Science.gov

Sample records for dual permeability soil

  1. Development of a Nonisothermal Dual Permeability Model for Structured Soils

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Mohanty, B.

    2015-12-01

    The Philip and de Vries (1957) model and its extensions (e.g., Smits et al. (2011) ) cannot appropriately characterize preferential flow processes in the structured heterogeneous soils including macropores (fractures, cracks, root channels, etc.), which is ubiquitous at the terrestrial surfaces. The macropores in the vadose zone not only provide pathways for increased downward liquid flow and may enhance fast transport of nonvolatile contaminants to the groundwater, but also provide pathways for gas and vapor transport and may enhance upward movement of volatile contaminants (Scanlon et al., 1997). In other words, with respect to the structured soils, the wetting phases (e.g., liquid water) will preferentially reside in the small pores such as soil matrix, while the nonwetting phases (e.g., air and vapor) will tend to occupy the larger pores such as fractures. As a result of such phase distribution, the temperatures in the matrix and macropores are also expected to be different. In this work, we attempted to formulate and develop a dual permeability model in heterogeneous soils suitable for coupled water and heat flow descriptions. We defined two continua (each continuum has its own set of parameters and variables) and solved separate mass and energy balance equations in each continuum. The water and heat transport equations in each continuum are coupled by exchange terms. This dual permeability coupled water and heat flow model has the capability to correctly simulate preferential evaporation over fine-textured soils due to the fact that the capillary forces divert the pore water from coarse-textured soils (high temperature region) toward the fine-textured soils (low temperature region).

  2. Uncertainty in dual permeability model parameters for structured soils.

    PubMed

    Arora, B; Mohanty, B P; McGuire, J T

    2012-01-01

    Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa ) and macropore tortuosity (lf ) but also of other parameters of the matrix and macropore domains.

  3. Dual-permeability model for water flow and solute transport in shrinking soils

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Gerke, Horst; Comegna, Alessandro; Basile, Angelo

    2014-05-01

    A dual-permeability approach was extended to describe preferential water flow and solute transport in shrinking soils. In the approach, the soil is treated as a dual-permeability bulk porous medium consisting of dynamic interacting matrix and fractures pore domains. Water flow and solute transport in both the domains are described by the Richards' equation and advection-dispersion equation, respectively. In the model the contributions of the two regions to water flow and solute transport is changed dynamically according to the shrinkage characteristic exhibited under soil drying. Aggregate deformation during wetting/drying cycles is assumed to change only the relative proportions of voids in the fractures and in the aggregates, while the total volume of pores (and thus the layer thickness) remains unchanged. Thus, the partial contributions of the fracture and aggregate domains, are now a function of the water content (or the pressure head h), while their sum, the bulk porosity, is assumed to be constant. Any change in the aggregate contribution to total porosity is directly converted into a proportional change in the fracture porosity. This means that bulk volume change during shrinkage is mainly determined by change in crack volume rather than by change in layer thickness. This simplified approach allows dealing with an expansive soil as with a macroscopically rigid soil. The model was already tested by investigating whether and how well hydraulic characteristics obtained under the assumption of "dynamic" dual-permeability hydraulic parameterizations, or, alternatively, assuming the rigidity of the porous medium, reproduced measured soil water contents in a shrinking soil. Here we will discuss theoretical implications of the model in terms of relative importance of the parameters involved. The relative importance will be evaluated for different flow and transport processes and for different initial and top boundary conditions. Key words: Preferential flow and

  4. Dual-permeability model for flow in shrinking soil with dominant horizontal deformation

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Gerke, Horst H.; Comegna, Alessandro; Basile, Angelo; Comegna, Vincenzo

    2012-08-01

    In this study, a dual-permeability approach is discussed for modeling preferential flow in shrinking soils by accounting for shrinking effects on macropore and matrix domain hydraulic properties. Conceptually, the soil is treated as a dual-permeability bulk porous medium consisting of two dynamic interacting pore domains: (1) the fracture (from shrinkage) pore domain and (2) the aggregate (interparticles plus structural) or matrix pore domain. The model assumes that the swell-shrink dynamics is represented by the inversely proportional volume changes of the fracture and matrix domains, while the overall porosity of the total soil, and hence the layer thickness, remains constant. This assumption can be justified for soils with dominant horizontal soil deformation in the swelling-shrinkage process (shrinkage geometry factor,rs> 3). The swell-shrink dynamics was included in a one-dimensional dual-permeability model in which water flow in both domains was described with the Richards' equation. Swell-shrink dynamics was incorporated in the model partly by changing the coupled domain-specific hydraulic properties according to the shrinkage characteristics of the matrix and partly by allowing the fractional contribution of the two domains to change with the pressure head. As a first step, the hysteresis in the swell-shrink dynamics was not included. We also assumed that the aggregate behavior and its hydraulic properties depend only on the average aggregate water content and not on its internal real distribution. The model proved, describing successfully effects of shrinkage on the spatial and temporal evolution of water contents measured in a silty loam soil in the field.

  5. A dual-permeability approach to preferential water flow and solute transport in shrinking soils

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; dragonetti, giovanna; Comegna, Alessandro; Gerke, Horst H.; Basile, Angelo

    2016-04-01

    The pore systems in most natural soils is dynamically changing due to alternating swelling and shrinkage processes, which induces changes in pore volume and pore size distribution including deformations in pore geometry. This is a serious difficulty for modeling flow and transport in dual permeability approaches, as it will also require that the geometrical deformation of both the soil matrix and the fracture porous systems be taken into account, as well as the dynamics of soil hydraulic properties in response to the domain deformations. This study follows up a previous work by the same authors extending the classical rigid (RGD) approach formerly proposed by Gerke and van Genuchten, to account for shrinking effects (SHR) in modeling water flow and solute transport in dual-permeability porous media. In this study we considered three SHR scenarios, assuming that aggregate shrinkage may change either: (i) the hydraulic properties of the two pore domains, (ii) their relative fractions, and (iii) both, hydraulic properties and fractions of the two domains. The objective was to compare simulation results obtained under the RGD and the SHR assumptions to illustrate the impact of matrix volume changes on water storage, water fluxes and solute concentrations during: 1) An infiltration process bringing an initially dry soil to saturation, 2) A drainage process starting from an initially saturated soil. For an infiltration process, the simulated wetting front and the solute concentration propagation velocity, as well as the water fluxes, water and solute exchange rates, for the three SHR scenarios significantly deviated from the RGD. By contrast, relatively similar water content profiles evolved under all scenarios during drying. Overall, compared to the RGD approach, the effect of changing the hydraulic properties and the weight of the two domains according to the shrinkage behavior of the soil aggregates induced a much more rapid response in terms of water fluxes and

  6. 2D dual permeability modeling of flow and transport in a two-scale structured lignitic mine soil

    NASA Astrophysics Data System (ADS)

    Dusek, J.; Gerke, H. H.; Vogel, T.; Maurer, T.; Buczko, U.

    2009-04-01

    Two-dimensional single- and dual-permeability simulations are used to analyze water and solute fluxes in heterogeneous lignitic mine soil at a forest-reclaimed mine spoil heap. The soil heterogeneity on this experimental site "Bärenbrücker Höhe" resulted from inclined dumping structures and sediment mixtures that consist of sand with lignitic dust and embedded lignitic fragments. Observations on undisturbed field suction-cell lysimeters including tracer experiments revealed funneling-type preferential flow with lateral water and bromide movement along inclined sediment structures. The spatial distribution of soil structures and fragment distributions was acquired by a digital camera and identified by a supervised classification of the digital profile image. First, a classical single-domain modeling approach was used, with spatially variable scaling factors inferred from image analyses. In the next step, a two-continuum scenario was constructed to examine additional effects of nonequilibrium on the flow regime. The scaling factors used for the preferential flow domain are here obtained from the gradient of the grayscale images. So far, the single domain scenarios failed to predict the bromide leaching patterns although water effluent could be described. Dual-permeability model allows the incorporation of structural effects and can be used as a tool to further testing other approaches that account for structure effects. The numerical study suggests that additional experiments are required to obtain better understanding of the highly complex transport processes on this experimental site.

  7. Hydraulic characterization of dual-permeability unsaturated soils using tension disc infiltration experiments: BEST-2K method

    NASA Astrophysics Data System (ADS)

    Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Yilmaz, Deniz; Peyrard, Xavier

    2014-05-01

    Modelling and understanding water flow and solute transfer in the vadose zone require accounting for preferential flow and physical non-equilibrium transport. The dual permeability approach was developed to model preferential flow. This approach conceptualizes soils as having structural pores representing the fast flow region and the soil matrix with a much lower saturated hydraulic conductivity, with a first-order lateral exchange of water between the two regions. The use of such approach requires the knowledge of the hydraulic functions, i.e. the water retention and hydraulic conductivity functions, for both the matrix and fast flow regions. In this paper, we investigate the design of a new method, referred to as BEST-2K, to characterize the hydraulic functions of dual permeability media from water infiltration experiments. BEST-2K is based on the basics of the so-called BEST method. This method was previously developed to derive the hydraulic functions of single permeability media using single tension water infiltration (e.g., zero pressure head at surface for the Beerkan method). For BEST-2K, two successive water infiltrations are required: one at a constant water pressure head of -15 cm to activate the matrix porosity without macropores (i.e., pores more than 0.2mm in size) and the second with a zero pressure head at surface in order to activate the complementary fast flow porosity. From an experimental point of view, the two infiltrations can be successively conducted using a tension disc infiltrometer. The first cumulative infiltration is analysed with BEST method to derive the hydraulic functions of the matrix alone. The knowledge of the matrix hydraulic functions allows the calculation of cumulative infiltration component through the matrix during the second infiltration. The amount of water infiltrated into the fast flow region is then deduced by subtraction and is used to derive the hydraulic functions of the fast flow region. The proposed BEST-2K method

  8. Dual permeability modeling of tile drain management influences on hydrologic and nutrient transport characteristics in macroporous soil

    NASA Astrophysics Data System (ADS)

    Frey, Steven K.; Hwang, Hyoun-Tae; Park, Young-Jin; Hussain, Syed I.; Gottschall, Natalie; Edwards, Mark; Lapen, David R.

    2016-04-01

    Tile drainage management is considered a beneficial management practice (BMP) for reducing nutrient loads in surface water. In this study, 2-dimensional dual permeability models were developed to simulate flow and transport following liquid swine manure and rhodamine WT (strongly sorbing) tracer application on macroporous clay loam soils under controlled (CD) and free drainage (FD) tile management. Dominant flow and transport characteristics were successfully replicated, including higher and more continuous tile discharge and lower peak rhodamine WT concentrations in FD tile effluent; in relation to CD, where discharge was intermittent, peak rhodamine concentrations higher, and mass exchange from macropores into the soil matrix greater. Explicit representation of preferential flow was essential, as macropores transmitted >98% of surface infiltration, tile flow, and tile solute loads for both FD and CD. Incorporating an active 3rd type lower boundary condition that facilitated groundwater interaction was imperative for simulating CD, as the higher (relative to FD) water table enhanced water and soluble nutrient movement from the soil profile into deeper groundwater. Scenario analysis revealed that in conditions where slight upwards hydraulic gradients exist beneath tiles, groundwater upwelling can influence the concentration of surface derived solutes in tile effluent under FD conditions; whereas the higher and flatter CD water table can restrict groundwater upwelling. Results show that while CD can reduce tile discharge, it can also lead to an increase in surface-application derived nutrient concentrations in tile effluent and hence surface water receptors, and it can promote NO3 loading into groundwater. This study demonstrates dual permeability modeling as a tool for increasing the conceptual understanding of tile drainage BMPs.

  9. Including swell-shrink dynamics in dual-permeability numerical modeling of preferential water flow and solute transport in soils

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Comegna, Alessandro; Gerke, Horst; Basile, Angelo

    2015-04-01

    The classical dual-permeability approach introduced by Gerke and van Genuchten for modeling water flow and solute transport in porous media with preferential flow pathways, was extended to account for shrinking effects on macropore and matrix domain hydraulic properties. Conceptually, the soil is treated as a dual-permeability bulk porous medium consisting of two dynamic interacting pore domains (1) the fracture (from shrinkage) pore domain and (2) the aggregate (interparticles plus structural) or matrix pore domain, respectively. The model assumes that the swell-shrink dynamics is represented by the inversely proportional volume changes of the fracture and matrix domains, while the overall porosity of the total soil, and hence the layer thickness, remains constant. Swell-shrink dynamics was incorporated in the model by either changing the coupled domain-specific hydraulic properties according to the shrinkage characteristics of the matrix, or partly by allowing the fractional contribution of the two domains to change with the pressure head. As a first step, the hysteresis in the swell-shrink dynamics was not included. We also assumed that the aggregate behavior and its hydraulic properties depend only on the average aggregate water content and not on its internal real distribution. Compared to the rigid approach, the combined effect of the changing weight and that of the void ratio on the hydraulic properties in the shrinking approach induce much larger and deeper water and solute transfer from the fractures to the matrix during wetting processes. The analysis shows a systematic underestimation of the wetting front propagation times, as well as of the solute travel times and concentrations when the volume of the aggregate domain is assumed to remain constant. The combined and interacting effects of the dynamic weight and the evolution of matrix pressure head in the shrinking approach is responsible for a bimodal behavior of the water exchange term, which in turn

  10. Permeability of soils in Mississippi

    USGS Publications Warehouse

    O'Hara, Charles G.

    1994-01-01

    The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.

  11. Estimation and upscaling of dual-permeability model parameters for the transport of E. coli D21g in soils with preferential flow.

    PubMed

    Wang, Yusong; Bradford, Scott A; Šimůnek, Jiří

    2014-04-01

    Dual-permeability models are increasingly used to quantify the transport of solutes and microorganisms in soils with preferential flow. An ability to accurately determine the model parameters and their variation with preferential pathway characteristics is crucial for predicting the transport of microorganisms in the field. The dual-permeability model with optimized parameters was able to accurately describe the transport of E. coli D21g in columns with artificial macropores of different configurations and lengths at two ionic strength levels (1 and 20mM NaCl). Correlations between the model parameters and the structural geometry of the preferential flow path were subsequently investigated. Decreasing the macropore length produced a decrease in the apparent saturated hydraulic conductivity of the macropore domain and an increase in the mass transfer between the macropore and matrix domains. The mass transfer coefficient was also found to be dependent on the configuration of the preferential flow pathway. A linear superposition approach was used to estimate field-scale preferential transport behavior for hypothetical fields with different amounts and configurations of macropores. Upscaling procedures were numerically investigated to predict this field-scale transport behavior from column-scale parameters. The upscaling method provided a satisfactory prediction of the field results under the tested scenarios. This information will be useful in assessing the risks of microbial transport due to preferential flow. PMID:24589387

  12. Estimation and upscaling of dual-permeability model parameters for the transport of E. coli D21g in soils with preferential flow.

    PubMed

    Wang, Yusong; Bradford, Scott A; Šimůnek, Jiří

    2014-04-01

    Dual-permeability models are increasingly used to quantify the transport of solutes and microorganisms in soils with preferential flow. An ability to accurately determine the model parameters and their variation with preferential pathway characteristics is crucial for predicting the transport of microorganisms in the field. The dual-permeability model with optimized parameters was able to accurately describe the transport of E. coli D21g in columns with artificial macropores of different configurations and lengths at two ionic strength levels (1 and 20mM NaCl). Correlations between the model parameters and the structural geometry of the preferential flow path were subsequently investigated. Decreasing the macropore length produced a decrease in the apparent saturated hydraulic conductivity of the macropore domain and an increase in the mass transfer between the macropore and matrix domains. The mass transfer coefficient was also found to be dependent on the configuration of the preferential flow pathway. A linear superposition approach was used to estimate field-scale preferential transport behavior for hypothetical fields with different amounts and configurations of macropores. Upscaling procedures were numerically investigated to predict this field-scale transport behavior from column-scale parameters. The upscaling method provided a satisfactory prediction of the field results under the tested scenarios. This information will be useful in assessing the risks of microbial transport due to preferential flow.

  13. Colloid transport in dual-permeability media.

    PubMed

    Leij, Feike J; Bradford, Scott A

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  14. Colloid transport in dual-permeability media

    NASA Astrophysics Data System (ADS)

    Leij, Feike J.; Bradford, Scott A.

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  15. Effect of Dead Algae on Soil Permeability

    SciTech Connect

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  16. Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation

    SciTech Connect

    Garbesi, K.; Sextro, R.G.; Robinson, Arthur L.; Wooley, J.D.; Owens, J.A.; Nazaroff, W.W.

    1995-11-01

    This work investigates the dependence soil air-permeability on sampling scale in near-surface unsaturated soils. A new dual-probe dynamic pressure technique was developed to measure permeability in situ over different length scales and different spatial orientations in the soil. Soils at three sites were studied using the new technique. Each soil was found to have higher horizontal than vertical permeability. Significant scale dependence of permeability was also observed at each site. Permeability increased by a factor of 20 as sampling scale increased from 0.1 to 2 m in a sand soil vegetated with dry grass, and by a factor of 15 as sampling scale increased from 0.1 to 3.5 m in a sandy loam with mature Coast Live Oak trees (Quercus agrifolia). The results indicate that standard methods of permeability assessment can grossly underestimate advective transport of gas-phase contaminants through soils.

  17. Air sparging in low permeability soils

    SciTech Connect

    Marley, M.C.

    1996-08-01

    Sparging technology is rapidly growing as a preferred, low cost remediation technique of choice at sites across the United States. The technology is considered to be commercially available and relatively mature. However, the maturity is based on the number of applications of the technology as opposed to the degree of understanding of the mechanisms governing the sparging process. Few well documented case studies exist on the long term operation of the technology. Sparging has generally been applied using modified monitoring well designs in uniform, coarse grained soils. The applicability of sparging for the remediation of DNAPLs in low permeability media has not been significantly explored. Models for projecting the performance of sparging systems in either soils condition are generally simplistic but can be used to provide general insight into the effects of significant changes in soil and fluid properties. The most promising sparging approaches for the remediation of DNAPLs in low permeability media are variations or enhancements to the core technology. Recirculatory sparging systems, sparging/biosparging trenches or curtains and heating or induced fracturing techniques appear to be the most promising technology variants for this type of soil. 21 refs., 9 figs.

  18. Dual-permeability modeling of preferential bromide leaching from a tile-drained glacial till agricultural field

    NASA Astrophysics Data System (ADS)

    Gerke, Horst H.; Maximilian Köhne, J.

    2004-04-01

    A tile-drained agricultural field can be regarded as a 'field-scale' lysimeter that may be used to study soil water and chemical transport under relatively natural conditions. Tile discharge and effluent bromide concentrations measured in a previous field tracer experiment for a structured clayey loam at Bokhorst, Northern Germany, indicated strong preferential flow. Simulation using single domain HYDRUS numerical flow and transport model could nevertheless explain water outflow, however, completely failed to describe tile-drain leaching patterns of the conservative tracer. The objective of this paper was to analyze whether the nonequilibrium-type dual-permeability model concept could better capture soil structure related principle mechanisms of preferential leaching in the unsaturated soil at that study site. The dual-permeability model (DUAL) describes for soil matrix and fracture pore systems Darcian flow with coupled Richards' equations and convective-dispersive (CD) solute transport with coupled CD equations. The hydraulic parameters of the dual-permeability model were obtained from standard soil hydraulic measurements by adopting a bimodal fitting procedure, whereas transport parameters were inferred from soil column tracer experiments and geometrical transfer term parameters were derived using qualitative soil structure descriptions. The hydraulic conductivity Ka in the inter-domain water transfer term and the effective diffusion coefficient Da in the solute mass transfer term were calibrated by comparing simulated with measured tile flow and effluent concentrations. The DUAL approach described water flow similarly well as the single-domain model. Bromide concentrations in the tile effluent could be approximated with DUAL when decreasing the Ka and Da values by three orders of magnitude compared with the values of the soil matrix domain. The dual-permeability approach seems to reflect nonequilibrium transport mechanisms at this structured soil since it not

  19. Relative air permeability as function of saturation in soil venting

    SciTech Connect

    Stylianou, C.; DeVantier, B.A.

    1995-04-01

    Traditionally, soil remediation involved soil flushing, or excavation followed by landfilling or treatment. In recent years, recognizing the major environmental problem of soil contamination by VOCs, soil vapor extraction (SVE, also known as soil venting) has been applied as a form of in situ remediation. A key parameter in modeling soil-venting systems is relative air permeability, determined as a function of liquid saturation. The focus of the present study was to characterize the relationship of the relative air permeability as a function of air saturation in soil-venting systems. A new laboratory apparatus was used to simulate the soil venting and measure the air permeability of soil samples. Sand samples wetted with mixtures of water and gasoline at different ratios were used. It was revealed that the prediction of relative air permeability for moist noncohesive soil can be made in terms of intrinsic permeability and air-filled porosity alone, and not the type of liquid present in the pores. Comparisons of measured data with existing relations for relative air permeability as a function of total liquid saturation were made to determine the most accurate and practical forms for engineering applications. For the sand sample used, the evaluation revealed that compared to the existing relations, a derived second-order polynomial expression provides a good estimate of relative air permeability and does not require estimation of soil-water-retention curve parameters.

  20. Upscaling Fracture Properties in Support of Dual-Permeability Simulations

    NASA Astrophysics Data System (ADS)

    Reeves, D. M.; Parashar, R.

    2008-12-01

    Rainier Mesa (RM) is a tuffaceous, high elevation plateau on the Nevada Test Site (NTS) that has been subjected to numerous nuclear tests between 1957 and 1992. Unlike other tests on the NTS located within or just above the saturated zone, tests at the RM T-tunnel complex were conducted within a variably-saturated sequence of bedded and non-welded vitric and zeolitized tuff units, located approximately 500 m above the regional groundwater flow system. The low permeability and high porosity of the underlying zeolitized tuff units suggest the downward transport of radionuclides released from these tests are minimal through the tuff matrix. However, numerous faults observed to discharge water into tunnel drifts may serve as preferential pathways for radionuclide migration. Data collected from tunnel drifts indicate that faulting within the zeolitized tuff units are sparse with fractal clustering, and that connectivity between adjacent fault clusters is often weak to non-existent. The sparse fault density at RM, in conjunction with the extreme variability in the spatial distribution of faults, poses challenges not readily addressed by existing upscaling methods that upscale fracture properties as equivalent grid tensors. The unique fault statistics at RM has led to the development of a fracture continuum method designed to faithfully preserve flow and transport properties of the sparse fault networks. This method is based on selective mapping and upscaling of fault hydraulic and transport properties onto a continuum grid in support of dual-permeability simulations. Comparisons of global flow and random walk particle breakthrough between two-dimensional discrete fracture network and fracture continuum simulations demonstrate the utility of this method.

  1. Dual permeability modeling of flow in a fractured geothermal reservoir

    SciTech Connect

    Miller, J.D.; Allman, D.W.

    1986-01-01

    A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element stimulation of the smaller fractures. The second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 ..mu..m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model. 20 refs., 6 figs.

  2. PREFERENTIAL RADON TRANSPORT THROUGH HIGHLY PERMEABLE CHANNELS IN SOILS

    EPA Science Inventory

    The paper discusses preferential radon transport through highly permeable channels in soils. Indoor radon levels (that can pose a serious health risk) can be dramatically increased by air that is drawn into buildings through pipe penetrations that connect to permeable channels in...

  3. Correlation of Three Techniques for Determining Soil Permeability

    ERIC Educational Resources Information Center

    Winneberger, John T.

    1974-01-01

    Discusses problems of acquiring adequate results when measuring for soil permeability. Correlates three relatively simple techniques that could be helpful to the inexperienced technician dealing with septic tank practices. An appendix includes procedures for valid percolation tests. (MLB)

  4. Influence of Relict Joints on Permeability of Residual Soil

    NASA Astrophysics Data System (ADS)

    Talib, Z. A.; Kassim, A.; Yunusa, G. H.

    2016-07-01

    Weathering process of granitic material results in the formation of relict joint in lateritic layer of the weathering profile. The number and arrangements of the relict joints affects the permeability of the residual soil which invariably affects water flow and suction distribution in the residual soil. Although the permeability of residual soil without a relict joint can be determined using standard permeability test, it is difficult to be measured when a relict joint is incorporated due to limitation of size and area of the standard equipment. Hence, modified permeability test equipment is introduced in this study. Two arrangement of the relict joint in the equipment were considered. In the first arrangement one relict joint with various spacing were tested while the orientation and spacing of the relict joint were tested using two relict joints in the second arrangement. The results obtained shows that the permeability of the residual soil due to one and two relict joint varies by two orders of magnitude. Therefore, the number and spacing of relict joints modified the permeability of residual soil.

  5. A multiple fractal model for estimating permeability of dual-porosity media

    NASA Astrophysics Data System (ADS)

    Li, Bo; Liu, Richeng; Jiang, Yujing

    2016-09-01

    A multiple fractal model that considers the fractal properties of both porous matrices and fracture networks is proposed for the permeability of dual-porosity media embedded with randomly distributed fractures. In this model, the aperture distribution is verified to follow the fractal scaling law, and the porous matrix is assumed to comprise a bundle of tortuous capillaries that also follow the fractal scaling law. Analytical expressions for fractal aperture distribution, total flow rate, total equivalent permeability, and dimensionless permeability are established, where the dimensionless permeability is defined as the ratio of permeability of the porous matrices to that of the fracture networks. The dimensionless permeability is closely correlated to the structural parameters (i.e., α, θ, Dtf, Dtp, De, Dp, emax, λmax) of the dual-porosity media, and it is more sensitive to the fractal dimension for the size distribution of fracture aperture than to that for the size distribution of pore/capillary diameter. The maximum pore/capillary diameter has a greater impact on the dimensionless permeability than that of the maximum fracture aperture. The dimensionless permeability of fracture networks constructed by the fractal aperture distribution has close values with those of models with lognormal aperture distribution. The proposed multiple fractal model does not involve any empirical constants that do not have clear physical meanings, which could serve as a quick estimation method for assessing permeability of dual-porosity media.

  6. Soil permeability as a function of vegetation type and soil water content.

    PubMed

    Morris, R C; Fraley, L

    1994-06-01

    Soil permeability is important for estimating the rate of mass transport of 222Rn through soils and into basements (Nazaroff 1992). We measured permeability and soil water content on a set of nine plots consisting of three plots vegetated with common barley (Hordeum vulgare), three plots vegetated with Russian thistle (Salsola kali), and three bare plots. Soil moisture was consistently highest on the bare plots and lowest on the Russian thistle plots. Plots with vegetation had lower soil water content during the growing season. Permeability was consistently higher on Russian thistle plots. ANOVA showed that both soil water content and presence of Russian thistle had a significant impact on permeability but that presence of barley did not. The effect of vegetation and moisture on permeability may have significant effects on 222Rn transport in soils.

  7. Soil permeability as a function of vegetation type and soil water content

    SciTech Connect

    Morris, R.C.; Fraley, L. Jr.

    1994-06-01

    Soil permeability is important for estimating the rate of mass transport of {sup 222}Rn through soils and into basements. We measured permeability and soil water content on a set of nine plots consisting of three plots vegetated with common barley (Hordeum vulgare), three plots vegetated with Russian thistle (Salsola kali), and three bare plots. Soil moisture was consistently highest on the bare plots and lowest on the Russian thistle plots. Plots with vegetation had lower soil water content during the growing season. Permeability was consistently higher on Russian thistle plots. ANOVA showed that both soil water content and presence of Russian thistle had a significant impact on permeability but that presence of barley did not. The effect of vegetation and moisture on permeability may have significant effects on {sup 222}Rn transport in soils. 18 refs., 8 figs., 1 tab.

  8. Transverse chemotactic migration of bacteria from high to low permeability regions in a dual permeability microfluidic device.

    PubMed

    Singh, Rajveer; Olson, Mira Stone

    2012-03-20

    Low permeability regions such as clay lenses are difficult to remediate using conventional treatment methods. Bacterial chemotaxis (directed migration toward a contaminant source) may be helpful in enhancing bioremediation of such contaminated sites. This study experimentally simulates a two-dimensional dual-permeability groundwater contamination scenario using a microfluidic device (MFD) and evaluates transverse chemotactic migration of bacteria from high to low permeability regions under various flow velocities. Chemotaxis of Escherichia coli (E. coli) HCB33 to the chemoattractant dl-aspartic acid was quantified in terms of change in total bacterial counts in pore throats in low permeability regions containing attractant. An increase in total bacterial counts, ranging from 1.09 to 1.74 times, was observed in low permeability regions in experiments under chemotactic conditions. Experiments with no attractant showed no increase in total bacterial counts in low permeability regions. A large increase in bacterial counts in the pore throats just outside the low permeability region was also observed in chemotaxis experiments. The bacterial chemotactic response was observed to decrease linearly with increase in flow velocity, with no observed response at the highest flow velocity (Darcy velocity = 0.22 mm/s), where chemotaxis was offset by advective flow.

  9. Measurement and simulation of subsurface tracer migration to tile drains in low permeability, macroporous soil

    NASA Astrophysics Data System (ADS)

    Bishop, Joshua M.; Callaghan, Michael V.; Cey, Edwin E.; Bentley, Larry R.

    2015-06-01

    Multiyear monitoring and simulation of a conservative tracer was used in this study to investigate preferential flow and macropore-matrix interactions in low permeability, macroporous soil. 2,6-Difluorobenzoic acid (DFBA) tracer was applied to a 20 × 20 m drip irrigated test plot situated over two tile drains. Tracer movement over the 2009 and 2010 field seasons was monitored using tile drain effluent, suction lysimeters, monitoring wells, and soil cores. Despite similar volumes of water application to the plot in each season, 10 times more water and 14 times more DFBA were captured by the drains in 2010 due to wetter regional hydrologic conditions. The importance of preferential flow along macropores was shown by rapid DFBA breakthrough to the tile (<47 h), and DFBA detections in sand units below the tile drains. Preferential flow resulted in less than 8% of the DFBA mass being captured by the tiles over both years. With much of the DFBA mass (75%) retained in the upper 0.25 m of the soil at the end of 2009, numerical simulations were used to quantify the migration of this in situ tracer during the subsequent 2010 field season. Dual permeability and dual porosity models produced similar matches to measured tile drain flows and concentrations, but solute leaching was captured more effectively by the dual permeability formulation. The simulations highlighted limitations in current descriptions for small-scale mass transfer between matrix and macropore domains, which do not consider time-dependent transfer coefficients or nonuniform distributions of solute mass within soil matrix blocks.

  10. Modelling the migration of contaminants through variably saturated dual-porosity, dual-permeability chalk.

    PubMed

    Brouyère, Serge

    2006-01-10

    In the Hesbaye region in Belgium, tracer tests performed in variably saturated fissured chalk rocks presented very contrasting results in terms of transit times, according to artificially controlled water recharge conditions prevailing during the experiments. Under intense recharge conditions, tracers migrated across the partially or fully saturated fissure network, at high velocity in accordance with the high hydraulic conductivity and low effective porosity (fracture porosity). At the same time, a portion of the tracer was temporarily retarded in the almost immobile water located in the matrix. Under natural infiltration conditions, the fissure network remained inactive. Tracers migrated downward through the matrix, at low velocity in relation with the low hydraulic conductivity and the large porosity of the matrix. Based on these observations, Brouyère et al. (2004a) [Brouyère, S., Dassargues, A., Hallet, V., 2004a. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation, J. Contam. Hydrol., 72 (1-4), 135-164, doi: 10.1016/j.conhyd.2003.10.009] proposed a conceptual model in order to explain the migration of solutes in variably saturated, dual-porosity, dual-permeability chalk. Here, mathematical and numerical modelling of tracer and contaminant migration in variably saturated fissured chalk is presented, considering the aforementioned conceptual model. A new mathematical formulation is proposed to represent the unsaturated properties of the fissured chalk in a more dynamic and appropriate way. At the same time, the rock water content is partitioned between mobile and immobile water phases, as a function of the water saturation of the chalk rock. The groundwater flow and contaminant transport in the variably saturated chalk is solved using the control volume finite element method. Modelling the field tracer experiments performed in the variably saturated chalk shows the adequacy and

  11. Thermal treatment of low permeability soils using electrical resistance heating

    SciTech Connect

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  12. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, D.A.; Rubin, J.

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. -from Authors

  13. Depth-weighted, mean soil permeability in Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    2000-01-01

    This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The data set was assembled using 1:24,000-scale cartographic and attribute information on the spatial distribution and characteristics of Kansas soils. The data set is in grid (raster) format with a grid-cell size of 10,000 square meters.

  14. Modeling depth-variant and domain-specific sorption and biodegradation in dual-permeability media

    NASA Astrophysics Data System (ADS)

    Ray, Chittaranjan; Vogel, Tomas; Dusek, Jaromir

    2004-05-01

    A dual-permeability model (S_1D_DUAL) was developed to simulate the transport of land-applied pesticides in macroporous media. In this model, one flow domain was represented by the bulk matrix and the other by the preferential flow domain (PFD) where water and chemicals move at faster rates. The model assumed the validity of Darcian flow and the advective-dispersive solute transport in each of the two domains with inter-domain transfer of water and solutes due to pressure and concentration gradients. It was conceptualized that sorption and biodegradation rates vary with soil depth as well as in each of the two flow domains. In addition to equilibrium sorption, kinetic sorption was simulated in the PFD. Simulations were conducted to evaluate the combined effects of preferential flow, depth- and domain-variant sorption, and degradation on leaching of two pesticides: one with strong sorption potential (trifluralin) and the other with weak sorption potential (atrazine). Simulation results for a test case showed that water flux in the PFD was three times more than in the matrix for selected storm events. When equilibrium sorption was considered, the simulated profile of trifluralin in each domain was similar; however, the atrazine profile was deeper in the PFD than in the bulk matrix under episodic storm events. With an assumption of negligible sorption in the PFD, both the atrazine and the trifluralin profiles moved twice deeper into the PFD. The simulated concentrations of the chemicals were several orders higher in the PFD than in the matrix, even at deeper depths. The volume fraction of the macropores and the sorption and biodegradation properties of the chemicals could also affect the amount of pesticides leaving the root zone. For an intense storm event, slow sorption reaction rates in the PFD produced higher breakthrough concentrations of atrazine at the bottom of the simulated soil profile, thus posing the risk for breakthrough of chemicals from the root zone.

  15. Diffusion of DNAPL Components into Low Permeability Soils

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Demond, A. H.

    2013-12-01

    Hazardous waste sites contaminated with dense non-aqueous phase liquids (DNAPLs) have proven difficult to remediate. Even though DNAPLs may be removed from high permeability subsurface strata, the storage of compounds making up DNAPLs in low permeability strata constitutes a secondary source that contributes to a dissolved phase plume over an extended period of time. The movement of DNAPL constituents into and out of low permeable strata is considered to occur through diffusion. However, there are few experimentally measured effective diffusion coefficients for DNAPL components in low permeability soils. Thus, the effective diffusion coefficient is commonly estimated from the aqueous phase diffusion coefficient as a function of the porosity of the soil. This study presents measurements of effective diffusion coefficients of chlorinated solvents and an anionic surfactant dioctyl sodium sulfosuccinate (AOT) in silt and clay-silt mixtures. The experimental results are compared with estimated values to evaluate the performance of commonly used methods to estimate effective diffusion coefficients of DNAPL components. These estimation models generally suggest an increase in the effective diffusion coefficient with an increase in porosity. Yet, in low permeable soils with a substantial fraction of clay, the effective diffusion coefficient for chlorinated solutes decreases, although the porosity increases. Thus, calculations of the quantity of mass stored in low permeable strata may be in error if based on rates of diffusion calculated using such models. In addition to chlorinated solvents, DNAPLs often contain surfactants. The high molecular weight of these solutes results in problems when estimating their effective diffusion coefficient in low permeability soils, since commonly models were formulated for use with low molecular weight compounds. Furthermore, some clay minerals present in low permeable soils have a flexible structure which enables them to expand or

  16. [Effects of different planting modes on the soil permeability of sloping farmlands in purple soil area].

    PubMed

    Li, Jian-Xing; He, Bing-Hui; Mei, Xue-Mei; Liang, Yan-Ling; Xiong, Jian

    2013-03-01

    Taking bare land as the control, this paper studied the effects of different planting modes on the soil permeability of sloping farmlands in purple soil area. For the test six planting modes, the soil permeability was in the order of Eriobotrya japonica > Citrus limon > Vetiveria zizanioides hedgerows +corn >Leucaena leucocephala hedgerows + corn> Hemerocallis fulva > corn> bare land, and decreased with increasing depth. The eigenvalues of soil infiltration were in the order of initial infiltration rate> average infiltration rate> stable infiltration rate. The soil permeability had significant positive linear correlations with soil total porosity, non-capillary porosity, initial moisture content, water holding capacity, and organic matter content, and significant negative linear correlation with soil bulk density. The common empirical infiltration model could well fit the soil moisture infiltration processes under the six planting modes, while the Kostiakov equation could not. PMID:23755487

  17. [Effects of different planting modes on the soil permeability of sloping farmlands in purple soil area].

    PubMed

    Li, Jian-Xing; He, Bing-Hui; Mei, Xue-Mei; Liang, Yan-Ling; Xiong, Jian

    2013-03-01

    Taking bare land as the control, this paper studied the effects of different planting modes on the soil permeability of sloping farmlands in purple soil area. For the test six planting modes, the soil permeability was in the order of Eriobotrya japonica > Citrus limon > Vetiveria zizanioides hedgerows +corn >Leucaena leucocephala hedgerows + corn> Hemerocallis fulva > corn> bare land, and decreased with increasing depth. The eigenvalues of soil infiltration were in the order of initial infiltration rate> average infiltration rate> stable infiltration rate. The soil permeability had significant positive linear correlations with soil total porosity, non-capillary porosity, initial moisture content, water holding capacity, and organic matter content, and significant negative linear correlation with soil bulk density. The common empirical infiltration model could well fit the soil moisture infiltration processes under the six planting modes, while the Kostiakov equation could not.

  18. Liquid Spills on Permeable Soil Surfaces: Experimental Confirmations

    SciTech Connect

    Simmons, Carver S.; Keller, Jason M.

    2005-09-29

    Predictive tools for assessing the quantity of a spill on a soil from the observed spreading area could contribute to improving remediation when it is necessary. On a permeable soil, the visible spill area only hints about the amount of liquid that might reside below the surface. An understanding of the physical phenomena involved with spill propagation on a soil surface is key to assessing the liquid amount possibly present beneath the surface. The objective of this study is an improved prediction capability for spill behavior.

  19. Dual permeability flow behavior for modeling horizontal well production in fractured-vuggy carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu

    2012-09-01

    SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.

  20. Electroosmosis remediation of DNAPLS in low permeability soils

    SciTech Connect

    Ho, S V.

    1996-08-01

    Electroosmosis is the movement of water through a soil matrix induced by a direct current (DC) electric field. The technique has been used since the 1930s for dewatering and stabilizing fine-grained soils. More recently, electroosmosis has been considered as an in-situ method for soil remediation in which water is injected into the soil at the anode region to flush the contaminants to the cathode side for further treatment or disposal. The major advantage of electroosmosis is its inherent ability to move water uniformly through clayey, silty soils at 100 to 1000 times faster than attainable by hydraulic means, and with very low energy usage. Drawbacks of electroosmosis as a stand-alone technology include slow speed, reliance on solubilizing the contaminants into the groundwater for removal, potentially an unstable process for long term operation, and necessary additional treatment and disposal of the collected liquid. Possible remediation applications of electroosmosis for DNAPLs would be primarily in the removal of residual DNAPLs in the soil pores by electroosmotic flushing. The future of electroosmosis as a broad remedial method lies in how well it can be coupled with complementary technologies. Examples include combining electroosmosis with vacuum extraction, with surfactant usage to deal with non-aqueous phase liquids (NAPLs) through enhanced solubilization or mobilization, with permeability enhancing methods (hydrofracturing, pneumatic fracturing, etc.) to create recovery zones, and with in-situ degradation zones to eliminate aboveground treatment. 33 refs., 1 fig., 1 tab.

  1. Liquid CO2 displacement of water in a dual-permeability pore network micromodel.

    PubMed

    Zhang, Changyong; Oostrom, Mart; Grate, Jay W; Wietsma, Thomas W; Warner, Marvin G

    2011-09-01

    Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO(2) (LCO(2))-water displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = -1.1), unstable displacement occurred at all injection rates over 2 orders of magnitude. LCO(2) displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO(2) displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO(2) saturation (S(LCO2)) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO(2) resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict S(LCO2) in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated S(LCO2).

  2. Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network Micromodel

    SciTech Connect

    Zhang, Changyong; Oostrom, Martinus; Grate, Jay W.; Wietsma, Thomas W.; Warner, Marvin G.

    2011-09-01

    Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO2 (LCO2) - water displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = -1.1), unstable displacement occurred at all injection rates over two orders of magnitude. LCO2 displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO2 displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO2 saturation (SLCO2) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO2 resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict SLCO2 in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated SLCO2.

  3. Correlation of soil radon and permeability with indoor radon potential in Ottawa.

    PubMed

    Chen, Jing; Falcomer, Renato; Bergman, Lauren; Wierdsma, Jessica; Ly, Jim

    2009-08-01

    Soil gas radon and soil gas permeability measurements were conducted at 32 sites across the five most populated communities in the city of Ottawa where indoor radon measurements were available for 167 houses. A soil radon index (SRI) determined from the soil radon concentration and the soil gas permeability was used to characterise radon availability from soil to air. This study demonstrated that the average SRI in a community area correlates with the indoor radon potential (the percentage of homes above 200 Bq m(-3)) in that community. Soil gas radon concentrations together with soil gas permeability measurements can be a useful tool for the prediction of the indoor radon potential in the development of a Canadian radon risk map.

  4. Potential performance of pillared inorgano- organo bentonite for soil mix technology permeable reactive barrier (Invited)

    NASA Astrophysics Data System (ADS)

    Abunada, Z. M.; Al-Tabbaa, A.

    2013-12-01

    Modified bentonite has gained more interest for their effect in contaminant removal and environmental protection. This study is investigating the use of three different modified inorgano-organo bentonite (IOB) in soil mixing permeable reactive barrier. IOB were prepared using pillaring agents and quaternary ammonium cations (QAC) with different loading ratios. The permeabilities of compacted specimens containing IOB with two different soil types (sandy and gravelly soil) were measured for site contaminated groundwater, pure water and TEX compounds to study the potential of soil mix permeable reactive barrier (PRB). The soil permeability decreased by 1-2 order of magnitude once mixed with IOB. It also decreased by about 100 in case of TEX compound and site groundwater. The IOB was tested to remove Toluene, Ethyl-benzene, and o-Xylene (TEX) compound from model contaminated water in both batch and column test. Physical characteristics such as pore volume, porosity and specific structure in addition to level of surfactant loading were determined. Materials removal efficiency varied due to the surfactant loading, soil type and contaminant molecular weight. Sorption isotherm showed that the adsorbates preference increased in the order of T>E>X in all IOB types. Maximum TEX compound sorptive capacity varied also due to soil type with the highest was 86.89% 93.19% and 90.2% for T,E,X respectively on sandy soil. Key words: Inorgano-organo bentonite, permeability, reactive barrier, soil mix, sorption

  5. Information content of measurements from tracer microlysimeter experiments designed for parameter identification in dual-permeability models

    NASA Astrophysics Data System (ADS)

    Larsbo, Mats; Jarvis, Nicholas

    2006-06-01

    Parameters regulating the degree of preferential flow in the dual-permeability water flow and solute transport model MACRO are difficult or impossible to derive from direct measurements. The objectives were (i) to find an improved temporal measurement scheme for identification of these parameters using laboratory microlysimeter experiments and (ii) to evaluate the possibilities of parameter identification in the MACRO model. Artificial data from laboratory microlysimeter experiments consisting of high time-resolution 'measurements' of percolation rate, effluent concentration and resident concentrations at six depths were used with PIMLI (parameter identification method using the localisation of information). The data contained enough information to successfully reduce the uncertainty in the parameter governing mass exchange between pore domains, the saturated micropore hydraulic conductivity and the dispersivity for two hypothetical soils representing one typical clay and one loam. Parameters governing water flow in the macropores were shown to be sensitive in a screening analysis with the Morris method and the uncertainty in these parameters was also reduced by PIMLI. However, some of these parameters did not converge towards their true values probably because of parameter interdependence. In all cases, 'measurements' with large information content were found early in the experiments where less than 0.2 pore volumes of water had passed through the column. For successful identification of parameters determining the degree of preferential flow, efforts should be made to perform high time-resolution measurements during the first irrigations following solute application.

  6. Linking soil permeability and soil aggregate stability with root development: a pots experiment (preliminary results)

    NASA Astrophysics Data System (ADS)

    Vergani, Chiara; Graf, Frank; Gerber, Werner

    2015-04-01

    Quantifying and monitoring the contribution of vegetation to the stability of the slopes is a key issue for implementing effective soil bioengineering measures. This topic is being widely investigated both from the hydrological and mechanical point of view. Nevertheless, due to the high variability of the biological components, we are still far from a comprehensive understanding of the role of plants in slope stabilization, especially if the different succession phases and the temporal development of vegetation is considered. Graf et al., 2014, found within the scope of aggregate stability investigations that the root length per soil volume of alder specimen grown for 20 weeks under laboratory conditions is comparable to the one of 20 years old vegetation in the field. This means that already relatively short time scales can provide meaningful information at least for the first stage of colonization of soil bioengineering measures, which is also the most critical. In the present study we analyzed the effect of root growth on two soil properties critical to evaluate the performance of vegetation in restoring and re-stabilizing slopes: permeability and soil aggregate stability. We set up a laboratory experiment in order to work under controlled conditions and limit as much as possible the natural variability. Alnus incana was selected as the study species as it is widely used in restoration projects in the Alps, also because of its capacity to fix nitrogen and its symbiosis with both ecto and arbuscular mycorrhizal fungi. After the first month of growth in germination pots, we planted one specimen each in big quasi cylindrical pots of 34 cm diameter and 35 cm height. The pots were filled with the soil fraction smaller than 10 mm coming from an oven dried moraine collected in a subalpine landslide area (Hexenrübi catchment, central Switzerland). The targeted dry unit weight was 16 kN/m3. The plants have been maintained at a daily temperature of 25°C and relative

  7. Long-term monitoring of soil gas radon and permeability at two reference sites.

    PubMed

    Chen, Jing; Falcomer, Renato; Ly, Jim; Wierdsma, Jessica; Bergman, Lauren

    2008-01-01

    The long-term monitoring of soil radon variations was conducted at two reference sites in Ottawa. The purpose of this study was to determine whether a single soil radon survey could provide a representative soil radon characteristic of the site. Results showed that during the normal field survey period from June to September in Canada, a single field survey with multiple measurements of soil gas radon concentrations at a depth of 80 cm can characterise the soil radon level of a site within a deviation of +/-30%. Direct in situ soil permeability measurements exhibited, however, large variations even within an area of only 10 x 10 m(2). Considering such large variations and the weight of the equipment, soil permeability can be determined by direct measurements whenever possible or by other qualitative evaluation methods for sites that are hard to access with heavy equipment.

  8. Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression

    NASA Astrophysics Data System (ADS)

    Ahangar-Asr, A.; Faramarzi, A.; Mottaghifard, N.; Javadi, A. A.

    2011-11-01

    This paper presents a new approach, based on evolutionary polynomial regression (EPR), for prediction of permeability ( K), maximum dry density (MDD), and optimum moisture content (OMC) as functions of some physical properties of soil. EPR is a data-driven method based on evolutionary computing aimed to search for polynomial structures representing a system. In this technique, a combination of the genetic algorithm (GA) and the least-squares method is used to find feasible structures and the appropriate parameters of those structures. EPR models are developed based on results from a series of classification, compaction, and permeability tests from the literature. The tests included standard Proctor tests, constant head permeability tests, and falling head permeability tests conducted on soils made of four components, bentonite, limestone dust, sand, and gravel, mixed in different proportions. The results of the EPR model predictions are compared with those of a neural network model, a correlation equation from the literature, and the experimental data. Comparison of the results shows that the proposed models are highly accurate and robust in predicting permeability and compaction characteristics of soils. Results from sensitivity analysis indicate that the models trained from experimental data have been able to capture many physical relationships between soil parameters. The proposed models are also able to represent the degree to which individual contributing parameters affect the maximum dry density, optimum moisture content, and permeability.

  9. Estimation of soil air permeability components at a laboratory-scale pilot.

    PubMed

    Boudouch, Otmane; Esrael, Daoud; Kacem, Mariem; Benadda, Belkacem

    2012-01-01

    Soil air permeability is a key parameter in the design of soil vapour extraction. The purpose of this study is to verify the applicability of different analytical solutions, developed to determine soil characteristics in field conditions, to estimate soil air permeability in a small-scale pilot, since field testing may be expensive. A laboratory tridirectional pilot and a unidirectional column were designed in order to achieve the objectives of this work. Use of a steady-state unconfined analytical solution was found to be an appropriate method to determine soil air permeability components for the pilot conditions. Using pressure data collected under open, steady-state conditions, the average values of radial and vertical permeability were found to be, respectively, 9.97 x 10(-7) and 8.74 x 10(-7) cm2. The use of semi-confined analytical solutions may not be suitable to estimate soil parameters since a significant difference was observed between simulated and observed vacuums. Air permeability was underestimated when transient solutions were used, in comparison with methods based on steady-state solutions. The air radial and vertical permeability was found to be, respectively, 7.06 x 10(-7) and 4.93 x 10(-7) cm2, in the open scenario, and 2.30 x 10(-7) and 1.51 x 10(-7) cm2 in the semi-confined scenario. However, a good estimate of soil porosity was achieved using the two transient methods. The average values were predicted to be 0.482, in the open scenario, and 0.451 in the semi-confined scenario, which was in good agreement with the real value.

  10. Role of Double-Porosity Dual-Permeability Models for Multi-Resonance Geomechanical Systems

    SciTech Connect

    Berryman, J G

    2005-05-18

    It is known that Biot's equations of poroelasticity (Biot 1956; 1962) follow from a scale-up of the microscale equations of elasticity coupled to the Navier-Stokes equations for fluid flow (Burridge and Keller, 1981). Laboratory measurements by Plona (1980) have shown that Biot's equations indeed hold for simple systems (Berryman, 1980), but heterogeneous systems can have quite different behavior (Berryman, 1988). So the question arises whether there is one level--or perhaps many levels--of scale-up needed to arrive at equations valid for the reservoir scale? And if so, do these equations take the form of Biot's equations or some other form? We will discuss these issues and show that the double-porosity dual-permeability equations (Berryman and Wang, 1995; Berryman and Pride, 2002; Pride and Berryman, 2003a,b; Pride et al., 2004) play a special role in the scale-up to equations describing multi-resonance reservoir behavior, for fluid pumping and geomechanics, as well as seismic wave propagation. The reason for the special significance of double-porosity models is that a multi-resonance system can never be adequately modeled using a single resonance model, but can often be modeled with reasonable accuracy using a two-resonance model. Although ideally one would prefer to model multi-resonance systems using the correct numbers, locations, widths, and amplitudes of the resonances, data are often inadequate to resolve all these pertinent model parameters in this complex inversion task. When this is so, the double-porosity model is most useful as it permits us to capture the highest and lowest detectable resonances of the system and then to interpolate through the middle range of frequencies.

  11. Determination of permeability of soils using the multiple piezo-element penetrometer

    NASA Astrophysics Data System (ADS)

    Song, Chung R.; Voyiadjis, George Z.; Tumay, Mehmet T.

    1999-11-01

    The current method of determining the hydraulic properties of soils using piezocone penetration test (PCPT) requires the advancement of the piezocone penetrometer to the desired depth and holding (or arresting) it for the dissipation test. In order to obtain the hydraulic properties, one analyses the pore water dissipation test results by two-dimensional or three-dimensional radial drainage consolidation. This conventional procedure is methodologically simple and presents relatively reliable values of permeability compared to other field test methods. However, it is still challenging for field engineers and needs to be improved. The piezocone penetrometer intrudes into the ground with the speed of 2 cm/s. Thus, the test mechanism is a kind of strain-controlled condition with partial drainage. Therefore, the excess pore pressure during the piezocone penetration is a function of the permeability of the soil as well as the stress-strain parameters. Thus, with the proper coupled theory of mixtures which can take into account the coupling of solid and pore water flow, one can predict the permeability of the soil from the pore pressure response during PCPT. In this study, the coupled theory of mixtures of the soil grains and the pore water is used in order to predict the permeability of the soil from the excess pore pressure generated from the multiple piezo-element PCPT on the fly. An elasto-plastic, finite strain constitutive equation in an updated Lagrangian reference frame is used in this work. Using the proposed method, a reliable value of the permeability of soil is obtained conveniently without the use of the pore pressure dissipation tests. Copyright

  12. CORRELATION OF FLORIDA SOIL-GAS PERMEABILITIES WITH GRAIN SIZE, MOISTURE, AND POROSITY

    EPA Science Inventory

    The report describes a new correlation or predicting gas permeabilities of undisturbed or recompacted soils from their average grain diameter (d), moisture saturation factor (m), and porosity (p). he correlation exhibits a geometric standard deviation (GSD) of only 1.27 between m...

  13. Simultaneous acquisition of perfusion and permeability from corrected relaxation rates with dynamic susceptibility contrast dual gradient echo.

    PubMed

    Kim, Eun-Ju; Kim, Dae-Hong; Lee, Sang Hoon; Huh, Yong-Min; Song, Ho-Taek; Suh, Jin-Suck

    2004-04-01

    This study compared two methods, corrected (separation of T(1) and T(2)* effects) and uncorrected, in order to determine the suitability of the perfusion and permeability measures through Delta R(2)* and Delta R(1) analyses. A dynamic susceptibility contrast dual gradient echo (DSC-DGE) was used to image the fixed phantoms and flow phantoms (Sephadex perfusion phantoms and dialyzer phantom for the permeability measurements). The results confirmed that the corrected relaxation rate was linearly proportional to gadolinium-diethyltriamine pentaacetic acid (Gd-DTPA) concentration, whereas the uncorrected relaxation rate did not in the fixed phantom and simulation experiments. For the perfusion measurements, it was found that the correction process was necessary not only for the Delta R(1) time curve but also for the Delta R(2)* time curve analyses. Perfusion could not be measured without correcting the Delta R(2)* time curve. The water volume, which was expressed as the perfusion amount, was found to be closer to the theoretical value when using the corrected Delta R(1) curve in the calculations. However, this may occur in the low concentration of Gd-DTPA in tissue used in this study. For the permeability measurements based on the two-compartment model, the permeability factor (k(ev); e = extravascular, v = vascular) from the outside to the inside of the hollow fibers was greater in the corrected Delta R(1) method than in the uncorrected Delta R(1) method. The differences between the corrected and the uncorrected Delta R(1) values were confirmed by the simulation experiments. In conclusion, this study proposes that the correction for the relaxation rates, Delta R(2)* and Delta R(1), is indispensable in making accurate perfusion and permeability measurements, and that DSC-DGE is a useful method for obtaining information on perfusion and permeability, simultaneously. PMID:15062926

  14. Microwave Permittivity and Permeability Measurement on Lunar Soils

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin; Steinfeld, David; Begley, Shelley B.; Winterhalter, Daniel; Allen, Carlton

    2011-01-01

    There has been interest in finding ways to process the lunar regolith since the early analyses of lunar samples returned from the Apollo moon missions. This fact has led to proposals for using microwaves to perform in-situ processing of the lunar soil to support future colonization of the moon. More recently, there has been speculation that the excellent microwave absorption of lunar soil came from the nanophase iron content in the regolith. The motivation for the present study was to begin obtaining a more fundamental understanding of the dielectric and magnetic properties of the regolith at microwave frequencies. A major objective of this study was to obtain information that would help answer the question about whether nanophase iron plays a major role in heating lunar soils. These new measurements over a wide frequency range can also determine the magnitude of the dielectric and magnetic absorption and if there are any resonant features that could be used to enhance processing of the regolith in the future. In addition, these microwave measurements would be useful in confirming that new simulants being developed, particularly those containing nanophase iron, would have the correct composition to simulate the lunar regolith. The results of this study suggest that nanophase iron does not play a major role in heating lunar regolith.

  15. [Remediation of chromium (VI) contaminated soils using permeable reactive composite electrodes technology].

    PubMed

    Fu, Rong-Bing; Liu, Fang; Ma, Jin; Zhang, Chang-Bo; He, Guo-Fu

    2012-01-01

    Electrokinetic transport processes have been shown to have potential for the effective removal of heavy metals from soils. However, pH changes near the anode and cathode limit their widespread application in the remediation of contaminated soils. Permeable reactive composite electrodes (PRCE) were made by attaching reactive materials such as Fe(0) and zeolite to the electrodes, and the effects of the composite electrodes on pH control, chromium removal efficiency and Cr speciation changes were studied in the electrokinetic remediation process of Cr( VI) contaminated soil. Composite electrodes consisting of permeable reactive materials gave better pH control and Cr removal efficiency compared to traditional electrodes, and a Fe(0) + zeolite reactive layer in the anode exhibited the best performance compared to zeolite or Fe(0) alone. After 5 days of electrokinetic remediation with a DC voltage of 2 V x cm(-1), the Fe(0) + zeolite reactive layer lowered the pH fluctuation, maintained the soil pH in the range of 5.5 to 8.5, raised the Cr(VI) removal efficiency up to 97% in any soil section, produced lower Cr(III) residues, enhanced the amount of Cr retention up to 8 and 1.8 times respectively, and transformed 98% of the Cr(VI) into lower toxicity Cr(III). This study provides a theoretical basis for the exploitation of permeable reactive composite electrodes which are a practical option for future applications. PMID:22452223

  16. [Remediation of chromium (VI) contaminated soils using permeable reactive composite electrodes technology].

    PubMed

    Fu, Rong-Bing; Liu, Fang; Ma, Jin; Zhang, Chang-Bo; He, Guo-Fu

    2012-01-01

    Electrokinetic transport processes have been shown to have potential for the effective removal of heavy metals from soils. However, pH changes near the anode and cathode limit their widespread application in the remediation of contaminated soils. Permeable reactive composite electrodes (PRCE) were made by attaching reactive materials such as Fe(0) and zeolite to the electrodes, and the effects of the composite electrodes on pH control, chromium removal efficiency and Cr speciation changes were studied in the electrokinetic remediation process of Cr( VI) contaminated soil. Composite electrodes consisting of permeable reactive materials gave better pH control and Cr removal efficiency compared to traditional electrodes, and a Fe(0) + zeolite reactive layer in the anode exhibited the best performance compared to zeolite or Fe(0) alone. After 5 days of electrokinetic remediation with a DC voltage of 2 V x cm(-1), the Fe(0) + zeolite reactive layer lowered the pH fluctuation, maintained the soil pH in the range of 5.5 to 8.5, raised the Cr(VI) removal efficiency up to 97% in any soil section, produced lower Cr(III) residues, enhanced the amount of Cr retention up to 8 and 1.8 times respectively, and transformed 98% of the Cr(VI) into lower toxicity Cr(III). This study provides a theoretical basis for the exploitation of permeable reactive composite electrodes which are a practical option for future applications.

  17. Geologic CO2 sequestration in saline aquifers accounting for dual permeability/porosity environments.

    NASA Astrophysics Data System (ADS)

    Randolph, J. B.; Saar, M. O.

    2008-12-01

    The State of Minnesota, like many regions of the United States and beyond, has mandated significant reductions in CO2 emissions by mid-century, and geologic CO2 sequestration is recognized as one means by which to meet emissions goals. Unfortunately, the state, like many other regions, does not contain sedimentary basins that meet the currently established criteria for CO2 sequestration in deep saline aquifers. That is, existing basins, though expansive, are shallower (e.g., the Mount Simon aquifer in Minnesota) or less permeable (e.g., the Midcontinental Rift System) than sedimentary units that are typically considered for sequestration. The field of karst hydrogeology recognizes the importance of multiple permeability/porosity systems in groundwater transport and storage. High permeability fracture networks permit rapid groundwater transport while the large, lower permeability matrix allows for significant storage. With this motivation, we develop a geologic CO2 sequestration model, using TOUGH2 and TOUGHREACT, which accounts for the presence of multiple permeability/porosity structures. Capillary forces play an important role in these multiphase, multi-permeability and porosity systems. Our preliminary models investigate whether the Midcontinental Rift System could prove a viable candidate for geologic CO2 sequestration, should suitable fracture networks (among other criteria) be located there.

  18. Modeling reactive transport of reclaimed water through large soil columns with different low-permeability layers

    NASA Astrophysics Data System (ADS)

    Hu, Haizhu; Mao, Xiaomin; Barry, D. A.; Liu, Chengcheng; Li, Pengxiang

    2015-03-01

    The efficacy of different proportions of silt-loam/bentonite mixtures overlying a vadose zone in controlling solute leaching to groundwater was quantified. Laboratory experiments were carried out using three large soil columns, each packed with 200-cm-thick riverbed soil covered by a 2-cm-thick bentonite/silt-loam mixture as the low-permeability layer (with bentonite mass accounting for 12, 16 and 19 % of the total mass of the mixture). Reclaimed water containing ammonium (NH4 +), nitrate (NO3 -), organic matter (OM), various types of phosphorus and other inorganic salts was applied as inflow. A one-dimensional mobile-immobile multi-species reactive transport model was used to predict the preferential flow and transport of typical pollutants through the soil columns. The simulated results show that the model is able to predict the solute transport in such conditions. Increasing the amount of bentonite in the low-permeability layer improves the removal of NH4 + and total phosphorous (TP) because of the longer contact time and increased adsorption capacity. The removal of NH4 + and OM is mainly attributed to adsorption and biodegradation. The increase of TP and NO3 - concentration mainly results from discharge and nitrification in riverbed soils, respectively. This study underscores the role of low-permeability layers as barriers in groundwater protection. Neglect of fingers or preferential flow may cause underestimation of pollution risk.

  19. Fracture and healing in magmas: a dual role on permeability evolution

    NASA Astrophysics Data System (ADS)

    Lamur, Anthony; Lavallée, Yan; Wall, Richard; Ashworth, James; Kendrick, Jackie; Wadsworth, Fabian

    2016-04-01

    The development of a permeable network in silicic volcanic conduits controls outgassing and plays a major role on the subsequent eruptive behaviour. Efficient outgassing, at higher permeabilities, is achieved through the coalescence of pores and fractures. Whilst the relationship between permeability and increasing connected porosity is now relatively well constrained, the effects of fractures have, on the other hand, rarely been investigated. Here, we present the results of an experimental study focusing on the impacts of tensile fracturing and healing on permeability. Permeability measurements have been performed on over 60 disk-shaped samples (26 mm diameter, 13 mm thickness) with connected porosities ranging from 2 to 45%. Our results for unfractured samples display the same porosity-permeability trend as previous studies and permeabilities span from 10-15 at low porosities to over 5x10-12 m2 at higher porosities. These samples were then broken via Brazilian tests and the resultant permeability of the rocks were then measured across the fracture zone. Whilst high porosity samples reached permeabilities of about 5x10-10 m2 (2 orders of magnitude higher than intact samples), low porosity samples, on the other hand, reached permeabilities around 5x10-12 m2 (more than 3 orders of magnitude above intact samples). Our results show that fracturing favours the development of a permeable network that adheres to a different permeability-porosity relationship than previously presented, and that this effect is emphasized in magmas with low connected porosities. The effect of fracture healing by diffusion on permeability has been investigated through a series of experiments on borosilicate standard glass (NIST 717a). These experiments were conducted at 560oC (viscosity of 1010.33 Pa.s) on pairs of columns pressed and held in contact at constant load for times varying between 0.5s and 15000 s before being pulled apart at a strain rate of 10-3s-1. Using Maxwell's theory of

  20. Heavy metal uptake and leaching from polluted soil using permeable barrier in DTPA-assisted phytoextraction.

    PubMed

    Zhao, Shulan; Shen, Zhiping; Duo, Lian

    2015-04-01

    Application of sewage sludge (SS) in agriculture is an alternative technique of disposing this waste. But unreasonable application of SS leads to excessive accumulation of heavy metals in soils. A column experiment was conducted to test the availability of heavy metals to Lolium perenne grown in SS-treated soils following diethylene triamine penta acetic acid (DTPA) application at rates of 0, 10 and 20 mmol kg(-1) soil. In order to prevent metal leaching in DTPA-assisted phytoextraction process, a horizontal permeable barrier was placed below the treated soil, and its effectiveness was also assessed. Results showed that DTPA addition significantly increased metal uptake by L. perenne shoots and metal leaching. Permeable barriers increased metal concentrations in plant shoots and effectively decreased metal leaching from the treated soil. Heavy metals in SS-treated soils could be gradually removed by harvesting L. perenne many times in 1 year and adding low dosage of DTPA days before each harvest.

  1. Modeling relative permeability of water in soil: Application of effective-medium approximation and percolation theory

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Sahimi, Muhammad; Daigle, Hugh

    2016-07-01

    Accurate prediction of the relative permeability to water under partially saturated condition has broad applications and has been studied intensively since the 1940s by petroleum, chemical, and civil engineers, as well as hydrologists and soil scientists. Many models have been developed for this purpose, ranging from those that represent the pore space as a bundle of capillary tubes, to those that utilize complex networks of interconnected pore bodies and pore throats with various cross-section shapes. In this paper, we propose an approach based on the effective-medium approximation (EMA) and percolation theory in order to predict the water relative permeability. The approach is general and applicable to any type of porous media. We use the method to compute the water relative permeability in porous media whose pore-size distribution follows a power law. The EMA is invoked to predict the relative permeability from the fully saturated pore space to some intermediate water saturation that represents a crossover from the EMA to what we refer to as the "critical region." In the critical region below the crossover water saturation Swx, but still above the critical water saturation Swc (the residual saturation or the percolation threshold of the water phase), the universal power law predicted by percolation theory is used to compute the relative permeability. To evaluate the accuracy of the approach, data for 21 sets of undisturbed laboratory samples were selected from the UNSODA database. For 14 cases, the predicted relative permeabilities are in good agreement with the data. For the remaining seven samples, however, the theory underestimates the relative permeabilities. Some plausible sources of the discrepancy are discussed.

  2. Reducing compaction effort and incorporating air permeability in Proctor testing for design of urban green spaces on cohesive soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well established that compaction negatively affects agronomic productivity, that air permeability is a sensitive measure of the degree of soil compaction and therefore a good indicator of soil productivity impairment from compaction. Cohesive soils in urban settings are often heavily compacted...

  3. A novel cobalt-free, CO2-stable, and reduction-tolerant dual-phase oxygen-permeable membrane.

    PubMed

    Wang, Zhongtao; Sun, Wenping; Zhu, Zhiwen; Liu, Tong; Liu, Wei

    2013-11-13

    A novel CO2-stable and reduction-tolerant Ce0.8Sm0.2O(2-δ)-La0.9Sr0.1FeO(3-δ) (SDC-LSF) dense dual-phase oxygen-permeable membrane was designed and evaluated in this work. Homogeneous SDC-LSF composite powders for membrane fabrication were synthesized via a one-pot combustion method. The chemical compatibility and ion interdiffusion behavior between the fluorite phase SDC and perovskite phase LSF during the synthesis process was studied. The oxygen permeation flux through the dense dual-phase composite membranes was evaluated and found to be highly dependent on the volume ratio of SDC and LSF. The SDC-LSF membrane with a volume ratio of 7:3 (SDC70-LSF30) possessed the highest permeation flux, achieving 6.42 × 10(-7) mol·cm(-2)·s(-1) under an air/CO gradient at 900 °C for a 1.1-mm-thick membrane. Especially, the membrane performance showed excellent durability and operated stably without any degradation at 900 °C for 450 h with helium, CO2, or CO as the sweep gas. The present results demonstrate that a SDC70-LSF30 dual-phase membrane is a promising chemically stable device for oxygen production and CO2 capture with sufficiently high oxygen permeation flux. PMID:24131378

  4. Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers.

    PubMed

    Kos, Bostjan; Lestan, Domen

    2003-02-01

    Chelate-induced remediation has been proposed as an effective tool for the extraction of lead (Pb) from contaminated soils by plants. However, side-effects, mainly mobilization and leaching of Pb, raise environmental concerns. Biodegradable, synthetic organic chelate ethylenediaminedisuccinic acid (EDDS), and commonly used ethylenedimanetetraacetic acid (EDTA) were used for induced phytoextraction with a test plant Brassica rapa and in situ washing of soil contaminated with 1350 mg/kg of Pb. Horizontal permeable barriers were placed 20 cm deep in soil columns and tested for their ability to prevent leaching of Pb. The reactive materials in the barriers were nutrient enriched vermiculite, peat or agricultural hydrogel, and apatite. EDTA and EDDS addition increased Pb concentrations in the test plant by 158 and 89 times compared to the control, to 817 and 464 mg/kg, respectively. In EDTA treatments, approximately 25% or more of total initial soil Pb was leached in single cycle of chelate addition. In EDDS treatments, 20% of the initial Pb was leached from columns with no barrier, while barriers with vermiculite or hydrogel and apatite decreased leaching by more than 60 times, to 0.35%. 11.6% of total initial Pb was washed from the soil above the barrier with vermiculite and apatite, where almost all leached Pb was accumulated. Results indicate that use of biodegradable chelate EDDS and permeable barriers may lead to environmentally safe induced Pb phytoextraction and in situ washing of Pb.

  5. Estimation of water saturated permeability of soils, using 3D soil tomographic images and pore-level transport phenomena modelling

    NASA Astrophysics Data System (ADS)

    Lamorski, Krzysztof; Sławiński, Cezary; Barna, Gyöngyi

    2014-05-01

    There are some important macroscopic properties of the soil porous media such as: saturated permeability and water retention characteristics. These soil characteristics are very important as they determine soil transport processes and are commonly used as a parameters of general models of soil transport processes used extensively for scientific developments and engineering practise. These characteristics are usually measured or estimated using some statistical or phenomenological modelling, i.e. pedotransfer functions. On the physical basis, saturated soil permeability arises from physical transport processes occurring at the pore level. Current progress in modelling techniques, computational methods and X-ray micro-tomographic technology gives opportunity to use direct methods of physical modelling for pore level transport processes. Physically valid description of transport processes at micro-scale based on Navier-Stokes type modelling approach gives chance to recover macroscopic porous medium characteristics from micro-flow modelling. Water microflow transport processes occurring at the pore level are dependent on the microstructure of porous body and interactions between the fluid and the medium. In case of soils, i.e. the medium there exist relatively big pores in which water can move easily but also finer pores are present in which water transport processes are dominated by strong interactions between the medium and the fluid - full physical description of these phenomena is a challenge. Ten samples of different soils were scanned using X-ray computational microtomograph. The diameter of samples was 5 mm. The voxel resolution of CT scan was 2.5 µm. Resulting 3D soil samples images were used for reconstruction of the pore space for further modelling. 3D image threshholding was made to determine the soil grain surface. This surface was triangulated and used for computational mesh construction for the pore space. Numerical modelling of water flow through the

  6. Classification of soils based on double ring measured permeability in Zarrineh-Roud Delta, western Azarbayejan, Iran.

    PubMed

    Alipour, S

    2007-08-01

    A physical method of soil classification based on soil permeability as a preliminary quick way prior to slow and expensive chemical conventional method was conducted in regional scale using 40 test stations. Double ring method used for permeability measurements in the area. The results clearly differentiated development of various soil types and quality in the area under investigation. The results clearly indicate the physical method of double ring measurement permeability is able to identify various soil types in regional scale and the later chemical methods could be used in local scale for detailed classification. NaCl content of soils was reflected by the amount of infiltration rate. Permeability ranged as high, medium and low, corresponded with loamy sand, loamy and clay soils respectively. Permeability in the vicinity of the higher water flows was high due to leaching of NaCl in the soil. NaCl is considered to be the main factor of impermeability reduction in the area associated with clay and soil textures.

  7. Hydraulic fracturing to enhance the remediation of DNAPL in low permeability soils

    SciTech Connect

    Murdoch, L.; Slack, B.

    1996-08-01

    Meager rates of fluid flow are a major obstacle to in situ remediation of low permeability soils. This paper describes methods designed to avoid that obstacle by creating fractures and filling them with sand to increase well discharge and change paths of fluid flow in soil. Gently dipping fractures 10 m in maximum dimension and 1 to 2 cm thick can be created in some contaminated soils at depths of a few in or greater. Hydraulic fractures can also be used to create electrically conductive layers or to deliver granules of chemically or biologically active compounds that will degrade contaminants in place. Benefits of applying hydraulic fractures to DNAPL recovery include rates of fluid recovery, enhancing upward gradients to improve hydrodynamic stabilization, forming flat-lying reactive curtains to intersect compounds moving downward, or improving the performance of electrokinetics intended to recover compounds dissolved in water. 30 refs., 7 figs., 1 tab.

  8. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    SciTech Connect

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability can be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.

  9. [Effects of rhizosphere soil permeability on water and nutrient uptake by maize].

    PubMed

    Niu, Wen-quan; Guo, Chao

    2010-11-01

    Aimed to better understand the significance of soil microenvironment in crop growth, a pot experiment was conducted to investigate the effects of rhizosphere soil permeability on the water and nutrient uptake by maize. Under three irrigation levels (600, 400, and 200 ml per pot), three treatments of soil aeration (no tube aeration as the control, tube aeration every two days, and tube aeration every four days) were installed, and the physiological indices of maize were measured. Under the same irrigation levels, soil aeration increased the plant height, leaf area, chlorophyll contents, promoted nutrient adsorption and increased root vitality markedly. At elongation stage, treatment tube aeration every four days had the highest root vitality (8.24 mg x g(-1) x h(-1)) under the irrigation level 600 ml per pot, being significantly higher (66.7%) than that (4.94 mg x g(-1) x h(-1)) of the control. Soil aeration had no significant effects on the transpiration rate of maize, indicating that rhizosphere soil aeration could raise water and nutrient use efficiency, and improve maize growth.

  10. A novel dual-flow bioreactor simulates increased fluorescein permeability in epithelial tissue barriers.

    PubMed

    Giusti, Serena; Sbrana, Tommaso; La Marca, Margherita; Di Patria, Valentina; Martinucci, Valentina; Tirella, Annalisa; Domenici, Claudio; Ahluwalia, Arti

    2014-09-01

    Permeability studies across epithelial barriers are of primary importance in drug delivery as well as in toxicology. However, traditional in vitro models do not adequately mimic the dynamic environment of physiological barriers. Here, we describe a novel two-chamber modular bioreactor for dynamic in vitro studies of epithelial cells. The fluid dynamic environment of the bioreactor was characterized using computational fluid dynamic models and measurements of pressure gradients for different combinations of flow rates in the apical and basal chambers. Cell culture experiments were then performed with fully differentiated Caco-2 cells as a model of the intestinal epithelium, comparing the effect of media flow applied in the bioreactor with traditional static transwells. The flow increases barrier integrity and tight junction expression of Caco-2 cells with respect to the static controls. Fluorescein permeability increased threefold in the dynamic system, indicating that the stimulus induced by flow increases transport across the barrier, closely mimicking the in vivo situation. The results are of interest for studying the influence of mechanical stimuli on cells, and underline the importance of developing more physiologically relevant in vitro tissue models. The bioreactor can be used to study drug delivery, chemical, or nanomaterial toxicity and to engineer barrier tissues.

  11. LEAK AND GAS PERMEABILITY TESTING DURING SOIL-GAS SAMPLING AT HAL'S CHEVRON LUST SITE IN GREEN RIVER, UTAH

    EPA Science Inventory

    The results of gas permeability and leak testing during active soil-gas sampling at Hal’s Chevron LUST Site in Green River, Utah are presented. This study was conducted to support development of a passive soil-gas sampling method. Gas mixtures containing helium and methane were...

  12. EXPERIMENTAL EVALUATION OF GEOMETRICAL SHAPE FACTORS FOR SHORT CYLINDRICAL PROBES USED TO MEASURE SOIL PERMEABILITY TO AIR

    EPA Science Inventory

    Permeability of soil has become recognized as an important parameter in determining the rate of transport and entry of radon from the soil into indoor environments. This parameter is usually measured in the field by inserting a cylindrical tube with a short porous section into th...

  13. Processes affecting soil and groundwater contamination by DNAPL in low-permeability media

    SciTech Connect

    McWhorter, D.B.

    1996-08-01

    This paper is one of a set of focus papers intended to document the current knowledge relevant to the contamination and remediation of soils and ground water by dense, nonaqueous phase liquids (DNAPL). The emphasis is on low permeability media such as fractured clay and till and unconsolidated, stratified formations. Basic concepts pertaining to immiscible-fluid mixtures are described and used to discuss such aspects as DNAPL transport, dissolved-phase transport, and equilibrium mass distributions. Several implications for remediation are presented. 27 refs., 8 figs., 4 tabs.

  14. [Controlling effects of dual mulching on soil moisture in an apple orchard].

    PubMed

    Tian, Fei; Xie, Yong-Sheng; Suo, Gai-Di; Ding, Ya-Dong

    2014-08-01

    To investigate the controlling effects of dual mulching on soil moisture in an apple orchard on the Weibei rainfed highland, soil moisture in the 0-600 cm soil profile of the apple orchard was measured under four mulching treatments (plastic film plus straw, plastic film and straw mulches, as well as a non-mulching control) , and meanwhile the apple yield and branch growth increment were analyzed statistically. Results showed that the dual mulching treatment had the best effect on soil moisture conservation, and the soil water storage in such a soil profile was 6.7% higher than the control treatment. Long-term dual mulching could effectively alleviate soil desiccation occurring in deep soil layer in the region, and the monthly averaged soil water storage in stable layer (240-600 cm) was 64.22 mm higher than that of the control treatment. Both plastic film plus straw and plastic film mulches were able to reduce the temporal fluctuation of soil moisture in shallow soil (0-60 cm) and enhance the temporal stability of soil moisture in the layer. Compared with the single mulching treatments, the dual mulching treatment could effectively decrease the vertical variation of soil moisture in the profile and improve the stability of the vertical soil moisture distribution. The apple yield under the dual mulching treatment was evidently increased by 48.2%, as compared with the control treatment. All the analyses showed that dual mulching had more advantages in controlling soil moisture and improving apple yield than single mulching.

  15. Elastic wave propagation and attenuation in a double-porosity dual-permeability medium

    SciTech Connect

    Berryman, J.G.; Wang, H.F.

    1998-10-12

    To account for large-volume low-permeability storage porosity and low-volume high-permeability fracture/crack porosity in oil and gas reservoirs, phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. The generalization from a single porosity model increases the number of independent inertial coefficients from three to six, the number of independent drag coefficients from three to six, and the number of independent stress-strain coefficients from three to six for an isotropic applied stress and assumed isotropy of the medium. The analysis leading to physical interpretations of the inertial and drag coefficients is relatively straightforward, whereas that for the stress-strain coefficients is more tedious. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and fractures are expected to behave in an undrained fashion, although our analysis makes no assumptions in this regard. For the very long times more relevant for reservoir drawdown, the double porosity medium behaves as an equivalent single porosity medium. At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is

  16. Soil features and indoor radon concentration prediction: radon in soil gas, pedology, permeability and 226Ra content.

    PubMed

    Lara, E; Rocha, Z; Santos, T O; Rios, F J; Oliveira, A H

    2015-11-01

    This work aims at relating some physicochemical features of soils and their use as a tool for prediction of indoor radon concentrations of the Metropolitan Region of Belo Horizonte (RMBH), Minas Gerais, Brazil. The measurements of soil gas radon concentrations were performed by using an AlphaGUARD monitor. The (226)Ra content analysis was performed by gamma spectrometry (high pure germanium) and permeabilities were performed by using the RADON-JOK permeameter. The GEORP indicator and soil radon index (RI) were also calculated. Approximately 53 % of the Perferric Red Latosols measurement site could be classified as 'high risk' (Swedish criteria). The Litholic Neosols presented the lowest radon concentration mean in soil gas. The Perferric Red Latosols presented significantly high radon concentration mean in soil gas (60.6 ± 8.7 kBq m(-3)), high indoor radon concentration, high RI, (226)Ra content and GEORP. The preliminary results may indicate an influence of iron formations present very close to the Perferric Red Latosols in the retention of uranium minerals.

  17. Soil features and indoor radon concentration prediction: radon in soil gas, pedology, permeability and 226Ra content.

    PubMed

    Lara, E; Rocha, Z; Santos, T O; Rios, F J; Oliveira, A H

    2015-11-01

    This work aims at relating some physicochemical features of soils and their use as a tool for prediction of indoor radon concentrations of the Metropolitan Region of Belo Horizonte (RMBH), Minas Gerais, Brazil. The measurements of soil gas radon concentrations were performed by using an AlphaGUARD monitor. The (226)Ra content analysis was performed by gamma spectrometry (high pure germanium) and permeabilities were performed by using the RADON-JOK permeameter. The GEORP indicator and soil radon index (RI) were also calculated. Approximately 53 % of the Perferric Red Latosols measurement site could be classified as 'high risk' (Swedish criteria). The Litholic Neosols presented the lowest radon concentration mean in soil gas. The Perferric Red Latosols presented significantly high radon concentration mean in soil gas (60.6 ± 8.7 kBq m(-3)), high indoor radon concentration, high RI, (226)Ra content and GEORP. The preliminary results may indicate an influence of iron formations present very close to the Perferric Red Latosols in the retention of uranium minerals. PMID:25920786

  18. One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate permeation

    NASA Astrophysics Data System (ADS)

    Singhal, Naresh; Islam, Jahangir

    2008-02-01

    This paper uses the findings from a column study to develop a reactive model for exploring the interactions occurring in leachate-contaminated soils. The changes occurring in the concentrations of acetic acid, sulphate, suspended and attached biomass, Fe(II), Mn(II), calcium, carbonate ions, and pH in the column are assessed. The mathematical model considers geochemical equilibrium, kinetic biodegradation, precipitation-dissolution reactions, bacterial and substrate transport, and permeability reduction arising from bacterial growth and gas production. A two-step sequential operator splitting method is used to solve the coupled transport and biogeochemical reaction equations. The model gives satisfactory fits to experimental data and the simulations show that the transport of metals in soil is controlled by multiple competing biotic and abiotic reactions. These findings suggest that bioaccumulation and gas formation, compared to chemical precipitation, have a larger influence on hydraulic conductivity reduction.

  19. One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate permeation.

    PubMed

    Singhal, Naresh; Islam, Jahangir

    2008-02-19

    This paper uses the findings from a column study to develop a reactive model for exploring the interactions occurring in leachate-contaminated soils. The changes occurring in the concentrations of acetic acid, sulphate, suspended and attached biomass, Fe(II), Mn(II), calcium, carbonate ions, and pH in the column are assessed. The mathematical model considers geochemical equilibrium, kinetic biodegradation, precipitation-dissolution reactions, bacterial and substrate transport, and permeability reduction arising from bacterial growth and gas production. A two-step sequential operator splitting method is used to solve the coupled transport and biogeochemical reaction equations. The model gives satisfactory fits to experimental data and the simulations show that the transport of metals in soil is controlled by multiple competing biotic and abiotic reactions. These findings suggest that bioaccumulation and gas formation, compared to chemical precipitation, have a larger influence on hydraulic conductivity reduction.

  20. Characterization of RADON-222 Entry Into a Basement Structure Surrounded by Low Permeability Soil

    NASA Astrophysics Data System (ADS)

    Ward, Dann Carlton

    1992-01-01

    An experimental facility has been developed to monitor the entry rate and concentration of ^ {222}Rn in two basement type structures surrounded by soil having a permeability on the order of 10^{-12} m^2 . A data acquisition system recorded environmental conditions outside and inside the structures, including basement air exchange rates, every 15 min. Indoor ^{222}Rn concentrations ranged from 400 to 1400 Bq m^{-3}. The observed ^{222}Rn entry rate is highly variable and has two primary components; a constant input rate caused by diffusion of ^ {222}Rn through the concrete walls and floor, and a variable rate that depends upon indoor-soil pressure differentials of only a few pascals. Pressure differentials are dependent upon wind speed and wind direction. Stack effect was not significant. During a two week period, with relatively calm winds, diffusion through the concrete walls and floor plus the floor-wall joint accounted for more than 80% of the total ^{222} Rn entry.

  1. The Influence of Selected Liquid and Soil Properties on the Propagation of Spills over Flat Permeable Surfaces

    SciTech Connect

    Keller, Jason M.; Simmons, Carver S.

    2005-02-15

    In an effort to determine spill characteristics, information about a spill's spatial distribution with time is being studied. For permeable surfaces, spill phenomenology is controlled by liquid and soil properties, the most relevant of which are presented in this report. The pertinent liquid and soil properties were tabulated for ten liquids and four soils. The liquids represented an array of organic compounds, some of which are or are soon to be documented in the liquid spectra library by the Environmental Molecular Science Laboratory at Pacific Northwest National Laboratory. The soils were chosen based on ongoing surface spectra work and to represent a range of relevant soil properties. The effect of the liquid and soil properties on spill phenomenology were explored using a spill model that couples overland flow described by gravity currents with the Green-Ampt infiltration model. From the simulations, liquid viscosity was found to be a controlling liquid property in determining the amount of time a spill remains on the surface, with the surface vanish time decreasing as viscosity decreased. This was attributed to decreasing viscosity increasing both the hydraulic conductivity of the soil and allowing for the spill to more quickly spread out onto an unsaturated soil surface. Soil permeability also controlled vanish times with the vanish times increasing as permeability decreased, corresponding to finer textured materials. Maximum spill area was found to be largely controlled by liquid viscosity on coarse, highly permeable soils. On the less permeable soils maximum spill area began to be controlled by the steady-area spill height due to the restricting of infiltration to the extent that the spill is then able to reach its steady-area spill height. Simulations performed with and without the inclusion of capillarity in the Green-Ampt infiltration model displayed the importance of capillarity in describing infiltration rate in fine textured soils. In coarse textured

  2. Laboratory evaluation of dual-frequency multisensor capacitance probes to monitor soil water and salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Real-time information on salinity levels and transport of fertilizers are generally missing from soil profile knowledge bases. A dual-frequency multisensor capacitance probe (MCP) is now commercially available for sandy soils that simultaneously monitor volumetric soil water content (VWC, ') and sa...

  3. Radon concentration in soil gas and its correlations with pedologies, permeabilities and 226Ra content in the soil of the Metropolitan Region of Belo Horizonte - RMBH, Brazil

    NASA Astrophysics Data System (ADS)

    Lara, E.; Rocha, Z.; Palmieri, H. E. L.; Santos, T. O.; Rios, F. J.; Oliveira, A. H.

    2015-11-01

    The radon concentration in soil gas is directly dependent on the geological characteristics of the area, such as lithology, pedology and on geochemicals, physicals and mineralogicals parameters of the soil. This paper looks for correlations between radon concentrations in soil gas and its soil permeability, 238U, 232Th and 226Ra contents in the soil groups classified by pedologies of Metropolitan Region of Belo Horizonte (RMBH), Minas Gerais, Brazil. The soil gas radon concentrations were determined by using an AlphaGUARD® monitor at about 150 measurement points. In soil samples of the same measurement points, the concentrations of 226Ra were determined by gamma spectrometry (HPGe), and 238U and 232Th by ICP-MS. The soil permeabilities were determined by using the RADON-JOK® permeameter. The mean concentrations of radon in soil gas ranged from 13.6±3.0 kBq m-3 for Litholic Neosols until 60.6±8.7 kBq m-3 for Perferric Red Latosols. The mean of 226Ra activity concentrations presented variation of 12.4±2.5 Bq kg-1 for Litholic Neosols until 50.3±13 Bq kg-1 for Perferric Red Latosols. Approximately 40% of the soils presented high permeability. The areas of different pedologies were classified by Soil Radon Index (SRI), determined by the soil gas radon concentration and permeability. Approximately 53% of the Perferric Red Latosols measurement site could be classified as "High Risk" (Swedish criteria). The preliminary results may indicate an influence of iron formations present very close to the Perferric Red Latosols in the retention of uranium minerals, and hence an increase in the concentration of radon and radium, whereas the series are in equilibrium in the environment.

  4. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    PubMed

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-01-01

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation).

  5. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    PubMed

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-01-01

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation). PMID:25262485

  6. Investigation of Stabilised Batu Pahat Soft Soil Pertaining on its CBR and Permeability Properties for Road Construction

    NASA Astrophysics Data System (ADS)

    Mohd Idrus, M. M.; Singh, J. S. M.; Musbah, A. L. A.; Wijeyesekera, D. C.

    2016-07-01

    Soil stabilization by adding materials such as cement, lime and bitumen is one of the effective methods for improving the geotechnical properties of soils [11] Nano-particle is one of the newest additives and many studies about using nano-particle in soil improvement has been done but it was given less attention when soft clay soils stabilization is concerned. To evaluate the strength characteristics of stabilized Batu Pahat soft clay, laboratory investigation on early strength gained by the stabilized soil must be conducted to formulate a suitable and economical mix design [10]. To achieve such purpose, the study examined the effect of NanoClay on the California Bearing Ratio and the Permeability of soft clay. The results gained shows that the Nano-Clay is able to increase the strength of the soft clay [9]. The California Bearing Ratio of the soil is increase significantly where the results for the highest percentage of admixture is 14.4% while the permeability of the soil decreases significantly with increasing Nano-Clay whereby the results of the highest percentage of admixture is 2.0187x10-11 m/s. After doing this research, it is proven that Nano-clay can contribute towards better soil stabilization and enhance the quality of soil as subgrade and foundation at large.

  7. Colloid Mobilization in a Fractured Soil during Dry-Wet Cycles: Role of Drying Duration and Flow Path Permeability.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2015-08-01

    In subsurface soils, colloids are mobilized by infiltrating rainwater, but the source of colloids and the process by which colloids are generated between rainfalls are not clear. We examined the effect of drying duration and the spatial variation of soil permeability on the mobilization of in situ colloids in intact soil cores (fractured and heavily weathered saprolite) during dry-wet cycles. Measuring water flux at multiple sampling ports at the core base, we found that water drained through flow paths of different permeability. The duration of antecedent drying cycles affected the amount of mobilized colloids, particularly in high-flux ports that received water from soil regions with a large number of macro- and mesopores. In these ports, the amount of mobilized colloids increased with increased drying duration up to 2.5 days. For drying durations greater than 2.5 days, the amount of mobilized colloids decreased. In contrast, increasing drying duration had a limited effect on colloid mobilization in low-flux ports, which presumably received water from soil regions with fewer macro- and mesopores. On the basis of these results, we attribute this dependence of colloid mobilization upon drying duration to colloid generation from dry pore walls and distribution of colloids in flow paths, which appear to be sensitive to the moisture content of soil after drying and flow path permeability. The results are useful for improving the understanding of colloid mobilization during fluctuating weather conditions.

  8. Colloid Mobilization in a Fractured Soil during Dry-Wet Cycles: Role of Drying Duration and Flow Path Permeability.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2015-08-01

    In subsurface soils, colloids are mobilized by infiltrating rainwater, but the source of colloids and the process by which colloids are generated between rainfalls are not clear. We examined the effect of drying duration and the spatial variation of soil permeability on the mobilization of in situ colloids in intact soil cores (fractured and heavily weathered saprolite) during dry-wet cycles. Measuring water flux at multiple sampling ports at the core base, we found that water drained through flow paths of different permeability. The duration of antecedent drying cycles affected the amount of mobilized colloids, particularly in high-flux ports that received water from soil regions with a large number of macro- and mesopores. In these ports, the amount of mobilized colloids increased with increased drying duration up to 2.5 days. For drying durations greater than 2.5 days, the amount of mobilized colloids decreased. In contrast, increasing drying duration had a limited effect on colloid mobilization in low-flux ports, which presumably received water from soil regions with fewer macro- and mesopores. On the basis of these results, we attribute this dependence of colloid mobilization upon drying duration to colloid generation from dry pore walls and distribution of colloids in flow paths, which appear to be sensitive to the moisture content of soil after drying and flow path permeability. The results are useful for improving the understanding of colloid mobilization during fluctuating weather conditions. PMID:26134351

  9. Influences of spatial scale and soil permeability on relationships between land cover and baseflow stream nutrient concentrations

    EPA Science Inventory

    The Little Miami River (LMR) basin, dominated by agriculture, contains two geologically-distinct regions; a glaciated northern till plain with soils three times more permeable than a southern, pre-Wisconsinan drift plain. The influences of two landscape measures, percent row crop...

  10. Characterization of tillage effects on soil permeability using different measures of macroporosity derived from tension infiltrometry

    NASA Astrophysics Data System (ADS)

    Bodner, G.; Schwen, A.; Scholl, P.; Kammerer, G.; Buchan, G.; Kaul, H.-P.; Loiskandl, W.

    2010-05-01

    Soil macroporosity is a highly dynamic property influenced by environmental factors, such as raindrop impact, wetting-drying and freezing-thawing cycles, soil biota and plant roots, as well as agricultural management measures. Macroporosity represents an important indicator of soil physical quality, particularly in relation to the site specific water transmission properties, and can be used as a sensitive measure to assess soil structural degradation. Its quantification is also required for the parameterization of dual porosity models that are frequently used in environmental impact studies on erosion and solute (pesticide, nitrate) leaching. The importance of soil macroporosity for the water transport properties of the soil and its complexity due to high spatio-temporal heterogeneity make its quantitative assessment still a challenging task. Tension infiltrometers have been shown to be adequate measurement devices to obtain data in the near-saturated range of water flow where structural (macro)pores are dominating the transport process. Different methods have been used to derive water transmission characteristics from tension infiltrometer measurements. Moret and Arrúe (2007) differentiated between using a minimum equivalent capillary pore radius and a flow weighted mean pore radius to obtain representative macropore flow properties from tension infiltrometer data. Beside direct approaches based on Wooding's equation, also inverse methods have been applied to obtain soil hydraulic properties (Šimůnek et al. 1998). Using a dual porosity model in the inverse procedure allows estimating parameters in the dynamic near-saturated range by numerical optimization to the infiltration measurements, while fixing parameters in the more stable textural range of small pores using e.g. pressure plate data or even pedotransfer functions. The present work presents a comparison of quantitative measures of soil macroporosity derived from tension infiltrometer data by different

  11. A framework for assessing risk reduction due to DNAPL mass removal from low permeability soils

    SciTech Connect

    Freeze, R.A.; McWhorter, D.B.

    1996-08-01

    Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a framework for quantifying the degree to which risk is reduced as mass is removed from shallow, saturated, low-permeability, dual-porosity, DNAPL source zones. Risk is defined in terms of meeting an alternate concentration level (ACL) at a compliance well in an aquifer underlying the source zone. The ACL is back-calculated from a carcinogenic health-risk characterization at a downstream water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phases (dissolved, sorbed, free product). Due to the uncertainties in currently-available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making risk-reduction calculations for specific technologies. Despite the qualitative nature of the exercise, results imply that very high mass-removal efficiencies are required to achieve significant long-term risk reduction with technology, applications of finite duration. 17 refs., 7 figs., 6 tabs.

  12. Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study.

    PubMed

    Ul Haq, Rizwan; Rajotia, D; Noor, N F M

    2016-03-01

    The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (0≤φ ≤ 0.2)) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number.

  13. Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study.

    PubMed

    Ul Haq, Rizwan; Rajotia, D; Noor, N F M

    2016-03-01

    The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (0≤φ ≤ 0.2)) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number. PMID:27006069

  14. Emissions from soil fumigation in two raised bed production systems tarped with low permeability films.

    PubMed

    Qin, Ruijun; Gao, Suduan; Thomas, John E; Dickson, Donald W; Ajwa, Husein; Wang, Dong

    2013-10-01

    Raised beds are used to produce some high-value annual fruit and vegetable crops such as strawberry in California (CA) and tomato in Florida (FL), USA. Pre-plant soil fumigation is an important tool to control soil-borne pests in the raised beds. However, fumigant emissions have detrimental environmental consequences. Field trials were conducted to evaluate emissions of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) in two different production systems with raised beds covered by different tarps. In the CA trial, InLine (60.8% 1,3-D and 33.3% CP) was drip-applied at 340 kg ha(-1) to 5 cm deep in the beds (30 cm high and 107 cm wide) tarped with polyethylene (PE) or virtually impermeable film (VIF). In the FL trial, carbonated Telone C35 (63.4% 1,3-D and 34.7% CP) was shank-applied at 151 kg ha(-1) to 20 cm deep in the beds (22 cm high and 76 cm wide) tarped with totally impermeable film (TIF). Emissions from tarped beds relative to furrows were contrary between the two trials. For the CA trial, the emission was 47% of applied 1,3-D and 27% of applied CP from PE tarped beds and 31% of applied 1,3-D and 15% of applied CP from VIF tarped beds, while that from uncovered furrows was<0.4% for both chemicals in both fields. In the FL trial, only 0.1% 1,3-D was emitted from the TIF tarped beds, but 27% was measured from the uncovered furrows. Factors contributing to the differences in emissions were chiefly raised-bed configuration, tarp permeability, fumigant application method, soil properties, soil water content, and fumigant carbonation. The results indicate that strategies for emission reduction must consider the differences in agronomic production systems. Modifying raised bed configuration and fumigant application technique in coarse textured soils with TIF tarping can maximize fumigation efficiency and emission reduction.

  15. Investigations of radicular dentin permeability and ultrastructural changes after irradiation with Er,Cr:YSGG laser and dual wavelength (2780 and 940 nm) laser.

    PubMed

    Al-Karadaghi, Tamara Sardar; Franzen, Rene; Jawad, Hussein A; Gutknecht, Norbert

    2015-11-01

    The aim of this study was to assess the effectiveness of dual wavelength (2780 nm Er,Cr:YSGG, 940 nm diode) laser in elimination of smear layer comparing it with Er,Cr:YSGG laser in terms of radicular dentin permeability and ultrastructural changes of root canal walls. Fifty-one sound single-rooted extracted teeth were instrumented up to size F4 and divided into three groups: group Co, non-irradiated samples; group A, irradiated with Er,Cr:YSGG laser; group B, irradiated with the dual wavelength laser. Afterward, the roots were made externally impermeable, filled with 2% methylene blue dye, divided horizontally into three segments reflecting the cervical, middle, and apical thirds then examined under microscope. Using analytical software, the root section area and dye penetration area were measured, and then, the percentage of net dye penetration area was calculated. Additionally, scanning electron microscope investigations were accomplished. Analysis of variance (ANOVA) showed significant differences between all groups over the three root thirds. Dye permeation in dual wavelength laser group was significantly higher over the whole root length: cervical, middle, and apical compared to Er,Cr:YSGG laser group and non-irradiated samples (p < 0.001). Scanning electron micrographs of dual wavelength irradiated samples showed a distinctive removal of smear layer with preservation of the annular structure of dentinal tubules. Er,Cr:YSGG laser root canal irradiation produced uneven removal of smear layer, in efficient cleanliness especially in the apical third. There was no sign of melting and carbonization. Within the studied parameters, root canal irradiation with dual wavelength laser increased dentin permeability.

  16. Post-fire Changes in Air Permeability and Hydraulic Conductivity of Soils Following 2003 Aspen Fire in Sabino Canyon, AZ

    NASA Astrophysics Data System (ADS)

    Chief, K.; Ferre, T. P.; Nijssen, B.

    2006-12-01

    As part of a project to study the hydrologic effects of fire on the Sabino Canyon Watershed, the Soil Corer Air Permeameter (SCAP) was developed to rapidly measure in-situ air permeability (k_a) of unburned and burned desert soils while providing a standard soil sample for additional laboratory analysis. Twenty-two unburned and burned plots were selected in woodland-chaparral and coniferous zones with low and high slopes, and low, medium, and high fuel loads or burn severities. Air permeability was measured on a 25-point square grid on each 100 m2 plot (n=445). Hydraulic conductivity (Ksat), water permeability (k_w), soil physical properties, and hydrophobicity measurements were made on extracted soil samples in the laboratory. There was a slight decrease in the median k_a from 95 to 80 μm2 for the woodland- chaparral zone as a result of the wildfire. There was a greater decrease for the coniferous zone where the median decreased from 152 to 110 μm2 following the fire. The k_w of woodland-chaparral soils increased from 192 to 425 μm2; but the median k_w decreased for the coniferous zone from 862 to 444 μm2 after the fire. In addition, hydrophobic measurements show that there was a significant increase in hydrophobicity for post-fire woodland-chaparral soils but not for coniferous soils. The log k_a and log Ksat measurements were highly correlated for the unburned woodland-chaparral soils, but this correlation decreased for burned woodland-chaparral soils. The unburned coniferous data set had the least k_a and Ksat correlation, but was reasonable for burned coniferous soils. The decrease in correlation may be due to increases of hydrophobicity, uneven wetting and preferential flow in Ksat measurements, or extremely rocky terrain. However, the overall, log k_a-log Ksat correlation for all unburned and burned soils including previous measurements on agricultural and alluvial soils follow the trend of the Iversen et al. (2001) log k_a-log Ksat correlation.

  17. Evaluation of air permeability in layered unsaturated materials.

    PubMed

    Switzer, Christine; Kosson, David S

    2007-03-20

    Field estimation of air permeability is important in the design and operation of soil-vapor extraction systems. Previous models have examined airflow in homogenous soils, incorporating leakage through a low-permeability cap either as a correction to the airflow equation or as a boundary condition. The dual leakage model solution developed here improves upon the previous efforts by adding a leaky lower boundary condition, allowing for the examination of airflow in heterogeneous layered soils. The dual leakage model is applied to the evaluation of pump tests at a pilot soil-vapor extraction system at the Savannah River Site in South Carolina. A thick, low-permeability, stiff clay layer divides the stratigraphy at the site into two units for evaluation. A modified version of the previous model, using the water table as the impermeable lower boundary, is used to evaluate the permeability of the low-permeability stiff clay layer (3.2 x 10(-10) cm(2)) and permeable sand (7.2 x 10(-7) cm(2)) beneath it. The stiff clay permeability estimate is used in the evaluation of the shallow unit. Permeability estimates of the shallow sand (3.8 x 10(-7) cm(2)) and kaolin cap (1.5 x 10(-9)cm(2)) were obtained with the dual leakage model. The shallow unit was evaluated using the previous model for comparison. The effects of anisotropy were investigated with a series of model simulations based on the shallow unit solution. The anisotropy sensitivity analysis suggests that increased anisotropy ratio or decreased axial permeability has a significant impact on the velocity profile at the lower boundary, especially at high values of the anisotropy ratio. This result may increase estimates of SVE removal rates for contaminants located at the interface of the lower boundary, typical of chlorinated solvent contamination.

  18. A standardized approach for estimating the permeability of plastic films to soil fumigants under various field and environmental conditions.

    PubMed

    Papiernik, Sharon K; Yates, Scott R; Chellemi, Daniel O

    2011-01-01

    Minimizing atmospheric emissions of soil fumigants is critical for protecting human and environmental health. Covering the soil surface with a plastic tarp is a common approach to restrict fumigant emissions. The mass transfer of the fumigant vapors through the tarp is often the rate-limiting factor in fumigant emissions. An approach for standardizing measurements of film permeability is proposed that is based on determining the resistance (R) of films to diffusion of fumigants. Using this approach, values were determined for more than 200 film-chemical combinations under a range of temperature, relative humidity, and film handling conditions. Resistance to diffusion was specific for each fumigant/film combination, with the largest range of values observed for the fumigant chloropicrin. For each fumigant, decreased with increasing temperature. Changes in film permeability due to increases in temperature or field installation were generally less than a factor of five. For one film, values determined under conditions of very high relative humidity (approximately 100%) were at least 100 times lower than when humidity was very low (approximately 2%). This approach simplifies the selection of appropriate films for soil fumigation by providing rapid, reproducible, and precise measurements of their permeability to specific fumigants and application conditions.

  19. Effects of triethyl phosphate and nitrate on electrokinetically enhanced biodegradation of diesel in low permeability soils.

    PubMed

    Lee, G T; Ro, H M; Lee, S M

    2007-08-01

    Bench-scale experiments for electrokinetically enhanced bioremediation of diesel in low permeability soils were conducted. An electrokinetic reactor (ER) was filled with kaolin that was artificially contaminated with diesel at a level of 2500 mg kg(-1). A constant voltage gradient of 1.0 V cm(-1) was applied. In phosphorus transport experiments, KH2PO4 was not distributed homogeneously along the ER, and most of the transported phosphorus was converted to water-insoluble aluminum phosphate after 12 days of electrokinetic (EK) operation. However, the advancing P front of triethyl phosphate (TEP) progressed with time and resulted in uniform P distribution. The treatments employed in the electrokinetically enhanced bioremediation of diesel were control (no addition of nitrogen and phosphorus), NP (KNO3+ KH2PO4), NT (KNO3+ TEP), UP (urea+ KH2PO4), and UT (urea+TEP). Analysis of effluent collected during the first 12 days of EK operation showed that diesel was not removed from the kaolin. After nutrient delivery, using the EK operation, the ER was transferred into an incubator for the biodegradation process. After 60 days of biodegradation, the concentrations of diesel in the kaolin for the NP, NT, UP, UT, and control treatments were 1356, 1002, 1658, 1612, and 2003 mg kg(-1), respectively. The ratio of biodegraded diesel concentration to initial concentration (2465 mg kg(-1)) in NP, NT, UP, UT, and control were 45.0%, 59.4%, 32.7%, 34.6%, and 18.7%, respectively. This result showed that TEP, treated along with NO3-, was most effective for the biodegradation of diesel. TEP was delivered more efficiently to the target zones and with less phosphorus loss than KH2PO4. However, this facilitated phosphorus delivery was effective in biodegrading diesel under anaerobic conditions only when electron acceptors, such as NO3-, were present.

  20. Dual frequency microwave radiometer measurements of soil moisture for bare and vegetated rough surfaces

    NASA Technical Reports Server (NTRS)

    Lee, S. L.

    1974-01-01

    Controlled ground-based passive microwave radiometric measurements on soil moisture were conducted to determine the effects of terrain surface roughness and vegetation on microwave emission. Theoretical predictions were compared with the experimental results and with some recent airborne radiometric measurements. The relationship of soil moisture to the permittivity for the soil was obtained in the laboratory. A dual frequency radiometer, 1.41356 GHz and 10.69 GHz, took measurements at angles between 0 and 50 degrees from an altitude of about fifty feet. Distinct surface roughnesses were studied. With the roughness undisturbed, oats were later planted and vegetated and bare field measurements were compared. The 1.4 GHz radiometer was less affected than the 10.6 GHz radiometer, which under vegetated conditions was incapable of detecting soil moisture. The bare surface theoretical model was inadequate, although the vegetation model appeared to be valid. Moisture parameters to correlate apparent temperature with soil moisture were compared.

  1. Simultaneous evaluation of vascular morphology, blood volume and transvascular permeability using SPION-based, dual-contrast MRI: imaging optimization and feasibility test.

    PubMed

    Kwon, Heon-Ju; Shim, Woo Hyun; Cho, Gyunggoo; Cho, Hyung Joon; Jung, Hoe Su; Lee, Chang Kyung; Lee, Yong Seok; Baek, Jin Hee; Kim, Eun Ju; Suh, Ji-Yeon; Sung, Yu Sub; Woo, Dong-Cheol; Kim, Young Ro; Kim, Jeong Kon

    2015-06-01

    Exploiting ultrashort-T(E) (UTE) MRI, T1-weighted positive contrast can be obtained from superparamagnetic iron oxide nanoparticles (SPIONs), which are widely used as a robust T2-weighted, negative contrast agent on conventional MR images. Our study was designed (a) to optimize the dual-contrast MRI method using SPIONs and (b) to validate the feasibility of simultaneously evaluating the vascular morphology, blood volume and transvascular permeability using the dual-contrast effect of SPIONs. All studies were conducted using 3 T MRI. According to numerical simulation, 0.15 mM was the optimal blood SPION concentration for visualizing the positive contrast effect using UTE MRI (T(E) = 0.09 ms), and a flip angle of 40° could provide sufficient SPION-induced enhancement and acceptable measurement noise for UTE MR angiography. A pharmacokinetic study showed that this concentration can be steadily maintained from 30 to 360 min after the injection of 29 mg/kg of SPIONs. An in vivo study using these settings displayed image quality and CNR of SPION-enhanced UTE MR angiography (image quality score 3.5; CNR 146) comparable to those of the conventional, Gd-enhanced method (image quality score 3.8; CNR 148) (p > 0.05). Using dual-contrast MR images obtained from SPION-enhanced UTE and conventional spin- and gradient-echo methods, the transvascular permeability (water exchange index 1.76-1.77), cerebral blood volume (2.58-2.60%) and vessel caliber index (3.06-3.10) could be consistently quantified (coefficient of variation less than 9.6%; Bland-Altman 95% limits of agreement 0.886-1.111) and were similar to the literature values. Therefore, using the optimized setting of combined SPION-based MRI techniques, the vascular morphology, blood volume and transvascular permeability can be comprehensively evaluated during a single session of MR examination. PMID:25865029

  2. Monitoring water stable isotope composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2013-04-01

    The water stable isotopologues 1H2H16O and 1H218O are powerful tracers of processes occurring in nature. Their slightly different masses as compared to the most abundant water isotopologue (1H216O) affect their thermodynamic (e.g. during chemical equilibrium reactions or physical phase transitions with equilibration) and kinetic (liquid and vapor phases transport processes and chemical reactions without equilibration) properties. This results in measurable differences of the isotopic composition of water within or between the different terrestrial ecosystem compartments (i.e. sub-soil, soil, surface waters, plant, and atmosphere). These differences can help addressing a number of issues, among them water balance closure and flux partitioning from the soil-plant-atmosphere continuum at the field to regional scales. In soils particularly, the isotopic composition of water (δ2H and δ18O) provides qualitative information about whether water has only infiltrated or already been re-evaporated since the last rainfall event or about the location of the evaporation front. From water stable isotope composition profiles measured in soils, it is also possible, under certain hypotheses, to derive quantitative information such as soil evaporation flux and the identification of root water uptake depths. In addition, water stable isotopologues have been well implemented into physically based Soil-Vegetation-Atmosphere Transfer models (e.g. SiSPAT-Isotope; Soil-Litter iso; TOUGHREACT) and have demonstrated their potential. However, the main disadvantage of the isotope methodology is that, contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here, we present a non-destructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling and measuring water vapor equilibrated with soil water using gas-permeable

  3. Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters.

    PubMed

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kim, Shin Woong; Kang, Yerin; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2016-04-01

    Whole-cell bioreporters (WCBs) have attracted increasing attention during the last few decades because they allow fast determination of bioavailable heavy metals in contaminated sites. Various WCBs to monitor specific heavy metals such as arsenic and cadmium in diverse environmental systems are available. However, currently, no study on simultaneous analysis of arsenic and cadmium has been reported, even though soils are contaminated by diverse heavy metals and metalloids. We demonstrated herein the development of dual-sensing WCBs to simultaneously quantify bioavailable arsenic and cadmium in contaminated sites by employing the promoter regions of the ars and znt operons as separate metal-sensing domains, and egfp and mcherry as reporter genes. The dual-sensing WCBs were generated by inserting two sets of genes into E. coli DH5α. The capability of WCBs was successfully proved to simultaneously quantify bioavailable arsenic and cadmium in amended Landwirtschaftliche Untersuchungs und Forschungsanstalt (LUFA) soils, and then, it was applied to contaminated field soils collected from a smelter area in Korea. As a result, it was noticed that the bioavailable portion of cadmium was higher than that of arsenic while the absolute amount of bioavailable arsenic and cadmium level was opposite. Since both cadmium and arsenic were assessed from the same E. coli cells, the data obtained by using dual-sensing WCBs would be more efficient and convenient than that from comparative WCB assay. In spite of advantageous aspects, to our knowledge, this is the first report on a dual-sensing WCB for rapid and concurrent quantification of bioavailable arsenic and cadmium in contaminated soils. PMID:26852408

  4. Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters.

    PubMed

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kim, Shin Woong; Kang, Yerin; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2016-04-01

    Whole-cell bioreporters (WCBs) have attracted increasing attention during the last few decades because they allow fast determination of bioavailable heavy metals in contaminated sites. Various WCBs to monitor specific heavy metals such as arsenic and cadmium in diverse environmental systems are available. However, currently, no study on simultaneous analysis of arsenic and cadmium has been reported, even though soils are contaminated by diverse heavy metals and metalloids. We demonstrated herein the development of dual-sensing WCBs to simultaneously quantify bioavailable arsenic and cadmium in contaminated sites by employing the promoter regions of the ars and znt operons as separate metal-sensing domains, and egfp and mcherry as reporter genes. The dual-sensing WCBs were generated by inserting two sets of genes into E. coli DH5α. The capability of WCBs was successfully proved to simultaneously quantify bioavailable arsenic and cadmium in amended Landwirtschaftliche Untersuchungs und Forschungsanstalt (LUFA) soils, and then, it was applied to contaminated field soils collected from a smelter area in Korea. As a result, it was noticed that the bioavailable portion of cadmium was higher than that of arsenic while the absolute amount of bioavailable arsenic and cadmium level was opposite. Since both cadmium and arsenic were assessed from the same E. coli cells, the data obtained by using dual-sensing WCBs would be more efficient and convenient than that from comparative WCB assay. In spite of advantageous aspects, to our knowledge, this is the first report on a dual-sensing WCB for rapid and concurrent quantification of bioavailable arsenic and cadmium in contaminated soils.

  5. Dual assimilation of satellite soil moisture to improve streamflow prediction in data-scarce catchments

    NASA Astrophysics Data System (ADS)

    Alvarez-Garreton, Camila; Ryu, Dongryeol; Western, Andrew W.; Crow, Wade T.; Su, Chun-Hsu; Robertson, David R.

    2016-07-01

    This paper explores the use of active and passive microwave satellite soil moisture products for improving streamflow prediction within four large (>5000km2) semiarid catchments in Australia. We use the probability distributed model (PDM) under a data-scarce scenario and aim at correcting two key controlling factors in the streamflow generation: the rainfall forcing data and the catchment wetness condition. The soil moisture analysis rainfall tool (SMART) is used to correct a near real-time satellite rainfall product (forcing correction scheme) and an ensemble Kalman filter is used to correct the PDM soil moisture state (state correction scheme). These two schemes are combined in a dual correction scheme and we assess the relative improvements of each. Our results demonstrate that the quality of the satellite rainfall product is improved by SMART during moderate-to-high daily rainfall events, which in turn leads to improved streamflow prediction during high flows. When employed individually, the soil moisture state correction scheme generally outperforms the rainfall correction scheme, especially for low flows. Overall, the combined dual correction scheme further improves the streamflow predictions (reduction in root mean square error and false alarm ratio, and increase in correlation coefficient and Nash-Sutcliffe efficiency). Our results provide new evidence of the value of satellite soil moisture observations within data-scarce regions. We also identify a number of challenges and limitations within the schemes.

  6. An electrokinetic/Fe0 permeable reactive barrier system for the treatment of nitrate-contaminated subsurface soils.

    PubMed

    Suzuki, Tasuma; Oyama, Yukinori; Moribe, Mai; Niinae, Masakazu

    2012-03-01

    Effective nitrate removal by Fe(0) permeable reactive barriers (Fe(0) PRB) has been recognized as a challenging task because the iron corrosion product foamed on Fe(0) hinders effective electron transfer from Fe(0) to surface-bound nitrate. The objectives of this study were (i) to demonstrate the effectiveness of an electrokinetic/Fe(0) PRB system for remediating nitrate-contaminated low permeability soils using a bench-scale system and (ii) to deepen the understanding of the behavior and fate of nitrate in the system. Bench-scale laboratory experiments were designed to investigate the influence of the Fe(0) content in the permeable reactive barrier, the pH in the anode well, and the applied voltage on remediation efficiency. The experimental results showed that the major reaction product of nitrate reduction by Fe(0) was ammonium and that nitrate reduction efficiency was significantly influenced by the variables investigated in this study. Nitrate reduction efficiency was enhanced by either increasing the Fe(0) content in the Fe(0) reactive barrier or decreasing the initial anode pH. However, nitrate reduction efficiency was reduced by increasing the applied voltage from 10 V to 40 V due to the insufficient reaction time during nitrate migration through the Fe(0) PRB. For all experimental conditions, nearly all nitrate nitrogen was recovered in either anode or cathode wells as nitrate or ammonium within 100 h, demonstrating the effectiveness of the system for remediating nitrate-contaminated subsurface soils. PMID:22153957

  7. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model

    USGS Publications Warehouse

    Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.

    2015-01-01

    Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.

  8. Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers.

    PubMed

    Clifton, Lisa M; Dahlen, Paul R; Johnson, Paul C

    2014-05-01

    Aquifer physical model experiments were performed to investigate if diffusive emissions from nonaqueous phase liquid (NAPL)-impacted low-permeability layers into groundwater moving through adjacent NAPL-free high-permeability layers can be reduced by creating an aerobic biotreatment zone at the interface between the two, and if over time that leads to reduced emissions after treatment ceases. Experiments were performed in two 1.2-m long × 1.2-m high × 5.4 cm wide stainless steel tanks; each with a high-permeability sand layer overlying a low-permeability crushed granite layer containing a NAPL mixture of indane and benzene. Each tank was water-saturated with horizontal flow primarily through the sand layer. The influent water was initially deoxygenated and the emissions and concentration distributions were allowed to reach near-steady conditions. The influent dissolved oxygen (DO) level was increased stepwise to 6.5-8.5 mg/L and 17-20 mg/L, and then decreased back to deoxygenated conditions. Each condition was maintained for at least 45 days. Relative to the near-steady benzene emission at the initial deoxygenated condition, the emission was reduced by about 70% when the DO was 6.5-8.5 mg/L, 90% when the DO was 17-20 mg/L, and ultimately 60% when returning to low DO conditions. While the reductions were substantial during treatment, longer-term reductions after 120 d of elevated DO treatment, relative to an untreated condition predicted by theory, were low: 29% and 6% in Tank 1 and Tank 2, respectively. Results show a 1-2 month lag between the end of DO delivery and rebound to the final near-steady emissions level. This observation has implications for post-treatment performance monitoring sampling at field sites. PMID:24716993

  9. Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers.

    PubMed

    Clifton, Lisa M; Dahlen, Paul R; Johnson, Paul C

    2014-05-01

    Aquifer physical model experiments were performed to investigate if diffusive emissions from nonaqueous phase liquid (NAPL)-impacted low-permeability layers into groundwater moving through adjacent NAPL-free high-permeability layers can be reduced by creating an aerobic biotreatment zone at the interface between the two, and if over time that leads to reduced emissions after treatment ceases. Experiments were performed in two 1.2-m long × 1.2-m high × 5.4 cm wide stainless steel tanks; each with a high-permeability sand layer overlying a low-permeability crushed granite layer containing a NAPL mixture of indane and benzene. Each tank was water-saturated with horizontal flow primarily through the sand layer. The influent water was initially deoxygenated and the emissions and concentration distributions were allowed to reach near-steady conditions. The influent dissolved oxygen (DO) level was increased stepwise to 6.5-8.5 mg/L and 17-20 mg/L, and then decreased back to deoxygenated conditions. Each condition was maintained for at least 45 days. Relative to the near-steady benzene emission at the initial deoxygenated condition, the emission was reduced by about 70% when the DO was 6.5-8.5 mg/L, 90% when the DO was 17-20 mg/L, and ultimately 60% when returning to low DO conditions. While the reductions were substantial during treatment, longer-term reductions after 120 d of elevated DO treatment, relative to an untreated condition predicted by theory, were low: 29% and 6% in Tank 1 and Tank 2, respectively. Results show a 1-2 month lag between the end of DO delivery and rebound to the final near-steady emissions level. This observation has implications for post-treatment performance monitoring sampling at field sites.

  10. Dual strategies to improve oral bioavailability of oleanolic acid: Enhancing water-solubility, permeability and inhibiting cytochrome P450 isozymes.

    PubMed

    Jiang, Qikun; Yang, Xiaoxu; Du, Ping; Zhang, Huifen; Zhang, Tianhong

    2016-02-01

    Oleanolic acid (OA) is a typical BCS IV drug with low water-solubility and poor permeability, metabolized by cytochrome P450 (CYP) isozymes in the intestinal tract, such as CYP3A. These are the reasons for the low oral bioavailability of OA which have restricted its wide application. In this study, a solidified phospholipid complex (OPCH) composed of OA-phospholipid complex (OPC) and hydroxyapatite (HA) was prepared by simple solvent evaporation. OPC was used to improve the liposolubility of OA, and HA was used to improve the flowability of OPC. Ketoconazole (KCZ, inhibitor of CYP3A) was co-administrated with OPCH to inhibit the metabolism of OA by CYP3A in the intestine. DSC, PXRD, SEM and IR analysis confirmed the formation of OPC and OPCH. Compared with the water-solubility and n-octanol solubility of OA, that of OPCH was increased nearly 15.3-fold and 3.19-fold, respectively. An in vitro dissolution study showed that the cumulative dissolution rate of OPCH was nearly 2.23-fold and 4.57-fold higher than that of OA and OPC at 2h. Single-pass intestinal perfusion studies showed that the absorption of OA from OPCH was increased nearly 1.6-2.6-fold compared with that of pure OA and this was mainly due to the improved permeability and was further increased by OPCH with KCZ 1.2-2.4-fold compared with that of OPCH because KCZ inhibited metabolism of OA by CYP3A. A pharmacokinetic study of OPCH in rats following co-administration of KCZ was investigated. The Cmax was increased markedly from 59.5 to 78.7 and 131.3ng/mL in case of OA alone, OPCH alone and OPCH with KCZ. In parallel with the Cmax, the AUC0-24h was increased from 259.6 to 306.6 and 707.7ngh/mL, respectively. All the results obtained demonstrated that formulation of OPCH and co-administration of KCZ significantly improved the bioavailability of OA by increasing the solubility and permeability in combination with inhibiting the metabolism of OA.

  11. Dual signature tracer: A new tool for soil management and research.

    NASA Astrophysics Data System (ADS)

    Poleykett, Jack; Quinton, John; Armstrong, Alona; Maher, Barbara; Black, Kevin

    2015-04-01

    The significant detrimental effects that occur, both on and off site due to the transport of soil are well documented. Now more than ever, it is vital to understand the pathways, processes and fate of transported sediments, to underpin environmental strategy and develop robust forecast models. Researchers have employed a broad range of materials and techniques to trace the movement of soil through space and time. However, three primary challenges still remain: 1) to develop a tracer that has the same or similar hydraulic characteristics as soil: 2) to develop a tracer able to replicate the broad and variable particle size distribution of soils; and: 3) to develop a tracing methodology that increases the volume, and quality of data collected from the field. This study approaches these challenges using a unique 'dual signature' tracer comprising natural mineral material directly coated with a fluorescent dye pigment and loaded during coating with a naturally occurring magnetic mineral oxide creating a tracer with both fluorescent properties and para-magnetic character. An assessment of the effectiveness of the tracer as a tracer of soil was conducted at the soil box and plot scale under controlled rainfall conditions, to: 1) examine the behaviour of the tracer, and: 2) to assess the efficiency of the different tools available to monitor the tracer post- deployment. At the plot scale, a unique site specific tracer was developed to match the hydraulic characteristics (particle size distribution and specific gravity), of the native soil enabling the source-sink relationship, transport pathways and transport rate through the environment to be investigated. Spatial mapping of the tracer distribution within each plot was also conducted using photography and Ultra Violet (UV) illumination. The results of this study provide the basis for the development of a unique soil tracing methodology, which can be applied to investigate soil transport processes, at a range of scales in

  12. Minimize emissions and improve efficacy with low permeability tarp and deep injection in soil fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fumigation targets high pest control efficiency and low environmental impact. Earlier field data show that most fumigated treatments provided 100% kill for plant parasitic nematodes in the soil above 3 ft depth, but not below due to insufficient fumigant delivery. A fumigation trial was conduct...

  13. A dual isotope approach to isolate soil carbon pools of different turnover times

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Kleber, M.; Zavaleta, E. S.; Zhu, B.; Field, C. B.; Trumbore, S. E.

    2013-12-01

    Soils are globally significant sources and sinks of atmospheric CO2. Increasing the resolution of soil carbon turnover estimates is important for predicting the response of soil carbon cycling to environmental change. We show that soil carbon turnover times can be more finely resolved using a dual isotope label like the one provided by elevated CO2 experiments that use fossil CO2. We modeled each soil physical fraction as two pools with different turnover times using the atmospheric 14C bomb spike in combination with the label in 14C and 13C provided by an elevated CO2 experiment in a California annual grassland. In sandstone and serpentine soils, the light fraction carbon was 21-54% fast cycling with 2-9 yr turnover, and 36-79% slow cycling with turnover slower than 100 yr. This validates model treatment of the light fraction as active and intermediate cycling carbon. The dense, mineral-associated fraction also had a very dynamic component, consisting of ∼7% fast-cycling carbon and ∼93% very slow cycling carbon. Similarly, half the microbial biomass carbon in the sandstone soil was more than 5 yr old, and 40% of the carbon respired by microbes had been fixed more than 5 yr ago. Resolving each density fraction into two pools revealed that only a small component of total soil carbon is responsible for most CO2 efflux from these soils. In the sandstone soil, 11% of soil carbon contributes more than 90% of the annual CO2 efflux. The fact that soil physical fractions, designed to isolate organic material of roughly homogeneous physico-chemical state, contain material of dramatically different turnover times is consistent with recent observations of rapid isotope incorporation into seemingly stable fractions and with emerging evidence for hot spots or micro-site variation of decomposition within the soil matrix. Predictions of soil carbon storage using a turnover time estimated with the assumption of a single pool per density fraction would greatly overestimate

  14. Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO

    NASA Astrophysics Data System (ADS)

    Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.

    2012-02-01

    Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisation usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the

  15. Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO

    NASA Astrophysics Data System (ADS)

    Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.

    2012-07-01

    Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the

  16. Study on 3D surfactant assisted electrokinetic remediation of 1,2,4-trichlorobenzene in low permeability soil

    NASA Astrophysics Data System (ADS)

    Qiao, W.; Ye, S.; Wu, J.

    2014-12-01

    Electrickinetic(EK) is a promising remediation technology because of its capability to remediate soils with low permeability. It has been used for heavy metals and organic pollutant(OPs) contaminated soils. As the most OPs are poor solubility and strong sorption capacity, combined EK technology is usually used, for example, EK combined with surfactants. Numerous combined EK tests are done in one-dimension(1D) column, however, it is proved that there is a big gap between 1D tests and field application. The objectives of this study are to investigate the remediation efficiency and EK behavior of 1,2,4-trichlorobenzene(1,2,4-TCB) contaminated clay enhanced by surfactants in a three-dimension reactor with 28cm length×15cm width×16cm height. 1,2,4-TCB was one of the main contaminants at a field site in Nanjing, China, where the polluted soils are clay. Soil filled in EK cell was divided into six layers in depth, and each layer was divided into six parts in length and three parts in width. There were 108 specimens in total which realized 3D monitoring the effects of EK. Triton X-100(Exp1) and Tween80(Exp2) dissolved in NaCO3/NaHCO3 buffer respectively, were used as the anode purging solution. The distributions of soil pH and water content showed that the buffer was sufficient to neutralize H+ produced at anode and the direction of electroosmotic flow(EOF) remained constant. Exp2 generated a higher EOF than Exp1, but remediation efficiencies were not satisfactory so far. The concentration of 1,2,4-TCB in soil reached a peak and nadir in the normalized distances of 0.75 and 0.9 from cathode after 5 days, respectively. The 1,2,4-TCB concentration in the peak was almost twice as much as the initial concentration. It suggested that 1,2,4-TCB was desorbed from soil by surfactants and was transported from anode to cathode by EOF, which proved the capability of EK with surfactants to move 1,2,4-TCB in clay. The concentration of 1,2,4-TCB in the normalized distances of 0

  17. Numerical investigation of the effects of porosity and tortuosity on soil permeability using coupled three-dimensional discrete-element method and lattice Boltzmann method.

    PubMed

    Sheikh, Bahman; Pak, Ali

    2015-05-01

    Permeability of porous materials is an important characteristic which is extensively used in various engineering disciplines. There are a number of issues that influence the permeability coefficient among which the porosity, size of particles, pore shape, tortuosity, and particle size distribution are of great importance. In this paper a C++ GPU code based on three-dimensional lattice Boltzmann method (LBM) has been developed and used for investigating the effects of the above mentioned factors on the permeability coefficient of granular materials. Multirelaxation time collision scheme of the LBM equations is used in the simulator, which is capable of modeling the exact position of the fluid-solid interface leading to viscosity-independent permeabilities and better computational stability due to separation of the relaxations of various kinetic models. GPU-CPU parallel processing has been employed to reduce the computational time associated with three-dimensional simulations. Soil samples have been prepared using the discrete element method. The obtained results have demonstrated the importance of employing the concept of effective porosity instead of total porosity in permeability relationships. The results also show that a threshold porosity exists below which the connectivity of the pores vanishes and the permeability of the soils reduces drastically.

  18. Numerical investigation of the effects of porosity and tortuosity on soil permeability using coupled three-dimensional discrete-element method and lattice Boltzmann method.

    PubMed

    Sheikh, Bahman; Pak, Ali

    2015-05-01

    Permeability of porous materials is an important characteristic which is extensively used in various engineering disciplines. There are a number of issues that influence the permeability coefficient among which the porosity, size of particles, pore shape, tortuosity, and particle size distribution are of great importance. In this paper a C++ GPU code based on three-dimensional lattice Boltzmann method (LBM) has been developed and used for investigating the effects of the above mentioned factors on the permeability coefficient of granular materials. Multirelaxation time collision scheme of the LBM equations is used in the simulator, which is capable of modeling the exact position of the fluid-solid interface leading to viscosity-independent permeabilities and better computational stability due to separation of the relaxations of various kinetic models. GPU-CPU parallel processing has been employed to reduce the computational time associated with three-dimensional simulations. Soil samples have been prepared using the discrete element method. The obtained results have demonstrated the importance of employing the concept of effective porosity instead of total porosity in permeability relationships. The results also show that a threshold porosity exists below which the connectivity of the pores vanishes and the permeability of the soils reduces drastically. PMID:26066273

  19. Pore pressure propagation in a permeable thin-layer coal seam based on a dual porosity model: A case of risk prediction of water inrush in coalmines

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Gao, F.; Yang, J. W.; Zhou, G. Q.

    2016-08-01

    Thin-layer coal seams, a type of filling coal rock body, are considered aquifer systems made up of dual porosity medium with immediate floor. A numerical simulation for the pore pressure propagation along a thin-layer coal seam was carried out for the case of the Zhaogezhuang coalmine in China. By valuing the permeability (Kf ) of the thin-layer coal seam, pore pressure variation with time was simulated and compared to the analytical solutions of a dual porosity model (DPM). The main conclusions were drawn as follow: (1) Seepage in the thin-layer coal seam was predominant in the whole process, and the distance of seepage was lengthened and the pore pressure decreased with increased Kf , (2) A series of simulated hydraulic graphs demonstrated that the pore pressure characteristics of peak-occurring and time-lag effects agreed with the analytical solutions of DPM; (3) By adjusting the parameters of DPM, two results of analytical solutions and numerical solutions fit well, particularly in the thin-layer coal seam, (4) The power law relationship between the peak-values and lag time of pore pressure were derived statistically under consideration of the Kf parameter in the range of 10-8 to 10-10 m2/pa-s orders, and it was reasonable that the Kf of the thin-layer coal seam was in the range of 10-8 m2/pa-s orders. The results were significantly helpful in decision-making for mining water prevention and prediction in practice.

  20. Influences of spatial scale and soil permeability on relationships between land cover and baseflow stream nutrient concentrations.

    PubMed

    Daniel, F Bernard; Griffith, Michael B; Troyer, Michael E

    2010-02-01

    The Little Miami River (LMR) basin, dominated by agriculture, contains two geologically-distinct regions; a glaciated northern till plain with soils three times more permeable than a southern, pre-Wisconsinan drift plain. The influences of two landscape measures, percent row crop cover (%RCC, computed at three spatial scales), and soil permeability (PERM), on baseflow nutrient concentrations were modeled using linear regressions. Quarterly water samples collected for four years were analyzed for nitrate-N (NN), Kjeldahl-N (KN), total-N (TN), and total-P (TP). In till plain streams (n = 17), NN concentrations were 8.5-times greater than drift plain streams (n = 18), but KN and TP were 20-40% lower at comparable %RCC. These differences resulted in TN/TP molar ratios >80 in till plain streams, but <6 in drift plain streams. For till plain steams regression models based on %RCC accounted for 79% of the variance in NN concentrations but only 27% in drift plain streams. However, regressions on %RCC accounted for 68-75% of the KN and TP concentration variance in the drift plain streams but essentially none in the till plain. Catchment PERM influenced the regional NN/KN ratios which were 10-fold higher in the drift plain streams. For both till and drift streams the catchment scale %RCC gave the best predictions of NN, a water soluble anion, but the smaller spatial scales produced better models for insoluble nutrient species (e.g., KN and TP). Published literature on Ohio streams indicates that these inter-regional differences in nutrient ratios have potential implications for aquatic biota in the receiving streams.

  1. The influence of forest regrowth on soil permeability in the humid tropics

    NASA Astrophysics Data System (ADS)

    Hassler, Sibylle; Zimmermann, Beate; Elsenbeer, Helmut

    2010-05-01

    The humid tropics are subject to change in land use: on the one hand ongoing deforestation claims more area for agriculture and pastures, on the other hand reforestation efforts emerge. These changes in land use affect soil hydrological properties. Various studies have shown that a shift from primary forest to pasture leads to a rapid decrease in soil saturated hydraulic conductivity (Ks) through animal treading, implicitly enhancing the occurrence of overland flow. Recent information about the reverse process, the possible recovery of soil hydraulic properties during forest regrowth, suggests a slow recovery of Ks. To further explore this possibility with the help of a space-for-time substitution approach we surveyed Ks in the Panama Canal Zone. In a completely randomised sampling design we sampled several plots of four different land use classes: Pasture, secondary forest of two age classes (5-8 years and 12-15 years after pasture abandonment), and old-growth forest. Undisturbed soil cores were taken from the depths 0-6 and 6-12 cm and then subjected to the constant-head method. We also surveyed bulk density, soil organic carbon, soil texture and vegetation parameters (eg. basal area, diameter at breast height) to help interpret the observed Ks data. Our results support the notion of a slow recovery as they exhibit an increase in Ks after more than 10 years, if only for the depth of 0-6 cm. Other studies suggest that the decrease of Ks after deforestation is limited to a distinct shallow soil layer, thus the observed recovery effect in the upper layer is in logical accordance with these findings. We will use the ancillary information to elucidate the main determinants of Ks recovery. Quantification of the hydrological relevance of these findings is especially important as land use effects are obviously limited to only the upper soil layer. To evaluate the hydrological relevance we will compare the Ks measurements with prevailing rainfall intensities and data of

  2. Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation.

    PubMed

    López-Vizcaíno, Rubén; Navarro, Vicente; Alonso, Juan; Yustres, Ángel; Cañizares, Pablo; Rodrigo, Manuel A; Sáez, Cristina

    2016-01-01

    Electrokinetic processes provide the basis of a range of very interesting techniques for the remediation of polluted soils. These techniques consist of the application of a current field in the soil that develops different transport mechanisms capable of mobilizing several types of pollutants. However, the use of these techniques could generate nondesirable effects related to the geomechanical behavior of the soil, reducing the effectiveness of the processes. In the case of the remediation of polluted soils with plasticity index higher than 35, an excessive shrinkage can be observed in remediation test. For this reason, the continued evaporation that takes place in the sample top can lead to the development of cracks, distorting the electrokinetic transport regime, and consequently, the development of the operation. On the other hand, when analyzing silty soils, in the surroundings of injection surfactant wells, high seepages can be generated that give rise to the development of piping processes. In this article methods are described to allow a reduction, or to even eliminate, both problems.

  3. Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation.

    PubMed

    López-Vizcaíno, Rubén; Navarro, Vicente; Alonso, Juan; Yustres, Ángel; Cañizares, Pablo; Rodrigo, Manuel A; Sáez, Cristina

    2016-01-01

    Electrokinetic processes provide the basis of a range of very interesting techniques for the remediation of polluted soils. These techniques consist of the application of a current field in the soil that develops different transport mechanisms capable of mobilizing several types of pollutants. However, the use of these techniques could generate nondesirable effects related to the geomechanical behavior of the soil, reducing the effectiveness of the processes. In the case of the remediation of polluted soils with plasticity index higher than 35, an excessive shrinkage can be observed in remediation test. For this reason, the continued evaporation that takes place in the sample top can lead to the development of cracks, distorting the electrokinetic transport regime, and consequently, the development of the operation. On the other hand, when analyzing silty soils, in the surroundings of injection surfactant wells, high seepages can be generated that give rise to the development of piping processes. In this article methods are described to allow a reduction, or to even eliminate, both problems. PMID:26488188

  4. Compact, Lightweight Dual- Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya

    2004-01-01

    The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.

  5. The effect of the geometry of the micro pores on the effective permeability of soil

    NASA Astrophysics Data System (ADS)

    Sachkov, Igor N.; Marinova, Olga; Turygina, Victoria F.; Turygin, Evgeniy E.

    2016-06-01

    The problem of the setting the penetration of the soil occurs while solving a huge variety of practical problems. They are: the forecasting of the substance's migration in the dumps, pollution of the underground water in the mining areas, filtration of an oil in the soil, an optimization of the processes of reclamation and irrigation, evaluation of oil well production rate and some other. It was the method of variation formulation of the transport equations for finding the spatial distribution of pressure in conjunction with extreme functionality. The results allow to predict a wide range of ecological processes.

  6. Fumigation efficacy and emission reduction using low-permeability film in orchard soil fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Many orchards in California, USA, apply fumigants to soil before replanting to reduce the impact of pest pressure or replanting disease on new tree establishment. Emission control of alternative fumigants to methyl bromide is mandatory in air quality (ozone) non-attainment areas. This s...

  7. Freundlich and dual Langmuir isotherm models for predicting 137Cs binding on Savannah River Site soils.

    PubMed

    Goto, Momoko; Rosson, Robert; Wampler, J Marion; Elliott, W Crawford; Serkiz, Steven; Kahn, Bernd

    2008-01-01

    Distribution of 137Cs and stable cesium between aqueous solution and near-surface soil samples from five locations at the Savannah River Site was measured in order to develop a predictive model for 137Cs uptake by the soils. Sorption of 137Cs in these soils appears to be mostly by hydroxy-interlayered vermiculite. Batch sorption studies with 4 d for equilibration were conducted at three cesium concentrations and at two backing electrolyte (NaNO3) concentrations. The soil-solution mixtures were pH-adjusted to evaluate the effects of pH on cesium sorption. Sorbed cesium was related to the equilibrium aqueous cesium concentrations by a Freundlich isotherm model. Model fits on logarithmic scales have a common slope of 0.60 +/- 0.03 for acidic mixtures and 0.69 +/- 0.04 for neutralized mixtures but have unique intercepts that are influenced by backing electrolyte concentration and pH. An ion-exchange model is proposed that pertains to all five soils and relates the Freundlich isotherms to the cation exchange capacity of soil and the aqueous concentrations of cesium, sodium, and a third ionic species that was hydrogen in the acidic mixtures and potassium in the neutralized mixtures. Model fits are consistent with Kd values in the entire range of 5-2,300 L kg(-1) determined for the five soil types. As an alternate model, dual Langmuir isotherms were fitted to the data. The results suggest cesium sorption by (1) relatively few interlayer-wedge sites, highly selective for cesium, and (2) much more abundant but less selective sites on internal and external planar surfaces.

  8. Soil Water Retention and Relative Permeability for Full Range of Saturation

    SciTech Connect

    Zhang, Z. F.

    2010-09-28

    Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to capillary forces only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified with six datasets from the literature. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but under-estimate the conductivity while the extended models match the retention and conductivity measurements well.

  9. Soil Water Retention and Relative Permeability for Conditions from Oven-Dry to Full Saturation

    SciTech Connect

    Zhang, Z. F.

    2011-11-04

    Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to the capillary force only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which the water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified measurements. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but underestimate the conductivity. The extended models match the retention and conductivity measurements well.

  10. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    SciTech Connect

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass

  11. Dual-function growth medium and structural soil for use as porous pavement.

    PubMed

    Sloan, John J; Hegemann, Mary Ann; George, Steve A

    2008-01-01

    Permeable grass-covered surfaces can reduce the quantity of storm water runoff and filter out potentially harmful chemicals. The objective of this study was to develop permeable structural soils that sustained healthy turf growth and filtered heavy metals from contaminated pavement runoff. The basic soil medium was a 50:50 mixture (v/v) of expanded shale (ExSh) and quartz sand (QS). The ExSh component consisted of (i) large-diameter particles (3-6 mm), (ii) small-diameter particles (1-3 mm), or (iii) a 50:50 mixture (v/v) of the two. The basic blends were mixed with 0, 10, and 20% sphagnum peat moss (v/v) and 0, 10, and 20% natural zeolites (v/v) and placed in 15-cm-diameter pots in a greenhouse. Bermudagrass plugs were planted in each pot. The addition of sphagnum peat moss to the basic ExSh/QS blend increased bermudagrass growth and improved plant response to added fertilizer. Zeolites had no significant effect on plant growth in the absence of sphagnum peat moss. Growing mediums that contained 10 to 20% sphagnum peat moss and 10 to 20% zeolites consistently produced more bermudagrass biomass than the unamended ExSh/QS mixture. Changing the ratio of small- to large-diameter ExSh in the basic medium did not affect bermudagrass yield. Very low amounts of Cd, Cu, Pb, and Zn were recovered in leachate after the addition of 10 mg metal per pot, suggesting that most heavy metals (>99%) were retained in the growing mediums. Zeolites reduced the amount of Cd and Pb in leachate water, but not Cu or Zn.

  12. Dual-function growth medium and structural soil for use as porous pavement.

    PubMed

    Sloan, John J; Hegemann, Mary Ann; George, Steve A

    2008-01-01

    Permeable grass-covered surfaces can reduce the quantity of storm water runoff and filter out potentially harmful chemicals. The objective of this study was to develop permeable structural soils that sustained healthy turf growth and filtered heavy metals from contaminated pavement runoff. The basic soil medium was a 50:50 mixture (v/v) of expanded shale (ExSh) and quartz sand (QS). The ExSh component consisted of (i) large-diameter particles (3-6 mm), (ii) small-diameter particles (1-3 mm), or (iii) a 50:50 mixture (v/v) of the two. The basic blends were mixed with 0, 10, and 20% sphagnum peat moss (v/v) and 0, 10, and 20% natural zeolites (v/v) and placed in 15-cm-diameter pots in a greenhouse. Bermudagrass plugs were planted in each pot. The addition of sphagnum peat moss to the basic ExSh/QS blend increased bermudagrass growth and improved plant response to added fertilizer. Zeolites had no significant effect on plant growth in the absence of sphagnum peat moss. Growing mediums that contained 10 to 20% sphagnum peat moss and 10 to 20% zeolites consistently produced more bermudagrass biomass than the unamended ExSh/QS mixture. Changing the ratio of small- to large-diameter ExSh in the basic medium did not affect bermudagrass yield. Very low amounts of Cd, Cu, Pb, and Zn were recovered in leachate after the addition of 10 mg metal per pot, suggesting that most heavy metals (>99%) were retained in the growing mediums. Zeolites reduced the amount of Cd and Pb in leachate water, but not Cu or Zn. PMID:18948478

  13. A dual phased approach for bioremediation of petroleum contaminated soil and ground water

    SciTech Connect

    Kennel, N.D.; Maher, A.; Buckallew, B.

    1994-12-31

    A case study will be presented to demonstrate an effective and timely method of site remediation which yields complete contaminant destruction rather than the contaminant transfer that traditional ground water extraction and treatment techniques result in. By utilizing bioremediation at this site, the client was able to completely degrade the contamination beneath the property, and in the process avoid future liability from transfer of the contamination to another party (i.e. landfill) or phase (i.e. liquid to vapor through air stripping). The provisions of a real estate transaction involving a former service station site in Central Iowa stipulated that the site be remediated prior to title transfer. Previous Environmental Investigative activities revealed significant soil and ground water contamination resulting from over 50 years of diesel and gasoline fuel storage and dispensing operations at the site. Microbial Environmental Services, Inc. (MES) utilized a dual phased bioremediation approach to meet regulatory clean-up guidelines in order for a timely property transfer to occur. To facilitate and expedite ground water remediation, contaminated soil was excavated and remediated via Advanced Biological Surface Treatment (ABST) techniques. ABST techniques are utilized by MES to treat excavated soil in closed cell to control emissions and treatment conditions. Following contaminant source removal, ground water was extracted and treated in a submerged, fixed film, flow through 1,000 gallon fixed film bioreactor at a rate of 2.5 gallons per minute.

  14. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types

    NASA Astrophysics Data System (ADS)

    Kodešová, Radka; Vignozzi, Nadia; Rohošková, Marcela; Hájková, Tereza; Kočárek, Martin; Pagliai, Marcello; Kozák, Josef; Šimůnek, Jirka

    2009-02-01

    When soil structure varies in different soil types and the horizons of these soil types, it has a significant impact on water flow and contaminant transport in soils. This paper focuses on the effect of soil structure variations on the transport of pesticides in the soil above the water table. Transport of a pesticide (chlorotoluron) initially applied on soil columns taken from various horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol) was studied using two scenarios of ponding infiltration. The highest infiltration rate and pesticide mobility were observed for the Bt 1 horizon of Haplic Luvisol that exhibited a well-developed prismatic structure. The lowest infiltration rate was measured for the Bw horizon of Haplic Cambisol, which had a poorly developed soil structure and a low fraction of large capillary pores and gravitational pores. Water infiltration rates were reduced during the experiments by a soil structure breakdown, swelling of clay and/or air entrapped in soil samples. The largest soil structure breakdown and infiltration decrease was observed for the Ap horizon of Haplic Luvisol due to the low aggregate stability of the initially well-aggregated soil. Single-porosity and dual-permeability (with matrix and macropore domains) flow models in HYDRUS-1D were used to estimate soil hydraulic parameters via numerical inversion using data from the first infiltration experiment. A fraction of the macropore domain in the dual-permeability model was estimated using the micro-morphological images. Final soil hydraulic parameters determined using the single-porosity and dual-permeability models were subsequently used to optimize solute transport parameters. To improve numerical inversion results, the two-site sorption model was also applied. Although structural changes observed during the experiment affected water flow and solute transport, the dual-permeability model together with the two-site sorption model proved to be

  15. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types.

    PubMed

    Kodesová, Radka; Vignozzi, Nadia; Rohosková, Marcela; Hájková, Tereza; Kocárek, Martin; Pagliai, Marcello; Kozák, Josef; Simůnek, Jirka

    2009-02-16

    When soil structure varies in different soil types and the horizons of these soil types, it has a significant impact on water flow and contaminant transport in soils. This paper focuses on the effect of soil structure variations on the transport of pesticides in the soil above the water table. Transport of a pesticide (chlorotoluron) initially applied on soil columns taken from various horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol) was studied using two scenarios of ponding infiltration. The highest infiltration rate and pesticide mobility were observed for the Bt(1) horizon of Haplic Luvisol that exhibited a well-developed prismatic structure. The lowest infiltration rate was measured for the Bw horizon of Haplic Cambisol, which had a poorly developed soil structure and a low fraction of large capillary pores and gravitational pores. Water infiltration rates were reduced during the experiments by a soil structure breakdown, swelling of clay and/or air entrapped in soil samples. The largest soil structure breakdown and infiltration decrease was observed for the Ap horizon of Haplic Luvisol due to the low aggregate stability of the initially well-aggregated soil. Single-porosity and dual-permeability (with matrix and macropore domains) flow models in HYDRUS-1D were used to estimate soil hydraulic parameters via numerical inversion using data from the first infiltration experiment. A fraction of the macropore domain in the dual-permeability model was estimated using the micro-morphological images. Final soil hydraulic parameters determined using the single-porosity and dual-permeability models were subsequently used to optimize solute transport parameters. To improve numerical inversion results, the two-site sorption model was also applied. Although structural changes observed during the experiment affected water flow and solute transport, the dual-permeability model together with the two-site sorption model proved to be

  16. A New approach for evaluate a sandy soil infiltration to calculate the permeability

    NASA Astrophysics Data System (ADS)

    Mechergui, M. Mohamed; Latifa Dhaouadi, Ms

    2016-04-01

    10 sites were chosen in the four ha field of Research Regional Center of Oasis Agriculture in Deguache (Tozeur). The soil is homogeneous to the depth of 120 cm; with a sandy texture (60% big sand, 20% small sand 13% silt and 7% clay); with a mean bulk density equal to 1.43g/cm3 and with field capacity and welting point equal respectively to 11.9 and 6 %. The time duration for each infiltration essay lasted between 352 and 554 minutes. The number of observation points for each infiltration curve varies between 31 and 40. The shape of the infiltration curves observed in all sites is in part similar to what observed in literature (high increase with time of cumulative infiltration for a short time and then a linear increase of this parameter to a time varying between 122 to 197 minutes depending on the site) and then something special a slowdown in the cumulative infiltration to the end of the essay. The (F(t) / t 1/2 versus t 1/2) plotted curves showed two distinguished parts: A linear relation to the time varying between 122 and 197 minutes confirming the validity of Philips model and a second part showed a slowdown in the slope to a time varying between 231 and 347 minutes depending on the site and then drop down to the end of the essay. This is may be due to the rearrangement of particles after a long time of infiltration which led to a decrease in hydraulic conductivity. To improve the calculation of the saturated hydraulic conductivity, we choose only the part that is validated by Philips model, the linear part. The number of omitted points in the cumulative infiltration varies between 11 and 22 points. By this method, the saturated hydraulic conductivity varies between 1 and 3.72 m/day with a mean equal to 2.35. However the previous technique used gave a mean value equal to 2.07. The new method is accurate and gives better results of K and sorbtivity.

  17. Experimental observations and modeling of ponding and overland flow in flat, permeable soil fields

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn; Bogaart, Patrick; van der Zee, Sjoerd

    2015-04-01

    In flat well-drained agricultural terrain, overland flow is a relatively rare phenomenon, yet still a potentially important driver of sediment and nutrient transport. Under these conditions, periods of intense rainfall, shallow groundwater dynamics and local combinations of meso- and microtopography control whether water in ponds will become connected to streams and ditches. Combining overland flow measurements at agricultural fields with a new modeling approach, we explored: (i) what rainfall conditions relate to overland flow and (ii) how does flow route connectivity develop for various types of runoff generation and meso/microtopography? For this purpose, we assessed overland flow at two field sites in flat, lowland catchments in the sandy part of the Netherlands and developed a dynamic model (FAST-runoff) to simulate redistribution of water over a heterogeneous surface with infiltration and soil water storage. Experimentally, it appeared that most overland flow occurred as saturation excess runoff during long wet periods, though infiltration excess runoff generation may have played a role during snowmelt periods that generated small amounts of runoff. For both fields, the contributing area during the saturation excess events was large and flow paths long, irrespective of the profoundly different microtopographies. We explored this behaviour with our FAST-Runoff model and found that under saturation excess conditions, mesotopographic features, such as natural depressions or those caused by tillage, gain importance at the expense of the spatial organization of microtopography. The surface topographies of our experimental fields were equal in terms of standard topographic analytical measures such as Curvature, Convergence Index, and Topographic Wetness Index. However, the fields could be distinguished when analysed with a quantitative indicator of flow for hydrological connectivity. Also, the fields had different dynamics related to the runoff generating mechanism

  18. Numerical simulation of freshwater/seawater interaction in a dual-permeability karst system with conduits: the development of discrete-continuum VDFST-CFP model

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill

    2016-04-01

    Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow

  19. Dual-frequency dual-polarized stacked patch microstrip arrays: An investigation of their suitability for soil-moisture remote-sensing applications

    NASA Astrophysics Data System (ADS)

    Kona, Keerti Sruta

    The objective of this research is to develop design and analysis procedures for dual-frequency dual-polarized microstrip arrays applicable to future spaceborne remote sensing missions. In particular this thesis focuses on two main applications: Application 1. Design of light-weight L-band standalone planar array for soil moisture and sea-surface salinity measurements. We then investigate the possibility of a stacked patch array topology with L-band array elements for use as feed to 12m offset reflector. Application 2. Development of feed array concept for 30m symmetric reflector. The principal contributions of this research has been investigation of novel dual-band and dual-polarization array designs that can comply with the demanding specifications. Novel probe feeding methods for microstrip elements to achieve the best array performance are identified. Most importantly, "proof-of-concept" scaled models of the array designs were experimentally and numerically verified for a given set of specifications. A sixteen element microstrip stacked patch array with combined L-band active (radar) and passive (radiometer) frequencies for use in airborne sensors operating on standalone aircrafts has been optimized, fabricated and tested for application 1. Sub-cell FDTD method was applied for accurately modeling thin radomes and multilayer dielectrics covering such aperture type antennas in space applications. From the design and performance study of the L-band array, we have shown that it is feasible to use optimized stacked patch arrays as alternatives to conventionally used feed horns for offset reflectors. For application 2, a dual-stack patch array feed is identified that can synthesize long rectangular apertures with matched beams for two frequencies on the reflector surface. An experimental prototype scaled feed was designed, built and also integrated with a scaled 3.65m reflector antenna thus demonstrating the overall system feasibility.

  20. A novel dual soil sensor for simultaneous water content and water potential determination in irrigation scheduling and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Hübner, Christof; Spohrer, Klaus; Karaj, Shkelqim; Müller, Joachim

    2013-04-01

    Due to the climate change and decreasing water availability in many parts of the world, water efficient irrigation becomes more and more important to stabilize or even increase agricultural productivity. An efficient irrigation scheduling relies on soil water potential information in order to define the optimal irrigation start as well as on soil water content data to quantify the amount of soil water and thus to properly define irrigation depth. Furthermore, nutrient leaching and groundwater contamination will be reduced by controlled irrigation. Therefore, a novel dual soil sensor was developed which allows for simultaneous determination of water content and water potential at low costs suitable for distributed sensing. The soil water content measurement is realized with a dielectric measurement approach. Sensor elements are arranged on a printed circuit board, which can easily be inserted into the soil. Soil water potential data is deduced from water content measurements in porous matrices with known retention characteristics. The matrices are placed on the printed circuit board above a water content sensitive dielectric measuring area. In contrast to common granular matrix sensors, the matrices are characterized by a narrow pore size ranges by which the accuracy of soil water potential determination can be improved and a threshold characteristic suitable for irrigation is achieved. Sensor principle and laboratory experiments will be presented. For application in irrigation scheduling, the dual sensor is connected to off-the-shelf irrigation controllers by an additional interface controller. The interface controller activates moisture measurements of the sensor and compares the actual measurements with set-points of water content or water potential. The running time-based programme of the irrigation controller will be interrupted if measured soil water contents are above a predefined water content threshold or soil water potential measurements are below a

  1. Compact, Lightweight Dual-Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid

    2006-01-01

    The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.

  2. A dual-low-frequency radar for sub-canopy and deep soil-moisture measurements

    NASA Technical Reports Server (NTRS)

    Moller, D.; Rodriguez, E.; Moghadamm, M.; Hoffman, J.

    2003-01-01

    Measurements of deep and sub-canopy soil moisture are critical in understanding the global water and carbon energy cycle, but are not presently available on a synoptic basis. In this paper, we discuss a proposed spaceborne dual-frequency (UHF and VHF) radar that can provide global & these key measurements. This system is polarimetric and the low transmit frequencies chosen for their penetration abilities necessitate a large antenna that has an aperture of approximately 30m by 11m at VHF, and 30m by 3m at UHF. We describe the mission concept, overall system design and performance characteristics, and discuss ongoing tasks to prototype key system components, and verify the retrieval algorithms. We are also developing a tower-based prototype radar system. This system will, through field observations, demonstrate the scientific effectiveness of the measurement concept and provide critical data for algorithm development. We provide details of the ground experimentation including issues unique to operating at the low-frequencies chosen for these systems.

  3. Soil Moisture Flow and Nitrate Movement Simulation through Deep and Heterogeneous Vadose Zone using Dual-porosity Approach

    NASA Astrophysics Data System (ADS)

    Yadav, B. K.; Tomar, J.; Harter, T.

    2014-12-01

    We investigate nitrate movement from non-point sources in deep, heterogeneous vadose zones, using multi-dimensional variably saturated flow and transport simulations. We hypothesize that porous media heterogeneity causes saturation variability that leads to preferential flow systems such that a significant portion of the vadose zone does not significantly contribute to flow. We solve Richards' equation and the advection-dispersion equation to simulate soil moisture and nitrate transport regimes in plot-scale experiments conducted in the San Joaquin Valley, California. We compare equilibrium against non-equilibrium (dual-porosity) approaches. In the equilibrium approach we consider each soil layer to have unique hydraulic properties as a whole, while in the dual-porosity approach we assume that large fractions of the porous flow domain are immobile. However we consider exchange of water and solute between mobile and immobile zone using the appropriate mass transfer terms. The results indicate that flow and transport in a nearly 16 m deep stratified vadose zone comprised of eight layers of unconsolidated alluvium experiences highly non-uniform, localized preferential flow and transport patterns leading to accelerated nitrate transfer. The equilibrium approach largely under-predicted the leaching of nitrate to groundwater while the dual-porosity approach showed higher rates of nitrate leaching, consistent with field observations. The dual-porosity approach slightly over-predicted nitrogen storage in the vadose zone, which may be the result of limited matrix flow or denitrification not accounted for in the model. Results of this study may be helpful to better predict fertilizer and pesticide retention times in deep vadose zone, prior to recharge into the groundwater flow system. Keywords: Nitrate, Preferential flow, Heterogeneous vadose zone, Dual-porosity approach

  4. Effects of biochar on air and water permeability and colloid and phosphorus leaching in soils from a natural calcium carbonate gradient.

    PubMed

    Kumari, K G I D; Moldrup, Per; Paradelo, Marcos; Elsgaard, Lars; Hauggaard-Nielsen, Henrik; de Jonge, Lis W

    2014-03-01

    Application of biochar to agricultural fields to improve soil quality has increased in popularity in recent years, but limited attention is generally paid to existing field conditions before biochar application. This study examined the short-term physicochemical effects of biochar amendment in an agricultural field in Denmark with a calcium carbonate (CaCO) gradient. The field comprised four reference plots and four plots to which biochar (birch wood pyrolyzed at 500°C) was applied at a rate of 20 t ha. Five undisturbed soil columns (10 cm diam., 8 cm height) were sampled from each plot 7 mo after biochar application, and a series of leaching experiments was conducted. The leachate was analyzed for tritium (used as a tracer), colloids, and phosphorus concentration. The results revealed that the presence of CaCO has resulted in marked changes in soil structure (bulk density) and soil chemical properties (e.g., pH and ionic strength), which significantly affected air and water transport and colloid and phosphorous leaching. In denser soils (bulk density, 1.57-1.69 g cm) preferential flow dominated the transport and caused an enhanced movement of air and water, whereas in less dense soils (bulk density, 1.38-1.52 g cm) matrix flow predominated the transport. Compared with reference soils, biochar-amended soils showed slightly lower air permeability and a shorter travel time for 5% of the applied tracer (tritium) to leach through the soil columns. Colloid and phosphorus leaching was observed to be time dependent in soils with low CaCO. Biochar-amended soils showed higher colloid and P release than reference soils. Field-scale variations in total colloid and P leaching reflected clear effects of changes in pH and ionic strength due to the presence of CaCO. There was a linear relationship between colloid and P concentrations in the leachate, suggesting that colloid-facilitated P leaching was the dominant P transport mechanism. PMID:25602666

  5. Estimating the dual-enzyme kinetic parameters for Cr (VI) reduction by Shewanella oneidensis MR-1 from soil column experiments.

    PubMed

    Hossain, Md Akram; Alam, Mahbub; Yonge, David R

    2005-09-01

    Hexavalent chromium (Cr (VI)) contamination of soil and groundwater is considered a major environmental concern. Bioreduction of Cr (VI) to trivalent chromium (Cr (III)) can be considered an effective technology in remediating Cr (VI) contaminated sites. Among the Cr (VI) reducing bacteria, Shewanella oneidensis MR-1 (MR-1) is relatively effective. Reduction of Cr (VI) by MR-1 is defined by the dual-enzyme kinetic model. The feasibility of bioreduction of Cr (VI) is usually evaluated by performing batch experiments which may not accurately represent the subsurface environment. The objective of this paper is to present a rational approach to determine the dual-enzyme reaction kinetics of Cr (VI) reduction by MR-1 from continuous flow soil column experiments which more accurately simulate the subsurface environment. Kinetic parameters obtained from soil column data were found to be much smaller than that obtained from batch data. The stable enzyme induced reaction rate was found to be 127th and the average deactivating enzyme induced reaction rate was 117th of the corresponding values obtained from batch reactor data as reported in literature.

  6. Low permeability tarps to reduce emission and improve fumigant distribution in soil from deep shank injection of Telone C35

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The San Joaquin Valley (SJV) of California is a highly productive region for perennial crops such as tree fruits, tree nuts and grapes. Preplant soil fumigation is often used in replanted orchards to control soil-borne pests which can increase establishment success and long-term orchard productivity...

  7. A standardized approach for estimating the permeability of plastic films to soil fumigants under various field and environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Minimizing atmospheric emissions of soil fumigants is critical for protecting human and environmental health. Covering the soil surface with a plastic tarp is a common approach to restrict fumigant emissions. The mass transfer of the fumigant vapors through the tarp is often the rate-limiting factor...

  8. Investigation of Soil Permeability and Hydrological Properties of Flood Plain Deposits of the Rio Grande in EL Paso TX

    NASA Astrophysics Data System (ADS)

    Schacht, D.; Jin, L.; Doser, D. I.

    2013-12-01

    The various soil types within the flood plains of Rio Grande in El Paso 's Lower Valley have long been utilized by local farmers. These soils are typically more conducive to farming than the more recent (Pliocene) sandy soils outside of the flood plain region. This project will explore the various properties of these soils types such as their grain size, depths, extent, and hydrological conductivity utilizing various geophysical and geochemical methods. The study site is located in El Paso 's Lower Valley and is situated in an actively farmed area. Soil maps from the Natural Resource Conservation Service (NRCS) and variations in vegetation growth will help delineate locations of soil types in the study area. The information that will be collected will produce baseline data to help track expected seasonal variations in the soil's moisture content and in the depth of the local water table. This project represents a collaboration between El Paso Community College's and the University of Texas at El Paso's Departments of Geological Sciences as a means for students majoring in Geological Sciences at El Paso Community College to gain hands on experience in researching geological issues through partnerships with their future institution and faculty.

  9. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  10. CAPSTONE REPORT ON THE APPLICATION, MONITORING, AND PERFORMANCE OF PERMEABLE REACTIVE BARRIERS FOR GROUND-WATER REMEDIATION: VOL. 2 LONG-TERM MONITORING OF PRBS: SOIL AND GROUND WATER SAMPLING

    EPA Science Inventory

    This report discusses soil and ground-water sampling methods and procedures used to evaluate the long-term performance of permeable reactive barriers (PRBS) at two sites, Elizabeth City, NC, and the Denver Federal Center near Lakewood, CO. Both PRBs were installed in 1996 and hav...

  11. Dual-mode modeling of competitive and concentration-dependent sorption and desorption kinetics of polycyclic aromatic hydrocarbons in soils

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Pignatello, Joseph J.; White, Jason C.; Braida, Washington; Ferrandino, Francis

    2001-08-01

    A radial dual-mode diffusion model is proposed for mass transfer of hydrophobic compounds in soil organic matter (SOM) that is able to predict competitive and concentration effects on sorption and desorption rates. On the basis of dual-mode sorption theory for glassy polymers the model assumes a population of specific adsorption sites ("holes") interspersed uniformly in the dissolution (partition) domain of SOM. It further assumes Fickian diffusion in the dissolution domain and immobilization in the holes, with microscopic local equilibrium between the two domains. The model is solved numerically (Crank-Nicolson implicit method). Using parameters from single-solute equilibrium and kinetic experiments, the model adequately predicts batch transient sorption and desorption of phenanthrene (primary solute) as a function of pyrene (cosolute) concentration, and batch transient sorption of phenanthrene as a function of its own concentration, in two soils. The model shows that phenanthrene sorption approaches equilibrium faster with increasing cosolute or self-concentration owing to the concentration dependence of the apparent diffusivity, as predicted by a simple hole-plugging mechanism (i.e., fewer and fewer holes are available). Simulations show the effect to be greatest under infinite bath uptake conditions. Under finite bath conditions this positive effect on rate may be opposed by a batch process temporal bias present when the water:soil ratio is kept constant in a series of experiments. The bias is due to gradient driving force effects that slow the rate as a result of the decrease in percent of solute finally taken up by the solid as cosolute or concentration increases.

  12. Pre-plant soil fumigation with reduced rates under low permeable films for tree nursery production, orchard and vineyard replanting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pre-plant soil fumigation is a common agricultural practice in orchard and vineyard replanting as well as in nursery production of fruit and nut trees in CA. Identification of pest control strategies with low chemical inputs to reduce environmental impact are of interest. Therefore, the objective of...

  13. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    PubMed

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter. PMID:27142168

  14. Dual-sugar tests of small intestinal permeability are poor predictors of bacterial infections and mortality in cirrhosis: A prospective study

    PubMed Central

    Vogt, Anika; Reuken, Philipp A; Stengel, Sven; Stallmach, Andreas; Bruns, Tony

    2016-01-01

    AIM: To prospectively analyze the impact of increased intestinal permeability (IP) on mortality and the occurrence of infections in patients with cirrhosis. METHODS: IP was quantified using the lactulose/mannitol (L/M) test in 46 hospitalized patients with cirrhosis (25 Child-Pugh A/B, 21 Child-Pugh C) and in 16 healthy controls. Markers of inflammation [LPS-binding protein, Interleukin-6 (IL-6)] and enterocyte death [intestinal fatty-acid binding protein (I-FABP)] were determined in serum using enzyme-linked immunosorbent assays. Patients were followed for one year and assessed for survival, liver transplantation, the necessity of hospitalization and the occurrence of bacterial infections. The primary endpoint of the study was defined as differences in survival between patients with pathological and without pathological lactulose/mannitol test. RESULTS: Thirty-nine (85%) patients with cirrhosis had a pathologically increased IP index (L/M ratio > 0.07) compared to 4 (25%) healthy controls (P < 0.0001). The IP index correlated with the Child-Pugh score (r = 0.484, P = 0.001) and with serum IL-6 (r = 0.342, P = 0.02). Within one year, nineteen (41%) patients developed a total of 33 episodes of hospitalization with bacterial or fungal infections. Although patients who developed spontaneous bacterial peritonitis (SBP) (n = 7) had a higher IP index than patients who did not (0.27 vs 0.14, P = 0.018), the baseline IP index did not predict time to infection, infection-free survival or overall survival, neither when assessed as linear variable, as tertiles, nor dichotomized using an established cut-off. In contrast, model for end-stage liver disease score, Child-Pugh score, the presence of ascites, serum IL-6 and I-FABP were univariate predictors of infection-free survival. CONCLUSION: Although increased IP is a frequent phenomenon in advanced cirrhosis and may predispose to SBP, it failed to predict infection-free and overall survival in this prospective cohort study

  15. Phase 1 remediation of jet fuel contaminated soil and groundwater at JFK International Airport using dual phase extraction and bioventing

    SciTech Connect

    Roth, R.; Bianco, P. Rizzo, M.; Pressly, N.; Frumer, B.

    1995-12-31

    Soil and groundwater contaminated with jet fuel at Terminal One of the JFK International Airport in New York have been remediated using dual phase extraction (DPE) and bioventing. Two areas were remediated using 51 DPE wells and 20 air sparging/air injection wells. The total area remediated by the DPE wells is estimated to be 4.8 acres. Groundwater was extracted to recover nonaqueous phase and aqueous phase jet fuel from the shallow aquifer and treated above ground by the following processes; oil/water separation, iron-oxidation, flocculation, sedimentation, filtration, air stripping and liquid-phase granular activated carbon (LPGAC) adsorption. The extracted vapors were treated by vapor-phase granular activated carbon (VPGAC) adsorption in one area, and catalytic oxidation and VPGAC adsorption in another area. After 6 months of remediation, approximately 5,490 lbs. of volatile organic compounds (VOCs) were removed by soil vapor extraction (SVE), 109,650 lbs. of petroleum hydrocarbons were removed from the extracted groundwater, and 60,550 lbs. of petroleum hydrocarbons were biologically oxidized by subsurface microorganisms. Of these three mechanisms, the rate of petroleum hydrocarbon removal was the highest for biological oxidation in one area and by groundwater extraction in another area.

  16. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect

    Siegrist, R.L. |; Lowe, K.S.; Murdoch, L.D. |; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  17. An improved dual porosity model for chemical transport in macroporous soils

    NASA Astrophysics Data System (ADS)

    Ray, Chittaranjan; Ellsworth, Timothy R.; Valocchi, Albert J.; Boast, Charles W.

    1997-06-01

    The often observed processes involved in preferential water flow and chemical transport in porous media appear to be realistically described using a dual-continuum (dual-porosity) approach. In this approach, the porous medium is conceptualized as two coexistent continua, one representing the bulk matrix and the other the macropore region. Fluid and solute mass transfer between the two regions in the conceptual model occurs under pressure and concentration gradients. However, oscillatory behavior (overshoot problems in the macropore region) of the transport equation was observed for high values of the advective solute flux relative to the diffusive solute flux between the two regions. To circumvent this oscillatory behavior, the fluid coupling term in the transport equations was treated as an element-averaged, rather than a nodal property. The model was extended to two space dimensions for evaluating the impact of agricultural practices on solute leaching. A linear kinetic sorption module in the transport equations and a simple plant root extraction routine in the flow equations were also added. Although the simulation results show promise, additional work will be needed to determine realistic model parameter values.

  18. THEORETICAL DEVELOPMENT AND ANALYTICAL SOLUTIONS FOR TRANSPORT OF VOLATILE ORGANIC COMPOUNDS IN DUAL-POROSITY SOILS

    EPA Science Inventory

    Predicting the behavior of volatile organic compounds in soils or sediments is necessary for managing their use and designing appropriate remedial systems to eliminate potential threats to the environment, particularly the air and groundwater resources. In this effort, based on c...

  19. Dual assimilation of satellite soil moisture to improve flood prediction in ungauged catchments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper explores the use of active and passive satellite soil moisture products for improving stream flow prediction within 4 large (>5,000km2) semi-arid catchments. We use the probability distributed model (PDM) under a data-scarce scenario and aim at correcting two key controlling factors in th...

  20. A novel dual-isotope labelling method for distinguishing between soil sources of N2O.

    PubMed

    Wrage, N; van Groenigen, J W; Oenema, O; Baggs, E M

    2005-01-01

    We present a novel 18O-15N-enrichment method for the distinction between nitrous oxide (N2O) from nitrification, nitrifier denitrification and denitrification based on a method with single- and double-15N-labelled ammonium nitrate. We added a new treatment with 18O-labelled water to quantify N2O from nitrifier denitrification. The theory behind this is that ammonia oxidisers use oxygen (O2) from soil air for the oxidation of ammonia (NH3), but use H2O for the oxidation of the resulting hydroxylamine (NH2OH) to nitrite (NO2-). Thus, N2O from nitrification would therefore be expected to reflect the 18O signature of soil O2, whereas the 18O signature of N2O from nitrifier denitrification would reflect that of both soil O2 and H2O. It was assumed that (a) there would be no preferential removal of 18O or 16O during nitrifier denitrification or denitrification, (b) the 18O signature of the applied 18O-labelled water would remain constant over the experimental period, and (c) any O exchange between H(2)18O and NO3- would be negligible under the chosen experimental conditions. These assumptions were tested and validated for a silt loam soil at 50% water-filled pore space (WFPS) following application of 400 mg N kg-1 dry soil. We compared the results of our new method with those of a conventional inhibition method using 0.02% v/v acetylene (C2H2) and 80% v/v O2 in helium. Both the 18O-15N-enrichment and inhibitor methods identified nitrifier denitrification to be a major source of N2O, accounting for 44 and 40%, respectively, of N2O production over 24 h. However, compared to our 18O-15N-method, the inhibitor method overestimated the contribution from nitrification at the expense of denitrification, probably due to incomplete inhibition of nitrifier denitrification and denitrification by large concentrations of O2 and a negative effect of C2H2 on denitrification. We consider our new 18O-15N-enrichment method to be more reliable than the use of inhibitors; it enables the

  1. Potential dual use of biochar for wastewater treatment and soil amelioration

    NASA Astrophysics Data System (ADS)

    Marschner, Bernd; Werner, Steffen; Alfes, Karsten; Lübken, Manfred

    2013-04-01

    Irrigating crops with wastewater from open drainage channels is a common practice in urban agricultural production in many dry regions of Africa, Asia and Latin America. While the wastewater-borne nutrients reduce the need for inputs of mineral fertilizers or manures and thus reduce production costs, wastewater-borne pathogens and contaminants pose a health risk for the producers and consumers of the crops. Furthermore, the input of nutrients with the irrigation water may greatly exceed crop requirements and thus lead to unproductive leaching losses of nutrients. It is generally acknowledged that biochar additions can increase the soil's sorption and retention capacity for nutrients and water. However, positive effects on crop production are generally only observed, if this is combined with mineral fertilizers or manures due to the low nutrient content of biochars. Biochar possibly also has a high potential for use in water purification, replacing the coal-based activated carbon as a sorbent for contaminants and pathogens. It was therefore hypothesized that biochar can be used for pathogen removal from wastewater while at the same time being loaded with nutrients and contaminants. If contaminants are of minor concern the "loaded" biochar can be used as a soil amendment, providing not only long-term sorption capacity but also nutrients. Experiments were conducted with pyrochar from Miscanthus, rice husks and wood chips, which strongly differed in elemental composition, MIR-DRIFT spectra, surface charge properties and sorption potential for DOC and phosphate. When used as top filter layer in a sand column system, the biochars effectively reduced E. coli concentrations from raw wastewater by up to 2 log units. While biochars from rice husks and Miscanthus accumulated N substantially, wood chip biochar showed no N retention. On the other hand, P accumulation was most pronounced for wood chip biochar. Ongoing incubation experiments with the "loaded" and fresh biochar in

  2. In situ remediation of ortho-nitrochlorobenzene in soil by dual oxidants (hydrogen peroxide/persulfate).

    PubMed

    Liu, Zhonghua; Guo, Weilin; Han, Xuemei; Li, Xianghui; Zhang, Ke; Qiao, Zhuangming

    2016-10-01

    The efficacies of catalyzed H2O2, activated persulfate, and catalyzed H2O2-persulfate processes for the degradation of ortho-nitrochlorobenzene (o-NCB) in soil were investigated. The application of catalyzed H2O2-persulfate process was promising, and after a careful adjustment of oxidants and activator doses, it demonstrated a considerable improvement in o-NCB degradation compared with activated persulfate process and catalyzed H2O2 process. The degradation of o-NCB in catalyzed H2O2-persulfate process was obviously influenced by the concentration of persulfate and H2O2, the molar ratio between persulfate and H2O2, the concentration of o-NCB, and initial pH. Degradation of o-NCB was obviously inhibited by the addition of tert-butyl alcohol, methanol, and phenol, suggesting that nitrobenzene was dominantly oxidized by HO· and SO4 (-)· generated in the catalyzed H2O2-persulfate process. The results from these studies demonstrated that the natural iron species present in soil could effectively facilitate the degradation of organic pollutants in the presence of H2O2 and persulfate. PMID:27406223

  3. Colloid transport in dual-permeability media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the incre...

  4. EFFECT OF AQUEOUS PHASE PROPERTIES ON CLAY PARTICLE ZETA POTENTIAL AND ELECTRO-OSMOTIC PERMEABILITY: IMPLICATIONS FOR ELECTRO-KINETIC SOIL REMEDIATION PROCESSES

    EPA Science Inventory

    The influence of aqueous phase properties (pH, ionic strength and divalent metal ion concentration) on clay particle zeta potential and packed-bed electro-osmotic permeability was quantified. Although pH strongly altered the zeta potential of a Georgia kaolinite, it did not signi...

  5. Field and Dual Magnetic Susceptibility Proxies Implication for Heavy Metal Pollution Assessment in the Urban Soil of Al-Karak City, South Jordan.

    NASA Astrophysics Data System (ADS)

    El-Hasan, T.; Lataifeh, M.

    2012-04-01

    A total of 115 urban soil samples collected on grid bases from Al-Karak City, south Jordan, were investigated for their magnetic properties using Bartington portable magnetic susceptibility system with (MS2B and MS2D) probes. The magnetic proxies that were used in this study are the field & dual magnetic susceptibilities (χ). In addition the heavy metal contents in soil were determined using the Inductively Coupled Plasma (ICP-MS). The dual frequency magnetic susceptibility meter (MS2B) measurements showed that upper soils have higher values of (χlf) than lower soils. Moreover, the large grain size particles have more magnetic materials than smaller grain size particles. This might be attributed to the lack or low degree of pedogensis due to prevailing arid climate. The field magnetic susceptibility measurements (χfield) were positively correlated with low frequency dual magnetic susceptibility (χlf). Few selected samples that have anomalous magnetic susceptibility values were analyzed for their heavy metal content. The results showed a positively significant correlation between total heavy metal content and χ, this was evident from the higher degree of fitness between the distribution maps of χ and each heavy metal in the study area. These results indicate the applicability of these proxies as pollution indicator, and showed that higher χ is associated with traffic areas more than industrial and residential areas. The Frequency Dependent Susceptibility (χfd% ) was found to be medium value and ranges between (2-10%), which indicate the presence of admixture of fine Super magnetic Particles (SP) or coarse non-SP grains or SP grains < 0.005 micron. A mildly significant correlation existed between χfd% and χlf, which implies that the soils contain anthropogenic multi-domain and stable single domain grains. Moreover, the hysteresis loop patterns, SEM investigations, thermo magnetic heating curves and XRD charts reveal the presence of magnetite as the main

  6. Pneumatic fracturing of low permeability media

    SciTech Connect

    Schuring, J.R.

    1996-08-01

    Pneumatic fracturing of soils to enhance the removal and treatment of dense nonaqueous phase liquids is described. The process involves gas injection at a pressure exceeding the natural stresses and at a flow rate exceeding the permeability of the formation. The paper outlines geologic considerations, advantages and disadvantages, general technology considerations, low permeability media considerations, commercial availability, efficiency, and costs. Five case histories of remediation using pneumatic fracturing are briefly summarized. 11 refs., 2 figs., 1 tab.

  7. EPA Permeable Surface Research

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  8. Does Miscanthus cultivation on organic soils compensate for carbon loss from peat oxidation? A dual label study

    NASA Astrophysics Data System (ADS)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2016-04-01

    Agricultural use of organic soils requires drainage and thereby changes conditions in these soils from anoxic to oxic. As a consequence, organic carbon that had been accumulated over millennia is rapidly mineralized, so that these soils are converted from a CO2 sink to a source. The peat mineralization rate depends mainly on drainage depth, but also on crop type. Various studies show that Miscanthus, a C4 bioenergy plant, shows potential for carbon sequestration in mineral soils because of its high productivity, its dense root system, absence of tillage and high preharvest litterfall. If Miscanthus cropping would have a similar effect in organic soils, peat consumption and thus CO2 emissions might be reduced. For our study we compared two adjacent fields, on which organic soil is cultivated with Miscanthus (since 20 years) and perennial grass (since 6 years). Both sites are located in the Bernese Seeland, the largest former peatland area of Switzerland. To determine wether Miscanthus-derived carbon accumulated in the organic soil, we compared the stable carbon isotopic signatures of the experimental soil with those of an organic soil without any C4-plant cultivation history. To analyze the effect of C4-C accumulation on peat degradability we compared the CO2 emissions by incubating 90 soil samples of the two fields for more than one year. Additionally, we analysed the isotopic CO2 composition (13C, 14C) during the first 25 days of incubation after trapping the emitted CO2 in NaOH and precipitating it as BaCO3. The ∂13C values of the soil imply, that the highest share of C4-C of around 30% is situated at a depth of 10-20 cm. Corn that used to be cultivated on the grassland field before 2009 still accounts for 8% of SOC. O/C and H/C ratios of the peat samples indicate a stronger microbial imprint of organic matter under Miscanthus cultivation. The amount of CO2 emitted was not affected by the cultivation type. On average 57% of the CO2 was C4 derived in the

  9. Extreme Rainfall Impacts in Fractured Permeable Catchments

    NASA Astrophysics Data System (ADS)

    Ireson, A. M.; Butler, A. P.

    2009-12-01

    of recharge: under low rainfall intensities recharge is slow (lags of > 100 days) and through the matrix; under moderate intensities recharge is via the matrix and partially saturated fractures (lags of 10s of days) and, if sustained, can lead to flooding (as in 2000/1); under high intensity rainfall fractures transmit rainfall preferentially, leading to a large, rapid (<1 day) water table response. Given the expectation that extreme rainfall events are likely to become more frequent and intense, our main focus is the preferential recharge mechanism, which has the potential to cause rapid flooding. By examining rainfall-water table response patterns, we demonstrate how the combined intensity-duration characteristics of rainfall events can be used to predict when preferential recharge is likely to occur. A 2D physically based, dual permeability Richards' equation model of the Chalk, which fully couples the unsaturated/saturated zones was developed and conditioned on field observations. This was used in a sensitivity study of water table response to a wide range of rainfall conditions, such as might be expected under future climate scenarios. The model also demonstrated the importance of the soil and weathered chalk layers on matrix and fracture flow response to rainfall infiltration.

  10. A conceptual model for infiltration in two-layered soils with a more permeable upper layer: From local to field scale

    NASA Astrophysics Data System (ADS)

    Corradini, C.; Flammini, A.; Morbidelli, R.; Govindaraju, R. S.

    2011-11-01

    SummaryA conceptual model with a semi-analytical formulation for estimating the expected field-scale infiltration in two-layered soils is proposed here. At the local scale, an upper layer with a vertically homogeneous saturated hydraulic conductivity, K1s, much greater than that of subsoil, K2s, is considered. The basic element of the local model is the relatively simple mathematical representation of infiltration as a function of time. This representation depends on whether the dynamic wetting front is entirely within the upper layer when surface saturation occurs, or if the front has moved past the interface into the subsoil at the time to ponding. This local-scale infiltration model is found to be very accurate when compared to the Richards equation. Moreover, the local model clearly identifies if infiltration is controlled by rainfall, the top soil layer, or the bottom soil layer. For upscaling to field-scale, K1s is represented by a spatial horizontal random field while K2s for the subsoil is assumed constant. Areally-averaged infiltration is obtained by integrating the local infiltration equations. Monte Carlo simulations over a vertical soil profile representative of a sandy loam top soil and a clay loam subsoil are performed for constructing the ensemble averages of field-scale infiltration to be used for model testing. The simulations reveal that the proposed model shows promise for field-scale infiltration computations with errors referred to the aforementioned numerical benchmark typically less than 10% and 5% for infiltration rates and cumulative infiltration, respectively. Conditions when spatial variability in infiltration properties of the top soil can be neglected are identified.

  11. Mitigating methane emissions and air intrusion in heterogeneous landfills with a high permeability layer.

    PubMed

    Jung, Yoojin; Imhoff, Paul T; Augenstein, Don; Yazdani, Ramin

    2011-05-01

    Spatially variable refuse gas permeability and landfill gas (LFG) generation rate, cracking of the soil cover, and reduced refuse gas permeability because of liquid addition can all affect CH(4) collection efficiency when intermediate landfill covers are installed. A new gas collection system that includes a near-surface high permeability layer beneath the landfill cover was evaluated for enhancing capture of LFG and mitigating CH(4) emissions. Simulations of gas transport in two-dimensional domains demonstrated that the permeable layer reduces CH(4) emissions up to a factor of 2 for particular spatially variable gas permeability fields. When individual macrocracks formed in the cover soil and the permeable layer was absent, CH(4) emissions increased to as much as 24% of the total CH(4) generated, double the emissions when the permeable layer was installed. CH(4) oxidation in the cover soil was also much more uniform when the permeable layer was present: local percentages of CH(4) oxidized varied between 94% and 100% across the soil cover with the permeable layer, but ranged from 10% to 100% without this layer for some test cases. However, the permeable layer had a minor effect on CH(4) emissions and CH(4) oxidation in the cover soil when the ratio of the gas permeability of the cover soil to the mean refuse gas permeability ≤ 0.05. The modeling approach employed in this study may be used to assess the utility of other LFG collection systems and management practices.

  12. Permeability and relative permeability in rocks

    SciTech Connect

    Blair, S.C.; Berryman, J.G.

    1990-10-01

    Important features of the topology of the pore space of rocks can be usefully quantified by analyzing digitized images of rock cross sections. One approach computes statistical correlation functions using modern image processing techniques. These correlation functions contain information about porosity, specific surface area, tortuosity, formation factor, and elastic constants, as well as the fluid permeability and relative permeability. The physical basis of this approach is discussed and examples of the results for various sandstones are presented. The analysis shows that Kozeny-Carman relations and Archie's empirical laws must be modified to account for finite percolation thresholds in order to avoid unphysical behavior in the calculated relative permeabilities. 33 refs., 4 figs., 1 tab.

  13. Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier.

    PubMed

    Curtosi, Antonio; Pelletier, Emilien; Vodopivez, Cristian L; Mac Cormack, Walter P

    2007-09-20

    Although Antarctica is still considered as one of the most pristine areas of the world, the growing tourist and fisheries activities as well as scientific operations and their related logistic support are responsible for an increasing level of pollutants in this fragile environment. Soils and coastal sediments are significantly affected near scientific stations particularly by polycyclic aromatic hydrocarbons (PAHs). In this work sediment and soil were sampled in two consecutive summer Antarctic expeditions at Potter Cove and peninsula, in the vicinity of Jubany Station (South Shetland Islands). Two- and 3-ring PAHs (methylnaphthalene, fluorene, phenanthrene and anthracene) were the main compounds found in most sites, although total PAH concentrations showed relatively low levels compared with other human-impacted areas in Antarctica. Pattern distribution of PAHs observed in samples suggested that low-temperature combustion processes such as diesel motor combustion and open-field garbage burning are the main sources of these compounds. An increase in PAH concentrations was observed from surface to depth into the active soil layer except for a unique sampling site where a fuel spill had been recently reported and where an inverted PAH concentration gradient was observed. The highest level was detected in the upper layer of permafrost followed by a sharp decrease in depth, showing this layer is acting as a barrier for downward PAH migration. When PAH levels in soil from both sampling programs were compared a significant decrease (p<0.01) was observed in summer 2005 (range at 75-cm depth: 12+/-1-153+/-22 ng/g) compared to summer 2004 (range at 75-cm depth: 162+/-15-1182+/-113 ng/g) whereas concentrations in surface sediment collected nearby the station PAHs increased drastically in 2005 (range: 36+/-3-1908+/-114 ng/g) compared to 2004 (range: 28+/-3-312+/-24 ng/g). Precipitation regime and water run off suggest that an important wash out of soil-PAHs occurred during

  14. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, T.; Smith, L.; Moosdorf, N.; Hartmann, J.; Durr, H.H.; Manning, A.H.; Van Beek, L. P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of ???5 ?? 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change. Copyright ?? 2011 by the American Geophysical Union.

  15. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, Tom; Smith, Leslie; Moosdorf, Nils; Hartmann, Jens; Durr, Hans H.; Manning, Andrew H.; van Beek, Ludovicus P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of -5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.

  16. Scaling preferential flow processes in agricultural soils affected by tillage and trafficking at the field scale

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Coquet, Yves

    2016-04-01

    There is an accumulation of experimental evidences that agricultural soils, at least the top horizons affected by tillage practices, are not homogeneous and present a structure that is strongly dependent on farming practices like tillage and trafficking. Soil tillage and trafficking can create compacted zones in the soil with hydraulic properties and porosity which are different from those of the non-compacted zones. This spatial variability can strongly influence transport processes and initiate preferential flow. Two or three dimensional models can be used to account for spatial variability created by agricultural practices, but such models need a detailed assessment of spatial heterogeneity which can be rather impractical to provide. This logically raises the question whether and how one dimensional model may be designed and used to account for the within-field spatial variability in soil structure created by agricultural practices. Preferential flow (dual-permeability) modelling performed with HYDRUS-1D will be confronted to classical modelling based on the Richards and convection-dispersion equations using HYDRUS-2D taking into account the various soil heterogeneities created by agricultural practices. Our goal is to derive one set of equivalent 1D soil hydraulic parameters from 2D simulations which accounts for soil heterogeneities created by agricultural operations. A field experiment was carried out in two phases: infiltration and redistribution on a plot by uniform sprinkle irrigation with water or bromide solution. Prior to the field experiment the soil structure of the tilled layer was determined along the face of a large trench perpendicular to the tillage direction (0.7 m depth and 3.1 m wide). Thirty TDR probes and tensiometers were installed in different soil structural zones (Δ compacted soil and Γ macroporous soil) which ensured soil water monitoring throughout the experiment. A map of bromide was constructed from small core samples (4 cm diam

  17. Permeability of edible coatings.

    PubMed

    Mishra, B; Khatkar, B S; Garg, M K; Wilson, L A

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m(2).day (6% beeswax) to 758.0 g/m(2).day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm(3)cm cm(-2)s(-1)Pa(-1), with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrophilic (whey protein concentrate and carboxymethyl cellulose).

  18. Seismic waves increase permeability.

    PubMed

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.

  19. In-situ permeability measurements with the Cone Permeameter{trademark} measurement system

    SciTech Connect

    1998-07-30

    The permeability of soil to fluid flow defines the magnitude of soil gas and groundwater flow under imposed pressure gradients. Pressure gradients exist due to natural effects such as hydraulic gradients (in the case of groundwater) and barometrically imposed gradients (in the case of soil gas). Unnatural gradients are imposed by soil vapor extraction air sparging, active venting, pump-and-treat, and other remediation processes requiring the active movement of fluids through the soil. The design of these processes requires knowledge of the flow characteristics of the soil. The most variable of the soil's flow characteristics is its permeability, which can vary by several orders of magnitude in a given geologic and hydrologic setting. Knowledge of soil gas permeability is needed to design soil vapor extraction systems and predict the general movement of gas in soil. Saturated hydraulic conductivity, or the soil's permeability to liquid flow, is required to predict movement of groundwater in saturated soils. The variability of permeability is illustrated by the range of values for different media in a table. It is not uncommon for permeabilities to vary by several orders of magnitude at a given site.

  20. Characteristics of permeability in carbonate areas of Korea

    NASA Astrophysics Data System (ADS)

    Park, Y.; Lee, J.; Lim, H.; Keehm, Y.

    2010-12-01

    Permeability (hydraulic conductivity) in carbonate areas is affected by various factors such as fracture, pore and degree of weathering and diagenesis. Also, caves developed in carbonate area are main factors. This study was performed to understand factors controlling the permeability in carbonate areas in Korea. In order to conduct this study, the permeability and well logging data (n=30) were collected from many literatures and rock samples were collected around wells. Vertical profile of the carbonate areas can be classified into soil, weathered carbonate and fresh carbonate zone. They show a different range at each region. Most of the rock samples were hardly weathered. The permeability showed wide ranges (0.009 to 1.1 m/day). The average value of the permeability was 0.159 m/day. However, 80% (n=24) of total data had the permeability valves lower than 0.1 m/day. The permeability values were distinguished according to degree of development of fractures. The permeability showed low values (approximately <0.04 m/day) in hardly fractured carbonate area, intermediate values (approximately 0.04 to 0.5 m/day) in fractured carbonate area and high values (approximately >0.5 m/day) in highly fractured carbonate. These results mean that fractures are dominant factors controlling the permeability in carbonate areas of Korea than others. This work was supported by Energy Resource R&D program (2009T100200058) under the Ministry of Knowledge Economy, Republic of Korea.

  1. The Permeable Classroom.

    ERIC Educational Resources Information Center

    Sandy, Leo R.

    1998-01-01

    Discusses the concept of permeability as knowledge flow into and out of the classroom and applies it to three college courses taught by the author at Plymouth State College (New Hampshire). Experiential knowledge comes into the classroom through interviews, guest speakers, and panel presentations, and flows out through service-learning students…

  2. Influence of Subslab Aggregate Permeability of SSV Performance

    SciTech Connect

    Gadgil, A.J.; Bonnefous, Y.C.; Fisk, W.J.; Prill, R.J.; Nematollahi, A.

    1991-09-01

    The effectiveness of the technique of subslab ventilation (SSV) for limiting radon entry into basements was investigated through complementary experimentation and numerical modeling. Determination of the impact of subslab aggregate permeability on SSV performance was a primary objective. Subslab pressure fields resulting from SSV were measured in six well-characterized basements, each with a different combination of soil and aggregate permeability. The relationship between air velocity and pressure gradient within the three types of aggregate installed beneath the basement slabs was measured in the laboratory. A new numerical model of SSV was developed and verified with the field data. This model simulates non-Darcy flow in the aggregate. We demonstrate that non-Darcy effects significantly impact SSV performance. Field data and numerical simulations indicate that increasing the aggregate permeability within the investigated range of 2 x 10{sup -8} m{sup 2} to 3 x 10{sup -7} m{sup 2} substantially improves the extension of the subslab pressure field due to SSV operation. Subslab pressure field extension also improves as soil permeability decreases between 10{sup -9} m{sup 2} and 10{sup -10} m{sup 2}. With a slab-wall gap thickness of 1 mm and the range of aggregate permeability investigated, further reductions in soil permeability do not significantly improve the subslab pressure field extension. Sealing of cracks in the slab and excavation of a small pit where the SSV pipe penetrates the slab also dramatically improve this pressure field extension. A large ratio of aggregate permeability to soil permeability reduces the need for large depressurizations at the SSV pit. Our findings are consistent with the results of prior field studies; however, our understanding of SSV is improved and the dependence of SSV performance on the relevant parameters can now be quantified with the model.

  3. Scales of rock permeability

    NASA Astrophysics Data System (ADS)

    Guéguen, Y.; Gavrilenko, P.; Le Ravalec, M.

    1996-05-01

    Permeability is a transport property which is currently measured in Darcy units. Although this unit is very convenient for most purposes, its use prevents from recognizing that permeability has units of length squared. Physically, the square root of permeability can thus be seen as a characteristic length or a characteristic pore size. At the laboratory scale, the identification of this characteristic length is a good example of how experimental measurements and theoretical modelling can be integrated. Three distinct identifications are of current use, relying on three different techniques: image analysis of thin sections, mercury porosimetry and nitrogen adsorption. In each case, one or several theoretical models allow us to derive permeability from the experimental data (equivalent channel models, statistical models, effective media models, percolation and network models). Permeability varies with pressure and temperature and this is a decisive point for any extrapolation to crustal conditions. As far as pressure is concerned, most of the effect is due to cracks and a model which does not incorporate this fact will miss its goal. Temperature induced modifications can be the result of several processes: thermal cracking (due to thermal expansion mismatch and anisotropy, or to fluid pressure build up), and pressure solution are the two main ones. Experimental data on pressure and temperature effects are difficult to obtain but they are urgently needed. Finally, an important issue is: up to which point are these small scale data and models relevant when considering formations at the oil reservoir scale, or at the crust scale? At larger scales the identification of the characteristic scale is also a major goal which is examined.

  4. EPA Permeable Surface Research - Poster

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  5. Evaluation of the permeability of agricultural films to various fumigants.

    PubMed

    Qian, Yaorong; Kamel, Alaa; Stafford, Charles; Nguyen, Thuy; Chism, William J; Dawson, Jeffrey; Smith, Charles W

    2011-11-15

    A variety of agricultural films are commercially available for managing emissions and enhancing pest control during soil fumigation. These films are manufactured using different materials and processes which can ultimately result in different permeability to fumigants. A systematic laboratory study of the permeability of the agricultural films to nine fumigants was conducted to evaluate the performance of commonly used film products, including polyethylene, metalized, and high-barrier films. The permeability, as expressed by mass transfer coefficient (cm/h), of 27 different films from 13 manufacturers ranged from below 1 × 10(-4) cm/h to above 10 cm/h at 25 °C under ambient relative humidity test conditions. The wide range in permeability of commercially available films demonstrates the need to use films which are appropriate for the fumigation application. The effects of environmental factors, such as temperature and humidity, on the film permeability were also investigated. It was found that high relative humidity could drastically increase the permeability of the high-barrier films. The permeability of some high-barrier films was increased by 2-3 orders of magnitude when the films were tested at high relative humidity. Increasing the temperature from 25 to 40 °C increased the permeability for some high-barrier films up to 10 times more than the permeability at 25 °C, although the effect was minimal for several of these films. Analysis of the distribution of the permeability of the films under ambient humidity conditions to nine fumigants indicated that the 27 films largely followed the material type, although the permeability varied considerably among the films of similar material.

  6. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  7. [Venoruton and capillary permeability].

    PubMed

    Cesarone, M R; Laurora, G; Gabini, M; Errichi, B M; Candiani, C; Belcaro, G

    1989-05-01

    A new system to evaluate capillary permeability, the vacuum suction chamber (VSC) device, was used to assess the effects of Venoruton in patients with venous hypertension. A temporary, superficial skin lesion (wheal) was produced with the VSC device by negative pressure (30 mmHg) applied for 10 minutes on the internal, perimalleolar region. Wheals disappear in less than 60 minutes in normals while in patients with venous hypertension the wheal is more persistent, requiring a significantly longer time to disappear. This new technique was used in association with laser-Doppler flowmetry to evaluate the efficacy of Venoruton (1000 mgs t.i.d.) administered for 2 weeks on venous hypertension. Results indicate a positive effect of Venoruton in reducing the abnormally increased capillary permeability in venous hypertension and are proportional to the changes observed in signs and symptoms after treatment.

  8. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  9. Axi-symmetric simulation of soil vapor extraction influenced by soil fracturing.

    PubMed

    Schulenber, Joseph W; Reeves, Howard W

    2002-08-01

    Fracturing, either pneumatic or hydraulic, is a method to improve the performance of soil vapor extraction (SVE) in relatively low permeability soils (< 10(-5) cm/s). A two-dimensional model is presented to simulate trichloroethylene (TCE) soil vapor extraction modified by fracturing. Flow and transport is modeled using mobile macropore and micropore networks, which also have been identified in the literature as dual porosity, dual permeability, or heterogeneous flow models. In this model, fluids can flow in both the macropore and micropore networks. This represents a more general model compared to immobile micropore, mobile macropore models presented thus far in the literature for vapor flow and transport in two dimensions. The model considers pressure- and concentration-driven exchange between the macropore and micropore networks, concentration-driven exchange between the gas and sorbed phases within each network, and equilibrium exchange between the gas and water and a sorbed phase within each network. The parameters employed in an example simulation are based on field measurements made at a fractured site. Considered in the simulations were the influence of the volume percentage of fractures, the length of fractures, the relative location of the water table, and the influence of pulsed pumping. For these simulations, internetwork concentration-driven exchange most significantly affected mass removal. The volume percentage of fractures more significantly influence flow and mass removal than the length of fractures. The depth of the water table below the contamination plume only significantly influenced flow and mass removal when the water table was within 60 cm of the bottom of the contaminated soil in the vadose zone for the parameters considered in this study. Pulsed pumping was not found to increase the amount of mass removed in this study.

  10. Relative permeability through fractures

    SciTech Connect

    Diomampo, Gracel, P.

    2001-08-01

    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  11. Use of Interface Treatment to Reduce Emissions from Residuals in Lower Permeability Zones to Groundwater flowing Through More Permeable Zones (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, P.; Cavanagh, B.; Clifton, L.; Daniels, E.; Dahlen, P.

    2013-12-01

    Many soil and groundwater remediation technologies rely on fluid flow for contaminant extraction or reactant delivery (e.g., soil vapor extraction, pump and treat, in situ chemical oxidation, air sparging, enhanced bioremediation). Given that most unconsolidated and consolidated settings have permeability contrasts, the outcome is often preferential treatment of more permeable zones and ineffective treatment of the lower permeability zones. When this happens, post-treatment contaminant emissions from low permeability zone residuals can cause unacceptable long-term impacts to groundwater in the transmissive zones. As complete remediation of the impacted lower permeability zones may not be practicable with conventional technologies, one might explore options that lead to reduction of the contaminant emissions to acceptable levels, rather than full remediation of the lower permeability layers. This could be accomplished either by creating a sustained emission reaction/attenuation zone at the high-low permeability interface, or by creating a clean soil zone extending sufficiently far into the lower permeability layer to cause the necessary reduction in contaminant concentration gradient and diffusive emission. These options are explored in proof-of-concept laboratory-scale physical model experiments. The physical models are prepared with two layers of contrasting permeability and either dissolved matrix storage or nonaqueous phase liquid (NAPL) in the lower permeability layer. A dissolved oxidant is then delivered to the interface via flow across the higher permeability layer and changes in contaminant emissions from the low permeability zone are monitored before, during, and after oxidant delivery. The use of three oxidants (dissolved oxygen, hydrogen peroxide and sodium persulfate) for treatment of emissions from petroleum hydrocarbon residuals is examined.

  12. A tale of two solutes: Dual-domain flow and the role of the mass transfer coefficient

    NASA Astrophysics Data System (ADS)

    Callaghan, M. V.; Bishop, J. M.; Cey, E. E.; Bentley, L. R.

    2011-12-01

    During remediation of natural porous media it is often observed that concentrations of contaminants exhibit long tail-off periods and a concentration rebound following the end of pumping. This phenomenon has often been modeled using a dual-domain approach, which includes a preferential flow domain, such as macropores or fractures, and a less mobile domain, such as the soil or rock matrix. In this model, preferential flow paths provide the majority of the advective mass transport and the less mobile domain contains the majority of storage. A pilot-scale remediation experiment was conducted on salt-affected soil associated with the accidental release of oilfield brine prior to the early 1970's. This salt contamination has deeply impregnated the soil matrix. Preferential flow pathways are present as root hole macropores in shallow soils and fractures in glacial till at depth. Understanding the solute transport processes between the matrix domain and the preferential flow domain is key to optimizing the remediation process. Tile drains were installed to collect saline leachate from shallow soils (0 to 2 m). In addition to the salt flushing experiment, a conservative organic tracer, 2,6-difluorobenzoic acid (DFBA), was applied to the soil surface. In the tile drain effluent, salt and tracer concentrations show differing behavior. Tracer concentrations tend to increase during increased flow events, indicating increased flushing. In contrast, salinity concentrations tend to decrease during increased flow events, indicating dilution of salt by low-salinity rain or irrigation water. Within the soil column, tracer pore water concentrations are decreasing rapidly with time, while salinity levels remain elevated. This is attributed to a lower rate of macropore transport of salt, as a result of the salt having diffused into the soil matrix, while the tracer has not. Thus the tracer is more readily transported through macropores and fractures. The two conservative tracers

  13. The Interfacial-Area-Based Relative Permeability Function

    SciTech Connect

    Zhang, Z. F.; Khaleel, Raziuddin

    2009-09-25

    CH2M Hill Plateau Remediation Company (CHPRC) requested the services of the Pacific Northwest National Laboratory (PNNL) to provide technical support for the Remediation Decision Support (RDS) activity within the Soil & Groundwater Remediation Project. A portion of the support provided in FY2009, was to extend the soil unsaturated hydraulic conductivity using an alternative approach. This alternative approach incorporates the Brooks and Corey (1964), van Genuchten (1980), and a modified van Genuchten water-retention models into the interfacial-area-based relative permeability model presented by Embid (1997). The general performance of the incorporated models is shown using typical hydraulic parameters. The relative permeability models for the wetting phase were further examined using data from literature. Results indicate that the interfacial-area-based model can describe the relative permeability of the wetting phase reasonably well.

  14. Measuring Clogging with Pressure Transducers in Permeable Pavement Strips

    EPA Science Inventory

    Two issues that have a negative affect on the long term hydrologic performance of permeable pavement systems are surface clogging and clogging at the interface with the underlying soil. Surface clogging limits infiltration capacity and results in bypass if runoff rate exceeds in...

  15. Electrokinetic effects and fluid permeability

    NASA Astrophysics Data System (ADS)

    G. Berryman, James

    2003-10-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery.

  16. Modeling Water Flow and Bromide Transport in a Two-Scale-Structured Lignitic Mine Soil

    NASA Astrophysics Data System (ADS)

    Dusek, J.; Gerke, H. H.; Vogel, T.; Maurer, T.; Buczko, U.

    2008-12-01

    Two-dimensional single- and dual-permeability simulations are used to analyze water and solute fluxes in heterogeneous lignitic mine soil at a forest-reclaimed mine spoil heap. The soil heterogeneity on this experimental site "Barenbrucker Hohe" resulted from inclined dumping structures and sediment mixtures that consist of sand with lignitic dust and embedded lignitic fragments. Observations on undisturbed field suction- cell lysimeters including tracer experiments revealed funneling-type preferential flow with lateral water and bromide movement along inclined sediment structures. The spatial distribution of soil structures and fragment distributions was acquired by a digital camera and identified by a supervised classification of the digital profile image. First, a classical single-domain modeling approach was proposed with spatially variable scaling factors inferred from image analyses. In the next step, a two-continuum scenario was constructed to examine additional effects of nonequilibrium on the flow regime. The scaling factors used for the preferential flow domain are here obtained from the gradient of the grayscale images. So far, the single domain scenarios failed to predict the bromide leaching patterns although water effluent could be described. Dual-permeability model allows the incorporation of structural effects and can be used as a tool to further testing other approaches that account for structure effects. The numerical study suggests that additional experiments are required to obtain better understanding of the highly complex transport processes on this experimental site.

  17. Hybrid green permeable pave with hexagonal modular pavement systems

    NASA Astrophysics Data System (ADS)

    Rashid, M. A.; Abustan, I.; Hamzah, M. O.

    2013-06-01

    Modular permeable pavements are alternatives to the traditional impervious asphalt and concrete pavements. Pervious pore spaces in the surface allow for water to infiltrate into the pavement during rainfall events. As of their ability to allow water to quickly infiltrate through the surface, modular permeable pavements allow for reductions in runoff quantity and peak runoff rates. Even in areas where the underlying soil is not ideal for modular permeable pavements, the installation of under drains has still been shown to reflect these reductions. Modular permeable pavements have been regarded as an effective tool in helping with stormwater control. It also affects the water quality of stormwater runoff. Places using modular permeable pavement has been shown to cause a significant decrease in several heavy metal concentrations as well as suspended solids. Removal rates are dependent upon the material used for the pavers and sub-base material, as well as the surface void space. Most heavy metals are captured in the top layers of the void space fill media. Permeable pavements are now considered an effective BMP for reducing stormwater runoff volume and peak flow. This study examines the extent to which such combined pavement systems are capable of handling load from the vehicles. Experimental investigation were undertaken to quantify the compressive characteristics of the modular. Results shows impressive results of achieving high safety factor for daily life vehicles.

  18. a Modified Denitrifying Bacteria Method for Dual Stable Isotopic Analysis of of Soil Nitrate in Kcl Extracts: Identification of Bioindicators of Nitrogen Deposition Along a Gradient in the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Bell, M. D.; Sickman, J. O.; Allen, E. B.

    2011-12-01

    Previous studies performing dual isotopic analysis of nitrate in KCl soil extracts using denitrifying bacteria have not incorporated alterations in the method to compensate for the increased N2O blank produced when the bacteria are exposed to KCl in solution. When 1M KCl is used as a blank, the amount of N2O released from the concentrated bacteria solution is more than four times as high as when using a DI water blank. The excess N2O produced is not an artifact of nitrate impurity in the KCl, although the blank increases with the molarity of KCl up to 1M. The introduction of N2O gas is significant enough to alter the values of IAEA USGS standards (3 μg in 3ml KCl) which in turn results in an inaccurate regression for unknown samples. We reduced the size of the KCl blank and its effect on the standards by adding 3ml of KCl to the bacteria solution prior to purging the sample with He gas. This removes the N2O gas which is released by the bacteria when they initially come in contact with the KCl, and allows for standards to be calibrated to a precision of ± 0.1 % δ15N and ± 0.2 % δ18O. Using this new method, we measured δ15N and δ18O of nitrate in 1M KCl soil extracts taken from surface soil (5cm cores) along a nitrogen deposition gradient spanning the Coachella Valley in the western Sonoran Desert during the summer. Early germinating winter annual plant species (Schismus barbatus, Chaenactic fremontii, and Malacothrix glabrata) were collected as seedlings early in the growing season and again in late spring before senescence. Leaves from the dominant shrub, Larrea tridentata, were also collected from each site. Soil nitrogen from sites on the eastern edge of the valley had δ18O values between +30 and +41%, indicating an influence of atmospheric nitrate in plant available nitrate. There was an inverse correlation (r2=0.907) between soil δ18O and the δ15N of the C.fremontii leaf tissue, which suggests that in areas of high N deposition, some seedlings are

  19. Permeable membrane experiment

    NASA Technical Reports Server (NTRS)

    Slavin, Thomas J.; Cao, Tuan Q.; Kliss, Mark H.

    1993-01-01

    The purpose of the Permeable Membrane Experiment is to gather flight data on three areas of membrane performance that are influenced by the presence of gravity. These areas are: (1) Liquid/gas phase separation, (2) gas bubble interference with diffusion through porous membranes and (3) wetting characteristics of hydrophilic membrane surfaces. These data are important in understaning the behavior of membrane/liquid/gas interfaces where surface tension forces predominate. The data will be compared with 1-g data already obtained and with predicted micrograviity behavior. The data will be used to develop designs for phase separation and plant nutrient delivery systems and will be available to the life support community for use in developing technologies which employ membranes. A conceptual design has been developed to conduct three membrane experiments, in sequence, aboard a single Complex Autonomous Payload (CAP) carrier to be carried in the Shuttle Orbiter payload bay. One experiment is conducted for each of the three membrane performance areas under study. These experiments are discussed in this paper.

  20. Relative Permeability of Fractured Rock

    SciTech Connect

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  1. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    EPA Science Inventory

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...

  2. Estimating the hydraulic conductivity of slowly permeable and swelling materials from single-ring experiments

    NASA Astrophysics Data System (ADS)

    GéRard-Marchant, P.; Angulo-Jaramillo, R.; Haverkamp, R.; Vauclin, M.; Groenevelt, P.; Elrick, D. E.

    1997-06-01

    The in situ determination of the field-saturated hydraulic conductivity of low-permeability porous materials is a major concern for both geotechnics and soil physics with regards to environmental protection or water resources management. Recent early-time single-ring infiltration experiments, involving sequential constant head and falling head conditions, allow its efficient estimation. Nevertheless, the theory on which the interpretation was based was still strictly valid to nondeformable soils and implicity relied on a particular form of the hydraulic conductivity-soil water pressure head relationship. This theory is now extended to deformable materials, without any restrictive hypothesis. A new concept, bulk sorptivity, which characterizes the solid phase movement, is introduced. Field experiments, conducted on two liners of swelling and slowly permeable materials, revealed that neglecting the soil deformation induces an underestimation of the actual coefficient of permeability of the soil.

  3. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone.

    PubMed

    Peng, Jie; He, Xiang; Ye, Hanming

    2015-01-01

    The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD) is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution.

  4. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone

    PubMed Central

    Peng, Jie; He, Xiang; Ye, Hanming

    2015-01-01

    The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD) is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution. PMID:26447973

  5. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone.

    PubMed

    Peng, Jie; He, Xiang; Ye, Hanming

    2015-01-01

    The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD) is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution. PMID:26447973

  6. Geothermal Permeability Enhancement - Final Report

    SciTech Connect

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  7. Hydrologic characteristics of Nebraska soils

    USGS Publications Warehouse

    Dugan, Jack T.

    1984-01-01

    The influence of the physical characteristics of soil on hydrology is frequently neglected. In this report, the effects of five characteristics on the hydrologic responses of soils in Nebraska are evaluated quantitatively, soils are grouped through use of a simplified coding system according to similarities in hydrologic responses, and are mapped according to these responses. General soils maps of the U.S. Department of Agriculture Soil Conservation Service and data for the physical properties of the soils proved well-suited to hydrologic interpretation. This interpretation of the maps and data led to the selection of three characteristics as classification variables: Average permeability of the 60-inch soil profile, average maximum soil slope, and depth to the seasonal high water table. Permeability of the least permeable horizon and available water capacity, although not needed as classification variables, are useful in explaining some of the hydrologic responses of soils. The primary soil units used in groupings and interpretation of the soils for this study are the soil associations. A computer program is presented that sorts the soils into groups and calculates statistics for each group. The 147 soil associations in Nebraska were thus sorted into 29 hydrologic soil groups. The location and extent of these hydrologic soil groups are shown on maps at scales of 1:750,000 and 1:250,000 for the State.

  8. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    SciTech Connect

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M.; Cantrell, K.J.; Phillips, S.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.

  9. Effects of Macropores on Infiltration and Runoff Generation in Tropical Saprolitic Soils at the Small Catchment Scale

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Ogden, F. L.; Zhu, J.; Steinke, R. C.

    2015-12-01

    Soil water flow in macropores is subject to different process controls than water flow in the soil matrix. Depending on macropore areal concentration, size distribution and tortuosity, they can lead to an abrupt increase in infiltration. In the saprolitic soils of Central Panama, macropores are ubiquitous and originate from the processes of soil shrinkage upon drying, growth and decay of roots and burrowing animals. Our experiment data show that macropores have great impact on infiltration and runoff production. Existing models based on soil physics take into account preferential flow using either dual continuum, dual porosity or dual permeability assumptions, but are still rooted firmly in the Richards equation. Our research is taking a different numerical approach by extending the improved Talbot-Ogden (T-O) 1-D finite water-content infiltration method, which discretizes the soil not in space but in the water-content domain and provides the opportunity to mathematically describe non-Darcian flows through high Bond number flow paths. The entire watershed is discretized into cells and the water flow processes in each cell are simulated using a modified quasi 1-D extended T-O approach. Provided that the density of the macropores is high enough that they are on-average well in contact with the soil matrix, the macropore in each cell can be treated as a moisture bin embedded in the matrix, dominated by gravity and pressure-driven flow physics. Interactions between flows in macropores and the soil matrix are governed by the conductivity of the macropore wall and the corresponding wetting contact angle. This presentation discusses simulation of macropore flow using non-Darcian flow physics, and the effects of macropore geometry and wall parameters on bulk infiltration and small catchment response. The simulation results are compared against measured discharge and tracer breakthrough.

  10. Permeability Asymmetry in Composite Porous Ceramic Membranes

    NASA Astrophysics Data System (ADS)

    Kurcharov, I. M.; Laguntsov, N. I.; Uvarov, V. I.; Kurchatova, O. V.

    The results from the investigation of transport characteristics and gas transport asymmetry in bilayer composite membranes are submitted. These membranes are produced by SHS method. Asymmetric effect and hysteresis of permeability in nanoporous membranes are detected. It's shown, that permeability ratio (asymmetry value of permeability) increases up to several times. The asymmetry of permeability usually decreases monotonically with the pressure decrease.

  11. Permeability extraction: A sonic log inversion

    SciTech Connect

    Akbar, N.; Kim, J.J.

    1994-12-31

    In this paper the authors provide the missing important link between permeability and acoustic velocities by generating a permeability-dependent synthetic sonic log in a carbonate reservoir. The computations are based on Akbar`s theory that relates wave velocity to frequency, rock properties (e.g., lithology, permeability, and porosity), and fluid saturation and properties (viscosity, density, and compressibility). An inverted analytical expression of the theory is used to extract permeability from sonic velocity. The synthetic sonic and the computed permeability are compared with the observed sonic log and with plug permeability, respectively. The results demonstrate, as predicted by theory, that permeability can be related directly to acoustic velocities.

  12. Permeability of stylolite-bearing chalk

    SciTech Connect

    Lind, I.; Nykjaer, O.; Priisholm, S. ); Springer, N.

    1994-11-01

    Permeabilities were measured on core plugs from stylolite-bearing chalk of the Gorm field in the Danish North Sea. Air and liquid permeabilities were measured in directions parallel to and perpendicular to the stylolite surface. Permeability was measured with sleeve pressure equal to in-situ reservoir stress. Permeabilities of plugs with stylolites but without stylolite-associated fractures were equal in the two directions. The permeability is equal to the matrix permeability of non-stylolite-bearing chalk. In contrast, when fractures were associated with the stylolites, permeability was enhanced. The enhancement was most significant in the horizontal direction parallel to the stylolites.

  13. Paranodal permeability in `myelin mutants'

    PubMed Central

    Shroff, S.; Mierzwa, A.; Scherer, S.S.; Peles, E.; Arevalo, J.C.; Chao, M.V.; Rosenbluth, J.

    2011-01-01

    Fluorescent dextran tracers of varying sizes have been used to assess paranodal permeability in myelinated sciatic nerve fibers from control and three `myelin mutant' mice, Caspr-null, cst-null and shaking. We demonstrate that in all of these the paranode is permeable to small tracers (3kDa, 10kDa), which penetrate most fibers, and to larger tracers (40kDa, 70kDa), which penetrate far fewer fibers and move shorter distances over longer periods of time. Despite gross diminution in transverse bands in the Caspr-null and cst-null mice, the permeability of their paranodal junctions is equivalent to that in controls. Thus, deficiency of transverse bands in these mutants does not increase the permeability of their paranodal junctions to the dextrans we used, moving from the perinodal space through the paranode to the internodal periaxonal space. In addition, we show that the shaking mice, which have thinner myelin and shorter paranodes, show increased permeability to the same tracers despite the presence of transverse bands. We conclude that the extent of penetration of these tracers does not depend on the presence or absence of transverse bands but does depend on the length of the paranode and, in turn, on the length of `pathway 3', the helical extracellular pathway that passes through the paranode parallel to the lateral edge of the myelin sheath. PMID:21618613

  14. Paranodal permeability in "myelin mutants".

    PubMed

    Shroff, Seema; Mierzwa, Amanda; Scherer, Steven S; Peles, Elior; Arevalo, Juan C; Chao, Moses V; Rosenbluth, Jack

    2011-10-01

    Fluorescent dextran tracers of varying sizes have been used to assess paranodal permeability in myelinated sciatic nerve fibers from control and three "myelin mutant" mice, Caspr-null, cst-null, and shaking. We demonstrate that in all of these the paranode is permeable to small tracers (3 kDa and 10 kDa), which penetrate most fibers, and to larger tracers (40 kDa and 70 kDa), which penetrate far fewer fibers and move shorter distances over longer periods of time. Despite gross diminution in transverse bands (TBs) in the Caspr-null and cst-null mice, the permeability of their paranodal junctions is equivalent to that in controls. Thus, deficiency of TBs in these mutants does not increase the permeability of their paranodal junctions to the dextrans we used, moving from the perinodal space through the paranode to the internodal periaxonal space. In addition, we show that the shaking mice, which have thinner myelin and shorter paranodes, show increased permeability to the same tracers despite the presence of TBs. We conclude that the extent of penetration of these tracers does not depend on the presence or absence of TBs but does depend on the length of the paranode and, in turn, on the length of "pathway 3," the helical extracellular pathway that passes through the paranode parallel to the lateral edge of the myelin sheath. PMID:21618613

  15. Measuring Vascular Permeability In Vivo.

    PubMed

    Meijer, Eelco F J; Baish, James W; Padera, Timothy P; Fukumura, Dai

    2016-01-01

    Over the past decades, in vivo vascular permeability measurements have provided significant insight into vascular functions in physiological and pathophysiological conditions such as the response to pro- and anti-angiogenic signaling, abnormality of tumor vasculature and its normalization, and delivery and efficacy of therapeutic agents. Different approaches for vascular permeability measurements have been established. Here, we describe and discuss a conventional 2D imaging method to measure vascular permeability, which was originally documented by Gerlowski and Jain in 1986 (Microvasc Res 31:288-305, 1986) and further developed by Yuan et al. in the early 1990s (Microvasc Res 45:269-289, 1993; Cancer Res 54:352-3356, 1994), and our recently developed 3D imaging method, which advances the approach originally described by Brown et al. in 2001 (Nat Med 7:864-868, 2001). PMID:27581015

  16. Permeability enhancement by shock cooling

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  17. A study of the relationship between permeability distributions and small scale sedimentary features in a fluvial formation

    SciTech Connect

    Gotkowitz, M.

    1993-10-01

    This study focuses on styles of small-scale heterogeneity found in fluvial sand and soil bodies. Over 1,700 in situ measurements of air permeability were taken in an outcrop-based study which joins observations of sedimentary features with their associated permeability distributions. The relationship between sedimentology and hydrologic parameters provides a geologic framework to assess geostatistical hypotheses. The soils in the study area are found to have a significantly lower permeability than the channel sand deposits. The soil deposits showed a significant lack of observable small scale sedimentary structures, which is reflected in the experimental variograms. The permeability distribution in these study sites appears to be adequately represented by a continuous gaussian random field model. The presence of calcium carbonate nodules in the soils is related to the permeability distribution. Correlation lengths in the channel sands perpendicular to stratigraphy are significantly shorter than those observed parallel to stratigraphy. A sedimentological, bounding surfaces model is evaluated with regard to permeability distributions. In deposits of little sedimentary structure, the mean and variance may adequately characterize the permeability distribution. Where significant sedimentary structure exists, the bounding surfaces model can be used to determine the scales of variability present in the permeability distribution and may also be used to infer an appropriate choice of random field model.

  18. High membrane permeability for melatonin.

    PubMed

    Yu, Haijie; Dickson, Eamonn J; Jung, Seung-Ryoung; Koh, Duk-Su; Hille, Bertil

    2016-01-01

    The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of ∼1.7 µm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be "secreted" from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion. PMID:26712850

  19. High membrane permeability for melatonin

    PubMed Central

    Yu, Haijie; Dickson, Eamonn J.; Jung, Seung-Ryoung; Koh, Duk-Su

    2016-01-01

    The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of ∼1.7 µm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be “secreted” from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion. PMID:26712850

  20. Experimentally derived model to predict permeability behavior of mudstones

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Flemings, P. B.; Day-Stirrat, R.; Germaine, J. T.

    2010-12-01

    We use uniaxial consolidation experiments to analyze the permeability evolution during consolidation for mudstones with varying composition to develop a predictive permeability model for mudstones. We admixed silt-sized silica to dry, natural Boston Blue Clay (BBC) powder in five different mass ratios. The result is mixtures of silty clay and clayey silt with percentages of clay-sized particles varying between 36 % and 57 %. To recreate natural conditions yet remove variability and soil disturbance, we resedimented all mixtures to a total stress of 100 kPa. We then loaded them to a vertical effective stress of 2.4 MPa in an uniaxial, constant-rate-of-strain consolidation device. We show that vertical permeability increases exponentially with void ratio and decreasing clay content. There is an order of magnitude difference in permeability at a given void ratio for clay contents varying from 36 % to 57 % (by mass). We developed a model that predicts the permeability of silt-clay mixtures based on knowledge of the composition and void ratio alone. The model assumes that flow occurs through the clay-matrix. Thus, the effective permeability is controlled by the void ratio of the clay fraction. At a given stress level, the clay void ratio increases with silt content: large pores are preserved in silty samples due to stress-bridging which does not allow the clay particles to consolidate. Mudstones are important to practical and fundamental programs. They are a key cap rock for subsurface hydrocarbons and geologic storage of CO2. Over the last decade, large amounts of natural gas have been produced from mudstone (shale) gas fields.

  1. Clay swelling and formation permeability reductions induced by a nonionic surfactant

    SciTech Connect

    Gardner, K.H.; Arias, M.S.

    2000-01-01

    A major concern with the use of surfactant flushing to mobilize nonaqueous phase liquids in aquifers is specific mineral-surfactant interactions that may effect significant permeability changes in the soil formation. Soils comprised of Ottawa sand mixed with small percentages of bentonite that had moderate initial hydraulic conductivity were investigated for loss of permeability upon flushing with solution containing a nonionic surfactant (polyoxyethylene sorbitan monooleate). Columns containing 0, 1, 2, 3, 4, and 5% had permeability reductions of 1, 5, 13, 44, 49, and 69%, respectively. The surfactant-clay interactions were further investigated as the cause of the permeability reductions. Some transport of clay through the column was apparent from a small amount of release measured. A permeability change was correlated with the colloid transport in the column with the highest clay concentration, although its effect was transient. Clay swelling was postulated as the primary mechanism for the permeability reductions. It was determined through X-ray diffraction that the surfactant was spreading the silica layer spacings of the clay from a hydration spacing of 15.23 {angstrom} to a surfactant-swelled spacing of 18.02 {angstrom}. A model was formulated to describe the reduced permeability by the increase in clay volume due to swelling measured by X-ray diffraction and was capable of describing the observed data well with an average error of approximately 10%.

  2. Permeable Pavement Research - Edison, New Jersey

    EPA Science Inventory

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  3. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  4. Trench infiltration for managed aquifer recharge to permeable bedrock

    USGS Publications Warehouse

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  5. Surfactant adsorption to soil components and soils.

    PubMed

    Ishiguro, Munehide; Koopal, Luuk K

    2016-05-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management. PMID

  6. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  7. Structure/Permeability Relationships Of Polyimide Membranes

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; Yamamoto, H.; Mi, Y.; Stern, S. A.

    1995-01-01

    Report describes experimental study of permeabilities, by each of five gases, of membranes made of four different polyimides. Conducted to gain understanding of effects of molecular structures of membranes on permeabilities and to assess potential for exploitation of selective permeability in gas-separation processes. Gases used: H2, O2, N2, CO2, and CH4.

  8. Novel additives to retard permeable flow

    SciTech Connect

    Golombok, Michael; Crane, Carel; Ineke, Erik; Welling, Marco; Harris, Jon

    2008-09-15

    Low concentrations of surfactant and cosolute in water, can selectively retard permeable flow in high permeability rocks compared to low permeability ones. This represents a way forward for more efficient areal sweep efficiency when water flooding a reservoir during improved oil recovery. (author)

  9. Permeability relation for periodic structures.

    PubMed

    Dunn, K J; LaTorraca, G A; Bergman, D J

    1998-01-01

    The permeability relation for periodic porous media is studied with respect to other petrophysical parameters such as formation factor, porosity, surface-to-volume ratio, and nuclear magnetic resonance (NMR) relaxation time. All these quantities were computed for periodic structures of simple, body-centered, and face-centered cubic arrays of touching and overlapping spheres. The formation factors were calculated by using a method which is based on a Fourier-space representation of an integral equation for the electric potential in a two-component composite. The nuclear magnetic resonance relaxation time for the case where surface-enchanced relaxation plays a dominant role is known to be V P/rho S (VP is the pore volume, S is the pore surface, is the surface relaxation strength) when rho is not too large. Previously calculated permeabilities for these structures from the literature were used for correlation studies with other petrophysical parameters. Various correlation schemes among these quantities, such as k = aTbFc, and k = aTb phi c, were investigated, where k is permeability, T is the NMR relaxation time, phi is the porosity, and F is the formation factor. PMID:9803908

  10. Effects of heterogeneities on capillary pressure-saturation-relative permeability relationships.

    PubMed

    Ataie-Ashtiani, Behzad; Hassanizadeh, S Majid; Celia, Michael A

    2002-06-01

    In theories of multiphase flow through porous media, capillary pressure-saturation and relative permeability-saturation curves are assumed to be intrinsic properties of the medium. Moreover, relative permeability is assumed to be a scalar property. However, numerous theoretical and experimental works have shown that these basic assumptions may not be valid. For example, relative permeability is known to be affected by the flow velocity (or pressure gradient) at which the measurements are carried out. In this article, it is suggested that the nonuniqueness of capillary pressure-relative permeability-saturation relationships is due to the presence of microheterogeneities within a laboratory sample. In order to investigate this hypothesis, a large number of "numerical experiments" are carried out. A numerical multiphase flow model is used to simulate the procedures that are commonly used in the laboratory for the measurement of capillary pressure and relative permeability curves. The dimensions of the simulation domain are similar to those of a typical laboratory sample (a few centimeters in each direction). Various combinations of boundary conditions and soil heterogeneity are simulated and average capillary pressure, saturation, and relative permeability for the "soil sample" are obtained. It is found that the irreducible water saturation is a function of the capillary number; the smaller the capillary number, the larger the irreducible water saturation. Both drainage and imbibition capillary pressure curves are found to be strongly affected by heterogeneities and boundary conditions. Relative permeability is also found to be affected by the boundary conditions; this is especially true about the nonaqueous phase permeability. Our results reveal that there is much need for laboratory experiments aimed at investigating the interplay of boundary conditions and microheterogeneities and their effect on capillary pressure and relative permeability.

  11. Solute breakthrough during recurrent ponded infiltration into heterogeneous soil

    NASA Astrophysics Data System (ADS)

    Sobotkova, Martina; Snehota, Michal; Dohnal, Michal; Cislerova, Milena

    2010-05-01

    Water flow during recurrent ponded infiltration may be influenced by presence of entrapped air in heterogeneous soils. It is assumed that variations of the entrapped air volume cause changes of the water content and flow patterns, with consequences for the solute transport. The aim of this contribution is to investigate the effect of entrapped air on dispersion by means of experiments in laboratory. Two undisturbed samples of sandy loam soils were collected at the experimental sites in the Šumava Mountains and the Jizera Mountains (Czech Republic). Packed sample of fine quartz sand was used as a reference. Recurrent ponded infiltration, conducted on each soil sample consisted of two or more infiltration runs. The same level of ponding was maintained during each infiltration run at the top of the sample. Water drained freely through the perforated plate at the bottom of the sample. First infiltration run was done into naturally dry soil while subsequent runs were conducted into wetter soil. Suction pressure heads in three heights were continuously measured by tensiometers. Water contents were monitored by TDR probes also in three heights. Outflow fluxes were recorded continuously during the experiments as well as the weight of the sample. During each infiltration run the concentration pulse of potassium bromide solution was applied at the top of the soil core during steady state flow and breakthrough curve was acquired by electrochemical in-line analysis of bromide ions in the effluent. Soil hydraulic properties were obtained by fitting the measured flux, water content and pressure data by the dual permeability model. The dispersion coefficients were determined by fitting a one-dimensional advection-dispersion equation to each breakthrough curve. Differences in the shape of the breakthrough curves obtained for individual infiltration runs will be discussed on the poster. This research has been supported by GACR 103/08/1552.

  12. Solute Breakthrough During Recurrent Ponded Infiltration Into Heterogeneous Soil

    NASA Astrophysics Data System (ADS)

    Sobotkova, M.; Snehota, M.; Cislerova, M.

    2009-12-01

    Water flow during recurrent ponded infiltration may be influenced by presence of entrapped air in heterogeneous soils. It is assumed that variations of the entrapped air volume cause changes of the water content and flow patterns, with consequences for the solute transport. The aim of this contribution is to investigate the effect of entrapped air on dispersion by means of experiments in laboratory. Two undisturbed samples of sandy loam soils were collected at the experimental sites in the Šumava Mountains and the Jizera Mountains (Czech Republic). Recurrent ponded infiltration, conducted on each soil sample consisted of two or more infiltration runs. The same level of ponding was maintained during each infiltration run at the top of the sample. Water drained freely through the perforated plate at the bottom of the sample. First infiltration run was done into naturally dry soil while subsequent runs were conducted into wetter soil. Suction pressure heads in three heights were continuously measured by tensiometers. Water contents were monitored by TDR probes also in three heights. Outflow fluxes were recorded continuously during the experiments as well as the weight of the sample. During each infiltration run the concentration pulse of potassium bromide solution was applied at the top of the soil core during steady state flow and breakthrough curve was acquired by electrochemical in-line analysis of bromide ions in the effluent. Soil hydraulic properties were obtained by fitting the measured flux, water content and pressure data by the dual permeability model. The dispersion coefficients were determined by fitting a one-dimensional advection-dispersion equation to each breakthrough curve. Differences in the shape of the breakthrough curves obtained for individual infiltration runs will be discussed on the poster. This research has been supported by GACR 103/08/1552.

  13. Permeability equipment for porous friction surfaces

    NASA Astrophysics Data System (ADS)

    Standiford, D. L.; Graul, R. A.; Lenke, L. R.

    1985-04-01

    Hydroplaning is the loss of traction between tires and pavement due to the presence of a layer of water. This loss of traction can result in loss of vehicle control. A porous friction surface (PFS) applied over an existing pavement permits the water to drain laterally and vertically away from the tire path, effectively lowering hydroplaning potential. Equipment used to measure pavement drainage (permeability) is discussed with respect to usage on porous friction surface. Background information on hydroplaning, flow theory, and PFS field performance as they are affected by permeability are also presented. Two dynamic test devices and four static devices are considered for measuring PFS permeability. Permeability tests are recommended to measure PFS permeability for maintenance purposes and construction control. Dynamic devices cited could possibly estimate hydroplaning potential; further research must be done to determine this. Permeability devices cannot be used to accurately estimate friction of a pavement surface, however, decreased permeability of a pavement infers a decrease in friction.

  14. Adaptive upscaling with the dual mesh method

    SciTech Connect

    Guerillot, D.; Verdiere, S.

    1997-08-01

    The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.

  15. PNEUMATIC PUMP TEST FOR DESIGN OF SOIL VACUUM EXTRACTION

    EPA Science Inventory

    In-situ pneumatic pumping tests were performed to estimate the pneumatic permeability at a site containing soils contaminated with aviation gasoline. Determination of pneumatic permeability was necessary to evaluate soil-air discharge or pore volume exchange rates. Pressure propa...

  16. Dual Wavelength Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2010-01-01

    Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 m and Er at 2.9 m) as well as Nd:YAG (1.06 and 1.3 m) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.

  17. Dual relationships in psychotherapy.

    PubMed

    Pope, Kenneth S

    1991-01-01

    A dual relationship in psychotherapy occurs when the therapist engages in another, significantly different relationship with the patient. The two relationships may be concurrent or sequential. For both sexual and nonsexual dual relationships, men are typically the perpetrators and women are typically the victims. This article presents examples of dual relationships, notes the attention that licensing boards and other agencies devote to this topic, reviews the meager research concerning nonsexual dual relationships, and discusses common strategies that promote both sexual and nonsexual dual relationships. PMID:11649348

  18. A two layer model of permeability in the unsaturated flow regime for a woven RTM preform

    SciTech Connect

    Pillai, K.M.; Advani, S.G.

    1994-12-31

    In Resin Transfer molding (RTM) with woven fiber preforms, the preforms are placed in a closed mold and are impregnated by a resin. This process of permeation is modeled as the flow of resin through porous media formed by the preform. Woven preforms are tows of fibers knitted together. This architecture introduces dual length scales in the porous media which causes the resistance to the flow of resin to be much higher inside the tows than outside the tow regions. Numerical simulations of mold filling in RTM assign a permeability value to each location before the start of the simulation which does not account for the ``sink`` effect. In this paper, the concept of dynamic permeability is developed. This will permit us to incorporate the ``sink`` effect in the unsaturated region close to the resin front. The model is constructed by considering a woven preform as an equivalent tow layered preform such that one layer corresponds to the more permeable inter-tow region in the woven preform and the other corresponds to the less permeable intra-tow region. Cross flow of resin from more permeable region to the low permeable region reproduces the ``sink`` effect. Numerical simulation of 1-D flow through this two layered preform yields information about the gradation of permeability close to the front which can later be used to assign permeability dynamically during the simulation of an RTM part. Results of this model reproduces the trend of the experiments conducted in 1-D flow of resin through a woven preform qualitatively.

  19. Steam-water relative permeability

    SciTech Connect

    Ambusso, W.; Satik, C.; Home, R.N.

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  20. Bioavailable DDT residues in sediments: laboratory assessment of ageing effects using semi-permeable membrane devices.

    PubMed

    Menchai, Phanchai; Van Zwieten, Lukas; Kimber, Stephen; Ahmad, Nazir; Rao, P Suresh C; Hose, Grant

    2008-05-01

    We describe the reduction in bioavailability of DDT in contaminated soil after it was incubated as sediment for 365 d. Bioavailability was assessed using semi-permeable membranes. Contaminated soils from three cattle dip sites, one spiked paired uncontaminated site, and one spiked OECD standard soil were studied. Sandy soil with residues of 1880 mg/kg summation operator DDT incurred since 1962, initially had 4.6% of summation operator DDT available, reducing to 0.6% following 365 d. Clay soil (1108 mg summation operator DDT/kg) had 4.1% initially available, reducing to 0.3% after 365 d. Freshly spiked soils had a greater amount of DDT initially available (10.9%), but this reduced to 1.5% by the end of the incubation. Of the DDT congeners, both o,p'-DDD and p,p'-DDD were most bioavailable in the soils, but also had the most significant decrease following incubation.

  1. Water Retention Curve and Relative Permeability for Gas Production from Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Mahabadi, N.; Dai, S.; Seol, Y.; Jang, J.

    2014-12-01

    Water retention curve (soil water characteristic curve SWCC) and relative permeability equations are important to determine gas and water production for gas hydrate development. However, experimental studies to determine fitting parameters of those equations are not available in the literature. The objective of this research is to obtain reliable parameters for capillary pressure functions and relative permeability equations applicable to hydrate dissociation and gas production. In order to achieve this goal, (1) micro X-ray Computer Tomography (CT) is used to scan the specimen under 10MPa effective stress, (2) a pore network model is extracted from the CT image, (3) hydrate dissociation and gas expansion are simulated in the pore network model, (4) the parameters for the van Genuchten-type soil water characteristic curve and relative permeability equation during gas expansion are suggested. The research outcome will enhance the ability of numerical simulators to predict gas and water production rate.

  2. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    PubMed

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. PMID:27507447

  3. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    PubMed

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films.

  4. Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches

    EPA Science Inventory

    The hydrologic performance of permeable pavement systems can be affected by clogging of the pavement surface and/or clogging at the interface where the subsurface storage layer meets the underlying soil. As infiltration and exfiltration are the primary functional mechanisms for ...

  5. Inter-laboratory validation of standardized method to determine permeability of plastic films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To support regulations controlling soil fumigation, we are standardizing the laboratory method we developed to measure the permeability of plastic films to fumigant vapors. The method was validated using an inter-laboratory comparison with 7 participants. Each participant evaluated the mass transfer...

  6. Computation of streaming potential in porous media: Modified permeability tensor

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, Aditya; DasGupta, Debabrata; Mitra, Sushanta K.; Chakraborty, Suman

    2015-11-01

    We quantify the pressure-driven electrokinetic transport of electrolytes in porous media through a matched asymptotic expansion based method to obtain a homogenized description of the upscaled transport. The pressure driven flow of aqueous electrolytes over charged surfaces leads to the generation of an induced electric potential, commonly termed as the streaming potential. We derive an expression for the modified permeability tensor, K↔eff, which is analogous to the Darcy permeability tensor with due accounting for the induced streaming potential. The porous media herein are modeled as spatially periodic. The modified permeability tensor is obtained for both topographically simple and complex domains by enforcing a zero net global current. Towards resolving the complicated details of the porous medium in a computationally efficient framework, the domain identification and reconstruction of the geometries are performed using adaptive quadtree (in 2D) and octree (in 3D) algorithms, which allows one to resolve the solid-liquid interface as per the desired level of resolution. We discuss the influence of the induced streaming potential on the modification of the Darcy law in connection to transport processes through porous plugs, clays and soils by considering a case-study on Berea sandstone.

  7. A Study of Pore Geometry Effects on Anisotropy in Hydraulic Permeability Using the Lattice-Boltzmann Method

    SciTech Connect

    Stewart, Mark L.; Ward, Andy L.; Rector, David R.

    2006-09-01

    We hypothesize that anisotropy in soil properties arises from pore-scale heterogeneity caused by the alignment of aspherical soil particles. We developed a method to predict the permeability tensor from particle shape and packing structure. Digital geometry maps were created for the pore space in regular cubic and random packs of particles with various aspect ratios using a numerical packing algorithm. The lattice-Boltzmann method was used to simulate saturated flow through these packs, and the effect of particle shape and degree of alignment on the permeability tensor was characterized. Results show that the degree of anisotropy in permeability depends not only upon particle shape and alignment, but also on the three-dimensional structure of the pack. In random packs, more oblate particles and higher degrees of particle alignment lead to reduced permeability perpendicular to the direction of particle alignment compared to the direction parallel to particle alignment.

  8. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    SciTech Connect

    Liu, H.H.; Rutqvist, J.

    2009-10-01

    We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

  9. Mixed region reactors for in situ treatment of DNAPL contaminated low permeability media

    SciTech Connect

    West, O.R.; Siegrist, R.L.

    1996-08-01

    Fine-textured soils and sediments contaminated by dense non-aqueous phase liquids (DNAPLs) present a significant environmental restoration challenge. An emerging approach to rapid in situ treatment within low permeability media involves the use of soil mixing to create mixed region reactors wherein biological or physical/chemical treatment processes can be employed. In cohesive soils, mixing breaks up the original soil structure and produces soil aggregates or clods separated by interaggregate void spaces. These void spaces create preferential flow paths for more efficient extraction of contaminants from the soil matrix or more rapid diffusion of treatment agents into the soil aggregates. This enhancement technology has been most successfully used with vapor stripping. However, other technologies can also be coupled with soil mixing including chemical degradation, biodegradation and solidification. The application of this technology to DNAPL-contaminated low permeability media appears promising but requires further experiments and models that can simulate the movement of DNAPLs in mixed regions. 11 refs., 6 figs.

  10. Accurate determination of characteristic relative permeability curves

    NASA Astrophysics Data System (ADS)

    Krause, Michael H.; Benson, Sally M.

    2015-09-01

    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  11. Influence of fiber packing structure on permeability

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Berdichevsky, Alexander L.

    1993-01-01

    The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.

  12. A method of determination of permeability

    SciTech Connect

    Kuznetsov, S.V.; Trofimov, V.A.

    2007-11-15

    A method is proposed for determining permeability of coals under conditions of steady-state deformation and stationary filtration mode by employing a reference core made of gas-non-sorbing material with a known permeability. The approach has been developed to assess the time of transition to the stable filtration.

  13. Pressure sensitivity of low permeability sandstones

    USGS Publications Warehouse

    Kilmer, N.H.; Morrow, N.R.; Pitman, J.K.

    1987-01-01

    Detailed core analysis has been carried out on 32 tight sandstones with permeabilities ranging over four orders of magnitude (0.0002 to 4.8 mD at 5000 psi confining pressure). Relationships between gas permeability and net confining pressure were measured for cycles of loading and unloading. For some samples, permeabilities were measured both along and across bedding planes. Large variations in stress sensitivity of permeability were observed from one sample to another. The ratio of permeability at a nominal confining pressure of 500 psi to that at 5000 psi was used to define a stress sensitivity ratio. For a given sample, confining pressure vs permeability followed a linear log-log relationship, the slope of which provided an index of pressure sensitivity. This index, as obtained for first unloading data, was used in testing relationships between stress sensitivity and other measured rock properties. Pressure sensitivity tended to increase with increase in carbonate content and depth, and with decrease in porosity, permeability and sodium feldspar. However, scatter in these relationships increased as permeability decreased. Tests for correlations between pressure sensitivity and various linear combinations of variables are reported. Details of pore structure related to diagenetic changes appears to be of much greater significance to pressure sensitivity than mineral composition. ?? 1987.

  14. Comparison of three techniques to measure unsaturated-zone air permeability at Picatinny Arsenal, NJ.

    PubMed

    Olson, M S; Tillman, F D; Choi, J W; Smith, J A

    2001-12-01

    The purpose of this study is to compare three techniques to measure the air permeability of the unsaturated zone at Picatinny Arsenal, NJ and to examine the effects of moisture content and soil heterogeneity on air permeability. Air permeability was measured in three ways: laboratory experiments on intact soil cores, field-scale air pump tests and calibration of air permeability to air pressures measured in the field under natural air pressure conditions using a numerical airflow model. The results obtained from these three methods were compared and found to be similar. Laboratory experiments performed on intact cores measured air permeability values on the order of 10(-14) to 10(-9) m2. Low-permeability cores were found between land surface and a depth of 0.6 m. The soil core data were divided into two layers with composite vertical permeability values of 1.3 x 10(-13) m2 from land surface to a 0.6-m depth and 3.8 x 10(-10) m2 for the lower layer. Analyses of the field-scale pump tests were performed for two scenarios: one in which the entire unsaturated zone was open to the atmosphere and one assuming a cap of low permeability extending 0.6 m below land surface. The vertical air permeability values obtained for the open scenario ranged from 1.2 x 10(-9) to 1.5 x 10(-9) m2, and ranged from 3.6 x 10(-9) to 6.8 x 10(-9) m2 in the lower layer, assuming an upper cap permeability of 6.0 x 10(-14) m2. The results from the open scenario are much higher than expected and the possible reasons for this ambiguity are discussed. The results from the capped scenario matched closely with those from the other methods and indicated that it is important to have background information on the study site to correctly analyze the pump test data. The optimized fit of the natural subsurface air pressure was achieved with an intrinsic permeability value of 3.3 x 10(-14) m2. When the data were refitted to the model assuming two distinct layers of the unsaturated zone, the optimized fit

  15. Modelling the effect of rock fragment on soil saturated hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Pellegrini, Sergio; Costanza Andrenelli, Maria; Vignozzi, Nadia

    2014-05-01

    Stoniness may be a key factor in determining the soil hydrological properties. Nevertheless, how coarse fraction takes part in some important processes (e.g., runoff, infiltration and percolation) is not univocally recognized, mainly because of the difficulties in obtaining reliable experimental data and, secondarily, for the employment of different approaches to evaluate the role of the coarse fraction. With that regard, equations developed by hydrogeologists to account for water fluxes in porous media, consider permeability as mere function of grain size distribution (particles >2 mm included), with permeability values increasing when passing from sand to gravel. Conversely, soil scientists consider the saturated hydraulic conductivity (Ksat) of soil exclusively as function of the fine-earth fraction and attribute a contrasting effect to the coarse fraction, both in relation to the decrease of porosity and to the increase of flow path tortuosity. Nevertheless, the Soil Survey Handbook includes all fragmental soils (gravel content ≥35% by weight) into the highest class of soil hydraulic conductivity, and this partly disagrees with the mostly adopted soil scientists' approaches. At the same time, lab- experiments carried out by engineers on particle mixture point out that the addition of increasing amounts of coarse material to finer grains progressively reduces the overall porosity until a critical threshold is reached; beyond this level, the void proportion rises again. In relation to the engineers' results, the present paper attempts to conceptually approach the dual effects of rock fragment content on Ksat by considering a decay of the water transmission properties of the fine-earth fraction at low gravel contents and, conversely, a drastic improvement of the conductivity whenever the porosity increases. For that purpose a data set of 50 soils of different textural classes is used to define the procedure by virtually increasing the rock fragment fraction (SK

  16. Modeling Soil Freezing Dynamics

    NASA Astrophysics Data System (ADS)

    Flerchinger, G. N.; Seyfried, M. S.; Hardegree, S. P.

    2002-12-01

    Seasonally frozen soil strongly influences runoff and erosion on large areas of land around the world. In many areas, rain or snowmelt on seasonally frozen soil is the single leading cause of severe runoff and erosion events. As soils freeze, ice blocks the soil pores, greatly diminishing the permeability of the soil. This is aggravated by the tendency of water to migrate to the freezing front, causing elevated ice content and frost heave. Freezing and thawing of the soil are controlled by the complex interactions of heat and water transfer at the soil surface governed by meteorological and environmental conditions at the soil-atmosphere interface. Soil freezing dynamics including liquid water content, infiltration, and runoff simulated by the Simultaneous Heat and Water (SHAW) Model were tested at three field locations in southwest Idaho. Sites included: three soil types at the Orchard Field Test Site; bare and sagebrush-covered runoff plots at the Lower Sheep Creek site on the Reynolds Creek Experimental Watershed; and runoff plots on steep mountainous slopes on the Boise Front. Detailed simulations of soil freezing and thawing were conducted specifically to examine the dynamics of liquid water content during freezing and thawing. Freezing/thawing processes, including liquid water content and runoff, were simulated well.

  17. Compact rock material gas permeability properties

    NASA Astrophysics Data System (ADS)

    Wang, Huanling; Xu, Weiya; Zuo, Jing

    2014-09-01

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO2, shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10-19 m2; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10-17 m2; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens' permeability evolution is related to the relative particle movements and microcrack closure.

  18. The Dual Career Family.

    ERIC Educational Resources Information Center

    Gurtin, Lee

    1980-01-01

    The dual career couple is forced to make a series of choices and compromises that impact the realms of marriage and career. The dilemmas that confront dual career marriages can be overcome only by compromise, accommodation, and mutual understanding on the part of the individuals involved. A revamping of human resources and recruitment programs is…

  19. Dual Enrollment Academy Programs

    ERIC Educational Resources Information Center

    Gonzalez, Nicolas; Chavez, Guadalupe

    2009-01-01

    Dual Enrollment Engineering (DEEA) and Medical Science (DEMSA) Academies are two-year dual enrollment programs for high school students. Students explore engineering and medical careers through college coursework. Students prepare for higher education in engineering and medical fields while completing associate degrees in biology or engineering…

  20. Gas permeability of biochar-amended clay: potential alternative landfill final cover material.

    PubMed

    Wong, James Tsz Fung; Chen, Zhongkui; Ng, Charles Wang Wai; Wong, Ming Hung

    2016-04-01

    Compacted biochar-amended clay (BAC) has been proposed as an alternative landfill final cover material in this study. Biochar has long been proposed to promote crop growth, mitigate odor emission, and promote methane oxidation in field soils. However, previous studies showed that soil-gas permeability was increased upon biochar application, which will promote landfill gas emission. The objective of the present study is to investigate the possibility of using compacted BAC as an alternative material in landfill final cover by evaluating its gas permeability. BAC samples were prepared by mixing 425-μm-sieved peanut shell biochar with kaolin clay in different ratios (0, 5, 10, and 15 %, w/w) and compacting at different degrees of compactions (DOC) (80, 85, and 90 %) with an optimum water content of 35 %. The gas permeability of the BACs was measured by flexible wall gas permeameter and the microstructure of the BACs was analyzed by SEM with energy-dispersive x-ray spectroscopy (EDX). The results show that the effects of biochar content on BAC gas permeability is highly dependent on the DOC. At high DOC (90 %), the gas permeability of BAC decreases with increasing biochar content due to the combined effect of the clay aggregation and the inhibition of biochar in the gas flow. However, at low DOC (80 %), biochar incorporation has no effects on gas permeability because it no longer acts as a filling material to the retard gas flow. The results from the present study imply that compacted BAC can be used as an alternative final cover material with decreased gas permeability when compared with clay.

  1. Gas permeability of biochar-amended clay: potential alternative landfill final cover material.

    PubMed

    Wong, James Tsz Fung; Chen, Zhongkui; Ng, Charles Wang Wai; Wong, Ming Hung

    2016-04-01

    Compacted biochar-amended clay (BAC) has been proposed as an alternative landfill final cover material in this study. Biochar has long been proposed to promote crop growth, mitigate odor emission, and promote methane oxidation in field soils. However, previous studies showed that soil-gas permeability was increased upon biochar application, which will promote landfill gas emission. The objective of the present study is to investigate the possibility of using compacted BAC as an alternative material in landfill final cover by evaluating its gas permeability. BAC samples were prepared by mixing 425-μm-sieved peanut shell biochar with kaolin clay in different ratios (0, 5, 10, and 15 %, w/w) and compacting at different degrees of compactions (DOC) (80, 85, and 90 %) with an optimum water content of 35 %. The gas permeability of the BACs was measured by flexible wall gas permeameter and the microstructure of the BACs was analyzed by SEM with energy-dispersive x-ray spectroscopy (EDX). The results show that the effects of biochar content on BAC gas permeability is highly dependent on the DOC. At high DOC (90 %), the gas permeability of BAC decreases with increasing biochar content due to the combined effect of the clay aggregation and the inhibition of biochar in the gas flow. However, at low DOC (80 %), biochar incorporation has no effects on gas permeability because it no longer acts as a filling material to the retard gas flow. The results from the present study imply that compacted BAC can be used as an alternative final cover material with decreased gas permeability when compared with clay. PMID:26092359

  2. Modelling susceptibility of grassland soil to macropore flow

    NASA Astrophysics Data System (ADS)

    Alaoui, Abdallah

    2015-06-01

    Investigating preferential flow, including macropore flow, is crucial to predicting and preventing point sources of contamination in soil, for example in the vicinity of pumping wells. With a view to advancing groundwater protection, this study aimed (i) to quantify the strength of macropore flow in four representative natural grassland soils on the Swiss plateau, and (ii) to define the parameters that significantly control macropore flow in grassland soil. For each soil type we selected three measurement points on which three successive irrigation experiments were carried out, resulting in a total of 36 irrigations. The strength of macropore flow, parameterized as the cumulated water volume flowing from macropores at a depth of 1 m in response to an irrigation of 60 mm h-1 intensity and 1 h duration, was simulated using the dual-permeability MACRO model. The model calibration was based on the key soil parameters and fine measurements of water content at different depths. Modelling results indicate high performance of macropore flow in all investigated soil types except in gleysols. The volume of water that flowed from macropores and was hence expected to reach groundwater varied between 81% and 94% in brown soils, 59% and 67% in para-brown soils, 43% and 56% in acid brown soils, and 22% and 35% in gleysols. These results show that spreading pesticides and herbicides in pumping well protection zones poses a high risk of contamination and must be strictly prohibited. We also found that organic carbon content was not correlated with the strength of macropore flow, probably due to its very weak variation in our study, while saturated water content showed a negative correlation with macropore flow. The correlation between saturated hydraulic conductivity (Ks) and macropore flow was negative as well, but weak. Macropore flow appears to be controlled by the interaction between the bulk density of the uppermost topsoil layer (0-0.10 m) and the macroporosity of the soil

  3. Correlation between gas permeability and pore structure of coal matrix

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yang, J.; Gao, F.; Li, Y.; Niu, H.; Gao, H.

    2012-04-01

    The sequestration of CO2 in unminable coal seams represents a promising option for CO2 geologic storage, because the injected CO2 may enhance coalbed methane recovery (CO2-ECBM), which could partly offset the costs of the storage process. The CO2-ECBM technology is based on the relative affinity of CO2 and CH4 to coals under given pressure and temperature conditions. The excess sorption capacity of coals for CO2 is generally higher than the sorption capacity for methane. The coal seams are characterized by a dual porosity structure including cleat and matrix pores. The cleats in the coal seams are considered as highways for gas and water flow, while the matrix is the storage location of gas by adsorption. The slow transport process of gas in coal matrix may constrain the efficiency of the displacement of CH4 by CO2 due to the compacted pore structure of the coal matrix. Therefore, a detailed understanding of the correlation between permeability of gas and pore structure in coal matrix is crucial for the CO2-ECBM processes. Yangquan coals originating from the Qingshui basin, which contains gas-rich coals in China, were selected for the tests in this study. Yangquan coals are classified as anthracite. In order to avoid the influence of coal cleats on fluid flow, small coal plugs (~6 mm in diameter, ~13 mm in length) were selected and fixed in the sample compartment by special glue. A test system for simultaneously measuring adsorption-porosity-permeability on the coal matrix blocks in its free state is constructed. The permeability of gas and porosity in coal plugs to He under different gas pressure and temperature conditions were simultaneously investigated. The permeability and excess sorption capacity of the coal plugs to He, N2, CH4 and CO2 were compared at a constant gas pressure and temperature. It is expected that gas break through a cleat-plug is much faster than that through a coal matrix-plug. Different sample plugs with the different pore structure results

  4. Changes in Permeability Produced By Distant Earthquakes

    NASA Astrophysics Data System (ADS)

    Manga, M.; Wang, C. Y.; Shi, Z.

    2014-12-01

    Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10-6 can increase discharge in streams and springs, change the water level of wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to pre-stimulated values over a period of months to years. This presentation will review some of the observations that indicate that dynamic stresses produced by seismic waves change permeability. We use the response of a set of wells distributed throughout China to multiple large earthquakes to probe the relationship between earthquake-generated stresses and water-level changes in wells. We find that dynamic stresses dominate the responses at distances more than 1 fault length from the earthquake and that permeability changes may explain the water level changes. Regions with high deformation rates are most sensitive to seismic waves. We also consider the response of a large alluvial fan in Taiwan to the 1999 M7.5 Chi-Chi earthquake where there were sustained changes in groundwater temperature after the earthquake. Using groundwater flow models, we infer that permeability increased by an order of magnitude over horizontal scales of tens of km, and vertical scales of several km. Permeability returned to the pre-earthquake value over many months. As much as half the total transport in the fan occurs during the short time periods with enhanced permeability.

  5. Fluid permeability of deformable fracture networks

    SciTech Connect

    Brown, S.R.; Bruhn, R.L.

    1997-04-01

    The authors consider the problem of defining the fracture permeability tensor for each grid lock in a rock mass from maps of natural fractures. For this purpose they implement a statistical model of cracked rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a volume average of the contribution from each crack in the population. In this model tectonic stress is implicitly coupled to fluid flow through an assumed relationship between crack aperture and normal stress across the crack. The authors have included the following enhancements to the basic model: (1) a realistic model of crack closure under stress has been added along with the provision to apply tectonic stresses to the fracture system in any orientation, the application of stress results in fracture closure and consequently a reduction in permeability; (2) the fracture permeability can be superimposed onto an arbitrary anisotropic matrix permeability; (3) the fracture surfaces are allowed to slide under the application of shear stress, causing fractures to dilate and result in a permeability increase. Through an example, the authors demonstrate that significant changes in permeability magnitudes and orientations are possible when tectonic stress is applied to a fracture system.

  6. Using magnetic permeability bits to store information

    NASA Astrophysics Data System (ADS)

    Timmerwilke, John; Petrie, J. R.; Wieland, K. A.; Mencia, Raymond; Liou, Sy-Hwang; Cress, C. D.; Newburgh, G. A.; Edelstein, A. S.

    2015-10-01

    Steps are described in the development of a new magnetic memory technology, based on states with different magnetic permeability, with the capability to reliably store large amounts of information in a high-density form for decades. The advantages of using the permeability to store information include an insensitivity to accidental exposure to magnetic fields or temperature changes, both of which are known to corrupt memory approaches that rely on remanent magnetization. The high permeability media investigated consists of either films of Metglas 2826 MB (Fe40Ni38Mo4B18) or bilayers of permalloy (Ni78Fe22)/Cu. Regions of films of the high permeability media were converted thermally to low permeability regions by laser or ohmic heating. The permeability of the bits was read by detecting changes of an external 32 Oe probe field using a magnetic tunnel junction 10 μm away from the media. Metglas bits were written with 100 μs laser pulses and arrays of 300 nm diameter bits were read. The high and low permeability bits written using bilayers of permalloy/Cu are not affected by 10 Mrad(Si) of gamma radiation from a 60Co source. An economical route for writing and reading bits as small at 20 nm using a variation of heat assisted magnetic recording is discussed.

  7. Diffusion limited soil vapor extraction: Geologic and bed thickness controls

    SciTech Connect

    Beckett, G.D. ); Benson, D.A. )

    1996-01-01

    Soil vapor extraction (SVE) can remove volatile contaminants from the subsurface environment. In a heterogeneous geologic setting, SVE cleanup will progress rapidly through advective mass transfer in permeable sediments and primarily through slow diffusion in lower permeability soil. The contrast in rates of cleanup between high and low permeability soils is further increased by the associated soil moisture retention contrasts (i.e., capillarity) in the same soils. Low permeability soil generally has a higher soil suction capacity and moisture content than high permeability soil. This results in further diminishment of cleanup rate in fine-grained sediments in a heterogeneous environment. This paper investigates how contrasts in soil type and bed thickness affect the rate of SVE diffusive cleanup. The numerical model VENT3D is used to simulate three heterogeneous geologic settings with differing soil contrasts. Within each geologic setting, four simulations are performed with varying bed thicknesses in each, effectively changing the diffusive half-length of the fine-grained soils while maintaining the total bulk percentages of fine-to coarse-grained material. Under these conditions, the bulk flow parameters measured during SVE field testing would be constant for each of the four simulations within a single geologic domain while the cleanup times would not.

  8. Diffusion limited soil vapor extraction: Geologic and bed thickness controls

    SciTech Connect

    Beckett, G.D.; Benson, D.A.

    1996-12-31

    Soil vapor extraction (SVE) can remove volatile contaminants from the subsurface environment. In a heterogeneous geologic setting, SVE cleanup will progress rapidly through advective mass transfer in permeable sediments and primarily through slow diffusion in lower permeability soil. The contrast in rates of cleanup between high and low permeability soils is further increased by the associated soil moisture retention contrasts (i.e., capillarity) in the same soils. Low permeability soil generally has a higher soil suction capacity and moisture content than high permeability soil. This results in further diminishment of cleanup rate in fine-grained sediments in a heterogeneous environment. This paper investigates how contrasts in soil type and bed thickness affect the rate of SVE diffusive cleanup. The numerical model VENT3D is used to simulate three heterogeneous geologic settings with differing soil contrasts. Within each geologic setting, four simulations are performed with varying bed thicknesses in each, effectively changing the diffusive half-length of the fine-grained soils while maintaining the total bulk percentages of fine-to coarse-grained material. Under these conditions, the bulk flow parameters measured during SVE field testing would be constant for each of the four simulations within a single geologic domain while the cleanup times would not.

  9. Permeability Barrier Generation in the Martian Lithosphere

    NASA Astrophysics Data System (ADS)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  10. Gas Permeable Chemochromic Compositions for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Bokerman, Gary (Inventor); Mohajeri, Nahid (Inventor); Muradov, Nazim (Inventor); Tabatabaie-Raissi, Ali (Inventor)

    2013-01-01

    A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer.

  11. Dual Credit/Dual Enrollment and Data Driven Policy Implementation

    ERIC Educational Resources Information Center

    Lichtenberger, Eric; Witt, M. Allison; Blankenberger, Bob; Franklin, Doug

    2014-01-01

    The use of dual credit has been expanding rapidly. Dual credit is a college course taken by a high school student for which both college and high school credit is given. Previous studies provided limited quantitative evidence that dual credit/dual enrollment is directly connected to positive student outcomes. In this study, predictive statistics…

  12. A novel approach to characterization of effective permeability for naturally fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2013-12-01

    Fractured formations have been the important targets for hydrocarbon exploration, groundwater supply, geothermal heat storage exploitation, and storage for sequestrated carbon dioxide, etc. However, accurate modeling of effective permeability of fractured reservoir has been a challenging task because the presence of fracture network may significantly alter the reservoir hydrologic properties in that interconnected fractures can enhance the reservoir heterogeneity in several orders of magnitude. Previous fractured simulation models can be divided into continuum and discrete fracture network (DFN) approaches. In the continuum approaches such as dual porosity/permeability model, fractures are assumed to be infinitely long and distributed in a regular pattern which resulted in the ignorance of actual fracture geometry. The discrete fracture model considers fracture dimension and transmissivity of each individual fracture but has an inherent disadvantage of its high computation-intensive nature and extreme difficulty in domain discretization, which severely limit its practical applications to problems with hundreds of thousands of fractures. In this paper we proposed a new approach to calculate the effective permeability for fractured network which integrates the DFN method while still honoring the geometrical pattern of each individual fracture. A full permeability matrix for each fracture is expressed as a second rank tensor composed of three parts: a unit permeability matrix defined by fracture orientation, a scalar absolute permeability from fracture aperture based on cubic law, and a shape factor defined by fracture size. The equivalent element permeability of a cell in a model is the component-wise aggregations of the permeability tensors from each interconnected fracture within that cell. This process is repeated for every cell in the entire model domain once a DFN model is generated based on the actual fracture statistics from field investigations, core

  13. Flow Characteristics in Permeable Reactive Barrier Affected by Biological Clogging

    NASA Astrophysics Data System (ADS)

    Seki, K.; Hanada, J.; Miyazaki, T.

    2004-12-01

    Permeable reactive barriers (PRB) are becoming popular for the in situ remediation of contaminated groundwater. The efficiency of the PRB is affected by permeability of the reactive zone, because when permeability decreases contaminants can bypass the reactive zone without degraded. One of the factors affecting permeability of the permeable reactive zone is biological clogging of soil pore, i.e., biomass buildup and resultant decrease in hydraulic conductivity. So far biological clogging in laboratory was mostly observed in one-dimensional flow field, but the actual flow field in PRB is better simulated in two-dimensional flow field. The objective of this study is to observe the flow characteristics in PRB by using simulated flow cells in laboratory, by comparing one-dimensional and two-dimensional flow field. One-dimensional flow field was simulated by 20 cm length and 1 cm width flow cell, and two-dimensional flow field was simulated by 20 cm length and 10 cm width flow cell. Each flow cell was operated under water-saturated conditions, in horizontal position, and at a constant temperature of 20 degree centigrade. Glass beads of 0.1 mm mean diameter was packed uniformly in the flow cells and inoculum was injected into the nutrient injection ports at the middle of the flow cells. After 24 h incubation time continuous flow was started. Background flow of de-ionized water was supplied to the inlet ports, and the mineral medium was supplied from the nutrient injection ports. The flux was measured every day and local hydraulic head distribution was measured by water manometer, and hydraulic conductivity was calculated. The flow cell experiments were continued for 9 days. In one-dimensional flow cell, hydraulic conductivity of the nutrient supplied part decreased to about half of the initial value in 9 days flow period, where the hydraulic conductivity of the part where nutrient was not supplied remained constant. Bacterial and fungal number in the moderately clogged

  14. Measuring Permeability of Composite Cryotank Laminants

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.; Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    This paper describes a test method developed to identify whether certain materials and material systems are suitable candidates for large pressurized reusable cryogenic tanks intended for use in current and future manned launch systems. It provides a quick way to screen numerous candidate materials for permeability under anticipated loading environments consistent with flight conditions, as well as addressing reusability issues. cryogenic tank, where the major design issue was hydrogen permeability. It was successfully used to evaluate samples subjected to biaxial loading while maintaining test temperatures near liquid hydrogen. After each sample was thermally preconditioned, a cyclic pressure load was applied to simulate the in-plane strain. First permeability was measured while a sample was under load. Then the sample was unloaded and allowed to return to ambient temperature. The test was repeated to simulate reusability, in order to evaluate its effects on material permeability.

  15. ULTRASTRUCTURE AND PERMEABILITY OF NUCLEAR MEMBRANES

    PubMed Central

    Wiener, Joseph; Spiro, David; Loewenstein, Werner R.

    1965-01-01

    The fine structures of nuclear envelopes known to have different permeability properties were compared. Membranes of salivary gland cell nuclei of Drosophila (third instar) and Chironomus (prepupae), which are strong barriers to ion diffusion, and membranes of oocyte nuclei (germinal vesicle) of Xenopus and Triturus, which are much more ion-permeable, show no essential difference in size, frequency, and distribution of their membrane gaps ("pores") which could account for the marked disparities in membrane permeability. The gaps are occupied by diffuse electron-opaque material with occasional central regions of strong opacity. This material may possibly account for the high diffusion resistance of Drosophila and Chironomus nuclear envelopes, where the resistance is far too great to allow free diffusion through the gaps. But material of this kind is also present in the more permeable nuclear envelopes of Xenopus and Triturus oocytes, and there are no convincing structural differences discernible with the techniques employed. PMID:5892850

  16. Variability of permeability with diameter of conduit

    NASA Astrophysics Data System (ADS)

    Adegoke, J. A.; Olowofela, J. A.

    2008-05-01

    An entry length is always observed before laminar flow is achieved in fluid flowing in a conduit. This depends on the Reynolds number of the flow and the degree of smoothness of the conduit. This work examined this region and the point where laminar flow commences in the context of flow through conduit packed with porous material like beads, of known porosity. Using some theoretical assumptions, it is demonstrated that permeability varies from zero at wall-fluid boundary to maximum at mid-stream, creating a permeability profile similar to the velocity profile. An equation was obtained to establish this. We also found that peak values of permeability increase with increasing porosity, and therefore entry length increases with increasing porosity with all other parameters kept constant. A plot of peak permeability versus porosity revealed that they are linearly related.

  17. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  18. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, A.T.; Munafo, Paul (Technical Monitor)

    2002-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  19. The Edison Environmental Center Permeable Pavement Site

    EPA Science Inventory

    This a presentation for a Community Outreach Event called "Chemistry Works and Celebration of International Year of Chemistry." It will review the permeable pavement research project at the Edison Environmental center.

  20. Flexible Sandwich Diaphragms Are Less Permeable

    NASA Technical Reports Server (NTRS)

    Michalovic, John G.; Vassallo, Franklin A.

    1993-01-01

    Diaphragms for use in refrigerator compressors made as laminates of commercially available elastomers and metals. Diaphragms flexible, but less permeable by chlorofluorocarbon refrigerant fluids than diaphragms made of homogeneous mixtures of materials.

  1. Regulation of endothelial permeability by second messengers.

    PubMed

    Siflinger-Birnboim, A; Malik, A B

    1996-02-01

    The mechanisms by which mediators such as oxidants released by neutrophil (PMN) activation increase endothelial permeability are poorly understood. The focus of this article is to identify some of these mechanisms. Studies using endothelial cell monolayers in culture have shown that PMN activation increases endothelial permeability both in the presence and absence of PMN-endothelial monolayer contact. Hydrogen peroxide (H2O2), an oxidant released by PMN activation, plays an important role in PMN-induced increases in endothelial permeability. The results of these studies suggest that, as with other mediators of inflammation (e.g., histamine, thrombin) the mechanism of H2O2-induced increase in endothelial permeability involves activation of endothelial protein kinase C (PKC) and increase in endothelial cytosolic Ca2+.

  2. NASA In-step: Permeable Membrane Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Viewgraphs on the Permeable Membrane Experiment are presented. An experiment overview is given. The Membrane Phase Separation Experiment, Membrane Diffusion Interference Experiment, and Membrane Wetting Experiment are described. Finally, summary and conclusions are discussed.

  3. Lunar electrical conductivity and magnetic permeability

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1975-01-01

    Improved analytical techniques are applied to a large Apollo magnetometer data set to yield values of electroconductivity, temperature, magnetic permeability, and iron abundance. Average bulk electroconductivity of the moon is calculated to be .0007 mho/m; a rapid increase with depth to about .003 mho/m within 250 km is indicated. The temperature profile, obtained from the electroconductivity profile for olivine, indicates high lunar temperatures at relatively shallow depths. Magnetic permeability of the moon relative to its environment is calculated to be 1.008 plus or minus .005; a permeability relative to free space of 1.012 plus 0.011, minus 0.008 is obtained. Lunar iron abundances corresponding to this permeability value are 2.5 plus 2.3, minus 1.7 wt% free iron and 5.0-13.5 wt% total iron for a moon composed of a combination of free iron, olivine, and orthopyroxene.

  4. Permeability of rayon based polymer composites

    NASA Technical Reports Server (NTRS)

    Stokes, E. H.

    1992-01-01

    Several types of anomalous rayon based phenolic behavior have been observed in post-fired nozzles and exit cones. Many of these events have been shown to be related to the development of internal gas pressure within the material. The development of internal gas pressure is a function of the amount of gas produced within the material and the rate at which that gas is allowed to escape. The latter property of the material is referred to as the material's permeability. The permeability of two dimensional carbonized rayon based phenolic composites is a function of material direction, temperature, and stress/strain state. Recently significant differences in the permeability of these materials has been uncovered which may explain their inconsistent performance. This paper summarizes what is known about the permeability of these materials to date and gives possible implications of these finding to the performance of these materials in an ablative environment.

  5. Modeling soil moisture processes and recharge under a melting snowpack

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Dettinger, M.D.

    2008-01-01

    Recharge into granitic bedrock under a melting snowpack is being investigated as part of a study designed to understand hydrologic processes involving snow at Yosemite National Park in the Sierra Nevada Mountains of California. Snowpack measurements, accompanied by water content and matric potential measurements of the soil under the snowpack, allowed for estimates of infiltration into the soil during snowmelt and percolation into the bedrock. During portions of the snowmelt period, infiltration rates into the soil exceeded the permeability of the bedrock and caused ponding to be sustained at the soil-bedrock interface. During a 5-d period with little measured snowmelt, drainage of the ponded water into the underlying fractured granitic bedrock was estimated to be 1.6 cm d?1, which is used as an estimate of bedrock permeability. The numerical simulator TOUGH2 was used to reproduce the field data and evaluate the potential for vertical flow into the fractured bedrock or lateral flow at the bedrock-soil interface. During most of the snowmelt season, the snowmelt rates were near or below the bedrock permeability. The field data and model results support the notion that snowmelt on the shallow soil overlying low permeability bedrock becomes direct infiltration unless the snowmelt rate greatly exceeds the bedrock permeability. Late in the season, melt rates are double that of the bedrock permeability (although only for a few days) and may tend to move laterally at the soil-bedrock interface downgradient and contribute directly to streamflow. ?? Soil Science Society of America.

  6. Multi-process herbicide transport in structured soil columns: experiments and model analysis.

    PubMed

    Köhne, J Maximilian; Köhne, Sigrid; Simůnek, Jirka

    2006-05-01

    Model predictions of pesticide transport in structured soils are complicated by multiple processes acting concurrently. In this study, the hydraulic, physical, and chemical nonequilibrium (HNE, PNE, and CNE, respectively) processes governing herbicide transport under variably saturated flow conditions were studied. Bromide (Br-), isoproturon (IPU, 3-(4-isoprpylphenyl)-1,1-dimethylurea) and terbuthylazine (TER, N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine) were applied to two soil columns. An aggregated Ap soil column and a macroporous, aggregated Ah soil column were irrigated at a rate of 1 cm h(-1) for 3 h. Two more irrigations at the same rate and duration followed in weekly intervals. Nonlinear (Freundlich) equilibrium and two-site kinetic sorption parameters were determined for IPU and TER using batch experiments. The observed water flow and Br- transport were inversely simulated using mobile-immobile (MIM), dual-permeability (DPM), and combined triple-porosity (DP-MIM) numerical models implemented in HYDRUS-1D, with improving correspondence between empirical data and model results. Using the estimated HNE and PNE parameters together with batch-test derived equilibrium sorption parameters, the preferential breakthrough of the weakly adsorbed IPU in the Ah soil could be reasonably well predicted with the DPM approach, whereas leaching of the strongly adsorbed TER was predicted less well. The transport of IPU and TER through the aggregated Ap soil could be described consistently only when HNE, PNE, and CNE were simultaneously accounted for using the DPM. Inverse parameter estimation suggested that two-site kinetic sorption in inter-aggregate flow paths was reduced as compared to within aggregates, and that large values for the first-order degradation rate were an artifact caused by irreversible sorption. Overall, our results should be helpful to enhance the understanding and modeling of multi-process pesticide transport through structured soils

  7. Fracture-permeability behavior of shale

    SciTech Connect

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  8. Fracture-permeability behavior of shale

    DOE PAGESBeta

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  9. Aluminum and temperature alteration of cell membrane permeability of Quercus rubra

    SciTech Connect

    Junping Chen; Sucoff, E.I.; Stadelmann, E.J. )

    1991-06-01

    Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipid partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.

  10. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    PubMed

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability.

  11. Maturation of rat proximal tubule chloride permeability.

    PubMed

    Baum, Michel; Quigley, Raymond

    2005-12-01

    We have previously shown that neonate rabbit tubules have a lower chloride permeability but comparable mannitol permeability compared with adult proximal tubules. The surprising finding of lower chloride permeability in neonate proximals compared with adults impacts net chloride transport in this segment, which reabsorbs 60% of the filtered chloride in adults. However, this maturational difference in chloride permeability may not be applicable to other species. The present in vitro microperfusion study directly examined the chloride and mannitol permeability using in vitro perfused rat proximal tubules during postnatal maturation. Whereas there was no maturational change in mannitol permeability, chloride permeability was 6.3 +/- 1.3 x 10(-5) cm/s in neonate rat proximal convoluted tubule and 16.1 +/- 2.3 x 10(-5) cm/s in adult rat proximal convoluted tubule (P < 0.01). There was also a maturational increase in chloride permeability in the rat proximal straight tubule (5.1 +/- 0.6 x 10(-5) cm/s vs. 9.3 +/- 0.6 x 10(-5) cm/s, P < 0.01). There was no maturational change in bicarbonate-to-chloride permeabilities (P(HCO3)/P(Cl)) in the rat proximal straight tubules (PST) and proximal convoluted tubules (PCT) or in the sodium-to-chloride permeability (P(Na)/P(Cl)) in the proximal straight tubule; however, there was a significant maturational decrease in proximal convoluted tubule P(Na)/P(Cl) with postnatal development (1.31 +/- 0.12 in neonates vs. 0.75 +/- 0.06 in adults, P < 0.001). There was no difference in the transepithelial resistance measured by current injection and cable analysis in the PCT, but there was a maturational decrease in the PST (7.2 +/- 0.8 vs. 4.6 +/- 0.1 ohms x cm2, P < 0.05). These studies demonstrate there are maturational changes in the rat paracellular pathway that impact net NaCl transport during development. PMID:16051720

  12. Permeability studies in marine clays stabilized with lime column

    SciTech Connect

    Rao, S.N.; Mathew, P.K.

    1994-12-31

    Soft marine clays are very sensitive to changes in stress system, moisture content and system chemistry of the pore fluid. There is a necessity to improve the behavior of these deposits using any one of the available ground improvement techniques. In the present investigation an attempt is made to improve the permeability using lime column techniques in marine clays. The experimental program was carried out with model lime columns installed in two test setups. In the first setup a central lime column was installed in a circular tank and in the second setup number of columns were installed in a rectangular tank. A marine clay from east coast of India was used as a test bed. Number of samples were taken at different radial distances and time periods. From the tests conducted on these samples, it has been established that lime has seeped into the surrounding soil for large distances and this is indicated by pH values and XRD analysis. There is enormous improvement in permeability and the k values are improved by 10 to 15 times. This shows a good promise for improving the reclaimed coastal soft deposits and offshore deposits.

  13. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO4] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Simion, Cristian; Lee, Byeong Kyu

    2015-10-30

    This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ((133)Cs) and radioactive cesium species ((134)Cs and (137)Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO4], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant (133)Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO4], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped (134)Cs and (137)Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that (134)Cs and (137)Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO4] treated soil were characterized using SEM-EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil included Ca/PO4 associated crystalline complexes. These results suggest that simple grinding treatment with nano-Fe/Ca/CaO/[PO4] under dry conditions might be an extremely efficient separation and immobilization method for radioactive cesium contaminated soil. PMID:25942697

  14. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO4] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Simion, Cristian; Lee, Byeong Kyu

    2015-10-30

    This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ((133)Cs) and radioactive cesium species ((134)Cs and (137)Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO4], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant (133)Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO4], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped (134)Cs and (137)Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that (134)Cs and (137)Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO4] treated soil were characterized using SEM-EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil included Ca/PO4 associated crystalline complexes. These results suggest that simple grinding treatment with nano-Fe/Ca/CaO/[PO4] under dry conditions might be an extremely efficient separation and immobilization method for radioactive cesium contaminated soil.

  15. Permeability reduction in granite under hydrothermal conditions

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2001-01-01

    The formation of impermeable fault seals between earthquake events is a feature of many models of earthquake generation, suggesting that earthquake recurrence may depend in part on the rate of permeability reduction of fault zone materials under hydrothermal conditions. In this study, permeability measurements were conducted on intact, fractured, and gouge-bearing Westerly granite at an effective pressure of 50 MPa and at temperatures from 150?? to 500??C, simulating conditions in the earthquake-generating portions of fault zones. Pore fluids were cycled back and forth under a 2 MPa pressure differential for periods of up to 40 days. Permeability of the granite decreased with time t, following the exponential relation k = c(10-rt). For intact samples run between 250?? and 500??C the time constant for permeability decrease r was proportional to temperature and ranged between 0.001 and 0.1 days-1 (i.e., between 0.4 and 40 decades year-1 loss of permeability). Values of r for the lower-temperature experiments differed little from the 250??C runs. In contrast, prefractured samples showed higher rates of permeability decrease at a given temperature. The surfaces of the fractured samples showed evidence of dissolution and mineral growth that increased in abundance with both temperature and time. The experimentally grown mineral assemblages varied with temperature and were consistent with a rock-dominated hydrothermal system. As such mineral deposits progressively seal the fractured samples, their rates of permeability decrease approach the rates for intact rocks at the same temperature. These results place constraints on models of precipitation sealing and suggest that fault rocks may seal at a rate consistent with earthquake recurrence intervals of typical fault zones.

  16. Remediating low permeability sites with 2-phase extraction -- Case studies

    SciTech Connect

    Tornatore, P.M.

    1994-12-31

    2-Phase Extraction is an innovative remedial process developed and patented by Xerox Corporation that combines the attributes of soil vapor extraction and groundwater recovery under high vacuum (>25 inches Hg at the source) in a way that synergistically increases the performance of the collective remedy. Haley and Aldrich has applied 2-Phase Extraction on a number of low permeability sites with a wide range of geologic conditions. The paper focuses on an overview of results achieved at 4 of the sites under pilot and full scale operations. Contaminants successfully extracted have ranged from petroleum products to blends of chlorinated solvents and mineral oils. In each case, mass removal has been accelerated by as much as 2 orders of magnitude compared to conventional remedies. This paper presents an overview of the results of 2-Phase Extraction application at four project locations. The sites include the following: Webster, New York; Blauvelt, New York; Clinton, Illinois; and Lee, New Hampshire.

  17. Modeling radon transport in dry, cracked soil

    SciTech Connect

    Holford, D.J. ); Schery, S.D.; Wilson, J.L.; Phillips, F.M. )

    1993-01-10

    A two-dimensional finite element code was used to investigate the effect of changes in surface air pressure on radon flux from soil with parallel, partially penetrating cracks. A sensitivity analysis investigates the effects of various crack dimensions, soil characteristics, and surface air pressure on radon flux from the soil surface to the atmosphere. Simulation results indicate that radon flux is most sensitive to soil properties; the diffusion coefficient is most important, followed by permeability and porosity. Radon flux is also sensitive to changes in barometric pressure, which cause variations in radon flux above and below the average diffusive flux. Sinusoidal variations in barometric pressure cause a net increase in the average radon flux from the soil, because increases in flux during periods of decreasing pressure are greater than the decreases in flux during periods of decreasing pressure of equal magnitude. Cracks were found to significantly increase radon flux from soils of low permeability. 33 refs. 19 figs., 1 tab.

  18. Strain-dependent permeability of volcanic rocks.

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie; Heap, Michael; Baud, Patrick

    2016-04-01

    We explore permeability evolution during deformation of volcanic materials using a suite of rocks with varying compositions and physical properties (such as porosity ϕ). 40 mm × 20 mm cylindrical samples were made from a range of extrusive rocks, including andesites from Colima, Mexico (ϕ˜0.08; 0.18; 0.21), Kumamoto, Japan (ϕ˜0.13), and Ruapehu, New Zealand (ϕ˜0.15), and basalt from Mt Etna, Italy (ϕ˜0.04). Gas permeability of each sample was measured before and after triaxial deformation using a steady-state benchtop permeameter. To study the strain-dependence of permeability in volcanic rocks, we deformed samples to 2, 3, 4, 6, and 12 % axial strain at a constant strain rate of 10‑5 s‑1. Further, the influence of failure mode - dilatant or compactant - on permeability was assessed by repeating experiments at different confining pressures. During triaxial deformation, porosity change of the samples was monitored by a servo-controlled pore fluid pump. Below an initial porosity of ˜0.18, and at low confining pressures (≤ 20 MPa), we observe a dilatant failure mode (shear fracture formation). With increasing axial strain, stress is accommodated by fault sliding and the generation of ash-sized gouge between the fracture planes. In higher-porosity samples, or at relatively higher confining pressures (≥ 60 MPa), we observe compactant deformation characterised by a monotonous decrease in porosity with increasing axial strain. The relative permeability k' is given by the change in permeability divided by the initial reference state. When behaviour is dilatant, k' tends to be positive: permeability increases with progressive deformation. However, results suggest that after a threshold amount of strain, k' can decrease. k' always is negative (permeability decreases during deformation) when compaction is the dominant behaviour. Our results show that - in the absence of a sealing or healing process - the efficiency of a fault to transmit fluids is

  19. Gastrointestinal permeability in patients with irritable bowel syndrome assessed using a four probe permeability solution

    PubMed Central

    Del Valle-Pinero, Arseima Y.; Van Deventer, Hendrick E.; Fourie, Nicolaas H.; Martino, Angela C.; Patel, Nayan S.; Remaley, Alan T.; Henderson, Wendy A.

    2013-01-01

    Background Abnormal gastrointestinal permeability has been linked to irritable bowel syndrome (IBS). The lactulose-to-mannitol ratio is traditionally used to assess small intestine permeability while sucralose and sucrose are used to assess colonic and gastric permeability respectively. We used a single 4-probe test solution to assess permeability throughout the gastrointestinal tract in IBS patients and healthy controls by measuring the recovery of the probes in urine after ingestion using a modified liquid chromatography mass spectrometry protocol. Methods Fasting participants (N = 59) drank a permeability test solution (100 ml: sucralose, sucrose, mannitol, and lactulose). Urine was collected over a 5-h period and kept frozen until analysis. Urinary sugar concentrations were measured using an liquid chromatography/triple quadruple mass spectrometer. Results Colonic permeability was significantly lower in IBS patients when compared to healthy controls (p = 0.011). Gastric and small intestinal permeability did not significantly differ between the groups. Conclusions The study demonstrates the clinical potential of this non-invasive method for assessing alterations in gastrointestinal permeability in patients with IBS. PMID:23328210

  20. Changes in permeability caused by earthquakes

    NASA Astrophysics Data System (ADS)

    Manga, Michael; Wang, Chi-Yuen; Shi, Zheming

    2016-04-01

    Earthquakes induce a range of hydrological responses, including changes in streamflow and changes in the water level in wells. Here we show that many of these responses are caused the changes in permeability produced by the passage of seismic waves. First we analyze streams that were dry or nearly dry before the 2014 M6 Napa, California, earthquake butstarted to flow after the earthquake. We show that the new flows were meteoric in origin and originate in the nearby mountains. Responses are not correlated with the sign of static strains implying seismic waves liberated this water, presumably by changing permeability. We also analyze a large network of wells in China that responded to 4 large earthquakes. We monitor permeability changes through their effect on the water level response to solid Earth tides. We find that when earthquakes produce sustained changes in water level, permeability also changes. Wells with water level changes that last for only days show no evidence for changes in aquifer permeability.

  1. Honeycomb Core Permeability Under Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Raman, V. V.; Venkat, Venki S.; Sankaran, Sankara N.

    1997-01-01

    A method for characterizing the air permeability of sandwich core materials as a function of applied shear stress was developed. The core material for the test specimens was either Hexcel HRP-3/16-8.0 and or DuPont Korex-1/8-4.5 and was nominally one-half inch thick and six inches square. The facesheets where made of Hercules' AS4/8552 graphite/epoxy (Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's Metalbond 1515-3M epoxy film adhesive was used for co-curing the facesheets to the core. The permeability of the specimens during both static (tension) and dynamic (reversed and non-reversed) shear loads were measured. The permeability was measured as the rate of air flow through the core from a circular 1-in2 area of the core exposed to an air pressure of 10.0 psig. In both the static and dynamic testing, the Korex core experienced sudden increases in core permeability corresponding to a core catastrophic failure, while the URP core experienced a gradual increase in the permeability prior to core failure. The Korex core failed at lower loads than the HRP core both in the transverse and ribbon directions.

  2. Permeability of Rigid Fibrous Refractory Insulations

    NASA Technical Reports Server (NTRS)

    Marschall, J.; Milos, F. S.; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    Rigid fibrous refractory insulations (TPS tiles) are integral components of many spacecraft thermal protection systems. These materials are composed of refractory fibers With diameters on the order of 1 to 15 micrometers. They are lightweight and have an open, highly porous microstructure. Typical densities are less than 500 kilograms per cubic meters, and porosities generally exceed 0.8. Because of their open porosity, these materials are permeable to gas glow. There are numerous instances in which internal gas transport in a thermal protection system could be important; examples include the penetration of hot boundary-layer gases into the insulation, the flow of decomposition (pyrolysis) products from the interior, the use of convective flows to mitigate ice formation caused by cryopumping, and the design of refractory vents for pressure equilibration during atmospheric entry. Computational analysis of gas flow through porous media requires values of permeability which have not previously been available for the rigid fibrous insulations used in thermal protection systems. This paper will document measurements of permeability for a variety of insulations from NASA's LI, FRCI, and AETB families of lightweight ceramic ablators. The directional anisotropy of permeability and its dependence on gas pressure and material density will be presented. It will be shown that rarified-flow effects are significant in the flow through such materials. Connections will be drawn between the insulation microstructure and permeability. The paper will also include representative computations of flow through rigid fibrous insulations.

  3. Permeability evolution in sandstone: Digital rock approach

    NASA Astrophysics Data System (ADS)

    Kameda, Ayako

    Permeability is perhaps one of the most important yet elusive reservoir properties, since it poorly correlates with elastic properties, and as a result, cannot be mapped remotely. Physical permeability measurements may be augmented or even partially replaced by numerical experiments, provided that a numerical simulation accurately mimics the physical process. Numerical simulation of laboratory experiments on rocks, or digital rock physics, is an emerging field that may benefit the petroleum industry. For numerical experimentation to find its way into the mainstream, it has to be practical and easily repeatable, i.e., implemented on standard hardware and in real time. This condition reduces the feasible size of a digital sample to just a few grains across. Will the results be meaningful for a larger rock volume? The answer is that small fragments of medium- to high-porosity sandstone, such as cuttings, which are not statistically representative of a larger sample, cannot be used to numerically calculate the exact porosity and permeability of the sample. However, by using a significant number of such small fragments, it may be possible to establish a site-specific permeability-porosity trend, which can be used to estimate the absolute permeability from independent porosity data, obtained in the well or inferred from seismic measurements.

  4. Gas Permeability in Rubbery Polyphosphazene Membranes

    SciTech Connect

    Frederick F. Stewart; Christopher J. Orme; John R. Klaehn; Mason K. Harrup; Thomas A. Luther; Eric S. Peterson

    2006-09-01

    The synthesis, characterization, and gas permeability of ten new polyphosphazenes has been studied. Additionally, the first gas permeation data has been collected on hydrolytically unstable poly[bis-(chloro)phosphazene]. Gases used in this study include CO2, CH4, O2, N2, H2, and Ar. CO2 was the most permeable gas through any of the phosphazenes and a direct correlation between the Tg of the polymer and CO2 transport was noted with permeability increasing with decreasing polymer Tg. To a lesser degree, permeability of all the other gases studied also yielded increases with decreasing polymer Tg. The trend observed for these new polymers was further supported by published data for other phosphazenes. Furthermore, permeability data for all gases were found to correlate to the gas condensability and the gas critical pressures, except for hydrogen, suggesting that the nature of the gas is also a significant factor for permeation through rubbery phosphazene membranes. Ideal separation factors (á) for the CO2/H2 and CO2/CH4 gas pairs were calculated. For CO2/CH4, no increase in á was observed with decreasing Tg, however increases in á were noted for the CO2/H2 pair.

  5. 3-D modeling of water balance and soil erosion in a clayey subsurface drained agricultural field in boreal climate

    NASA Astrophysics Data System (ADS)

    Turunen, M.; Warsta, L.; Koivusalo, H. J.; Paasonen-Kivekäs, M.; Nurminen, J.; Myllys, M.; Alakukku, L.; Äijö, H.; Puustinen, M.

    2012-12-01

    Fluxes of nutrients and other substances from cultivated fields cause eutrophication and deterioration of water quality in aquatic ecosystems worldwide. In order to develop effective strategies to control the environmental impacts of crop cultivation, it is crucial to identify the main transport pathways and the effects of different water management methods on the loads. Reduction of sediment loads is essential since sediment particles typically carry nutrients (especially sorbed phosphorus) and other potentially harmful substances, e.g. pesticides, from the fields to the adjacent surface waters. The novel part of this study was the investigation of suspended sediment transport in soil macropores to the subsurface drains and to the deep groundwater. We applied a 3-D distributed dual-permeability model (FLUSH) using a dataset collected from a subsurface drained, clayey agricultural field (15 ha) to holistically assess water balance, soil erosion and sediment transport from the field to an adjacent stream. The data set included five years of hydrological and water quality measurements from four intensively monitored field sections with different soil properties, topography, drainage systems (drain spacing and drain depth), drain installation methods (trenchless and trench drainage) and drain envelope materials (gravel and fiber). The 3-D model allowed us to quantify how soil erosion and sediment transport differed between the field sections within the field area. The simulations were conducted during snow- and frost-free periods. The simulation results include closure of water balance of the cultivated field, distribution of soil erosion and sediment transport within the field area and the effects of different subsurface drainage systems on sediment loads. The 3-D dual-permeability subsurface flow model was able to reproduce the measured drainflows and sediment fluxes in the clayey field and according to the simulations over 90% of drainflow waters were conveyed to

  6. In situ permeable flow sensor - OST reference No. 99. Subsurface contaminants focus area

    SciTech Connect

    1998-02-01

    This summary reports describes the In Situ Permeable Flow Sensor (ISPFS) developed to directly measure the direction and velocity of groundwater flow at a point in saturated soil sediments. The ISPFS provides information for locating, designing, and monitoring waste disposal sites, and for monitoring remediated waste sites. The design and performance are described and compared to alternative methods. Economic, regulatory, and policy issues are discussed. Applicability of the ISPFS to specific situations is also summarized. 8 refs., 7 figs., 3 tabs.

  7. GROUNDWATER FLOW IN LOW-PERMEABILITY ENVIRONMENTS.

    USGS Publications Warehouse

    Neuzil, C.E.

    1986-01-01

    Certain geologic media are known to have small permeability; subsurface environments composed of these media and lacking well developed secondary permeability have groundwater flow systems with many distinctive characteristics. Moreover, groundwater flow in these environments appears to influence the evolution of certain hydrologic, geologic, and geochemical systems, may affect the accumulation of petroleum and ores, and probably has a role in the structural evolution of parts of the crust. Such environments are also important in the context of waste disposal. This review attempts to synthesize the diverse contributions of various disciplines to the problem of flow in low-permeability environments. Problems hindering analysis are enumerated together with suggested approaches to overcoming them. A common thread running through the discussion is the significance of size- and time-scale limitations of the ability to directly observe flow behavior and make significance of size- and time-scale limitations of the ability to directly observe flow behavior and make measurements of parameters.

  8. Blood flow and permeability in microvessels

    NASA Astrophysics Data System (ADS)

    Sugihara-Seki, Masako; Fu, Bingmei M.

    2005-07-01

    The mechanics of blood flow in microvessels and microvessel permeability are reviewed. In the first part, characteristics of blood flow in vivo and in vitro are described from a fluid-mechanical point of view, and mathematical models for blood flow in microvessels are presented. Possible causes of the increased flow resistance obtained in vivo compared to in vitro are examined, including the effects of irregularities of vessel lumen, the presence of endothelial surface glycocalyx and white blood cells. In the second part, the ultrastructural pathways and mechanisms whereby endothelial cells and the clefts between the cells modulate microvessel permeability to water and solutes are introduced. Previous and current models for microvessel permeability to water and solutes are reviewed. These models examine the role of structural components of interendothelial cleft, such as junction strands and surface glycocalyx, in the determination of water and solute transport across the microvessel walls. Transport models in the tissue space surrounding the microvessel are also described.

  9. Virtual screening of intestinal drug permeability.

    PubMed

    Stenberg, P; Luthman, K; Artursson, P

    2000-03-01

    Lead compounds generated in high throughput drug discovery programmes often have unfavorable biopharmaceutical properties, resulting in a low success rate of such drug candidates in clinical development. Drug companies and researchers would thus like to have methods of predicting biopharmaceutical properties accurately. The intestinal permeability to a lead compound is one such property which is particularly important. Therefore, access to methods to accurately predict biopharmaceutical properties, such as the intestinal permeability of a large series of compounds, is of particular importance. This review deals with new theoretical methods used to predict intestinal drug permeability. There are several possible transport routes across the intestine, but theoretical methods generally deal with only one of them, the passive transcellular route. Therefore, this review will also discuss the relative importance of passive and active drug transport and efflux routes using recent data generated in cell cultures, animal models and human subjects.

  10. In situ permeability testing of rock salt

    SciTech Connect

    Peterson, E.W.; Lagus, P.L.; Broce, R.D.; Lie, K.

    1981-04-01

    Storage of transuranic (TRU) wastes in bedded salt formations requires a knowledge of the in situ permeability of SENM rock salt. Since assumptions for safety assessments have been made in which these wastes could generate gas pressures on the order of the lithostatic pressure over geologic time scales, the permeability of the surrounding formation becomes an important parameter for determining the manner in which the gases will be contained or dispersed. This report describes the series of tests conducted in the AEC-7 borehole, located near the WIPP site, to determine the in situ gas flow characteristics of the bedded salt. In these tests, compressed air was injected into the borehole and flow into the surrounding formation measured. These measured flow rates were interpreted in terms of formation permeabilities and porosities which were, in turn, used as modeling parameters for the repository response analysis. Two series of field tests were performed. The first series consisted of a number of whole-hole flow tests conducted to provide preliminary design information required for future operation of a guarded straddle packer system capable of measuring permeabilities > or = 0.1 ..mu..darcy. The second series of tests were conducted using the Systems, Science and Software (S-Cubed) designed guarded straddle packer system. In these interval permeability tests, 100-foot lengths of borehole were isolated and the flow characteristics of the surrounding formation examined. In this report, a complete description of the test procedures, instrumentation, and measurement techniques is first given. The analytical/numerical methods used for data interpretation are then presented, followed by results of the interval and permeability tests. (The whole-hole tests are summarized in Appendix A.) Conclusions are presented in the final section.

  11. Lunar magnetic permeability studies and magnetometer sensitivity

    NASA Technical Reports Server (NTRS)

    King, J. H.; Ness, N. F.

    1977-01-01

    A regression of quiet magnetic field components simultaneously measured by the two Explorer 35 magnetometers reveals uncertainties in effective sensitivity factors of up to a few percent in one or both of these instruments. Given this, the validity of previous lunar permeability studies based on Explorer 35/ALSEP regressions, wherein inferences are drawn from regression line slopes differing from unity by the order of one percent, is called into question. We emphasize the need to critically address the question of small deviations in magnetometer sensitivity factors from nominal values as a part of any two-magnetometer lunar permeability study.

  12. Magnetic permeability measurements and a lunar core

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Phillips, R. J.; Russell, C. T.

    1976-01-01

    Measurements of the magnetic field induced in the moon while it is in the geomagnetic tail lobes have been interpreted in terms of lunar magnetic permeability due to free iron content; such studies ignored the possibility that a highly conducting lunar core (Fe or FeS) would exclude magnetic fields with an apparent diamagnetic effect. Using lunar chemical and thermal models to determine plausible limits of magnetic permeability, we interpret measurements of the induced moment. The maximum likely radius of a lunar core is 580 km. Subsatellite and ALSEP measurements of the induced field are in disagreement. Resolving the differences is critical to determining whether a core could or does exist.

  13. Development of an Improved Permeability Modification Simulator

    SciTech Connect

    Gao, H.W.; Elphnick, J.

    1999-03-09

    This report describes the development of an improved permeability modification simulator performed jointly by BDM Petroleum Technologies and Schlumberger Dowell under a cooperative research and development agreement (CRADA) with the US Department of Energy. The improved simulator was developed by modifying NIPER's PC-GEL permeability modification simulator to include a radial model, a thermal energy equation, a wellbore simulator, and a fully implicit time-stepping option. The temperature-dependent gelation kinetics of a delayed gel system (DGS) is also included in the simulator.

  14. Metal uptake from soils and soil-sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera).

    PubMed

    Vijver, Martina; Jager, Tjalling; Posthuma, Leo; Peijnenburg, Willie

    2003-03-01

    Bioassays were performed to evaluate the impact of soil characteristics on Cd, Cu, Pb, and Zn uptake by larvae of Tenebrio molitor. Metal accumulation was determined in 13 natural field soils, one metal-spiked field soil, four soil-sediment mixtures, and Cd- or Zn-spiked OECD artificial soil. Statistical analyses were used to investigate covariation of accumulation patterns with various soil metal pools and soil properties. Body concentrations of Cu and Zn in Zn-spiked OECD soils, field soils, and soil-sediment mixtures mostly remained constant. Considerable variation was noted for all Cd and Pb steady-state body concentrations among field soils and soil-sediment mixtures. For the spiked field soil and in the Cd-spiked OECD soil, body concentrations increased almost linearly with time. For the nonessential metals Cd and Pb, larval body concentrations correlated mainly to the total metal pool of the soil. Cd uptake at similar total Cd concentrations was within the same range among spiked OECD soils, field soils, and mixtures. A comparison of the findings with studies on other soil-inhabiting species shows that metal uptake patterns depend on metal type, soil type, and exposed species. It is suggested that soil organisms can be categorized according to gross divergence in ecophysiological characteristics, determined by, for instance, (non)permeability of the outer integument. These characteristics appear as similarities among multivariate functions as derived for the beetle.

  15. Dual-Mode Combustor

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  16. Dual Species NMR Oscillator

    NASA Astrophysics Data System (ADS)

    Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.

  17. Evaluating the relative air permeability of porous media from their water retention curves

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Tuli, A.; Hopmans, J. W.

    2016-05-01

    Accurate modeling of water and air flow in porous media requires the definition of the relevant hydraulic properties, namely, the water retention curve (WRC) and the relative hydraulic conductivity function (RHC), as well as the definition of the relative air permeability function (RAP). Capitalizing on the approach developed previously to represent the RHC, a new model allowing the prediction of RAP based on information resulting from the WRC is proposed. The power value ηa in the model is a decreasing exponential function of the coefficient of variation, ɛ, characterizing the pore size distribution of the porous medium, and derived from its WRC. The model was calibrated using data from 22 disturbed and undisturbed soil samples and was validated using data from eight soil types ranging from quartz sand to silty clay loam. The proposed model provided accurate prediction of the soil RAP and performed in some cases (sandy loam and silty clay loam soils) better than available alternative models.

  18. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    DOE R&D Accomplishments Database

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  19. [Desiccation cracking of soil body: a review].

    PubMed

    Pei, Yin-Ge; Xu, Ze-Min; Zhang, Jia-Ming

    2012-04-01

    Desiccation cracking of soil body is a complex physical process, which can affect the strength, stability, and permeability of soil body, and involve in several disciplines such as soil science, agricultural science, engineering geology, and environmental science. This paper introduced the significances of the study on the desiccation cracking of soil body, reviewed the related theoretical and applied researches and the quantitative analysis of crack morphology, and discussed the deficiencies in the research fields, research contents, and research methods. The future research directions about the desiccation cracking of soil body were pointed out.

  20. Reduction of diffusive contaminant emissions from a dissolved source in a lower permeability layer by sodium persulfate treatment.

    PubMed

    Cavanagh, Bridget A; Johnson, Paul C; Daniels, Eric J

    2014-12-16

    Residual contamination contained in lower permeability zones is difficult to remediate and can, through diffusive emissions to adjacent higher permeability zones, result in long-term impacts to groundwater. This work investigated the effectiveness of oxidant delivery for reducing diffusive emissions from lower permeability zones. The experiment was conducted in a 1.2 m tall × 1.2 m wide × 6 cm thick tank containing two soil layers having 3 orders of magnitude contrast in hydraulic conductivity. The lower permeability layer initially contained dissolved methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and p-xylenes (BTEX). The treatment involved delivery of 10% w/w nonactivated sodium persulfate (Na2S2O8) solution to the high permeability layer for 14 days. The subsequent diffusion into the lower permeability layer and contaminant emission response were monitored for about 240 days. The S2O8(2-) diffused about 14 cm at 1% w/w into the lower permeability layer during the 14 day delivery and continued diffusing deeper into the layer as well as back toward the higher-lower permeability interface after delivery ceased. Over 209 days, the S2O8(2-) diffused 60 cm into the lower permeability layer, the BTEX mass and emission rate were reduced by 95-99%, and the MTBE emission rate was reduced by 63%. The overall treatment efficiency was about 60-110 g-S2O8(2-)delivered/g-hydrocarbon oxidized, with a significant fraction of the oxidant delivered likely lost by back-diffusion and not involved in hydrocarbon destruction.

  1. Predicting the permeability of sediments entering subduction zones

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Screaton, Elizabeth J.

    2015-07-01

    Using end-member permeabilities defined by a worldwide compilation of sediment permeabilities at convergent margins, we compare permeability predictions using a geometric mean and a two-component effective medium theory (EMT). Our implementation of EMT includes a threshold fraction of the high-permeability component that determines whether flow occurs dominantly in the high- or low-permeability component. We find that this threshold fraction in most cases is equal to the silt + sand-sized fraction of the sediment. This suggests that sediments undergoing primary consolidation tend to exhibit flow equally distributed between the high- and low-permeability components. We show that the EMT method predicts permeability better than the weighted geometric mean of the end-member values for clay fractions <0.6. This work provides insight into the microstructural controls on permeability in subducting sediments and valuable guidance for locations which lack site-specific permeability results but have available grain-size information.

  2. Ablation of MMP9 gene ameliorates paracellular permeability and fibrinogen-amyloid beta complex formation during hyperhomocysteinemia.

    PubMed

    Muradashvili, Nino; Tyagi, Reeta; Metreveli, Naira; Tyagi, Suresh C; Lominadze, David

    2014-09-01

    Increased blood level of homocysteine (Hcy), called hyperhomocysteinemia (HHcy) accompanies many cognitive disorders including Alzheimer's disease. We hypothesized that HHcy-enhanced cerebrovascular permeability occurs via activation of matrix metalloproteinase-9 (MMP9) and leads to an increased formation of fibrinogen-β-amyloid (Fg-Aβ) complex. Cerebrovascular permeability changes were assessed in C57BL/6J (wild type, WT), cystathionine-β-synthase heterozygote (Cbs+/-, a genetic model of HHcy), MMP9 gene knockout (Mmp9-/-), and Cbs and Mmp9 double knockout (Cbs+/-/Mmp9-/-) mice using a dual-tracer probing method. Expression of vascular endothelial cadherin (VE-cadherin) and Fg-Aβ complex formation was assessed in mouse brain cryosections by immunohistochemistry. Short-term memory of mice was assessed with a novel object recognition test. The cerebrovascular permeability in Cbs+/- mice was increased via mainly the paracellular transport pathway. VE-cadherin expression was the lowest and Fg-Aβ complex formation was the highest along with the diminished short-term memory in Cbs+/- mice. These effects of HHcy were ameliorated in Cbs+/-/Mmp9-/- mice. Thus, HHcy causes activation of MMP9 increasing cerebrovascular permeability by downregulation of VE-cadherin resulting in an enhanced formation of Fg-Aβ complex that can be associated with loss of memory. These data may lead to the identification of new targets for therapeutic intervention that can modulate HHcy-induced cerebrovascular permeability and resultant pathologies. PMID:24865997

  3. Dual beam optical interferometer

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    2003-01-01

    A dual beam interferometer device is disclosed that enables moving an optics module in a direction, which changes the path lengths of two beams of light. The two beams reflect off a surface of an object and generate different speckle patterns detected by an element, such as a camera. The camera detects a characteristic of the surface.

  4. Dual Coding in Children.

    ERIC Educational Resources Information Center

    Burton, John K.; Wildman, Terry M.

    The purpose of this study was to test the applicability of the dual coding hypothesis to children's recall performance. The hypothesis predicts that visual interference will have a small effect on the recall of visually presented words or pictures, but that acoustic interference will cause a decline in recall of visually presented words and…

  5. Early Dual Language Learning

    ERIC Educational Resources Information Center

    Genesee, Fred

    2008-01-01

    Parents and child care personnel in English-dominant parts of the world often express misgivings about raising children bilingually. Their concerns are based on the belief that dual language learning during the infant-toddler stage confuses children, delays their development, and perhaps even results in reduced language competence. In this…

  6. Vascular Permeability and Drug Delivery in Cancers

    PubMed Central

    Azzi, Sandy; Hebda, Jagoda K.; Gavard, Julie

    2013-01-01

    The endothelial barrier strictly maintains vascular and tissue homeostasis, and therefore modulates many physiological processes such as angiogenesis, immune responses, and dynamic exchanges throughout organs. Consequently, alteration of this finely tuned function may have devastating consequences for the organism. This is particularly obvious in cancers, where a disorganized and leaky blood vessel network irrigates solid tumors. In this context, vascular permeability drives tumor-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration, and tumor cell extravasation. This can directly restrain the efficacy of conventional therapies by limiting intravenous drug delivery. Indeed, for more effective anti-angiogenic therapies, it is now accepted that not only should excessive angiogenesis be alleviated, but also that the tumor vasculature needs to be normalized. Recovery of normal state vasculature requires diminishing hyperpermeability, increasing pericyte coverage, and restoring the basement membrane, to subsequently reduce hypoxia, and interstitial fluid pressure. In this review, we will introduce how vascular permeability accompanies tumor progression and, as a collateral damage, impacts on efficient drug delivery. The molecular mechanisms involved in tumor-driven vascular permeability will next be detailed, with a particular focus on the main factors produced by tumor cells, especially the emblematic vascular endothelial growth factor. Finally, new perspectives in cancer therapy will be presented, centered on the use of anti-permeability factors and normalization agents. PMID:23967403

  7. Tailoring wall permeabilities for enhanced filtration

    NASA Astrophysics Data System (ADS)

    Herterich, J. G.; Vella, D.; Field, R. W.; Hankins, N. P.; Griffiths, I. M.

    2015-05-01

    The build-up of contaminants at the wall of cross-flow membrane filtration systems can be detrimental to the operation of such systems because of, amongst other things, the osmotic backflow it may induce. In this paper, we propose a strategy to avoid the negative effects of backflow due to osmosis by using 2D channels bounded by walls with a combination of permeable and impermeable segments. We show that preventing flow through the final portion of the channel can increase the efficiency of filtration and we determine the optimal fraction occupied by the permeable wall that maximizes efficiency. Our analysis uses a combination of numerical techniques and asymptotic analysis in the limit of low wall permeabilities. Finally, we consider how the energy cost of filtration depends on the Péclet number and show that the energy cost per unit of filtered water may be minimized by appropriately choosing both the Péclet number and the permeable-region fraction.

  8. [Graphic recording of the maxillary ostium permeability].

    PubMed

    Rosique, M; Pastor, A; Hellín, D; García-Ortega, F P

    1993-01-01

    Currently we practise salpingography for evaluating Eustachian tube permeability. In a similar mode, we describe a technique of graphic search, with impedianciometry, of patency in the osteomeatal complex, after puncture and placing Foley's catheter in the maxillary sinus. In several cases without opening, we make topical treatment though catheter. For this technique, we propose the term of infundibulography.

  9. Pump and treat in low permeability media

    SciTech Connect

    Mackay, D.M.

    1996-08-01

    Pump and Treat (P&T) is a commonly applied technology whose primary promise for the low permeability environments of interest to these technology reviews is almost certainly containment of the problem. Conventional P&T would be expected to offer little promise of complete restoration in such environments, unless very long time frames (decades or centuries) are considered. A variety of approaches have been proposed to enhance the efficiency of P&T; some appear to offer little promise in low or mixed permeability environments, while others may offer more promise (e.g. hydro- or pneumatic-fracturing, which are described elsewhere in this document, and application of vacuum to the extraction well(s), which is a proprietary technology whose promise is currently difficult to assess objectively). Understanding the potential advantages and means of optimizing these enhancement approaches requires more understanding of the basic processes limiting P&T performance in low or mixed permeability media. These efforts are probably also necessary to understand the advantages and means of optimizing many of the very different remedial technologies that may be applicable to low or mixed permeability environments. Finally, since a reasonably certain capability of P&T is containment (i.e. prevention of further migration of contaminants), P&T may generally be required as a sort of safety net around sites at which the alternative technologies are being tested or applied. 23 refs.

  10. Reduced hydrogen permeability at high temperatures

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Klopp, W. D.; Misencik, J. A.

    1981-01-01

    CO and CO2 reduce hydrogen loss through iron, nickel, and cobalt based alloy tubes. Method is based on concept that oxide film on metal surface reduces hydrogen permeability through metal; adding CO or CO2 forms oxide films continuously during operation, and hydrogen containment is improved. Innovation enhances prospects for Stirling engine system utilization.

  11. Permeability Measurements in Carbon-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zdenek, Michael J.

    1999-01-01

    To determine the permeability of the composite feedline, that is proposed to be used in the X-33 Reusable Launch Vehicle (RLV), three 8 x 8-in. coupons were constructed. Two of the coupons were layed-up with 4 plies of plain weave prepreg [0/90, plus or minus 45, plus or minus 45, 0/90] and the other one layed-up with 4 plies of unidirectional prepreg [0, 90, 90, 0]. The coupons were vacuumed bagged and cured to manufactures specifications. The coupons were then placed in an apparatus to test for permeability. Nitrogen gas was used to permeate through the coupons at a pressure of 5 psig. A manometer was placed on the opposite side of the coupons and was used to measure the height of the fluid with respect to time. From this data the mass flow rate of the gas could be calculated since the area of the manometer and the density of the gas is known. The results of the test are given. The permeability constant was calculated using Darcy's law, which related the pressure drop, flow rate of the permeating gas and resistance to flow through the coupon created. To put the results into prospective the permeability of sand stone and granite is 1E-15 and 1E-20 respectively.

  12. Permeable pavement research – Edison, New Jersey

    EPA Science Inventory

    These are the slides for the New York City Concrete Promotional Council Pervious Concrete Seminar presentation. The basis for the project, the monitoring design and some preliminary monitoring data from the permeable pavement parking lot at the Edison Environmental Center are pre...

  13. EVALUATION OF PERMEABLE REACTIVE BARRIER PERFORMANCE

    EPA Science Inventory

    The permeable reactive barrier (PRB) technology represents a passive option for long-term treatment of ground-water contamination. PRBs are a potentially more cost-effective treatment option for a variety of dissolved contaminants, such as certain types of chlorinated solvents, ...

  14. SINGLE-INTERVAL GAS PERMEABILITY ESTIMATION

    EPA Science Inventory

    Single-interval, steady-steady-state gas permeability testing requires estimation of pressure at a screened interval which in turn requires measurement of friction factors as a function of mass flow rate. Friction factors can be obtained by injecting air through a length of pipe...

  15. A microdevice for parallelized pulmonary permeability studies.

    PubMed

    Bol, Ludivine; Galas, Jean-Christophe; Hillaireau, Hervé; Le Potier, Isabelle; Nicolas, Valérie; Haghiri-Gosnet, Anne-Marie; Fattal, Elias; Taverna, Myriam

    2014-04-01

    We describe a compartmentalized microdevice specifically designed to perform permeability studies across a model of lung barrier. Epithelial cell barriers were reproduced by culturing Calu-3 cells at the air-liquid interface (AIC) in 1 mm² microwells made from a perforated glass slide with an embedded porous membrane. We created a single basolateral reservoir for all microwells which eliminated the need to renew the growth medium during the culture growth phase. To perform drug permeability studies on confluent cell layers, the cell culture slide was aligned and joined to a collection platform consisting in 35 μL collection reservoirs connected at the top and bottom with microchannels. The integrity and functionality of the cell barriers were demonstrated by measurement of trans-epithelial electrical resistance (TEER), confocal imaging and permeability assays of ¹⁴C-sucrose. Micro-cell barriers were able to form confluent layers in 1 week, demonstrating a similar bioelectrical evolution as the Transwell systems used as controls. Tight junctions were observed throughout the cell-cell interfaces, and the low permeability coefficients of ¹⁴C-sucrose confirmed their functional presence, creating a primary barrier to the diffusion of solutes. This microdevice could facilitate the monitoring of biomolecule transport and the screening of formulations promoting their passage across the pulmonary barrier, in order to select candidates for pulmonary administration to patients. PMID:24337430

  16. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    SciTech Connect

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gas causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production

  17. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE PAGESBeta

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design

  18. Permeability during densification of viscous droplets

    NASA Astrophysics Data System (ADS)

    Wadsworth, Fabian; Vasseur, Jérémie; Llewellin, Ed; Dobson, Katherine; Schauroth, Jenny; Heap, Michael; Farquharson, Jamie; Scheu, Bettina; Kendrick, Jackie; Lavallée, Yan; von Aulock, Felix; Dingwell, Donald B.

    2016-04-01

    Fragmentation of magma can yield a transiently granular material, which can subsequently weld back to a fluid-continuum. This process results in dramatic changes in the porosity of the material, which impacts its fluid permeability. We collate published data for the porosity and permeability of volcanic and synthetic materials which have undergone this process to different amounts. By discriminating data for which good microstructural information are provided, we use simple scaling arguments to collapse the data in both the still-granular, high porosity region, and the fluid-continuum low porosity region, such that a universal description can be provided. This allows us to describe the microstructural meaning of permeability scaling, and to infer the controls on the position of this transition between dominantly granular (dispersion) and dominantly fluid-continuum materials. Fractures in coherent magmas are thought to be a primary degassing pathway in high viscosity systems. As a specific application, we consider transiently granular magma being transported through and deposited in these fractures. We finally present a physical model for the kinetics of porosity changes in arrays of viscous droplets and compare this with our experimental data. The combination of the physical model for the evolution of porosity with the scaling between porosity and permeability permits us to describe the evolution of permeability during densification. We anticipate that this will be a useful tool for predicting the longevity of degassing pathways in granular filled cracks, both in conduits and shallow lava domes, as well as during the sedimentation of exceptionally hot ignimbrites undergoing compaction and welding.

  19. Simulating solute transport in a structured field soil: uncertainty in parameter identification and predictions.

    PubMed

    Larsbo, Mats; Jarvis, Nicholas

    2005-01-01

    Dual-permeability models have been developed to account for the significant effects of macropore flow on contaminant transport, but their use is hampered by difficulties in estimating the additional parameters required. Therefore, our objective was to evaluate data requirements for parameter identification for predictive modeling with the dual-permeability model MACRO. Two different approaches were compared: sequential uncertainty fitting (SUFI) and generalized likelihood uncertainty estimation (GLUE). We investigated six parameters controlling macropore flow and pesticide sorption and degradation, applying MACRO to a comprehensive field data set of bromide andbentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one-2,2dioxide] transport in a structured soil. The GLUE analyses of parameter conditioning for different combinations of observations showed that both resident and flux concentrations were needed to obtain highly conditioned and unbiased parameters and that observations of tracer transport generally improved the conditioning of macropore flow parameters. The GLUE "behavioral" parameter sets covered wider parameter ranges than the SUFI posterior uncertainty domains. Nevertheless, estimation uncertainty ranges defined by the 5th and 95th percentiles were similar and many simulations randomly sampled from the SUFI posterior uncertainty domains had negative model efficiencies (minimum of -3.2). This is because parameter correlations are neglected in SUFI and the posterior uncertainty domains were not always determined correctly. For the same reasons, uncertainty ranges for predictions of bentazone losses through drainflow for good agricultural practice in southern Sweden were 27% larger for SUFI compared with GLUE. Although SUFI proved to be an efficient parameter estimation tool, GLUE seems better suited as a method of uncertainty estimation for predictions.

  20. Stable response of axisymmetric two-phase water-saturated soil.

    PubMed

    Cai, Yuan-qiang; Meng, Kai; Xu, Chang-jie

    2004-09-01

    Biot's dynamic consolidation equations and Hankel transform were used to derive the integral solutions of stress and displacement for axisymmetric harmonic excitations in the two-phase saturated soil with subjacent rock-stratum. The influence of the coefficient of permeability and loading frequency on the soil displacement at the ground surface were studied. The results showed that higher loading frequency led to more dynamic characteristics; and that the effect of the soil permeability was more obvious at higher frequencies.

  1. A relative permeability modifier for water control of gas wells in a low-permeability reservoir

    SciTech Connect

    Chen Tielong; Zhao Yong; Peng Kezong; Pu Wanfeng

    1996-08-01

    Water control in gas wells is a major measure to enhance gas recovery. The work is concentrated on finding a highly selective polymer to reduce water production without affecting gas production from gas wells in low-permeability reservoirs. This paper presents the conceptions of residual resistance factors (RRF`s) to both wetting and non-wetting phases and the laboratory experimental and field trial results of relative permeability modifiers for water control in gas wells.

  2. Prediction of The Unsaturated Hydraulic Properties of Highly Heterogeneous Soils Close To Saturation

    NASA Astrophysics Data System (ADS)

    Cislerova, M.; Snehota, M.; Vogel, T.

    The infiltration outflow experiments were performed in laboratory on large undis- turbed soil samples, under conditions close to saturation. A soil core of coarse sandy loam, highly heterogeneous, with a wide range of preferential pathways, was taken in Korkusova Hut (Czech Republic). A tension infiltration disc was used to set the top boundary pressure at -9, -6, -3, -1 and +1 cm of water pressure head. A seepage face boundary condition at the bottom is physically represented by gravity driven water drainage through a perforated plate, supporting the bottom surface of the soil core. Three high flow tensiometers were used to measure soil water pressure heads at three different locations. The experiments were conducted using an automated experimen- tal set-up, where the inflow and outflow water flux densities, tensiometers readings and the sample weight changes were recorded. The sample was imaged by means of computer tomography (CT) before and after the experiments, in order to identify soil structure and its changes during the experiment. Dye tracer experiment with Brilliant Blue was performed at the end. The sample was gradually sliced and section surfaces were photographed to visualize the preferential pathways. Digitized pictures were ad- justed to suppress differences in lighting and color contrast of the soil surface. When the red component of the RGB color picture was extracted and converted into 256 levels gray scale picture, the area affected by the tracer was very clearly visible. The regions with the lower brightness represent a higher dye tracer concentration. Dye tracer experiment showed high degree of channeled flow within the sample. based on 1-D RichardSs equation and Levenberg-Marquardt optimization, was used to es- timate hydraulic parameters of the soil matrix. Then forward 1-D dual permeability numerical simulations were performed to calibrate the soil hydraulic properties of fast flow domain. In the calibration the simulations were compared

  3. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect

    Not Available

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  4. Permeability Changes in Reaction Induced Fracturing

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders; Kalia, Rajiv

    2013-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al.[4], serpentinization and carbonation of peridotite by Rudge et al.[3] and replacement reactions in silica-poor igneous rocks by Jamtveit et al.[1]. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total reaction rate, as summarised by Kelemen et al.[2]. Røyne et al.[4] have shown that transport in fractures will have an effect on the fracture pattern formed. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing under compression, and it remains an open question how sensitive a fracture pattern is to permeability changes. In this work, we study the permeability of fractures formed under compression, and we use a 2D discrete element model to study the fracture patterns and total reaction rates achieved with different permeabilities. We achieve an improved understanding of the feedback processes in reaction-driven fracturing, thus improving our ability to decide whether industrial scale CO2 sequestration in ultramafic rock is a viable option for long-term handling of CO2. References [1] Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., "Reaction induced fracturing during replacement processes," Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. [2] Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., "Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage," Annu. Rev. Earth Planet. Sci. 2011. 39:545-76. [3] Rudge, J. F., Kelemen, P. B., and

  5. Permeability-porosity relationships in sedimentary rocks

    USGS Publications Warehouse

    Nelson, Philip H.

    1994-01-01

    In many consolidated sandstone and carbonate formations, plots of core data show that the logarithm of permeability (k) is often linearly proportional to porosity (??). The slope, intercept, and degree of scatter of these log(k)-?? trends vary from formation to formation, and these variations are attributed to differences in initial grain size and sorting, diagenetic history, and compaction history. In unconsolidated sands, better sorting systematically increases both permeability and porosity. In sands and sandstones, an increase in gravel and coarse grain size content causes k to increase even while decreasing ??. Diagenetic minerals in the pore space of sandstones, such as cement and some clay types, tend to decrease log(k) proportionately as ?? decreases. Models to predict permeability from porosity and other measurable rock parameters fall into three classes based on either grain, surface area, or pore dimension considerations. (Models that directly incorporate well log measurements but have no particular theoretical underpinnings from a fourth class.) Grain-based models show permeability proportional to the square of grain size times porosity raised to (roughly) the fifth power, with grain sorting as an additional parameter. Surface-area models show permeability proportional to the inverse square of pore surface area times porosity raised to (roughly) the fourth power; measures of surface area include irreducible water saturation and nuclear magnetic resonance. Pore-dimension models show permeability proportional to the square of a pore dimension times porosity raised to a power of (roughly) two and produce curves of constant pore size that transgress the linear data trends on a log(k)-?? plot. The pore dimension is obtained from mercury injection measurements and is interpreted as the pore opening size of some interconnected fraction of the pore system. The linear log(k)-?? data trends cut the curves of constant pore size from the pore-dimension models

  6. Verification of capillary functions and relative permeability equations for gas production from hydrate bearing sediments

    NASA Astrophysics Data System (ADS)

    Mahabadi Mahabad, N.; Jang, J.

    2013-12-01

    There are several studies of numerical simulation on predicting long-term behavior of hydrate-bearing sediments during gas production. Numerical simulators explore coupled processes that require numerous equations and parameters. Important equations for the estimation of gas production from hydrate-bearing sediments are soil-water characteristic curves and relative permeability equations. These equations require empirical parameters, laboratory and in-situ experiments which are very difficult and expensive. In this research, pore-network model simulation is performed to obtain the fitting parameters for capillary pressure functions and relative permeability equations. First, several sediment packings similar to in-situ sediment are generated by discrete element method. Then, the pore-network model is extracted from the pore space of sediment packing as a system of pores connected at throats. Numerical algorithm to simulate gas hydrate dissociation and gas expansion, and calculate gas and water relative permeability at every saturation is developed for the pore-network model. The assessment of water pore connectivity and the identification of gas clusters are performed using Hoshen-Kopelman algorithm. Finally, reliable fitting parameters for capillary pressure functions and relative permeability equations during gas production will be suggested for further use.

  7. Dual-comb MIXSEL

    NASA Astrophysics Data System (ADS)

    Link, S. M.; Zaugg, C. A.; Klenner, A.; Mangold, M.; Golling, M.; Tilma, B. W.; Keller, U.

    2015-03-01

    We present a single semiconductor disk laser simultaneously emitting two different gigahertz modelocked pulse trains. A birefringent crystal inside a modelocked integrated external-cavity surface-emitting laser (MIXSEL) separates the cavity beam into two spatially separated beams with perpendicular polarizations on the MIXSEL chip. This MIXSEL then generates two orthogonally polarized collinear modelocked pulse trains from one simple straight cavity. Superimposing the beams on a photo detector creates a microwave beat signal, representing a strikingly simple setup to down-convert the terahertz optical frequencies into the electronically accessible microwave regime. This makes the dual-comb MIXSEL scheme an ultra-compact and cost-efficient candidate for dual-comb spectroscopy applications.

  8. Exploring the scale-dependent permeability of fractured andesite

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Kennedy, Ben M.

    2016-08-01

    Extension fractures in volcanic systems exist on all scales, from microscopic fractures to large fissures. They play a fundamental role in the movement of fluids and distribution of pore pressure, and therefore exert considerable influence over volcanic eruption recurrence. We present here laboratory permeability measurements for porous (porosity = 0.03-0.6) andesites before (i.e., intact) and after failure in tension (i.e., the samples host a throughgoing tensile fracture). The permeability of the intact andesites increases with increasing porosity, from 2 ×10-17 to 5 ×10-11 m2. Following fracture formation, the permeability of the samples (the equivalent permeability) falls within a narrow range, 2- 6 ×10-11 m2, regardless of their initial porosity. However, laboratory measurements on fractured samples likely overestimate the equivalent permeability due to the inherent scale-dependence of permeability. To explore this scale-dependence, we first determined the permeability of the tensile fractures using a two-dimensional model that considers flow in parallel layers. Our calculations highlight that tensile fractures in low-porosity samples are more permeable (as high as 3.5 ×10-9 m2) than those in high-porosity samples (as low as 4.1 ×10-10 m2), a difference that can be explained by an increase in fracture tortuosity with porosity. We then use our fracture permeability data to model the equivalent permeability of fractured rock (with different host rock permeabilities, from 10-17 to 10-11 m2) with increasing lengthscale. We highlight that our modelling approach can be used to estimate the equivalent permeability of numerous scenarios at andesitic stratovolcanoes in which the fracture density and width and host rock porosity or permeability are known. The model shows that the equivalent permeability of fractured andesite depends heavily on the initial host rock permeability and the scale of interest. At a given lengthscale, the equivalent permeability of high-permeability

  9. Liquefaction mechanism for layered soils

    SciTech Connect

    Fiegel, G.L.; Kutter, B.L. . Dept. of Civil and Environmental Engineering)

    1994-04-01

    Results from four centrifuge model tests are presented. Three of the model tests involve layered soil deposits subject to base shaking; one model test involves a uniform soil deposit of sand subject to base shaking. The layered soil models consisted of fine sand overlain by a layer of relatively impermeable silica flour (silt). Pore-water pressures, accelerations, and settlements were measured during all four tests. Results from the model tests involving layered soils suggest that during liquefaction a water interlayer or very loose zone of soil may develop at the sand-silt interface due to the difference in permeabilities. In each layered model test, boils were observed on the surface of the silt layer. These boils were concentrated in the thinnest zones of the overlying silt layer and provided a vent for the excess pore-water pressure generated in the fine sand.

  10. 46 CFR 172.140 - Permeability of spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Permeability of spaces. 172.140 Section 172.140 Shipping... Subchapter O of This Chapter § 172.140 Permeability of spaces. (a) When doing the calculations required in § 172.130, the permeability of a floodable space other than a machinery space must be as listed in...

  11. 46 CFR 174.090 - Permeability of spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Permeability of spaces. 174.090 Section 174.090 Shipping... Permeability of spaces. When doing the calculations required in § 174.065— (a) The permeability of a floodable space, other than a machinery space, must be as listed in Table 174.090; and (b) Calculations in which...

  12. 46 CFR 172.185 - Permeability of spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Permeability of spaces. 172.185 Section 172.185 Shipping... Under Subchapter O of This Chapter § 172.185 Permeability of spaces. (a) When doing the calculations required in § 172.170, the permeability of a floodable space other than a machinery space must be as...

  13. 46 CFR 172.240 - Permeability of spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Permeability of spaces. 172.240 Section 172.240 Shipping... Permeability of spaces. When doing the calculations required in § 172.225, (a) The permeability of a floodable space, other than a machinery or cargo space, must be assumed as listed in Table 172.240;...

  14. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn...

  15. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn...

  16. 46 CFR 174.090 - Permeability of spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Permeability of spaces. 174.090 Section 174.090 Shipping... Permeability of spaces. When doing the calculations required in § 174.065— (a) The permeability of a floodable space, other than a machinery space, must be as listed in Table 174.090; and (b) Calculations in which...

  17. 46 CFR 172.240 - Permeability of spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Permeability of spaces. 172.240 Section 172.240 Shipping... Permeability of spaces. When doing the calculations required in § 172.225, (a) The permeability of a floodable space, other than a machinery or cargo space, must be assumed as listed in Table 172.240;...

  18. 46 CFR 174.090 - Permeability of spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Permeability of spaces. 174.090 Section 174.090 Shipping... Permeability of spaces. When doing the calculations required in § 174.065— (a) The permeability of a floodable space, other than a machinery space, must be as listed in Table 174.090; and (b) Calculations in which...

  19. 46 CFR 172.140 - Permeability of spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Permeability of spaces. 172.140 Section 172.140 Shipping... Subchapter O of This Chapter § 172.140 Permeability of spaces. (a) When doing the calculations required in § 172.130, the permeability of a floodable space other than a machinery space must be as listed in...

  20. 46 CFR 172.240 - Permeability of spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Permeability of spaces. 172.240 Section 172.240 Shipping... Permeability of spaces. When doing the calculations required in § 172.225, (a) The permeability of a floodable space, other than a machinery or cargo space, must be assumed as listed in Table 172.240;...

  1. 46 CFR 172.240 - Permeability of spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Permeability of spaces. 172.240 Section 172.240 Shipping... Permeability of spaces. When doing the calculations required in § 172.225, (a) The permeability of a floodable space, other than a machinery or cargo space, must be assumed as listed in Table 172.240;...

  2. 46 CFR 174.090 - Permeability of spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Permeability of spaces. 174.090 Section 174.090 Shipping... Permeability of spaces. When doing the calculations required in § 174.065— (a) The permeability of a floodable space, other than a machinery space, must be as listed in Table 174.090; and (b) Calculations in which...

  3. 46 CFR 172.185 - Permeability of spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Permeability of spaces. 172.185 Section 172.185 Shipping... Under Subchapter O of This Chapter § 172.185 Permeability of spaces. (a) When doing the calculations required in § 172.170, the permeability of a floodable space other than a machinery space must be as...

  4. 46 CFR 172.185 - Permeability of spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Permeability of spaces. 172.185 Section 172.185 Shipping... Under Subchapter O of This Chapter § 172.185 Permeability of spaces. (a) When doing the calculations required in § 172.170, the permeability of a floodable space other than a machinery space must be as...

  5. 46 CFR 172.140 - Permeability of spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Permeability of spaces. 172.140 Section 172.140 Shipping... Subchapter O of This Chapter § 172.140 Permeability of spaces. (a) When doing the calculations required in § 172.130, the permeability of a floodable space other than a machinery space must be as listed in...

  6. 46 CFR 172.240 - Permeability of spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Permeability of spaces. 172.240 Section 172.240 Shipping... Permeability of spaces. When doing the calculations required in § 172.225, (a) The permeability of a floodable space, other than a machinery or cargo space, must be assumed as listed in Table 172.240;...

  7. 46 CFR 172.185 - Permeability of spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Permeability of spaces. 172.185 Section 172.185 Shipping... Under Subchapter O of This Chapter § 172.185 Permeability of spaces. (a) When doing the calculations required in § 172.170, the permeability of a floodable space other than a machinery space must be as...

  8. 46 CFR 172.140 - Permeability of spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Permeability of spaces. 172.140 Section 172.140 Shipping... Subchapter O of This Chapter § 172.140 Permeability of spaces. (a) When doing the calculations required in § 172.130, the permeability of a floodable space other than a machinery space must be as listed in...

  9. Permeability of cork for water and ethanol.

    PubMed

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-01

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  10. Control of vascular permeability by adhesion molecules

    PubMed Central

    Sarelius, Ingrid H; Glading, Angela J

    2014-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  11. Electrostatically gated membrane permeability in inorganic protocells.

    PubMed

    Li, Mei; Harbron, Rachel L; Weaver, Jonathan V M; Binks, Bernard P; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization. PMID:23695636

  12. Control of vascular permeability by adhesion molecules.

    PubMed

    Sarelius, Ingrid H; Glading, Angela J

    2015-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  13. Electrostatically gated membrane permeability in inorganic protocells

    NASA Astrophysics Data System (ADS)

    Li, Mei; Harbron, Rachel L.; Weaver, Jonathan V. M.; Binks, Bernard P.; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  14. Hydrogeologic modeling for permeable reactive barriers.

    PubMed

    Gupta, N; Fox, T C

    1999-08-12

    The permeable reactive barrier technology for in situ treatment of chlorinated solvents and other groundwater contaminants is becoming increasingly popular. Field scale implementation of this and other in situ technologies requires careful design based on the site-specific hydrogeology and contaminant plume characteristics. Groundwater flow modeling is an important tool in understanding the hydraulic behavior of the site and optimizing the reactive barrier design. A combination of groundwater flow modeling and particle tracking techniques was used to illustrate the effect of hydraulic conductivity of the aquifer and reactive media on key permeable barrier design parameters, such as the capture zone width, residence time, flow velocity, and discharge. Similar techniques were used to illustrate the modeling approach for design of different configurations of reactive barriers in homogeneous and heterogeneous settings.

  15. Dual-Schemata Model

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  16. Enhancement of scleral macromolecular permeability with prostaglandins.

    PubMed Central

    Weinreb, R N

    2001-01-01

    PURPOSE: It is proposed that the sclera is a metabolically active and pharmacologically responsive tissue. These studies were undertaken to determine whether prostaglandin exposure can enhance scleral permeability to high-molecular-weight substances. METHODS: Topical prostaglandin F2 alpha (PGF2 alpha) was administered to monkeys to determine if this altered the amount of scleral matrix metalloproteinases (MMPs). Experiments also were performed to determine whether the prostaglandin F (FP) receptor and gene transcripts are expressed in normal human sclera. Permeability of organ-cultured human sclera following prostaglandin exposure then was studied and the amount of MMP released into the medium measured. Finally, the permeability of human sclera to basic fibroblast growth factor (FGF-2) was determined following prostaglandin exposure. RESULTS: Topical prostaglandin administration that reduced scleral collagen also increased scleral MMP-1, MMP-2, and MMP-3 by 63 +/- 35%, 267 +/- 210%, and 729 +/- 500%, respectively. FP receptor protein was localized in scleral fibroblasts, and FP receptor gene transcript was identified in sclera. Exposure to prostaglandin F2 alpha, 17-phenyltrinor, PGF2 alpha, or latanoprost acid increased scleral permeability by up to 124%, 183%, or 213%, respectively. In these cultures, MMP-1, MMP-2, and MMP-3 were increased by up to 37%, 267%, and 96%, respectively. Finally, transscleral absorption of FGF-2 was increased by up to 126% with scleral exposure to latanoprost. CONCLUSIONS: These studies demonstrate that the sclera is metabolically active and pharmacologically responsive to prostaglandins. Further, they demonstrate the feasibility of cotreatment with prostaglandin to enhance transscleral delivery of peptides, such as growth factors and high-molecular-weight substances, to the posterior segment of the eye. PMID:11797317

  17. Permeability of self-affine rough fractures

    PubMed

    Drazer; Koplik

    2000-12-01

    The permeability of two-dimensional fractures with self-affine fractal roughness is studied via analytic arguments and numerical simulations. The limit where the roughness amplitude is small compared with average fracture aperture is analyzed by a perturbation method, while in the opposite case of narrow aperture, we use heuristic arguments based on lubrication theory. Numerical simulations, using the lattice Boltzmann method, are used to examine the complete range of aperture sizes, and confirm the analytic arguments. PMID:11138092

  18. Methods of determining permeability, transmissibility and drawdown

    USGS Publications Warehouse

    Bentall, Ray

    1964-01-01

    If the Theis graphical method is used for determining the hydraulic constants of an aquifer under water-table conditions, the observed drawdowns should be corrected for the decrease in saturated thickness. This is especially true if the drawdown is a large fraction of the original saturated thickness, for then the computed coefficient of permeability is highly inaccurate if based on observed, rather than corrected, water levels. Wenzel's limiting formula, a modification of the Theis graphical method, is useful where u=r2s/4Tt is less than about 0.01. However, a shorter procedure for determination of the coefficient of transmissibility, as well as the coefficient of storage, consists of plotting the values of the corrected drawdowns against the values of the logarithm of r. Wenzel (1942) suggested that observation wells be situated on lines that extend upgradient and downgradient from the pumped well. However, a detailed analysis of aquifer-test results indicates that such a restriction is unnecessary. The gradient method for determining permeability should yield the same results as the Thies method. The former, when applied for a distance within the range of applicability of the latter, is merely a duplication of effort or, at best, a crude check. Because of the limitations of accuracy in plotting, the gradient method is much less satisfactory. That Wenzel (1942) obtained identical results from the two methods is regarded as a coincidence. Failure to take into consideration the fact that the pumped well does not tap the full thickness of the aquifer leads to an apparent coefficient of permeability that is much too low, especially if the aquifer consists of stratified sediments. The average coefficient of permeability computed from uncorrected drawdowns may be only a little more than half of the true value.

  19. Nonlinear effective pressure law for permeability

    NASA Astrophysics Data System (ADS)

    Li, M.; Xiao, W.-L.; Bernabé, Y.; Zhao, J.-Z.

    2014-01-01

    The permeability k of porous rocks is known to vary with confining pressure pc and pore fluid pressure pf. But it is, in principle, possible to replace the two-variable function k(pf, pc) by a function k(peff) of a single variable, peff(pf, pc), called the effective pressure. Our goal in this paper is to establish an experimental method for determining a possibly nonlinear, effective pressure law (EPL) for permeability, i.e., find the function κs(pf, pc) such that the effective pressure is given by peff = pc - κs(pf, pc) pf. We applied this method to a set of 26 sandstone cores from various hydrocarbon reservoirs in China. We found that κs greatly varied, from sample to sample, in magnitude and range, sometimes even reaching theoretically prohibited values (i.e., greater than 1 or lower than porosity). One interesting feature of κs(pf, pc) is that it could be approximately described in all rocks but one as a decreasing function κs(pc - pf) of Terzaghi's differential pressure. We also investigated the dependence of permeability on peff for each of our samples. Three models from the literature, i.e., exponential (E), power law (P), and the Walsh model (W), were tested. The (W) model was more likely to fit the experimental data of cores with a high pressure dependence of permeability whereas (E) occurred more frequently in low-pressure-sensitive rocks. Finally, we made various types of two- and three-dimensional microstructural observations that generally supported the trend mentioned above.

  20. Nonequilibrium gas absorption in rotating permeable media

    NASA Astrophysics Data System (ADS)

    Baev, V. K.; Bazhaikin, A. N.

    2016-08-01

    The absorption of ammonia, sulfur dioxide, and carbon dioxide by water and aqueous solutions in rotating permeable media, a cellular porous disk, and a set of spaced-apart thin disks has been considered. The efficiency of cleaning air to remove these impurities is determined, and their anomalously high solubility (higher than equilibrium value) has been discovered. The results demonstrate the feasibility of designing cheap efficient rotor-type absorbers to clean gases of harmful impurities.

  1. Anisotropic Hydraulic Permeability Under Finite Deformation

    PubMed Central

    Ateshian, Gerard A.; Weiss, Jeffrey A.

    2011-01-01

    The structural organization of biological tissues and cells often produces anisotropic transport properties. These tissues may also undergo large deformations under normal function, potentially inducing further anisotropy. A general framework for formulating constitutive relations for anisotropic transport properties under finite deformation is lacking in the literature. This study presents an approach based on representation theorems for symmetric tensor-valued functions and provides conditions to enforce positive semi-definiteness of the permeability or diffusivity tensor. Formulations are presented which describe materials that are orthotropic, transversely isotropic, or isotropic in the reference state, and where large strains induce greater anisotropy. Strain-induced anisotropy of the permeability of a solid-fluid mixture is illustrated for finite torsion of a cylinder subjected to axial permeation. It is shown that, in general, torsion can produce a helical flow pattern, rather than the rectilinear pattern observed when adopting a more specialized, unconditionally isotropic spatial permeability tensor commonly used in biomechanics. The general formulation presented in this study can produce both affine and non-affine reorientation of the preferred directions of material symmetry with strain, depending on the choice of material functions. This study addresses a need in the biomechanics literature by providing guidelines and formulations for anisotropic strain-dependent transport properties in porous-deformable media undergoing large deformations. PMID:21034145

  2. Porosity and Permeability of Chondritic Materials

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Corrigan, Catherine M.; Dahl, Jason; Long, Michael

    1996-01-01

    We have investigated the porosity of a large number of chondritic interplanetary dust particles and meteorites by three techniques: standard liquid/gas flow techniques, a new, non-invasive ultrasonic technique, and image processing of backscattered images . The latter technique is obviously best suited to sub-kg sized samples. We have also measured the gas and liquid permeabilities of some chondrites by two techniques: standard liquid/gas flow techniques, and a new, non-destructive pressure release technique. We find that chondritic IDP's have a somewhat bimodal porosity distribution. Peaks are present at 0 and 4% porosity; a tail then extends to 53%. These values suggest IDP bulk densities of 1.1 to 3.3 g/cc. Type 1-3 chondrite matrix porosities range up to 30%, with a peak at 2%. The bulk porosities for type 1-3 chondrites have the same approximate range as exhibited by matrix, indicating that other components of the bulk meteorites (including chondrules and aggregates) have the same average porosity as matrix. These results reveal that the porosity of primitive materials at scales ranging from nanogram to kilogram are similar, implying similar accretion dynamics operated through 12 orders of size magnitude. Permeabilities of the investigated chondrites vary by several orders of magnitude, and there appears to be no simple dependence of permeability with degree of aqueous alteration, or chondrite type.

  3. Atrial natriuretic factor increases vascular permeability

    NASA Technical Reports Server (NTRS)

    Lockette, Warren; Brennaman, Bruce

    1990-01-01

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). In this study, it was determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of (I-125)-albumin and (C-14)-dextran of similar molecular size. Blood pressure was monitored, and serial determinations of hematocrits were made. Animals infused with 1.0 microg/kg per min ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of (I-125)-albumin, but not (C-14)-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.

  4. Atrial natriuretic factor increases vascular permeability

    SciTech Connect

    Lockette, W.; Brennaman, B. )

    1990-12-01

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinations of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.

  5. Gravity filtration of suspensions: permeability effects

    NASA Astrophysics Data System (ADS)

    Soori, Tejaswi; Wang, Mengyu; Ward, Thomas

    2015-11-01

    This paper examines the filtration rates of mono-modal suspensions as a function of time and a cake layer builds up through theory and experimentation. Darcy's Law, which describes fluid flow through porous media, was applied along with the Kynch theory of sedimentation, which provides the basis for analyzing low concentration (ϕ <=20%) cake formation. Experiments were performed to study the effects of varying particle sizes (45 μm <= d <= 1400 μm) and total solid concentration ϕ on both the formation rate of the cake layer and its flow permeability (k) in conjunction with the filter media. A CCD camera was used to capture images of the cake formation and fluid drainage processes, and subsequent image and theoretical analysis found the fluid flow experienced a constant pressure loss due to the permeability of the filter media, whereas the experienced pressure loss due to the cake formation varies as a function of time, ϕ and d. The rate of cake formation was also found to be independent of ϕ but dependent on d which can be attributed to a change in porosity affecting permeability. Studies on similar systems with multi-modal suspensions are in-progress.

  6. Effect of water on hydrogen permeability

    NASA Technical Reports Server (NTRS)

    Hulligan, David; Tomazic, William A.

    1987-01-01

    Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.

  7. Endothelial cell permeability to water and antipyrine

    SciTech Connect

    Garrick, R.A.

    1986-03-05

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water (/sup 3/HHO) and /sup 14/C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for /sup 3/HHO through the packed cells (D), the intracellular material (D/sub 2/), and the extracellular material (D/sub 1/) were 0.682, 0.932 and 2.45 x 10/sup -5/ cm/sup 2/ s/sup -1/ and for AP were 0.273, 0.355 and 1.13 x 10/sup -5/ cm/sup 2/ s/sup -1/ respectively. The permeability coefficient calculated by the series-parallel pathway model for /sup 3/HHO was higher than that for AP and for both /sup 3/HHO and AP were lower than those calculated for isolated lung cells and erythrocytes.

  8. Steam injection for in-situ remediation of DNAPLs in low permeability media

    SciTech Connect

    Sleep, B.

    1996-08-01

    The potential for remediation of dense, nonaqueous phase liquid (DNAPL) contamination by steam injection is investigated, including the advantages and disadvantages of the technology. The primary advantage is the significant enhancement of removal rates through steam distillation. The disadvantages are related to the lack of field experience with the technology and difficulties related to steam override and channeling in heterogeneous soils. The problems related to steam injection in low permeability fractured clay are examined, and removal times and costs are postulated for a hypothetical DNAPL contamination scenario. It is concluded that steam injection has significant potential for remediation of DNAPL in fractured clay soils, but there is significant uncertainty in predictions of the performance of steam injection in these soils. 13 refs., 4 figs., 1 tab.

  9. Study of the transport of cadusafos in two tropical undisturbed soil columns

    NASA Astrophysics Data System (ADS)

    Dionisio Fernandez-Bayo, Jesus; Crevoisier, David; Saison, Carine; Geniez, Chantal; Huttel, Olivier; Samouelian, Anatja; Voltz, Marc

    2013-04-01

    The use of pesticides to control agriculture pests is a common practice on most tropical plantations whose vulnerability to pesticide pollution is very important due to the frequent heavy rains that wash pesticides from target areas. Tropical volcanic soils have been scarcely investigated in this sense and monitoring the dynamic of pesticide at column scale is of great interest for a better understanding at catchment scale and risk modelling. The objective was to study and model the transport of cadusafos (CDS) in two undisturbed soil columns from a nitisol and an andosol, representative of the major soils in agricultural areas of the FWI. Undisturbed soil columns from andosol (sandy-loam soil) and nitisol (clay soil) from Guadeloupe Island were spiked with 14C-CDS along with 10 g of granulate Rugby®. To each soil column, 10 rain events of different intensities (20 and 40 mm/h during 4 and 2 hours, respectively) were applied with 4-7 days delay between two subsequent rain events. For the nitisol columns, the cumulated rain was halved (by decreasing duration of each rain event) since these soils occur in drier areas of Guadeloupe and because the imposed rain intensities led to the accumulation of water at the surface of the column. At the end of the leaching experiment the extractable and non-extractable remaining pesticide residues were determined along the soil profile. The andosol presented a very high permeability attributed to the preferential flow expected in this type of soil with high macroporosity due to the allophane materials. The maximum concentration of CDS was attained during the first rainfall event while the cumulated infiltrated volume of water was much less than the pore volume of the column soil. The peak concentration levels of CDS were almost constant during the first 5 rain events and they decreased during the subsequent rain events, probably due to degradation and/or ageing processes of CDS. The nitisol showed lower permeability reflected in

  10. Technical Note: The use of an interrupted-flow centrifugation method to characterise preferential flow in low permeability media

    NASA Astrophysics Data System (ADS)

    Crane, R. A.; Cuthbert, M. O.; Timms, W.

    2015-09-01

    We present an interrupted-flow centrifugation technique to characterise preferential flow in low permeability media. The method entails a minimum of three phases: centrifuge-induced flow, no flow and centrifuge-induced flow, which may be repeated several times in order to most effectively characterise multi-rate mass transfer behaviour. In addition, the method enables accurate simulation of relevant in situ total stress conditions during flow by selecting an appropriate centrifugal force. We demonstrate the utility of the technique for characterising the hydraulic properties of smectite-clay-dominated core samples. All core samples exhibited a non-Fickian tracer breakthrough (early tracer arrival), combined with a decrease in tracer concentration immediately after each period of interrupted flow. This is indicative of dual (or multi-)porosity behaviour, with solute migration predominately via advection during induced flow, and via molecular diffusion (between the preferential flow network(s) and the low hydraulic conductivity domain) during interrupted flow. Tracer breakthrough curves were simulated using a bespoke dual porosity model with excellent agreement between the data and model output (Nash-Sutcliffe model efficiency coefficient was > 0.97 for all samples). In combination, interrupted-flow centrifuge experiments and dual porosity transport modelling are shown to be a powerful method to characterise preferential flow in low permeability media.

  11. Development of a New Apparatus for Investigating Acoustic Effects on Hydraulic Properties of Low-Permeability Geo-Materials

    NASA Astrophysics Data System (ADS)

    Nakajima, H.; Sawada, A.; Sugita, H.; Takeda, M.; Komai, T.; Zhang, M.

    2006-12-01

    Remediation of polluted soils and groundwater contaminated by heavy metals and non-aqueous phase liquids has been one of the challenging issues in the field of geo-environments. In-situ removal of the contaminants from low permeable soils, such as clay strata, is particularly difficult because of the low mobility, strong adsorption, and/or other various interactions within soils. Thus current remediation techniques, such as pump- and-treat method and even eletrokinetic method, generally suffer from low recovery rates and/or economically unacceptable long remediation periods. A perspective improvement in remediation technology is to couple the electrokinetic method with an application of acoustic waves. This so-called Electro-Acoustic Soil Decontamination (EASD) method has been proposed by Battelle Columbus Labs.(Muralidhara et al. 1990). Simultaneous application of an electric field and an acoustic field may produce a synergistic effect and result in further enhancement of water transport by electro-osmosis in principle, but there is still no fundamental data for the design of EASD method in practical applications. A number of investigations have shown that an application of acoustic waves can increase hydraulic conductivity and mobility of non-aqueous phase liquids in porous media. Most of the prior and ongoing researches in this area have been focused on increasing production from declining oil and gas reservoirs. During several field tests by the oil and gas industries, increases in oil production rates by 20% or more have been reported. However, underlying physical mechanisms for acoustically enhanced fluid transport are not adequately understood. In addition, majority of the past investigations has dealt with applications of large amplitude of acoustic waves to relatively permeable soils or fractured rocks, and there is little information if acoustic wave effectively enhances flow and contaminant transport for less permeable clayey soils. To evaluate the

  12. Changes in rock salt permeability due to nearby excavation

    SciTech Connect

    Stormont, J C; Howard, C L

    1991-07-01

    Changes in brine and gas permeability of rock salt as a result of nearby excavation (mine-by) have been measured from the underground workings of the WIPP facility. Prior to the mine-by, the formation responds as a porous medium with a very low brine permeability, a significant pore (brine) pressure and no measurable gas permeability. The mine-by excavation creates a dilated, partially saturated zone in the immediate vicinity of the excavation with an increased permeability to brine and a measurable permeability to gas. The changes in hydrologic properties are discussed in the context of pore structure changes.

  13. Evaluating Permeability Enchancement Using Electrical Techniques

    SciTech Connect

    John W. Pritchett

    2008-09-01

    Enhanced Geothermal Systems (EGS) development projects involve the artificial stimulation of relatively impermeable high-temperature underground regions (at depths of 2-4 kilometers or more) to create sufficient permeability to permit underground fluid circulation, so that hot water can be withdrawn from production wells and used to generate electric power. Several major research projects of this general type have been undertaken in the past in New Mexico (Fenton Hill), Europe, Japan and Australia. Recent U.S. activities along these lines focus mainly on stimulating peripheral areas of existing operating hydrothermal fields rather than on fresh 'greenfield' sites, but the long-term objective of the Department of Energy's EGS program is the development of large-scale power projects based on EGS technology (MIT, 2006; NREL, 2008). Usually, stimulation is accomplished by injecting water into a well at high pressure, enhancing permeability by the creation and propagation of fractures in the surrounding rock (a process known as 'hydrofracturing'). Beyond just a motivation, low initial system permeability is also an essential prerequisite to hydrofracturing. If the formation permeability is too high, excessive fluid losses will preclude the buildup of sufficient pressure to fracture rock. In practical situations, the actual result of injection is frequently to re-open pre-existing hydrothermally-mineralized fractures, rather than to create completely new fractures by rupturing intact rock. Pre-existing fractures can often be opened using injection pressures in the range 5-20 MPa. Creation of completely new fractures will usually require pressures that are several times higher. It is preferable to undertake development projects of this type in regions where tectonic conditions are conducive to shear failure, so that when pre-existing fractures are pressurized they will fail by shearing laterally. If this happens, the fracture will often stay open afterwards even if

  14. Measurements, interpretation and climate change effects evaluation for pyroclastic bare soil evaporation

    NASA Astrophysics Data System (ADS)

    Rianna, G.; Pagano, L.; Mercogliano, P.; Montesarchio, M.

    2012-12-01

    A physical model has been designed to achieve the following goals: to mark out the main features of the soil-atmosphere interaction; to quantify the water and energy fluxes through the soil surface during several years; to monitor the trends of the main variables regulating the hydraulic and thermal conditions. It is constituted by a soil volume (about 1mc) exposed to weather forcing; it is instrumented at four depths by sensors for measuring suction, water content and temperature. Therefore, a station allows knowing the meteo variables (rainfall, wind velocity and direction, air temperature, air pressure and relative humidity) and the two directly measurable components of the energy balance at the soil surface (net radiation and soil heat flux). Under the soil specimen, three shear beam load cells measure the soil weight and, hence, because the soil particles weight can be assumed as constant, the sample water storage. As first attempt, the soil surface is kept bare to avoid the complications led by overlapping processes induced by vegetation (interception, transpiration). Since May 2010, the soil involved in testing is pyroclastic material (silty sand) representative of air fall deposits covering a large part of Campania (South Italy) and erupted in the last 10,000 years by different volcanic centres (Phlegrean fields, Vesuvius). Because of their genesis, these soils show peculiar features: high porosity, low weight of soil unit volume, high water retention capacity; they cause an unusual hydraulic behaviour, halfway between coarse and fine soils in terms of saturated hydraulic permeability and mean slope of soil-water characteristic curve. In turn, these elements induce, among other things, that the currently adopted predictive approaches to estimate, for example, infiltration and evaporation processes are not directly suitable for these soils as the available parameters, even for grain sizes comparable to those of pyroclastic soils, fail to reproduce the

  15. Self-dual electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2010-08-01

    We demonstrate the utility of self-dual fields in electrodynamics. Stable configurations of free electromagnetic fields can be represented as superpositions of standing waves, each possessing zero Poynting vector and zero orbital angular momentum. The standing waves are themselves superpositions of self-dual and anti-self-dual solutions. The idea of self-duality provides additional insights into the geometrical and spectral properties of stable electromagnetic configurations, such as those responsible for the formation of ball lightning.

  16. Numerical modeling of shallow subsurface runoff on cultivated soil with temporary variable structure

    NASA Astrophysics Data System (ADS)

    Zumr, David; Klípa, Vladimír; Dušek, Jaromír; Dostál, Tomáš

    2014-05-01

    Temporary variable properties of periodically cultivated soils are one of the crucial factors that must be taken into account to understand flow processes on agriculture catchments. Soil structure is a property that is often considered as a static rather than dynamic. This could be a reasonable assumption for compacted subsoil, but not for the plough layer. The man-made and natural processes such as an overuse of heavy machinery, tillage, plowing, harvest, quick vegetation and root growth, edaphon activity, raindrops kinetic energy, freezing, thawing etc. cause recurrent cycles of the topsoil loosening, compaction and surface sealing. Deformation of the structure causes reduction of volume and connectivity of inter-aggregate voids and eroded fine particles clog the macropores and preferential pathways, the infiltration capacity decreases. Originally connected large pores normally serve as a quick bypass for infiltrating water, therefore, based on the state of the topsoil structure one can expect different runoff mechanisms ranging from hypodermic to surface flow. The aim of the contribution is to examine the runoff dynamics along the inclined slope under different structural properties of the topsoil. We will present a numerical analysis of the effect of variable preferential domain ratio on subsurface runoff, the simulation results will be qualitatively compared to measured hydrographs at the catchment. We used a combination of physically based macroscopic models S1D and HYPO. In the S1D the dual permeability approach with two coupled Richards equations is used, the simultaneously operating HYPO code is based on a diffusion wave (Boussinesq eq.). The study is based on monitoring of water regime of the cultivated soils on experimental catchment Nucice (Central Bohemia, Czech Republic). The soil is classified as Cambisol, texture ranges from loam to clay loam classes. Soil is conservatively tilled till depth of approximately 17 cm, below that a compacted subsoil was

  17. Permeability Evolution of Granite Gneiss During Triaxial Creep Tests

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, W. Y.; Wang, H. L.; Wang, W.; Wang, R. B.

    2016-09-01

    Permeability is an important factor for seepage analysis of rock material, and a key factor in ensuring the safety of underground works. In this study, the permeability evolution of granite gneiss during triaxial creep tests was investigated. In the context of an underground oil storage cavern in China, a series of hydro-mechanical coupling creep tests were conducted on rock cores of granite gneiss at three different pore pressures to reveal the effect of pore pressure on the permeability evolution and to investigate the correlation between the permeability and volumetric strain during the creep process. During the creep tests, the permeability decreases in the initial loading phase. At all deviatoric stress levels, the permeability remains stable in the steady creep stage and increases rapidly in the accelerated creep stage. Based on the test data, the initial permeability, steady permeability and peak permeability at various stress levels are defined. The effect of pore pressure on the permeability is captured by a linear model. In addition, the relationship between permeability and volumetric strain can be described as a process divided into three phases, with different functions in each phase.

  18. Quantitative imaging of water transport in soil and roots using neutron radiography, D2O and a new numerical model

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, M.; Kroener, E.; Ahmed, M. A.; Carminati, A.

    2014-12-01

    Our understanding of soil and plant water relations is currently limited by the lack of experimental methods to measure the water fluxes in soil and plants. Our study aimed to develop a new non-destructive method to measure the local fluxes of water into roots of plants growing in soils. We injected deuterated water (D2O) near the roots of lupines growing in sandy soils, and we used neutron radiography to image the transport of D2O through the root system. The experiments were performed during day, when plants were transpiring, and at night, when transpiration was reduced. The radiographs showed that: 1) the radial transport of D2O from soil and roots depended similarly to diffusion and convection; and 2) the axial transport of D2O along the root xylem was largely dominated by convection. To determine the convective fluxes from the radiographs, we simulated the D2O transport in soils and roots. A dual porosity model was used to describe the apoplastic and symplastic pathways of water across the root tissue. Other features such as the endodermis and the xylem were also included in the model. The D2O transport was modelled solving a convection-diffusion numerical model in soil and plants. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that at night the convective fluxes were negligible. Inverse modelling of the experiment at day gave the profile of water fluxes into the roots. For 24 day-old lupine grown in a sandy soil with uniform water content, our modelling results showed that root water uptake was higher at the proximal parts of the roots near soil surface and it decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along root systems growing in soils. Future applications of this method include the characterization of varying root systems, the radial and axial hydraulic conductivity of different root

  19. Dual relationships and professional boundaries.

    PubMed

    Kagle, J D; Giebelhausen, P N

    1994-03-01

    Social workers enter into dual relationships when they engage in more than one relationship with a client, becoming social worker and friend, employer, teacher, business associate, or sex partner. This article reviews the research on dual relationships in the therapeutic professions and outlines the legal, ethical, and practice issues involved. The article defines dual relationships as boundary violations and provides a case example to show how even a posttermination friendship can be harmful to a client. Recommendations for preventing and responding to dual relationships are included.

  20. Assessing the potential for restoration of surface permeability for permeable pavements through maintenance.

    PubMed

    Drake, Jennifer; Bradford, Andrea

    2013-01-01

    Permeable pavements (PPs) have been in use as stormwater management systems in Canada and the United States for over 20 years. After years of exposure to sediment and debris build-up, surface clogging reduces the infiltration of stormwater and inhibits the hydraulic and environmental functions of the pavement. Removal of surface material has been shown to restore infiltration but the majority of studies have been limited to small-scale testing. This paper presents the results of small- and full-sized equipment testing aimed at restoring surface permeability, including the first testing of regenerative-air and vacuum-sweeping streetsweepers in Ontario. Maintenance achieved partial restoration of PP surface permeability. Post-treatment surface infiltration rates displayed large spatial variability, highlighting that localized conditions throughout the pavement have a confounding influence on the overall effectiveness of maintenance. The impact of maintenance may be improved by establishing regular cleaning intervals and developing instructional guidelines for pavement owners and equipment operators.

  1. Permeability-porosity relationships of subduction zone sediments

    USGS Publications Warehouse

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2011-01-01

    Permeability-porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability-porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples. ?? 2010 Elsevier B.V.

  2. FEASIBILITY OF ELECTROKINETIC SOIL REMEDIATION IN HORIZONTAL LASAGNA CELLS

    EPA Science Inventory

    An integrated soil remediation technology called Lasagna has been developed that combines electrokinetics with treatment zones for use in low permeability soils where the rates of hydraulic and electrokinetic transport are too low to be useful for remediation of contaminants. The...

  3. Effect of spreading coefficient on three-phase relative permeability of nonaqueous phase liquids

    NASA Astrophysics Data System (ADS)

    Keller, Arturo A.; Chen, Mingjie

    2003-10-01

    Three-phase flow conditions are encountered regularly, for example, during migration of released NAPL through the vadose zone, certain stages of soil vapor extraction, bioslurping, or generation of gases by microbes. To model three-phase flow, a common approach is to construct three-phase relative permeabilities based on a combination of two-phase relative permeabilities. Although this circumvents a lack of experimental data, it can lead to serious underprediction or overprediction of residual NAPL saturation. This can mislead decision makers that need to predict whether a particular spill will reach the water table or predict the speed of a NAPL front or conduct an assessment of the performance of remediation actions. Experimental data to estimate three-phase relative permeabilities is sparse. A study by [2000a] generated significant experimental information. Their analysis focused on the high NAPL saturation region, given their emphasis on oil reservoir engineering. For environmental applications the low saturation region is of more interest. Using this data set, we derived a set of empirical relations that relate NAPL three-phase relative permeability krn to NAPL saturation Sn and spreading coefficient Cs for Sn less than about 0.1, such that krn = ? where A1 = 0.012 exp (-1.3Cs) and A2 = 2.1 - 0.60Cs + 0.036Cs2. At higher Sn, krn ≈ Sn4, independent of Cs. We present a pore-scale conceptual model that provides a phenomenological basis for the use of Cs as a predictor of krn at low Sn. We then present a number of simulated case studies that highlight the effect of these three-phase relative permeabilities on risk assessment or remediation design.

  4. Permeability development during compaction of pumiceous dome lavas: testing the permeable foam collapse model

    NASA Astrophysics Data System (ADS)

    Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; von Aulock, F. W.; Cole, J. W.; Dingwell, D. B.

    2011-12-01

    The evolution of the porous network during lava dome extrusions is commonly perceived as the key control on the permeability which regulates the pore pressure, thereby challenging the stability of the dome. Here, we present experimental results of porosity and permeability evolution during compaction of aphiric and crystal-bearing rhyolitic, pumiceous (porosity ~60 %) lavas from Tarawera and Ngongotaha volcanoes (Taupo Volcanic Zone, New Zealand), respectively. The The Ngongotaha sample is from the crystal-free dome carapace (erupted ~200 ka following caldera collapse at Rotorua Caldera), while the Tarawera sample is a crystalline, pumiceous clast from a dome-collapse generated block and ash flow (at Okataina Caldera ~1314 AD). This study tests the validity of the 'permeable foam' model by comparing properties of the experimentally compacted pumice to denser material seen in the exposed cores of Tarawera and Ngongotaha. Cylindrical samples were deformed under an axial stress of 2.8 MPa at 650-750°C (above their calorimetric glass transition temperature) up a total axial strain of 50 %. The porosity and permeability of the samples were characterized at strain increments of 10 %. The samples exhibit strain hardening during compaction. A rapid reduction in permeability along the primary axis occurs during the initial stage of compression and continues to decrease with increasing strain and densification of the lava. Development of permeability of each lava differs as the crystallinity affects the compaction process. The development of textures and microstructures is characterised using petrographic analysis and neutron computed tomography. The findings from the study are then put into the context of lava dome growth at Tarawera and Ngongotaha volcanoes.

  5. Dual stage check valve

    NASA Technical Reports Server (NTRS)

    Whitten, D. E. (Inventor)

    1973-01-01

    A dual stage seat valve head arrangement is described which consists of a primary sealing point located between a fixed orifice seat and a valve poppet, and a secondary sealing point between an orifice poppet and a valve poppet. Upstream of the valve orifice is a flexible, convoluted metal diaphragm attached to the orifice poppet. Downstream of the valve orifice, a finger spring exerts a force against the valve poppet, tending to keep the valve in a closed position. The series arrangement of a double seat and poppet is able to tolerate small particle contamination while minimizing chatter by controlling throttling or metering across the secondary seat, thus preserving the primary sealing surface.

  6. Dual cure photocatalyst systems

    SciTech Connect

    DeVoe, R.J.; Brown-Wensley, K.A.; Holmes, G.L.; Mathis, M.D.; McCormick, F.B.; Palazzotto, M.C.; Spurgeon, K.M. . Corporate Research Labs.)

    1990-01-01

    A family of dual cure photocatalyst systems is being developed to be used in the solventless processing of organic coatings. The photocatalyst systems consist of organometallic compounds often in combination with other agents. Upon photolysis, the photocatalyst system generates a Lewis acid and a free radical. The Lewis acid can initiate the polymerization of epoxies or the addition of isocyanates and polyols to form polyurethanes while the free radical can initiate the polymerization of acrylates. The performance of the various photocatalyst systems will be compared on the basis of the physical properties of the cured compositions they produce. 17 figs.

  7. AIR PERMEABILITY IN UNDISTURBED VOLCANIC ASH SOILS: PREDICTIVE MODEL TEST AND SOIL STRUCTURE FINGERPRINT. (R825433)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Hydraulic tests in highly permeable aquifers

    USGS Publications Warehouse

    Butler, J.J.; Zhan, X.

    2004-01-01

    A semianalytical solution is presented for a mathematical model describing the flow of groundwater in response to a slug or pumping test in a highly permeable, confined aquifer. This solution, which is appropriate for wells of any degree of penetration and incorporates inertial mechanisms at both the test and observation wells, can be used to gain new insights into hydraulic tests in highly permeable settings. The oscillatory character of slug- and pumping-induced responses will vary considerably across a site, even in an essentially homogeneous formation, when wells of different radii, depths, and screen lengths are used. Thus variations in the oscillatory character of responses do not necessarily indicate variations in hydraulic conductivity (K). Existing models for slug tests in partially penetrating wells in high-K aquifers neglect the storage properties of the media. That assumption, however, appears reasonable for a wide range of common conditions. Unlike in less permeable formations, drawdown at an observation well in a high-K aquifer will be affected by head losses in the pumping well. Those losses, which affect the form of the pumping-induced oscillations, can be difficult to characterize. Thus analyses of observation-well drawdown should utilize data from the period after the oscillations have dissipated whenever possible. Although inertial mechanisms can have a large impact on early-time drawdown, that impact decreases rapidly with duration of pumping and distance to the observation well. Conventional methods that do not consider inertial mechanisms should therefore be viable options for the analysis of drawdown data at moderate to large times.

  9. Engineered Trehalose Permeable to Mammalian Cells

    PubMed Central

    Abazari, Alireza; Meimetis, Labros G.; Budin, Ghyslain; Bale, Shyam Sundhar; Weissleder, Ralph; Toner, Mehmet

    2015-01-01

    Trehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation. Herein, we studied the membrane permeability of engineered lipophilic derivatives of trehalose. Trehalose conjugated with 6 acetyl groups (trehalose hexaacetate or 6-O-Ac-Tre) demonstrated superior permeability in rat hepatocytes compared with regular trehalose, trehalose diacetate (2-O-Ac-Tre) and trehalose tetraacetate (4-O-Ac-Tre). Once in the cell, intracellular esterases hydrolyzed the 6-O-Ac-Tre molecules, releasing free trehalose into the cytoplasm. The total concentration of intracellular trehalose (plus acetylated variants) reached as high as 10 fold the extracellular concentration of 6-O-Ac-Tre, attaining concentrations suitable for applications in biopreservation. To describe this accumulation phenomenon, a diffusion-reaction model was proposed and the permeability and reaction kinetics of 6-O-Ac-Tre were determined by fitting to experimental data. Further studies suggested that the impact of the loading and the presence of intracellular trehalose on cellular viability and function were negligible. Engineering of trehalose chemical structure rather than manipulating the cell, is an innocuous, cell-friendly method for trehalose delivery, with demonstrated potential for trehalose loading in different types of cells and cell lines, and can facilitate the wide-spread application of trehalose as an intracellular protective agent in biopreservation studies. PMID:26115179

  10. Evaluation of permeable fractures in rock aquifers

    NASA Astrophysics Data System (ADS)

    Bok Lee, Hang

    2015-04-01

    In this study, the practical usefulness and fundamental applicability of a self-potential (SP) method for identifying the permeable fractures were evaluated by a comparison of SP methods with other geophysical logging methods and hydraulic tests. At a 10 m-shallow borehole in the study site, the candidates of permeable fractures crossing the borehole were first determined by conventional geophysical methods such as an acoustic borehole televiwer, temperature, electrical conductivity and gamma-gamma loggings, which was compared to the analysis by the SP method. Constant pressure injection and recovery tests were conducted for verification of the hydraulic properties of the fractures identified by various logging methods. The acoustic borehole televiwer and gamma-gamma loggings detected the open space or weathering zone within the borehole, but they cannot prove the possibility of a groundwater flow through the detected fractures. The temperature and electrical conductivity loggings had limitations to detect the fractured zones where groundwater in the borehole flows out to the surrounding rock aquifers. Comparison of results from different methods showed that there is a best correlation between the distribution of hydraulic conductivity and the variation of the SP signals, and the SP logging can estimate accurately the hydraulic activity as well as the location of permeable fractures. Based on the results, the SP method is recommended for determining the hydraulically-active fractures rather than other conventional geophysical loggings. This self-potential method can be effectively applied in the initial stage of a site investigation which selects the optimal location and evaluates the hydrogeological property of fractures in target sites for the underground structure including the geothermal reservoir and radioactive waste disposal.

  11. The kinetics of denitrification in permeable sediments

    NASA Astrophysics Data System (ADS)

    Evrard, Victor; Glud, Ronnie N.; Cook, Perran L. M.

    2013-04-01

    Permeable sediments comprise the majority of shelf sediments, yet the rates of denitrification remain highly uncertain in these environments. Computational models are increasingly being used to understand the dynamics of denitrification in permeable sediments, which are complex environments to study experimentally. The realistic implementation of such models requires reliable experimentally derived data on the kinetics of denitrification. Here we undertook measurements of denitrification kinetics as a function of nitrate concentration and in the presence and absence of oxygen, in carefully controlled flow through reactor experiments on sediments taken from six shallow coastal sites in Port Phillip Bay, Victoria, Australia. The results showed that denitrification commenced rapidly (within 30 min) after the onset of anoxia and the kinetics could be well described by Michaelis-Menten kinetics with half saturation constants (apparent Km) ranging between 1.5 and 19.8 μM, and maximum denitrification rate (Vmax) were in the range of 0.9-7.5 nmol mL-1 h-1. The production of N2 through anaerobic ammonium oxidation (anammox) was generally found to be less than 10% that of denitrification. Vmax were in the same range as previously reported in cohesive sediments despite organic carbon contents one order of magnitude lower for the sediments studied here. The ratio of sediment O2 consumption to Vmax was in the range of 0.02-0.09, and was on average much lower than the theoretical ratio of 0.8. The most likely explanation for this is that the microbial community is not able to instantaneously shift or optimally use a particular electron acceptor in the highly dynamic redox environment experienced in permeable sediments. Consistent with this explanation, subsequent longer-term experiments over 5 days showed that denitrification rates increased by a factor of 10 within 3 days of the permanent onset of anoxia. In contrast to previous studies, we did not observe any significant

  12. A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement

    NASA Astrophysics Data System (ADS)

    Brunetti, Giuseppe; Šimůnek, Jiří; Piro, Patrizia

    2016-09-01

    The increasing frequency of flooding events in urban catchments related to an increase in impervious surfaces highlights the inadequacy of traditional urban drainage systems. Low Impact Development (LID) techniques have proven to be a viable and effective alternative by reducing stormwater runoff and increasing the infiltration and evapotranspiration capacity of urban areas. However, the lack of adequate modeling tools represents a barrier in designing and constructing such systems. This paper investigates the suitability of a mechanistic model, HYDRUS-1D, to correctly describe the hydraulic behavior of permeable pavement installed at the University of Calabria. Two different scenarios of describing the hydraulic behavior of the permeable pavement system were analyzed: the first one uses a single-porosity model for all layers of the permeable pavement; the second one uses a dual-porosity model for the base and sub-base layers. Measured and modeled month-long hydrographs were compared using the Nash-Sutcliffe efficiency (NSE) index. A Global Sensitivity Analysis (GSA) followed by a Monte Carlo filtering highlighted the influence of the wear layer on the hydraulic behavior of the pavement and identified the ranges of parameters generating behavioral solutions. Reduced ranges were then used in the calibration procedure conducted with the metaheuristic Particle swarm optimization (PSO) algorithm for the estimation of hydraulic parameters. The best fit value for the first scenario was NSE = 0.43; for the second scenario, it was NSE = 0.81, indicating that the dual-porosity approach is more appropriate for describing the variably-saturated flow in the base and sub-base layers. Estimated parameters were validated using an independent, month-long set of measurements, resulting in NSE values of 0.43 and 0.86 for the first and second scenarios, respectively. The improvement in correspondence between measured and modeled hydrographs confirmed the reliability of the

  13. Model analysis of mechanisms controlling pneumatic soil vapor extraction.

    PubMed

    Høier, C K; Sonnenborg, T O; Jensen, K H; Gudbjerg, J

    2009-01-26

    The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency of heterogeneous soils by enforcing large fluctuating pressure fronts through the contaminated area. Laboratory experiments have suggested that pneumatic SVE considerably improves the recovery rate from low-permeable units. We have analyzed the experimental results using a numerical code and quantified the physical processes controlling the functioning of the method. A sensitivity analysis for selected boundary conditions, initial conditions and parameters was carried out to examine how the method behaves under conditions different from the experimental set-up. The simulations show that at the laboratory level the pneumatic venting technology is superior to the traditional technique, and that the method is particularly efficient in cases where large permeability contrasts exist between soil units in the subsurface. PMID:19004522

  14. Osmotic water permeability of human red cells

    SciTech Connect

    Terwilliger, T.C.; Solomon, A.K.

    1981-05-01

    The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1.

  15. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, Frank A.; Townsend, Carl W.

    1989-01-01

    An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.

  16. Nerve impulses increase glial intercellular permeability.

    PubMed

    Marrero, H; Orkand, R K

    1996-03-01

    Coordinating the activity of neurons and their satellite glial cells requires mechanisms by which glial cells detect neuronal activity and change their properties as a result. This study monitors the intercellular diffusion of the fluorescent dye Lucifer Yellow (LY), following its injection into glial cells of the frog optic nerve, and demonstrates that nerve impulses increase the permeability of interglial gap junctions. Consequently, the spatial buffer capacity of the neuroglial cell syncytium for potassium, other ions, and small molecules will be enhanced; this may facilitate glial function in maintaining homeostasis of the neuronal microenvironment. PMID:8833199

  17. PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING

    SciTech Connect

    Harbour, J; Tommy Edwards, T; Vickie Williams, V

    2008-01-30

    One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10{sup -9} cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for

  18. Novel insights into the mitochondrial permeability transition

    PubMed Central

    Bonora, Massimo; Bravo-San Pedro, José Manuel; Kroemer, Guido; Galluzzi, Lorenzo; Pinton, Paolo

    2014-01-01

    Alavian and colleagues recently provided further evidence in support of the notion that the c subunit of the mitochondrial F1FO ATP synthase constitutes the long-sought pore-forming unit of the supramolecular complex responsible for the so-called ‘mitochondrial permeability transition’ (MPT). Besides shedding new light on the molecular mechanisms that underlie the MPT, these findings corroborate the notion that several components of the cell death machinery, including cytochrome c and the F1FO ATP synthase, mediate critical metabolic activities. PMID:25486353

  19. On the dynamic viscous permeability tensor symmetry.

    PubMed

    Perrot, Camille; Chevillotte, Fabien; Panneton, Raymond; Allard, Jean-François; Lafarge, Denis

    2008-10-01

    Based on a direct generalization of a proof given by Torquato for symmetry property in static regime, this express letter clarifies the reasons why the dynamic permeability tensor is symmetric for spatially periodic structures having symmetrical axes which do not coincide with orthogonal pairs being perpendicular to the axis of three-, four-, and sixfold symmetry. This somewhat nonintuitive property is illustrated by providing detailed numerical examples for a hexagonal lattice of solid cylinders in the asymptotic and frequency dependent regimes. It may be practically useful for numerical implementation validation and/or convergence assessment.

  20. Gas permeability measurements for film envelope materials

    DOEpatents

    Ludtka, G.M.; Kollie, T.G.; Watkin, D.C.; Walton, D.G.

    1998-05-12

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the ``body-filled panel.`` Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials. 4 figs.

  1. Gas permeability measurements for film envelope materials

    DOEpatents

    Ludtka, Gerard M.; Kollie, Thomas G.; Watkin, David C.; Walton, David G.

    1998-01-01

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the "body-filled panel". Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials.

  2. Free and Forced Convection in High Permeability Porous Media: Impact on Gas Flux at the Earth-atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Levintal, E.; Dragila, M. I.; Kamai, T.

    2015-12-01

    Gas movement within the earth's subsurface and its exchange with the atmosphere is one of the principal elements contributing to soil and atmospheric function. As the soil permeability increases, gas circulation by convective mechanisms becomes significantly greater than the diffusion. Two of the convective mechanisms, which can be of great importance, are being explored in this research. The first one is thermal convection venting (TCV), which develops when there are unstable density gradients. The second mechanism is wind induced convection (WIC), which develops due to surface winds that drive air movement. Here, we report the results of a study on the relationships between the porous media permeability and particle size, and the development and magnitude of TCV and WIC with the development of thermal differences and surface winds. The research included large high-permeability column experiments carried out under highly controlled laboratory conditions, using well-defined single-sized spherical particles while surface winds and thermal differences were forced and monitored. CO2 enriched air, functioned as a tracer, was used to quantify the impact of TCV and WIC on gas migration in the porous media. Results show that in homogenous porous media a permeability range of 10-7 to 10-6 m2 is the threshold value for TCV onset under standard atmospheric conditions. Adding surface wind with an average velocity of 1.5 m s-1 resulted in WIC effect to a depth of -0.3 m in most experimental settings; however, it did not caused additional air circulation at the reference depth of -0.9 m. Furthermore, given the appropriate conditions, a combined effect of TCV and WIC did significantly increase the overall media ventilation. Simulations of temperature profiles in soil under that permeability, showed that as the thermal gradient changes with depth and is a continuous function, TCV cells can be developed in local sections of the profile, not necessarily reaching the atmosphere.

  3. Dual fluorescence of syringaldazine

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Balasubramanian, T.

    2007-11-01

    The absorption and fluorescence spectra of syringaldazine (SYAZ) has been recorded in solvents of different polarity, pH and β-cyclodextrin (β-CD) and compared with syringaldehyde (SYAL). The inclusion complex of SYAZ with β-CD is investigated by UV-vis, fluorimetry, AM 1, FT-IR, 1H NMR and scanning electron microscope (SEM). Δ G value suggests the inclusion process is an exothermic and spontaneous. In all solvents a dual fluorescence is observed for SYAZ, whereas, SYAL shows a dual luminescence only in polar solvents. The excitation spectra for the 410 nm is different from 340 nm indicate two different species present in this molecule. In pH solutions: (i) a large red shifted maxima is observed in the dianion and is due to large interactions between the aromatic ring and (ii) the large blue shift at pH ˜4.5, is due to dissociation of azine group and formation of aldehyde. β-CD studies reveal that, SYAZ forms a 1:2 complex from 1:1 complex with β-CD.

  4. Modeling Hysteresis Effect in Three-Phase Relative Permeability

    NASA Astrophysics Data System (ADS)

    Kianinejad, A.; Chen, X.; DiCarlo, D. A.

    2014-12-01

    Simulation and fluid flow prediction of many petroleum enhanced oil recovery methods as well as environmental processes such as carbon dioxide (CO2) geological storage requires accurate modeling and determination of relative permeability under different saturation histories. Based on this critical need, there has been several different three-phase relative permeability models developed to predict the hysteresis effects in relative permeability, most of which requiring many different parameters which introduce extreme complexity to the models for practical purposes. In this work, we experimentally measured three-phase, water/oil/gas, relative permeability in a 1-m long water-wet sand pack, under several different flow histories. We measured the in-situ saturations along the sand pack using a CT scanner. We then determined the relative permeabilities directly from the measured in-situ saturations, using unsteady-state method. Based on our results, good estimation of residual saturations yields in excellent three-phase relative permeability estimations by just using the simple, standard relative permeability models such as, Saturation Weighted Interpolation (SWI), Corey's and Stones. Our results show that, the key parameter to model the hysteresis in three-phase relative permeability (effect of saturation history) is the residual saturations. Once the residual saturations were correctly determined for each specific saturation path, the standard relative permeability models can predict the three-phase relative permeabilities perfectly.

  5. Direct numerical simulation of turbulent channel flow with permeable walls

    NASA Astrophysics Data System (ADS)

    Hahn, Seonghyeon; Je, Jongdoo; Choi, Haecheon

    2002-01-01

    The main objectives of this study are to suggest a proper boundary condition at the interface between a permeable block and turbulent channel flow and to investigate the characteristics of turbulent channel flow with permeable walls. The boundary condition suggested is an extended version of that applied to laminar channel flow by Beavers & Joseph (1967) and describes the behaviour of slip velocities in the streamwise and spanwise directions at the interface between the permeable block and turbulent channel flow. With the proposed boundary condition, direct numerical simulations of turbulent channel flow that is bounded by the permeable wall are performed and significant skin-friction reductions at the permeable wall are obtained with modification of overall flow structures. The viscous sublayer thickness is decreased and the near-wall vortical structures are significantly weakened by the permeable wall. The permeable wall also reduces the turbulence intensities, Reynolds shear stress, and pressure and vorticity fluctuations throughout the channel except very near the wall. The increase of some turbulence quantities there is due to the slip-velocity fluctuations at the wall. The boundary condition proposed for the permeable wall is validated by comparing solutions with those obtained from a separate direct numerical simulation using both the Brinkman equation for the interior of a permeable block and the Navier Stokes equation for the main channel bounded by a permeable block.

  6. Experimental investigation of pneumatic soil vapor extraction.

    PubMed

    Høier, C K; Sonnenborg, T O; Jensen, K H; Kortegaard, C; Nasser, M M

    2007-01-01

    Soil Vapor Extraction (SVE) is a common remediation technique for removing volatile organic compounds from unsaturated contaminated soils. Soil heterogeneities can however cause serious limitations to the applicability of SVE due to air bypassing low permeable areas of the soil, leading to diffusion limitation of the remediation. To enhance removal from areas subject to diffusion limitation a new remediation technique, pneumatic soil vapor extraction, is proposed. In contrast to traditional SVE, in which soil vapor is extracted continuously by a vacuum pump, pneumatic SVE is based on enforcing a sequence of large pressure drops on the system to enhance the recovery from the low-permeable areas. The pneumatic SVE technique was investigated in the laboratory using TCE as a model contaminant. 2D-laboratory tank experiments were performed on homogeneous and heterogeneous sand packs. The heterogeneous packs consisted of a fine sand lens surrounded by a coarser sand matrix. As expected when using traditional SVE, the removal of TCE from the low permeable lens was extremely slow and subject to diffusion limitation. In contrast when pneumatic venting was used removal rates increased by up to 77%. The enhanced removal was hypothesized to be attributed to mixing of the contaminated air inside the lens and generation of net advective transport out of the lens due to air expansion.

  7. Experimental investigation of pneumatic soil vapor extraction.

    PubMed

    Høier, C K; Sonnenborg, T O; Jensen, K H; Kortegaard, C; Nasser, M M

    2007-01-01

    Soil Vapor Extraction (SVE) is a common remediation technique for removing volatile organic compounds from unsaturated contaminated soils. Soil heterogeneities can however cause serious limitations to the applicability of SVE due to air bypassing low permeable areas of the soil, leading to diffusion limitation of the remediation. To enhance removal from areas subject to diffusion limitation a new remediation technique, pneumatic soil vapor extraction, is proposed. In contrast to traditional SVE, in which soil vapor is extracted continuously by a vacuum pump, pneumatic SVE is based on enforcing a sequence of large pressure drops on the system to enhance the recovery from the low-permeable areas. The pneumatic SVE technique was investigated in the laboratory using TCE as a model contaminant. 2D-laboratory tank experiments were performed on homogeneous and heterogeneous sand packs. The heterogeneous packs consisted of a fine sand lens surrounded by a coarser sand matrix. As expected when using traditional SVE, the removal of TCE from the low permeable lens was extremely slow and subject to diffusion limitation. In contrast when pneumatic venting was used removal rates increased by up to 77%. The enhanced removal was hypothesized to be attributed to mixing of the contaminated air inside the lens and generation of net advective transport out of the lens due to air expansion. PMID:16987566

  8. DEMONSTRATION BULLETIN: HYDRAULIC FRACTURING OF CONTAMINATED SOIL

    EPA Science Inventory

    Hydraulic fracturing is a physical process that creates fractures in silty clay soil to enhance its permeability. The technology, developed by the Risk Reduction Engineering Laboratory (RREL) and the University of Cincinnati, creates sand-filled horizontal fractures up to 1 in. i...

  9. Dual-Credit in Kentucky

    ERIC Educational Resources Information Center

    Stephenson, Lisa G.

    2013-01-01

    Credit-based transition programs provide high school students with opportunities to jump start their college education. The Kentucky Community and Technical College System (KCTCS) offers college credit through dual-credit programs. While KCTCS dual-credit offerings have been successful in helping high school students start their college education…

  10. Benefits of Dual Language Education

    ERIC Educational Resources Information Center

    Wallstrum, Kiara

    2009-01-01

    The focus of this paper examines how dual language education (DLE) programs are valuable. The literature shows that children do much more than just thrive in a dual language environment. According to research, children who are bilingual are cognitively, academically, intellectually, socially and verbally more advantaged than their monolingual…

  11. Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities.

    PubMed

    Arora, Bhavna; Mohanty, Binayak P; McGuire, Jennifer T

    2011-04-01

    Soil and crop management practices have been found to modify soil structure and alter macropore densities. An ability to accurately determine soil hydraulic parameters and their variation with changes in macropore density is crucial for assessing potential contamination from agricultural chemicals. This study investigates the consequences of using consistent matrix and macropore parameters in simulating preferential flow and bromide transport in soil columns with different macropore densities (no macropore, single macropore, and multiple macropores). As used herein, the term"macropore density" is intended to refer to the number of macropores per unit area. A comparison between continuum-scale models including single-porosity model (SPM), mobile-immobile model (MIM), and dual-permeability model (DPM) that employed these parameters is also conducted. Domain-specific parameters are obtained from inverse modeling of homogeneous (no macropore) and central macropore columns in a deterministic framework and are validated using forward modeling of both low-density (3 macropores) and high-density (19 macropores) multiple-macropore columns. Results indicate that these inversely modeled parameters are successful in describing preferential flow but not tracer transport in both multiple-macropore columns. We believe that lateral exchange between matrix and macropore domains needs better accounting to efficiently simulate preferential transport in the case of dense, closely spaced macropores. Increasing model complexity from SPM to MIM to DPM also improved predictions of preferential flow in the multiple-macropore columns but not in the single-macropore column. This suggests that the use of a more complex model with resolved domain-specific parameters is recommended with an increase in macropore density to generate forecasts with higher accuracy. PMID:24511165

  12. Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities

    PubMed Central

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.

    2013-01-01

    Soil and crop management practices have been found to modify soil structure and alter macropore densities. An ability to accurately determine soil hydraulic parameters and their variation with changes in macropore density is crucial for assessing potential contamination from agricultural chemicals. This study investigates the consequences of using consistent matrix and macropore parameters in simulating preferential flow and bromide transport in soil columns with different macropore densities (no macropore, single macropore, and multiple macropores). As used herein, the term“macropore density” is intended to refer to the number of macropores per unit area. A comparison between continuum-scale models including single-porosity model (SPM), mobile-immobile model (MIM), and dual-permeability model (DPM) that employed these parameters is also conducted. Domain-specific parameters are obtained from inverse modeling of homogeneous (no macropore) and central macropore columns in a deterministic framework and are validated using forward modeling of both low-density (3 macropores) and high-density (19 macropores) multiple-macropore columns. Results indicate that these inversely modeled parameters are successful in describing preferential flow but not tracer transport in both multiple-macropore columns. We believe that lateral exchange between matrix and macropore domains needs better accounting to efficiently simulate preferential transport in the case of dense, closely spaced macropores. Increasing model complexity from SPM to MIM to DPM also improved predictions of preferential flow in the multiple-macropore columns but not in the single-macropore column. This suggests that the use of a more complex model with resolved domain-specific parameters is recommended with an increase in macropore density to generate forecasts with higher accuracy. PMID:24511165

  13. Temporary variable soil structure and its effect on runoff mechanism on intensively cultivated land

    NASA Astrophysics Data System (ADS)

    Zumr, David; Kubicek, Jaroslav; Dostal, Tomas

    2013-04-01

    Sediments and nutrients washed out from farmed catchments into rivers and reservoirs are one of the major environmental problems worldwide. Understanding the routing of the precipitated water, its pathways and residence time in the subsurface are important prerequisites for water management, flood and nutrient control. To determine a proper linkage between the surface and subsurface processes one needs to uncover the principles and mechanisms of runoff generation. This is a considerable problem on farmed lands, where soil physical properties vary in time due to agriculture operations, vegetation and other natural processes throughout the grow season. Freshly tilled, well structured soil includes large intra aggregate preferential voids that allow fast infiltration and percolation, while compacted or even crusted soil has very limited infiltration capacity and often exhibits fast surface runoff during storm events. Monitoring of hydrological and hydropedological conditions within plough layer has been done since 2011 on the experimental catchment Nucice, Czech Republic. Based on the first data, we have identified several rainfall-runoff events under different soil conditions that led into increased runoff in the channel. The infiltration and runoff were numerically modelled to obtain preliminary estimates of dominant runoff processes. We used a combination of physically based models S1D and HYPO. In the S1D the dual permeability approach with two coupled Richards equations is used to calculate the infiltration. Simultaneously operating HYPO code simulates a final diffusion wave to model hypodermic runoff. After a proper calibration of the model the results, will supply a basis for a more complex research including the observation and modelling of the solute and particle transport (e.g. phosphorus, nitrogen, colloids) from the farmed hillslopes and catchments. The research has been supported by a postdoctoral grant sponsored by Czech Science Foundation and by

  14. Multiphase flow of carbon dioxide and brine in dual porosity carbonates

    NASA Astrophysics Data System (ADS)

    Pentland, Christopher; Oedai, Sjaam; Ott, Holger

    2014-05-01

    The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment

  15. Reservoir permeability from seismic attribute analysis

    SciTech Connect

    Silin, Dmitriy; Goloshubin, G.; Silin, D.; Vingalov, V.; Takkand, G.; Latfullin, M.

    2008-02-15

    In case of porous fluid-saturated medium the Biot's poroelasticity theory predicts a movement of the pore fluid relative to the skeleton on seismic wave propagation through the medium. This phenomenon opens an opportunity for investigation of the flow properties of the hydrocarbon-saturated reservoirs. It is well known that relative fluid movement becomes negligible at seismic frequencies if porous material is homogeneous and well cemented. In this case the theory predicts an underestimated seismic wave velocity dispersion and attenuation. Based on Biot's theory, Helle et al. (2003) have numerically demonstrated the substantial effects on both velocity and attenuation by heterogeneous permeability and saturation in the rocks. Besides fluid flow effect, the effects of scattering (Gurevich, et al., 1997) play very important role in case of finely layered porous rocks and heterogeneous fluid saturation. We have used both fluid flow and scattering effects to derive a frequency-dependent seismic attribute which is proportional to fluid mobility and applied it for analysis of reservoir permeability.

  16. Modeling of microvascular permeability changes after electroporation.

    PubMed

    Corovic, Selma; Markelc, Bostjan; Dolinar, Mitja; Cemazar, Maja; Jarm, Tomaz

    2015-01-01

    Vascular endothelium selectively controls the transport of plasma contents across the blood vessel wall. The principal objective of our preliminary study was to quantify the electroporation-induced increase in permeability of blood vessel wall for macromolecules, which do not normally extravasate from blood into skin interstitium in homeostatic conditions. Our study combines mathematical modeling (by employing pharmacokinetic and finite element modeling approach) with in vivo measurements (by intravital fluorescence microscopy). Extravasation of fluorescently labeled dextran molecules of two different sizes (70 kDa and 2000 kDa) following the application of electroporation pulses was investigated in order to simulate extravasation of therapeutic macromolecules with molecular weights comparable to molecular weight of particles such as antibodies and plasmid DNA. The increase in blood vessel permeability due to electroporation and corresponding transvascular transport was quantified by calculating the apparent diffusion coefficients for skin microvessel wall (D [μm2/s]) for both molecular sizes. The calculated apparent diffusion coefficients were D = 0.0086 μm2/s and D = 0.0045 μm2/s for 70 kDa and 2000 kDa dextran molecules, respectively. The results of our preliminary study have important implications in development of realistic mathematical models for prediction of extravasation and delivery of large therapeutic molecules to target tissues by means of electroporation. PMID:25793292

  17. Modeling of microvascular permeability changes after electroporation.

    PubMed

    Corovic, Selma; Markelc, Bostjan; Dolinar, Mitja; Cemazar, Maja; Jarm, Tomaz

    2015-01-01

    Vascular endothelium selectively controls the transport of plasma contents across the blood vessel wall. The principal objective of our preliminary study was to quantify the electroporation-induced increase in permeability of blood vessel wall for macromolecules, which do not normally extravasate from blood into skin interstitium in homeostatic conditions. Our study combines mathematical modeling (by employing pharmacokinetic and finite element modeling approach) with in vivo measurements (by intravital fluorescence microscopy). Extravasation of fluorescently labeled dextran molecules of two different sizes (70 kDa and 2000 kDa) following the application of electroporation pulses was investigated in order to simulate extravasation of therapeutic macromolecules with molecular weights comparable to molecular weight of particles such as antibodies and plasmid DNA. The increase in blood vessel permeability due to electroporation and corresponding transvascular transport was quantified by calculating the apparent diffusion coefficients for skin microvessel wall (D [μm2/s]) for both molecular sizes. The calculated apparent diffusion coefficients were D = 0.0086 μm2/s and D = 0.0045 μm2/s for 70 kDa and 2000 kDa dextran molecules, respectively. The results of our preliminary study have important implications in development of realistic mathematical models for prediction of extravasation and delivery of large therapeutic molecules to target tissues by means of electroporation.

  18. Efficient high-permeability fracturing offshore

    SciTech Connect

    Phillipi, M.; Farabee, M.

    1996-12-31

    Offshore operators can more efficiently and effectively perform high-permeability and conventional hydraulic fracture treatments by blending treatment slurries under microprocessor control, adding undiluted acid on-the-fly, and altering sand concentrations and other slurry properties instantaneously. A two-skid system has been designed with these considerations in mind. The system, which can be shipped efficiently in ISO containers, has been tested on fluids up to 210-cp viscosity and can step or ramp sand concentrations up to a maximum of 20 lb/gal. All additives, including acid treatments, are added on-the-fly; leftover additives and acids may be stored for future jobs. The system may be applied in most conditions, including offshore wells requiring conventional or high-permeability fracture treatments and certain land-based wells in remote areas where a compact skid is needed. Three significant benefits have resulted from using the compact-skid system: offshore operators have been able to ship the skid system at 20% of shipping costs of non-ISO equipment; on-the-fly mixing has prevented material waste associated with batch-mixing; and volumes pumped on actual jobs have closely matched job designs. Data have been collected from several Gulf of Mexico jobs run with the two-part skid system that has been designed for conducting hydraulic fracture treatments from offshore rigs.

  19. Modeling of Microvascular Permeability Changes after Electroporation

    PubMed Central

    Corovic, Selma; Markelc, Bostjan; Dolinar, Mitja; Cemazar, Maja; Jarm, Tomaz

    2015-01-01

    Vascular endothelium selectively controls the transport of plasma contents across the blood vessel wall. The principal objective of our preliminary study was to quantify the electroporation-induced increase in permeability of blood vessel wall for macromolecules, which do not normally extravasate from blood into skin interstitium in homeostatic conditions. Our study combines mathematical modeling (by employing pharmacokinetic and finite element modeling approach) with in vivo measurements (by intravital fluorescence microscopy). Extravasation of fluorescently labeled dextran molecules of two different sizes (70 kDa and 2000 kDa) following the application of electroporation pulses was investigated in order to simulate extravasation of therapeutic macromolecules with molecular weights comparable to molecular weight of particles such as antibodies and plasmid DNA. The increase in blood vessel permeability due to electroporation and corresponding transvascular transport was quantified by calculating the apparent diffusion coefficients for skin microvessel wall (D [μm2/s]) for both molecular sizes. The calculated apparent diffusion coefficients were D = 0.0086 μm2/s and D = 0.0045 μm2/s for 70 kDa and 2000 kDa dextran molecules, respectively. The results of our preliminary study have important implications in development of realistic mathematical models for prediction of extravasation and delivery of large therapeutic molecules to target tissues by means of electroporation. PMID:25793292

  20. Hantaviruses direct endothelial cell permeability by sensitizing cells to the vascular permeability factor VEGF, while angiopoietin 1 and sphingosine 1-phosphate inhibit hantavirus-directed permeability.

    PubMed

    Gavrilovskaya, Irina N; Gorbunova, Elena E; Mackow, Natalie A; Mackow, Erich R

    2008-06-01

    Hantaviruses infect human endothelial cells and cause two vascular permeability-based diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Hantavirus infection alone does not permeabilize endothelial cell monolayers. However, pathogenic hantaviruses inhibit the function of alphav beta3 integrins on endothelial cells, and hemorrhagic disease and vascular permeability deficits are consequences of dysfunctional beta3 integrins that normally regulate permeabilizing vascular endothelial growth factor (VEGF) responses. Here we show that pathogenic Hantaan, Andes, and New York-1 hantaviruses dramatically enhance the permeability of endothelial cells in response to VEGF, while the nonpathogenic hantaviruses Prospect Hill and Tula have no effect on endothelial cell permeability. Pathogenic hantaviruses directed endothelial cell permeability 2 to 3 days postinfection, coincident with pathogenic hantavirus inhibition of alphav beta3 integrin functions, and hantavirus-directed permeability was inhibited by antibodies to VEGF receptor 2 (VEGFR2). These studies demonstrate that pathogenic hantaviruses, similar to alphav beta3 integrin-deficient cells, specifically enhance VEGF-directed permeabilizing responses. Using the hantavirus permeability assay we further demonstrate that the endothelial-cell-specific growth factor angiopoietin 1 (Ang-1) and the platelet-derived lipid mediator sphingosine 1-phosphate (S1P) inhibit hantavirus directed endothelial cell permeability at physiologic concentrations. These results demonstrate the utility of a hantavirus permeability assay and rationalize the testing of Ang-1, S1P, and antibodies to VEGFR2 as potential hantavirus therapeutics. The central importance of beta3 integrins and VEGF responses in vascular leak and hemorrhagic disease further suggest that altering beta3 or VEGF responses may be a common feature of additional viral hemorrhagic diseases. As a result, our findings provide a potential mechanism

  1. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    SciTech Connect

    Lenormand, R.; Thiele, M.R.

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  2. Effect of Nesting on the Permeability of Multilayer Unidirectional Fabrics

    NASA Astrophysics Data System (ADS)

    Jiang, Jianjun; Su, Yang; Zhou, Linchao; Guo, Qiang; Xu, Chumeng; Deng, Guoli; Chen, Xing; Yao, Xuming; Fang, Liangchao

    2016-10-01

    Nesting of layers is the main source of the variations in permeability values in liquid composite molding (LCM) processes. In this paper, the permeability of unidirectional fabrics was modeled as a function of layer shift and geometrical yarn parameters to study the effect of nesting. Firstly, three different unit cells of two layers were modeled based on the range of layer shift and decomposed into zones of characteristic yarn arrangement, respectively. The overall permeability of each unit cell was then modeled as a mixture of local permeabilities of different zones with the electrical resistance analogy. Secondly, every two adjacent layers were regarded as porous media with different permeabilities. The permeability of multilayer unidirectional fabrics was then modeled with electrical resistance analogy. As the unpredictability of layer shifting in actual process, the statistical characteristics were analyzed theoretically and validated with experimental measurements. Excellent agreement was found between predictions and experiment data.

  3. Intestinal permeability in patients with acute myeloid leukemia.

    PubMed

    Sundström, G M; Wahlin, A; Nordin-Andersson, I; Suhr, O B

    1998-10-01

    Intestinal permeability was studied in patients with acute myeloid leukemia (AML) before, during and after chemotherapy. Intestinal permeability was determined by the lactulose (La)/mannitol (Ma) absorption test in 16 adult patients with de novo AML. The hydrogen breath test was used to disclose bacterial fermentation of the test substances in the small intestine. The permeability was found significantly increased (p<0.02) in the patients before induction chemotherapy treatment. During induction treatment and throughout the cytopenic period the intestinal permeability was constantly and significantly increased, compared with controls. In patients with abnormally increased permeability, no increase in hydrogen breath test result was noted. From our results it can be concluded that increased intestinal permeability is present in AML patients before commencing chemotherapy. Factors other than chemotherapy would seem to be more important regarding the occurrence of intestinal disturbances in these patients.

  4. Multiple technologies applied to characterization of the porosity and permeability of the Biscayne aquifer, Florida

    USGS Publications Warehouse

    Cunningham, K.J.; Sukop, M.C.

    2011-01-01

    Research is needed to determine how seepage-control actions planned by the Comprehensive Everglades Restoration Plan (CERP) will affect recharge, groundwater flow, and discharge within the dual-porosity karstic Biscayne aquifer where it extends eastward from the Everglades to Biscayne Bay. A key issue is whether the plan can be accomplished without causing urban flooding in adjacent populated areas and diminishing coastal freshwater flow needed in the restoration of the ecologic systems. Predictive simulation of groundwater flow is a prudent approach to understanding hydrologic change and potential ecologic impacts. A fundamental problem to simulation of karst groundwater flow is how best to represent aquifer heterogeneity. Currently, U.S. Geological Survey (USGS) researchers and academic partners are applying multiple innovative technologies to characterize the spatial distribution of porosity and permeability within the Biscayne aquifer.

  5. Permeability of fiber reinforcements for liquid composite molding: Sequential multi-scale investigations into numerical flow modeling on the micro- and meso-scale

    NASA Astrophysics Data System (ADS)

    Luchini, Timothy John Franklin

    investigations by including the ability to study binary mixtures of commingled fibers, random packing, particulate loadings, and permeability variation at a single volume fraction as a function of the mean inter-fiber spacing. Extending this approach from the micro-scale to the meso-scale creates an opportunity to quantify the effect of dual-scale porous media. More specifically, direct numerical simulations of carbon fiber reinforcement on the micro-scale were compared to measurements of unidirectional carbon fabrics on the meso-scale. The results showed a quantifiable effect of dual-scale porous media in composite processing, with generally higher permeability on the meso-scale. Next, a three-dimensional meso-scale analysis of a plain weave composite fabric was performed using the homogenized micro-scale permeability. Comparisons were made between the numerical modeling approaches developed in this dissertation with the available permeability measurement techniques for validation. The meso-scale permeability calculations compared well with experimental permeability measurements. The effect of fabric variability is seen in all scales of interest. Finally, this work included a meso-scale, two-phase, transient simulation to investigate tow saturation and the formation of meso-scale voids. The results qualitatively show the nature of the advancing fluid front and the lagging tow saturation, which is seen though experimental analysis.

  6. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  7. Dual quartz crystal microbalance

    SciTech Connect

    Dunham, G.C.; Benson, N.H.; Petelenz, D.; Janata, J. )

    1995-01-15

    Construction and performance of a dual quartz crystal microbalance is described. The final probe has a dipstick configuration that is particularly suitable for sensing and monitoring applications in viscous and/or conducting liquids. The differential (heterodyned) frequency measurement substantially eliminates the deleterious effects of viscosity, temperature, and conductivity. The corresponding performance coefficients are temperature df/dT = 1.5 Hz/[degree]C, viscosity df/d[eta][sub L] = 103 Hz/cP, and conductivity df/dM = 108 Hz/M, where conductivity is expressed in terms of molarity of sodium chloride. As an example, the etching of a 2000-A-thick layer of aluminum has been monitored as a function of time. 13 refs., 8 figs., 1 tab.

  8. Dual-Mode Combustion

    NASA Technical Reports Server (NTRS)

    Goyne, Christopher P.; McDaniel, James C.

    2002-01-01

    The Department of Mechanical and Aerospace Engineering at the University of Virginia has conducted an investigation of the mixing and combustion processes in a hydrogen fueled dual-mode scramjet combustor. The experiment essentially consisted of the "direct connect" continuous operation of a Mach 2 rectangular combustor with a single unswept ramp fuel injector. The stagnation enthalpy of the test flow simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and laser based diagnostics. These diagnostics included, pressure and wall temperature measurements, Fuel Plume Imaging (FPI) and Particle Image Velocimetry (PIV). A schematic of the combustor configuration and a summary of the measurements obtained are presented. The experimental work at UVa was parallel by Computational Fluid Dynamics (CFD) work at NASA Langley. The numerical and experiment results are compared in this document.

  9. Integrated Dual Imaging Detector

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1999-01-01

    A new type of image detector was designed to simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging detector (IDID) consists of a lenslet array and a polarizing beamsplitter bonded to a commercial charge coupled device (CCD). The IDID simplifies the design and operation of solar vector magnetographs and the imaging polarimeters and spectroscopic imagers used, for example, in atmosphere and solar research. When used in a solar telescope, the vector magnetic fields on the solar surface. Other applications include environmental monitoring, robot vision, and medical diagnoses (through the eye). Innovations in the IDID include (1) two interleaved imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 5) electrons per pixel); (3) simultaneous readout and display of both images; and (4) laptop computer signal processing to produce polarization maps in field situations.

  10. Dual surface interferometer

    DOEpatents

    Pardue, R.M.; Williams, R.R.

    1980-09-12

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  11. Dual surface interferometer

    DOEpatents

    Pardue, Robert M.; Williams, Richard R.

    1982-01-01

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  12. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  13. STEADY-FATE FIELD-SCALE GAS PERMEABILITY ESTIMATION AND PORE-GAS VELOCITY CALCULATION IN A DOMAIN OPEN TO THE ATMOSPHERE

    EPA Science Inventory

    Field-scale estimation of gas permeability and subsequent computation of pore-gas velocity profiles are critical elements of sound soil venting design. It has been our experience however in U.S. EPA's technical assistance program, provided by the Office of Research and Developme...

  14. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification.

    PubMed

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L

    2015-01-01

    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the

  15. Influence of decenylsuccinic Acid on water permeability of plant cells.

    PubMed

    Lee, O Y; Stadelmann, E J; Weiser, C J

    1972-11-01

    Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid x minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury.At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule x minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm x minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm x minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified. PMID:16658227

  16. Permeability of continental crust influenced by internal and external forcing

    USGS Publications Warehouse

    Rojstaczer, S.A.; Ingebritsen, S.E.; Hayba, D.O.

    2008-01-01

    The permeability of continental crust is so highly variable that it is often considered to defy systematic characterization. However, despite this variability, some order has been gleaned from globally compiled data. What accounts for the apparent coherence of mean permeability in the continental crust (and permeability-depth relations) on a very large scale? Here we argue that large-scale crustal permeability adjusts to accommodate rates of internal and external forcing. In the deeper crust, internal forcing - fluxes induced by metamorphism, magmatism, and mantle degassing - is dominant, whereas in the shallow crust, external forcing - the vigor of the hydrologic cycle - is a primary control. Crustal petrologists have long recognized the likelihood of a causal relation between fluid flux and permeability in the deep, ductile crust, where fluid pressures are typically near-lithostatic. It is less obvious that such a relation should pertain in the relatively cool, brittle upper crust, where near-hydrostatic fluid pressures are the norm. We use first-order calculations and numerical modeling to explore the hypothesis that upper-crustal permeability is influenced by the magnitude of external fluid sources, much as lower-crustal permeability is influenced by the magnitude of internal fluid sources. We compare model-generated permeability structures with various observations of crustal permeability. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.

  17. Multiscale Modeling for Biomass Growth Associated with Bioremediation and Its Impact on Permeability Change and Distribution of Contaminants

    NASA Astrophysics Data System (ADS)

    Oka, G. K.; Pinder, G.

    2009-12-01

    Bioremediation involves using bacteria present in the soil or injected into the soil to degrade contaminants dissolved in groundwater. The degrading bacteria grow attached to the soil particles using the contaminants as substrate for growth. In the process, the pore spaces between soil particles get partially or totally blocked. This blocking, called bioclogging, affects an important parameter, the permeability of soil, which governs the distribution of contaminants in groundwater. The distribution of contaminants in turn affects the growth of bacteria through its changed availability pattern. We attempt to model the complex relationship between the growth of bacteria and biodegradation of the contaminants by coupling a 'Cellular Automata' (CA) model for biomass growth with a multiphase transport model for contaminants in groundwater. The growth in biomass of bacteria at the microscopic spatial scale is translated into a change in permeability at the macroscopic scale by using averaging techniques on CA grids regarding them as 'Representative Elementary Volume' (REV) elements. The results of simulation are presented and compared with a laboratory column experiment.

  18. Osmotic Flow through Fully Permeable Nanochannels

    NASA Astrophysics Data System (ADS)

    Lee, C.; Cottin-Bizonne, C.; Biance, A.-L.; Joseph, P.; Bocquet, L.; Ybert, C.

    2014-06-01

    Osmosis across membranes is intrinsically associated with the concept of semipermeability. Here, however, we demonstrate that osmotic flow can be generated by solute gradients across nonselective, fully permeable nanochannels. Using a fluorescence imaging technique, we are able to measure the water flow rate inside single nanochannels to an unprecedented sensitivity of femtoliters per minute flow rates. Our results indicate the onset of a convective liquid motion under salinity gradients, from the higher to lower electrolyte concentration, which is attributed to diffusio-osmotic transport. To our knowledge, this is the first experimental evidence and quantitative investigation of this subtle interfacially driven transport, which need to be accounted for in nanoscale dynamics. Finally, diffusio-osmotic transport under a neutral polymer gradient is also demonstrated. The experiments highlight the entropic depletion of polymers that occurs at the nanochannel surface, resulting in convective flow in the opposite direction to that seen for electrolytes.

  19. Ground rubber: Reactive permeable barrier sorption media

    SciTech Connect

    Kershaw, D.S.; Pamukcu, S.

    1997-12-31

    The objective of this research was to examine the feasibility of using ground tire rubber as a sorbent media in reactive permeable barrier systems. Previous research by the current authors has demonstrated that tire rubber can sorb significant quantities of benzene, toluene, ethylbenzene and O-xylene from aqueous solutions. The current research was run to examine the usage rate of ground rubber in a packed bed reactor under specific contact times. In addition, desorption and repetitive sorption tests were run to determine the reversibility of the sorption process for ground tire rubber. These tests were run to determine the regeneration capacity of ground tire rubber. Results of the study show that the usage rates are greater than 50% with an empty bed contact times of 37 minutes, and minimal amounts of energy are needed to regenerate the tire rubber after use.

  20. Composite Crew Module (CCM) Permeability Characterization

    NASA Technical Reports Server (NTRS)

    Kirsch, Michael T.

    2013-01-01

    In January 2007, the NASA Administrator chartered the NASA Engineering and Safety Center (NESC) to form an Agency team to design and build a composite crew module in 18 months in order to gain hands-on experience in anticipation that future exploration systems may be made of composite materials. One of the conclusions from this Composite Crew Module Primary Structure assessment was that there was a lack of understanding regarding the ability for composite pressure shells to contain consumable gases, which posed a technical risk relative to the use of a metallic design. After the completion of the Composite Crew Module test program, the test article was used in a new program to assess the overall leakage/permeability and identify specific features associated with high leak rates. This document contains the outcome of the leakage assessment.

  1. Fluid permeability measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  2. Biomimetic Hybrid Nanocontainers with Selective Permeability.

    PubMed

    Messager, Lea; Burns, Jonathan R; Kim, Jungyeon; Cecchin, Denis; Hindley, James; Pyne, Alice L B; Gaitzsch, Jens; Battaglia, Giuseppe; Howorka, Stefan

    2016-09-01

    Chemistry plays a crucial role in creating synthetic analogues of biomacromolecular structures. Of particular scientific and technological interest are biomimetic vesicles that are inspired by natural membrane compartments and organelles but avoid their drawbacks, such as membrane instability and limited control over cargo transport across the boundaries. In this study, completely synthetic vesicles were developed from stable polymeric walls and easy-to-engineer membrane DNA nanopores. The hybrid nanocontainers feature selective permeability and permit the transport of organic molecules of 1.5 nm size. Larger enzymes (ca. 5 nm) can be encapsulated and retained within the vesicles yet remain catalytically active. The hybrid structures constitute a new type of enzymatic nanoreactor. The high tunability of the polymeric vesicles and DNA pores will be key in tailoring the nanocontainers for applications in drug delivery, bioimaging, biocatalysis, and cell mimicry. PMID:27560310

  3. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, F.A.; Townsend, C.W.

    1989-09-12

    An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.

  4. Osmotic flow through fully permeable nanochannels.

    PubMed

    Lee, C; Cottin-Bizonne, C; Biance, A-L; Joseph, P; Bocquet, L; Ybert, C

    2014-06-20

    Osmosis across membranes is intrinsically associated with the concept of semipermeability. Here, however, we demonstrate that osmotic flow can be generated by solute gradients across nonselective, fully permeable nanochannels. Using a fluorescence imaging technique, we are able to measure the water flow rate inside single nanochannels to an unprecedented sensitivity of femtoliters per minute flow rates. Our results indicate the onset of a convective liquid motion under salinity gradients, from the higher to lower electrolyte concentration, which is attributed to diffusio-osmotic transport. To our knowledge, this is the first experimental evidence and quantitative investigation of this subtle interfacially driven transport, which need to be accounted for in nanoscale dynamics. Finally, diffusio-osmotic transport under a neutral polymer gradient is also demonstrated. The experiments highlight the entropic depletion of polymers that occurs at the nanochannel surface, resulting in convective flow in the opposite direction to that seen for electrolytes. PMID:24996091

  5. Composite binders for concrete with reduced permeability

    NASA Astrophysics Data System (ADS)

    Fediuk, R.; Yushin, A.

    2016-02-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m2, it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa).

  6. Glassy Dynamics, Cell Mechanics and Endothelial Permeability

    PubMed Central

    Hardin, Corey; Rajendran, Kavitha; Manomohan, Greeshma; Tambe, Dhananjay T.; Butler, James P.; Fredberg, Jeffrey J.; Martinelli, Roberta; Carman, Christopher V.; Krishnan, Ramaswamy

    2013-01-01

    A key feature of all inflammatory processes is disruption of the vascular endothelial barrier. Such disruption is initiated in part through active contraction of the cytoskeleton of the endothelial cell (EC). Because contractile forces are propagated from cell to cell across a great many cell-cell junctions, this contractile process is strongly cooperative and highly nonlocal. We show here that the characteristic length scale of propagation is modulated by agonists and antagonists that impact permeability of the endothelial barrier. In the presence of agonists including thrombin, histamine, and H202, force correlation length increases, whereas in the presence of antagonists including sphingosine-1-phosphate, hepatocyte growth factor, and the rho kinase inhibitor, Y27632, force correlation length decreases. Intercellular force chains and force clusters are also evident, both of which are reminiscent of soft glassy materials approaching a glass transition. PMID:23638866

  7. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction

    SciTech Connect

    Yoon, Hongkyu; Oostrom, Martinus; Wietsma, Thomas W.; Werth, Charles J.; Valocchi, Albert J.

    2009-10-13

    The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing multiphase flow simulations with a detailed data set from a well-defined two-dimensional flow cell experiment. The flow cell was packed with two sandy soils including an embedded fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during SVE. A dual-energy gamma radiation system was used to measure an initial NAPL saturation profile in a fine-grained sand layer. Imaging result from a dual-energy gamma radiation system with dyed CT mark along CT migration was used to construct the distribution of initial NAPL saturation in the flow cell for input to numerical simulations. Gas concentration results and photographs during SVE were compared to simulation results using a continuum-based multiphase flow simulator, STOMP (Subsurface Transport Over Multiple Phases). The measured effluent gas concentration decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. CT mass was removed quickly in coarse sand, followed by a slow removal from the fine-grained sand layer. An analytical solution for a one-dimensional advection and first-order volatilization model matched the tailing well with two fitting parameters. However, given detailed knowledge of the permeability field and initial NAPL distribution, we can predict the tailing and gas concentration profiles at sampling ports using equilibrium NAPL volatilization. NAPL flow occurs in the presence of free NAPL, and must be accounted for to accurately predict NAPL removal during the SVE experiment. The model prediction was accurate within the uncertainty of the measured or literature derived parameters (i.e., dispersivity and soil parameters). This study provides insights into the physical mechanisms of NAPL removal from a low permeability zone, and use of

  8. Frog intestinal perfusion to evaluate drug permeability: application to p-gp and cyp3a4 substrates

    PubMed Central

    Yerasi, Neelima; Vurimindi, Himabindu; Devarakonda, Krishna

    2015-01-01

    To evaluate the reliability of using in situ frog intestinal perfusion technique for permeability assessment of carrier transported drugs which are also substrates for CYP enzymes. Single Pass Intestinal Perfusion (SPIP) studies were performed in frogs of the species Rana tigrina using established method for rats with some modifications after inducing anesthesia. Effective permeability coefficient (Peff) of losartan and midazolam was calculated in the presence and absence of inhibitors using the parallel-tube model. Peff of losartan when perfused alone was found to be 0.427 ± 0.27 × 10-4cm/s and when it was co-perfused with inhibitors, significant change in Peff was observed. Peff of midazolam when perfused alone was found to be 2.03 ± 0.07 × 10-4cm/s and when it was co-perfused with inhibitors, no significant change in Peff was observed. Comparison of Peff calculated in frog with that of other available models and also humans suggested that the Peff-values are comparable and reflected well with human intestinal permeability. It is possible to determine the Peff-value for compounds which are dual substrates of P-glycoprotein and CYP3A4 using in situ frog intestinal perfusion technique. The calculated Peff-values correlated well with reported Peff-values of probe drugs. comparison of the Peff-value of losartan obtained with that of reported human’s Peff and Caco 2 cell data, and comparison of the Peff-value of midazolam with that of reported rat’s Peff, we could conclude that SPIP from model can be reliably used in preclinical studies for permeability estimation. This model may represent a valuable alternative to the low speed and high cost of conventional animal models (typically rodents) for the assessment of intestinal permeability. PMID:26236236

  9. Back diffusion from thin low permeability zones.

    PubMed

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2015-01-01

    Aquitards can serve as long-term contaminant sources to aquifers when contaminant mass diffuses from the aquitard following aquifer source mass depletion. This study describes analytical and experimental approaches to understand reactive and nonreactive solute transport in a thin aquitard bounded by an adjacent aquifer. A series of well-controlled laboratory experiments were conducted in a two-dimensional flow chamber to quantify solute diffusion from a high-permeability sand into and subsequently out of kaolinite clay layers of vertical thickness 15 mm, 20 mm, and 60 mm. One-dimensional analytical solutions were developed for diffusion in a finite aquitard with mass exchange with an adjacent aquifer using the method of images. The analytical solutions showed very good agreement with measured breakthrough curves and aquitard concentration distributions measured in situ by light reflection visualization. Solutes with low retardation accumulated more stored mass with greater penetration distance in the aquitard compared to high-retardation solutes. However, because the duration of aquitard mass release was much longer, high-retardation solutes have a greater long-term back diffusion risk. The error associated with applying a semi-infinite domain analytical solution to a finite diffusion domain increases as a function of the system relative diffusion length scale, suggesting that the solutions using image sources should be applied in cases with rapid solute diffusion and/or thin clay layers. The solutions presented here can be extended to multilayer aquifer/low-permeability systems to assess the significance of back diffusion from thin layers.

  10. Back diffusion from thin low permeability zones.

    PubMed

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2015-01-01

    Aquitards can serve as long-term contaminant sources to aquifers when contaminant mass diffuses from the aquitard following aquifer source mass depletion. This study describes analytical and experimental approaches to understand reactive and nonreactive solute transport in a thin aquitard bounded by an adjacent aquifer. A series of well-controlled laboratory experiments were conducted in a two-dimensional flow chamber to quantify solute diffusion from a high-permeability sand into and subsequently out of kaolinite clay layers of vertical thickness 15 mm, 20 mm, and 60 mm. One-dimensional analytical solutions were developed for diffusion in a finite aquitard with mass exchange with an adjacent aquifer using the method of images. The analytical solutions showed very good agreement with measured breakthrough curves and aquitard concentration distributions measured in situ by light reflection visualization. Solutes with low retardation accumulated more stored mass with greater penetration distance in the aquitard compared to high-retardation solutes. However, because the duration of aquitard mass release was much longer, high-retardation solutes have a greater long-term back diffusion risk. The error associated with applying a semi-infinite domain analytical solution to a finite diffusion domain increases as a function of the system relative diffusion length scale, suggesting that the solutions using image sources should be applied in cases with rapid solute diffusion and/or thin clay layers. The solutions presented here can be extended to multilayer aquifer/low-permeability systems to assess the significance of back diffusion from thin layers. PMID:25478850

  11. Hormonal regulation of hepatocyte tight junctional permeability

    SciTech Connect

    Lowe, P.J.; Miyai, K.; Steinbach, J.H.; Hardison, W.G.M. Univ. of California, San Diego )

    1988-10-01

    The authors have investigated the effects of hormones on the permeability of the hepatocyte tight junction to two probes, ({sup 14}C)sucrose and horseradish peroxidase, using one-pass perfused rat livers. Using a single injection of horseradish peroxidase the authors have demonstrated that this probe can enter bile by two pathways that are kinetically distinct, a fast pathway, which corresponds to the passage of the probe through the hepatocyte tight junctions, and a slow pathway, which corresponds to the transcytotic entry into bile. The passage of horseradish peroxidase through the hepatocyte tight junctions was confirmed by electron microscopic histochemistry. Vasopressin, epinephrine, and angiotensin II, hormones that act in the hepatocyte through the intracellular mediators calcium, the inositol polyphosphates, and diacylglycerol, increased the bile-to-perfusion fluid ratio of ({sup 14}C)sucrose and the rapid entry of horseradish peroxidase into bile, indicating that the permeability of the tight junctions to these probes was increased. The effect of these hormones was dose dependent and in the cases of angiotensin II and epinephrine was inhibited by the specific inhibitors (Sar{sup 1},Thr{sup 8})angiotensin II and prazosin, respectively. Dibutyryl adenosine 3{prime},5{prime}-cyclic monophosphate did not affect the ({sup 14}C)sucrose bile-to-perfusion fluid ratio or the fast entry of horseradish peroxidase into bile. These results suggest that the hepatocyte tight junction can no longer be considered a static system of pores separating blood from bile. It is rather a dynamic barrier potentially capable of influencing the composition of the bile.

  12. Turbulent Hyporheic Exchange in Permeable Sediments

    NASA Astrophysics Data System (ADS)

    Roche, K. R.; Aubeneau, A. F.; Li, A.; Packman, A. I.

    2015-12-01

    Solute delivery from the water column into a streambed strongly influences metabolism in rivers. Current hydrological models simplify surface-subsurface (hyporheic) exchange by treating each domain separately, constraining turbulent flows to the water column. Studies have shown, however, that turbulence penetrates into permeable sediments. Evidence is lacking for how this highly coupled flow regime influences hyporheic exchange. We characterized the dynamics of turbulent exchange between surface and porewaters in a 2.5 m recirculating flume. The channel was packed with 3.8 cm PVC spheres to form a coarse gravel bed, with a total depth of 21 cm. We implanted microsensors onto an array of spheres to measure in situsalt concentrations within the streambed. Water was recirculated in the channel, and concentrated salt solution was continuously injected upstream of the sensor array. We observed solute exchange increased with free-stream Reynolds number and decreased with depth in the sediment bed. Mass of injected solute remaining in the bed decreased rapidly in all cases, with only 10-30% of mass recovered 50 cm downstream of the injection point at Re = 25,000. We observed high-frequency (1-10 Hz) concentration fluctuations at bed depths of at least 4.75 cm, and sporadic low-frequency fluctuations at depths of 12.5 cm. Spectral analysis revealed increased filtering of high frequencies with depth. We used particle-tracking simulations to fit depth-dependent turbulent diffusion profiles to experimental results. These results demonstrate that free-stream turbulence impacts hyporheic mixing deep into permeable streambeds, and mixing is strongly influenced by the coupled surface-subsurface flow field.

  13. Three-dimensional magnetohydrodynamic Kelvin–Helmholtz instability of cylindrical flow with permeable boundaries

    SciTech Connect

    Kumar Awasthi, Mukesh

    2014-03-15

    We study the linear magnetohydrodynamic Kelvin–Helmholtz instability of the interface between two viscous, incompressible, and electrically conducting fluids. The phases are enclosed between two coaxial cylindrical porous layers with the interface through which mass and heat transfer takes place. The fluids are subjected to a constant magnetic field parallel to the streaming direction, and the suction/injection velocities for the fluids at the permeable boundaries are also taken into account. Here, we use an irrotational theory in which the motion and pressure are irrotational, and the viscosity enters through the jump in the viscous normal stress in the normal stress balance at the interface. We consider both asymmetric and axisymmetric disturbances in our analysis. A quadratic dispersion relation is deduced and stability criterion is given in terms of a critical value of relative velocity, as well as, magnetic field. It has been observed that in the case of permeable boundaries, heat and mass transfer phenomena play a dual in the stability analysis. The flow through porous medium is more stable than the pure flow.

  14. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    SciTech Connect

    Poston, S.W.

    1991-12-31

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  15. Hydraulic Permeability of Resorcinol-Formaldehyde Resin

    SciTech Connect

    Taylor, Paul Allen

    2010-01-01

    An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing

  16. Permeability of alkaline magmas: a study from Campi Flegrei, Italy

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Bouvet de Maissoneuve, C.; Giordano, D.; Piochi, M.; Degruyter, W.; Bachmann, O.; Mancini, L.

    2012-04-01

    Knowledge of permeability is of paramount importance for understanding the evolution of magma degassing during pre-, syn- and post-eruptive volcanic processes. Most permeability estimates existing to date refer to magmas of calc-alkaline compositions. We report here the preliminary results of permeability measurements performed on alkali-trachyte products erupted from the Campanian Ignimbrite (CI) and Monte Nuovo (MTN), two explosive eruptions from Campi Flegrei (CF), an active, hazardous caldera west of Naples, Southern Italy. Darcian (viscous) permeability spans a wide range between 10^-11 and 10^-14 m^2. We observe that the most permeable samples are the scoria clasts from the upper units of MTN; pumice samples from the Breccia Museo facies of CI are instead the least permeable. Non-Darcian (inertial) permeability follows the same trend as Darcian permeability. The first implication of this study is that porosity in alkaline as well as calc-alkaline magmas does not exert a first order control on permeability (e.g. the MTN samples are the most permeable but not the most porous). Second, sample geometry exhibits permeability anisotropy (higher permeability in the direction of vesicle elongation), suggesting stronger degassing in the vertical direction in the conduit. In addition, inertial effects are higher across the sample. As inertial effects are potentially generated by tortuosity (or tortuous vesicle paths), tortuosity is likely higher horizontally than vertically in the conduit. Finally, the measured CF permeability values overlap with those of rhyolitic pumice clasts from the Kos Plateau Tuff (Bouvet de Maisonneuve et al., 2009), together with CI one of the major Quaternary explosive eruptions of the Mediterranean region. This indicates that gas flow is strongly controlled by the geometry of the porous media, which is generated by the bubble dynamics during magma ascent. Therefore, permeability will depend on composition through the rheological properties

  17. Hepatic Injury in Nonalcoholic Steatohepatitis Contributes to Altered Intestinal Permeability

    PubMed Central

    Luther, Jay; Garber, John J.; Khalili, Hamed; Dave, Maneesh; Bale, Shyam Sundhar; Jindal, Rohit; Motola, Daniel L.; Luther, Sanjana; Bohr, Stefan; Jeoung, Soung Won; Deshpande, Vikram; Singh, Gurminder; Turner, Jerrold R.; Yarmush, Martin L.; Chung, Raymond T.; Patel, Suraj J.

    2015-01-01

    BACKGROUND & AIMS Emerging data suggest that changes in intestinal permeability and increased gut microbial translocation contribute to the inflammatory pathway involved in nonalcoholic steatohepatitis (NASH) development. Numerous studies have investigated the association between increased intestinal permeability and NASH. Our meta-analysis of this association investigates the underlying mechanism. METHODS A meta-analysis was performed to compare the rates of increased intestinal permeability in patients with NASH and healthy controls. To further address the underlying mechanism of action, we studied changes in intestinal permeability in a diet-induced (methionine-and-choline-deficient; MCD) murine model of NASH. In vitro studies were also performed to investigate the effect of MCD culture medium at the cellular level on hepatocytes, Kupffer cells, and intestinal epithelial cells. RESULTS Nonalcoholic fatty liver disease (NAFLD) patients, and in particular those with NASH, are more likely to have increased intestinal permeability compared with healthy controls. We correlate this clinical observation with in vivo data showing mice fed an MCD diet develop intestinal permeability changes after an initial phase of liver injury and tumor necrosis factor-α (TNFα) induction. In vitro studies reveal that MCD medium induces hepatic injury and TNFα production yet has no direct effect on intestinal epithelial cells. Although these data suggest a role for hepatic TNFα in altering intestinal permeability, we found that mice genetically resistant to TNFα-myosin light chain kinase (MLCK)–induced intestinal permeability changes fed an MCD diet still develop increased permeability and liver injury. CONCLUSIONS Our clinical and experimental results strengthen the association between intestinal permeability increases and NASH and also suggest that an early phase of hepatic injury and inflammation contributes to altered intestinal permeability in a fashion independent of TNF

  18. Porosity and permeability evolution of clay faults: in situ experiments

    NASA Astrophysics Data System (ADS)

    Henry, P.; Guglielmi, Y.; Seguy, S.; Lefevre, M.; Ghani, I.; Gent, G.; Castilla, R.; Gout, C.; Dick, P.; Nussbaum, C.; Durand, J.

    2015-12-01

    Fault models associating low permeability cores with high permeability damage zones are widely accepted, however, constitutive laws relating permeability with fault structure, stress, and strain remain poorly constrained. We here present preliminary results of hydromechanical experiments performed at the 10 m scale in fault zones in Toarcian and Aalenian black shale formations. Intact formations have a very low permeability (10-19 to 10-22 m2). One case (in IRSN's Tournemire Underground Research Laboratory) displays a porosity increase in and around the fault core and abundant veins and calcite cemented small faults in the damage zone. The other case (Mont Terri Swisstopo Underground Research Laboratory) displays a porosity decrease in the fault core zone and few veins. However, under the present stress state, the static permeability of the fractured zones at both locations is higher than that of the intact formation by up to 3 orders of magnitude. During borehole pressurization tests three regimes of permeability variations are observed. (1) Fracture permeability first increases progressively as a function of fluid pressure (2) When a threshold is reached, permeability further increases by 100 or more, but strain as well as permeability variations remain in most part reversible. (3) When a steady pressure is maintained in the injection borehole (from 20 minutes to several days) flow rate tends to decrease with time. These results show that high transient permeability may locally occur in a fault zone under conditions when most of the deformation is reversible, opening the possibility of transient fluid migration decoupled from slip along faults that are not favorably oriented. However, during one test, more than 1 mm of irreversible slip occurred along one of the main interfaces, associated with a sudden increase in flow rate (from 11 to more than 40 l/min). This suggests that when slip occurs, it could result in permeability variations that may remain difficult

  19. Further investigations of why gels reduce water permeability more than oil permeability

    SciTech Connect

    Liang, J.T.; Seright, R.S.

    1997-11-01

    In this paper, the authors investigate why some gels can reduce the permeability to water much more than to oil. This property is critical to the success of chemical-based water-shutoff treatments in production wells if hydrocarbon-productive zones cannot be protected during placement. The authors first briefly review previous findings and the validity of several possible explanations for this disproportionate permeability reduction. Next, they describe experiments that test the validity of a promising mechanism--the segregated pathway theory. This theory speculates that on a microscopic scale, aqueous gelants follow water pathways more than oil pathways. Experimental results in cores support this mechanism for oil-based gels, but not for water-based gels. They also explore another interesting mechanism that involves a balance between capillary and elastic forces. Results from experiments support this mechanism for flow in tubes and micromodels, but not in porous rock. Other mechanisms are also discussed.

  20. Permeability changes induced by microfissure closure and opening in tectonized materials. Effect on slope pore pressure regime.

    NASA Astrophysics Data System (ADS)

    De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca

    2015-04-01

    Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.

  1. Understanding the spatial structure of peat permeability around natural pipes in blanket peatlands

    NASA Astrophysics Data System (ADS)

    Cunliffe, Andrew; Baird, Andy; Holden, Joseph

    2014-05-01

    Understanding the spatial structure of peat permeability around natural pipes in blanket peatlands We present the results of a detailed investigation of fine-scale variations in the permeability or hydraulic conductivity (K) of the peat around a natural pipe in a blanket peatland. Both vertical K and horizontal K ranged over seven orders of magnitude over scales of decimetres. K was found to be more variable than indicated by previous research. This finding has important implications for the approaches currently employed to investigate peatland hydrological processes, and the parameterisation of models used to simulate these complex ecohydrological systems. We also observed considerable spatial structuring in K. Lateral K parallel to the pipe was significantly greater than lateral K perpendicular to the pipe. Critically, a wedge of poorly-humified, high-permeability peat was present directly above the pipe, forming a hydrological connection between the peatland surface and the perennially-flowing pipe. These observations advance our mechanistic understanding of pipeflow generation in peatlands. We also attempted to investigate K across the pipe-peat interface to test for a hypothesised low-K skin; however, this was precluded by sample length dependency, which suggests that it is inappropriate to compare K measurements between peat samples of different lengths. Overall, we argue that high resolution work such as this is required for the development of more accurate perceptual models of peatland hydrological systems. Cunliffe, A. M., A. J. Baird, and J. Holden (2013), Hydrological hotspots in blanket peatlands: Spatial variation in peat permeability around a natural soil pipe, Water Resources Research, Vol.49, doi:10.1002/wrcr.20435.

  2. Dual X-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2012-07-01

    Dual X-ray absorptiometry is widely used in analyzing body composition and imaging. Both the method and its limitations are related to the Compton and photoelectric contributions to the X-ray attenuation coefficients of materials.

  3. New HYDRUS Modules for Simulating Preferential Flow, Colloid-Facilitated Contaminant Transport, and Various Biogeochemical Processes in Soils

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Sejna, M.; Jacques, D.; Langergraber, G.; Bradford, S. A.; van Genuchten, M. Th.

    2012-04-01

    We have dramatically expanded the capabilities of the HYDRUS (2D/3D) software package by developing new modules to account for processes not available in the standard HYDRUS version. These new modules include the DualPerm, C-Hitch, HP2/3, Wetland, and Unsatchem modules. The dual-permeability modeling approach of Gerke and van Genuchten [1993] simulating preferential flow and transport is implemented into the DualPerm module. Colloid transport and colloid-facilitated solute transport, the latter often observed for many contaminants, such as heavy metals, radionuclides, pharmaceuticals, pesticides, and explosives [Šimůnek et al., 2006] are implemented into the C-Hitch module. HP2 and HP3 are the two and three-dimensional alternatives of the HP1 module, currently available with HYDRUS-1D [Jacques and Šimůnek, 2005], that couple HYDRUS flow and transport routines with the generic geochemical model PHREEQC of Parkhurst and Appelo [1999]. The Wetland module includes two alternative approaches (CW2D of Langergraber and Šimůnek [2005] and CWM1 of Langergraber et al. [2009]) for modeling aerobic, anaerobic, and anoxic biogeochemical processes in natural and constructed wetlands. Finally, the Unsatchem module simulates the transport and reactions of major ions in a soil profile. Brief descriptions and an application of each module will be presented. Except for HP3, all modules simulate flow and transport processes in two-dimensional transport domains. All modules are fully supported by the HYDRUS graphical user interface. Further development of these modules, as well as of several other new modules (such as Overland), is still envisioned. Continued feedback from the research community is encouraged.

  4. Permeable Pavement Research at the Edison Environmental Center

    EPA Science Inventory

    There are few detailed studies of full-scale, replicated, actively-used permeable pavement systems. Practitioners need additional studies of permeable pavement systems in its intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditio...

  5. Permeable Textual Discussion in Tracked Language Arts Classrooms

    ERIC Educational Resources Information Center

    Gritter, Kristine

    2012-01-01

    Permeable textual discussion occurs when the unofficial texts and discursive practices and personal histories that are already recognized and valued in students' cultures are scaffolds to academically sanctioned literacies. Ideally, permeable textual discussions are safe havens where students' identities (racial, gender, world views) are…

  6. Hydrogen-permeable composite metal membrane and uses thereof

    DOEpatents

    Edlund, David J.; Friesen, Dwayne T.

    1993-06-08

    Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

  7. Nitrogen Transformations in Three Types of Permeable Pavement

    EPA Science Inventory

    In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...

  8. Selective permeability of PVA membranes. I - Radiation-crosslinked membranes

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  9. Selective Permeability of PVA Membranes. I: Radiation-Crosslinked Membranes

    NASA Technical Reports Server (NTRS)

    Katz, Moshe G.; Wydeven, Theodore, Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  10. Determination of Coal Permeability Using Pressure Transient Methods

    SciTech Connect

    McLendon, T.R.; Siriwardane, H.; Haljasmaa, I.V.; Bromhal, G.S.; Soong, Y.; Irdi, G.A.

    2007-05-01

    Coalbed methane is a significant natural resource in the Appalachian region. It is believed that coalbed methane production can be enhanced by injection of carbon dioxide into coalbeds. However, the influence of carbon dioxide injection on coal permeability is not yet well understood. Competitive sorption of carbon dioxide and methane gases onto coal is a known process. Laboratory experiments and limited field experience indicate that coal will swell during sorption of a gas and shrink during desorption of a gas. The swelling and shrinkage may change the permeability of the coal. In this study, the permeability of coal was determined by using carbon dioxide as the flowing fluid. Coal samples with different dimensions were prepared for laboratory permeability tests. Carbon dioxide was injected into the coal and the permeability was determined by using pressure transient methods. The confining pressure was variedto cover a wide range of depths. The permeability was also determined as a function of exposure time of carbon dioxide while the confining stress was kept constant. CT scans were taken before and after the introduction of carbon dioxide. Results show that the porosity and permeability of the coal matrix was very low. The paper presents experimental data and theoretical aspects of the flow of carbon dioxide through a coal sample during pressure transient tests. The suitability of the pressure transient methods for determining permeability of coal during carbon dioxide injection is discussed in the paper.

  11. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    NASA Astrophysics Data System (ADS)

    Park, Chung Hae; Krawczak, Patricia

    2015-04-01

    In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  12. Effective parameterizations of three nonwetting phase relative permeability models

    NASA Astrophysics Data System (ADS)

    Yang, Zhenlei; Mohanty, Binayak P.

    2015-08-01

    Describing convective nonwetting phase flow in unsaturated porous media requires knowledge of the nonwetting phase relative permeability. This study was conducted to formulate and derive a generalized expression for the nonwetting phase relative permeability via combining with the Kosugi water retention function. This generalized formulation is then used to flexibly investigate the Burdine, Mualem, and Alexander and Skaggs models' prediction accuracy for relative nonwetting phase permeability. The model and data comparison results show that these three permeability models, if used in their original form, but applied to the nonwetting phase, could not predict the experimental data well. The optimum pore tortuosity and connectivity value is thus obtained for the improved prediction of relative nonwetting phase permeability. As a result, the effective parameterization of (α,β,η) parameters in the modified Burdine, modified Mualem, and modified Alexander and Skaggs permeability models were found to be (2.5, 2, 1), (2, 1, 2), and (2.5, 1, 1), respectively. These three suggested models display the highest accuracy among the nine relative permeability models investigated in this study. However, the corresponding discontinuous nonwetting phase and the liquid film flow should be accounted for in future for the improved prediction of nonwetting phase relative permeability at very high and very low water saturation range, respectively.

  13. Permeability of small nonelectrolytes through lipid bilayer membranes

    SciTech Connect

    Walter, A.; Gutknecht, J.

    1986-01-01

    Diffusion of small nonelectrolytes through planar lipid bilayer membranes (egg phosphatidylcholine-decane) was examined by correlating the permeability coefficients of 22 solutes with their partition coefficients between water and four organic solvents. High correlations were observed with hexadecane and olive oil (r = 0.95 and 0.93), but not octanol and ether (r = 0.75 and 0.74). Permeabilities of the seven smallest molecules (mol wt less than 50) (water, hydrofluoric acid, hydrochloric acid, ammonia, methylamine, formic acid and formamide) were 2- to 15-fold higher than the values predicted by the permeabilities of the larger molecules (50 less than mol wt less than 300). The extra permeabilities of the seven smallest molecules were not correlated with partition coefficients but were inversely correlated with molecular volumes. The larger solute permeabilities also decreased with increasing molecular volume, but the relationship was neither steep nor significant. The permeability pattern cannot be explained by the molecular volume dependence of partitioning into the bilayer or by the existence of transient aqueous pores. The molecular volume dependence of solute permeability suggests that the membrane barrier behaves more like a polymer than a liquid hydrocarbon. All the data are consistent with the solubility-diffusion model, which can explain both the hydrophobicity dependence and the molecular volume dependence of nonelectrolyte permeability.

  14. Determination of hydrogen permeability in uncoated and coated superalloys

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Vesely, E. J., Jr.; Hill, V. L.

    1981-01-01

    Hydrogen permeability, diffusivity, and solubility data were obtained for eight wrought and cast high temperature alloys over the range 650 to 815 C. Data were obtained for both uncoated alloys and wrought alloys coated with four commercially available coatings. Activation energies for permeability, diffusivity and solubility were calculated.

  15. Permeability of hydrogen isotopes through nickel-based alloys

    SciTech Connect

    Edge, E.M.; Mitchell, D.J.

    1983-04-01

    Permeabilities and diffusivities of deuterium in several nickel-based alloys were measured in this investigation. Measurements were made by the gas-phase breakthrough technique in the temperature range 200 to 450/sup 0/C with applied pressures ranging from 1 to 100 kPa. The results were extrapolated to predict the permeabilities (K) of the alloys at room temperature. The alloy with the smallest deuterium permeability is Carpenter 49, for which K = 4.3 x 10/sup -18/ mol s/sup -1/ m/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The permeability of deuterium in Kovar or Ceramvar is about 80% greater than that for Carpenter 49. Premeabilities of Inconel 625, Inconel 718, Inconel 750 and Monel K-500 are all equal to about 5 x 10/sup -17/ mol m/sup -1/ s/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The validity (from a statistical standpoint) of the extrapolation of the permeabilities to room temperature is considered in detail. Published permeabilities of stainless steels and nickel-iron alloys are also reviewed. The greatest differences in permeabilities among the nickel-based alloys appear to be associated with the tendency for some alloys to form protective oxide layers. Permeabilities of deuterium through laminates containing copper are smaller than for any of the iron-nickel alloys.

  16. Nanochannel flow past permeable walls via molecular dynamics

    NASA Astrophysics Data System (ADS)

    Xie, Jian-Fei; Cao, Bing-Yang

    2016-07-01

    The nanochannel flow past permeable walls with nanopores is investigated by molecular dynamics (MD) simulations, including the density distribution, velocity field, molecular penetration mechanism and surface friction coefficient. A low density distribution has been found at the gas-wall interface demonstrating the low pressure region. In addition, there exists a jump of the gas density on the permeable surface, which indicates the discontinuity of the density distribution across the permeable surface. On the other hand, the nanoscale vortices are observed in nanopores of the permeable wall, and the reduced mass flux of the flow in nanopores results in a shifted hydrodynamic boundary above the permeable surface. Particularly the slip length of the gas flow on the permeable surface is pronounced a non-linear function of the molecular mean free path, which produces a large value of the tangential momentum accommodation coefficient (TMAC) and a big portion of the diffusive refection. Moreover, the gas-gas interaction and multi-collision among gas molecules may take place in nanopores, which contribute to large values of TMAC. Consequently the boundary friction coeffic