y100/99. These observations lead us to speculate that dual inhibitors either (i) stabilize both Mdm2 and MdmX with Y100/99 in the open conformation typically seen in complexes of Mdm2 with p53, or (ii) the dual inhibitors are agnostic to the conformation of Y100/99. The recently developed potent dual inhibitory stapled peptide Atsp7041 appears to be agnostic to the conformation of the gatekeeper residue. Proteins 2017; 85:1493-1506. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A Note on the Factor Analysis of Partial Covariance Matrices
ERIC Educational Resources Information Center
McDonald, Roderick P.
1978-01-01
The relationship between the factor structure of a convariance matrix and the factor structure of a partial convariance matrix when one or more variables are partialled out of the original matrix is given in this brief note. (JKS)
Matrix Management: An Organizational Alternative for Libraries.
ERIC Educational Resources Information Center
Johnson, Peggy
1990-01-01
Describes various organizational structures and models, presents matrix management as an alternative to traditional hierarchical structures, and suggests matrix management as an appropriate organizational alternative for academic libraries. Benefits that are discussed include increased flexibility, a higher level of professional independence, and…
Performance analysis of structured gradient algorithm. [for adaptive beamforming linear arrays
NASA Technical Reports Server (NTRS)
Godara, Lal C.
1990-01-01
The structured gradient algorithm uses a structured estimate of the array correlation matrix (ACM) to estimate the gradient required for the constrained least-mean-square (LMS) algorithm. This structure reflects the structure of the exact array correlation matrix for an equispaced linear array and is obtained by spatial averaging of the elements of the noisy correlation matrix. In its standard form the LMS algorithm does not exploit the structure of the array correlation matrix. The gradient is estimated by multiplying the array output with the receiver outputs. An analysis of the two algorithms is presented to show that the covariance of the gradient estimated by the structured method is less sensitive to the look direction signal than that estimated by the standard method. The effect of the number of elements on the signal sensitivity of the two algorithms is studied.
Bello, Martiniano; Saldaña-Rivero, Lucia; Correa-Basurto, José; García, Benjamín; Sánchez-Espinosa, Victor Armando
2018-05-01
Activation of EGFR starts by ligand binding at the extracellular domain which results in homo and heterodimerization, leading to phosphorylation, activation of downstream signaling pathways which upregulate expression of genes, proliferation and angiogenesis. Abnormalities in the expression of EGFR play a critical role in the development of different types of cancer. HER2 is the preferred heterodimerization partner for EGFR; this biological characteristic together with the high percentage of structural homology has been exploited in the design of dual synthetic inhibitors against EGFR/HER2. Herein we combined structural data and molecular dynamics (MD) simulations coupled to an MMGBSA approach to provide insight into the binding mechanism between two dual synthetics (lapatinib and TAK-285) and one dual natural inhibitor (EGCG) which target EGFR/HER2. In addition, we proposed some EGCG derivatives which were filtered through in silico screening. Structural analysis demonstrated that the coupling of synthetic, natural or newly designed compounds impacts the conformational space of EGFR and HER2 differently. Energetic analysis points out that lapatinib and TAK-285 have better affinity for inactive EGFR than the active EGFR state or HER2, whereas some EGCG derivatives seem to form binding affinities similar to those observed for lapatinib or TAK-285. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Young Kyung; Gu, Li-sha; Bryan, Thomas E.; Kim, Jong Ryul; Chen, Liang; Liu, Yan; Yoon, James C.; Breschi, Lorenzo; Pashley, David H.; Tay, Franklin R.
2010-01-01
The complex morphologies of mineralised collagen fibrils are regulated through interactions between the collagen matrix and non-collagenous extracellular proteins. In the present study, polyvinylphosphonic acid, a biomimetic analogue of matrix phosphoproteins, was synthesised and confirmed with FTIR and NMR. Biomimetic mineralisation of reconstituted collagen fibrils devoid of natural non-collagenous proteins was demonstrated with TEM using a Portland cement-containing resin composite and a phosphate-containing fluid in the presence of polyacrylic acid as sequestration, and polyvinylphosphonic acid as templating matrix protein analogues. In the presence of these dual biomimetic analogues in the mineralisation medium, intrafibrillar and extrafibrillar mineralisation via bottom-up nanoparticle assembly based on the nonclassical crystallisation pathway could be identified. Conversely, only large mineral spheres with no preferred association with collagen fibrils were observed in the absence of biomimetic analogues in the medium. Mineral phases were evident within the collagen fibrils as early as 4 hours after the initially-formed amorphous calcium phosphate nanoprecursors were transformed into apatite nanocrystals. Selected area electron diffraction patterns of highly mineralised collagen fibrils were nearly identical to those of natural bone, with apatite crystallites preferentially aligned along the collagen fibril axes. PMID:20621767
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1997-01-01
Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.
NASA Technical Reports Server (NTRS)
Asthana, R.; Tiwari, R.; Tewari, S. N.
1995-01-01
Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.
Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule.
Peled-Kamar, Mira; Hamilton, Patricia; Wilt, Fred H
2002-01-01
Biomineralized skeletal structures are composite materials containing mineral and matrix protein(s). The cell biological mechanisms that underlie the formation, secretion, and organization of the biomineralized materials are not well understood. Although the matrix proteins influence physical properties of the structures, little is known of the role of these matrix proteins in the actual formation of the biomineralized structure. We present here results using an antisense oligonucleotide directed against a spicule matrix protein, LSM34, present in spicules of embryos of Lytechinus pictus. After injection of anti-LSM34 into the blastocoel of a sea urchin embryo, LSM34 protein in the primary mesenchyme cells decreases and biomineralization ceases, demonstrating that LSM34 function is essential for the formation of the calcareous endoskeletal spicule of the embryo. Since LSM34 is found primarily in a specialized extracellular matrix surrounding the spicule, it is probable that this matrix is important for the biomineralization process.
Memory for pictures and words as a function of level of processing: Depth or dual coding?
D'Agostino, P R; O'Neill, B J; Paivio, A
1977-03-01
The experiment was designed to test differential predictions derived from dual-coding and depth-of-processing hypotheses. Subjects under incidental memory instructions free recalled a list of 36 test events, each presented twice. Within the list, an equal number of events were assigned to structural, phonemic, and semantic processing conditions. Separate groups of subjects were tested with a list of pictures, concrete words, or abstract words. Results indicated that retention of concrete words increased as a direct function of the processing-task variable (structural < phonemic
Zhang, Nan; Zhou, Peiheng; Cheng, Dengmu; Weng, Xiaolong; Xie, Jianliang; Deng, Longjiang
2013-04-01
We present the simulation, fabrication, and characterization of a dual-band metamaterial absorber in the mid-infrared regime. Two pairs of circular-patterned metal-dielectric stacks are employed to excite the dual-band absorption peaks. Dielectric characteristics of the dielectric spacing layer determine energy dissipation in each resonant stack, i.e., dielectric or ohmic loss. By controlling material parameters, both two mechanisms are introduced into our structure. Up to 98% absorption is obtained at 9.03 and 13.32 μm in the simulation, which is in reasonable agreement with experimental results. The proposed structure holds promise for various applications, e.g., thermal radiation modulators and multicolor infrared focal plane arrays.
ERIC Educational Resources Information Center
Gessler, Michael
2017-01-01
The apprenticeship system in Germany is carried out both by companies and vocational schools (the Dual System). The question of whether the German Dual System is transferable is currently being asked in vocational education and training research. The analysis of current transfer discourses alludes to a research desideratum: the actual approaches…
A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter
NASA Astrophysics Data System (ADS)
Zhu, Jianfeng; Yang, Yang; Li, Shufang
2018-04-01
A new and simple design of photo-excited broadband to dual-band tunable terahertz (THz) metamaterial cross polarization converter is proposed in this paper. The tunable converter is a sandwich structure with the center-cut cross-shaped metallic patterned structure as a resonator, the middle dielectric layer as a spacer and the bottom metallic film as the ground. The conductivity of the photoconductive semiconductor (Silicon) filled in the gap of the cross-shaped metallic resonator can be tuned by the incident pump power, leading to an easy modulation of the electromagnetic response of the proposed converter. The results show that the proposed cross-polarization converter can be tuned from a broadband with polarization conversion ratio (PCR) beyond 95% (1.86-2.94 THz) to dual frequency bands (fl = 1 . 46 THz &fh = 2 . 9 THz). The conversion peaks can reach 99.9% for the broadband and, 99.5% (fl) and 99.7% (fh) for the dual-band, respectively. Most importantly, numerical simulations demonstrate that the broadband/dual-band polarization conversion mechanism of the converter originates from the localized surface plasmon modes, which make the design simple and different from previous designs. With these good features, the proposed broadband to dual-band tunable polarization converter is expected to be used in widespread applications.
RT-MATRIX: Measuring Total Organic Carbon by Photocatalytic Oxidation of Volatile Organic Compounds
NASA Technical Reports Server (NTRS)
2008-01-01
Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.
Near-tip dual-length scale mechanics of mode-I cracking in laminate brittle matrix composites
NASA Technical Reports Server (NTRS)
Ballarini, R.; Islam, S.; Charalambides, P. G.
1992-01-01
This paper presents the preliminary results of an on-going study of the near-tip mechanics of mode-I cracking in brittle matrix composite laminates. A finite element model is developed within the context of two competing characteristic lengths present in the composite: the microstructural length (the thickness of the layers) and a macro-length (crack-length, uncracked ligament size, etc.). For various values of the parameters which describe the ratio of these lengths and the constituent properties, the stresses ahead of a crack perpendicular to the laminates are compared with those predicted by assuming the composite is homogeneous orthotropic. The results can be used to determine the conditions for which homogenization can provide a sufficiently accurate description of the stresses in the vicinity of the crack-tip.
Dual host specificity of phage SP6 is facilitated by tailspike rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Jiagang
Bacteriophage SP6 exhibits dual-host adsorption specificity. The SP6 tailspikes are recognized as important in host range determination but the mechanisms underlying dual host specificity are unknown. Cryo-electron tomography and sub-tomogram classification were used to analyze the SP6 virion with a particular focus on the interaction of tailspikes with host membranes. The SP6 tail is surrounded by six V-shaped structures that interconnect in forming a hand-over-hand hexameric garland. Each V-shaped structure consists of two trimeric tailspike proteins: gp46 and gp47, connected through the adaptor protein gp37. SP6 infection of Salmonella enterica serovars Typhimurium and Newport results in distinguishable changes in tailspikemore » orientation, providing the first direct demonstration how tailspikes can confer dual host adsorption specificity. SP6 also infects S. Typhimurium strains lacking O antigen; in these infections tailspikes have no apparent specific role and the phage tail must therefore interact with a distinct host receptor to allow infection. - Highlights: •Cryo-electron tomography reveals the structural basis for dual host specificity. •Sub-tomogram classification reveals distinct orientations of the tailspikes during infection of different hosts. •Tailspike-adaptor modules rotate as they bind different O antigens. •In the absence of any O antigen, tailspikes bind weakly and without specificity to LPS. •Interaction of the phage tail with LPS is essential for infection.« less
NASA Astrophysics Data System (ADS)
Pot, V.; Šimůnek, J.; Benoit, P.; Coquet, Y.; Yra, A.; Martínez-Cordón, M.-J.
2005-12-01
Two series of displacement experiments with isoproturon and metribuzin herbicides were performed on two undisturbed grassed filter strip soil cores, under unsaturated steady-state flow conditions. Several rainfall intensities (0.070, 0.147, 0.161, 0.308 and 0.326 cm h - 1 ) were used. A water tracer (bromide) was simultaneously injected in each displacement experiment. A descriptive analysis of experimental breakthrough curves of bromide and herbicides combined with a modeling analysis showed an impact of rainfall intensity on the solute transport. Two contrasting physical non-equilibrium transport processes occurred. Multiple (three) porosity domains contributed to flow at the highest rainfall intensities, including preferential flow through macropore pathways. Macropores were not active any longer at intermediate and lowest velocities, and the observed preferential transport was described using dual-porosity-type models with a zero or low flow in the matrix domain. Chemical non-equilibrium transport of herbicides was found at all rainfall intensities. Significantly higher estimated values of degradation rate parameters as compared to batch data were correlated with the degree of non-equilibrium sorption. Experimental breakthrough curves were analyzed using different physical and chemical equilibrium and non-equilibrium transport models: convective-dispersive model (CDE), dual-porosity model (MIM), dual-permeability model (DP), triple-porosity, dual permeability model (DP-MIM); each combined with both chemical instantaneous and kinetic sorption.
Computationally Efficient Modeling and Simulation of Large Scale Systems
NASA Technical Reports Server (NTRS)
Jain, Jitesh (Inventor); Koh, Cheng-Kok (Inventor); Balakrishnan, Vankataramanan (Inventor); Cauley, Stephen F (Inventor); Li, Hong (Inventor)
2014-01-01
A system for simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof, including a processor, and a memory, the processor configured to perform obtaining a matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure, the element values for each matrix including inductance L and inverse capacitance P, obtaining an adjacency matrix A associated with the interconnect structure, storing the matrices X, Y, and A in the memory, and performing numerical integration to solve first and second equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelinck, G. H., E-mail: Gerwin.Gelinck@tno.nl; Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven; Breemen, A. J. J. M. van
Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.
Levay, Agata K; Peacock, Jacqueline D; Lu, Yinhui; Koch, Manuel; Hinton, Robert B; Kadler, Karl E; Lincoln, Joy
2008-10-24
Heart valve structures, derived from mesenchyme precursor cells, are composed of differentiated cell types and extracellular matrix arranged to facilitate valve function. Scleraxis (scx) is a transcription factor required for tendon cell differentiation and matrix organization. This study identified high levels of scx expression in remodeling heart valve structures at embryonic day 15.5 through postnatal stages using scx-GFP reporter mice and determined the in vivo function using mice null for scx. Scx(-/-) mice display significantly thickened heart valve structures from embryonic day 17.5, and valves from mutant mice show alterations in valve precursor cell differentiation and matrix organization. This is indicated by decreased expression of the tendon-related collagen type XIV, increased expression of cartilage-associated genes including sox9, as well as persistent expression of mesenchyme cell markers including msx1 and snai1. In addition, ultrastructure analysis reveals disarray of extracellular matrix and collagen fiber organization within the valve leaflet. Thickened valve structures and increased expression of matrix remodeling genes characteristic of human heart valve disease are observed in juvenile scx(-/-) mice. In addition, excessive collagen deposition in annular structures within the atrioventricular junction is observed. Collectively, our studies have identified an in vivo requirement for scx during valvulogenesis and demonstrate its role in cell lineage differentiation and matrix distribution in remodeling valve structures.
Air cathode structure manufacture
Momyer, William R.; Littauer, Ernest L.
1985-01-01
An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.
NASA Astrophysics Data System (ADS)
Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Mori, Kensaku
2015-03-01
This paper presents a method for torso organ segmentation from abdominal CT images using structured perceptron and dual decomposition. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. This paper proposes an organ segmentation method using structured output learning. Our method utilizes a graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weights of the graphical model by structured perceptron and estimate the best organ label for a given image by dynamic programming and dual decomposition. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 4.4%. The DICE coefficients of left lung, right lung, heart, liver, spleen, pancreas, left kidney, right kidney, and gallbladder were 0.91, 0.95, 0.77, 0.81, 0.74, 0.08, 0.83, 0.84, and 0.03, respectively.
Nam, Kwangwoo; Sakai, Yuuki; Funamoto, Seiichi; Kimura, Tsuyoshi; Kishida, Akio
2011-01-01
In this study, we aimed to replicate the function of native tissues that can be used in tissue engineering and regenerative medicine. The key to such replication is the preparation of an artificial collagen matrix that possesses a structure resembling that of the extracellular matrix. We, therefore, prepared a collagen matrix by fibrillogenesis in a NaCl/Na(2)HPO(4) aqueous solution using a dialysis cassette and investigated its biological behavior in vitro and in vivo. The in vitro cell adhesion and proliferation did not show any significant differences. The degradation rate in the living body could be controlled according to the preparation condition, where the collagen matrix with high water content (F-collagen matrix, >98%) showed fast degradation and collagen matrix with lower water content (T-collagen matrix, >80%) showed no degradation for 8 weeks. The degradation did not affect the inflammatory response at all and relatively faster wound healing response was observed. Comparing this result with that of collagen gel and decellularized cornea, it can be concluded that the structural factor is very important and no cell abnormal behavior would be observed for quaternary structured collagen matrix.
Cluster structure in the correlation coefficient matrix can be characterized by abnormal eigenvalues
NASA Astrophysics Data System (ADS)
Nie, Chun-Xiao
2018-02-01
In a large number of previous studies, the researchers found that some of the eigenvalues of the financial correlation matrix were greater than the predicted values of the random matrix theory (RMT). Here, we call these eigenvalues as abnormal eigenvalues. In order to reveal the hidden meaning of these abnormal eigenvalues, we study the toy model with cluster structure and find that these eigenvalues are related to the cluster structure of the correlation coefficient matrix. In this paper, model-based experiments show that in most cases, the number of abnormal eigenvalues of the correlation matrix is equal to the number of clusters. In addition, empirical studies show that the sum of the abnormal eigenvalues is related to the clarity of the cluster structure and is negatively correlated with the correlation dimension.
Wavelet analysis of biological tissue's Mueller-matrix images
NASA Astrophysics Data System (ADS)
Tomka, Yu. Ya.
2008-05-01
The interrelations between statistics of the 1st-4th orders of the ensemble of Mueller-matrix images and geometric structure of birefringent architectonic nets of different morphological structure have been analyzed. The sensitivity of asymmetry and excess of statistic distributions of matrix elements Cik to changing of orientation structure of optically anisotropic protein fibrils of physiologically normal and pathologically changed biological tissues architectonics has been shown.
Distribution of Oil in a PP/EPDM Thermoplastic Elastomer
NASA Astrophysics Data System (ADS)
Kikuchi, Yutaka; Okada, Tetsuo; Inoue, Takashi
Distribution of oil in a commercial PP(polypropylene)/EPDM(ethylene-propyrene-diene rubber) thermoplastic elastomer was analyzed by light scattering. It was shown that the oil preferentially stays in EPDM particles at low temperatures and it migrates to PP matrix at high temperatures. That is, the oil is expected to play a dual role; softener at ambient temperature and plasticizer at processing temperature. The temperature dependence of oil distribution was nicely interpreted by a thermodynamic discussion.
A Soft 3D Acoustic Metafluid with Dual-Band Negative Refractive Index.
Raffy, Simon; Mascaro, Benoit; Brunet, Thomas; Mondain-Monval, Olivier; Leng, Jacques
2016-03-02
Spherical silica xerogels are efficient acoustic Mie resonators. When these sub-wavelength inclusions are dispersed in a matrix, the final metafluid may display a negative acoustic refractive index upon a set of precise constraints concerning material properties, concentration, size, and dispersity of the inclusions. Because xerogels may sustain both pressure and shear waves, several bands with negative index can be tailored. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salient Object Detection via Structured Matrix Decomposition.
Peng, Houwen; Li, Bing; Ling, Haibin; Hu, Weiming; Xiong, Weihua; Maybank, Stephen J
2016-05-04
Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.
NASA Astrophysics Data System (ADS)
Song, Xinyu; Ma, Xinlong; Ning, Guoqing; Gao, Daowei; Yu, Zhiqing; Xiao, Zhihua
2018-06-01
The orientation construction of S and N dual-doped discoid-like graphene (labeled as SNDG) is achieved by regular arrangement of the polycyclic aromatics in pitch molecules using natural diatomites as templates. The superior electrochemical energy storage ability of SNDG is demonstrated by cathode and anode tests, respectively. The synergistic effects of the robust scaffold coupled with the hollow structure, unique porous structure, the excellent structural stability and the dual-doping of S and N lead to the electrode property enhancement in terms of rate capability and durability. The Li ion hybrid capacitor using SNDG as both anode and cathode, presents excellent long-term cycling stability and markedly energy and power densities (up to 143 Wh kg-1 and 13,548 W kg-1). This work provides a novel pathway to realize the mass production of high-rate electrode materials via the high value-added utilization of pitch.
Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.
Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter
2016-06-15
Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Tao; Gao, Feng; Jiang, Xiangqian
2017-10-02
This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.
Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation
Yoo, Seungmin; Kim, Jung-Hwan; Shin, Myoungsoo; Park, Hyungmin; Kim, Jeong-Hoon; Lee, Sang-Young; Park, Soojin
2015-01-01
The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous structures. The introduction of surface energy–modifying agents and the control of major phase separation parameters (such as nonsolvent polarity and solvent drying time) enable tunable dual-phase separation of BCPs, eventually leading to macro/nanoscale porous structures and chemical functionalities far beyond those accessible with conventional approaches. Application of this BCP membrane to a lithium-ion battery separator affords exceptional improvement in electrochemical performance. The dual-phase separation–driven macro/nanopore construction strategy, owing to its simplicity and tunability, is expected to be readily applicable to a rich variety of membrane fields including molecular separation, water purification, and energy-related devices. PMID:26601212
Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.
2013-01-01
A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xiaopin; Yang, Ziqiang; Shi, Zongjun
A novel backward wave oscillator (BWO) based on a hole-grating slow wave structure is proposed as a dual sheet beam millimeter wave radiation source. In this paper, we focus on the output characteristics of a 0.14 THz hole-grating BWO. The output characteristics of the hole-grating BWO, the conventional single-beam grating BWO, and the dual-beam grating BWO are contrasted in detail. 3-D particle-in-cell results indicate that the hole-grating slow wave structure can help to increase the maximum output power as well as lower the operating current density. Meanwhile, the hole-grating BWO shows good insensitivity to the differences between two sheet electronmore » beams. These characteristics make the hole-grating BWO feasible to be a stable millimeter wave radiation source with higher output power.« less
Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication
Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...
2015-01-01
The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less
Bone geometry, structure and mineral distribution using Dual energy X ray Absorptiometry (DXA)
NASA Technical Reports Server (NTRS)
Whalen, Robert; Cleek, Tammy
1993-01-01
Dual energy x-ray absorptiometry (DXA) is currently the most widely used method of analyzing regional and whole body changes in bone mineral content (BMC) and areal (g/sq cm) bone mineral density (BMD). However, BMC and BMD do not provide direct measures of long bone geometry, structure, or strength nor do regional measurements detect localized changes in other regions of the same bone. The capabilities of DXA can be enhanced significantly by special processing of pixel BMC data which yields cross-sectional geometric and structural information. We have extended this method of analysis in order to develop non-uniform structural beam models of long bones.
Dual targeting DNA gyrase B (GyrB) and topoisomerse IV (ParE) inhibitors: A review.
Azam, Mohammed Afzal; Thathan, Janarthanan; Jubie, Selvaraj
2015-10-01
GyrB and ParE are type IIA topoisomerases and found in most bacteria. Its function is vital for DNA replication, repair and decatenation. The highly conserved ATP-binding subunits of DNA GyrB and ParE are structurally related and have been recognized as prime candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, no natural product or small molecule inhibitors targeting ATPase catalytic domain of both GyrB and ParE enzymes have succeeded in the clinic. Moreover, no inhibitors of these enzymes with broad-spectrum antibacterial activity against Gram-negative pathogens have been reported. Availability of high resolution crystal structures of GyrB and ParE made it possible for the design of many different classes of inhibitors with dual mechanism of action. Among them benzimidazoles, benzothiazoles, thiazolopyridines, imidiazopyridazoles, pyridines, indazoles, pyrazoles, imidazopyridines, triazolopyridines, pyrrolopyrimidines, pyrimidoindoles as well as related structures are disclosed in literatures. Unfortunately most of these inhibitors are found to be active against Gram-positive pathogens. In the present review we discuss about studies on novel dual targeting ATPase inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.
Bauman, Stephen J.; Brawley, Zachary T.; Darweesh, Ahmad A.; Herzog, Joseph B.
2017-01-01
This work investigates a new design for a plasmonic SERS biosensor via computational electromagnetic models. It utilizes a dual-width plasmonic grating design, which has two different metallic widths per grating period. These types of plasmonic gratings have shown larger optical enhancement than standard single-width gratings. The new structures have additional increased enhancement when the spacing between the metal decreases to sub-10 nm dimensions. This work integrates an oxide layer to improve the enhancement even further by carefully studying the effects of the substrate oxide thickness on the enhancement and reports ideal substrate parameters. The combined effects of varying the substrate and the grating geometry are studied to fully optimize the device’s enhancement for SERS biosensing and other plasmonic applications. The work reports the ideal widths and substrate thickness for both a standard and a dual-width plasmonic grating SERS biosensor. The ideal geometry, comprising a dual-width grating structure atop an optimal SiO2 layer thickness, improves the enhancement by 800%, as compared to non-optimized structures with a single-width grating and a non-optimal oxide thickness. PMID:28665308
Protein structure estimation from NMR data by matrix completion.
Li, Zhicheng; Li, Yang; Lei, Qiang; Zhao, Qing
2017-09-01
Knowledge of protein structures is very important to understand their corresponding physical and chemical properties. Nuclear Magnetic Resonance (NMR) spectroscopy is one of the main methods to measure protein structure. In this paper, we propose a two-stage approach to calculate the structure of a protein from a highly incomplete distance matrix, where most data are obtained from NMR. We first randomly "guess" a small part of unobservable distances by utilizing the triangle inequality, which is crucial for the second stage. Then we use matrix completion to calculate the protein structure from the obtained incomplete distance matrix. We apply the accelerated proximal gradient algorithm to solve the corresponding optimization problem. Furthermore, the recovery error of our method is analyzed, and its efficiency is demonstrated by several practical examples.
The structure of cell-matrix adhesions: the new frontier.
Hanein, Dorit; Horwitz, Alan Rick
2012-02-01
Adhesions between the cell and the extracellular matrix (ECM) are mechanosensitive multi-protein assemblies that transmit force across the cell membrane and regulate biochemical signals in response to the chemical and mechanical environment. These combined functions in force transduction, signaling and mechanosensing contribute to cellular phenotypes that span development, homeostasis and disease. These adhesions form, mature and disassemble in response to actin organization and physical forces that originate from endogenous myosin activity or external forces by the extracellular matrix. Despite advances in our understanding of the protein composition, interactions and regulation, our understanding of matrix adhesion structure and organization, how forces affect this organization, and how these changes dictate specific signaling events is limited. Insights across multiple structural levels are acutely needed to elucidate adhesion structure and ultimately the molecular basis of signaling and mechanotransduction. Here we describe the challenges and recent advances and prospects for unraveling the structure of cell-matrix adhesions and their response to force. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wunschel, David S.; Valenzuela, Blandina R.; Kaiser, Brooke L. Deatherage
A variety of toxins are produced by marine and freshwater microorganisms that present a threat to human health. These toxins have diverse chemical properties and specifically, a range of hydrophobicity. Methods for extraction and identification of these toxins are often geared toward specific classes of toxin depending on the sample type. There is a need for a general method of toxin extraction and identification for screening samples where the likely toxin content is not known a priori. Here, we have applied a general method for metabolite extraction to toxin containing samples. This method was coupled with a simple dual liquidmore » chromatography approach for separating a broad range of toxins. This liquid chromatography approach was coupled to triple quadrupole and quadrupole time-of-flight MS/MS platforms. The method was testing on a fish matrix for recovery of palytoxin as well as marine corals for detection of natural mixtures of palytoxin analogues. The recovery of palytoxin was found to produce a linear response (R 2 of 0.95) when spiked into the fish matrix with a limit of quantitation of 2.5 ng/μL and recovery efficiency of 73% +/- 9%. The screening of corals revealed varying amount of palytoxin, and in one case, different palytoxin structural analogues. This demonstration illustrates the potential utility of this method for toxin extraction and detection.« less
Wunschel, David S.; Valenzuela, Blandina R.; Kaiser, Brooke L. Deatherage; ...
2018-05-09
A variety of toxins are produced by marine and freshwater microorganisms that present a threat to human health. These toxins have diverse chemical properties and specifically, a range of hydrophobicity. Methods for extraction and identification of these toxins are often geared toward specific classes of toxin depending on the sample type. There is a need for a general method of toxin extraction and identification for screening samples where the likely toxin content is not known a priori. Here, we have applied a general method for metabolite extraction to toxin containing samples. This method was coupled with a simple dual liquidmore » chromatography approach for separating a broad range of toxins. This liquid chromatography approach was coupled to triple quadrupole and quadrupole time-of-flight MS/MS platforms. The method was testing on a fish matrix for recovery of palytoxin as well as marine corals for detection of natural mixtures of palytoxin analogues. The recovery of palytoxin was found to produce a linear response (R 2 of 0.95) when spiked into the fish matrix with a limit of quantitation of 2.5 ng/μL and recovery efficiency of 73% +/- 9%. The screening of corals revealed varying amount of palytoxin, and in one case, different palytoxin structural analogues. This demonstration illustrates the potential utility of this method for toxin extraction and detection.« less
Modeling Dynamic Helium Release as a Tracer of Rock Deformation
Gardner, W. Payton; Bauer, Stephen J.; Kuhlman, Kristopher L.; ...
2017-11-03
Here, we use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We also found that the helium signal is sensitive to fracture development and evolutionmore » as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. This model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.« less
Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.
Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui
2018-01-01
We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Holographic hierarchy in the Gaussian matrix model via the fuzzy sphere
NASA Astrophysics Data System (ADS)
Garner, David; Ramgoolam, Sanjaye
2013-10-01
The Gaussian Hermitian matrix model was recently proposed to have a dual string description with worldsheets mapping to a sphere target space. The correlators were written as sums over holomorphic (Belyi) maps from worldsheets to the two-dimensional sphere, branched over three points. We express the matrix model correlators by using the fuzzy sphere construction of matrix algebras, which can be interpreted as a string field theory description of the Belyi strings. This gives the correlators in terms of trivalent ribbon graphs that represent the couplings of irreducible representations of su(2), which can be evaluated in terms of 3j and 6j symbols. The Gaussian model perturbed by a cubic potential is then recognised as a generating function for Ponzano-Regge partition functions for 3-manifolds having the worldsheet as boundary, and equipped with boundary data determined by the ribbon graphs. This can be viewed as a holographic extension of the Belyi string worldsheets to membrane worldvolumes, forming part of a holographic hierarchy linking, via the large N expansion, the zero-dimensional QFT of the Matrix model to 2D strings and 3D membranes. Note that if, after removing the white vertices, the graph contains a blue edge connecting to the same black vertex at both ends, then the triangulation generated from the black edges will contain faces that resemble cut discs. These faces are triangles with two of the edges identified.
Fundamental Flux Equations for Fracture-Matrix Interactions with Linear Diffusion
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Zhou, Q.; Rutqvist, J.; Birkholzer, J. T.
2017-12-01
The conventional dual-continuum models are only applicable for late-time behavior of pressure propagation in fractured rock, while discrete-fracture-network models may explicitly deal with matrix blocks at high computational expense. To address these issues, we developed a unified-form diffusive flux equation for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular matrix blocks (squares, cubes, rectangles, and rectangular parallelepipeds) by partitioning the entire dimensionless-time domain (Zhou et al., 2017a, b). For each matrix block, this flux equation consists of the early-time solution up until a switch-over time after which the late-time solution is applied to create continuity from early to late time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the coefficients dependent on dimensionless area-to-volume ratio and aspect ratios for rectangular blocks. For the late-time solutions, one exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic blocks. The time-partitioning method was also used for calculating pressure/concentration/temperature distribution within a matrix block. The approximate solution contains an error-function solution for early times and an exponential solution for late times, with relative errors less than 0.003. These solutions form the kernel of multirate and multidimensional hydraulic, solute and thermal diffusion in fractured reservoirs.
Modeling Dynamic Helium Release as a Tracer of Rock Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, W. Payton; Bauer, Stephen J.; Kuhlman, Kristopher L.
Here, we use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We also found that the helium signal is sensitive to fracture development and evolutionmore » as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. This model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.« less
Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.
Bae, Jong-Ho; Lee, Jong-Ho
2016-05-01
A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.
Spacecraft structural system identification by modal test
NASA Technical Reports Server (NTRS)
Chen, J.-C.; Peretti, L. F.; Garba, J. A.
1984-01-01
A structural parameter estimation procedure using the measured natural frequencies and kinetic energy distribution as observers is proposed. The theoretical derivation of the estimation procedure is described and its constraints and limitations are explained. This procedure is applied to a large complex spacecraft structural system to identify the inertia matrix using modal test results. The inertia matrix is chosen after the stiffness matrix has been updated by the static test results.
Thermoelectric DC conductivities in hyperscaling violating Lifshitz theories
NASA Astrophysics Data System (ADS)
Cremonini, Sera; Cvetič, Mirjam; Papadimitriou, Ioannis
2018-04-01
We analytically compute the thermoelectric conductivities at zero frequency (DC) in the holographic dual of a four dimensional Einstein-Maxwell-Axion-Dilaton theory that admits a class of asymptotically hyperscaling violating Lifshitz backgrounds with a dynamical exponent z and hyperscaling violating parameter θ. We show that the heat current in the dual Lifshitz theory involves the energy flux, which is an irrelevant operator for z > 1. The linearized fluctuations relevant for computing the thermoelectric conductivities turn on a source for this irrelevant operator, leading to several novel and non-trivial aspects in the holographic renormalization procedure and the identification of the physical observables in the dual theory. Moreover, imposing Dirichlet or Neumann boundary conditions on the spatial components of one of the two Maxwell fields present leads to different thermoelectric conductivities. Dirichlet boundary conditions reproduce the thermoelectric DC conductivities obtained from the near horizon analysis of Donos and Gauntlett, while Neumann boundary conditions result in a new set of DC conductivities. We make preliminary analytical estimates for the temperature behavior of the thermoelectric matrix in appropriate regions of parameter space. In particular, at large temperatures we find that the only case which could lead to a linear resistivity ρ ˜ T corresponds to z = 4 /3.
Efficiency and robustness of different bus network designs
NASA Astrophysics Data System (ADS)
Pang, John Zhen Fu; Bin Othman, Nasri; Ng, Keng Meng; Monterola, Christopher
2015-07-01
We compare the efficiencies and robustness of four transport networks that can be possibly formed as a result of deliberate city planning. The networks are constructed based on their spatial resemblance to the cities of Manhattan (lattice), Sudan (random), Beijing (single-blob) and Greater Cairo (dual-blob). For a given type, a genetic algorithm is employed to obtain an optimized set of the bus routes. We then simulate how commuter travels using Yen's algorithms for k shortest paths on an adjacency matrix. The cost of traveling such as walking between stations is captured by varying the weighted sums of matrices. We also consider the number of transfers a posteriori by looking at the computed shortest paths. With consideration to distances via radius of gyration, redundancies of travel and number of bus transfers, our simulations indicate that random and dual-blob are more efficient than single-blob and lattice networks. Moreover, dual-blob type is least robust when node removals are targeted but is most resilient when node failures are random. The work hopes to guide and provide technical perspectives on how geospatial distribution of a city limits the optimality of transport designs.
Intriligator, Ken; Nardoni, Emily
2016-09-08
We discuss aspects of theories with superpotentials given by Arnold’s A, D, E singularities, particularly the novelties that arise when the fields are matrices. We focus on 4d N=1 variants of susy QCD, with U(N c ) or SU(N c ) gauge group, N f fundamental flavors, and adjoint matter fields X and Y appearing in W A,D,E (X, Y) superpotentials. Many of our considerations also apply in other possible contexts for matrix-variable W A,D,E . The 4d W A,D,E SQCD-type theories RG flow to superconformal field theories, and there are proposed duals in the literature for the W Ak,more » W Dk, and W E7 cases. As we review, the W Deven and W E7 duals rely on a conjectural, quantum truncation of the chiral ring. We explore these issues by considering various deformations of the W A,D,E superpotentials, and the resulting RG flows and IR theories. Rather than finding supporting evidence for the quantum truncation and W Deven and W E7 duals, we note some challenging evidence to the contrary.« less
A dual-band THz absorber based on graphene sheet and ribbons
NASA Astrophysics Data System (ADS)
Xing, Rui; Jian, Shuisheng
2018-03-01
A dual-band graphene absorber is proposed and investigated in this paper. The absorber consists of the gold substrate, the graphene sheet sandwiched by dielectric layers and the array of graphene ribbon placed on the top. The two absorption peaks of the dual-band are 99.8% at 4.95 THz and 99.6% at 9.2 THz, respectively. Due to the characteristic of tunable surface conductivity of graphene, the absorption can be controlled by adjusting the chemical potential of graphene. We also investigate the dependence of the absorption curve of the proposed absorber on the structure parameters. In addition, the structure of the absorber is very simple and it can be manufactured by chemical vapor deposition (CVD).
Dual leadership in a hospital practice.
Thude, Bettina Ravnborg; Thomsen, Svend Erik; Stenager, Egon; Hollnagel, Erik
2017-02-06
Purpose Despite the practice of dual leadership in many organizations, there is relatively little research on the topic. Dual leadership means two leaders share the leadership task and are held jointly accountable for the results of the unit. To better understand how dual leadership works, this study aims to analyse three different dual leadership pairs at a Danish hospital. Furthermore, this study develops a tool to characterize dual leadership teams from each other. Design/methodology/approach This is a qualitative study using semi-structured interviews. Six leaders were interviewed to clarify how dual leadership works in a hospital context. All interviews were transcribed and coded. During coding, focus was on the nine principles found in the literature and another principle was found by looking at the themes that were generic for all six interviews. Findings Results indicate that power balance, personal relations and decision processes are important factors for creating efficient dual leaderships. The study develops a categorizing tool to use for further research or for organizations, to describe and analyse dual leaderships. Originality/value The study describes dual leadership in the hospital context and develops a categorizing tool for being able to distinguish dual leadership teams from each other. It is important to reveal if there are any indicators that can be used for optimising dual leadership teams in the health-care sector and in other organisations.
Reducing the orientation influence of Mueller matrix measurements for anisotropic scattering media
NASA Astrophysics Data System (ADS)
Sun, Minghao; He, Honghui; Zeng, Nan; Du, E.; He, Yonghong; Ma, Hui
2014-09-01
Mueller matrix polarimetry techniques contain rich micro-structural information of samples, such as the sizes and refractive indices of scatterers. Recently, Mueller matrix imaging methods have shown great potentials as powerful tools for biomedical diagnosis. However, the orientations of anisotropic fibrous structures in tissues have prominent influence on Mueller matrix measurements, resulting in difficulties for extracting micro-structural information effectively. In this paper, we apply the backscattering Mueller matrix imaging technique to biological samples with different microstructures, such as chicken heart muscle, bovine skeletal muscle, porcine liver and fat tissues. Experimental results show that the directions of the muscle fibers have prominent influence on the Mueller matrix elements. In order to reduce the orientation influence, we adopt the rotation-independent MMT and RLPI parameters, which were proposed in our previous studies, to the tissue samples. Preliminary results in this paper show that the orientation-independent parameters and their statistic features are helpful for analyzing the tissues to obtain their micro-structural properties. Since the micro-structure variations are often related to the pathological changes, the method can be applied to microscope imaging techniques and used to detect abnormal tissues such as cancer and other lesions for diagnosis purposes.
Core-Shell Particles as Building Blocks for Systems with High Duality Symmetry
NASA Astrophysics Data System (ADS)
Rahimzadegan, Aso; Rockstuhl, Carsten; Fernandez-Corbaton, Ivan
2018-05-01
Material electromagnetic duality symmetry requires a system to have equal electric and magnetic responses. Intrinsically dual materials that meet the duality conditions at the level of the constitutive relations do not exist in many frequency bands. Nevertheless, discrete objects like metallic helices and homogeneous dielectric spheres can be engineered to approximate the dual behavior. We exploit the extra degrees of freedom of a core-shell dielectric sphere in a particle optimization procedure. The duality symmetry of the resulting particle is more than 1 order of magnitude better than previously reported nonmagnetic objects. We use T -matrix-based multiscattering techniques to show that the improvement is transferred onto the duality symmetry of composite objects when the core-shell particle is used as a building block instead of homogeneous spheres. These results are relevant for the fashioning of systems with high duality symmetry, which are required for some technologically important effects.
Zou, Weiyao; Burns, Stephen A.
2012-01-01
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462
Fractional Order Two-Temperature Dual-Phase-Lag Thermoelasticity with Variable Thermal Conductivity
Mallik, Sadek Hossain; Kanoria, M.
2014-01-01
A new theory of two-temperature generalized thermoelasticity is constructed in the context of a new consideration of dual-phase-lag heat conduction with fractional orders. The theory is then adopted to study thermoelastic interaction in an isotropic homogenous semi-infinite generalized thermoelastic solids with variable thermal conductivity whose boundary is subjected to thermal and mechanical loading. The basic equations of the problem have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by using a state space approach. The inversion of Laplace transforms is computed numerically using the method of Fourier series expansion technique. The numerical estimates of the quantities of physical interest are obtained and depicted graphically. Some comparisons of the thermophysical quantities are shown in figures to study the effects of the variable thermal conductivity, temperature discrepancy, and the fractional order parameter. PMID:27419210
A superlinear interior points algorithm for engineering design optimization
NASA Technical Reports Server (NTRS)
Herskovits, J.; Asquier, J.
1990-01-01
We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.
Chen, Long; He, Linwei; Ma, Fuyin; Liu, Wei; Wang, Yaxing; Silver, Mark A; Chen, Lanhua; Zhu, Lin; Gui, Daxiang; Diwu, Juan; Chai, Zhifang; Wang, Shuao
2018-05-09
Real-time and accurate detection of pH in aqueous solution is of great significance in chemical, environmental, and engineering-related fields. We report here the use of 8-hydroxyquinoline-functionalized covalent organic framework (COF-HQ) for dual-mode pH sensing. In the fluorescent mode, the emission intensity of COF-HQ weakened as the pH decreased, and also displayed a good linear relationship against pH in the range from 1 to 5. In addition, COF-HQ showed discernible color changes from yellow to black as the acidity increased and can be therefore used as a colorimetric pH sensor. All these changes are reversible and COF-HQ can be recycled for multiple detection runs owing to its high hydrolytical stability. It can be further assembled into a mixed matrix membrane for practical applications.
Zou, Weiyao; Burns, Stephen A
2012-03-20
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America
NASA Technical Reports Server (NTRS)
Chen, J. C.
1995-01-01
A disk-on-rod inside a corrugated horn is one of the horn configurations for dual-frequency or wide-band operation. A mode-matching analysis method is described. A disk-on-rod inside a corrugated horn is represented as a series of coaxial waveguide sections and circular waveguide sections connected to each other. Three kinds of junctions need to be considered: coaxial-to-coaxial, coaxial-to-circular, and circular-to-circular. A computer program was developed to calculate the scattering matrix and the radiation pattern of a disk-on-rod inside a corrugated horn. The software as verified by experiment, and good agreement between calculation and measurement was obtained. The disk-on-rod inside a corrugated horn design gives an option to the Deep Space Network dual-frequency operation system, which currently is a two-horn/one-dichroic plate system.
Engineering Three-Dimensional Collagen-IKVAV Matrix to Mimic Neural Microenvironment
2013-01-01
Engineering the cellular microenvironment has great potential to create a platform technology toward engineering of tissue and organs. This study aims to engineer a neural microenvironment through fabrication of three-dimensional (3D) engineered collagen matrixes mimicking in-vivo-like conditions. Collagen was chemically modified with a pentapeptide epitope consisting of isoleucine-lysine-valine-alanine-valine (IKVAV) to mimic laminin structure supports of the neural extracellular matrix (ECM). Three-dimensional collagen matrixes with and without IKVAV peptide modification were fabricated by freeze-drying technology and chemical cross-linking with glutaraldehyde. Structural information of 3D collagen matrixes indicated interconnected pores structure with an average pore size of 180 μm. Our results indicated that culture of dorsal root ganglion (DRG) cells in 3D collagen matrix was greatly influenced by 3D culture method and significantly enhanced with engineered collagen matrix conjugated with IKVAV peptide. It may be concluded that an appropriate 3D culture of neurons enables DRG to positively improve the cellular fate toward further acceleration in tissue regeneration. PMID:23705903
Collagen in the spicule organic matrix of the gorgonian Leptogorgia virgulata
NASA Technical Reports Server (NTRS)
Kingsley, R. J.; Tsuzaki, M.; Watabe, N.; Mechanic, G. L.
1990-01-01
Decalcification of the calcareous spicules from the gorgonian Leptogorgia virgulata reveals an organic matrix that may be divided into water insoluble and soluble fractions. The insoluble fraction displays characteristics typical of collagen, which is an unusual component of an invertebrate calcium carbonate structure. This matrix fraction exhibits a collagenous amino acid profile and behavior upon SDS-PAGE. Furthermore, the reducible crosslink, dihydroxylysinonorleucine (DHLNL), is detected in this fraction. The composition of the matrix varies seasonally; i.e., the collagenous composition is most prevalent in the summer. These results indicate that the insoluble matrix is a dynamic structure. Potential roles of this matrix in spicule calcification are discussed.
Highly defective oxides as sinter resistant thermal barrier coating
Subramanian, Ramesh
2005-08-16
A thermal barrier coating material formed of a highly defective cubic matrix structure having a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. The concentration of stabilizer within the cubic matrix structure is greater than that concentration of stabilizer necessary to give the matrix a peak ionic conductivity value. The concentration of stabilizer may be at least 30 wt. %. Embodiments include a cubic matrix of zirconia stabilized by at least 30-50 wt. % yttria, and a cubic matrix of hafnia stabilized by at least 30-50 wt. % gadolinia.
A novel color image encryption scheme using alternate chaotic mapping structure
NASA Astrophysics Data System (ADS)
Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang
2016-07-01
This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.
Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei
2016-12-01
In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, Joseph; Wang, Tonghe; Petrongolo, Michael
Purpose: Dual-energy CT (DECT) expands applications of CT imaging in its capability to decompose CT images into material images. However, decomposition via direct matrix inversion leads to large noise amplification and limits quantitative use of DECT. Their group has previously developed a noise suppression algorithm via penalized weighted least-square optimization with edge-preservation regularization (PWLS-EPR). In this paper, the authors improve method performance using the same framework of penalized weighted least-square optimization but with similarity-based regularization (PWLS-SBR), which substantially enhances the quality of decomposed images by retaining a more uniform noise power spectrum (NPS). Methods: The design of PWLS-SBR is basedmore » on the fact that averaging pixels of similar materials gives a low-noise image. For each pixel, the authors calculate the similarity to other pixels in its neighborhood by comparing CT values. Using an empirical Gaussian model, the authors assign high/low similarity value to one neighboring pixel if its CT value is close/far to the CT value of the pixel of interest. These similarity values are organized in matrix form, such that multiplication of the similarity matrix to the image vector reduces image noise. The similarity matrices are calculated on both high- and low-energy CT images and averaged. In PWLS-SBR, the authors include a regularization term to minimize the L-2 norm of the difference between the images without and with noise suppression via similarity matrix multiplication. By using all pixel information of the initial CT images rather than just those lying on or near edges, PWLS-SBR is superior to the previously developed PWLS-EPR, as supported by comparison studies on phantoms and a head-and-neck patient. Results: On the line-pair slice of the Catphan{sup ©}600 phantom, PWLS-SBR outperforms PWLS-EPR and retains spatial resolution of 8 lp/cm, comparable to the original CT images, even at 90% reduction in noise standard deviation (STD). Similar performance on spatial resolution is observed on an anthropomorphic head phantom. In addition, results of PWLS-SBR show substantially improved image quality due to preservation of image NPS. On the Catphan{sup ©}600 phantom, NPS using PWLS-SBR has a correlation of 93% with that via direct matrix inversion, while the correlation drops to −52% for PWLS-EPR. Electron density measurement studies indicate high accuracy of PWLS-SBR. On seven different materials, the measured electron densities calculated from the decomposed material images using PWLS-SBR have a root-mean-square error (RMSE) of 1.20%, while the results of PWLS-EPR have a RMSE of 2.21%. In the study on a head-and-neck patient, PWLS-SBR is shown to reduce noise STD by a factor of 3 on material images with image qualities comparable to CT images, whereas fine structures are lost in the PWLS-EPR result. Additionally, PWLS-SBR better preserves low contrast on the tissue image. Conclusions: The authors propose improvements to the regularization term of an optimization framework which performs iterative image-domain decomposition for DECT with noise suppression. The regularization term avoids calculation of image gradient and is based on pixel similarity. The proposed method not only achieves a high decomposition accuracy, but also improves over the previous algorithm on NPS as well as spatial resolution.« less
Harms, Joseph; Wang, Tonghe; Petrongolo, Michael; Niu, Tianye; Zhu, Lei
2016-01-01
Purpose: Dual-energy CT (DECT) expands applications of CT imaging in its capability to decompose CT images into material images. However, decomposition via direct matrix inversion leads to large noise amplification and limits quantitative use of DECT. Their group has previously developed a noise suppression algorithm via penalized weighted least-square optimization with edge-preservation regularization (PWLS-EPR). In this paper, the authors improve method performance using the same framework of penalized weighted least-square optimization but with similarity-based regularization (PWLS-SBR), which substantially enhances the quality of decomposed images by retaining a more uniform noise power spectrum (NPS). Methods: The design of PWLS-SBR is based on the fact that averaging pixels of similar materials gives a low-noise image. For each pixel, the authors calculate the similarity to other pixels in its neighborhood by comparing CT values. Using an empirical Gaussian model, the authors assign high/low similarity value to one neighboring pixel if its CT value is close/far to the CT value of the pixel of interest. These similarity values are organized in matrix form, such that multiplication of the similarity matrix to the image vector reduces image noise. The similarity matrices are calculated on both high- and low-energy CT images and averaged. In PWLS-SBR, the authors include a regularization term to minimize the L-2 norm of the difference between the images without and with noise suppression via similarity matrix multiplication. By using all pixel information of the initial CT images rather than just those lying on or near edges, PWLS-SBR is superior to the previously developed PWLS-EPR, as supported by comparison studies on phantoms and a head-and-neck patient. Results: On the line-pair slice of the Catphan©600 phantom, PWLS-SBR outperforms PWLS-EPR and retains spatial resolution of 8 lp/cm, comparable to the original CT images, even at 90% reduction in noise standard deviation (STD). Similar performance on spatial resolution is observed on an anthropomorphic head phantom. In addition, results of PWLS-SBR show substantially improved image quality due to preservation of image NPS. On the Catphan©600 phantom, NPS using PWLS-SBR has a correlation of 93% with that via direct matrix inversion, while the correlation drops to −52% for PWLS-EPR. Electron density measurement studies indicate high accuracy of PWLS-SBR. On seven different materials, the measured electron densities calculated from the decomposed material images using PWLS-SBR have a root-mean-square error (RMSE) of 1.20%, while the results of PWLS-EPR have a RMSE of 2.21%. In the study on a head-and-neck patient, PWLS-SBR is shown to reduce noise STD by a factor of 3 on material images with image qualities comparable to CT images, whereas fine structures are lost in the PWLS-EPR result. Additionally, PWLS-SBR better preserves low contrast on the tissue image. Conclusions: The authors propose improvements to the regularization term of an optimization framework which performs iterative image-domain decomposition for DECT with noise suppression. The regularization term avoids calculation of image gradient and is based on pixel similarity. The proposed method not only achieves a high decomposition accuracy, but also improves over the previous algorithm on NPS as well as spatial resolution. PMID:27147376
ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.
Lee, Keunbaik; Baek, Changryong; Daniels, Michael J
2017-11-01
In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.
Implementation and applications of dual-modality imaging
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce H.; Barber, William C.; Funk, Tobias; Hwang, Andrew B.; Taylor, Carmen; Sun, Mingshan; Seo, Youngho
2004-06-01
In medical diagnosis, functional or physiological data can be acquired using radionuclide imaging with positron emission tomography or with single-photon emission computed tomography. However, anatomical or structural data can be acquired using X-ray computed tomography. In dual-modality imaging, both radionuclide and X-ray detectors are incorporated in an imaging system to allow both functional and structural data to be acquired in a single procedure without removing the patient from the imaging system. In a clinical setting, dual-modality imaging systems commonly are used to localize radiopharmaceutical uptake with respect to the patient's anatomy. This helps the clinician to differentiate disease from regions of normal radiopharmaceutical accumulation, to improve diagnosis or cancer staging, or to facilitate planning for radiation therapy or surgery. While initial applications of dual-modality imaging were developed for clinical imaging on humans, it now is recognized that these systems have potentially important applications for imaging small animals involved in experimental studies including basic investigations of mammalian biology and development of new pharmaceuticals for diagnosis or treatment of disease.
Karunanithi, R; Ganesan, S; Panicker, T M R; Korath, M Paul; Jagadeesan, K
2007-10-01
The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD) in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA), which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 premenopausal (mean age ± SD: 39.4 ± 3.8) and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9) women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA). For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI) of 256 × 256 pixels was selected, the run length matrix was computed for calculating seven parameters [Table 1] and the two dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD) was derived and the root mean square (RMS) value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density.
The CSM testbed matrix processors internal logic and dataflow descriptions
NASA Technical Reports Server (NTRS)
Regelbrugge, Marc E.; Wright, Mary A.
1988-01-01
This report constitutes the final report for subtask 1 of Task 5 of NASA Contract NAS1-18444, Computational Structural Mechanics (CSM) Research. This report contains a detailed description of the coded workings of selected CSM Testbed matrix processors (i.e., TOPO, K, INV, SSOL) and of the arithmetic utility processor AUS. These processors and the current sparse matrix data structures are studied and documented. Items examined include: details of the data structures, interdependence of data structures, data-blocking logic in the data structures, processor data flow and architecture, and processor algorithmic logic flow.
Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz; Barkooie, Seyyed Mohsen Hosseini; Jahandideh, Samad; Rezaei, Mohammad Ali
2009-12-01
Regarding the great potential of dual binding site inhibitors of acetylcholinesterase as the future potent drugs of Alzheimer's disease, this study was devoted to extraction of the most effective structural features of these inhibitors from among a large number of quantitative descriptors. To do this, we adopted a unique approach in quantitative structure-activity relationships. An efficient feature selection method was emphasized in such an approach, using the confirmative results of different routine and novel feature selection methods. The proposed methods generated quite consistent results ensuring the effectiveness of the selected structural features.
Cai, M; Vahala, K
2000-02-15
We report that greater than 99.8% optical power transfer to whispering-gallery modes was achieved in fused-silica microspheres by use of a dual-tapered-fiber coupling method. The intrinsic cavity loss and the taper-to-sphere coupling coefficient are inferred from the experimental data. It is shown that the low intrinsic cavity loss and the symmetrical dual-coupling structure are crucial for obtaining the high coupling efficiency.
Physically based model for extracting dual permeability parameters using non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.
2017-12-01
Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.
Large scale distribution monitoring of FRP-OF based on BOTDR technique for infrastructures
NASA Astrophysics Data System (ADS)
Zhou, Zhi; He, Jianping; Yan, Kai; Ou, Jinping
2007-04-01
BOTDA(R) sensing technique is considered as one of the most practical solution for large-sized structures as the instrument. However, there is still a big obstacle to apply BOTDA(R) in large-scale area due to the high cost and the reliability problem of sensing head which is associated to the sensor installation and survival. In this paper, we report a novel low-cost and high reliable BOTDA(R) sensing head using FRP(Fiber Reinforced Polymer)-bare optical fiber rebar, named BOTDA(R)-FRP-OF. We investigated the surface bonding and its mechanical strength by SEM and intensity experiments. Considering the strain difference between OF and host matrix which may result in measurement error, the strain transfer from host to OF have been theoretically studied. Furthermore, GFRP-OFs sensing properties of strain and temperature at different gauge length were tested under different spatial and readout resolution using commercial BOTDA. Dual FRP-OFs temperature compensation method has also been proposed and analyzed. And finally, BOTDA(R)-OFs have been applied in Tiyu west road civil structure at Guangzhou and Daqing Highway. This novel FRP-OF rebar shows both high strengthen and good sensing properties, which can be used in long-term SHM for civil infrastructures.
Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis
NASA Astrophysics Data System (ADS)
Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.
2018-04-01
Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.
Performance Enhancements Under Dual-task Conditions
NASA Technical Reports Server (NTRS)
Kramer, A. F.; Wickens, C. D.; Donchin, E.
1984-01-01
Research on dual-task performance has been concerned with delineating the antecedent conditions which lead to dual-task decrements. Capacity models of attention, which propose that a hypothetical resource structure underlies performance, have been employed as predictive devices. These models predict that tasks which require different processing resources can be more successfully time shared than tasks which require common resources. The conditions under which such dual-task integrality can be fostered were assessed in a study in which three factors likely to influence the integrality between tasks were manipulated: inter-task redundancy, the physical proximity of tasks and the task relevant objects. Twelve subjects participated in three experimental sessions in which they performed both single and dual-tasks. The primary task was a pursuit step tracking task. The secondary tasks required the discrimination between different intensities or different spatial positions of a stimulus. The results are discussed in terms of a model of dual-task integrality.
Nadell, Carey D; Ricaurte, Deirdre; Yan, Jing; Drescher, Knut; Bassler, Bonnie L
2017-01-13
Bacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms. Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles - which are common in natural environments - wild-type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments.
Eghbali, M; Weber, K T
1990-07-17
The extracellular matrix of the myocardium contains an elaborate structural matrix composed mainly of fibrillar types I and III collagen. This matrix is responsible for the support and alignment of myocytes and capillaries. Because of its alignment, location, configuration and tensile strength, relative to cardiac myocytes, the collagen matrix represents a major determinant of myocardial stiffness. Cardiac fibroblasts, not myocytes, contain the mRNA for these fibrillar collagens. In the hypertrophic remodeling of the myocardium that accompanies arterial hypertension, a progressive structural and biochemical remodeling of the matrix follows enhanced collagen gene expression. The resultant significant accumulation of collagen in the interstitium and around intramyocardial coronary arteries, or interstitial and perivascular fibrosis, represents a pathologic remodeling of the myocardium that compromises this normally efficient pump. This report reviews the structural nature, biosynthesis and degradation of collagen in the normal and hypertrophied myocardium. It suggests that interstitial heart disease, or the disproportionate growth of the extracellular matrix relative to myocyte hypertrophy, is an entity that merits greater understanding, particularly the factors regulating types I and III collagen gene expression and their degradation.
Novel Digital Driving Method Using Dual Scan for Active Matrix Organic Light-Emitting Diode Displays
NASA Astrophysics Data System (ADS)
Jung, Myoung Hoon; Choi, Inho; Chung, Hoon-Ju; Kim, Ohyun
2008-11-01
A new digital driving method has been developed for low-temperature polycrystalline silicon, transistor-driven, active-matrix organic light-emitting diode (AM-OLED) displays by time-ratio gray-scale expression. This driving method effectively increases the emission ratio and the number of subfields by inserting another subfield set into nondisplay periods in the conventional digital driving method. By employing the proposed modified gravity center coding, this method can be used to effectively compensate for dynamic false contour noise. The operation and performance were verified by current measurement and image simulation. The simulation results using eight test images show that the proposed approach improves the average peak signal-to-noise ratio by 2.61 dB, and the emission ratio by 20.5%, compared with the conventional digital driving method.
The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.
Pang, Haotian; Liu, Han; Vanderbei, Robert
2014-02-01
We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.
92 GHz dual-polarized integrated horn antennas
NASA Technical Reports Server (NTRS)
Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.
1991-01-01
A dual-polarized two-dimensional imaging array was designed for millimeter-wave applications. The dual-polarized design consists of two dipoles perpendicular to each other and suspended on the same membrane inside a pyramidal cavity etched in silicon. The dual-polarized antenna is fully monolithic with room available for processing electronics. The IF or video signals are taken out through a novel bias and feeding structure. The measured polarization isolation is better than 20 dB at 92 GHz, and the orthogonal channels show identical far-field patterns. The antenna is well suited for millimeter-wave polarimetric synthetic-aperture radars (SARs) and high-efficiency balanced-mixer receivers.
Yamamoto, Seiichi
2012-01-01
In block detectors for PET scanners that use different lengths of slits in scintillators to share light among photomultiplier tubes (PMTs), a position histogram is distorted when the depth of interaction (DOI) of the gamma photons is near the PMTs (DOI effect). However, it remains unclear whether a DOI effect is observed for block detectors that use light sharing in scintillators. To investigate the effect, I tested the effect for single- and dual-layer block detectors. In the single-layer block detector, Ce doped Gd₂SiO₅ (GSO) crystals of 1.9 × 1.9 × 15 mm³ (0.5 mol% Ce) were used. In the dual-layer block detector, GSO crystals of a 1.9 × 1.9 × 6 mm³ (1.5 mol% Ce) were used for the front layer and GSO crystals of 1.9 × 1.9 × 9 mm³ (0.5 mol% Ce) for the back layer. These scintillators were arranged to form an 8 × 8 matrix with multi-layer optical film inserted partly between the scintillators for obtaining an optimized position response with use of two dual-PMTs. Position histograms and energy responses were measured for these block detectors at three different DOI positions, and the flood histograms were obtained. The results indicated that DOI effects are observed in both block detectors, but the dual-layer block showed more severe distortion in the position histogram as well as larger energy variations. We conclude that, in the block detectors that use light sharing in the scintillators, the DOI effect is an important factor for the performance of the detectors, especially for DOI block detectors.
Superconducting coil and method of stress management in a superconducting coil
McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.
1999-01-01
A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).
Effect of microstructure on static and dynamic mechanical properties of high strength steels
NASA Astrophysics Data System (ADS)
Qu, Jinbo
The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited much better dynamic factor values. This may suggest that solid solution strengthening should be more utilized in the design of crashworthy dual phase steels.
SAR matrices: automated extraction of information-rich SAR tables from large compound data sets.
Wassermann, Anne Mai; Haebel, Peter; Weskamp, Nils; Bajorath, Jürgen
2012-07-23
We introduce the SAR matrix data structure that is designed to elucidate SAR patterns produced by groups of structurally related active compounds, which are extracted from large data sets. SAR matrices are systematically generated and sorted on the basis of SAR information content. Matrix generation is computationally efficient and enables processing of large compound sets. The matrix format is reminiscent of SAR tables, and SAR patterns revealed by different categories of matrices are easily interpretable. The structural organization underlying matrix formation is more flexible than standard R-group decomposition schemes. Hence, the resulting matrices capture SAR information in a comprehensive manner.
Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus.
Razin, S V; Borunova, V V; Iarovaia, O V; Vassetzky, Y S
2014-07-01
Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous studies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a filamentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is performed by the folded genome itself.
NASA Astrophysics Data System (ADS)
Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.
2016-05-01
Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.
Harvey, A K; Stack, S T; Chandrasekhar, S
1993-01-01
Interleukin 1 (IL-1) plays a dual role in cartilage matrix degeneration by promoting extracellular proteinase action such as the matrix metalloproteinases (increased degradation) and by suppressing the synthesis of extracellular matrix molecules (inhibition of repair). Platelet-derived growth factor (PDGF) is a wound-healing hormone which is released along with IL-1 during the inflammatory response. Since previous studies have shown that PDGF enhances IL-1 alpha effects on metalloproteinase activity, in this report, we have examined whether PDGF modifies IL-1 beta effects on cartilage proteoglycan synthesis. Initially, we confirmed that rabbit articular chondrocytes treated with IL-1 beta + PDGF induced higher proteinase activity, in comparison with IL-1-treated cells. We further observed that the increased proteinase activity correlated with an increase in the synthesis of collagenase/stromelysin proteins and a corresponding increase in the steady-state mRNA levels for both the enzymes. Studies on IL-1 receptor expression suggested that PDGF caused an increase in IL-1 receptor expression which, by augmenting the IL-1 response, may have led to the increase in proteinase induction. Analysis of proteoglycan synthesis confirmed that IL-1 reduced the incorporation of sulphated proteoglycan, aggrecan, into the extracellular matrix of chondrocytes, whereas PDGF stimulated it. However, cells treated with IL-1 + PDGF synthesized normal levels of aggrecan. This is in contrast with cells treated with IL-1 + fibroblast growth factor, in which case only proteinase activity was potentiated. The results allow us to conclude that (a) the two effector functions that play a role in matrix remodelling, namely matrix lysis (proteinase induction) and matrix repair (proteoglycan synthesis), occur via distinct pathways and (b) PDGF may play a crucial role in cartilage repair by initially causing matrix degradation followed by promoting new matrix synthesis. Images Figure 1 Figure 2 Figure 5 Figure 6 PMID:8503839
Photonic Choke-Joints for Dual Polarization Waveguides
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)
2014-01-01
A waveguide structure for a dual polarization waveguide includes a first flange member, a second flange member, and a waveguide member disposed in each of the first flange member and second flange member. The first flange member and the second flange member are configured to be coupled together in a spaced-apart relationship separated by a gap. The first flange member has a substantially smooth surface, and the second flange member has an array of two-dimensional pillar structures formed therein.
On the formulation of a minimal uncertainty model for robust control with structured uncertainty
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert
1991-01-01
In the design and analysis of robust control systems for uncertain plants, representing the system transfer matrix in the form of what has come to be termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents a transfer function matrix M(s) of the nominal closed loop system, and the delta represents an uncertainty matrix acting on M(s). The nominal closed loop system M(s) results from closing the feedback control system, K(s), around a nominal plant interconnection structure P(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unsaturated uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, but for real parameter variations delta is a diagonal matrix of real elements. Conceptually, the M-delta structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the currently available literature addresses computational methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty, where the term minimal refers to the dimension of the delta matrix. Since having a minimally dimensioned delta matrix would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta would be useful. Hence, a method of obtaining the interconnection system P(s) is required. A generalized procedure for obtaining a minimal P-delta structure for systems with real parameter variations is presented. Using this model, the minimal M-delta model can then be easily obtained by closing the feedback loop. The procedure involves representing the system in a cascade-form state-space realization, determining the minimal uncertainty matrix, delta, and constructing the state-space representation of P(s). Three examples are presented to illustrate the procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.
2015-03-01
The second crystal structure of a parasite protein preferentially enriched in the brain cyst of T. gondii has been solved at 2.75 Å resolution. Bradyzoite enolase 1 is reported to have differential functions as a glycolytic enzyme and a transcriptional regulator in bradyzoites. In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2)more » in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.« less
Dual ECM Biomimetic Scaffolds for Dental Pulp Regenerative Applications
Huang, Chun-Chieh; Narayanan, Raghuvaran; Warshawsky, Noah; Ravindran, Sriram
2018-01-01
Dental pulp is a highly vascularized and innervated tissue that provides sensitivity and vitality to the tooth. Chronic caries results in an infected pulp tissue prone to necrosis. Existing clinical treatments replace the living pulp tissue with a non-responsive resin filling resulting in loss of tooth vitality. Tissue engineering approaches to dental pulp tissue regeneration have been investigated to preserve tooth vitality and function. However, a critical criterion is the choice of growth factors that may promote mesenchymal stem cell differentiation and more importantly, vascularization. But, the problems associated with growth factor dosage, delivery, safety, immunological and ectopic complications affect their translatory potential severely. The purpose of this study is to develop, characterize and evaluate a biomimetic native extracellular matrix (ECM) derived dual ECM scaffold that consists of a pulp-specific ECM to promote MSC attachment, proliferation and differentiation and an endothelial ECM to promote migration of host endothelial cells and eventual vascularization in vivo. Our results show that the dual ECM scaffolds possess similar properties as a pulp-ECM scaffold to promote MSC attachment and odontogenic differentiation in vitro. Additionally, when implanted subcutaneously in a tooth root slice model in vivo, the dual ECM scaffolds promoted robust odontogenic differentiation of both dental pulp and bone marrow derived MSCs and also extensive vascularization when compared to respective controls. These scaffolds are mass producible for clinical use and hence have the potential to replace root canal therapy as a treatment for chronic dental caries. PMID:29887803
Neri, L M; Bortul, R; Zweyer, M; Tabellini, G; Borgatti, P; Marchisio, M; Bareggi, R; Capitani, S; Martelli, A M
1999-06-01
The higher order of chromatin organization is thought to be determined by the nuclear matrix, a mainly proteinaceous structure that would act as a nucleoskeleton. The matrix is obtained from isolated nuclei by a series of extraction steps involving the use of high salt and nonspecific nucleases, which remove chromatin and other loosely bound components. It is currently under debate whether these structures, isolated in vitro by unphysiological extraction buffers, correspond to a nucleoskeleton existing in vivo. In most cell types investigated, the nuclear matrix does not spontaneously resist these extractions steps; rather, it must be stabilized before the application of extracting agents. In this study nuclei, isolated from K562 human erythroleukemia cells, were stabilized by incubation with different metal ions (Ca2+, Cu2+, Zn2+, Cd2+), and the matrix was obtained by extraction with 2 M NaCl. By means of ultrastructural analysis of the resulting structures, we determined that, except for Ca2+, all the other metals induced a stabilization of the matrix, which retained the inner fibrogranular network and residual nucleoli. The biochemical composition, analyzed by two-dimensional gel electrophoresis separation, exhibited a distinct matrix polypeptide pattern, characteristic of each type of stabilizing ion employed. We also investigated to what extent metal ions could maintain in the final structures the original distribution of three inner matrix components, i.e. NuMA, topoisomerase IIalpha, and RNP. Confocal microscopy analysis showed that only NuMa, and, to a lesser extent, topoisomerase IIalpha, were unaffected by stabilization with divalent ions. On the contrary, the fluorescent RNP patterns detected in the resulting matrices were always disarranged, irrespective of the stabilization procedure. These results indicate that several metal ions are powerful stabilizing agents of the nuclear matrix prepared from K562 erythroleukemia cells and also strengthen the concept that NuMA and topoisomerase IIalpha may act as structural components of the nuclear matrix.
Dual Fractal Dimension and Long-Range Correlation of Chinese Stock Prices
NASA Astrophysics Data System (ADS)
Chen, Chaoshi; Wang, Lei
2012-03-01
The recently developed modified inverse random midpoint displacement (mIRMD) and conventional detrended fluctuation analysis (DFA) algorithms are used to analyze the tick-by-tick high-frequency time series of Chinese A-share stock prices and indexes. A dual-fractal structure with a crossover at about 10 min is observed. The majority of the selected time series show visible persistence within this time threshold, but approach a random walk on a longer time scale. The phenomenon is found to be industry-dependent, i.e., the crossover is much more prominent for stocks belonging to cyclical industries than for those belonging to noncyclical (defensive) industries. We have also shown that the sign series show a similar dual-fractal structure, while like generally found, the magnitude series show a much longer time persistence.
NASA Technical Reports Server (NTRS)
Liu, Yili; Wickens, Christopher D.
1987-01-01
This paper reports on the first experiment of a series studying the effect of task structure and difficulty demand on time-sharing performance and workload in both automated and corresponding manual systems. The experimental task involves manual control time-shared with spatial and verbal decisions tasks of two levels of difficulty and two modes of response (voice or manual). The results provide strong evidence that tasks and processes competing for common processing resources are time shared less effecively and have higher workload than tasks competing for separate resources. Subjective measures and the structure of multiple resources are used in conjunction to predict dual task performance. The evidence comes from both single-task and from dual-task performance.
Telerobotic research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Sliwa, Nancy E.
1987-01-01
An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.
Wei, Zuwu; Wu, Ming; Li, Zuanfang; Lin, Zhan; Zeng, Jinhua; Sun, Haiyan; Liu, Xiaolong; Liu, Jingfeng; Li, Buhong; Zeng, Yongyi
2018-11-01
Developing multifunctional nanoparticle-based theranostic platform for cancer diagnosis and treatment is highly desirable, however, most of the present theranostic platforms are fabricated via complicated structure/composition design and time-consuming synthesis procedures. Herein, the multifunctional Gd/CeO 2 -ZrO 2 /DOX-PEG nanoplatform with single nano-structure was fabricated through a facile route, which possessed MR/CT dual-model imaging and chemotherapy ability. The nanoplatform not only exhibited well-defined shapes, tunable compositions and narrow size distributions, but also presented a well anti-cancer effect and MR/CT imaging ability. Therefore, the Gd/CeO 2 -ZrO 2 /DOX-PEG nanoplatform could be applied for chemotherapy as well as dual-model MR/CT imaging.
NASA Astrophysics Data System (ADS)
Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.
2017-10-01
Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate difficulties that arise in the analysis of the Purcell effect because of the divergence of the integral describing the effective volume of the mode in open systems.
Lee, Jung-Jin; Choi, Jung-Yun; Seo, Jae-Min
2017-04-01
The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength ( P <.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. Groups treated with the nanostructured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.
Research on Russian National Character
ERIC Educational Resources Information Center
Na, Zhuo
2008-01-01
The special geographical location Russia lies in creates the unique character of the Russian nation. Based on the dual nature of the Russian national character, the Russian geographical environment and the analysis of its social structure, this text tries to explore the reasons of the dual nature of Russian national character.
Knowledge of damage identification about tensegrities via flexibility disassembly
NASA Astrophysics Data System (ADS)
Jiang, Ge; Feng, Xiaodong; Du, Shigui
2017-12-01
Tensegrity structures composing of continuous cables and discrete struts are under tension and compression, respectively. In order to determine the damage extents of tensegrity structures, a new method for tensegrity structural damage identification is presented based on flexibility disassembly. To decompose a tensegrity structural flexibility matrix into the matrix represention of the connectivity between degress-of-freedoms and the diagonal matrix comprising of magnitude informations. Step 1: Calculate perturbation flexibility; Step 2: Compute the flexibility connectivity matrix and perturbation flexibility parameters; Step 3: Calculate the perturbation stiffness parameters. The efficiency of the proposed method is demonstrated by a numeical example comprising of 12 cables and 4 struts with pretensioned. Accurate identification of local damage depends on the availability of good measured data, an accurate and reasonable algorithm.
Extracellular matrix structure.
Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K
2016-02-01
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Three-dimensional biocompatible matrix for reconstructive surgery
NASA Astrophysics Data System (ADS)
Reshetov, I. V.; Starceva, O. I.; Istranov, A. L.; Vorona, B. N.; Lyundup, A. V.; Gulyaev, I. V.; Melnikov, D. V.; Shtansky, D. V.; Sheveyko, A. N.; Andreev, V. A.
2016-08-01
A study into the development of an original bioengineered structure for reconstruction of hollow organs is presented. The basis for the structure was the creation of a mesh matrix made from titanium nickelide (NiTi), which has sufficient elasticity and shape memory for the reconstruction of hollow tubular orgrans. In order to increase the cell adhesion on the surface of the matrix, the grid needed to be cleaned of impurities, for which we used an ionic cleaning method. Additional advantages also may enable the application of the bioactive component to grid surface. These features of the matrix may improve the biocompatibility properties of the composite material. In the first stage, a mesh structure was made from NiTi fibers. The properties of the resulting mesh matrix were studied. In the second stage, the degrees of adhesion and cell growth rates in the untreated matrix, the matrix after ionic cleaning and the matrix after ionic cleaning and the application of the bioactive component were compared. The results showed more significant biocompatibility of the titanium nickelide matrix after its ionic cleaning. The ionic cleaning ensures the removal of toxic contaminants, which are a consequence of the technological production process of the material and provide optimal adhesion properties for the fiber surface. The NiTi net matrix with TiCaPCON coating may be the optimal basis for making the hollow elastic organs.
Wang, Xing; Zhang, Yuxin; Liu, Qing; Ai, Zhixin; Zhang, Yanling; Xiang, Yuhong; Qiao, Yanjiang
2016-01-01
Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA. PMID:26999111
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1985-01-01
A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.
Structure and dynamics of spin-labeled insulin entrapped in a silica matrix by the sol-gel method.
Vanea, E; Gruian, C; Rickert, C; Steinhoff, H-J; Simon, V
2013-08-12
The structure and conformational dynamics of insulin entrapped into a silica matrix was monitored during the sol to maturated-gel transition by electron paramagnetic resonance (EPR) spectroscopy. Insulin was successfully spin-labeled with iodoacetamide and the bifunctional nitroxide reagent HO-1944. Room temperature continuous wave (cw) EPR spectra of insulin were recorded to assess the mobility of the attached spin labels. Insulin conformation and its distribution within the silica matrix were studied using double electron-electron resonance (DEER) and low-temperature cw-EPR. A porous oxide matrix seems to form around insulin molecules with pore diameters in the order of a few nanometers. Secondary structure of the encapsulated insulin investigated by Fourier transform infrared spectroscopy proved a high structural integrity of insulin even in the dried silica matrix. The results show that silica encapsulation can be used as a powerful tool to effectively isolate and functionally preserve biomolecules during preparation, storage, and release.
Structure and assembly of a paramyxovirus matrix protein
Battisti, Anthony J.; Meng, Geng; Winkler, Dennis C.; McGinnes, Lori W.; Plevka, Pavel; Steven, Alasdair C.; Morrison, Trudy G.; Rossmann, Michael G.
2012-01-01
Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host’s cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly. PMID:22891297
Structure and assembly of a paramyxovirus matrix protein.
Battisti, Anthony J; Meng, Geng; Winkler, Dennis C; McGinnes, Lori W; Plevka, Pavel; Steven, Alasdair C; Morrison, Trudy G; Rossmann, Michael G
2012-08-28
Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.
Wu, J S; Kim, A M; Bleher, R; Myers, B D; Marvin, R G; Inada, H; Nakamura, K; Zhang, X F; Roth, E; Li, S Y; Woodruff, T K; O'Halloran, T V; Dravid, Vinayak P
2013-05-01
A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Research on dual-parameter optical fiber sensor based on few-mode fiber with two down-tapers
NASA Astrophysics Data System (ADS)
Wang, Xue; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang
2017-10-01
A dual-parameter optical fiber sensor, which is fabricated by sandwiching a segment of few-mode fiber (FMF) with two down-tapers between two segments of standard single-mode fibers (SMFs), is investigated theoretically and experimentally. The two down-tapers on the FMF can enhance the evanescent field, making the sensor more sensitive to changes in the external environment. The refractive index (RI) and temperature are measured simultaneously using the different sensitivities of the two dips in this experimental interference spectrum. The measured temperature sensitivities are 0.097 and 0.114 nm/°C, and the RI sensitivities are -97.43 and -108.07 nm/RIU, respectively. Meanwhile, the simple SMF-FMF-SMF structure is also measured. By comparing the experimental results of the two structures, the sensitivities of the proposed structure based on the dual-taper FMF are significantly improved. In addition, the sensor is easy to fabricate and cost effective.
Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor.
Lee, Cheng-Ling; Shih, Wen-Cheng; Hsu, Jui-Ming; Horng, Jing-Shyang
2014-10-06
This work proposes a novel, highly sensitive and directional fiber tilt sensor that is based on an asymmetrical dual tapered fiber Mach-Zehnder interferometer (ADTFMZI). The fiber-optic tilt sensor consists of two abrupt tapers with different tapered waists into which are incorporated a set of iron spheres to generate an asymmetrical strain in the ADTFMZI that is correlated with the tilt angle and the direction of inclination. Owing to the asymmetrical structure of the dual tapers, the proposed sensor can detect the non-horizontal/horizontal state of a structure and whether the test structure is tilted to clockwise or counterclockwise by measuring the spectral responses. Experimental results show that the spectral wavelengths are blue-shifted and red-shifted when the sensor tilts to clockwise (-θ) and counterclockwise ( + θ), respectively. Tilt angle sensitivities of about 335 pm/deg. and 125 pm/deg. are achieved in the -θ and + θ directions, respectively, when the proposed sensing scheme is utilized.
Wang, Guangfeng; Huang, Hao; Zhang, Xiaojun; Wang, Lun
2012-05-15
In the present study, based on a dual hairpin DNA structure, a novel system of electrically contacted enzyme and its signal amplification for ultrasensitive detection of Hg(2+) was demonstrated. In the presence of Hg(2+), with the interaction of thymine-Hg(2+)-thymine (T-Hg(2+)-T), DNA sequence dully labeled with ferrocene (Fc) at 5' end and horseradish peroxidase (HRP) at 3' end, hybridized to the capture probe and formed the dual hairpin structure on the electrode. Fc unit acts as a relay that electrically contacts HRP with the electrode and activates the bioelectrocatalyzed reduction of H(2)O(2). And based on the bioelectrocatalyzed signal amplification of the presented system, Hg(2+) could be quantitatively detected in the range of 10(-10)-10(-6)M with a low detection limit of 52 pM. And it also demonstrated excellent selectivity against other interferential metal ions. Copyright © 2012 Elsevier B.V. All rights reserved.
Elebring, Erik; Kuna, Vijay K; Kvarnström, Niclas; Sumitran-Holgersson, Suchitra
2017-01-01
Despite progress in the field of decellularization and recellularization, the outcome for pancreas has not been adequate. This might be due to the challenging dual nature of pancreas with both endocrine and exocrine tissues. We aimed to develop a novel and efficient cold-perfusion method for decellularization of porcine pancreas and recellularize acellular scaffolds with human fetal pancreatic stem cells. Decellularization of whole porcine pancreas at 4°C with sodium deoxycholate, Triton X-100 and DNase efficiently removed cellular material, while preserving the extracellular matrix structure. Furthermore, recellularization of acellular pieces with human fetal pancreatic stem cells for 14 days showed attached and proliferating cells. Both endocrine (C-peptide and PDX1) and exocrine (glucagon and α-amylase) markers were expressed in recellularized tissues. Thus, cold-perfusion can successfully decellularize porcine pancreas, which when recellularized with human fetal pancreatic stem cells shows relevant endocrine and exocrine phenotypes. Decellularized pancreas is a promising biomaterial and might translate to clinical relevance for treatment of diabetes. PMID:29118967
NASA Astrophysics Data System (ADS)
Suh, Dong-Woo; Park, Seong-Jun; Lee, Tae-Ho; Oh, Chang-Seok; Kim, Sung-Joon
2010-02-01
Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.
Effect of ethylenediamine on chemical degradation of insulin aspart in pharmaceutical solutions.
Poulsen, Christian; Jacobsen, Dorte; Palm, Lisbeth
2008-11-01
To examine the effect of different amine compounds on the chemical degradation of insulin aspart at pharmaceutical formulation conditions. Insulin aspart preparations containing amine compounds or phosphate (reference) were prepared and the chemical degradation was assessed following storage at 37 degrees C using chromatographic techniques. Ethylenediamine was examined at multiple concentrations and the resulting insulin-ethylenediamine derivates were structurally characterized using matrix assisted laser desorption ionization time-of-flight mass spectroscopy. The effects on ethylenediamine when omitting glycerol or phenolic compounds from the formulations were investigated. Ethylenediamine was superior in terms of reducing formation of high molecular weight protein and insulin aspart related impurities compared to the other amine compounds and phosphate. Monotransamidation of insulin aspart in the presence of ethylenediamine was observed at all of the six possible Asn/Gln residues with Asn(A21) having the highest propensity to react with ethylenediamine. Data from formulations studies suggests a dual mechanism of ethylenediamine and a mandatory presence of phenolic compounds to obtain the effect. The formation of high molecular weight protein and insulin aspart related impurities was reduced by ethylenediamine in a concentration dependant manner.
NASA Astrophysics Data System (ADS)
Qarib, Hossein; Adeli, Hojjat
2015-12-01
In this paper authors introduce a new adaptive signal processing technique for feature extraction and parameter estimation in noisy exponentially damped signals. The iterative 3-stage method is based on the adroit integration of the strengths of parametric and nonparametric methods such as multiple signal categorization, matrix pencil, and empirical mode decomposition algorithms. The first stage is a new adaptive filtration or noise removal scheme. The second stage is a hybrid parametric-nonparametric signal parameter estimation technique based on an output-only system identification technique. The third stage is optimization of estimated parameters using a combination of the primal-dual path-following interior point algorithm and genetic algorithm. The methodology is evaluated using a synthetic signal and a signal obtained experimentally from transverse vibrations of a steel cantilever beam. The method is successful in estimating the frequencies accurately. Further, it estimates the damping exponents. The proposed adaptive filtration method does not include any frequency domain manipulation. Consequently, the time domain signal is not affected as a result of frequency domain and inverse transformations.
NASA Astrophysics Data System (ADS)
Stoykov, S.; Atanassov, E.; Margenov, S.
2016-10-01
Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.
Polymer and ceramic nanocomposites for aerospace applications
NASA Astrophysics Data System (ADS)
Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana
2017-11-01
This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.
Hrabe, Nikolas W.; Heinl, Peter; Bordia, Rajendra K.; Körner, Carolin; Fernandes, Russell J.
2013-01-01
Regular 3D periodic porous Ti-6Al-4 V structures were fabricated by the selective electron beam melting method (EBM) over a range of relative densities (0.17–0.40) and pore sizes (500–1500 μm). Structures were seeded with human osteoblast-like cells (SAOS-2) and cultured for four weeks. Cells multiplied within these structures and extracellular matrix collagen content increased. Type I and type V collagens typically synthesized by osteoblasts were deposited in the newly formed matrix with time in culture. High magnification scanning electron microscopy revealed cells attached to surfaces on the interior of the structures with an increasingly fibrous matrix. The in-vitro results demonstrate that the novel EBM-processed porous structures, designed to address the effect of stress-shielding, are conducive to osteoblast attachment, proliferation and deposition of a collagenous matrix characteristic of bone. PMID:23869614
Matrix Transfer Function Design for Flexible Structures: An Application
NASA Technical Reports Server (NTRS)
Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.
1985-01-01
The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.
Structured Matrix Completion with Applications to Genomic Data Integration.
Cai, Tianxi; Cai, T Tony; Zhang, Anru
2016-01-01
Matrix completion has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.