Science.gov

Sample records for dual somatosensory input

  1. Morning/Evening differences in somatosensory inputs for postural control.

    PubMed

    Bougard, Clément; Davenne, Damien

    2014-01-01

    The underlying processes responsible for the differences between morning and afternoon measurements of postural control have not yet been clearly identified. This study was conducted to specify the role played by vestibular, visual, and somatosensory inputs in postural balance and their link with the diurnal fluctuations of body temperature and vigilance level. Nineteen healthy male subjects (mean age: 20.5 ± 1.3 years) participated in test sessions at 6:00 a.m. and 6:00 p.m. after a normal night's sleep. Temperature was measured before the subjects completed a sign cancellation test and a postural control evaluation with eyes both open and closed. Our results confirmed that postural control improved throughout the day according to the circadian rhythm of body temperature and sleepiness/vigilance. The path length as a function of surface ratio increased between 6:00 a.m. and 6:00 p.m. This is due to a decrease in the centre-of-pressure surface area, which is associated with an increase in path length. Romberg's index did not change throughout the day; however, the spectral analysis (fast Fourier transform) of the centre-of-pressure excursions (in anteroposterior and mediolateral directions) indicated that diurnal fluctuations in postural control may occur via changes in the different processes responsible for readjustment via muscle contractions.

  2. Callosal projections in rat somatosensory cortex are altered by early removal of afferent input.

    PubMed Central

    Koralek, K A; Killackey, H P

    1990-01-01

    During the first postnatal week, the distribution of callosal projection neurons in the rat somatosensory cortex changes from a uniform to a discontinuous pattern. To determine if this change is influenced by afferent inputs to the somatosensory cortex, the effect of both early unilateral infraorbital nerve section and unilateral removal of the dorsal thalamus on the distribution of callosal projections in rat somatosensory cortex was examined. One month after either of the above manipulations at birth, the tangential distribution of callosal projections in the somatosensory cortex was examined using the combined retrograde and anterograde transport of horseradish peroxidase. Both manipulations alter the distribution of callosal projection neurons and terminations in the somatosensory cortex. After infraorbital nerve section, the distribution of callosal projections is altered in the contralateral primary somatosensory cortex. The abnormalities observed are consistent with the altered distribution of thalamocortical projections. In addition, consistent abnormalities were observed in the pattern of callosal projections of the second somatosensory area of both hemispheres. Most notably, they are absent in a portion of the region that contains the representation of the mystacial vibrissae and sinus hairs in this area. Thalamic ablation resulted in highly aberrant patterns of callosal projections in the somatosensory cortex on the operated side, where abnormal bands and clusters of callosal projections were observed in apparently random locations. These results are interpreted as evidence that both peripheral and central inputs influence the maturational changes in the distribution of callosal projection neurons. Images PMID:2304906

  3. A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex.

    PubMed

    Renier, Nicolas; Dominici, Chloe; Erzurumlu, Reha S; Kratochwil, Claudius F; Rijli, Filippo M; Gaspar, Patricia; Chédotal, Alain

    2017-03-28

    In mammals, tactile information is mapped topographically onto the contralateral side of the brain in the primary somatosensory cortex (S1). Here we describe that in Robo3 mouse mutants a sizeable fraction of the trigemino-thalamic inputs project ipsilaterally rather than contralaterally. The resulting mixture of crossed and uncrossed sensory inputs creates bilateral whisker maps in the thalamus and cortex. Surprisingly, these maps are segregated resulting in a duplication of whisker representations and a doubling of the number of barrels without changes of the S1 size. Sensory deprivation shows competitive interactions between the ipsi/contralateral whisker maps. This study reveals that the somatosensory system can form a somatotopic map to integrate bilateral sensory inputs but organizes the maps in a different way than in the visual, or auditory systems. Therefore, while the molecular pre-patterning constrains their orientation and position, the preservation of the continuity of inputs defines the layout of the somatosensory maps.

  4. Somatosensory Anticipatory Alpha Activity Increases to Suppress Distracting Input

    ERIC Educational Resources Information Center

    Haegens, Saskia; Luther, Lisa; Jensen, Ole

    2012-01-01

    Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task…

  5. Somatosensory Anticipatory Alpha Activity Increases to Suppress Distracting Input

    ERIC Educational Resources Information Center

    Haegens, Saskia; Luther, Lisa; Jensen, Ole

    2012-01-01

    Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task…

  6. Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets.

    PubMed

    Blouin, Jean; Saradjian, Anahid H; Lebar, Nicolas; Guillaume, Alain; Mouchnino, Laurence

    2014-11-01

    Behavioral studies have suggested that the brain uses a visual estimate of the hand to plan reaching movements toward visual targets and somatosensory inputs in the case of somatosensory targets. However, neural correlates for distinct coding of the hand according to the sensory modality of the target have not yet been identified. Here we tested the twofold hypothesis that the somatosensory input from the reaching hand is facilitated and inhibited, respectively, when planning movements toward somatosensory (unseen fingers) or visual targets. The weight of the somatosensory inputs was assessed by measuring the amplitude of the somatosensory evoked potential (SEP) resulting from vibration of the reaching finger during movement planning. The target sensory modality had no significant effect on SEP amplitude. However, Spearman's analyses showed significant correlations between the SEPs and reaching errors. When planning movements toward proprioceptive targets without visual feedback of the reaching hand, participants showing the greater SEPs were those who produced the smaller directional errors. Inversely, participants showing the smaller SEPs when planning movements toward visual targets with visual feedback of the reaching hand were those who produced the smaller directional errors. No significant correlation was found between the SEPs and radial or amplitude errors. Our results indicate that the sensory strategy for planning movements is highly flexible among individuals and also for a given sensory context. Most importantly, they provide neural bases for the suggestion that optimization of movement planning requires the target and the reaching hand to both be represented in the same sensory modality. Copyright © 2014 the American Physiological Society.

  7. Responses to somatosensory input by afferent and efferent neurons in the vestibular nerve of the frog.

    PubMed

    Caston, J; Bricout-Berthout, A

    1984-01-01

    In the frog, we have recorded the activity of efferent and afferent fibers in the nerve of the horizontal semicircular canal in response to somatosensory stimulation. Recordings were made extracellularly by means of glass micropipettes filled with 2 M NaCl, and somatosensory stimulation was produced either by electrical stimulation of the sciatic nerve (ipsi- or contralateral to the recording side) or by vibratory stimulation of the gastrocnemius. The discharge frequency of 43% of the efferent fibers recorded was significantly increased by such stimulation, while the activity of the others was unaffected. The discharge rate of the afferent fibers was either significantly increased (in about 11% of the cases when the results were pooled together) or significantly decreased (in about 22% of the cases) by stimulation of the somatosensory system. The latencies of the responses ranged from 5 to 50 ms. These results show that: somatosensory input can influence the activity of the vestibular apparatus at the most peripheral level; modulation of the afferent discharge is mediated by the efferent vestibular system (EVS); the influence of the EVS on the vestibular afferent activity is both inhibitory and facilitatory, and the responses to somatosensory stimulation are mediated by both long-latency polysynaptic and short-latency oligosynaptic pathways. The functional significance of these two pathways is discussed.

  8. The startle reaction to somatosensory inputs: different response pattern to stimuli of upper and lower limbs.

    PubMed

    Alvarez-Blanco, Silvio; Leon, Lucia; Valls-Solé, Josep

    2009-05-01

    Unexpected sensory inputs can generate a patterned startle reaction, aimed at protection and defense. Experimentally, it is usually triggered by auditory stimuli while the startle reaction to somatosensory inputs (SSS) has not received much attention so far. This may be in part due to the fact that somatosensory inputs inevitably cause local reactions, such as short and long latency reflexes and withdrawal reactions, which could interfere with recognition of the startle-related activity. Therefore, we have undertaken a study aimed at separating the SSS from other responses by exploring the responses that are common to somatosensory stimuli applied to different sites and examining the inhibitory effects of prepulse stimuli. In 13 healthy naive subjects, we applied electrical stimuli to the median nerve at the wrist (MW) or the posterior tibial nerve at the ankle (PT) and recorded from orbicularis oculi (OOC), masseter (MAS), sternocleidomastoid (SCM) and representative muscles of the limbs being stimulated (flexor carpi radialis for MW and tibialis anterior for PT). In random trials, we also applied prepulse stimuli, either a low-intensity auditory stimulus or low-intensity electrical stimuli, 100 ms before the SSS-eliciting stimulus. The pattern of SSS was different for upper and lower limb stimuli. While stimuli applied to MW induced a prominent reaction of the OOC, at a mean latency of 61.1 ms (SD = 16.3 ms), followed by the SCM at a mean latency of 83.3 ms (SD = 28.6 ms), those applied to the PT caused a small or absent response in the OOC and a consistent response of the SCM at a mean latency of 89.7 ms (SD = 30.1 ms). Prepulse stimuli effectively inhibited the responses of facial and neck muscles but only partially those of the wrist flexors to MW or the tibialis anterior to PT. Our results indicate that, although there are common neck and facial muscle reactions to somatosensory stimuli applied to upper and lower limbs, the pattern of the SSS differs

  9. Locomotor adaptation and aftereffects in patients with reduced somatosensory input due to peripheral neuropathy.

    PubMed

    Bunday, Karen L; Bronstein, Adolfo M

    2009-12-01

    We studied 12 peripheral neuropathy patients (PNP) and 13 age-matched controls with the "broken escalator" paradigm to see how somatosensory loss affects gait adaptation and the release and recovery ("braking") of the forward trunk overshoot observed during this locomotor aftereffect. Trunk displacement, foot contact signals, and leg electromyograms (EMGs) were recorded while subjects walked onto a stationary sled (BEFORE trials), onto the moving sled (MOVING or adaptation trials), and again onto the stationary sled (AFTER trials). PNP were unsteady during the MOVING trials, but this progressively improved, indicating some adaptation. During the after trials, 77% of control subjects displayed a trunk overshoot aftereffect but over half of the PNP (58%) did not. The PNP without a trunk aftereffect adapted to the MOVING trials by increasing distance traveled; subsequently this was expressed as increased distance traveled during the aftereffect rather than as a trunk overshoot. This clear separation in consequent aftereffects was not seen in the normal controls suggesting that, as a result of somatosensory loss, some PNP use distinctive strategies to negotiate the moving sled, in turn resulting in a distinct aftereffects. In addition, PNP displayed earlier than normal anticipatory leg EMG activity during the first after trial. Although proprioceptive inputs are not critical for the emergence or termination of the aftereffect, somatosensory loss induces profound changes in motor adaptation and anticipation. Our study has found individual differences in adaptive motor performance, indicative that PNP adopt different feed-forward gait compensatory strategies in response to peripheral sensory loss.

  10. Dual motion valve with single motion input

    NASA Technical Reports Server (NTRS)

    Belew, Robert (Inventor)

    1987-01-01

    A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.

  11. Plasticity of somatosensory inputs to the cochlear nucleus--implications for tinnitus.

    PubMed

    Shore, S E

    2011-11-01

    This chapter reviews evidence for functional connections of the somatosensory and auditory systems at the very lowest levels of the nervous system. Neural inputs from the dosal root and trigeminal ganglia, as well as their brain stem nuclei, cuneate, gracillis and trigeminal, terminate in the cochlear nuclei. Terminations are primarily in the shell regions surrounding the cochlear nuclei but some terminals are found in the magnocellular regions of cochlear nucleus. The effects of stimulating these inputs on multisensory integration are shown as short and long-term, both suppressive and enhancing. Evidence that these projections are glutamatergic and are altered after cochlear damage is provided in the light of probable influences on the modulation and generation of tinnitus.

  12. Plasticity of somatosensory inputs to the cochlear nucleus – implications for tinnitus

    PubMed Central

    Shore, S.E.

    2011-01-01

    This chapter reviews evidence for functional connections of the somatosensory and auditory systems at the very lowest levels of the nervous system. Neural inputs from the dosal root and trigeminal ganglia, as well as their brain stem nuclei, cuneate, gracillis and trigeminal, terminate in the cochlear nuclei. Terminations are primarily in the shell regions surrounding the cochlear nuclei but some terminals are found in the magnocellular regions of cochlear nucleus. The effects of stimulating these inputs on multisensory integration are shown as short and long-term, both suppressive and enhancing. Evidence that these projections are glutamatergic and are altered after cochlear damage is provided in the light of probable influences on the modulation and generation of tinnitus. PMID:21620940

  13. Locomotor Adaptation and Aftereffects in Patients With Reduced Somatosensory Input Due to Peripheral Neuropathy

    PubMed Central

    Bunday, Karen L.

    2009-01-01

    We studied 12 peripheral neuropathy patients (PNP) and 13 age-matched controls with the “broken escalator” paradigm to see how somatosensory loss affects gait adaptation and the release and recovery (“braking”) of the forward trunk overshoot observed during this locomotor aftereffect. Trunk displacement, foot contact signals, and leg electromyograms (EMGs) were recorded while subjects walked onto a stationary sled (BEFORE trials), onto the moving sled (MOVING or adaptation trials), and again onto the stationary sled (AFTER trials). PNP were unsteady during the MOVING trials, but this progressively improved, indicating some adaptation. During the after trials, 77% of control subjects displayed a trunk overshoot aftereffect but over half of the PNP (58%) did not. The PNP without a trunk aftereffect adapted to the MOVING trials by increasing distance traveled; subsequently this was expressed as increased distance traveled during the aftereffect rather than as a trunk overshoot. This clear separation in consequent aftereffects was not seen in the normal controls suggesting that, as a result of somatosensory loss, some PNP use distinctive strategies to negotiate the moving sled, in turn resulting in a distinct aftereffects. In addition, PNP displayed earlier than normal anticipatory leg EMG activity during the first after trial. Although proprioceptive inputs are not critical for the emergence or termination of the aftereffect, somatosensory loss induces profound changes in motor adaptation and anticipation. Our study has found individual differences in adaptive motor performance, indicative that PNP adopt different feed-forward gait compensatory strategies in response to peripheral sensory loss. PMID:19741105

  14. Interaction of tactile input in the human primary and secondary somatosensory cortex--a magnetoencephalographic study.

    PubMed

    Hoechstetter, K; Rupp, A; Stancák, A; Meinck, H M; Stippich, C; Berg, P; Scherg, M

    2001-09-01

    Interaction of simultaneous tactile input at two finger sites in primary (SI) and secondary somatosensory cortex (SII) was studied by whole-head magnetoencephalography. Short pressure pulses were delivered to fingers of the right and left hand at an interstimulus interval of 1.6 s. The first phalanx of the left digit 1 and four other sites were stimulated either separately or simultaneously. We compared four sites with increasing distance: the second phalanx of left digit 1, left digit 5, and digits 1 and 5 of the right hand. The temporal evolution of source activity in the contralateral SI and bilateral SII was calculated using spatiotemporal source analysis. Interaction was assessed by comparing the source activity during simultaneous stimulation with the sum of the source activities elicited by separate stimulation. Significant suppressive interaction was observed in contralateral SI only for stimuli at the same hand, decreasing with distance. In SII, all digits of the same and the opposite hand interacted significantly with left digit 1. When stimulating bilaterally, SII source waveforms closely resembled the time course of the response to separate stimulation of the opposite hand. Thus, in bilateral simultaneous stimulation, the contralateral input arriving first in SII appeared to inhibit the later ipsilateral input. Similarly, the separate response to input at two unilateral finger sites which arrived slightly earlier in SII dominated the simultaneous response. Our results confirm previous findings of considerable overlap in the cortical hand representation in SII and illustrate hemispheric specialization to contralateral input when simultaneous stimuli occur bilaterally.

  15. The primary somatosensory cortex and the insula contribute differently to the processing of transient and sustained nociceptive and non-nociceptive somatosensory inputs.

    PubMed

    Hu, Li; Zhang, Li; Chen, Rui; Yu, Hongbo; Li, Hong; Mouraux, André

    2015-11-01

    Transient nociceptive stimuli elicit consistent brain responses in the primary and secondary somatosensory cortices (S1, S2), the insula and the anterior and mid-cingulate cortex (ACC/MCC). However, the functional significance of these responses, especially their relationship with sustained pain perception, remains largely unknown. Here, using functional magnetic resonance imaging, we characterize the differential involvement of these brain regions in the processing of sustained nociceptive and non-nociceptive somatosensory input. By comparing the spatial patterns of activity elicited by transient (0.5 ms) and long-lasting (15 and 30 s) stimuli selectively activating nociceptive or non-nociceptive afferents, we found that the contralateral S1 responded more strongly to the onset of non-nociceptive stimulation as compared to the onset of nociceptive stimulation and the sustained phases of nociceptive and non-nociceptive stimulation. Similarly, the anterior insula responded more strongly to the onset of nociceptive stimulation as compared to the onset of non-nociceptive stimulation and the sustained phases of nociceptive and non-nociceptive stimulation. This suggests that S1 is specifically sensitive to changes in incoming non-nociceptive input, whereas the anterior insula is specifically sensitive to changes in incoming nociceptive input. Second, we found that the MCC responded more strongly to the onsets as compared to the sustained phases of both nociceptive and non-nociceptive stimulation, suggesting that it could be involved in the detection of change regardless of sensory modality. Finally, the posterior insula and S2 responded maximally during the sustained phase of non-nociceptive stimulation but not nociceptive stimulation, suggesting that these regions are preferentially involved in processing non-nociceptive somatosensory input.

  16. Keeping in touch with the visual system: spatial alignment and multisensory integration of visual-somatosensory inputs.

    PubMed

    Mahoney, Jeannette R; Molholm, Sophie; Butler, John S; Sehatpour, Pejman; Gomez-Ramirez, Manuel; Ritter, Walter; Foxe, John J

    2015-01-01

    Correlated sensory inputs coursing along the individual sensory processing hierarchies arrive at multisensory convergence zones in cortex where inputs are processed in an integrative manner. The exact hierarchical level of multisensory convergence zones and the timing of their inputs are still under debate, although increasingly, evidence points to multisensory integration (MSI) at very early sensory processing levels. While MSI is said to be governed by stimulus properties including space, time, and magnitude, violations of these rules have been documented. The objective of the current study was to determine, both psychophysically and electrophysiologically, whether differential visual-somatosensory (VS) integration patterns exist for stimuli presented to the same versus opposite hemifields. Using high-density electrical mapping and complementary psychophysical data, we examined multisensory integrative processing for combinations of visual and somatosensory inputs presented to both left and right spatial locations. We assessed how early during sensory processing VS interactions were seen in the event-related potential and whether spatial alignment of the visual and somatosensory elements resulted in differential integration effects. Reaction times to all VS pairings were significantly faster than those to the unisensory conditions, regardless of spatial alignment, pointing to engagement of integrative multisensory processing in all conditions. In support, electrophysiological results revealed significant differences between multisensory simultaneous VS and summed V + S responses, regardless of the spatial alignment of the constituent inputs. Nonetheless, multisensory effects were earlier in the aligned conditions, and were found to be particularly robust in the case of right-sided inputs (beginning at just 55 ms). In contrast to previous work on audio-visual and audio-somatosensory inputs, the current work suggests a degree of spatial specificity to the earliest

  17. Keeping in touch with the visual system: spatial alignment and multisensory integration of visual-somatosensory inputs

    PubMed Central

    Mahoney, Jeannette R.; Molholm, Sophie; Butler, John S.; Sehatpour, Pejman; Gomez-Ramirez, Manuel; Ritter, Walter; Foxe, John J.

    2015-01-01

    Correlated sensory inputs coursing along the individual sensory processing hierarchies arrive at multisensory convergence zones in cortex where inputs are processed in an integrative manner. The exact hierarchical level of multisensory convergence zones and the timing of their inputs are still under debate, although increasingly, evidence points to multisensory integration (MSI) at very early sensory processing levels. While MSI is said to be governed by stimulus properties including space, time, and magnitude, violations of these rules have been documented. The objective of the current study was to determine, both psychophysically and electrophysiologically, whether differential visual-somatosensory (VS) integration patterns exist for stimuli presented to the same versus opposite hemifields. Using high-density electrical mapping and complementary psychophysical data, we examined multisensory integrative processing for combinations of visual and somatosensory inputs presented to both left and right spatial locations. We assessed how early during sensory processing VS interactions were seen in the event-related potential and whether spatial alignment of the visual and somatosensory elements resulted in differential integration effects. Reaction times to all VS pairings were significantly faster than those to the unisensory conditions, regardless of spatial alignment, pointing to engagement of integrative multisensory processing in all conditions. In support, electrophysiological results revealed significant differences between multisensory simultaneous VS and summed V + S responses, regardless of the spatial alignment of the constituent inputs. Nonetheless, multisensory effects were earlier in the aligned conditions, and were found to be particularly robust in the case of right-sided inputs (beginning at just 55 ms). In contrast to previous work on audio-visual and audio-somatosensory inputs, the current work suggests a degree of spatial specificity to the earliest

  18. Auditory startle reflex and startle reflex to somatosensory inputs in generalized dystonia.

    PubMed

    Kiziltan, Meral E; Gunduz, Aysegul; Apaydın, Hulya; Ertan, Sibel; Kiziltan, Gunes

    2015-09-01

    Startle reflex is a generalized defense reaction after unexpected auditory, visual, or tactile stimuli. Auditory startle reflex (ASR) and startle reflex to somatosensory inputs (SSS) have never been studied in generalized dystonia. Here, we aimed to study the characteristics and changes of ASR and SSS in this group. We have examined ASR and SSS in patients with generalized dystonia (n=11) and healthy subjects (n=25) under the same conditions. ASRs and SSSs were recorded over the orbicularis oculi (O.oc), sternocleidomastoid, biceps brachii (BB), and abductor pollicis brevis (APB) muscles after bilateral auditory stimulation and unilateral median nerve electrical stimulation at the wrist, respectively. Both ASR and SSS showed the same sequence of muscle activation in both groups. However, the presence rates over the APB and BB muscles after both modalities of stimuli were significantly higher in the generalized dystonia group. ASR did not habituate in the dystonia group. Both ASR and SSS are disinhibited, and both show a similar sequence of muscle recruitment in generalized dystonia. Higher probabilities over caudal muscles probably depend on the higher excitability of motor neurons secondary to central modulation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Modulatory effects of movement sequence preparation and covert spatial attention on early somatosensory input to non-primary motor areas.

    PubMed

    Brown, Matt J N; Staines, W Richard

    2015-02-01

    Early frontal somatosensory evoked potentials (SEPs) (i.e., N30) are known to be modulated by movement. Furthermore, individuals with prefrontal lesions have enhanced early frontal SEPs. However, it is currently unclear through what mechanism the prefrontal cortex may modulate early frontal SEPs. The current study investigated whether prefrontal modulatory effects on frontal SEPs may depend on the relevancy of somatosensory input for movement (i.e., interaction with motor areas). Two experiments were conducted to determine whether selective spatial attention alone (Experiment 1-Attend and Mentally Count) or when using attended somatosensory input in the preparation of finger sequences with the limb contralateral to somatosensory stimulation (Experiment 2-Attend for Movement Preparation) could modulate SEPs. In Experiment 1, SEPs elicited by median nerve (MN) stimulation at both wrists were measured in trials when individuals attended and mentally counted vibrotactile (VibT) input at either index finger. In Experiment 2, SEPs elicited by MN stimulation at the left wrist were measured in trials when individuals used attended VibT input at the left index finger to prepare finger sequences that were contralateral to MN stimulation. In both experiments, control conditions were performed where participants received passive VibT and MN stimulation. Results from Experiment 1 confirmed that selective spatial attention alone does not modulate frontal N30 peak amplitudes. However, Experiment 2 revealed that frontal N30 peak amplitudes were decreased (i.e., gated) when individuals used attended VibT input at the left index finger to prepare contralateral finger sequences. These results support a role of sensory gating of early frontal SEPs during finger sequence preparation of the limb contralateral to MN stimulation that may result from increased activity in prefrontal, motor preparatory areas, and basal ganglia.

  20. Parallel organization of proprioceptive inputs from joint receptors to cortical somatosensory areas I and II in the cat.

    PubMed Central

    Mackie, P D; Zhang, H Q; Schmidt, R F; Rowe, M J

    1996-01-01

    1. Studies in monkeys indicate that proprioceptive and tactile inputs are conveyed from the thalamus to the primary somatosensory cortex (SI) and thence to the secondary somatosensory area (SII) in a serial scheme. In contrast, in the cat, tactile information is conveyed in parallel from the thalamus to SI and SII. The present study, in the cat, employed reversible inactivation of SI to determine whether proprioceptive inputs to SII from joint receptors depend on an indirect serial path via SI or are conveyed over a direct path from the thalamus. 2. SI and SII foci for knee joint inputs were determined with evoked potential mapping. Reversible inactivation of the SI focus by cooling had no effect on the amplitude, latency or time course of SII potentials evoked by joint inputs. There was also no consistent effect on the response levels of individual SII neurones examined during SI inactivation. Furthermore, there was no attenuation of the later components of the responses, and therefore no evidence that these depended on an indirect path to SII via SI. 3. Results demonstrate that proprioceptive inputs project directly from thalamus to SII over a pathway organized in parallel with that to SI, in contrast to the serial scheme reported for proprioceptive processing in primates. Images Figure 4 PMID:8842010

  1. Cerebellar inhibitory output shapes the temporal dynamics of its somatosensory inferior olivary input.

    PubMed

    Hogri, Roni; Segalis, Eyal; Mintz, Matti

    2014-08-01

    The cerebellum is necessary and sufficient for the acquisition and execution of adaptively timed conditioned motor responses following repeated paired presentations of a conditioned stimulus and an unconditioned stimulus. The underlying plasticity depends on the convergence of conditioned and unconditioned stimuli signals relayed to the cerebellum by the pontine nucleus and the inferior olive (IO), respectively. Adaptive timing of conditioned responses relies on the correctly predicted onset of the unconditioned stimulus, usually a noxious somatosensory stimulus. We addressed two questions: First, does the IO relay information regarding the duration of somatosensory stimuli to the cerebellum? Multiple-unit recordings from the IO of anesthetized rats that received periorbital airpuffs of various durations revealed that sustained somatosensory stimuli are invariably transformed into phasic IO outputs. The phasic response was followed by a post-peak depression in IO activity as compared to baseline, providing the cerebellum with a highly synchronous signal, time-locked to the stimulus' onset. Second, we sought to examine the involvement of olivocerebellar interactions in this signal transformation. Cerebello-olivary inhibition was interrupted using temporary pharmacological inactivation of cerebellar output nuclei, resulting in more sustained (i.e., less synchronous) IO responses to sustained somatosensory stimuli, in which the post-peak depression was substituted with elevated activity as compared to baseline. We discuss the possible roles of olivocerebellar negative-feedback loops and baseline cerebello-olivary inhibition levels in shaping the temporal dynamics of the IO's response to somatosensory stimuli and the consequences of this shaping for cerebellar plasticity and its ability to adapt to varying contexts.

  2. Dual arm robotic system with sensory input

    NASA Technical Reports Server (NTRS)

    Ozguner, U.

    1987-01-01

    The need for dual arm robots in space station assembly and satellite maintainance is of increasing significance. Such robots will be in greater demand in the future when numerous tasks will be assigned to them to relieve the direct intervention of humans in space. Technological demands from these robots will be high. They will be expected to perform high speed tasks with a certain degree of autonomy. Various levels of sensing will have to be used in a sophisticated control scheme. Ongoing research in control, sensing and real-time software to produce a two-arm robotic system than can accomplish generic assembly tasks is discussed. The control hierarchy and the specific control approach are discussed. A decentralized implementation of model-reference adaptive control using Variable Structure controllers and the incorporation of tactile feedback is considered.

  3. Short-term dynamics of causal information transfer in thalamocortical networks during natural inputs and microstimulation for somatosensory neuroprosthesis.

    PubMed

    Semework, Mulugeta; DiStasio, Marcello

    2014-01-01

    Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain

  4. Short-term dynamics of causal information transfer in thalamocortical networks during natural inputs and microstimulation for somatosensory neuroprosthesis

    PubMed Central

    Semework, Mulugeta; DiStasio, Marcello

    2014-01-01

    Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain

  5. Attention induces reciprocal activity in the human somatosensory cortex enhancing relevant- and suppressing irrelevant inputs from fingers.

    PubMed

    Iguchi, Yoshinobu; Hoshi, Yoko; Tanosaki, Masato; Taira, Masato; Hashimoto, Isao

    2005-05-01

    We studied whether attention regulates information processing in the human primary somatosensory cortex (SI) by selective enhancement of relevant- and suppression of irrelevant information. Under successive and simultaneous electric stimuli to both the right index and middle fingers, tactile stimuli were randomly (20%) presented on one of the two fingers in separate two runs exchanging the finger. Subjects were requested to discriminate the tactile stimuli in an attention task to induce attention to one finger and to ignore the stimuli in a control task to avoid such an attention focus. Somatosensory evoked magnetic fields were measured only for the two-finger electric stimulation and an early component (M50) was analyzed. In spite of the two-finger simultaneous stimulation, attention to either the index or middle finger lowered or heightened the M50-sourse location, respectively. The attention task did not increase the M50 amplitude. Attention to a finger enhanced selectively the representation of the finger in the SI cortex. However, this SI activity did not increase the M50 amplitude, suggesting that the attention suppressed another finger region receiving the unattended inputs. Attention regulates the SI activity by selectively enhancing the task-relevant information and by filtering out other noise inputs.

  6. Synaptic Properties of Thalamic Input to the Subgranular Layers of Primary Somatosensory and Auditory Cortices in the Mouse

    PubMed Central

    Viaene, Angela N.; Petrof, Iraklis; Sherman, S. Murray

    2011-01-01

    The classification of synaptic inputs is an essential part of understanding brain circuitry. In the present study, we examined the synaptic properties of thalamic inputs to pyramidal neurons in layers 5a, 5b, and 6 of primary somatosensory (S1) and auditory (A1) cortices in mouse thalamocortical slices. Stimulation of the ventral posterior medial nucleus (VPM) and the ventral division of the medial geniculate body (MGBv) resulted in three distinct response classes, two of which have never been described before in thalamocortical projections. Class 1A responses included synaptic depression and all-or-none responses while Class 1B responses exhibited synaptic depression and graded responses. Class 1C responses are characterized by mixed facilitation and depression as well as graded responses. Activation of metabotropic glutamate receptors was not observed in any of the response classes. We conclude that Class 1 responses can be broken up into three distinct subclasses, and that thalamic inputs to the subgranular layers of cortex may combine with other, intracortical inputs to drive their postsynaptic target cells. We also integrate these results with our recent, analogous study of thalamocortical inputs to granular and supragranular layers (Viaene et al., 2011). PMID:21900553

  7. Do Visual and Vestibular Inputs Compensate for Somatosensory Loss in the Perception of Spatial Orientation? Insights from a Deafferented Patient

    PubMed Central

    Bringoux, Lionel; Scotto Di Cesare, Cécile; Borel, Liliane; Macaluso, Thomas; Sarlegna, Fabrice R.

    2016-01-01

    The present study aimed at investigating the consequences of a massive loss of somatosensory inputs on the perception of spatial orientation. The occurrence of possible compensatory processes for external (i.e., object) orientation perception and self-orientation perception was examined by manipulating visual and/or vestibular cues. To that aim, we compared perceptual responses of a deafferented patient (GL) with respect to age-matched Controls in two tasks involving gravity-related judgments. In the first task, subjects had to align a visual rod with the gravitational vertical (i.e., Subjective Visual Vertical: SVV) when facing a tilted visual frame in a classic Rod-and-Frame Test. In the second task, subjects had to report whether they felt tilted when facing different visuo-postural conditions which consisted in very slow pitch tilts of the body and/or visual surroundings away from vertical. Results showed that, much more than Controls, the deafferented patient was fully dependent on spatial cues issued from the visual frame when judging the SVV. On the other hand, the deafferented patient did not rely at all on visual cues for self-tilt detection. Moreover, the patient never reported any sensation of tilt up to 18° contrary to Controls, hence showing that she did not rely on vestibular (i.e., otoliths) signals for the detection of very slow body tilts either. Overall, this study demonstrates that a massive somatosensory deficit substantially impairs the perception of spatial orientation, and that the use of the remaining sensory inputs available to a deafferented patient differs regarding whether the judgment concerns external vs. self-orientation. PMID:27199704

  8. Cortical inhibition of laser pain and laser-evoked potentials by non-nociceptive somatosensory input.

    PubMed

    Testani, Elisa; Le Pera, Domenica; Del Percio, Claudio; Miliucci, Roberto; Brancucci, Alfredo; Pazzaglia, Costanza; De Armas, Liala; Babiloni, Claudio; Rossini, Paolo Maria; Valeriani, Massimiliano

    2015-10-01

    Although the inhibitory action that tactile stimuli can have on pain is well documented, the precise timing of the interaction between the painful and non-painful stimuli in the central nervous system is unclear. The aim of this study was to investigate this issue by measuring the timing of the amplitude modulation of laser evoked potentials (LEPs) due to conditioning non-painful stimuli. LEPs were recorded from 31 scalp electrodes in 10 healthy subjects after painful stimulation of the right arm (C6-C7 dermatomes). Non-painful electrical stimuli were applied by ring electrodes on the second and third finger of the right hand. Electrical stimuli were delivered at +50, +150, +200 and +250 ms interstimulus intervals (ISIs) after the laser pulses. LEPs obtained without any conditioning stimulation were used as a baseline. As compared to the baseline, non-painful electrical stimulation reduced the amplitude of the vertex N2/P2 LEP component and the laser pain rating when electrical stimuli followed the laser pulses only at +150 and +200 ms ISIs. As at these ISIs the collision between the non-painful and painful input is likely to take place at the cortical level, we can conclude that the late processing of painful (thermal) stimuli is partially inhibited by the processing of non-painful (cutaneous) stimuli within the cerebral cortex. Moreover, our results do not provide evidence that non-painful inputs can inhibit pain at a lower level, including the spinal cord.

  9. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input.

    PubMed

    Brown, Matt J N; Staines, W Richard

    2016-02-15

    Somatosensory evoked potentials (SEPs) represent somatosensory processing in non-primary motor areas (i.e. frontal N30 and N60) and somatosensory cortices (i.e. parietal P50). It is well-known that the premotor cortex (PMC) and prefrontal cortex (PFC) are involved in the preparation and planning of upper limb movements but it is currently unclear how they modulate somatosensory processing for upper limb motor control. In the current study, two experiments examined SEP modulations after continuous theta burst stimulation (cTBS) was used to transiently disrupt the left PMC (Experiment 1) and right PFC (Experiment 2). Both Experiment 1 (n=15) and Experiment 2 (n=16) used pre-post experimental designs. In both experiments participants performed a task requiring detection of varying amplitudes of attended vibrotactile (VibT) stimuli to the left index finger (D2) and execution of a pre-matched finger sequence with the right (contralateral) hand to specific VibT targets. During the task, SEPs were measured to median nerve (MN) stimulations time-locked during pre-stimulus (250 ms before VibT), early response selection (250 ms after VibT), late preparatory (750 ms after VibT) and execution (1250 ms VibT) phases. The key findings of Experiment 1 revealed significant decreases in N30 and N60 peak amplitudes after cTBS to PMC. In contrast, the results of Experiment 2, also found significant decreased N60 peak amplitudes as well as trends for increased N30 and P50 peak amplitudes. A direct comparison of Experiment 1 and Experiment 2 confirmed differential modulation of N30 peak amplitudes after PMC (gated) compared to PFC (enhanced) cTBS. Collectively, these results support that both the left PMC and right PFC have modulatory roles on early somatosensory input into non-primary motor areas, such as PMC and supplementary motor area (SMA), represented by frontal N30 and N60 SEPs. These results confirm that PMC and PFC are both part of a network that regulates somatosensory input

  10. Potentiation of convergent synaptic inputs onto pyramidal neurons in somatosensory cortex: dependence on brain wave frequencies and NMDA receptor subunit composition.

    PubMed

    Pilli, J; Kumar, S S

    2014-07-11

    N-methyl-d-aspartate receptors (NMDARs) at layer (L)1/primary whisker motor cortex synaptic inputs are distinct from thalamic/striatal (Str) synaptic inputs onto L5 pyramidal neurons in the rat somatosensory cortex. However, the consequences of differential expression of putative GluN3A-containing triheteromeric NMDARs at L1 inputs and GluN2A-containing diheteromeric NMDARs at Str inputs on plasticity of the underlying synapses at the respective inputs remain unknown. Here we demonstrate that L1, but not Str, synapses are potentiated following delta burst stimulation (dBS). This potentiation is blocked by d-serine and/or intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) suggesting that it is subunit-specific and dependent on elevations in intracellular Ca(2+). Interestingly, ifenprodil, the GluN2B-preferring antagonist, suppresses baseline L1 responses but does not prevent induction of dBS-evoked potentiation. Unlike L1, Str synapses are maximally potentiated following theta burst stimulation (tBS) and this potentiation is blocked with BAPTA and/or the GluN2A-preferring antagonist NVP-AAM077. We show further that while dBS is both necessary and sufficient to potentiate L1 synapses, tBS is most effective in potentiating Str synapses. Our data suggest distinct potentiating paradigms for the two convergent inputs onto pyramidal neurons in the somatosensory cortex and co-dependence of synaptic potentiation on brain wave-tuned frequencies of burst stimulation and subunit composition of underlying NMDARs. A model for predicting the likelihood of enhancing synaptic efficacy is proposed based on Ca(2+) influx through these receptors and integration of EPSPs at these inputs. Together, these findings raise the possibility of input-specific enhancements of synaptic efficacy in neurons as a function of the animal's behavioral state and/or arousal in vivo.

  11. The Dual Nature of Early-Life Experience on Somatosensory Processing in the Human Infant Brain.

    PubMed

    Maitre, Nathalie L; Key, Alexandra P; Chorna, Olena D; Slaughter, James C; Matusz, Pawel J; Wallace, Mark T; Murray, Micah M

    2017-04-03

    Every year, 15 million preterm infants are born, and most spend their first weeks in neonatal intensive care units (NICUs) [1]. Although essential for the support and survival of these infants, NICU sensory environments are dramatically different from those in which full-term infants mature and thus likely impact the development of functional brain organization [2]. Yet the integrity of sensory systems determines effective perception and behavior [3, 4]. In neonates, touch is a cornerstone of interpersonal interactions and sensory-cognitive development [5-7]. NICU treatments used to improve neurodevelopmental outcomes rely heavily on touch [8]. However, we understand little of how brain maturation at birth (i.e., prematurity) and quality of early-life experiences (e.g., supportive versus painful touch) interact to shape the development of the somatosensory system [9]. Here, we identified the spatial, temporal, and amplitude characteristics of cortical responses to light touch that differentiate them from sham stimuli in full-term infants. We then utilized this data-driven analytical framework to show that the degree of prematurity at birth determines the extent to which brain responses to light touch (but not sham) are attenuated at the time of discharge from the hospital. Building on these results, we showed that, when controlling for prematurity and analgesics, supportive experiences (e.g., breastfeeding, skin-to-skin care) are associated with stronger brain responses, whereas painful experiences (e.g., skin punctures, tube insertions) are associated with reduced brain responses to the same touch stimuli. Our results shed crucial insights into the mechanisms through which common early perinatal experiences may shape the somatosensory scaffolding of later perceptual, cognitive, and social development.

  12. THE THIRD STIMULUS TEMPORAL DISCRIMINATION THRESHOLD: FOCUSING ON THE TEMPORAL PROCESSING OF SENSORY INPUT WITHIN PRIMARY SOMATOSENSORY CORTEX.

    PubMed

    Leodori, Giorgio; Formica, Alessandra; Zhu, Xiaoying; Conte, Antonella; Belvisi, Daniele; Cruccu, Giorgio; Hallett, Mark; Berardelli, Alfredo

    2017-07-26

    The somatosensory temporal discrimination threshold (STDT) has been used in recent years to investigate time processing of sensory information but little is known about the physiological correlates of somatosensory temporal discrimination. To investigate whether the time interval required to discriminate between two stimuli varies according to the number of stimuli in the task. We used the Third Stimulus Temporal Discrimination Threshold (ThirdDT), defined as the shortest time interval at which an individual distinguishes a third stimulus after a pair of stimuli delivered at the STDT. the STDT and ThirdDT were assessed in 31 healthy subjects. In a subgroup of 10 subjects, we evaluated the effects of the stimuli intensity on the ThirdDT. In a subgroup of 16 subjects, we evaluated the effects of S1-continuous theta burst stimulation (cTBS) on the STDT and ThirdDT. ThirdDT is shorter than STDT. We found a positive correlation between STDT and ThirdDT values. As long as the stimulus intensity was within the perceivable and painless range, it did not affect ThirdDT values. S1-cTBS significantly affected both STDT and ThirdDT, though the latter was affected to a greater extent and for a longer period of time. The interval needed to discriminate between time-separated tactile stimuli is related to the number of stimuli used in the task. STDT and ThirdDT are encoded in S1 probably by a shared tactile temporal encoding mechanism whose performance rapidly changes during the perception process. ThirdDT is a new method to measure somatosensory temporal discrimination. Copyright © 2016, Journal of Neurophysiology.

  13. Dual-Modality Input in Repeated Reading for Foreign Language Learners with Different Learning Styles

    ERIC Educational Resources Information Center

    Liu, Yeu-Ting; Todd, Andrew Graeme

    2014-01-01

    Research into dual-modality theory has long rested on the assumption that presenting input in two modalities leads to better learning outcomes. However, this may not always hold true. This study explored the possible advantages of using dual modality in repeated reading--a pedagogy often used to enhance reading development--for two literacy…

  14. Dual-Modality Input in Repeated Reading for Foreign Language Learners with Different Learning Styles

    ERIC Educational Resources Information Center

    Liu, Yeu-Ting; Todd, Andrew Graeme

    2014-01-01

    Research into dual-modality theory has long rested on the assumption that presenting input in two modalities leads to better learning outcomes. However, this may not always hold true. This study explored the possible advantages of using dual modality in repeated reading--a pedagogy often used to enhance reading development--for two literacy…

  15. TAC-Cell inputs to human hand and lip induce short-term adaptation of the primary somatosensory cortex.

    PubMed

    Venkatesan, Lalit; Barlow, Steven; Popescu, Mihai; Popescu, Anda; Auer, Edward T

    2010-08-12

    A new pneumatic tactile stimulator, called the TAC-Cell, was developed in our laboratory to non-invasively deliver patterned cutaneous stimulation to the face and hand in order to study the neuromagnetic response adaptation patterns within the primary somatosensory cortex (S1) in young adult humans. Individual TAC-Cells were positioned on the glabrous surface of the right hand, and midline of the upper and lower lip vermilion. A 151-channel magnetoencephalography (MEG) scanner was used to record the cortical response to a novel tactile stimulus which consisted of a repeating 6-pulse train delivered at three different frequencies through the active membrane surface of the TAC-Cell. The evoked activity in S1 (contralateral for hand stimulation, and bilateral for lip stimulation) was characterized from the best-fit dipoles of the earliest prominent response component. The S1 responses manifested significant modulation and adaptation as a function of the frequency of the punctate pneumatic stimulus trains and stimulus site (glabrous lip versus glabrous hand).

  16. Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain.

    PubMed

    Colon, E; Legrain, V; Mouraux, A

    2012-10-01

    The periodic presentation of a sensory stimulus induces, at certain frequencies of stimulation, a sustained electroencephalographic response of corresponding frequency, known as steady-state evoked potentials (SS-EP). In visual, auditory and vibrotactile modalities, studies have shown that SS-EP reflect mainly activity originating from early, modality-specific sensory cortices. Furthermore, it has been shown that SS-EP have several advantages over the recording of transient event-related brain potentials (ERP), such as a high signal-to-noise ratio, a shorter time to obtain reliable signals, and the capacity to frequency-tag the cortical activity elicited by concurrently presented sensory stimuli. Recently, we showed that SS-EP can be elicited by the selective activation of skin nociceptors and that nociceptive SS-EP reflect the activity of a population of neurons that is spatially distinct from the somatotopically-organized population of neurons underlying vibrotactile SS-EP. Hence, the recording of SS-EP offers a unique opportunity to study the cortical representation of nociception and touch in humans, and to explore their potential crossmodal interactions. Here, (1) we review available methods to achieve the rapid periodic stimulation of somatosensory afferents required to elicit SS-EP, (2) review previous studies that have characterized vibrotactile and nociceptive SS-EP, (3) discuss the nature of the recorded signals and their relationship with transient event-related potentials and (4) outline future perspectives and potential clinical applications of this technique.

  17. Research on input shaping algorithm for rapid positioning of ultra-precision dual-stage

    NASA Astrophysics Data System (ADS)

    Song, Fazhi; Wang, Yan; Chen, Xinglin; He, Ping

    2015-08-01

    As a high-precision servo motion platform, the dual-stage lithographic system uses lots of long-stroke air-bearing linear motors to achieve rapid positioning. Residual vibration, resulting from direct drive, almost zero damping, parallel decoupling structure and high velocity, leads to too long settling time and is one of the key factors in slowing the speed of positioning. To suppress the residual vibration and realize the high positioning precision in shorter settling time, this paper designs feedforward controller with input shaping algorithm for the rotary motor. Traditional input shaper is sensitive to system models and it is very difficult to get the parameters. A parameter self-learning method based on PSO(Particle Swarm Optimization) is proposed in this paper. The simulation of the system is performed by MATLAB/Simulation. The experimental results indicate that the input shaping algorithm proposed in this paper brings about significant reduction in the positioning time of the dual-stage.

  18. Somatosensory inputs by application of KinesioTaping: effects on spasticity, balance, and gait in chronic spinal cord injury

    PubMed Central

    Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco

    2014-01-01

    Introduction: Leg paralysis, spasticity, reduced interlimb coordination, and impaired balance are the chief limitations to overground ambulation in subjects with incomplete spinal cord injury (SCI). In recent years, the application of KinesioTaping (KT) has been proposed to enhance sensory inputs, decreasing spasticity by proprioception feedback and relieving abnormal muscle tension. Because no studies have examined KT-based techniques in SCI subjects, our goal was to analyze the effects of ankle joint KT on spasticity, balance, and gait. Materials and Methods: A randomized crossover case control design was used to compare the effects of KT and conventional nonelastic silk tape (ST) in 11 chronic SCI subjects, AIS level D, with soleus/gastrocnemius (S/G) muscle spasticity and balance and gait impairments. Treatment: 48 h of treatment with KT or ST was followed by 48 h with the other technique after 1 week. A single Y-strip of Cure© tape (KT) and ST was to the S and G muscles with 0% stretch. Before and 48 h after of application of KT and ST, clinical data on the range of motion (ROM), spasticity, clonus, pain, balance, and gait were collected. Stabilometric platform assessment of center of pressure (COP) movements; bidimensional gait analysis; and recording of electromyographic (EMG) activity of the S, G, and tibialis anterior and extensor hallucis lungus muscles were also performed. Results: Only KT had significant effects on spasticity (p < 0.05), clonus (p < 0.001) and COP movements (p < 0.05), kinematic gait parameters (p < 0.001), and EMG activity (p < 0.001). Comparison between ST and KT improvements pointed out significant differences as concerns ROM (p < 0.001), spasticity (p < 0.001), clonus (p < 0.001), pain (p < 0.001), COP parameters (p < 0.05), and most kinematic gait data (p < 0.05). Discussion: Short-term application of KT reduces spasticity and pain and improves balance and gait in chronic SCI subjects. Although these data are promising, they

  19. Oral somatosensory awareness.

    PubMed

    Haggard, Patrick; de Boer, Lieke

    2014-11-01

    Oral somatosensory awareness refers to the somatic sensations arising within the mouth, and to the information these sensations provide about the state and structure of the mouth itself, and objects in the mouth. Because the oral tissues have a strong somatosensory innervation, they are the locus of some of our most intense and vivid bodily experiences. The salient pain of toothache, or the habit of running one's tongue over one's teeth when someone mentions "dentist", provide two very different indications of the power of oral somatosensory awareness in human experience and behaviour. This paper aims to review the origins and structure of oral somatosensory awareness, focussing on quantitative, mechanistic studies in humans. We first extend a model of levels of bodily awareness to the specific case of the mouth. We then briefly summarise the sensory innervation of oral tissues, and their projections in the brain. We next describe how these peripheral inputs give rise to perceptions of objects in the mouth, such as foods, liquids and oral devices, and also of the mouth tissues themselves. Finally, we consider the concept of a conscious mouth image, and the somatosensory basis of "mouth feel". The theoretical framework outlined in this paper is intended to facilitate scientific studies of this important site of human experience. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Dual-input two-compartment pharmacokinetic model of dynamic contrast-enhanced magnetic resonance imaging in hepatocellular carcinoma

    PubMed Central

    Yang, Jian-Feng; Zhao, Zhen-Hua; Zhang, Yu; Zhao, Li; Yang, Li-Ming; Zhang, Min-Ming; Wang, Bo-Yin; Wang, Ting; Lu, Bao-Chun

    2016-01-01

    AIM: To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma (HCC). METHODS: From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant (Ktrans), plasma flow (Fp), permeability surface area product (PS), efflux rate constant (kep), extravascular extracellular space volume ratio (ve), blood plasma volume ratio (vp), and hepatic perfusion index (HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model (2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student’s t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. RESULTS: The Fp value was greater than the PS value (FP = 1.07 mL/mL per minute, PS = 0.19 mL/mL per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dual-input 2CXM, respectively. There were no significant differences in the kep, vp, or HPI between the dual-input extended Tofts model and the dual-input 2CXM (P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for ve, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dual-input 2CXM were correlated with Ktrans derived from the dual-input extended Tofts model

  1. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation.

    PubMed

    Li, Cheng X; Callaway, Joseph C; Waters, Robert S

    2002-08-01

    Our objective was to test the hypothesis that suppression of GABAergic inhibition results in an enhancement of responses to stimulation of the surround receptive field. Neurons in the forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) receive short latency suprathreshold input from a principal location on the forepaw and longer latency subthreshold input from surrounding forepaw skin regions. Input from principal and surround receptive field sites was examined before, during, and after administration of the GABA(A) receptor blocker bicuculline methiodide (BMI) (in 165 mM NaCl at pH 3.3-3.5). In vivo extracellular recording was used to first identify the location of the glabrous forepaw digit representation within the FBS. In vivo intracellular recording and labeling techniques were then used to impale single FBS neurons in layer IV as well as neurons in layers III and V, determine the receptive field of the cell, and fill the cell with biocytin for subsequent morphological identification. The intracellular recording electrode was fastened with dental wax to a double-barrel pipette for BMI iontophoresis and current balance. A stimulating probe, placed on the glabrous forepaw skin surface, was used to identify principal and surround components of the receptive field. Once a cell was impaled and a stable recording was obtained, a stimulating probe was placed at a selected site within the surround receptive field. Single-pulse stimulation (1 Hz) was then delivered through the skin probe and the percentage of spikes occurring in 1-min intervals before BMI onset was used as a baseline measure. BMI was then iontophoresed while the periphery was simultaneously stimulated, and spike percentage measured during and after BMI ejection was compared with the pre-BMI baseline. The major findings are: (1) suppression of GABAergic inhibition enhanced evoked responses to firing level from sites in surround receptive fields in 65% of the cells ( n=17); (2) evoked

  2. Engineering orthogonal dual transcription factors for multi-input synthetic promoters

    PubMed Central

    Brödel, Andreas K.; Jaramillo, Alfonso; Isalan, Mark

    2016-01-01

    Synthetic biology has seen an explosive growth in the capability of engineering artificial gene circuits from transcription factors (TFs), particularly in bacteria. However, most artificial networks still employ the same core set of TFs (for example LacI, TetR and cI). The TFs mostly function via repression and it is difficult to integrate multiple inputs in promoter logic. Here we present to our knowledge the first set of dual activator-repressor switches for orthogonal logic gates, based on bacteriophage λ cI variants and multi-input promoter architectures. Our toolkit contains 12 TFs, flexibly operating as activators, repressors, dual activator–repressors or dual repressor–repressors, on up to 270 synthetic promoters. To engineer non cross-reacting cI variants, we design a new M13 phagemid-based system for the directed evolution of biomolecules. Because cI is used in so many synthetic biology projects, the new set of variants will easily slot into the existing projects of other groups, greatly expanding current engineering capacities. PMID:27982027

  3. The Effect of Somatosensory and Cognitive-motor Tasks on the Paretic Leg of Chronic Stroke Patients in the Standing Posture

    PubMed Central

    Ju, Sung-kwang; Yoo, Won-gyu

    2014-01-01

    [Purpose] The purpose of this study was to investigate how different standing surfaces alter somatosensory input and how postural control is affected by these changes during the performance of a dual task with a cognitive-motor aspect. [Subjects] The subjects were 20 chronic stroke patients: 18 males, 2 females. [Methods] COP total distance, sway velocity, and the weight load on the paretic leg were measured while subjects performed the following three tasks (somatosensory task, cognitive-motor task, and dual task). [Results] Both COP total distance and sway velocity significantly decreased during the performance of all tasks. COP total distance and sway velocity significantly decreased during the somatosensory task and the dual task. The weight load significantly increased during performance of the somatosensory task and the dual task. [Conclusion] Compensatory mechanisms in the non-paretic leg were limited by placing it on an air cushion, and we observed an increase in somatosensory input from the paretic leg due to an enhanced weight load. PMID:25540484

  4. Experimental validation of optimum input polarization states for Mueller matrix determination with a dual photoelastic modulator polarimeter.

    PubMed

    Gribble, Adam; Layden, David; Vitkin, I Alex

    2013-12-15

    Dual photoelastic modulator polarimeters can measure light polarization, which is often described as a Stokes vector. By evaluating changes in polarization when light interacts with a sample, the sample Mueller matrix also can be derived, completely describing its interaction with polarized light. The choice of which and how many input Stokes vectors to use for sample investigation is under the experimenter's control. Previous work has predicted that sets of input Stokes vectors forming the vertices of platonic solids on the Poincaré sphere allow for the most robust Mueller matrix determination. Further, when errors specific to the dual photoelastic modulator polarimeter are considered, simulations revealed that one specific shape and orientation of Stokes vectors (cube on the Poincaré sphere with vertices away from principal sphere axes) allows for the most robust Mueller matrix determination. Here we experimentally validate the optimum input Stokes vectors for dual photoelastic modulator Mueller polarimetry, toward developing a robust polarimetric platform of increasing relevance to biophotonics.

  5. An Examination of Language Input and Vocabulary Development of Young Latino Dual Language Learners Living in Poverty

    ERIC Educational Resources Information Center

    Boyce, Lisa K.; Gillam, Sandra L.; Innocenti, Mark S.; Cook, Gina A.; Ortiz, Eduardo

    2013-01-01

    The purpose of the study was to evaluate the language status of 120 young, Latino dual language learners living in poverty in the United States. Maternal language input and home language and literacy environments were examined with regard to language development at 24 and 36 months. Results suggested that even when combining English and Spanish…

  6. An Examination of Language Input and Vocabulary Development of Young Latino Dual Language Learners Living in Poverty

    ERIC Educational Resources Information Center

    Boyce, Lisa K.; Gillam, Sandra L.; Innocenti, Mark S.; Cook, Gina A.; Ortiz, Eduardo

    2013-01-01

    The purpose of the study was to evaluate the language status of 120 young, Latino dual language learners living in poverty in the United States. Maternal language input and home language and literacy environments were examined with regard to language development at 24 and 36 months. Results suggested that even when combining English and Spanish…

  7. Antagonistic control of a dual-input mammalian gene switch by food additives.

    PubMed

    Xie, Mingqi; Ye, Haifeng; Hamri, Ghislaine Charpin-El; Fussenegger, Martin

    2014-08-01

    Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Antagonistic control of a dual-input mammalian gene switch by food additives

    PubMed Central

    Xie, Mingqi; Ye, Haifeng; Hamri, Ghislaine Charpin-El; Fussenegger, Martin

    2014-01-01

    Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies. PMID:25030908

  9. Implementation of dynamic dual input multiple output logic gate via resonance in globally coupled Duffing oscillators

    NASA Astrophysics Data System (ADS)

    Venkatesh, P. R.; Venkatesan, A.; Lakshmanan, M.

    2017-08-01

    We have used a system of globally coupled double-well Duffing oscillators under an enhanced resonance condition to design and implement Dual Input Multiple Output (DIMO) logic gates. In order to enhance the resonance, the first oscillator in the globally coupled system alone is excited by two forces out of which one acts as a driving force and the other will be either sub-harmonic or super-harmonic in nature. We report that for an appropriate coupling strength, the second force coherently drives and enhances not only the amplitude of the weak first force to all the coupled systems but also drives and propagates the digital signals if any given to the first system. We then numerically confirm the propagation of any digital signal or square wave without any attenuation under an enhanced resonance condition for an amplitude greater than a threshold value. Further, we extend this idea for computing various logical operations and succeed in designing theoretically DIMO logic gates such as AND/NAND, OR/NOR gates with globally coupled systems.

  10. Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex

    PubMed Central

    Herrera-Rincon, Celia; Panetsos, Fivos

    2014-01-01

    Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices. Here we show that nerve transection, causes down regulation of MBN cholinergic neurons. Stimulation of the cut nerve reverses the metabolic decline but does not affect the decrease in cholinergic fibers in cortex or cholinergic neurons in basal forebrain. Artifical stimulation of the nerve also has no affect of ACh-innervation of other cortices. Cortical ChAT depletion is due to loss of corticopetal MBN ChAT-expressing neurons. MBN ChAT downregulation is not due to a decrease of afferent activity or to a failure of trophic support. Basalocortical ACh circuits are sensory specific, ACh is provided to each sensory cortex “on demand” by dedicated circuits. Our data support the existence of a modality-specific cortex-MBN-cortex circuit for cognitive information processing. PMID:25452715

  11. Intra-areal and corticocortical circuits arising in the dysgranular zone of rat primary somatosensory cortex that processes deep somatic input.

    PubMed

    Kim, Uhnoh; Lee, Taehee

    2013-08-01

    Somesthesis-guided exploration of the external world requires cortical processing of both cutaneous and proprioceptive information and their integration into motor commands to guide further haptic movement. In the past, attention has been given mostly to the cortical circuits processing cutaneous information for somatic motor integration. By comparison, little has been examined about how cortical circuits are organized for higher order proprioceptive processing. Using the rat cortex as a model, we characterized the intrinsic and corticocortical circuits arising in the major proprioceptive region of the primary somatosensory cortex (SI) that is conventionally referred to as the dysgranular zone (DSZ). We made small injections of biotinylated dextran amine (BDA) as an anterograde tracer in various parts of the DSZ, revealing three distinct principles of its cortical circuit organization. First, its intrinsic circuits extend mainly along the major axis of DSZ to organize multiple patches of interconnections. Second, the central and peripheral regions of DSZ produce differential patterns of intra-areal and corticocortical circuits. Third, the projection fields of DSZ encompass only selective regions of the second somatic (SII), posterior parietal (PPC), and primary motor (MI) cortices. These projection fields are at least partially separated from those of SI cutaneous areas. We hypothesize, based on these observations, that the cortical circuits of DSZ facilitate a modular integration of proprioceptive information along its major axis and disseminate this information to only selective parts of higher order somatic and MI cortices in parallel with cutaneous information.

  12. High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV

    PubMed Central

    Miceli, Stéphanie; Negwer, Moritz; van Eijs, Fenneke; Kalkhoven, Carla; van Lierop, Ilja; Homberg, Judith; Schubert, Dirk

    2013-01-01

    Homeostatic regulation of serotonin (5-HT) concentration is critical for “normal” topographical organization and development of thalamocortical (TC) afferent circuits. Down-regulation of the serotonin transporter (SERT) and the consequent impaired reuptake of 5-HT at the synapse, results in a reduced terminal branching of developing TC afferents within the primary somatosensory cortex (S1). Despite the presence of multiple genetic models, the effect of high extracellular 5-HT levels on the structure and function of developing intracortical neural networks is far from being understood. Here, using juvenile SERT knockout (SERT−/−) rats we investigated, in vitro, the effect of increased 5-HT levels on the structural organization of (i) the TC projections of the ventroposteromedial thalamic nucleus toward S1, (ii) the general barrel-field pattern, and (iii) the electrophysiological and morphological properties of the excitatory cell population in layer IV of S1 [spiny stellate (SpSt) and pyramidal cells]. Our results confirmed previous findings that high levels of 5-HT during development lead to a reduction of the topographical precision of TCA projections toward the barrel cortex. Also, the barrel pattern was altered but not abolished in SERT−/− rats. In layer IV, both excitatory SpSt and pyramidal cells showed a significantly reduced intracolumnar organization of their axonal projections. In addition, the layer IV SpSt cells gave rise to a prominent projection toward the infragranular layer Vb. Our findings point to a structural and functional reorganization of TCAs, as well as early stage intracortical microcircuitry, following the disruption of 5-HT reuptake during critical developmental periods. The increased projection pattern of the layer IV neurons suggests that the intracortical network changes are not limited to the main entry layer IV but may also affect the subsequent stages of the canonical circuits of the barrel cortex. PMID:23761736

  13. Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer.

    PubMed

    Chen, Xiaoliang; Xu, Yanyan; Duan, Jianghui; Li, Chuandong; Sun, Hongliang; Wang, Wu

    2017-07-01

    To investigate the potential relationship between perfusion parameters from first-pass dual-input perfusion computed tomography (DI-PCT) and iodine uptake levels estimated from dual-energy CT (DE-CT).The pre-experimental part of this study included a dynamic DE-CT protocol in 15 patients to evaluate peak arterial enhancement of lung cancer based on time-attenuation curves, and the scan time of DE-CT was determined. In the prospective part of the study, 28 lung cancer patients underwent whole-volume perfusion CT and single-source DE-CT using 320-row CT. Pulmonary flow (PF, mL/min/100 mL), aortic flow (AF, mL/min/100 mL), and a perfusion index (PI = PF/[PF + AF]) were automatically generated by in-house commercial software using the dual-input maximum slope method for DI-PCT. For the dual-energy CT data, iodine uptake was estimated by the difference (λ) and the slope (λHU). λ was defined as the difference of CT values between 40 and 70 KeV monochromatic images in lung lesions. λHU was calculated by the following equation: λHU = |λ/(70 - 40)|. The DI-PCT and DE-CT parameters were analyzed by Pearson/Spearman correlation analysis, respectively.All subjects were pathologically proved as lung cancer patients (including 16 squamous cell carcinoma, 8 adenocarcinoma, and 4 small cell lung cancer) by surgery or CT-guided biopsy. Interobserver reproducibility in DI-PCT (PF, AF, PI) and DE-CT (λ, λHU) were relatively good to excellent (intraclass correlation coefficient [ICC]Inter = 0.8726-0.9255, ICCInter = 0.8179-0.8842; ICCInter = 0.8881-0.9177, ICCInter = 0.9820-0.9970, ICCInter = 0.9780-0.9971, respectively). Correlation coefficient between λ and AF, and PF were as follows: 0.589 (P < .01) and 0.383 (P < .05). Correlation coefficient between λHU and AF, and PF were as follows: 0.564 (P < .01) and 0.388 (P < .05).Both the single-source DE-CT and dual-input CT perfusion analysis method can be applied to

  14. Hydraulic actuator mechanism to control aircraft spoiler movements through dual input commands

    NASA Technical Reports Server (NTRS)

    Irick, S. C. (Inventor)

    1981-01-01

    An aircraft flight spoiler control mechanism is described. The invention enables the conventional, primary spoiler control system to retain its operational characteristics while accommodating a secondary input controlled by a conventional computer system to supplement the settings made by the primary input. This is achieved by interposing springs between the primary input and the spoiler control unit. The springs are selected to have a stiffness intermediate to the greater force applied by the primary control linkage and the lesser resistance offered by the spoiler control unit. Thus, operation of the primary input causes the control unit to yield before the springs, yet, operation of the secondary input, acting directly on the control unit, causes the springs to yield and absorb adjustments before they are transmitted into the primary control system.

  15. Subliminal stimulation and somatosensory signal detection.

    PubMed

    Ferrè, Elisa Raffaella; Sahani, Maneesh; Haggard, Patrick

    2016-10-01

    Only a small fraction of sensory signals is consciously perceived. The brain's perceptual systems may include mechanisms of feedforward inhibition that protect the cortex from subliminal noise, thus reserving cortical capacity and conscious awareness for significant stimuli. Here we provide a new view of these mechanisms based on signal detection theory, and gain control. We demonstrated that subliminal somatosensory stimulation decreased sensitivity for the detection of a subsequent somatosensory input, largely due to increased false alarm rates. By delivering the subliminal somatosensory stimulus and the to-be-detected somatosensory stimulus to different digits of the same hand, we show that this effect spreads across the sensory surface. In addition, subliminal somatosensory stimulation tended to produce an increased probability of responding "yes", whether the somatosensory stimulus was present or not. Our results suggest that subliminal stimuli temporarily reduce input gain, avoiding excessive responses to further small inputs. This gain control may be automatic, and may precede discriminative classification of inputs into signals or noise. Crucially, we found that subliminal inputs influenced false alarm rates only on blocks where the to-be-detected stimuli were present, and not on pre-test control blocks where they were absent. Participants appeared to adjust their perceptual criterion according to a statistical distribution of stimuli in the current context, with the presence of supraliminal stimuli having an important role in the criterion-setting process. These findings clarify the cognitive mechanisms that reserve conscious perception for salient and important signals. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A dual-input nonlinear system analysis of autonomic modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Mullen, T. J.; Cohen, R. J.

    1996-01-01

    Linear analyses of fluctuations in heart rate and other hemodynamic variables have been used to elucidate cardiovascular regulatory mechanisms. The role of nonlinear contributions to fluctuations in hemodynamic variables has not been fully explored. This paper presents a nonlinear system analysis of the effect of fluctuations in instantaneous lung volume (ILV) and arterial blood pressure (ABP) on heart rate (HR) fluctuations. To successfully employ a nonlinear analysis based on the Laguerre expansion technique (LET), we introduce an efficient procedure for broadening the spectral content of the ILV and ABP inputs to the model by adding white noise. Results from computer simulations demonstrate the effectiveness of broadening the spectral band of input signals to obtain consistent and stable kernel estimates with the use of the LET. Without broadening the band of the ILV and ABP inputs, the LET did not provide stable kernel estimates. Moreover, we extend the LET to the case of multiple inputs in order to accommodate the analysis of the combined effect of ILV and ABP effect on heart rate. Analyzes of data based on the second-order Volterra-Wiener model reveal an important contribution of the second-order kernels to the description of the effect of lung volume and arterial blood pressure on heart rate. Furthermore, physiological effects of the autonomic blocking agents propranolol and atropine on changes in the first- and second-order kernels are also discussed.

  17. A dual-input nonlinear system analysis of autonomic modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Mullen, T. J.; Cohen, R. J.

    1996-01-01

    Linear analyses of fluctuations in heart rate and other hemodynamic variables have been used to elucidate cardiovascular regulatory mechanisms. The role of nonlinear contributions to fluctuations in hemodynamic variables has not been fully explored. This paper presents a nonlinear system analysis of the effect of fluctuations in instantaneous lung volume (ILV) and arterial blood pressure (ABP) on heart rate (HR) fluctuations. To successfully employ a nonlinear analysis based on the Laguerre expansion technique (LET), we introduce an efficient procedure for broadening the spectral content of the ILV and ABP inputs to the model by adding white noise. Results from computer simulations demonstrate the effectiveness of broadening the spectral band of input signals to obtain consistent and stable kernel estimates with the use of the LET. Without broadening the band of the ILV and ABP inputs, the LET did not provide stable kernel estimates. Moreover, we extend the LET to the case of multiple inputs in order to accommodate the analysis of the combined effect of ILV and ABP effect on heart rate. Analyzes of data based on the second-order Volterra-Wiener model reveal an important contribution of the second-order kernels to the description of the effect of lung volume and arterial blood pressure on heart rate. Furthermore, physiological effects of the autonomic blocking agents propranolol and atropine on changes in the first- and second-order kernels are also discussed.

  18. Relating Input Factors and Dual Language Proficiency in French-English Bilingual Children

    ERIC Educational Resources Information Center

    Cohen, Cathy

    2016-01-01

    The input factors that may cause variation in bilingual proficiency were investigated in 38 French-English bilinguals aged six to eight, of middle-to-high socio-economic status, attending an international state school in France. Data on children's current and cumulative language exposure and family background were collected through questionnaires…

  19. Relating Input Factors and Dual Language Proficiency in French-English Bilingual Children

    ERIC Educational Resources Information Center

    Cohen, Cathy

    2016-01-01

    The input factors that may cause variation in bilingual proficiency were investigated in 38 French-English bilinguals aged six to eight, of middle-to-high socio-economic status, attending an international state school in France. Data on children's current and cumulative language exposure and family background were collected through questionnaires…

  20. A dual-input nonlinear system analysis of autonomic modulation of heart rate.

    PubMed

    Chon, K H; Mullen, T J; Cohen, R J

    1996-05-01

    Linear analyses of fluctuations in heart rate and other hemodynamic variables have been used to elucidate cardiovascular regulatory mechanisms. The role of nonlinear contributions to fluctuations in hemodynamic variables has not been fully explored. This paper presents a nonlinear system analysis of the effect of fluctuations in instantaneous lung volume (ILV) and arterial blood pressure (ABP) on heart rate (HR) fluctuations. To successfully employ a nonlinear analysis based on the Laguerre expansion technique (LET), we introduce an efficient procedure for broadening the spectral content of the ILV and ABP inputs to the model by adding white noise. Results from computer simulations demonstrate the effectiveness of broadening the spectral band of input signals to obtain consistent and stable kernel estimates with the use of the LET. Without broadening the band of the ILV and ABP inputs, the LET did not provide stable kernel estimates. Moreover, we extend the LET to the case of multiple inputs in order to accommodate the analysis of the combined effect of ILV and ABP effect on heart rate. Analyzes of data based on the second-order Volterra-Wiener model reveal an important contribution of the second-order kernels to the description of the effect of lung volume and arterial blood pressure on heart rate. Furthermore, physiological effects of the autonomic blocking agents propranolol and atropine on changes in the first- and second-order kernels are also discussed.

  1. Monolithically integrated laser diode and electroabsorption modulator with dual-waveguide spot-size converter input and output

    NASA Astrophysics Data System (ADS)

    Hou, Lianping; Wang, Wei; Zhu, Hongliang; Zhou, Fan; Wang, Lufeng; Bian, Jing

    2005-08-01

    We have demonstrated a 1.60 µm ridge-structure laser diode and electroabsorption modulator monolithically integrated with buried-ridge-structure dual-waveguide spot-size converters at the input and output ports for low-loss coupling to a cleaved single-mode optical fibre by means of selective area growth and asymmetric twin waveguide technologies. The devices emit in single transverse and quasi-single longitudinal modes with a side mode suppression ratio of 25.6 dB. These devices exhibit 3 dB modulation bandwidth of 15.0 GHz and modulator extinction ratios of 14.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7.3° × 10.6°, respectively, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.

  2. Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output

    NASA Astrophysics Data System (ADS)

    Hou, Lianping; Zhu, Hongliang; Zhou, Fan; Wang, Lufeng; Bian, Jing; Wang, Wei

    2005-09-01

    We have demonstrated an electroabsorption modulator and semiconductor optical amplifier monolithically integrated with novel dual-waveguide spot-size converters (SSC) at the input and output ports for low-loss coupling to a planar light-guide circuit silica waveguide or cleaved single-mode optical fibre. The device was fabricated by means of selective-area MOVPE growth, quantum well intermixing and asymmetric twin waveguide technologies with only a three-step low-pressure MOVPE growth. For the device structure, in the SOA/EAM section, a double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge structure (BRS) was incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of easy processing of the ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB dc and more than 10 GHz 3 dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0° × 12.6°, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.

  3. Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light.

    PubMed

    Chen, Xianjun; Li, Ting; Wang, Xue; Du, Zengmin; Liu, Renmei; Yang, Yi

    2016-04-07

    Programmable transcription factors can enable precise control of gene expression triggered by a chemical inducer or light. To obtain versatile transgene system with combined benefits of a chemical inducer and light inducer, we created various chimeric promoters through the assembly of different copies of the tet operator and Gal4 operator module, which simultaneously responded to a tetracycline-responsive transcription factor and a light-switchable transactivator. The activities of these chimeric promoters can be regulated by tetracycline and blue light synergistically or antagonistically. Further studies of the antagonistic genetic circuit exhibited high spatiotemporal resolution and extremely low leaky expression, which therefore could be used to spatially and stringently control the expression of highly toxic protein Diphtheria toxin A for light regulated gene therapy. When transferring plasmids engineered for the gene switch-driven expression of a firefly luciferase (Fluc) into mice, the Fluc expression levels of the treated animals directly correlated with the tetracycline and light input program. We suggest that dual-input genetic circuits using TET and light that serve as triggers to achieve expression profiles may enable the design of robust therapeutic gene circuits for gene- and cell-based therapies.

  4. Visual Responses of Neurons in Somatosensory Cortex of Hamsters with Experimentally Induced Retinal Projections to Somatosensory Thalamus

    NASA Astrophysics Data System (ADS)

    Metin, Christine; Frost, Douglas O.

    1989-01-01

    These experiments investigate the capacity of thalamic and cortical structures in a sensory system to process information of a modality normally associated with another system. Retinal ganglion cells in newborn Syrian hamsters were made to project permanently to the main thalamic somatosensory (ventrobasal) nucleus. When the animals were adults, single unit recordings were made in the somatosensory cortices, the principal targets of the ventrobasal nucleus. The somatosensory neurons responded to visual stimulation of distinct receptive fields, and their response properties resembled, in several characteristic features, those of normal visual cortical neurons. In the visual cortex of normal animals and the somatosensory cortex of operated animals, the same functional categories of neurons occurred in similar proportions, and the neurons' selectivity for the orientation or direction of movement of visual stimuli was comparable. These results suggest that thalamic nuclei or cortical areas at corresponding levels in the visual and somatosensory pathways perform similar transformations on their inputs.

  5. Static and dynamic posture control in postlingual cochlear implanted patients: effects of dual-tasking, visual and auditory inputs suppression

    PubMed Central

    Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel

    2014-01-01

    Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well

  6. Gamma oscillations in the somatosensory cortex of newborn rats.

    PubMed

    Gerasimova, E V; Zakharov, A V; Lebedeva, Yu A; Inacio, A R; Minlebaev, M G; Sitdikova, G F; Khazipov, R N

    2014-01-01

    Here we addressed a question of whether gamma oscillations previously described in the whisker-related barrel cortex are a universal pattern of activity in the somatosensory cortex of newborn rats. Intracortical recording of local field potentials and action potentials in neurons using multisite silicon electrodes in 2-7-day-old rats showed that mechanical stimulation of single fingers or specific areas on the plantar or back side of the foot evoked early gamma oscillations followed by spindle-burst oscillations in the corresponding regions of the somatosensory cortex. Early gamma oscillations had maximum amplitude in layer IV of the somatosensory cortex and effectively synchronized action potentials in layer IV neurons. It was concluded that early gamma oscillations evoked by activation of the topographic sensory input are a universal activity pattern of the entire somatosensory cortex of newborn rats.

  7. The Role of Input and Output Modality Pairings in Dual-Task Performance: Evidence for Content-Dependent Central Interference

    ERIC Educational Resources Information Center

    Hazeltine, Eliot; Ruthruff, Eric; Remington, Roger W.

    2006-01-01

    Recent debate regarding dual-task performance has focused on whether costs result from limitations in central capacity, and whether central operations can be performed in parallel. While these questions are controversial, the dominant models of dual-task performance share the assumption that central operations are generic--that is, their…

  8. The Role of Input and Output Modality Pairings in Dual-Task Performance: Evidence for Content-Dependent Central Interference

    ERIC Educational Resources Information Center

    Hazeltine, Eliot; Ruthruff, Eric; Remington, Roger W.

    2006-01-01

    Recent debate regarding dual-task performance has focused on whether costs result from limitations in central capacity, and whether central operations can be performed in parallel. While these questions are controversial, the dominant models of dual-task performance share the assumption that central operations are generic--that is, their…

  9. Cervicogenic somatosensory tinnitus: An indication for manual therapy? Part 1: Theoretical concept.

    PubMed

    Oostendorp, Rob A B; Bakker, Iem; Elvers, Hans; Mikolajewska, Emilia; Michiels, Sarah; De Hertogh, Willem; Samwel, Han

    2016-06-01

    Tinnitus can be evoked or modulated by input from the somatosensory and somatomotor systems. This means that the loudness or intensity of tinnitus can be changed by sensory or motor stimuli such as muscle contractions, mechanical pressure on myofascial trigger points, transcutaneous electrical stimulation or joint movements. The neural connections and integration of the auditory and somatosensory systems of the upper cervical region and head have been confirmed by many studies. These connections can give rise to a form of tinnitus known as somatosensory tinnitus. To date only a handful of publications have focussed on (cervicogenic) somatosensory tinnitus and manual therapy. Broadening the current understanding of somatosensory tinnitus would represent a first step towards providing therapeutic approaches relevant to manual therapists. Treatment modalities involving the somatosensory systems, and particularly manual therapy, should now be re-assessed in the subgroup of patients with cervicogenic somatosensory tinnitus. The conceptual phase of this study aims to uncover underlying mechanisms linking the auditory and somatosensory systems in relation to subjective tinnitus through (i) review of the literature (part 1) and (ii) through design of a pilot study that will explore characteristics of the study population and identify relevant components and outcomes of manual therapy in patients with cervicogenic somatosensory tinnitus (part 2). This manuscript focusses the theoretical concept of (cervicogenic) somatosensory tinnitus, either with or without secondary central tinnitus or tinnitus sensitization.

  10. Somatosensory Temporal Discrimination Threshold Involves Inhibitory Mechanisms in the Primary Somatosensory Area.

    PubMed

    Rocchi, Lorenzo; Casula, Elias; Tocco, Pierluigi; Berardelli, Alfredo; Rothwell, John

    2016-01-13

    Somatosensory temporal discrimination threshold (STDT) is defined as the shortest time interval necessary for a pair of tactile stimuli to be perceived as separate. Although STDT is altered in several neurological disorders, its neural bases are not entirely clear. We used continuous theta burst stimulation (cTBS) to condition the excitability of the primary somatosensory cortex in healthy humans to examine its possible contribution to STDT. Excitability was assessed using the recovery cycle of the N20 component of somatosensory evoked potentials (SEP) and the area of high-frequency oscillations (HFO). cTBS increased STDT and reduced inhibition in the N20 recovery cycle at an interstimulus interval of 5 ms. It also reduced the amplitude of late HFO. All three effects were correlated. There was no effect of cTBS over the secondary somatosensory cortex on STDT, although it reduced the N120 component of the SEP. STDT is assessed conventionally with a simple ascending method. To increase insight into the effect of cTBS, we measured temporal discrimination with a psychophysical method. cTBS reduced the slope of the discrimination curve, consistent with a reduction of the quality of sensory information caused by an increase in noise. We hypothesize that cTBS reduces the effectiveness of inhibitory interactions normally used to sharpen temporal processing of sensory inputs. This reduction in discriminability of sensory input is equivalent to adding neural noise to the signal. Precise timing of sensory information is crucial for nearly every aspect of human perception and behavior. One way to assess the ability to analyze temporal information in the somatosensory domain is to measure the somatosensory temporal discrimination threshold (STDT), defined as the shortest time interval necessary for a pair of tactile stimuli to be perceived as separate. In this study, we found that STDT depends on inhibitory mechanisms within the primary somatosensory area (S1). This finding

  11. Multisensory interactions between vestibular, visual and somatosensory signals.

    PubMed

    Ferrè, Elisa Raffaella; Walther, Leif Erik; Haggard, Patrick

    2015-01-01

    Vestibular inputs are constantly processed and integrated with signals from other sensory modalities, such as vision and touch. The multiply-connected nature of vestibular cortical anatomy led us to investigate whether vestibular signals could participate in a multi-way interaction with visual and somatosensory perception. We used signal detection methods to identify whether vestibular stimulation might interact with both visual and somatosensory events in a detection task. Participants were instructed to detect near-threshold somatosensory stimuli that were delivered to the left index finger in one half of experimental trials. A visual signal occurred close to the finger in half of the trials, independent of somatosensory stimuli. A novel Near infrared caloric vestibular stimulus (NirCVS) was used to artificially activate the vestibular organs. Sham stimulations were used to control for non-specific effects of NirCVS. We found that both visual and vestibular events increased somatosensory sensitivity. Critically, we found no evidence for supra-additive multisensory enhancement when both visual and vestibular signals were administered together: in fact, we found a trend towards sub-additive interaction. The results are compatible with a vestibular role in somatosensory gain regulation.

  12. Multisensory Interactions between Vestibular, Visual and Somatosensory Signals

    PubMed Central

    Ferrè, Elisa Raffaella; Walther, Leif Erik; Haggard, Patrick

    2015-01-01

    Vestibular inputs are constantly processed and integrated with signals from other sensory modalities, such as vision and touch. The multiply-connected nature of vestibular cortical anatomy led us to investigate whether vestibular signals could participate in a multi-way interaction with visual and somatosensory perception. We used signal detection methods to identify whether vestibular stimulation might interact with both visual and somatosensory events in a detection task. Participants were instructed to detect near-threshold somatosensory stimuli that were delivered to the left index finger in one half of experimental trials. A visual signal occurred close to the finger in half of the trials, independent of somatosensory stimuli. A novel Near infrared caloric vestibular stimulus (NirCVS) was used to artificially activate the vestibular organs. Sham stimulations were used to control for non-specific effects of NirCVS. We found that both visual and vestibular events increased somatosensory sensitivity. Critically, we found no evidence for supra-additive multisensory enhancement when both visual and vestibular signals were administered together: in fact, we found a trend towards sub-additive interaction. The results are compatible with a vestibular role in somatosensory gain regulation. PMID:25875819

  13. Assessing Somatosensory Utilization during Unipedal Postural Control

    PubMed Central

    Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.

    2017-01-01

    Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects “stood” supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control. PMID:28443004

  14. Assessing Somatosensory Utilization during Unipedal Postural Control.

    PubMed

    Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P

    2017-01-01

    Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.

  15. Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling.

    PubMed

    Fernández-Ruiz, Antonio; Oliva, Azahara; Nagy, Gergő A; Maurer, Andrew P; Berényi, Antal; Buzsáki, György

    2017-03-08

    Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation.

  16. Spatiotemporal dynamics of bimanual integration in human somatosensory cortex and their relevance to bimanual object manipulation.

    PubMed

    Jung, Patrick; Klein, Johannes C; Wibral, Michael; Hoechstetter, Karsten; Bliem, Barbara; Lu, Ming-Kuei; Wahl, Mathias; Ziemann, Ulf

    2012-04-18

    Little is known about the spatiotemporal dynamics of cortical responses that integrate slightly asynchronous somatosensory inputs from both hands. This study aimed to clarify the timing and magnitude of interhemispheric interactions during early integration of bimanual somatosensory information in different somatosensory regions and their relevance for bimanual object manipulation and exploration. Using multi-fiber probabilistic diffusion tractography and MEG source analysis of conditioning-test (C-T) median nerve somatosensory evoked fields in healthy human subjects, we sought to extract measures of structural and effective callosal connectivity between different somatosensory cortical regions and correlated them with bimanual tactile task performance. Neuromagnetic responses were found in major somatosensory regions, i.e., primary somatosensory cortex SI, secondary somatosensory cortex SII, posterior parietal cortex, and premotor cortex. Contralateral to the test stimulus, SII activity was maximally suppressed by 51% at C-T intervals of 40 and 60 ms. This interhemispheric inhibition of the contralateral SII source activity correlated directly and topographically specifically with the fractional anisotropy of callosal fibers interconnecting SII. Thus, the putative pathway that mediated inhibitory interhemispheric interactions in SII was a transcallosal route from ipsilateral to contralateral SII. Moreover, interhemispheric inhibition of SII source activity correlated directly with bimanual tactile task performance. These findings were exclusive to SII. Our data suggest that early interhemispheric somatosensory integration primarily occurs in SII, is mediated by callosal fibers that interconnect homologous SII areas, and has behavioral importance for bimanual object manipulation and exploration.

  17. Left lateralized enhancement of orofacial somatosensory processing due to speech sounds.

    PubMed

    Ito, Takayuki; Johns, Alexis R; Ostry, David J

    2013-12-01

    Somatosensory information associated with speech articulatory movements affects the perception of speech sounds and vice versa, suggesting an intimate linkage between speech production and perception systems. However, it is unclear which cortical processes are involved in the interaction between speech sounds and orofacial somatosensory inputs. The authors examined whether speech sounds modify orofacial somatosensory cortical potentials that were elicited using facial skin perturbations. Somatosensory event-related potentials in EEG were recorded in 3 background sound conditions (pink noise, speech sounds, and nonspeech sounds) and also in a silent condition. Facial skin deformations that are similar in timing and duration to those experienced in speech production were used for somatosensory stimulation. The authors found that speech sounds reliably enhanced the first negative peak of the somatosensory event-related potential when compared with the other 3 sound conditions. The enhancement was evident at electrode locations above the left motor and premotor area of the orofacial system. The result indicates that speech sounds interact with somatosensory cortical processes that are produced by speech-production-like patterns of facial skin stretch. Neural circuits in the left hemisphere, presumably in left motor and premotor cortex, may play a prominent role in the interaction between auditory inputs and speech-relevant somatosensory processing.

  18. Early somatosensory evoked potentials.

    PubMed

    Sances, A; Larson, S J; Cusick, J F; Myklebust, J; Ewing, C L; Jodat, R; Ackmann, J J; Walsh, P

    1978-10-01

    The early somatosensory evoked potential secondary to median nerve stimulation in the human had an onset latency of 9--12 msec when recorded from scalp electrodes at vertex-to-mastoid, vertex-to-inion or at the base of the skull. Similar latencies were observed from responses recorded over the cervical dorsal columns during neurologic surgery. A latency difference of 1.5 msec was observed between the early response and the responses recorded from the junction of medial lemniscus and nucleus ventralis posterior lateralis of the thalamus during human stereotaxic surgery. Cervical cord transections and transection at the midpontine levels of the monkey showed that the evoked potential was due to generators between these levels. Depth recording of the monkey indicate that the early evoked potential originates in the region of dorsal column nuclei, while the later components are secondary to generators in cerebral cortex.

  19. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    PubMed

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-04

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Auditory, Somatosensory, and Multisensory Insular Cortex in the Rat

    PubMed Central

    Rodgers, Krista M.; Benison, Alexander M.; Klein, Andrea

    2008-01-01

    Compared with other areas of the forebrain, the function of insular cortex is poorly understood. This study examined the unisensory and multisensory function of the rat insula using high-resolution, whole-hemisphere, epipial evoked potential mapping. We found the posterior insula to contain distinct auditory and somatotopically organized somatosensory fields with an interposed and overlapping region capable of integrating these sensory modalities. Unisensory and multisensory responses were uninfluenced by complete lesioning of primary and secondary auditory and somatosensory cortices, suggesting a high degree of parallel afferent input from the thalamus. In light of the established connections of the posterior insula with the amygdala, we propose that integration of auditory and somatosensory modalities reported here may play a role in auditory fear conditioning. PMID:18424777

  1. Neuromagnetic correlates of adaptive plasticity across the hand-face border in human primary somatosensory cortex.

    PubMed

    Muret, Dollyane; Daligault, Sébastien; Dinse, Hubert R; Delpuech, Claude; Mattout, Jérémie; Reilly, Karen T; Farnè, Alessandro

    2016-04-01

    It is well established that permanent or transient reduction of somatosensory inputs, following hand deafferentation or anesthesia, induces plastic changes across the hand-face border, supposedly responsible for some altered perceptual phenomena such as tactile sensations being referred from the face to the phantom hand. It is also known that transient increase of hand somatosensory inputs, via repetitive somatosensory stimulation (RSS) at a fingertip, induces local somatosensory discriminative improvement accompanied by cortical representational changes in the primary somatosensory cortex (SI). We recently demonstrated that RSS at the tip of the right index finger induces similar training-independent perceptual learning across the hand-face border, improving somatosensory perception at the lips (Muret D, Dinse HR, Macchione S, Urquizar C, Farnè A, Reilly KT.Curr Biol24: R736-R737, 2014). Whether neural plastic changes across the hand-face border accompany such remote and adaptive perceptual plasticity remains unknown. Here we used magnetoencephalography to investigate the electrophysiological correlates underlying RSS-induced behavioral changes across the hand-face border. The results highlight significant changes in dipole location after RSS both for the stimulated finger and for the lips. These findings reveal plastic changes that cross the hand-face border after an increase, instead of a decrease, in somatosensory inputs.

  2. Neuromagnetic correlates of adaptive plasticity across the hand-face border in human primary somatosensory cortex

    PubMed Central

    Daligault, Sébastien; Dinse, Hubert R.; Delpuech, Claude; Mattout, Jérémie; Reilly, Karen T.; Farnè, Alessandro

    2016-01-01

    It is well established that permanent or transient reduction of somatosensory inputs, following hand deafferentation or anesthesia, induces plastic changes across the hand-face border, supposedly responsible for some altered perceptual phenomena such as tactile sensations being referred from the face to the phantom hand. It is also known that transient increase of hand somatosensory inputs, via repetitive somatosensory stimulation (RSS) at a fingertip, induces local somatosensory discriminative improvement accompanied by cortical representational changes in the primary somatosensory cortex (SI). We recently demonstrated that RSS at the tip of the right index finger induces similar training-independent perceptual learning across the hand-face border, improving somatosensory perception at the lips (Muret D, Dinse HR, Macchione S, Urquizar C, Farnè A, Reilly KT. Curr Biol 24: R736–R737, 2014). Whether neural plastic changes across the hand-face border accompany such remote and adaptive perceptual plasticity remains unknown. Here we used magnetoencephalography to investigate the electrophysiological correlates underlying RSS-induced behavioral changes across the hand-face border. The results highlight significant changes in dipole location after RSS both for the stimulated finger and for the lips. These findings reveal plastic changes that cross the hand-face border after an increase, instead of a decrease, in somatosensory inputs. PMID:26888099

  3. Somatosensory findings of pusher syndrome in stroke patients.

    PubMed

    Lee, Jong Hwa; Kim, Sang Beom; Lee, Kyeong Woo; Lee, Ji Yeong

    2013-02-01

    To investigate the somatosensory findings of pusher syndrome in stroke patients. Twelve pusher patients and twelve non-pusher patients were enrolled in this study. Inclusion criteria were unilateral stroke, sufficient cognitive abilities to understand and follow instructions, and no visual problem. Patients were evaluated for pusher syndrome using a standardized scale for contraversive pushing. Somatosensory finding was assessed by the Cumulative Somatosensory Impairment Index (CSII) and somatosensory evoked potentials (SEPs) at 1 and 14 weeks after the stroke onset. Data of SEPs with median and tibial nerve stimulation were classified into the normal, abnormal, and no response group. In the baseline characteristics (sex, lesion character, and side) of both groups, significant differences were not found. The score of CSII decreased in both groups at 14 weeks (p<0.05), but there were no significant differences in the CSII scores between the two groups at 1 and 14 weeks. There were no significant differences in SEPs between the two groups at 1 and 14 weeks after the stroke onset. It appears that somatosensory input plays a relatively minor role in pusher syndrome. Further study will be required to reveal the mechanism of pusher syndrome.

  4. Somatosensory Findings of Pusher Syndrome in Stroke Patients

    PubMed Central

    Lee, Jong Hwa; Kim, Sang Beom; Lee, Kyeong Woo

    2013-01-01

    Objective To investigate the somatosensory findings of pusher syndrome in stroke patients. Methods Twelve pusher patients and twelve non-pusher patients were enrolled in this study. Inclusion criteria were unilateral stroke, sufficient cognitive abilities to understand and follow instructions, and no visual problem. Patients were evaluated for pusher syndrome using a standardized scale for contraversive pushing. Somatosensory finding was assessed by the Cumulative Somatosensory Impairment Index (CSII) and somatosensory evoked potentials (SEPs) at 1 and 14 weeks after the stroke onset. Data of SEPs with median and tibial nerve stimulation were classified into the normal, abnormal, and no response group. Results In the baseline characteristics (sex, lesion character, and side) of both groups, significant differences were not found. The score of CSII decreased in both groups at 14 weeks (p<0.05), but there were no significant differences in the CSII scores between the two groups at 1 and 14 weeks. There were no significant differences in SEPs between the two groups at 1 and 14 weeks after the stroke onset. Conclusion It appears that somatosensory input plays a relatively minor role in pusher syndrome. Further study will be required to reveal the mechanism of pusher syndrome. PMID:23525623

  5. New dual in-growth core isotopic technique to assess the root litter carbon input to the soil

    USDA-ARS?s Scientific Manuscript database

    The root-derived carbon (C) input to the soil, whose quantification is often neglected because of methodological difficulties, is considered a crucial C flux for soil C dynamics and net ecosystem productivity (NEP) studies. In the present study, we compared two independent methods to quantify this C...

  6. Release-independent depression at pyramidal inputs onto specific cell targets: dual recordings in slices of rat cortex

    PubMed Central

    Thomson, Alex M; Bannister, A Peter

    1999-01-01

    Paired intracellular recordings were performed in slices of adult rat neocortex and hippocampus to examine presynaptic depression. A novel form of depression that occurs even in the absence of transmitter release during conditioning activity was observed at a subset of synaptic connections. In each pair studied, a pyramidal neurone was presynaptic and inputs onto a range of morphologically identified postsynaptic target cells were analysed; high probability connections exhibiting the more traditional forms of release-dependent depression, as well as low probability connections exhibiting facilitation, were tested (n = 35). Connections were tested with presynaptic spike pairs and trains of spikes with a range of interspike intervals. Sweeps in which the first action potential elicited no detectable response (apparent failures of transmission) and sweeps in which the first action potential elicited large EPSPs were selected. Second EPSPs that followed apparent failures were then compared with second EPSPs that followed large first EPSPs. Release-independent depression was apparent when second EPSPs at brief interspike intervals (< 10–15 ms) were on average smaller than second EPSPs at longer interspike intervals, even following apparent failures and when the second EPSP amplitude at these short intervals was independent of the amplitude of the first EPSP. Release-independent depression appeared selectively expressed. Depressing inputs onto some interneurones, such as CA1 basket-like and bistratified cells, and facilitating inputs onto others, such as some fast spiking neocortical interneurones, exhibited this phenomenon. In contrast, depressing inputs onto 10/10 neocortical pyramids and facilitating inputs onto 7/7 oriens-lacunosum moleculare and 5/5 burst firing, sparsely spiny neocortical interneurones did not. PMID:10432339

  7. Somatosensory Substrates of Flight Control in Bats

    PubMed Central

    Marshall, Kara L.; Chadha, Mohit; deSouza, Laura A.; Sterbing-D’Angelo, Susanne J.; Moss, Cynthia F.; Lumpkin, Ellen A.

    2015-01-01

    Summary Flight maneuvers require rapid sensory integration to generate adaptive motor output. Bats achieve remarkable agility with modified forelimbs that serve as airfoils while retaining capacity for object manipulation. Wing sensory inputs provide behaviorally relevant information to guide flight; however, components of wing sensory-motor circuits have not been analyzed. Here, we elucidate the organization of wing innervation in an insectivore, the big brown bat, Eptesicus fuscus. We demonstrate that wing sensory innervation differs from other vertebrate forelimbs, revealing a peripheral basis for the atypical topographic organization reported for bat somatosensory nuclei. Furthermore, the wing is innervated by an unusual complement of sensory neurons poised to report airflow and touch. Finally, we report that cortical neurons encode tactile and airflow inputs with sparse activity patterns. Together, our findings identify neural substrates of somatosensation in the bat wing and imply that evolutionary pressures giving rise to mammalian flight led to unusual sensorimotor projections. PMID:25937277

  8. WE-FG-206-06: Dual-Input Tracer Kinetic Modeling and Its Analog Implementation for Dynamic Contrast-Enhanced (DCE-) MRI of Malignant Mesothelioma (MPM)

    SciTech Connect

    Lee, S; Rimner, A; Hayes, S; Hunt, M; Deasy, J; Zauderer, M; Rusch, V; Tyagi, N

    2016-06-15

    Purpose: To use dual-input tracer kinetic modeling of the lung for mapping spatial heterogeneity of various kinetic parameters in malignant MPM Methods: Six MPM patients received DCE-MRI as part of their radiation therapy simulation scan. 5 patients had the epitheloid subtype of MPM, while one was biphasic. A 3D fast-field echo sequence with TR/TE/Flip angle of 3.62ms/1.69ms/15° was used for DCE-MRI acquisition. The scan was collected for 5 minutes with a temporal resolution of 5-9 seconds depending on the spatial extent of the tumor. A principal component analysis-based groupwise deformable registration was used to co-register all the DCE-MRI series for motion compensation. All the images were analyzed using five different dual-input tracer kinetic models implemented in analog continuous-time formalism: the Tofts-Kety (TK), extended TK (ETK), two compartment exchange (2CX), adiabatic approximation to the tissue homogeneity (AATH), and distributed parameter (DP) models. The following parameters were computed for each model: total blood flow (BF), pulmonary flow fraction (γ), pulmonary blood flow (BF-pa), systemic blood flow (BF-a), blood volume (BV), mean transit time (MTT), permeability-surface area product (PS), fractional interstitial volume (vi), extraction fraction (E), volume transfer constant (Ktrans) and efflux rate constant (kep). Results: Although the majority of patients had epitheloid histologies, kinetic parameter values varied across different models. One patient showed a higher total BF value in all models among the epitheloid histologies, although the γ value was varying among these different models. In one tumor with a large area of necrosis, the TK and ETK models showed higher E, Ktrans, and kep values and lower interstitial volume as compared to AATH and DP and 2CX models. Kinetic parameters such as BF-pa, BF-a, PS, Ktrans values were higher in surviving group compared to non-surviving group across most models. Conclusion: Dual-input tracer

  9. Semi-intact ex vivo approach to investigate spinal somatosensory circuits

    PubMed Central

    Hachisuka, Junichi; Baumbauer, Kyle M; Omori, Yu; Snyder, Lindsey M; Koerber, H Richard; Ross, Sarah E

    2016-01-01

    The somatosensory input that gives rise to the perceptions of pain, itch, cold and heat are initially integrated in the superficial dorsal horn of the spinal cord. Here, we describe a new approach to investigate these neural circuits in mouse. This semi-intact somatosensory preparation enables recording from spinal output neurons, while precisely controlling somatosensory input, and simultaneously manipulating specific populations of spinal interneurons. Our findings suggest that spinal interneurons show distinct temporal and spatial tuning properties. We also show that modality selectivity — mechanical, heat and cold — can be assessed in both retrogradely labeled spinoparabrachial projection neurons and genetically labeled spinal interneurons. Finally, we demonstrate that interneuron connectivity can be determined via optogenetic activation of specific interneuron subtypes. This new approach may facilitate key conceptual advances in our understanding of the spinal somatosensory circuits in health and disease. DOI: http://dx.doi.org/10.7554/eLife.22866.001 PMID:27991851

  10. Separation of input function for rapid measurement of quantitative CMRO2 and CBF in a single PET scan with a dual tracer administration method

    NASA Astrophysics Data System (ADS)

    Kudomi, Nobuyuki; Watabe, Hiroshi; Hayashi, Takuya; Iida, Hidehiro

    2007-04-01

    Cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood flow (CBF) images can be quantified using positron emission tomography (PET) by administrating 15O-labelled water (H152O) and oxygen (15O2). Conventionally, those images are measured with separate scans for three tracers C15O for CBV, H152O for CBF and 15O2 for CMRO2, and there are additional waiting times between the scans in order to minimize the influence of the radioactivity from the previous tracers, which results in a relatively long study period. We have proposed a dual tracer autoradiographic (DARG) approach (Kudomi et al 2005), which enabled us to measure CBF, OEF and CMRO2 rapidly by sequentially administrating H152O and 15O2 within a short time. Because quantitative CBF and CMRO2 values are sensitive to arterial input function, it is necessary to obtain accurate input function and a drawback of this approach is to require separation of the measured arterial blood time-activity curve (TAC) into pure water and oxygen input functions under the existence of residual radioactivity from the first injected tracer. For this separation, frequent manual sampling was required. The present paper describes two calculation methods: namely a linear and a model-based method, to separate the measured arterial TAC into its water and oxygen components. In order to validate these methods, we first generated a blood TAC for the DARG approach by combining the water and oxygen input functions obtained in a series of PET studies on normal human subjects. The combined data were then separated into water and oxygen components by the present methods. CBF and CMRO2 were calculated using those separated input functions and tissue TAC. The quantitative accuracy in the CBF and CMRO2 values by the DARG approach did not exceed the acceptable range, i.e., errors in those values were within 5%, when the area under the curve in the input function of the second tracer was larger than half of the

  11. Malignancy Detection on Mammography Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input Enhancement.

    PubMed

    Teare, Philip; Fishman, Michael; Benzaquen, Oshra; Toledano, Eyal; Elnekave, Eldad

    2017-08-01

    Breast cancer is the most prevalent malignancy in the US and the third highest cause of cancer-related mortality worldwide. Regular mammography screening has been attributed with doubling the rate of early cancer detection over the past three decades, yet estimates of mammographic accuracy in the hands of experienced radiologists remain suboptimal with sensitivity ranging from 62 to 87% and specificity from 75 to 91%. Advances in machine learning (ML) in recent years have demonstrated capabilities of image analysis which often surpass those of human observers. Here we present two novel techniques to address inherent challenges in the application of ML to the domain of mammography. We describe the use of genetic search of image enhancement methods, leading us to the use of a novel form of false color enhancement through contrast limited adaptive histogram equalization (CLAHE), as a method to optimize mammographic feature representation. We also utilize dual deep convolutional neural networks at different scales, for classification of full mammogram images and derivative patches combined with a random forest gating network as a novel architectural solution capable of discerning malignancy with a specificity of 0.91 and a specificity of 0.80. To our knowledge, this represents the first automatic stand-alone mammography malignancy detection algorithm with sensitivity and specificity performance similar to that of expert radiologists.

  12. Dual Input AND Gate Fabricated From a Single Channel Poly (3-Hexylthiophene) Thin Film Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    Pinto, N. J.; Perez, R.; Mueller, C. H.; Theofylaktos, N.; Miranda, F. A.

    2006-01-01

    A regio-regular poly (3-hexylthiophene) (RRP3HT) thin film transistor having a split-gate architecture has been fabricated on a doped silicon/silicon nitride substrate and characterized. This device demonstrates AND logic functionality. The device functionality was controlled by applying either 0 or -10 V to each of the gate electrodes. When -10 V was simultaneously applied to both gates, the device was conductive (ON), while any other combination of gate voltages rendered the device resistive (OFF). The p-type carrier charge mobility was about 5x10(exp -4) per square centimeter per V-sec. The low mobility is attributed to the sharp contours of the RRP3HT film due to substrate non-planarity. A significant advantage of this architecture is that AND logic devices with multiple inputs can be fabricated using a single RRP3HT channel with multiple gates.

  13. Somatosensory response properties of excitatory and inhibitory neurons in rat motor cortex

    PubMed Central

    Murray, Peter D.

    2011-01-01

    In sensory cortical networks, peripheral inputs differentially activate excitatory and inhibitory neurons. Inhibitory neurons typically have larger responses and broader receptive field tuning compared with excitatory neurons. These differences are thought to underlie the powerful feedforward inhibition that occurs in response to sensory input. In the motor cortex, as in the somatosensory cortex, cutaneous and proprioceptive somatosensory inputs, generated before and during movement, strongly and dynamically modulate the activity of motor neurons involved in a movement and ultimately shape cortical command. Human studies suggest that somatosensory inputs modulate motor cortical activity in a center excitation, surround inhibition manner such that input from the activated muscle excites motor cortical neurons that project to it, whereas somatosensory input from nearby, nonactivated muscles inhibit these neurons. A key prediction of this hypothesis is that inhibitory and excitatory motor cortical neurons respond differently to somatosensory inputs. We tested this prediction with the use of multisite extracellular recordings in anesthetized rats. We found that fast-spiking (presumably inhibitory) neurons respond to tactile and proprioceptive inputs at shorter latencies and larger response magnitudes compared with regular-spiking (presumably excitatory) neurons. In contrast, we found no differences in the receptive field size of these neuronal populations. Strikingly, all fast-spiking neuron pairs analyzed with cross-correlation analysis displayed common excitation, which was significantly more prevalent than common excitation for regular-spiking neuron pairs. These findings suggest that somatosensory inputs preferentially evoke feedforward inhibition in the motor cortex. We suggest that this provides a mechanism for dynamic selection of motor cortical modules during voluntary movements. PMID:21653707

  14. Somatosensory response properties of excitatory and inhibitory neurons in rat motor cortex.

    PubMed

    Murray, Peter D; Keller, Asaf

    2011-09-01

    In sensory cortical networks, peripheral inputs differentially activate excitatory and inhibitory neurons. Inhibitory neurons typically have larger responses and broader receptive field tuning compared with excitatory neurons. These differences are thought to underlie the powerful feedforward inhibition that occurs in response to sensory input. In the motor cortex, as in the somatosensory cortex, cutaneous and proprioceptive somatosensory inputs, generated before and during movement, strongly and dynamically modulate the activity of motor neurons involved in a movement and ultimately shape cortical command. Human studies suggest that somatosensory inputs modulate motor cortical activity in a center excitation, surround inhibition manner such that input from the activated muscle excites motor cortical neurons that project to it, whereas somatosensory input from nearby, nonactivated muscles inhibit these neurons. A key prediction of this hypothesis is that inhibitory and excitatory motor cortical neurons respond differently to somatosensory inputs. We tested this prediction with the use of multisite extracellular recordings in anesthetized rats. We found that fast-spiking (presumably inhibitory) neurons respond to tactile and proprioceptive inputs at shorter latencies and larger response magnitudes compared with regular-spiking (presumably excitatory) neurons. In contrast, we found no differences in the receptive field size of these neuronal populations. Strikingly, all fast-spiking neuron pairs analyzed with cross-correlation analysis displayed common excitation, which was significantly more prevalent than common excitation for regular-spiking neuron pairs. These findings suggest that somatosensory inputs preferentially evoke feedforward inhibition in the motor cortex. We suggest that this provides a mechanism for dynamic selection of motor cortical modules during voluntary movements.

  15. Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver

    PubMed Central

    Montealegre-Z, Fernando; Soulsbury, Carl D.; Robson Brown, Kate A.; Robert, Daniel

    2016-01-01

    The ear of the bush-cricket, Copiphora gorgonensis, consists of a system of paired eardrums (tympana) on each foreleg. In these insects, the ear is backed by an air-filled tube, the acoustic trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of the eardrums. Both surfaces of the eardrums of this auditory system are exposed to sound, making it a directionally sensitive pressure difference receiver. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces at the tympanum. The mechanism responsible for reduction in sound velocity in the AT remains elusive, yet it is deemed to depend on adiabatic or isothermal conditions. To investigate the biophysics of such multiple input ears, we used micro-scanning laser Doppler vibrometry and micro-computed X-ray tomography. We measured the velocity of sound propagation in the AT, the transmission gains across auditory frequencies and the time-resolved mechanical dynamics of the tympanal membranes in C. gorgonensis. Tracheal sound transmission generates a gain of approximately 15 dB SPL, and a propagation velocity of ca 255 m s−1, an approximately 25% reduction from free field propagation. Modelling tracheal acoustic behaviour that accounts for thermal and viscous effects, we conclude that reduction in sound velocity within the AT can be explained, among others, by heat exchange between the sound wave and the tracheal walls. PMID:27683000

  16. Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver.

    PubMed

    Jonsson, Thorin; Montealegre-Z, Fernando; Soulsbury, Carl D; Robson Brown, Kate A; Robert, Daniel

    2016-09-01

    The ear of the bush-cricket, Copiphora gorgonensis, consists of a system of paired eardrums (tympana) on each foreleg. In these insects, the ear is backed by an air-filled tube, the acoustic trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of the eardrums. Both surfaces of the eardrums of this auditory system are exposed to sound, making it a directionally sensitive pressure difference receiver. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces at the tympanum. The mechanism responsible for reduction in sound velocity in the AT remains elusive, yet it is deemed to depend on adiabatic or isothermal conditions. To investigate the biophysics of such multiple input ears, we used micro-scanning laser Doppler vibrometry and micro-computed X-ray tomography. We measured the velocity of sound propagation in the AT, the transmission gains across auditory frequencies and the time-resolved mechanical dynamics of the tympanal membranes in C. gorgonensis Tracheal sound transmission generates a gain of approximately 15 dB SPL, and a propagation velocity of ca 255 m s(-1), an approximately 25% reduction from free field propagation. Modelling tracheal acoustic behaviour that accounts for thermal and viscous effects, we conclude that reduction in sound velocity within the AT can be explained, among others, by heat exchange between the sound wave and the tracheal walls.

  17. Bilateral representations of touch in the primary somatosensory cortex.

    PubMed

    Tamè, Luigi; Braun, Christoph; Holmes, Nicholas P; Farnè, Alessandro; Pavani, Francesco

    2016-01-01

    According to current textbook knowledge, the primary somatosensory cortex (SI) supports unilateral tactile representations, whereas structures beyond SI, in particular the secondary somatosensory cortex (SII), support bilateral tactile representations. However, dexterous and well-coordinated bimanual motor tasks require early integration of bilateral tactile information. Sequential processing, first of unilateral and subsequently of bilateral sensory information, might not be sufficient to accomplish these tasks. This view of sequential processing in the somatosensory system might therefore be questioned, at least for demanding bimanual tasks. Evidence from the last 15 years is forcing a revision of this textbook notion. Studies in animals and humans indicate that SI is more than a simple relay for unilateral sensory information and, together with SII, contributes to the integration of somatosensory inputs from both sides of the body. Here, we review a series of recent works from our own and other laboratories in favour of interactions between tactile stimuli on the two sides of the body at early stages of processing. We focus on tactile processing, although a similar logic may also apply to other aspects of somatosensation. We begin by describing the basic anatomy and physiology of interhemispheric transfer, drawing on neurophysiological studies in animals and behavioural studies in humans that showed tactile interactions between body sides, both in healthy and in brain-damaged individuals. Then we describe the neural substrates of bilateral interactions in somatosensation as revealed by neurophysiological work in animals and neuroimaging studies in humans (i.e., functional magnetic resonance imaging, magnetoencephalography, and transcranial magnetic stimulation). Finally, we conclude with considerations on the dilemma of how efficiently integrating bilateral sensory information at early processing stages can coexist with more lateralized representations of

  18. Population coding in somatosensory cortex.

    PubMed

    Petersen, Rasmus S; Panzeri, Stefano; Diamond, Mathew E

    2002-08-01

    Computational analyses have begun to elucidate which components of somatosensory cortical population activity may encode basic stimulus features. Recent results from rat barrel cortex suggest that the essence of this code is not synergistic spike patterns, but rather the precise timing of single neuron's first post-stimulus spikes. This may form the basis for a fast, robust population code.

  19. Beta rhythm modulation by speech sounds: somatotopic mapping in somatosensory cortex.

    PubMed

    Bartoli, Eleonora; Maffongelli, Laura; Campus, Claudio; D'Ausilio, Alessandro

    2016-08-08

    During speech listening motor regions are somatotopically activated, resembling the activity that subtends actual speech production, suggesting that motor commands can be retrieved from sensory inputs. Crucially, the efficient motor control of the articulators relies on the accurate anticipation of the somatosensory reafference. Nevertheless, evidence about somatosensory activities elicited by auditory speech processing is sparse. The present work looked for specific interactions between auditory speech presentation and somatosensory cortical information processing. We used an auditory speech identification task with sounds having different place of articulation (bilabials and dentals). We tested whether coupling the auditory task with a peripheral electrical stimulation of the lips would affect the pattern of sensorimotor electroencephalographic rhythms. Peripheral electrical stimulation elicits a series of spectral perturbations of which the beta rebound reflects the return-to-baseline stage of somatosensory processing. We show a left-lateralized and selective reduction in the beta rebound following lip somatosensory stimulation when listening to speech sounds produced with the lips (i.e. bilabials). Thus, the somatosensory processing could not return to baseline due to the recruitment of the same neural resources by speech stimuli. Our results are a clear demonstration that heard speech sounds are somatotopically mapped onto somatosensory cortices, according to place of articulation.

  20. Beta rhythm modulation by speech sounds: somatotopic mapping in somatosensory cortex

    PubMed Central

    Bartoli, Eleonora; Maffongelli, Laura; Campus, Claudio; D’Ausilio, Alessandro

    2016-01-01

    During speech listening motor regions are somatotopically activated, resembling the activity that subtends actual speech production, suggesting that motor commands can be retrieved from sensory inputs. Crucially, the efficient motor control of the articulators relies on the accurate anticipation of the somatosensory reafference. Nevertheless, evidence about somatosensory activities elicited by auditory speech processing is sparse. The present work looked for specific interactions between auditory speech presentation and somatosensory cortical information processing. We used an auditory speech identification task with sounds having different place of articulation (bilabials and dentals). We tested whether coupling the auditory task with a peripheral electrical stimulation of the lips would affect the pattern of sensorimotor electroencephalographic rhythms. Peripheral electrical stimulation elicits a series of spectral perturbations of which the beta rebound reflects the return-to-baseline stage of somatosensory processing. We show a left-lateralized and selective reduction in the beta rebound following lip somatosensory stimulation when listening to speech sounds produced with the lips (i.e. bilabials). Thus, the somatosensory processing could not return to baseline due to the recruitment of the same neural resources by speech stimuli. Our results are a clear demonstration that heard speech sounds are somatotopically mapped onto somatosensory cortices, according to place of articulation. PMID:27499204

  1. Modulation of somatosensory evoked magnetic fields by intensity of interfering stimuli in human somatosensory cortex: an MEG study.

    PubMed

    Lim, Manyoel; Kim, June Sic; Chung, Chun Kee

    2012-07-02

    Somatosensory evoked responses are known to be modulated by previous interfering stimuli. Here, we first investigated the modulatory effects of interfering stimuli with different intensities on somatosensory evoked magnetic field in human primary (S1) and secondary (S2) somatosensory cortices. In the control condition of the study, test stimulus, set to strong intensity, was delivered to the left median nerve. Interfering stimuli with three different levels of intensity from weak (WI) through moderate (MI) and finally to strong (SI) were interspersed to the left median nerve between the test stimuli in each interfering condition. The cortical responses to the test stimulus were modeled with equivalent current dipoles in the contralateral S1 and bilateral S2 cortices from 17 subjects. The amplitude of the N20m deflection from the S1 was not changed by any interfering stimuli, whereas the amplitude of later P35m deflection was reduced by MI stimulus. The amplitude of P60m deflection was reduced by MI and SI stimuli. The extent of amplitude reduction of the bilateral S2 response was markedly increased as intensity of interfering stimuli increased from weak to moderate, but further reduction by the SI stimuli compared to MI stimuli was not observed. Those results indicated that somatosensory cortical activation in the S1 (P35m and P60m) and S2 were modulated by intensity of interfering stimuli. Our findings of a greater gating effect on the bilateral S2 compared to the contralateral S1 indicate that S2 may play an important role in temporal integration of different intensity levels of somatosensory inputs.

  2. The Influence of Eye Closure on Somatosensory Discrimination: A Trade-off Between Simple Perception and Discrimination.

    PubMed

    Götz, Theresa; Hanke, David; Huonker, Ralph; Weiss, Thomas; Klingner, Carsten; Brodoehl, Stefan; Baumbach, Philipp; Witte, Otto W

    2017-04-12

    We often close our eyes to improve perception. Recent results have shown a decrease of perception thresholds accompanied by an increase in somatosensory activity after eye closure. However, does somatosensory spatial discrimination also benefit from eye closure? We previously showed that spatial discrimination is accompanied by a reduction of somatosensory activity. Using magnetoencephalography, we analyzed the magnitude of primary somatosensory (somatosensory P50m) and primary auditory activity (auditory P50m) during a one-back discrimination task in 21 healthy volunteers. In complete darkness, participants were requested to pay attention to either the somatosensory or auditory stimulation and asked to open or close their eyes every 6.5 min. Somatosensory P50m was reduced during a task requiring the distinguishing of stimulus location changes at the distal phalanges of different fingers. The somatosensory P50m was further reduced and detection performance was higher during eyes open. A similar reduction was found for the auditory P50m during a task requiring the distinguishing of changing tones. The function of eye closure is more than controlling visual input. It might be advantageous for perception because it is an effective way to reduce interference from other modalities, but disadvantageous for spatial discrimination because it requires at least one top-down processing stage.

  3. Integration of visual and somatosensory target information in goal-directed eye and arm movements.

    PubMed

    Neggers, S F; Bekkering, H

    1999-03-01

    In this study, we compared separate and coordinated eye and hand movements towards visual or somatosensory target stimuli in a dark room, where no visual position information about the hand could be obtained. Experiment 1 showed that saccadic reaction times (RTs) were longer when directed to somatosensory targets than when directed to visual targets in both single- and dual-task conditions. However, for hand movements, this pattern was only found in the dual-task condition and not in the single-task condition. Experiment 1 also showed that correlations between saccadic and hand RTs were significantly higher when directed towards somatosensory targets than when directed towards visual targets. Importantly, experiment 2 indicated that this was not caused by differences in processing times at a perceptual level. Furthermore, hand-pointing accuracy was found to be higher when subjects had to move their eyes as well (dual task) compared to a single-task hand movement. However, this effect was more pronounced for movements to visual targets than to somatosensory targets. A schematic model of sensorimotor transformations for saccadic eye and goal-directed hand movements is proposed and possible shared mechanisms of the two motor systems are discussed.

  4. Static magnetic field stimulation over parietal cortex enhances somatosensory detection in humans.

    PubMed

    Carrasco-López, Carmen; Soto-León, Vanesa; Céspedes, Virginia; Profice, Paolo; Strange, Bryan A; Foffani, Guglielmo; Oliviero, Antonio

    2017-03-09

    The role of neuronal oscillations in human somatosensory perception is currently unclear. To address this, here we employ non-invasive brain stimulation to artificially modulate cortical network dynamics in the context of neurophysiological and behavioral recordings. We demonstrate that transcranial static magnetic stimulation (tSMS) over the somatosensory parietal cortex increases oscillatory power specifically in the alpha range, without significantly affecting bottom-up thalamo-cortical inputs indexed by the early cortical component of somatosensory evoked potentials. Critically, we next show that parietal tSMS enhances the detection of near-threshold somatosensory stimuli. Interestingly, this behavioral improvement reflects a decrease of habituation to somatosensation. Our data therefore provide causal evidence that somatosensory perception depends on parietal alpha activity. Artificially increasing alpha power by placing a powerful magnetic field over the parietal cortex overcomes the natural decline in detection probability of a repeated near-threshold sensory stimulus.SignificanceStatement Artificially increasing alpha power by placing a powerful magnetic field over the somatosensory cortex overcomes the natural decline in detection probability of a repeated near-threshold sensory stimulus.

  5. The effect of unpredicted visual feedback on activation in the secondary somatosensory cortex during movement execution.

    PubMed

    Wasaka, Toshiaki; Kakigi, Ryusuke

    2012-11-05

    A mechanism that monitors the congruence between sensory inputs and motor outputs is necessary to control voluntary movement. The representation of limb position is constantly updated on the basis of somatosensory and visual information and efference copy from motor areas. However, the cortical mechanism underlying detection of limb position using somatosensory and visual information has not been elucidated. This study investigated the influence of visual feedback on information processing in somatosensory areas during movement execution using magnetoencephalography. We used an experimental condition in which the visual information was incongruent despite the motor execution and somatosensory feedback being congruent. Subjects performed self-paced bimanual movements of both thumbs, either symmetric or asymmetric, under normal visual and mirrored conditions. The mirror condition provided a visual feedback by showing a reflection of the subject's right hand in place of the left hand. Therefore, in the Asymmetric task of the Mirror condition, subjects saw symmetric movements despite performing asymmetric movements. Activation in the primary somatosensory area (SI) revealed inhibition of neural activity and that in the secondary somatosensory area (SII) showed enhancement with voluntary movement. In addition, the SII contralateral to the side of stimulation was significantly enhanced in the Asymmetric task of the Mirror condition, which provided non-veridical visual feedback. These results suggested that visual information influenced the neuronal activity concerning sensorimotor interaction in the SII during motor execution. The SII contributes to the detection of unpredicted visual feedback of movement execution.

  6. Normalization in human somatosensory cortex.

    PubMed

    Brouwer, Gijs Joost; Arnedo, Vanessa; Offen, Shani; Heeger, David J; Grant, Arthur C

    2015-11-01

    Functional magnetic resonance imaging (fMRI) was used to measure activity in human somatosensory cortex and to test for cross-digit suppression. Subjects received stimulation (vibration of varying amplitudes) to the right thumb (target) with or without concurrent stimulation of the right middle finger (mask). Subjects were less sensitive to target stimulation (psychophysical detection thresholds were higher) when target and mask digits were stimulated concurrently compared with when the target was stimulated in isolation. fMRI voxels in a region of the left postcentral gyrus each responded when either digit was stimulated. A regression model (called a forward model) was used to separate the fMRI measurements from these voxels into two hypothetical channels, each of which responded selectively to only one of the two digits. For the channel tuned to the target digit, responses in the left postcentral gyrus increased with target stimulus amplitude but were suppressed by concurrent stimulation to the mask digit, evident as a shift in the gain of the response functions. For the channel tuned to the mask digit, a constant baseline response was evoked for all target amplitudes when the mask was absent and responses decreased with increasing target amplitude when the mask was concurrently presented. A computational model based on divisive normalization provided a good fit to the measurements for both mask-absent and target + mask stimulation. We conclude that the normalization model can explain cross-digit suppression in human somatosensory cortex, supporting the hypothesis that normalization is a canonical neural computation.

  7. Testis of prepubertal rhesus monkeys receives a dual catecholaminergic input provided by the extrinsic innervation and an intragonadal source of catecholamines.

    PubMed

    Mayerhofer, A; Danilchik, M; Pau, K Y; Lara, H E; Russell, L D; Ojeda, S R

    1996-09-01

    regulatory domain of the enzyme. The cDNA that was obtained predicts an amino acid sequence similar, but not identical, to that encoded by the alternatively spliced type 1 TH mRNA form present in the adrenal gland. These results indicate 1) that the primate testis receives a dual catecholaminergic input, one provided by the extrinsic innervation and the other by neuron-like cells located within the gonad itself, and 2) that the influence exerted by both sources on testicular function may be more prominent during the prepubertal period than in adulthood. The presence in the testis of a TH mRNA variant encoding amino acid substitutions in its 5' end suggests that regulation of testicular TH enzyme activity may include a gonad-specific component.

  8. Listening to Another Sense: Somatosensory Integration in the Auditory System

    PubMed Central

    Wu, Calvin; Stefanescu, Roxana A.; Martel, David T.

    2014-01-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems, and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body, and the auditory cortex. In this review, we explore the process of multisensory integration from 1) anatomical (inputs and connections), 2) physiological (cellular responses), 3) functional, and 4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing, and offers a multisensory perspective regarding the understanding of sensory disorders. PMID:25526698

  9. Listening to another sense: somatosensory integration in the auditory system.

    PubMed

    Wu, Calvin; Stefanescu, Roxana A; Martel, David T; Shore, Susan E

    2015-07-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.

  10. Observing motor learning produces somatosensory change

    PubMed Central

    Bernardi, Nicolò F.; Darainy, Mohammad; Bricolo, Emanuela

    2013-01-01

    Observing the actions of others has been shown to affect motor learning, but does it have effects on sensory systems as well? It has been recently shown that motor learning that involves actual physical practice is also associated with plasticity in the somatosensory system. Here, we assessed the idea that observational learning likewise changes somatosensory function. We evaluated changes in somatosensory function after human subjects watched videos depicting motor learning. Subjects first observed video recordings of reaching movements either in a clockwise or counterclockwise force field. They were then trained in an actual force-field task that involved a counterclockwise load. Measures of somatosensory function were obtained before and after visual observation and also following force-field learning. Consistent with previous reports, video observation promoted motor learning. We also found that somatosensory function was altered following observational learning, both in direction and in magnitude, in a manner similar to that which occurs when motor learning is achieved through actual physical practice. Observation of the same sequence of movements in a randomized order did not result in somatosensory perceptual change. Observational learning and real physical practice appear to tap into the same capacity for sensory change in that subjects that showed a greater change following observational learning showed a reliably smaller change following physical motor learning. We conclude that effects of observing motor learning extend beyond the boundaries of traditional motor circuits, to include somatosensory representations. PMID:23864382

  11. Observing motor learning produces somatosensory change.

    PubMed

    Bernardi, Nicolò F; Darainy, Mohammad; Bricolo, Emanuela; Ostry, David J

    2013-10-01

    Observing the actions of others has been shown to affect motor learning, but does it have effects on sensory systems as well? It has been recently shown that motor learning that involves actual physical practice is also associated with plasticity in the somatosensory system. Here, we assessed the idea that observational learning likewise changes somatosensory function. We evaluated changes in somatosensory function after human subjects watched videos depicting motor learning. Subjects first observed video recordings of reaching movements either in a clockwise or counterclockwise force field. They were then trained in an actual force-field task that involved a counterclockwise load. Measures of somatosensory function were obtained before and after visual observation and also following force-field learning. Consistent with previous reports, video observation promoted motor learning. We also found that somatosensory function was altered following observational learning, both in direction and in magnitude, in a manner similar to that which occurs when motor learning is achieved through actual physical practice. Observation of the same sequence of movements in a randomized order did not result in somatosensory perceptual change. Observational learning and real physical practice appear to tap into the same capacity for sensory change in that subjects that showed a greater change following observational learning showed a reliably smaller change following physical motor learning. We conclude that effects of observing motor learning extend beyond the boundaries of traditional motor circuits, to include somatosensory representations.

  12. Functional connectivity for somatosensory and motor cortex in spastic diplegia

    PubMed Central

    Burton, Harold; Dixit, Sachin; Litkowski, Patricia; Wingert, Jason R.

    2009-01-01

    Functional connectivity (fcMRI) was analyzed in individuals with spastic diplegia and age-matched controls. Pearson correlations (r-values) were computed between resting state spontaneous activity in selected seed regions (sROI) and each voxel throughout the brain. Seed ROI were centered on foci activated by tactile stimulation of the second fingertip in somatosensory and parietal dorsal attention regions. The group with diplegia showed significantly expanded networks for the somatomotor but not dorsal attention areas. These expanded networks overran nearly all topological representations in somatosensory and motor areas despite a sROI in a fingertip focus. A possible underlying cause for altered fcMRI in the group with dipegia, and generally sensorimotor deficits in spastic diplegia, is that prenatal third trimester white-matter injury leads to localized damage to subplate neurons. We hypothesize that intracortical connections become dominant in spastic diplegia through successful competition with diminished or absent thalamocortical inputs. Similar to the effects of subplate ablations on ocular dominance columns (Kanold and Shatz, Neuron 2006;51:627–638), a spike timing-dependent plasticity model is proposed to explain a shift towards intracortical inputs. PMID:20047510

  13. Functional connectivity for somatosensory and motor cortex in spastic diplegia.

    PubMed

    Burton, Harold; Dixit, Sachin; Litkowski, Patricia; Wingert, Jason R

    2009-12-01

    Functional connectivity (fcMRI) was analyzed in individuals with spastic diplegia and age-matched controls. Pearson correlations (r-values) were computed between resting state spontaneous activity in selected seed regions (sROI) and each voxel throughout the brain. Seed ROI were centered on foci activated by tactile stimulation of the second fingertip in somatosensory and parietal dorsal attention regions. The group with diplegia showed significantly expanded networks for the somatomotor but not dorsal attention areas. These expanded networks overran nearly all topological representations in somatosensory and motor areas despite a sROI in a fingertip focus. A possible underlying cause for altered fcMRI in the group with dipegia, and generally sensorimotor deficits in spastic diplegia, is that prenatal third trimester white-matter injury leads to localized damage to subplate neurons. We hypothesize that intracortical connections become dominant in spastic diplegia through successful competition with diminished or absent thalamocortical inputs. Similar to the effects of subplate ablations on ocular dominance columns (Kanold and Shatz, Neuron 2006;51:627-638), a spike timing-dependent plasticity model is proposed to explain a shift towards intracortical inputs.

  14. Cross-modal interactions of auditory and somatic inputs in the brainstem and midbrain and their imbalance in tinnitus and deafness

    PubMed Central

    Dehmel, S; Cui, YL; Shore, SE

    2009-01-01

    Purpose This review outlines the anatomical and functional bases of somatosensory influences on auditory processing in the normal brainstem and midbrain. Thereafter, it explores how interactions between the auditory and somatosensory system are modified through deafness and their impact on tinnitus is discussed. Methods literature-review, tract-tracing, immunohistochemistry, in vivo electrophysiological recordings Results Somatosensory input originates in the dorsal root ganglia (DRG) and trigeminal ganglia (TG) and is transmitted directly and indirectly through second order nuclei to the ventral and dorsal cochlear nucleus (VCN, DCN) and inferior colliculus (IC). The glutamatergic somatosensory afferents can be segregated from auditory nerve inputs by the type of vesicular glutamate transporters present in their terminals. Electrical stimulation of the somatosensory input results in a complex combination of excitation and inhibition and alters the rate and timing of responses to acoustic stimulation. Deafness increases the spontaneous rates of those neurons that receive excitatory somatosensory input, and results in a greater sensitivity of DCN neurons to trigeminal stimulation. Conclusions Auditory-somatosensory bimodal integration is already present in first order auditory nuclei. The balance of excitation and inhibition elicited by somatosensory input is altered following deafness. The increase in somatosensory influence on auditory neurons when their auditory input is diminished could be due to cross modal re-innervation or increased synaptic strength, and may contribute to mechanisms underlying somatic tinnitus. PMID:19056923

  15. Dissociating vestibular and somatosensory contributions to spatial orientation.

    PubMed

    Alberts, Bart B G T; Selen, Luc P J; Bertolini, Giovanni; Straumann, Dominik; Medendorp, W Pieter; Tarnutzer, Alexander A

    2016-07-01

    Inferring object orientation in the surroundings heavily depends on our internal sense of direction of gravity. Previous research showed that this sense is based on the integration of multiple information sources, including visual, vestibular (otolithic), and somatosensory signals. The individual noise characteristics and contributions of these sensors can be studied using spatial orientation tasks, such as the subjective visual vertical (SVV) task. A recent study reported that patients with complete bilateral vestibular loss perform similar as healthy controls on these tasks, from which it was conjectured that the noise levels of both otoliths and body somatosensors are roll-tilt dependent. Here, we tested this hypothesis in 10 healthy human subjects by roll tilting the head relative to the body to dissociate tilt-angle dependencies of otolith and somatosensory noise. Using a psychometric approach, we measured the perceived orientation, and its variability, of a briefly flashed line relative to the gravitational vertical (SVV). Measurements were taken at multiple body-in-space orientations (-90 to 90°, steps of 30°) and head-on-body roll tilts (30° left ear down, aligned, 30° right ear down). Results showed that verticality perception is processed in a head-in-space reference frame, with a systematic SVV error that increased with larger head-in-space orientations. Variability patterns indicated a larger contribution of the otolith organs around upright and a more substantial contribution of the body somatosensors at larger body-in-space roll tilts. Simulations show that these findings are consistent with a statistical model that involves tilt-dependent noise levels of both otolith and somatosensory signals, confirming dynamic shifts in the weights of sensory inputs with tilt angle.

  16. Dissociating vestibular and somatosensory contributions to spatial orientation

    PubMed Central

    Selen, Luc P. J.; Bertolini, Giovanni; Straumann, Dominik; Medendorp, W. Pieter

    2016-01-01

    Inferring object orientation in the surroundings heavily depends on our internal sense of direction of gravity. Previous research showed that this sense is based on the integration of multiple information sources, including visual, vestibular (otolithic), and somatosensory signals. The individual noise characteristics and contributions of these sensors can be studied using spatial orientation tasks, such as the subjective visual vertical (SVV) task. A recent study reported that patients with complete bilateral vestibular loss perform similar as healthy controls on these tasks, from which it was conjectured that the noise levels of both otoliths and body somatosensors are roll-tilt dependent. Here, we tested this hypothesis in 10 healthy human subjects by roll tilting the head relative to the body to dissociate tilt-angle dependencies of otolith and somatosensory noise. Using a psychometric approach, we measured the perceived orientation, and its variability, of a briefly flashed line relative to the gravitational vertical (SVV). Measurements were taken at multiple body-in-space orientations (−90 to 90°, steps of 30°) and head-on-body roll tilts (30° left ear down, aligned, 30° right ear down). Results showed that verticality perception is processed in a head-in-space reference frame, with a systematic SVV error that increased with larger head-in-space orientations. Variability patterns indicated a larger contribution of the otolith organs around upright and a more substantial contribution of the body somatosensors at larger body-in-space roll tilts. Simulations show that these findings are consistent with a statistical model that involves tilt-dependent noise levels of both otolith and somatosensory signals, confirming dynamic shifts in the weights of sensory inputs with tilt angle. PMID:27075537

  17. Single-trial detection for intraoperative somatosensory evoked potentials monitoring.

    PubMed

    Hu, L; Zhang, Z G; Liu, H T; Luk, K D K; Hu, Y

    2015-12-01

    Abnormalities of somatosensory evoked potentials (SEPs) provide effective evidence for impairment of the somatosensory system, so that SEPs have been widely used in both clinical diagnosis and intraoperative neurophysiological monitoring. However, due to their low signal-to-noise ratio (SNR), SEPs are generally measured using ensemble averaging across hundreds of trials, thus unavoidably producing a tardiness of SEPs to the potential damages caused by surgical maneuvers and a loss of dynamical information of cortical processing related to somatosensory inputs. Here, we aimed to enhance the SNR of single-trial SEPs using Kalman filtering and time-frequency multiple linear regression (TF-MLR) and measure their single-trial parameters, both in the time domain and in the time-frequency domain. We first showed that, Kalman filtering and TF-MLR can effectively capture the single-trial SEP responses and provide accurate estimates of single-trial SEP parameters in the time domain and time-frequency domain, respectively. Furthermore, we identified significant correlations between the stimulus intensity and a set of indicative single-trial SEP parameters, including the correlation coefficient (between each single-trial SEPs and their average), P37 amplitude, N45 amplitude, P37-N45 amplitude, and phase value (at the zero-crossing points between P37 and N45). Finally, based on each indicative single-trial SEP parameter, we investigated the minimum number of trials required on a single-trial basis to suggest the existence of SEP responses, thus providing important information for fast SEP extraction in intraoperative monitoring.

  18. Somatosensory disturbance by methylmercury exposure.

    PubMed

    Takaoka, Shigeru; Kawakami, Yoshinobu; Fujino, Tadashi; Oh-ishi, Fumihiro; Motokura, Fukuo; Kumagai, Yoshio; Miyaoka, Tetsu

    2008-05-01

    Minamata disease is methylmercury poisoning from consuming fish and shellfish contaminated by industrial waste. The polluted seafood was widely consumed in the area around Minamata, but many individuals were never examined for or classified as having Minamata disease. Following the determination of the Supreme Court of Japan in October 2004 that the Japanese Government was responsible for spreading Minamata disease, over 13,000 residents came forward to be examined for Minamata disease. We studied 197 residents from the Minamata area who had a history of fish consumption during the polluted period to determine the importance of sensory symptoms and findings in making a diagnosis of Minamata disease. We divided the exposed subjects into non-complicated (E) and complicated (E+N) groups based on the absence or presence of other neurological or neurologically related disorders and compared them to residents in control area (C) after matching for age and sex. We quantitatively measured four somatosensory modalities (minimal tactile sense by Semmes-Weinstein monofilaments, vibration sense, position sense, and two-point discrimination) and did psychophysical tests of fine-surface-texture discrimination. Subjective complaints were higher in groups E and E+N than C. Over 90% of E+N and E subjects displayed a sensory disturbance on conventional neurological examination and 28% had visual constriction. About 50% of the E and E +N groups had upper and lower extremity ataxia and about 70% had truncal ataxia. The prevalence of these neurological findings was significantly higher in exposed subjects than controls. All sensory modalities were impaired in the E and E+N groups. All four quantitatively measured sensory modalities were correlated. The prevalence of complaints, neurological findings, and sensory impairment was similar or a little worse in group E+N than in group E. We conclude that sensory symptoms and findings are important in making the diagnosis of Minamata disease

  19. Does somatosensory amplification decrease with antidepressant treatment?

    PubMed

    Sayar, Kemal; Barsky, Arthur J; Gulec, Huseyin

    2005-01-01

    Somatosensory amplification refers to a tendency to experience somatic and visceral sensations as unusually intense, noxious, and disturbing. The authors wanted to determine whether somatosensory amplification is a stable construct or whether it might change with antidepressant therapy. Fifteen patients with fibromyalgia and 17 patients with major depressive disorder received antidepressant treatment and were assessed after 6 and 12 weeks of treatment. Amplification scores responded to antidepressant treatment in patients with major depression but not in patients with fibromyalgia, despite a decrease in the levels of depression in both groups. When change in depression and anxiety scores was partialled out from change in somatosensory amplification scores, the amplification scores did not change significantly in either the depressed or the fibromyalgia groups. Given the small numbers and the marginal significance of the results, the authors are unable to say definitely just how independent of depression somatosensory amplification is. Whether somatosensory amplification is a measure of depression per se should be tested in a more definitive and larger future study.

  20. Origins of choice-related activity in mouse somatosensory cortex

    PubMed Central

    Yang, Hongdian; Kwon, Sung E.; Severson, Kyle S.; O’Connor, Daniel H.

    2015-01-01

    During perceptual decisions about faint or ambiguous sensory stimuli, even identical stimuli can produce different choices. Spike trains from sensory cortex neurons can predict trial-to-trial variability in choice. Choice-related spiking is widely studied to link cortical activity to perception, but its origins remain unclear. Using imaging and electrophysiology, we found that mouse primary somatosensory cortex neurons showed robust choice-related activity during a tactile detection task. Spike trains from primary mechanoreceptive neurons did not predict choices about identical stimuli. Spike trains from thalamic relay neurons showed highly transient, weak choice-related activity. Intracellular recordings in cortex revealed a prolonged choice-related depolarization in most neurons that was not accounted for by feedforward thalamic input. Top-down axons projecting from secondary to primary somatosensory cortex signaled choice. An intracellular measure of stimulus sensitivity determined which neurons converted choice-related depolarization into spiking. Our results reveal how choice-related spiking emerges across neural circuits and within single neurons. PMID:26642088

  1. Sensory incongruence leading to hand disownership modulates somatosensory cortical processing.

    PubMed

    Otsuru, Naofumi; Hashizume, Akira; Nakamura, Daichi; Endo, Yuuki; Inui, Koji; Kakigi, Ryusuke; Yuge, Louis

    2014-09-01

    The sense of body ownership is based on integration of multimodal sensory information, including tactile sensation, proprioception, and vision. Distorted body ownership contributes to the development of chronic pain syndromes and possibly symptoms of psychiatric disease. However, the effects of disownership on cortical processing of somatosensory information are unknown. In the present study, we created a "disownership" condition in healthy individuals by manipulating the visual information indicating the location of the subject's own left hand using a mirror box and examined the influence of this disownership on cortical responses to electrical stimulation of the left index finger using magnetoencephalography (MEG). The event-related magnetic field in the right primary somatosensory cortex at approximately 50 msec (M50) after stimulus was enhanced under the disownership condition. The present results suggest that M50 reflects a cortical incongruence detection mechanism involving integration of sensory inputs from visual and proprioceptive systems. This signal may be valuable for future studies of the mechanisms underlying sense of body ownership and the role that disrupted sense of ownership has in neurological disease.

  2. Neural coding and perceptual detection in the primate somatosensory thalamus

    PubMed Central

    Vázquez, Yuriria; Zainos, Antonio; Alvarez, Manuel; Salinas, Emilio; Romo, Ranulfo

    2012-01-01

    The contribution of the sensory thalamus to perception and decision making is not well understood. We addressed this problem by recording single neurons in the ventral posterior lateral (VPL) nucleus of the somatosensory thalamus while trained monkeys judged the presence or absence of a vibrotactile stimulus of variable amplitude applied to the skin of a fingertip. We found that neurons in the VPL nucleus modulated their firing rate as a function of stimulus amplitude, and that such modulations accounted for the monkeys’ overall psychophysical performance. These neural responses did not predict the animals' decision reports in individual trials, however. Moreover, the sensitivity to changes in stimulus amplitude was similar when the monkeys’ performed the detection task and when they were not required to report stimulus detection. These results suggest that the primate somatosensory thalamus likely provides a reliable neural representation of the sensory input to the cerebral cortex, where sensory information is transformed and combined with other cognitive components associated with behavioral performance. PMID:22927423

  3. Neurodynamics of somatosensory cortices studied by magnetoencephelography.

    PubMed

    Kishida, Kuniharu

    2013-09-01

    From the viewpoint of statistical inverse problems, identification of transfer functions in feedback models is applied for neurodynamics of somatosensory cortices, and brain communication among active regions can be expressed in terms of transfer functions. However, brain activities have been investigated mainly by averaged waveforms in the conventional magnetoencephalography analysis, and thus brain communication among active regions has not yet been identified. It is shown that brain communication among two more than three brain regions is determined, when fluctuations related to concatenate averaged waveforms can be obtained by using a suitable blind source separation method. In blind identification of feedback model, some transfer functions or their impulse responses between output variables of current dipoles corresponding to active regions are identified from reconstructed time series data of fluctuations by the method of inverse problem. Neurodynamics of somatosensory cortices in 5 Hz median nerve stimuli can be shown by cerebral communication among active regions of somatosensory cortices in terms of impulse responses of feedback model.

  4. Interactions within the hand representation in primary somatosensory cortex of primates

    PubMed Central

    Lipton, Michael L.; Liszewski, Mark C.; O’Connell, M. Noelle; Mills, Aimee; Smiley, John F.; Branch, Craig A.; Isler, Joseph R.; Schroeder, Charles E.

    2010-01-01

    Prior studies indicate that primary somatosensory cortical Area 3b in macaques contains a somatotopic map of the hand, encompassing representations of each digit. However, numerous observations including recent findings in anesthetized new world monkeys indicate that that the digit representations within the map are not discrete. We assessed the generality and spatial extent of these effects in awake macaques. We show that within a given digit representation: 1) there is response to stimulation of all other digits tested, extending across most or all of the digit map, and 2) response to stimulation of the locally preferred digit is modulated by concurrent stimulation of each of the other digits. Control experiments rule out effects of attention and mechanical spread of stimulation. We thus confirm that that even at the first level of somatosensory cortical processing, inputs from potentially all of the digits frame the context within which the input to a single digit is represented. PMID:21106828

  5. Simultaneous all-optical digital comparator and dual-directional half-subtractor for two-input 40 Gbit/s DPSK signals employing SOAs

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Lei, Lei; Dong, Jianji; Zhang, Xinliang

    2012-02-01

    A module of simultaneous implementation of all-optical digital comparator and dual-directional half-subtractor is proposed. Proof-of-concept experiment is performed at 40 Gbit/s employing the four-wave mixing and cross gain modulation in three parallel semiconductor optical amplifiers. All output results with over 10 dB extinction ratios, clear and wide open eye diagrams, are obtained without using assistant/holding light beam. All-optical half-adder can also be obtained by adjusting the phase shifter of delay interferometer in the proposed module because of its inherent reconfigurability and flexibility. The module would be a promising digital logic elementary circuit in all-optical networks and computing systems.

  6. Dizziness and Loss of Balance in Individuals With Diabetes: Relative Contribution of Vestibular Versus Somatosensory Dysfunction.

    PubMed

    Walley, Megan; Anderson, Elizabeth; Pippen, Mary Walch; Maitland, Gerry

    2014-04-01

    The authors studied patients with diabetes and complaints of dizziness to determine whether peripheral neuropathy or inner ear dysfunction was more likely to disturb balance. Quantitative testing showed that the majority failed to maintain balance in vestibular-related conditions and had normal equilibrium scores in conditions relying on somatosensory input. Vestibular dysfunction should be an immediate consideration in patients with diabetes and complaints of dizziness regardless of the presence of peripheral neuropathy.

  7. Basic properties of somatosensory-evoked responses in the dorsal hippocampus of the rat

    PubMed Central

    Bellistri, Elisa; Aguilar, Juan; Brotons-Mas, Jorge R; Foffani, Guglielmo; de la Prida, Liset Menendez

    2013-01-01

    The hippocampus is a pivotal structure for episodic memory function. This ability relies on the possibility of integrating different features of sensory stimuli with the spatio-temporal context in which they occur. While recent studies now suggest that somatosensory information is already processed by the hippocampus, the basic mechanisms still remain unexplored. Here, we used electrical stimulation of the paws, the whisker pad or the medial lemniscus to probe the somatosensory pathway to the hippocampus in the anaesthetized rat, and multisite electrodes, in combination with tetrode and intracellular recordings, to look at the properties of somatosensory hippocampal responses. We found that peripheral and lemniscal stimulation elicited small local field potential responses in the dorsal hippocampus about 35–40 ms post-stimulus. Current source density analysis established the local nature of these responses, revealing associated synaptic sinks that were consistently confined to the molecular layer (ML) of the dentate gyrus (DG), with less regular activation of the CA1 stratum lacunosum moleculare (SLM). A delayed (40–45 ms), potentially active, current source that outlasted the SLM sink was present in about 50% cases around the CA1 pyramidal cell layer. Somatosensory stimulation resulted in multi-unit firing increases in the majority of DG responses (79%), whereas multi-unit firing suppression was observed in the majority of CA1 responses (62%). Tetrode and intracellular recordings of individual cells confirmed different firing modulation in the DG and the CA1 region, and verified the active nature of both the early ML sink and delayed somatic CA1 source. Hippocampal responses to somatosensory stimuli were dependent on fluctuations in the strength and composition of synaptic inputs due to changes of the ongoing local (hippocampal) and distant (cortical) state. We conclude that somatosensory signals reach the hippocampus mainly from layer II entorhinal cortex to

  8. Somatosensory Neurotoxicity: Agents and Assessment Methodology

    EPA Science Inventory

    The somatosensory system is comprised of a variety of sensory receptors located in the skin, muscle tendons, and visceral organs that are innervated by myelinated and nonmyelinated axons of the peripheral nervous system. These peripheral sensory nerve fibers in turn communicate s...

  9. Recurrent neural processing and somatosensory awareness.

    PubMed

    Auksztulewicz, Ryszard; Spitzer, Bernhard; Blankenburg, Felix

    2012-01-18

    The neural mechanisms of stimulus detection, despite extensive research, remain elusive. The recurrent processing hypothesis, a prominent theoretical account of perceptual awareness, states that, although stimuli might in principle evoke feedforward activity propagating through the visual cortex, stimuli that become consciously detected are further processed in feedforward-feedback loops established between cortical areas. To test this theory in the tactile modality, we applied dynamic causal modeling to electroencephalography (EEG) data acquired from humans in a somatosensory detection task. In the analysis of stimulation-induced event-related potentials (ERPs), we focused on model-based evidence for feedforward, feedback, and recurrent processing between primary and secondary somatosensory cortices. Bayesian model comparison revealed that, although early EEG components were well explained by both the feedforward and the recurrent models, the recurrent model outperformed the other models when later EEG segments were analyzed. Within the recurrent model, stimulus detection was characterized by a relatively early strength increase of the feedforward connection from primary to secondary somatosensory cortex (>80 ms). At longer latencies (>140 ms), also the feedback connection showed a detection-related strength increase. The modeling results on relative evidence between recurrent and feedforward model comparison support the hypothesis that the ERP responses from sensory areas arising after aware stimulus detection can be explained by increased recurrent processing within the somatosensory network in the later stages of stimulus processing.

  10. Somatosensory Neurotoxicity: Agents and Assessment Methodology

    EPA Science Inventory

    The somatosensory system is comprised of a variety of sensory receptors located in the skin, muscle tendons, and visceral organs that are innervated by myelinated and nonmyelinated axons of the peripheral nervous system. These peripheral sensory nerve fibers in turn communicate s...

  11. Reappraisal of somatosensory disorders in methylmercury poisoning.

    PubMed

    Ninomiya, Tadashi; Imamura, Keiko; Kuwahata, Misako; Kindaichi, Michiaki; Susa, Mari; Ekino, Shigeo

    2005-01-01

    The first well-documented methylmercury (MeHg) poisoning by consumption of fish arose in Minamata, Japan in 1953. MeHg had dispersed from Minamata to the Shiranui Sea. The temporal changes in MeHg in the umbilical cords indicate that residents living around that Sea had been exposed to low-dose MeHg through fish consumption for about 20 years (at least from 1950 to 1968). They have complained of paresthesia at the distal parts of the extremities and around the lip even 30 years after the cessation of exposure to anthropogenic MeHg. The thresholds of touch and two-point discrimination of those residents and Minamata disease (MD) patients were examined using the quantifiable instruments. They could perceive the stimulation of touch although their touch thresholds significantly increased in comparison to those of the control people. Their touch thresholds increased at the proximal extremities and the trunks as well as at the distal extremities. The evenly distributed increases at both distal and proximal parts revealed that the persistent somatosensory disturbances were not caused by the injuries to their peripheral nerves. The thresholds of two-point discrimination, which are associated with the function of the somatosensory cortex, increased at both forefingers and the lip in both groups. Taking into consideration that, the apraxia limb kinetics, astereognosis and disorder of active sensation, which are all associated with damage to the somatosensory cortex, were detected, it is proposed that the persisting somatosensory disorders after discontinuation of exposure to MeHg were induced by diffuse damage to the somatosensory cortex.

  12. Corticofugal projections induce long-lasting effects on somatosensory responses in the trigeminal complex of the rat

    PubMed Central

    Malmierca, Eduardo; Chaves-Coira, Irene; Rodrigo-Angulo, Margarita; Nuñez, Angel

    2014-01-01

    The sensory information flow at subcortical relay stations is controlled by the action of topographic connections from the neocortex. To determinate the functional properties of the somatosensory corticofugal projections to the principal (Pr5) and caudal spinal (Sp5C) trigeminal nuclei, we performed unitary recordings in anesthetized rats. To examine the effect of these cortical projections we used tactile stimulation of the whisker and electrical stimulation of somatosensory cortices. Corticofugal anatomical projections to Pr5 and Sp5C nuclei were detected by using retrograde fluorescent tracers. Neurons projecting exclusively to Pr5 were located in the cingulate cortex while neurons projecting to both Sp5C and Pr5 nuclei were located in the somatosensory and insular cortices (>75% of neurons). Physiological results indicated that primary somatosensory cortex produced a short-lasting facilitating or inhibiting effects (<5 min) of tactile responses in Pr5 nucleus through activation of NMDA glutamatergic or GABAA receptors since effects were blocked by iontophoretically application of APV and bicuculline, respectively. In contrast, stimulation of secondary somatosensory cortex did not affect most of the Pr5 neurons; however both cortices inhibited the nociceptive responses in the Sp5C nucleus through activation of glycinergic or GABAA receptors because effects were blocked by iontophoretically application of strychnine and bicuculline, respectively. These and anatomical results demonstrated that the somatosensory cortices projects to Pr5 nucleus to modulate tactile responses by excitatory and inhibitory actions, while projections to the Sp5C nucleus control nociceptive sensory transmission by only inhibitory effects. Thus, somatosensory cortices may modulate innocuous and noxious inputs simultaneously, contributing to the perception of specifically tactile or painful sensations. PMID:24904321

  13. The neural dynamics of somatosensory processing and adaptation across childhood: a high-density electrical mapping study

    PubMed Central

    Uppal, Neha; Foxe, John J.; Butler, John S.; Acluche, Frantzy

    2016-01-01

    Young children are often hyperreactive to somatosensory inputs hardly noticed by adults, as exemplified by irritation to seams or labels in clothing. The neurodevelopmental mechanisms underlying changes in sensory reactivity are not well understood. Based on the idea that neurodevelopmental changes in somatosensory processing and/or changes in sensory adaptation might underlie developmental differences in somatosensory reactivity, high-density electroencephalography was used to examine how the nervous system responds and adapts to repeated vibrotactile stimulation over childhood. Participants aged 6–18 yr old were presented with 50-ms vibrotactile stimuli to the right wrist over the median nerve at 5 blocked interstimulus intervals (ranging from ∼7 to ∼1 stimulus per second). Somatosensory evoked potentials (SEPs) revealed three major phases of activation within the first 200 ms, with scalp topographies suggestive of neural generators in contralateral somatosensory cortex. Although overall SEPs were highly similar for younger, middle, and older age groups (6.1–9.8, 10.0–12.9, and 13.0–17.8 yr old), there were significant age-related amplitude differences in initial and later phases of the SEP. In contrast, robust adaptation effects for fast vs. slow presentation rates were observed that did not differ as a function of age. A greater amplitude response in the later portion of the SEP was observed for the youngest group and may be related to developmental changes in responsivity to somatosensory stimuli. These data suggest the protracted development of the somatosensory system over childhood, whereas adaptation, as assayed in this study, is largely in place by ∼7 yr of age. PMID:26763781

  14. The Processing of Somatosensory Information Shifts from an Early Parallel into a Serial Processing Mode: A Combined fMRI/MEG Study

    PubMed Central

    Klingner, Carsten M.; Brodoehl, Stefan; Huonker, Ralph; Witte, Otto W.

    2016-01-01

    The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII) receives information regarding a new stimulus in parallel with the primary somatosensory area (SI), whereas later processing in the SII is dominated by the preprocessed input from the SI. PMID:28066197

  15. How the vestibular system interacts with somatosensory perception: A sham-controlled study with galvanic vestibular stimulation

    PubMed Central

    Ferrè, Elisa R.; Day, Brian L.; Bottini, Gabriella; Haggard, Patrick

    2013-01-01

    The vestibular system has widespread interactions with other sensory modalities. Here we investigate whether vestibular stimulation modulates somatosensory function, by assessing the ability to detect faint tactile stimuli to the fingertips of the left and right hand with or without galvanic vestibular stimulation (GVS). We found that left anodal and right cathodal GVS, significantly enhanced sensitivity to mild shocks on either hand, without affecting response bias. There was no such effect with either right anodal and left cathodal GVS or sham stimulation. Further, the enhancement of somatosensory sensitivity following GVS does not strongly depend on the duration of GVS, or the interval between GVS and tactile stimulation. Vestibular inputs reach the somatosensory cortex, increasing the sensitivity of perceptual circuitry. PMID:23827220

  16. Rehabilitation: Periodic somatosensory stimulation increases arterial baroreflex sensitivity in chronic heart failure patients.

    PubMed

    Gademan, Maaike G J; Sun, Yiping; Han, Liming; Valk, Vanessa J; Schalij, Martin J; van Exel, Henk J; Lucas, Carolien M H B; Maan, Arie C; Verwey, Harriette F; van de Vooren, Hedde; Pinna, Gian D; Maestri, Roberto; La Rovere, Maria Teresa; van der Wall, Ernst E; Swenne, Cees A

    2011-10-20

    One of the beneficial effects of exercise training in chronic heart failure (CHF) is an improvement in baroreflex sensitivity (BRS), a prognostic index in CHF. In our hypothesis-generating study we propose that at least part of this effect is mediated by neural afferent information, and more specifically, by exercise-induced somatosensory nerve traffic. To compare the effects of periodic electrical somatosensory stimulation on BRS in patients with CHF with the effects of exercise training and with usual care. We compared in stable CHF patients the effect of transcutaneous electrical nerve stimulation (TENS, N = 23, LVEF 30 ± 9%) with the effects of bicycle exercise training (EXTR, N = 20, LVEF 32 ± 7%). To mimic exercise-associated somatosensory ergoreceptor stimulation, we applied periodic (2/s, marching pace) burst TENS to both feet. TENS and EXTR sessions were held during two successive days. BRS, measured prior to the first intervention session and one day after the second intervention session, increased by 28% from 3.07 ± 2.06 to 4.24 ± 2.61 ms/mmHg in the TENS group, but did not change in the EXTR group (baseline: 3.37 ± 2.53 ms/mmHg; effect: 3.26 ± 2.54 ms/mmHg) (P(TENS vs EXTR) = 0.02). Heart rate and systolic blood pressure did not change in either group. We demonstrated that periodic somatosensory input alone is sufficient and efficient in increasing BRS in CHF patients. This concept constitutes a basis for studies towards more effective exercise training regimens in the diseased/impaired, in whom training aimed at BRS improvement should possibly focus more on the somatosensory aspect. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Neural coupling between homologous muscles during bimanual tasks: effects of visual and somatosensory feedback.

    PubMed

    Nguyen, Hoi B; Lee, Sang Wook; Harris-Love, Michelle L; Lum, Peter S

    2017-02-01

    While the effects of sensory feedback on bimanual tasks have been studied extensively at two ends of the motor control hierarchy, the cortical and behavioral levels, much less is known about how it affects the intermediate levels, including neural control of homologous muscle groups. We investigated the effects of somatosensory input on the neural coupling between homologous arm muscles during bimanual tasks. Twelve subjects performed symmetric elbow flexion/extension tasks under different types of sensory feedback. The first two types involve visual feedback, with one imposing stricter force symmetry than the other. The third incorporated somatosensory feedback via a balancing apparatus that forced the two limbs to produce equal force levels. Although the force error did not differ between feedback conditions, the somatosensory feedback significantly increased temporal coupling of bilateral force production, indicated by a high correlation between left/right force profiles (P < 0.001). More importantly, intermuscular coherence between biceps brachii muscles was significantly higher with somatosensory feedback than others (P = 0.001). Coherence values also significantly differed between tasks (flexion/extension). Notably, whereas feedback type mainly modulated coherence in the α- and γ-bands, task type only affected β-band coherence. Similar feedback effects were observed for triceps brachii muscles, but there was also a strong phase effect on the coherence values (P < 0.001) that could have diluted feedback effects. These results suggest that somatosensory feedback can significantly increase neural coupling between homologous muscles. Additionally, the between-task difference in β-band coherence may reflect different neural control strategies for the elbow flexor and extensor muscles.

  18. Intrainsular connectivity and somatosensory responsiveness in young children with ASD.

    PubMed

    Failla, Michelle D; Peters, Brittany R; Karbasforoushan, Haleh; Foss-Feig, Jennifer H; Schauder, Kimberly B; Heflin, Brynna H; Cascio, Carissa J

    2017-01-01

    The human somatosensory system comprises dissociable paths for discriminative and affective touch, reflected in separate peripheral afferent populations and distinct cortical targets. Differences in behavioral and neural responses to affective touch may have an important developmental role in early social experiences, which are relevant for autism spectrum disorder (ASD). Using probabilistic tractography, we compared the structural integrity of white matter pathways for discriminative and affective touch in young children with ASD and their typically developing (TD) peers. We examined two tracts: (1) a tract linking the thalamus with the primary somatosensory cortex, which carries discriminative tactile information, and (2) a tract linking the posterior insula-the cortical projection target of unmyelinated tactile afferents mediating affective touch-with the anterior insula, which integrates sensory and visceral inputs to interpret emotional salience of sensory stimuli. We investigated associations between tract integrity and performance on a standardized observational assessment measuring tactile discrimination and affective responses to touch. Both the thalamocortical and intrainsular tracts showed reduced integrity (higher mean diffusivity) in the ASD group compared to those in the TD group. Consistent with the previous findings, the ASD group exhibited impaired tactile discriminative ability, more tactile defensiveness, and more sensory seeking (e.g., enthusiastic play or repetitive engagement with a specific tactile stimulus). There was a significant relation between intrainsular tract integrity and tactile seeking. The direction of this relation differed between groups: higher intrainsular mean diffusivity (MD) (reflecting decreased tract integrity) was associated with increased tactile seeking in the TD group but with decreased tactile seeking in the ASD group. In the TD group, decreased tactile defensiveness was also associated with higher intrainsular MD

  19. Task-specific role of ipsilateral pathways: somatosensory evoked potentials during cooperative hand movements.

    PubMed

    Schrafl-Altermatt, Miriam; Dietz, Volker

    2014-12-17

    Task-specific neural coupling during cooperative hand movements has been described in healthy volunteers, manifested by bilateral reflex electromyographic responses in forearm muscles following unilateral ulnar nerve stimulation and by task-specific activation of secondary somatosensory cortical areas (S2) in functional MRI. The aim of this study was to investigate the role of sensory input to the ipsilateral and contralateral cortex during a cooperative task. Somatosensory evoked potentials from the ulnar nerve were recorded over the ipsilateral and contralateral cortex during resting and during cooperative and noncooperative hand movements. Ipsilateral potentials with smaller amplitude were present under all conditions in almost all participants. In relation to the resting condition, the amplitudes of both the ipsilateral and the contralateral potential were reduced during the cooperative and the noncooperative tasks. Nevertheless, the reduction in amplitude was similar for the ipsilateral and the contralateral potentials in the noncooperative task, but less on the ipsilateral compared with the contralateral side during the cooperative task. The ratio of ipsilateral/contralateral somatosensory evoked potential amplitude was thus significantly larger during the cooperative task compared with the control task and the resting condition. This indicates a functional role of ipsilateral pathways connecting the cervical spinal cord with the cortex during the cooperative task. These observations favor the idea of a task-specific mediation of sensory input from both hands to the ipsilateral and contralateral hemispheres as the basis of neuronal coupling.

  20. Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.

    PubMed

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-09-01

    To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.

  1. Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation.

    PubMed

    Borich, M R; Brodie, S M; Gray, W A; Ionta, S; Boyd, L A

    2015-12-01

    Emerging evidence indicates impairments in somatosensory function may be a major contributor to motor dysfunction associated with neurologic injury or disorders. However, the neuroanatomical substrates underlying the connection between aberrant sensory input and ineffective motor output are still under investigation. The primary somatosensory cortex (S1) plays a critical role in processing afferent somatosensory input and contributes to the integration of sensory and motor signals necessary for skilled movement. Neuroimaging and neurostimulation approaches provide unique opportunities to non-invasively study S1 structure and function including connectivity with other cortical regions. These research techniques have begun to illuminate casual contributions of abnormal S1 activity and connectivity to motor dysfunction and poorer recovery of motor function in neurologic patient populations. This review synthesizes recent evidence illustrating the role of S1 in motor control, motor learning and functional recovery with an emphasis on how information from these investigations may be exploited to inform stroke rehabilitation to reduce motor dysfunction and improve therapeutic outcomes.

  2. Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation

    PubMed Central

    Borich, M.R.; Brodie, S.M.; Gray, W.A.; Ionta, S.; Boyd, L.A.

    2016-01-01

    Emerging evidence indicates impairments in somatosensory function may be a major contributor to motor dysfunction associated with neurologic injury or disorders. However, the neuroanatomical substrates underlying the connection between aberrant sensory input and ineffective motor output are still under investigation. The primary somatosensory cortex (S1) plays a critical role in processing afferent somatosensory input and contributes to the integration of sensory and motor signals necessary for skilled movement. Neuroimaging and neurostimulation approaches provide unique opportunities to non-invasively study S1 structure and function including connectivity with other cortical regions. These research techniques have begun to illuminate casual contributions of abnormal S1 activity and connectivity to motor dysfunction and poorer recovery of motor function in neurologic patient populations. This review synthesizes recent evidence illustrating the role of S1 in motor control, motor learning and functional recovery with an emphasis on how information from these investigations may be exploited to inform stroke rehabilitation to reduce motor dysfunction and improve therapeutic outcomes. PMID:26164474

  3. The roles of primary somatosensory cortex in the coding of pain

    PubMed Central

    Vierck, Charles J.; Whitsel, Barry L.; Favorov, Oleg V.; Brown, Alexander W.; Tommerdahl, Mark

    2014-01-01

    The intensity and submodality of pain are widely attributed to stimulus encoding by peripheral and subcortical spinal/trigeminal portions of the somatosensory nervous system. Consistent with this interpretation are studies of surgically anesthetized animals, showing that relationships between nociceptive stimulation and activation of neurons are similar at subcortical levels of somatosensory projection and within the primary somatosensory cortex (in cytoarchitectural areas 3b and 1 of SI). Such findings have led to characterizations of SI as a network which preserves, rather than transforms, the excitatory drive it receives from subcortical levels. Inconsistent with this perspective are images and neurophysiological recordings of SI neurons in lightly anesthetized primates. These studies show that an extreme anterior position within SI (area 3a) receives input originating predominantly from unmyelinated nociceptors, distinguishing it from posterior SI (areas 3b and 1), long recognized as receiving input predominantly from myelinated afferents, including nociceptors. Of particular importance, interactions between these subregions during maintained nociceptive stimulation are accompanied by an altered SI response to myelinated and unmyelinated nociceptors. A revised view of pain coding within SI cortex is discussed, and potentially significant clinical implications are emphasized. PMID:23245864

  4. Interactions of acoustic and somatosensory evoked responses in a polysensory cortex of the cat.

    PubMed

    Toldi, J; Fehér, O

    1987-01-01

    Interactions of acoustic and somatosensory evoked potentials were studied in the anterior suprasylvian gyrus of the cat. The interactions showed dynamic changes and were susceptible to different kinds of influences. The interactions could be influenced by synchronous activation of the acoustic and somatosensory inputs with 2 Hz frequency, or by elevating the stimulus frequency. Interactions could be influenced by amphetamine and gamma-glutamyl-taurine, drugs known as capable of influencing the arousal level of the brain. The antagonists of amphetamine prevented this effect. Drugs acting on the cortical GABA-ergic system proved also to be decisive in the interactions of evoked potentials of different origins. In some experiments unit activity was recorded parallel with evoked potentials.

  5. Effects of spatiotemporal stimulus properties on spike timing correlations in owl monkey primary somatosensory cortex

    PubMed Central

    Pouget, Pierre; Qi, Hui-Xin; Zhou, Zhiyi; Bernard, Melanie R.; Burish, Mark J.; Kaas, Jon H.

    2012-01-01

    The correlated discharges of cortical neurons in primary somatosensory cortex are a potential source of information about somatosensory stimuli. One aspect of neuronal correlations that has not been well studied is how the spatiotemporal properties of tactile stimuli affect the presence and magnitude of correlations. We presented single- and dual-point stimuli with varying spatiotemporal relationships to the hands of three anesthetized owl monkeys and recorded neuronal activity from 100-electrode arrays implanted in primary somatosensory cortex. Correlation magnitudes derived from joint peristimulus time histogram (JPSTH) analysis of single neuron pairs were used to determine the level of spike timing correlations under selected spatiotemporal stimulus conditions. Correlated activities between neuron pairs were commonly observed, and the proportions of correlated pairs tended to decrease with distance between the recorded neurons. Distance between stimulus sites also affected correlations. When stimuli were presented simultaneously at two sites, ∼37% of the recorded neuron pairs showed significant correlations when adjacent phalanges were stimulated, and ∼21% of the pairs were significantly correlated when nonadjacent digits were stimulated. Spatial proximity of paired stimuli also increased the average correlation magnitude. Stimulus onset asynchronies in the paired stimuli had small effects on the correlation magnitude. These results show that correlated discharges between neurons at the first level of cortical processing provide information about the relative locations of two stimuli on the hand. PMID:23019003

  6. Modulation of excitability in human primary somatosensory and motor cortex by paired associative stimulation targeting the primary somatosensory cortex.

    PubMed

    Kriváneková, Lucia; Lu, Ming-Kuei; Bliem, Barbara; Ziemann, Ulf

    2011-10-01

    Input from primary somatosensory cortex (S1) to primary motor cortex (M1) is important for high-level motor performance, motor skill learning and motor recovery after brain lesion. This study tested the effects of manipulating S1 excitability with paired associative transcranial stimulation (S1-PAS) on M1 excitability. Given the important role of S1 in sensorimotor integration, we hypothesized that changes in S1 excitability would be directly paralleled by changes in M1 excitability. We applied two established protocols (S1-PAS(LTP) and S1-PAS(LTD) ) to the left S1 to induce long-term potentiation (LTP)-like or long-term depression (LTD)-like plasticity. S1 excitability was assessed by the early cortical components (N20-P25) of the median nerve somatosensory-evoked potential. M1 excitability was assessed by motor-evoked potential amplitude and short-interval intracortical inhibition. Effects of S1-PAS(LTP) were compared with those of a PAS(LTP) protocol targeting the left M1 (M1-PAS(LTP) ). S1-PAS(LTP) and S1-PAS(LTD) did not result in significant modifications of S1 or M1 excitability at the group level due to substantial interindividual variability. The individual S1-PAS-induced changes in S1 and M1 excitability showed no correlation. Furthermore, the individual changes in S1 and M1 excitability induced by S1-PAS(LTP) did not correlate with changes in M1 excitability induced by M1-PAS(LTP) . This demonstrates that the effects of S1-PAS in S1 are variable across individuals and, within a given individual, unrelated to those induced by S1-PAS or M1-PAS in M1. Potentially, this extends the opportunities of therapeutic PAS applications because M1-PAS 'non-responders' may well respond to S1-PAS.

  7. Vestibular-somatosensory convergence in head movement control during locomotion after long-duration space flight.

    PubMed

    Mulavara, A P; Ruttley, T; Cohen, H S; Peters, B T; Miller, C; Brady, R; Merkle, L; Bloomberg, J J

    2012-01-01

    Space flight causes astronauts to be exposed to adaptation in both the vestibular and body load-sensing somatosensory systems. The goal of these studies was to examine the contributions of vestibular and body load-sensing somatosensory influences on vestibular mediated head movement control during locomotion after long-duration space flight. Subjects walked on a motor driven treadmill while performing a gaze stabilization task. Data were collected from three independent subject groups that included bilateral labyrinthine deficient (LD) patients, normal subjects before and after 30 minutes of 40% bodyweight unloaded treadmill walking, and astronauts before and after long-duration space flight. Motion data from the head and trunk segments were used to calculate the amplitude of angular head pitch and trunk vertical translation movement while subjects performed a gaze stabilization task, to estimate the contributions of vestibular reflexive mechanisms in head pitch movements. Exposure to unloaded locomotion caused a significant increase in head pitch movements in normal subjects, whereas the head pitch movements of LD patients were significantly decreased. This is the first evidence of adaptation of vestibular mediated head movement responses to unloaded treadmill walking. Astronaut subjects showed a heterogeneous response of both increases and decreases in the amplitude of head pitch movement. We infer that body load-sensing somatosensory input centrally modulates vestibular input and can adaptively modify vestibularly mediated head-movement control during locomotion. Thus, space flight may cause central adaptation of the converging vestibular and body load-sensing somatosensory systems leading to alterations in head movement control.

  8. Vestibular-Somatosensory Convergence in Head Movement Control During Locomotion after Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob

    2010-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.

  9. Stimulation of dural vessels excites the SI somatosensory cortex of the cat via a relay in the thalamus.

    PubMed

    Lambert, Geoffrey A; Hoskin, Karen L; Michalicek, Jan; Panahi, Seyed E; Truong, Linda; Zagami, Alessandro S

    2014-04-01

    We carried out experiments in cats to determine the thalamo-cortical projection sites of trigeminovascular sensory neurons. 1) We stimulated the middle meningeal artery (MMA) with C-fibre intensity electrical shocks and made field potential recordings over the somatosensory cortical surface. 2) We then recorded neurons in the ventroposteromedial (VPM) nucleus of the thalamus in search of neurons which could be activated from the skin, MMA and superior sagittal sinus. 3) Finally, we attempted to antidromically activate the neurons found in stage 2 by stimulating the responsive cortical areas revealed in stage 1. VPM neurons received trigeminovascular input, input from the V1 facial skin and could also be activated by electrical stimulation of the somatosensory cortex. VPM neurons activated from the cortex responded with short and invariant latencies (6.7 ± 7.7 msec mean and SD). They could follow high rates of stimulation and sometimes showed collision with orthodromic action potentials. We conclude that somatosensory (SI) cortical stimulation excites trigeminovascular VPM neurons antidromically. In consequence, these VPM neurons project to the somatosensory cortex. These findings may help to explain the ability of migraineurs with headache in the trigeminal distribution to localise their pain to a particular region in this distribution.

  10. Reconciling Homeostatic and Use-Dependent Plasticity in the Context of Somatosensory Deprivation

    PubMed Central

    Orczyk, John J.; Garraghty, Preston E.

    2015-01-01

    The concept of homeostatic plasticity postulates that neurons maintain relatively stable rates of firing despite changing inputs. Homeostatic and use-dependent plasticity mechanisms operate concurrently, although they have different requirements for induction. Depriving central somatosensory neurons of their primary activating inputs reduces activity and results in compensatory changes that favor excitation. Both a reduction of GABAergic inhibition and increase in glutamatergic excitatory transmission are observed in input-deprived cortex. Topographic reorganization of the adult somatosensory cortex is likely driven by both homeostatic and use-dependent mechanisms. Plasticity is induced by changes in the strengths of synaptic inputs, as well as changes in temporal correlation of neuronal activity. However, there is less certainty regarding the in vivo contribution of homeostatic mechanisms as in vitro experiments rely on manipulations that create states that do not normally occur in the living nervous system. Homeostatic plasticity seems to occur, but more in vivo research is needed to determine mechanisms. In vitro research is also needed but should better conform to conditions that might occur naturally in vivo. PMID:25866682

  11. Epidural motor cortex stimulation suppresses somatosensory evoked potentials in the primary somatosensory cortex of the rat.

    PubMed

    Chiou, Ruei-Jen; Lee, Hsiao-Yun; Chang, Chen-Wei; Lin, Kuan-Hung; Kuo, Chung-Chih

    2012-06-29

    Motor cortex stimulation (MCS) is a promising clinical procedure to help alleviate chronic pain. Animal models demonstrated that MCS is effective in lessening nocifensive behaviors. The present study explored the effects of MCS on cortical somatosensory evoked potentials (SEPs) recorded at the primary somatosensory cortex (SI) of the rat. SEPs were evoked by electrical stimulation applied to the contralateral forepaws. Effects of different intensities, frequencies, and durations of MCS were tested. MCS at ≥2V suppressed SEPs of the ipsilateral SI. Suppression lasted 120 min at an intensity of 5 V. The optimal frequency was 50 Hz, and the duration was 30s. In contrast, MCS did not affect SEPs recorded on the contralateral SI. Cortical stimulation out of the motor cortex did not induce a decrease in the ipsilateral SEPs. We also investigated involvement of the endogenous opioid system in this inhibition of SEPs induced by MCS. The opioid antagonist, naloxone (0.5 mg/kg), was administered 30 min before MCS. Application of naloxone completely prevented the inhibitory effect of MCS on ipsilateral SEPs. These results demonstrate that MCS blocked the transmission of somatosensory information to the primary somatosensory cortex, and this interference was mediated by the endogenous opioid system. This inhibitory effect on sensory transmission induced by MCS may reflect its antinociceptive effect.

  12. The dusp1 Immediate Early Gene is Regulated by Natural Stimuli Predominantly in Sensory Input Neurons

    PubMed Central

    Horita, Haruhito; Wada, Kazuhiro; Rivas, Miriam V.; Hara, Erina; Jarvis, Erich D.

    2010-01-01

    Many immediate early genes (IEGs) have activity-dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic-recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen-activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic-recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor-associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic-recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus-induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. PMID:20506480

  13. Coding perceptual discrimination in the somatosensory thalamus

    PubMed Central

    Camarillo, Liliana; Luna, Rogelio; Nácher, Verónica; Romo, Ranulfo

    2012-01-01

    The sensory thalamus is classically viewed as a relay station of sensory information to cortex, but recent studies suggest that it is sensitive to cognitive demands. There are, however, few experiments designed to test whether this is so. We addressed this problem by analyzing the responses of single neurons recorded in the somatosensory thalamus while trained monkeys reported a decision based on the comparison of two mechanical vibration frequencies applied sequentially to one fingertip. In this task, monkeys must hold the first stimulus frequency (f1) in working memory and compare it to the current sensory stimulus (f2) and must postpone the decision report until a cue triggers the decision motor report, i.e., whether f2 > f1 or f2 < f1. We found that thalamic somatosensory neurons encoded the stimulus frequency either in their periodicity and firing-rate responses, but only during the stimulus periods and not during the working memory and decision components of this task. Furthermore, correlation analysis between behavior and stimulus coding showed that only the firing rate modulations accounted for the overall psychophysical performance. However, these responses did not predict the animal’s decision reports on individual trials. Moreover, the sensitivity to changes in stimulus frequency was similar when the monkeys performed the vibrotactile discrimination task and when they were not required to report discrimination. These results suggest that the somatosensory thalamus behaves as a relay station of sensory information to the cortex and that it is insensitive to the cognitive demands of the task used here. PMID:23213243

  14. Ehlers-Danlos Syndrome, Hypermobility Type: Impact of Somatosensory Orthoses on Postural Control (A Pilot Study)

    PubMed Central

    Dupuy, Emma G.; Leconte, Pascale; Vlamynck, Elodie; Sultan, Audrey; Chesneau, Christophe; Denise, Pierre; Besnard, Stéphane; Bienvenu, Boris; Decker, Leslie M.

    2017-01-01

    marked effect in the anteroposterior (AP) direction. Hence, this study suggests that hEDS is associated with changes in the relative contributions of somatosensory and vestibular inputs to verticality perception. Moreover, postural control impairment was offset, at least partially, by wearing somatosensory orthoses. PMID:28642694

  15. Ehlers-Danlos Syndrome, Hypermobility Type: Impact of Somatosensory Orthoses on Postural Control (A Pilot Study).

    PubMed

    Dupuy, Emma G; Leconte, Pascale; Vlamynck, Elodie; Sultan, Audrey; Chesneau, Christophe; Denise, Pierre; Besnard, Stéphane; Bienvenu, Boris; Decker, Leslie M

    2017-01-01

    marked effect in the anteroposterior (AP) direction. Hence, this study suggests that hEDS is associated with changes in the relative contributions of somatosensory and vestibular inputs to verticality perception. Moreover, postural control impairment was offset, at least partially, by wearing somatosensory orthoses.

  16. The somatosensory representation of the human clitoris: an fMRI study.

    PubMed

    Michels, Lars; Mehnert, Ulrich; Boy, Sönke; Schurch, Brigitte; Kollias, Spyros

    2010-01-01

    We studied the central representation of pudendal afferents arising from the clitoral nerves in 15 healthy adult female subjects using electrical dorsal clitoral nerve stimulation and fMRI. As a control body region, we electrically stimulated the right hallux in eight subjects. In a block design experiment, we applied bilateral clitoral stimulation and unilateral (right) hallux stimulation. Activation maps were calculated for the contrasts 'electrical dorsal clitoral nerve stimulation versus rest' and 'electrical hallux stimulation versus rest'. A random-effect group analysis for the clitoral stimulation showed significant activations bilateral in the superior and inferior frontal gyri, insulae and putamen and in the postcentral, precentral and inferior parietal gyri (including the primary and secondary somatosensory cortices). No activation was found on the mesial surface of the postcentral gyrus. For the hallux, activations occurred in a similar neuronal network but the activation in the primary somatosensory cortex was localized in the inter-hemispheric fissure. The results of this study demonstrate that the central representation of pudendal afferents arising from the clitoral nerves and sensory inputs from the hallux can be studied and distinguished from each other by fMRI. From the somatotopic order described in the somatosensory homunculus one would expect for electrical clitoral nerve stimulation activation of the mesial wall of the postcentral gyrus. In contrast, we found activations on the lateral surface of the postcentral gyrus.

  17. Effect of muscle contraction strength on gating of somatosensory magnetic fields.

    PubMed

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kotan, Shinichi; Kojima, Sho; Miyaguchi, Shota; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-11-01

    Afferent somatosensory information is modulated before the afferent input arrives at the primary somatosensory cortex during voluntary movement. The aim of the present study was to clarify the effect of muscular contraction strength on somatosensory evoked fields (SEFs) during voluntary movement. In addition, we examined the differences in gating between innervated and non-innervated muscle during contraction. We investigated the changes in gating effect by muscular contraction strength and innervated and non-innervated muscles in human using 306-channel magnetoencephalography. SEFs were recorded following the right median nerve stimulation in a resting condition and during isometric muscular contractions from 10 % electromyographic activity (EMG), 20 and 30 % EMG of the right extensor indicis muscle and abductor pollicis brevis muscle. Our results showed that the equivalent current dipole (ECD) strength for P35m decreased with increasing strength of muscular contraction of the right abductor pollicis brevis muscle. However, changes were observed only at 30 % EMG contraction level of the right extensor indicis muscle, which was not innervated by the median nerve. There were no significant changes in the peak latencies and ECD locations of each component in all conditions. The ECD strength did not differ significantly for N20m and P60m regardless of the strength of muscular contraction and innervation. Therefore, we suggest that the gating of SEF waveforms following peripheral nerve stimulation was affected by the strength of muscular contraction and innervation of the contracting muscle.

  18. Sleep deprivation affects somatosensory cortex excitability as tested through median nerve stimulation.

    PubMed

    Gorgoni, Maurizio; Ferlazzo, Fabio; Moroni, Fabio; D'Atri, Aurora; Donarelli, Stefania; Fanelli, Stefania; Gizzi Torriglia, Isabella; Lauri, Giulia; Ferrara, Michele; Marzano, Cristina; Rossini, Paolo Maria; Bramanti, Placido; De Gennaro, Luigi

    2014-01-01

    Changes of cortical excitability after sleep deprivation (SD) in humans have been investigated mostly in motor cortex, while there is little empirical evidence concerning somatosensory cortex, and its plastic changes across SD. To assess excitability of primary somatosensory cortex (S1) and EEG voltage topographical characteristics associated with somatosensory evoked potentials (SEPs) during SD. Across 41 h of SD, 16 healthy subjects participated in 4 experimental sessions (11.00 a.m. and 11.00 p.m. of the 1st and 2nd day) with: a) subjective sleepiness ratings; b) EEG recordings; c) SEPs recordings; d) behavioral vigilance responses. A clear enhancement of cortical excitability after SD was indexed by: (a) an amplitude increase of different SEPs component in S1; (b) higher voltage in occipital (around 35-43 ms) and fronto-central areas (around 47-62 ms). Circadian fluctuations did not affect cortical excitability. Voltage changes in S1 were strongly related with post-SD fluctuations of subjective and behavioral sleepiness. Sleep may have a role in keeping cortical excitability at optimal (namely below potentially dangerous) levels for the human brain, rebalancing progressive changes in cortical responsiveness to incoming inputs occurred during time spent awake. On the other hand, higher level of cortical responsiveness after sleep loss may be one of the mechanisms accounting for post-SD alterations in vigilance and behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Beyond the Peak - Tactile Temporal Discrimination Does Not Correlate with Individual Peak Frequencies in Somatosensory Cortex.

    PubMed

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2017-01-01

    The human sensory systems constantly receive input from different stimuli. Whether these stimuli are integrated into a coherent percept or segregated and perceived as separate events, is critically determined by the temporal distance of the stimuli. This temporal distance has prompted the concept of temporal integration windows or perceptual cycles. Although this concept has gained considerable support, the neuronal correlates are still discussed. Studies suggested that neuronal oscillations might provide a neuronal basis for such perceptual cycles, i.e., the cycle lengths of alpha oscillations in visual cortex and beta oscillations in somatosensory cortex might determine the length of perceptual cycles. Specifically, recent studies reported that the peak frequency (the frequency with the highest spectral power) of alpha oscillations in visual cortex correlates with subjects' ability to discriminate two visual stimuli. In the present study, we investigated whether peak frequencies in somatosensory cortex might serve as the correlate of perceptual cycles in tactile discrimination. Despite several different approaches, we were unable to find a significant correlation between individual peak frequencies in the alpha- and beta-band and individual discrimination abilities. In addition, analysis of Bayes factor provided evidence that peak frequencies and discrimination thresholds are unrelated. The results suggest that perceptual cycles in the somatosensory domain are not necessarily to be found in the peak frequency, but in other frequencies. We argue that studies based solely on analysis of peak frequencies might thus miss relevant information.

  20. The effect of water immersion on short-latency somatosensory evoked potentials in human

    PubMed Central

    2012-01-01

    Background Water immersion therapy is used to treat a variety of cardiovascular, respiratory, and orthopedic conditions. It can also benefit some neurological patients, although little is known about the effects of water immersion on neural activity, including somatosensory processing. To this end, we examined the effect of water immersion on short-latency somatosensory evoked potentials (SEPs) elicited by median nerve stimuli. Short-latency SEP recordings were obtained for ten healthy male volunteers at rest in or out of water at 30°C. Recordings were obtained from nine scalp electrodes according to the 10-20 system. The right median nerve at the wrist was electrically stimulated with the stimulus duration of 0.2 ms at 3 Hz. The intensity of the stimulus was fixed at approximately three times the sensory threshold. Results Water immersion significantly reduced the amplitudes of the short-latency SEP components P25 and P45 measured from electrodes over the parietal region and the P45 measured by central region. Conclusions Water immersion reduced short-latency SEP components known to originate in several cortical areas. Attenuation of short-latency SEPs suggests that water immersion influences the cortical processing of somatosensory inputs. Modulation of cortical processing may contribute to the beneficial effects of aquatic therapy. Trial Registration UMIN-CTR (UMIN000006492) PMID:22272934

  1. Somatosensory and multisensory properties of the medial bank of the ferret rostral suprasylvian sulcus

    PubMed Central

    Keniston, L. P.; Allman, B. L.; Meredith, M. A.

    2010-01-01

    In ferret cortex, the rostral portion of the suprasylvian sulcus separates primary somatosensory cortex (SI) from the anterior auditory fields. The boundary of the SI extends to this sulcus, but the adjoining medial sulcal bank has been described as “unresponsive.” Given its location between the representations of two different sensory modalities, it seems possible that the medial bank of the rostral suprasylvian sulcus (MRSS) might be multisensory in nature and contains neurons responsive to stimuli not examined by previous studies. The aim of this investigation was to determine if the MRSS contained tactile, auditory and/or multisensory neurons and to evaluate if its anatomical connections were consistent with these properties. The MRSS was found to be primarily responsive to low-threshold cutaneous stimulation, with regions of the head, neck and upper trunk represented somatotopically that were primarily connected with the SI face representation. Unlike the adjoining SI, the MRSS exhibited a different cytoarchitecture, its cutaneous representation was largely bilateral, and it contained a mixture of somatosensory, auditory and multisensory neurons. Despite the presence of multisensory neurons, however, auditory inputs exerted only modest effects on tactile processing in MRSS neurons and showed no influence on the averaged population response. These results identify the MRSS as a distinct, higher order somatosensory region as well as demonstrate that an area containing multisensory neurons may not necessarily exhibit activity indicative of multisensory processing at the population level. PMID:19466399

  2. Neuronal activity controls the development of interneurons in the somatosensory cortex.

    PubMed

    Babij, Rachel; De Marco Garcia, Natalia

    2016-12-01

    Neuronal activity in cortical areas regulates neurodevelopment by interacting with defined genetic programs to shape the mature central nervous system. Electrical activity is conveyed to sensory cortical areas via intracortical and thalamocortical neurons, and includes oscillatory patterns that have been measured across cortical regions. In this work, we review the most recent findings about how electrical activity shapes the developmental assembly of functional circuitry in the somatosensory cortex, with an emphasis on interneuron maturation and integration. We include studies on the effect of various neurotransmitters and on the influence of thalamocortical afferent activity on circuit development. We additionally reviewed studies describing network activity patterns. We conducted an extensive literature search using both the PubMed and Google Scholar search engines. The following keywords were used in various iterations: "interneuron", "somatosensory", "development", "activity", "network patterns", "thalamocortical", "NMDA receptor", "plasticity". We additionally selected papers known to us from past reading, and those recommended to us by reviewers and members of our lab. We reviewed a total of 132 articles that focused on the role of activity in interneuronal migration, maturation, and circuit development, as well as the source of electrical inputs and patterns of cortical activity in the somatosensory cortex. 79 of these papers included in this timely review were written between 2007 and 2016. Neuronal activity shapes the developmental assembly of functional circuitry in the somatosensory cortical interneurons. This activity impacts nearly every aspect of development and acquisition of mature neuronal characteristics, and may contribute to changing phenotypes, altered transmitter expression, and plasticity in the adult. Progressively changing oscillatory network patterns contribute to this activity in the early postnatal period, although a direct requirement

  3. Effects of aerobic exercise under different thermal conditions on human somatosensory processing.

    PubMed

    Nakata, Hiroki; Oshiro, Misaki; Namba, Mari; Shibasaki, Manabu

    2016-10-01

    The present study aimed to investigate the effects of aerobic exercise on human somatosensory processing recorded by somatosensory evoked potentials (SEPs) under temperate [TEMP, 20°C and 40% relative humidity (RH)] and hot (HOT, 35°C and 30% RH) environments. Fifteen healthy subjects performed 4 × 15-min bouts of a moderate cycling exercise [mean power output: 156.5 ± 7.7 (SE) W], with a 10-min rest period and received a posterior tibial nerve stimulation at the left ankle before and after each exercise bout; SEPs were recorded in five sessions; 1st (pre), 2nd (post-1st exercise bout), 3rd (post-2nd exercise bout), 4th (post-3rd exercise bout), and 5th (post-4th exercise bout). The peak latencies and amplitudes of the P37, N50, P60, and N70 components at Cz were evaluated. The latencies of P37, N50, P60, and N70 were significantly shorter with the repetition of aerobic exercise, and these shortened latencies were significantly greater in the HOT condition than in the TEMP condition (P37: 3rd, P < 0.05, and 5th, P < 0.01; P60: 4th, P < 0.05, and 5th, P < 0.01; N70: 4th, P < 0.05, and 5th, P < 0.001). No significant differences were observed in the amplitudes of any SEP component under either thermal condition. These results suggest that the conduction velocity of the ascending somatosensory input was accelerated by increases in body temperature, and aerobic exercise did not alter the strength of neural activity in cortical somatosensory processing.

  4. Intra- and inter-hemispheric effective connectivity in the human somatosensory cortex during pressure stimulation

    PubMed Central

    2014-01-01

    Background Slow-adapting type I (SA-I) afferents deliver sensory signals to the somatosensory cortex during low-frequency (or static) mechanical stimulation. It has been reported that the somatosensory projection from SA-I afferents is effective and reliable for object grasping and manipulation. Despite a large number of neuroimaging studies on cortical activation responding to tactile stimuli mediated by SA-I afferents, how sensory information of such tactile stimuli flows over the somatosensory cortex remains poorly understood. In this study, we investigated tactile information processing of pressure stimuli between the primary (SI) and secondary (SII) somatosensory cortices by measuring effective connectivity using dynamic causal modeling (DCM). We applied pressure stimuli for 3 s to the right index fingertip of healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. Results DCM analysis revealed intra-hemispheric effective connectivity between the contralateral SI (cSI) and SII (cSII) characterized by both parallel (signal inputs to both cSI and cSII) and serial (signal transmission from cSI to cSII) pathways during pressure stimulation. DCM analysis also revealed inter-hemispheric effective connectivity among cSI, cSII, and the ipsilateral SII (iSII) characterized by serial (from cSI to cSII) and SII-level (from cSII to iSII) pathways during pressure stimulation. Conclusions Our results support a hierarchical somatosensory network that underlies processing of low-frequency tactile information. The network consists of parallel inputs to both cSI and cSII (intra-hemispheric), followed by serial pathways from cSI to cSII (intra-hemispheric) and from cSII to iSII (inter-hemispheric). Importantly, our results suggest that both serial and parallel processing take place in tactile information processing of static mechanical stimuli as well as highlighting the contribution of callosal transfer to bilateral neuronal

  5. Neonatal somatosensory evoked potentials persist during hypothermia.

    PubMed

    Nevalainen, Päivi; Lauronen, Leena; Metsäranta, Marjo; Lönnqvist, Tuula; Ahtola, Eero; Vanhatalo, Sampsa

    2017-06-01

    Treatment with therapeutic hypothermia has challenged the use of amplitude-integrated electroencephalography in predicting outcomes after perinatal asphyxia. In this study, we assessed the feasibility and gain of somatosensory evoked potentials (SEP) during hypothermia. This retrospective study comprised neonates from 35 + 6 to 42 + 2 gestational weeks and treated for asphyxia or hypoxic-ischaemic encephalopathy at Helsinki University Hospital between 14 February 2007 and 23 December 2009. This period was partly before the introduction of routine therapeutic hypothermia, which enabled us to include normothermic neonates who would these days receive hypothermia treatment. We analysed SEPs from 47 asphyxiated neonates and compared the results between 23 normothermic and 24 hypothermic neonates. Our data showed that hypothermia led to SEP latencies lengthening by a few milliseconds, but the essential gain for predicting outcomes by SEPs was preserved during hypothermia. Of the 24 hypothermic neonates, bilaterally absent SEPs were associated with poor outcome in 2/2 neonates, normal SEPs were associated with good outcomes in 13/15 neonates and 5/7 neonates with unilaterally absent or grossly delayed SEPs had a poor outcome. Our findings indicated that SEPs were a reliable tool for evaluating the somatosensory system in asphyxiated neonates in both normothermic and hypothermic conditions. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  6. Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson's disease.

    PubMed

    Conte, Antonella; Modugno, Nicola; Lena, Francesco; Dispenza, Sabrina; Gandolfi, Barbara; Iezzi, Ennio; Fabbrini, Giovanni; Berardelli, Alfredo

    2010-09-01

    Whereas numerous studies document the effects of dopamine medication and deep brain stimulation on motor function in patients with Parkinson's disease, few have investigated deep brain stimulation-induced changes in sensory functions. In this study of 13 patients with Parkinson's disease, we tested the effects of deep brain stimulation on the somatosensory temporal discrimination threshold. To investigate whether deep brain stimulation and dopaminergic medication induce similar changes in somatosensory discrimination, somatosensory temporal discrimination threshold values were acquired under four experimental conditions: (i) medication ON/deep brain stimulation on; (ii) medication ON/deep brain stimulation off; (iii) medication OFF/deep brain stimulation on; and (iv) medication OFF/deep brain stimulation off. Patients also underwent clinical and neuropsychological evaluations during each experimental session. Somatosensory temporal discrimination threshold values obtained in patients were compared with 13 age-matched healthy subjects. Somatosensory temporal discrimination threshold values were significantly higher in patients than in healthy subjects. In patients, somatosensory temporal discrimination threshold values were significantly lower when patients were studied in medication ON than in medication OFF conditions. Somatosensory temporal discrimination threshold values differed significantly between deep brain stimulation on and deep brain stimulation off conditions only when the patients were studied in the medication ON condition and were higher in the deep brain stimulation on/medication ON than in the deep brain stimulation off/medication ON condition. Dopamine but not subthalamic nucleus deep brain stimulation restores the altered somatosensory temporal discrimination in patients with Parkinson's disease. Deep brain stimulation degrades somatosensory temporal discrimination by modifying central somatosensory processing whereas dopamine restores the

  7. Corticocortical projections to representations of the teeth, tongue, and face in somatosensory area 3b of macaque monkeys

    PubMed Central

    Cerkevich, Christina M.; Qi, Hui-Xin; Kaas, Jon H.

    2013-01-01

    We placed injections of anatomical tracers into representations of the tongue, teeth, and face in the primary somatosensory cortex (area 3b) of macaque monkeys. Our injections revealed strong projections to representations of the tongue and teeth from other parts of the oral cavity responsive region in 3b. The 3b face also provided input to the representations of the intra-oral structures. The primary representation of the face showed a pattern of intrinsic connections similar to that of the mouth. The area 3b hand representation provided little to no input to either the mouth or face representations. The mouth and face representations of area 3b received projections from the presumptive oral cavity and face regions of other somatosensory areas in the anterior parietal cortex and the lateral sulcus including areas 3a, 1, 2, the second somatosensory area (S2), the parietal ventral area (PV), and cortex that may include the parietal rostral (PR) and ventral somatosensory (VS) areas. Additional inputs came from primary motor (M1) and ventral premotor (PMv) areas. This areal pattern of projections is similar to the well-studied pattern revealed by tracer injections in regions of 3b representing the hand. The tongue representation appeared to be unique in area 3b in that it also received inputs from areas in the anterior upper bank of the lateral sulcus and anterior insula that may include the primary gustatory area (area G) and other cortical taste processing areas, as well as a region of lateral prefrontal cortex (LPFC) lining the principal sulcus. PMID:23853118

  8. Short-term expansion of receptive fields in rat primary somatosensory cortex after hindpaw digit denervation.

    PubMed

    Byrne, J A; Calford, M B

    1991-11-29

    The immediate effect of changing the driving cutaneous input to locations within primary somatosensory cortex (SI) was examined by denervating one or more digits of the rat hindpaw by amputation or local anesthesia. When all or part of a receptive field of a cluster of neurons was denervated, it was found that the cortical location recorded from gained responsiveness to cutaneous stimulation of hindpaw areas bordering the denervated region. In 22 of the 29 animals studied this expansion took place within 5 min of the denervation.

  9. Circadian rhythmicity of synapses in mouse somatosensory cortex.

    PubMed

    Jasinska, Malgorzata; Grzegorczyk, Anna; Woznicka, Olga; Jasek, Ewa; Kossut, Malgorzata; Barbacka-Surowiak, Grazyna; Litwin, Jan A; Pyza, Elzbieta

    2015-10-01

    The circadian rhythmicity displayed by motor behavior of mice: activity at night and rest during the day; and the associated changes in the sensory input are reflected by cyclic synaptic plasticity in the whisker representations located in the somatosensory (barrel) cortex. It was not clear whether diurnal rhythmic changes in synapse density previously observed in the barrel cortex resulted from changes in the activity of the animals, from daily light/dark (LD) rhythm or are driven by an endogenous clock. These changes were investigated in the barrel cortex of C57BL/6 mouse strain kept under LD 12 : 12 h conditions and in constant darkness (DD). Stereological analysis of serial electron microscopic sections was used to assess numerical density of synapses. In mice kept under LD conditions, the total density of synapses and the density of excitatory synapses located on dendritic spines was higher during the light period (rest phase). In contrast, the density of inhibitory synapses located on dendritic spines increased during the dark period (activity phase). Under DD conditions, the upregulation of the inhibitory synapses during the activity phase was retained, but the cyclic changes in the density of excitatory synapses were not observed. The results show that the circadian plasticity concerns only synapses located on spines (and not those on dendritic shafts), and that excitatory and inhibitory synapses are differently regulated during the 24 h cycle: the excitatory synapses are influenced by light, whilst the inhibitory synapses are driven by the endogenous circadian clock.

  10. Somatosensory evoked potentials of hand muscles in stroke and their modification by botulinum toxin: a preliminary study.

    PubMed

    Basaran, Aynur; Emre, Ufuk; Karadavut, Kiymet Ikbal; Bulmus, Nercivan

    2012-06-01

    To determine the effect of botulinum toxin A on spasticity and somatosensory evoked potentials of hand muscles in patients who have undergone cerebrovascular accident. Preliminary, prospective, before-after study design. Six subjects prospectively followed after application of botulinum toxin A in the rehabilitation department of a university hospital. All patients underwent botulinum toxin A injection to the upper extremity muscles in varying combinations and carried out a home-based exercise programme. Primary outcome measure was median somatosensory evoked potential of hand muscles (N20). Secondary outcome measures were: spasticity assessed clinically by Modified Ashworth Scales (MAS); functional ability analysis assessed by Physician's Rating Scale (PRS); and functional difficulties reported by patients or their care-givers by patient disability and care-giver burden rating scale (PD & CBRS). MAS, PRS and PD & CBRS improved with botulinum toxin A treatment. In the affected limb, N20 potentials were impaired compared with those in the unaffected side. With botulinum toxin A treatment, although improvement in overall N20-P25 amplitudes was significant, as a result of limited sample size, post hoc pair-wise comparisons with Bonferroni correction failed to yield any significant pairs. The improvement in the median somatosensory evoked potentials following botulinum toxin A treatment suggests that central somatosensory patterns in hemiplegia can be modified by peripheral inputs.

  11. Visual Responsiveness of Neurons in the Secondary Somatosensory Area and its Surrounding Parietal Operculum Regions in Awake Macaque Monkeys

    PubMed Central

    Hihara, Sayaka; Taoka, Miki; Tanaka, Michio; Iriki, Atsushi

    2015-01-01

    Previous neurophysiological studies performed in macaque monkeys have shown that the secondary somatosensory cortex (SII) is essentially engaged in the processing of somatosensory information and no other sensory input has been reported. In contrast, recent human brain-imaging studies have revealed the effects of visual and auditory stimuli on SII activity, which suggest multisensory integration in the human SII. To determine whether multisensory responses of the SII also exist in nonhuman primates, we recorded single-unit activity in response to visual and auditory stimuli from the SII and surrounding regions in 8 hemispheres from 6 awake monkeys. Among 1157 recorded neurons, 306 neurons responded to visual stimuli. These visual neurons usually responded to rather complex stimuli, such as stimulation of the peripersonal space (40.5%), observation of human action (29.1%), and moving-object stimulation outside the monkey's reach (23.9%). We occasionally applied auditory stimuli to visual neurons and found 10 auditory-responsive neurons that exhibited somatosensory responses. The visual neurons were distributed continuously along the lateral sulcus covering the entire SII, along with other somatosensory neurons. These results highlight the need to investigate novel functional roles—other than somesthetic sensory processing—of the SII. PMID:25962920

  12. Visual Responsiveness of Neurons in the Secondary Somatosensory Area and its Surrounding Parietal Operculum Regions in Awake Macaque Monkeys.

    PubMed

    Hihara, Sayaka; Taoka, Miki; Tanaka, Michio; Iriki, Atsushi

    2015-11-01

    Previous neurophysiological studies performed in macaque monkeys have shown that the secondary somatosensory cortex (SII) is essentially engaged in the processing of somatosensory information and no other sensory input has been reported. In contrast, recent human brain-imaging studies have revealed the effects of visual and auditory stimuli on SII activity, which suggest multisensory integration in the human SII. To determine whether multisensory responses of the SII also exist in nonhuman primates, we recorded single-unit activity in response to visual and auditory stimuli from the SII and surrounding regions in 8 hemispheres from 6 awake monkeys. Among 1157 recorded neurons, 306 neurons responded to visual stimuli. These visual neurons usually responded to rather complex stimuli, such as stimulation of the peripersonal space (40.5%), observation of human action (29.1%), and moving-object stimulation outside the monkey's reach (23.9%). We occasionally applied auditory stimuli to visual neurons and found 10 auditory-responsive neurons that exhibited somatosensory responses. The visual neurons were distributed continuously along the lateral sulcus covering the entire SII, along with other somatosensory neurons. These results highlight the need to investigate novel functional roles-other than somesthetic sensory processing-of the SII.

  13. Early determination of somatosensory cortex in the human brain.

    PubMed

    Juenger, Hendrik; de Haan, Bianca; Krägeloh-Mann, Ingeborg; Staudt, Martin; Karnath, Hans-Otto

    2011-08-01

    The developing brain possesses a high potential for neuroplasticity. Yet, this remarkable potential of (re-)organization is not a general principle. It seems to vary among different functional systems. Here, we show that distinct brain structures involved in somatosensory processing are already prenatally determined so that a pre- or perinatally acquired (congenital) brain damage of such structures results in a persistent somatosensory deficit. Eleven patients with hemiparesis due to congenital cortico-subcortical unilateral stroke who showed versus not showed a somatosensory deficit were contrasted with magnetic resonance imaging lesion-behavior mapping. The brain areas which were typically damaged in patients with a somatosensory deficit but typically spared in patients without a somatosensory deficit were located in the primary and secondary somatosensory cortex (S1, S2) as well as the inferior parietal cortex directly neighboring S1 and S2. The results argue for an early functional determination of primary and secondary somatosensory cortex, without substantial capacities for (re-)organization. They demonstrate that cortical damage of these areas cannot be compensated by shifting the functional representation to undamaged parts of the cortex.

  14. Somatosensory responses in a human motor cortex

    PubMed Central

    Donoghue, John P.; Hochberg, Leigh R.

    2013-01-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications. PMID:23343902

  15. A neural circuit framework for somatosensory amplification in somatoform disorders.

    PubMed

    Perez, David L; Barsky, Arthur J; Vago, David R; Baslet, Gaston; Silbersweig, David A

    2015-01-01

    Although somatosensory amplification is theorized to serve a critical role in somatization, it remains poorly understood neurobiologically. In this perspective article, convergent visceral-somatic processing is highlighted, and neuroimaging studies in somatoform disorders are reviewed. Neural correlates of cognitive-affective amplifiers are integrated into a neurocircuit framework for somatosensory amplification. The anterior cingulate cortex, insula, amygdala, hippocampal formation, and striatum are some of the identified regions. Clinical symptomatology in a given patient or group may represent dysfunction in one or more of these neurobehavioral nodes. Somatosensory amplification may, in part, develop through stress-mediated aberrant neuroplastic changes and the neuromodulatory effects of inflammation.

  16. Primary somatosensory cortex hand representation dynamically modulated by motor output.

    PubMed

    McGeoch, Paul D; Brang, David; Huang, Mingxiong; Ramachandran, V S

    2015-02-01

    The brain's primary motor and primary somatosensory cortices are generally viewed as functionally distinct entities. Here we show by means of magnetoencephalography with a phantom-limb patient, that movement of the phantom hand leads to a change in the response of the primary somatosensory cortex to tactile stimulation. This change correlates with the described conscious perception and suggests a greater degree of functional unification between the primary motor and somatosensory cortices than is currently realized. We suggest that this may reflect the evolution of this part of the human brain, which is thought to have occurred from an undifferentiated sensorimotor cortex.

  17. Correlation between temperature and vibration thresholds and somatosensory evoked potentials.

    PubMed

    Meh, D; Denislic, M

    2000-01-01

    The psychophysically assessed thermal specific, thermal pain and vibration sensitivities were correlated to somatosensory evoked potentials in eighteen patients with definite multiple sclerosis. In the psychophysical tests, modality specific stimuli were used. Somatosensory potentials were electrically evoked. The abnormalities of both the temperature and the vibration sensitivity were to same extent related to the somatosensory evoked potentials. Dorsal columns-medial lemnisc and anterolateral-spinothalamic demyelinating lesions were presumed. The psychophysical tests supplement the clinical, laboratory, neuroradiologic and electrophysiological tests. These should be included in the battery of diagnostic tests in multiple sclerosis.

  18. THE INFLUENCE OF VIBRISSAL SOMATOSENSORY PROCESSING IN RAT SUPERIOR COLLICULUS ON PREY CAPTURE

    PubMed Central

    FAVARO, P. D. N.; GOUVÊA, T. S.; DE OLIVEIRA, S. R.; VAUTRELLE, N.; REDGRAVE, P.; COMOLI, E.

    2011-01-01

    The lateral part of intermediate layer of superior colliculus (SCl) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCl while prey capture in rats with NMDA lesions in SCl is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCl receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCl induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCl, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats. PMID:21163336

  19. Effects of face/head and whole body cooling during passive heat stress on human somatosensory processing.

    PubMed

    Nakata, Hiroki; Namba, Mari; Kakigi, Ryusuke; Shibasaki, Manabu

    2017-06-01

    We herein investigated the effects of face/head and whole body cooling during passive heat stress on human somatosensory processing recorded by somatosensory-evoked potentials (SEPs) at C4' and Fz electrodes. Fourteen healthy subjects received a median nerve stimulation at the left wrist. SEPs were recorded at normothermic baseline (Rest), when esophageal temperature had increased by ~1.2°C (heat stress: HS) during passive heating, face/head cooling during passive heating (face/head cooling: FHC), and after HS (whole body cooling: WBC). The latencies and amplitudes of P14, N20, P25, N35, P45, and N60 at C4' and P14, N18, P22, and N30 at Fz were evaluated. Latency indicated speed of the subcortical and cortical somatosensory processing, while amplitude reflected the strength of neural activity. Blood flow in the internal and common carotid arteries (ICA and CCA, respectively) and psychological comfort were recorded in each session. Increases in esophageal temperature due to HS significantly decreased the amplitude of N60, psychological comfort, and ICA blood flow in the HS session, and also shortened the latencies of SEPs (all, P < 0.05). While esophageal temperature remained elevated, FHC recovered the peak amplitude of N60, psychological comfort, and ICA blood flow toward preheat baseline levels as well as WBC. However, the latencies of SEPs did not recover in the FHC and WBC sessions. These results suggest that impaired neural activity in cortical somatosensory processing during passive HS was recovered by FHC, whereas conduction velocity in the ascending somatosensory input was accelerated by increases in body temperature. Copyright © 2017 the American Physiological Society.

  20. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject.

    PubMed

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe; Saridis, George A; Gjedde, Albert; Ptito, Maurice; Kupers, Ron

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  1. Feedforward somatosensory inhibition is normal in cervical dystonia.

    PubMed

    Ferrè, Elisa R; Ganos, Christos; Bhatia, Kailash P; Haggard, Patrick

    2015-03-01

    Insufficient cortical inhibition is a key pathophysiological finding in dystonia. Subliminal sensory stimuli were reported to transiently inhibit somatosensory processing. Here we investigated whether such subliminal feedforward inhibition is reduced in patients with cervical dystonia. Sixteen cervical dystonia patients and 16 matched healthy controls performed a somatosensory detection task. We measured the drop in sensitivity to detect a threshold-level digital nerve shock when it was preceded by a subliminal conditioning shock, compared to when it was not. Subliminal conditioning shocks reduced sensitivity to threshold stimuli to a similar extent in both patients and controls, suggesting that somatosensory subliminal feedforward inhibition is normal in cervical dystonia. Somatosensory feedforward inhibition was normal in this group of cervical dystonia patients. Our results qualify previous concepts of a general dystonic deficit in sensorimotor inhibitory processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Inhibitory modulation of cat somatosensory cortex: a pharmacological study.

    PubMed

    Brailowsky, S; Knight, R T

    1984-11-26

    In anesthetized preparations, GABA and taurine produced rapid, reversible inhibition of the negative component (N20) of the primary somatosensory evoked potential (SEP) without effect on the earlier positivity (P11). This effect was also produced by low doses of 4-aminopyridine. Neither bicuculline or picrotoxin antagonized these drug effects. A predominance of type B GABA receptors in the superficial layers of the somatosensory cortex is proposed.

  3. Dynamical activities of primary somatosensory cortices studied by magnetoencephalography

    NASA Astrophysics Data System (ADS)

    Kishida, Kuniharu

    2009-11-01

    A blind identification method of transfer functions in feedback systems is introduced for examination of dynamical activities of cortices by magnetoencephalography study. Somatosensory activities are examined in 5 Hz periodical median nerve stimulus. In the present paper, we will try two careful preprocessing procedures for the identification method to obtain impulse responses between primary somatosensory cortices. Time series data of the somatosensory evoked field are obtained by using a blind source separation of the T/k type (fractional) decorrelation method. Time series data of current dipoles of primary somatosensory cortices are transformed from the time series data of the somatosensory evoked field by the inverse problem. Fluctuations of current dipoles of them are obtained after elimination of deterministic periodical evoked waveforms. An identification method based on feedback system theory is used for estimation of transfer functions in a feedback model from obtained fluctuations of currents dipoles of primary somatosensory cortices. Dynamical activities between them are presented by Bode diagrams of transfer functions and their impulse responses: the time delay of about 30 ms via corpus callosum is found in the impulse response of identified transfer function.

  4. Sensorimotor and cognitive involvement of the beta-gamma oscillation in the frontal N30 component of somatosensory evoked potentials.

    PubMed

    Cebolla, A M; Cheron, G

    2015-12-01

    The most consistent negative cortical component of somatosensory evoked potentials (SEPs), namely the frontal N30, can be considered more multidimensional than a strict item of standard somatosensory investigation, dedicated to tracking the afferent volley from the peripheral sensory nerve potentials to the primary somatosensory cortex. In this review, we revisited its classical sensorimotor implication within the framework of the recent oscillatory model of ongoing electroencephalogram (EEG) rhythms. Recently, the N30 component was demonstrated to be related to an increase in the power of beta-gamma EEG oscillation and a phase reorganization of the ongoing EEG oscillations (phase locking) in this frequency band. Thanks to high density EEG recordings and the inverse modeling method (swLORETA), it was shown that different overlapping areas of the motor and premotor cortex are specifically involved in generating the N30 in the form of a beta gamma oscillatory phase locking and power increase. This oscillatory approach has allowed a re-investigation of the movement gating behavior of the N30. It was demonstrated that the concomitant execution of finger movements by a stimulated hand impinges the temporal concentration of the ongoing beta/gamma EEG oscillations and abolished the N30 component. It was hypothesized that the involvement of neuronal populations in both the sensorimotor cortex and other related areas were unable to respond to the phasic sensory activation so could not phase-lock their oscillatory signals to the external sensory input during the movement. In this case, the actual movement has primacy over the artificial somatosensory input. The contribution of the ongoing oscillatory activity in the N30 emergence calls for a reappraisal of fundamental and clinical interpretations of the frontal N30 component. An absent or reduced amplitude of the N30 can now be viewed not only as a deficit in the activation of the somatosensory synaptic network in response

  5. Molecular and cellular limits to somatosensory specificity

    PubMed Central

    Belmonte, Carlos; Viana, Félix

    2008-01-01

    Animals detect environmental changes through sensory neural mechanisms that enable them to differentiate the quality, intensity and temporal characteristics of stimuli. The 'doctrine of specific nervous energies' postulates that the different sensory modalities experienced by humans result of the activation of specific nervous pathways. Identification of functional classes of sensory receptors provided scientific support to the concept that somatosensory modalities (touch, pain, temperature, kinesthesis) are subserved by separate populations of sensory receptor neurons specialized in detecting innocuous and injurious stimuli of different quality (mechanical forces, temperature, chemical compounds). The identification of receptor proteins activated by different physicochemical stimuli, in particular ion channels of the Transient Receptor Potential (TRP) superfamily, has put forward the concept that specificity of peripheral sensory receptor neurons is determined by their expression of a particular "molecular sensor" that confers to each functional type its selectivity to respond with a discharge of nerve impulses to stimuli of a given quality. Nonetheless, recent experimental data suggest that the various molecular sensors proposed as specific transducer molecules for stimuli of different quality are not as neatly associated with the distinct functional types of sensory receptors as originally proposed. First, many ion channel molecules initially associated to the transduction of only one particular form of energy are also activated by stimuli of different quality, implying a limited degree of specificity in their transducing capacities. Second, molecular sensors associated with a stimulus quality and hence to a sensory receptor type and ultimately to a sensory modality may be concomitantly expressed in sensory receptor neurons functionally defined as specific for another stimulus quality. Finally, activation of voltage gated channels involved primarily in nerve

  6. Frequency Specific Modulation of Human Somatosensory Cortex

    PubMed Central

    Feurra, Matteo; Paulus, Walter; Walsh, Vincent; Kanai, Ryota

    2011-01-01

    Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One-way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS) over the primary somatosensory cortex (SI) could elicit tactile sensations in humans in a frequency-dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10–14 Hz) and high gamma (52–70 Hz) frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16–20 Hz) stimulation. These findings highlight the frequency dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous electroencephalography/magnetoencephalography studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities. PMID:21713181

  7. Shared somatosensory and motor functions in musicians

    PubMed Central

    Hosoda, Moe; Furuya, Shinichi

    2016-01-01

    Skilled individuals are characterized by fine-tuned perceptual and motor functions. Here, we tested the idea that the sensory and motor functions of highly-trained individuals are coupled. We assessed the relationships among multifaceted somatosensory and motor functions of expert pianists. The results demonstrated a positive covariation between the acuity of weight discrimination and the precision of force control during piano keystrokes among the pianists but not among the non-musicians. However, neither the age of starting musical training nor the total amount of life-long piano practice was correlated with these sensory-motor functions in the pianists. Furthermore, a difference between the pianists and non-musicians was absent for the weight discrimination acuity but present for precise force control during keystrokes. The results suggest that individuals with innately superior sensory function had finer motor control only in a case of having undergone musical training. Intriguingly, the tactile spatial acuity of the fingertip was superior in the pianists compared with the non-musicians but was not correlated with any functions representing fine motor control among the pianists. The findings implicate the presence of two distinct mechanisms of sensorimotor learning elicited by musical training, which occur either independently in individual sensorimotor modalities or through interacting between modalities. PMID:27886250

  8. Amplified somatosensory and visual cortical projections to a core auditory area, the anterior auditory field, following early- and late-onset deafness.

    PubMed

    Wong, Carmen; Chabot, Nicole; Kok, Melanie A; Lomber, Stephen G

    2015-09-01

    Cross-modal reorganization following the loss of input from a sensory modality can recruit sensory-deprived cortical areas to process information from the remaining senses. Specifically, in early-deaf cats, the anterior auditory field (AAF) is unresponsive to auditory stimuli but can be activated by somatosensory and visual stimuli. Similarly, AAF neurons respond to tactile input in adult-deafened animals. To examine anatomical changes that may underlie this functional adaptation following early or late deafness, afferent projections to AAF were examined in hearing cats, and cats with early- or adult-onset deafness. Unilateral deposits of biotinylated dextran amine were made in AAF to retrogradely label cortical and thalamic afferents to AAF. In early-deaf cats, ipsilateral neuronal labeling in visual and somatosensory cortices increased by 329% and 101%, respectively. The largest increases arose from the anterior ectosylvian visual area and the anterolateral lateral suprasylvian visual area, as well as somatosensory areas S2 and S4. Consequently, labeling in auditory areas was reduced by 36%. The age of deafness onset appeared to influence afferent connectivity, with less marked differences observed in late-deaf cats. Profound changes to visual and somatosensory afferent connectivity following deafness may reflect corticocortical rewiring affording acoustically deprived AAF with cross-modal functionality.

  9. Visual-Somatosensory Integration and Balance: Evidence for Psychophysical Integrative Differences in Aging

    PubMed Central

    Mahoney, Jeannette R.; Holtzer, Roee; Verghese, Joe

    2014-01-01

    Research detailing multisensory integration (MSI) processes in aging and their association with clinically relevant outcomes is virtually non-existent. To our knowledge, the relationship between MSI and balance has not been well-established in aging. Given known alterations in unisensory processing with increasing age, the aims of the current study were to determine differential behavioral patterns of MSI in aging and investigate whether MSI was significantly associated with balance and fall-risk. Seventy healthy older adults (M = 75 years; 58% female) participated in the current study. Participants were instructed to make speeded responses to visual, somatosensory, and visual-somatosensory (VS) stimuli. Based on reaction times (RTs) to all stimuli, participants were classified into one of two groups (MSI or NO MSI), depending on their MSI RT benefit. Static balance was assessed using mean unipedal stance time. Overall, results revealed that RTs to VS stimuli were significantly shorter than those elicited to constituent unisensory conditions. Further, the current experimental design afforded differential patterns of multisensory processing, with 75% of the elderly sample demonstrating multisensory enhancements. Interestingly, 25% of older adults did not demonstrate multisensory RT facilitation; a finding that was attributed to extremely fast RTs overall and specifically in response to somatosensory inputs. Individuals in the NO MSI group maintained significantly better unipedal stance times and reported less falls, compared to elders in the MSI group. This study reveals the existence of differential patterns of multisensory processing in aging, while describing the clinical translational value of MSI enhancements in predicting balance and falls risk. PMID:25102664

  10. Neuronal activity controls the development of interneurons in the somatosensory cortex

    PubMed Central

    Babij, Rachel

    2017-01-01

    BACKGROUND Neuronal activity in cortical areas regulates neurodevelopment by interacting with defined genetic programs to shape the mature central nervous system. Electrical activity is conveyed to sensory cortical areas via intracortical and thalamocortical neurons, and includes oscillatory patterns that have been measured across cortical regions. OBJECTIVE In this work, we review the most recent findings about how electrical activity shapes the developmental assembly of functional circuitry in the somatosensory cortex, with an emphasis on interneuron maturation and integration. We include studies on the effect of various neurotransmitters and on the influence of thalamocortical afferent activity on circuit development. We additionally reviewed studies describing network activity patterns. METHODS We conducted an extensive literature search using both the PubMed and Google Scholar search engines. The following keywords were used in various iterations: “interneuron”, “somatosensory”, “development”, “activity”, “network patterns”, “thalamocortical”, “NMDA receptor”, “plasticity”. We additionally selected papers known to us from past reading, and those recommended to us by reviewers and members of our lab. RESULTS We reviewed a total of 132 articles that focused on the role of activity in interneuronal migration, maturation, and circuit development, as well as the source of electrical inputs and patterns of cortical activity in the somatosensory cortex. 79 of these papers included in this timely review were written between 2007 and 2016. CONCLUSIONS Neuronal activity shapes the developmental assembly of functional circuitry in the somatosensory cortical interneurons. This activity impacts nearly every aspect of development and acquisition of mature neuronal characteristics, and may contribute to changing phenotypes, altered transmitter expression, and plasticity in the adult. Progressively changing oscillatory network patterns

  11. Pathophysiology, Diagnosis and Treatment of Somatosensory Tinnitus: A Scoping Review.

    PubMed

    Haider, Haúla F; Hoare, Derek J; Costa, Raquel F P; Potgieter, Iskra; Kikidis, Dimitris; Lapira, Alec; Nikitas, Christos; Caria, Helena; Cunha, Nuno T; Paço, João C

    2017-01-01

    Somatosensory tinnitus is a generally agreed subtype of tinnitus that is associated with activation of the somatosensory, somatomotor, and visual-motor systems. A key characteristic of somatosensory tinnitus is that is modulated by physical contact or movement. Although it seems common, its pathophysiology, assessment and treatment are not well defined. We present a scoping review on the pathophysiology, diagnosis, and treatment of somatosensory tinnitus, and identify priority directions for further research. Methods: Literature searches were conducted in Google Scholar, PubMed, and EMBASE databases. Additional broad hand searches were conducted with the additional terms etiology, diagnose, treatment. Results: Most evidence on the pathophysiology of somatosensory tinnitus suggests that somatic modulations are the result of altered or cross-modal synaptic activity within the dorsal cochlear nucleus or between the auditory nervous system and other sensory subsystems of central nervous system (e.g., visual or tactile). Presentations of somatosensory tinnitus are varied and evidence for the various approaches to treatment promising but limited. Discussion and Conclusions: Despite the apparent prevalence of somatosensory tinnitus its underlying neural processes are still not well understood. Necessary involvement of multidisciplinary teams in its diagnosis and treatment has led to a large heterogeneity of approaches whereby tinnitus improvement is often only a secondary effect. Hence there are no evidence-based clinical guidelines, and patient care is empirical rather than research-evidence-based. Somatic testing should receive further attention considering the breath of evidence on the ability of patients to modulate their tinnitus through manouvers. Specific questions for further research and review are indicated.

  12. Interhemispheric Plasticity Protects the Deafferented Somatosensory Cortex from Functional Takeover After Nerve Injury

    PubMed Central

    Koretsky, Alan P.

    2014-01-01

    Abstract Functional changes across brain hemispheres have been reported after unilateral cortical or peripheral nerve injury. Interhemispheric callosal connections usually underlie this cortico-cortical plasticity. However, the effect of the altered callosal inputs on local cortical plasticity in the adult brain is not well studied. Ipsilateral functional magnetic resonance imaging (fMRI) activation has been reliably detected in the deafferented barrel cortex (BC) at 2 weeks after unilateral infraorbital denervation (IO) in adult rats. The ipsilateral fMRI signal relies on callosal-mediated interhemispheric plasticity. This form of interhemispheric plasticity provides a good chronic model to study the interaction between callosal inputs and local cortical plasticity. The receptive field of forepaw in the primary somatosensory cortex (S1), which is adjacent to the BC, was mapped with fMRI. The S1 receptive field expanded to take over a portion of the BC in 2 weeks after both ascending inputs and callosal inputs were removed in IO rats with ablated contralateral BC (IO+ablation). This expansion, estimated specifically by fMRI mapping, is significantly larger than what has been observed in the IO rats with intact callosal connectivity, as well as in the rats with sham surgery. This work indicates that altered callosal inputs prevent the functional takeover of the deafferented BC from adjacent cortices and may help preserve the functional identity of the BC. PMID:25117691

  13. Interhemispheric plasticity protects the deafferented somatosensory cortex from functional takeover after nerve injury.

    PubMed

    Yu, Xin; Koretsky, Alan P

    2014-11-01

    Functional changes across brain hemispheres have been reported after unilateral cortical or peripheral nerve injury. Interhemispheric callosal connections usually underlie this cortico-cortical plasticity. However, the effect of the altered callosal inputs on local cortical plasticity in the adult brain is not well studied. Ipsilateral functional magnetic resonance imaging (fMRI) activation has been reliably detected in the deafferented barrel cortex (BC) at 2 weeks after unilateral infraorbital denervation (IO) in adult rats. The ipsilateral fMRI signal relies on callosal-mediated interhemispheric plasticity. This form of interhemispheric plasticity provides a good chronic model to study the interaction between callosal inputs and local cortical plasticity. The receptive field of forepaw in the primary somatosensory cortex (S1), which is adjacent to the BC, was mapped with fMRI. The S1 receptive field expanded to take over a portion of the BC in 2 weeks after both ascending inputs and callosal inputs were removed in IO rats with ablated contralateral BC (IO+ablation). This expansion, estimated specifically by fMRI mapping, is significantly larger than what has been observed in the IO rats with intact callosal connectivity, as well as in the rats with sham surgery. This work indicates that altered callosal inputs prevent the functional takeover of the deafferented BC from adjacent cortices and may help preserve the functional identity of the BC.

  14. Principles And Applications Of Dual Adaptive Control

    NASA Technical Reports Server (NTRS)

    Mookerjee, Purusottam

    1990-01-01

    Simulations indicate superiority of dual controller over "cautious" controller. Report discusses principles of design of actively adaptive dual controllers. Focus is upon derivation of control laws for dual controller enhancing identification of parameters of mathematical model of multiple-input/multiple-output system, while controlling it at same time. Tasks of identification and control impose competing requirements.

  15. Spatiotemporal trajectories of reactivation of somatosensory cortex by direct and secondary pathways after dorsal column lesions in squirrel monkeys.

    PubMed

    Qi, Hui-Xin; Wang, Feng; Liao, Chia-Chi; Friedman, Robert M; Tang, Chaohui; Kaas, Jon H; Avison, Malcolm J

    2016-11-15

    After lesions of the somatosensory dorsal column (DC) pathway, the cortical hand representation can become unresponsive to tactile stimuli, but considerable responsiveness returns over weeks of post-lesion recovery. The reactivation suggests that preserved subthreshold sensory inputs become potentiated and axon sprouting occurs over time to mediate recovery. Here, we studied the recovery process in 3 squirrel monkeys, using high-resolution cerebral blood volume-based functional magnetic resonance imaging (CBV-fMRI) mapping of contralateral somatosensory cortex responsiveness to stimulation of distal finger pads with low and high level electrocutaneous stimulation (ES) before and 2, 4, and 6weeks after a mid-cervical level contralateral DC lesion. Both low and high intensity ES of digits revealed the expected somatotopy of the area 3b hand representation in pre-lesion monkeys, while in areas 1 and 3a, high intensity stimulation was more effective in activating somatotopic patterns. Six weeks post-lesion, and irrespective of the severity of loss of direct DC inputs (98%, 79%, 40%), somatosensory cortical area 3b of all three animals showed near complete recovery in terms of somatotopy and responsiveness to low and high intensity ES. However there was significant variability in the patterns and amplitudes of reactivation of individual digit territories within and between animals, reflecting differences in the degree of permanent and/or transient silencing of primary DC and secondary inputs 2weeks post-lesion, and their spatio-temporal trajectories of recovery between 2 and 6weeks. Similar variations in the silencing and recovery of somatotopy and responsiveness to high intensity ES in areas 3a and 1 are consistent with individual differences in damage to and recovery of DC and spinocuneate pathways, and possibly the potentiation of spinothalamic pathways. Thus, cortical deactivation and subsequent reactivation depends not only on the degree of DC lesion, but also on

  16. Somatosensory system hyperexcitability in alternating hemiplegia of childhood.

    PubMed

    Vollono, C; Rinalduzzi, S; Miliucci, R; Vigevano, F; Valeriani, M

    2014-12-01

    Alternating hemiplegia of childhood (AHC) is a rare neurological disease characterized by recurrent paroxysmal attacks of hemiplegia. The aim of the study was to assess the recovery cycle of the somatosensory evoked potentials (SEPs) in a group of AHC patients. Seven AHC patients and 10 control age-matched subjects (CS) were recruited. Right and left median nerve SEPs were recorded. The somatosensory system excitability was assessed by calculating the SEP changes after paired electrical stimuli. All patients were studied during the interictal phase, whilst four patients were studied also during the ictal phase. In AHC patients during the interictal phase, the amplitudes of the cervical N13 and of the cortical N20, P24 and N30 responses showed a faster recovery than in CS. In AHC patients during the ictal phase, the cortical N20 recovery cycle was prolonged compared with the interictal phase. A shortened SEP recovery cycle in AHC during the interictal phase suggests multilevel somatosensory system hyperexcitability in AHC. A partial recovery of this phenomenon during the ictal phase possibly reflects a functional reset of the somatosensory system. Overall, there is a disinhibition of the somatosensory system in AHC, a functional change of brain function associated with a possible involvement of the Na(+) /K(+) channels. This abnormality and its partial recovery during the attacks might be linked to the pathophysiological and genetic mechanisms of the disease. © 2014 EAN.

  17. Visual-somatosensory integration in aging: does stimulus location really matter?

    PubMed

    Mahoney, Jeannette R; Wang, Cuiling; Dumas, Kristina; Holtzer, Roee

    2014-05-01

    Individuals are constantly bombarded by sensory stimuli across multiple modalities that must be integrated efficiently. Multisensory integration (MSI) is said to be governed by stimulus properties including space, time, and magnitude. While there is a paucity of research detailing MSI in aging, we have demonstrated that older adults reveal the greatest reaction time (RT) benefit when presented with simultaneous visual-somatosensory (VS) stimuli. To our knowledge, the differential RT benefit of visual and somatosensory stimuli presented within and across spatial hemifields has not been investigated in aging. Eighteen older adults (Mean = 74 years; 11 female), who were determined to be non-demented and without medical or psychiatric conditions that may affect their performance, participated in this study. Participants received eight randomly presented stimulus conditions (four unisensory and four multisensory) and were instructed to make speeded foot-pedal responses as soon as they detected any stimulation, regardless of stimulus type and location of unisensory inputs. Results from a linear mixed effect model, adjusted for speed of processing and other covariates, revealed that RTs to all multisensory pairings were significantly faster than those elicited to averaged constituent unisensory conditions (p < 0.01). Similarly, race model violation did not differ based on unisensory spatial location (p = 0.41). In summary, older adults demonstrate significant VS multisensory RT effects to stimuli both within and across spatial hemifields.

  18. Visual-somatosensory integration in aging: Does stimulus location really matter?

    PubMed Central

    MAHONEY, JEANNETTE R.; WANG, CUILING; DUMAS, KRISTINA; HOLTZER, ROEE

    2014-01-01

    Individuals are constantly bombarded by sensory stimuli across multiple modalities that must be integrated efficiently. Multisensory integration (MSI) is said to be governed by stimulus properties including space, time, and magnitude. While there is a paucity of research detailing MSI in aging, we have demonstrated that older adults reveal the greatest reaction time (RT) benefi t when presented with simultaneous visual-somatosensory (VS) stimuli. To our knowledge, the differential RT benefit of visual and somatosensory stimuli presented within and across spatial hemifields has not been investigated in aging. Eighteen older adults (Mean = 74 years; 11 female), who were determined to be non-demented and without medical or psychiatric conditions that may affect their performance, participated in this study. Participants received eight randomly presented stimulus conditions (four unisensory and four multisensory) and were instructed to make speeded foot-pedal responses as soon as they detected any stimulation, regardless of stimulus type and location of unisensory inputs. Results from a linear mixed effect model, adjusted for speed of processing and other covariates, revealed that RTs to all multisensory pairings were significantly faster than those elicited to averaged constituent unisensory conditions (p < 0.01). Similarly, race model violation did not differ based on unisensory spatial location (p = 0.41). In summary, older adults demonstrate significant VS multisensory RT effects to stimuli both within and across spatial hemifields. PMID:24698637

  19. The Development of Nociceptive Network Activity in the Somatosensory Cortex of Freely Moving Rat Pups

    PubMed Central

    Chang, P.; Fabrizi, L.; Olhede, S.; Fitzgerald, M.

    2016-01-01

    Cortical perception of noxious stimulation is an essential component of pain experience but it is not known how cortical nociceptive activity emerges during brain development. Here we use continuous telemetric electrocorticogram (ECoG) recording from the primary somatosensory cortex (S1) of awake active rat pups to map functional nociceptive processing in the developing brain over the first 4 weeks of life. Cross-sectional and longitudinal recordings show that baseline S1 ECoG energy increases steadily with age, with a distinctive beta component replaced by a distinctive theta component in week 3. Event-related potentials were evoked by brief noxious hindpaw skin stimulation at all ages tested, confirming the presence of functional nociceptive spinothalamic inputs in S1. However, hindpaw incision, which increases pain sensitivity at all ages, did not increase S1 ECoG energy until week 3. A significant increase in gamma (20–50 Hz) energy occurred in the presence of skin incision at week 3 accompanied by a longer-lasting increase in theta (4–8 Hz) energy at week 4. Continuous ECoG recording demonstrates specific postnatal functional stages in the maturation of S1 cortical nociception. Somatosensory cortical coding of an ongoing pain “state” in awake rat pups becomes apparent between 2 and 4 weeks of age. PMID:27797835

  20. Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory and Somatosensory Microcircuitry

    PubMed Central

    Sadovsky, Alexander J.

    2013-01-01

    Mapping the flow of activity through neocortical microcircuits provides key insights into the underlying circuit architecture. Using a comparative analysis we determined the extent to which the dynamics of microcircuits in mouse primary somatosensory barrel field (S1BF) and auditory (A1) neocortex generalize. We imaged the simultaneous dynamics of up to 1126 neurons spanning multiple columns and layers using high-speed multiphoton imaging. The temporal progression and reliability of reactivation of circuit events in both regions suggested common underlying cortical design features. We used circuit activity flow to generate functional connectivity maps, or graphs, to test the microcircuit hypothesis within a functional framework. S1BF and A1 present a useful test of the postulate as both regions map sensory input anatomically, but each area appears organized according to different design principles. We projected the functional topologies into anatomical space and found benchmarks of organization that had been previously described using physiology and anatomical methods, consistent with a close mapping between anatomy and functional dynamics. By comparing graphs representing activity flow we found that each region is similarly organized as highlighted by hallmarks of small world, scale free, and hierarchical modular topologies. Models of prototypical functional circuits from each area of cortex were sufficient to recapitulate experimentally observed circuit activity. Convergence to common behavior by these models was accomplished using preferential attachment to scale from an auditory up to a somatosensory circuit. These functional data imply that the microcircuit hypothesis be framed as scalable principles of neocortical circuit design. PMID:23986241

  1. Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep.

    PubMed

    Nakamura, S; Walker, D W; Wong, F Y

    2017-02-15

    Cerebral haemodynamic response to neural stimulation has been extensively investigated in animal and clinical studies, in both adult and paediatric populations, but little is known about cerebral haemodynamic functional response in the fetal brain. The present study describes the cerebral haemodynamic response measured by near-infrared spectroscopy to somatosensory stimulation in fetal sheep. The cerebral haemodynamic response in the fetal sheep brain changes from a positive (increase in oxyhaemoglobin (oxyHb)) response pattern to a negative or biphasic response pattern when the duration of somatosensory stimulation is increased, probably due to cerebral vasoconstriction with prolonged stimulations. In contrast to adult studies, we have found that changes in fetal cerebral blood flow and oxyHb are positively increased in response to somatosensory stimulation during hypercapnia. We propose this is related to reduced vascular resistance and recruitment of cerebral vasculature in the fetal brain during hypercapnia. Functional hyperaemia induced by a localised increase in neuronal activity has been suggested to occur in the fetal brain owing to a positive blood oxygen level-dependent (BOLD) signal recorded by functional magnetic resonance imaging following acoustic stimulation. To study the effect of somatosensory input on local cerebral perfusion we used near-infrared spectroscopy (NIRS) in anaesthetised, partially exteriorised fetal sheep where the median nerve was stimulated with trains of pulses (2 ms, 3.3 Hz) for durations of 1.8, 4.8 and 7.8 s. Signal averaging of cerebral NIRS responses to 20 stimulus trains repeated every 60 s revealed that a short duration of stimulation (1.8 s) increased oxyhaemoglobin in the contralateral cortex consistent with a positive functional response, whereas longer durations of stimulation (4.8, 7.8 s) produced more variable oxyhaemoglobin responses including positive, negative and biphasic patterns of change. Mean arterial

  2. Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography.

    PubMed Central

    Mogilner, A; Grossman, J A; Ribary, U; Joliot, M; Volkmann, J; Rapaport, D; Beasley, R W; Llinás, R R

    1993-01-01

    Microelectrode recordings in adult mammals have clearly demonstrated that somatosensory cortical maps reorganize following peripheral nerve injuries and functional modifications; however, such reorganization has never been directly demonstrated in humans. Using magnetoencephalography, we have been able to demonstrate the somatotopic organization of the hand area in normal humans with high spatial precision. Somatosensory cortical plasticity was detected in two adults who were studied before and after surgical separation of webbed fingers (syndactyly). The presurgical maps displayed shrunken and nonsomatotopic hand representations. Within weeks following surgery, cortical reorganization occurring over distances of 3-9 mm was evident, correlating with the new functional status of their separated digits. In contrast, no modification of the somatosensory map was observed months following transfer of a neurovascular skin island flap for sensory reconstruction of the thumb in two subjects in whom sensory transfer failed to occur. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8386377

  3. Impairing somatosensory working memory using rTMS.

    PubMed

    Auksztulewicz, Ryszard; Spitzer, Bernhard; Goltz, Dominique; Blankenburg, Felix

    2011-09-01

    Numerous studies in animals and humans have related central aspects of somatosensory working memory function to neural activity in the inferior frontal gyrus (IFG). However, as previous studies have almost exclusively used correlational analyses, the question whether sustained neural activity in the IFG is causally involved in successful maintenance of somatosensory information remains unanswered. We used an online repetitive transcranial magnetic stimulation (rTMS) protocol to disrupt neuronal activity in the IFG while participants were maintaining tactile information throughout the delay for later comparison against a probe stimulus. rTMS impaired participants' performance in the working memory task, but not in a physically matched perceptual control task. Targeting the IFG in either hemisphere led to comparable working memory impairment. Our results show that the neural activity in the IFG plays a causal role in successful maintenance of somatosensory information.

  4. Dependence of the negative BOLD response on somatosensory stimulus intensity.

    PubMed

    Klingner, Carsten M; Hasler, Caroline; Brodoehl, Stefan; Witte, Otto W

    2010-10-15

    The primary somatosensory cortex (SI) has been shown to encode the intensity of a stimulus applied to the contralateral side of the body. Recent studies have demonstrated that ipsilateral SI is also involved in the processing of somatosensory information. In this study, we investigated the dependence of the negative BOLD response in ipsilateral SI on the intensity of somatosensory stimulation. Functional MRI was performed in 12 healthy subjects during electrical median nerve stimulation at four different intensities. A monotonic relationship between stimulus intensity and the strength of the negative BOLD response in ipsilateral SI was found. Additionally, a psychophysiological experiment revealed tight coupling between the stimulus intensity applied to one hand and increased perceptual threshold of the other hand. These findings indicate a stimulus intensity-dependent inhibition of ipsilateral SI.

  5. Somatosensory Electrical Stimulation Does Not Augment Motor Skill Acquisition and Intermanual Transfer in Healthy Young Adults-A Pilot Study.

    PubMed

    Négyesi, János; Veldman, Menno P; Berghuis, Kelly M M; Javet, Marie; Tihanyi, József; Hortobágyi, Tibor

    2017-09-05

    Sensory input can modify motor function and magnify interlimb transfer. We examined the effects of low-intensity somatosensory electrical stimulation (SES) on motor practice-induced skill acquisition and intermanual transfer. Participants practiced a visuomotor skill for 25 min and received SES to the practice or the transfer arm. Responses to single- and double-pulse transcranial magnetic stimulation were measured in both extensor carpi radialis. SES did not further increase skill acquisition (motor practice with right hand [RMP]: 30.8% and motor practice with right hand + somatosensory electrical stimulation to the right arm [RMP + RSES]: 27.8%) and intermanual transfer (RMP: 13.6% and RMP + RSES: 9.8%) when delivered to the left arm (motor practice with right hand + somatosensory electrical stimulation to the left arm [RMP + LSES]: 44.8% and 18.6%, respectively). Furthermore, transcranial magnetic stimulation measures revealed no changes in either hand. Future studies should systematically manipulate SES parameters to better understand the mechanisms of how SES affords motor learning benefits documented but not studied in patients.

  6. Beyond the Peak – Tactile Temporal Discrimination Does Not Correlate with Individual Peak Frequencies in Somatosensory Cortex

    PubMed Central

    Baumgarten, Thomas J.; Schnitzler, Alfons; Lange, Joachim

    2017-01-01

    The human sensory systems constantly receive input from different stimuli. Whether these stimuli are integrated into a coherent percept or segregated and perceived as separate events, is critically determined by the temporal distance of the stimuli. This temporal distance has prompted the concept of temporal integration windows or perceptual cycles. Although this concept has gained considerable support, the neuronal correlates are still discussed. Studies suggested that neuronal oscillations might provide a neuronal basis for such perceptual cycles, i.e., the cycle lengths of alpha oscillations in visual cortex and beta oscillations in somatosensory cortex might determine the length of perceptual cycles. Specifically, recent studies reported that the peak frequency (the frequency with the highest spectral power) of alpha oscillations in visual cortex correlates with subjects’ ability to discriminate two visual stimuli. In the present study, we investigated whether peak frequencies in somatosensory cortex might serve as the correlate of perceptual cycles in tactile discrimination. Despite several different approaches, we were unable to find a significant correlation between individual peak frequencies in the alpha- and beta-band and individual discrimination abilities. In addition, analysis of Bayes factor provided evidence that peak frequencies and discrimination thresholds are unrelated. The results suggest that perceptual cycles in the somatosensory domain are not necessarily to be found in the peak frequency, but in other frequencies. We argue that studies based solely on analysis of peak frequencies might thus miss relevant information. PMID:28382013

  7. Do patients with chronic patellar tendinopathy have an altered somatosensory profile? A Quantitative Sensory Testing (QST) study.

    PubMed

    van Wilgen, C P; Konopka, K H; Keizer, D; Zwerver, J; Dekker, R

    2013-03-01

    The prevalence of tendinopathies in sports is high. The etiology and pain mechanisms of tendinopathies are not completely understood. Currently, little is known whether, or to which degree, somatosensory changes within the nervous system may contribute to the pain in tendinopathies. We conducted a patient controlled study in which we used the standardized QST protocol developed by the German Research Network on Neuropathic Pain. This protocol consists of seven different tests that measures 13 somatosensory parameters and can be seen as the gold standard to measure somatosensory function. Twelve athletes with clinically diagnosed chronic patellar tendinopathy (PT) mean duration 30 months (range 6-120) and 20 controls were included in the study. In two of the 13 QST parameters namely Mechanical Pain Threshold (P < 0.05) and Vibration Disappearance Threshold (P < 0.5) injured athletes were significantly more sensitive for the applied stimuli. None of the athletes had signs of Dynamic Mechanical Allodynia. Reduced mechanical pain thresholds or pinprick allodynia reflects the involvement of central sensitization upon the myelinated (Aδ-fibre) nociceptive input. From this explorative study, we conclude that sensitization may play a prominent role in the pain during and after sports activity in patella tendinopathy patients.

  8. Auditory-Somatosensory Temporal Sensitivity Improves When the Somatosensory Event Is Caused by Voluntary Body Movement

    PubMed Central

    Kitagawa, Norimichi; Kato, Masaharu; Kashino, Makio

    2016-01-01

    When we actively interact with the environment, it is crucial that we perceive a precise temporal relationship between our own actions and sensory effects to guide our body movements. Thus, we hypothesized that voluntary movements improve perceptual sensitivity to the temporal disparity between auditory and movement-related somatosensory events compared to when they are delivered passively to sensory receptors. In the voluntary condition, participants voluntarily tapped a button, and a noise burst was presented at various onset asynchronies relative to the button press. The participants made either “sound-first” or “touch-first” responses. We found that the performance of temporal order judgment (TOJ) in the voluntary condition (as indexed by the just noticeable difference (JND)) was significantly better (M = 42.5 ms ± 3.8 SEM) than that when their finger was passively stimulated (passive condition: M = 66.8 ms ± 6.3 SEM). We further examined whether the performance improvement with voluntary action can be attributed to the prediction of the timing of the stimulation from sensory cues (sensory-based prediction), kinesthetic cues contained in voluntary action, and/or to the prediction of stimulation timing from the efference copy of the motor command (motor-based prediction). When three noise bursts were presented before the target burst with regular intervals (predictable condition) and when the participant’s finger was moved passively to press the button (involuntary condition), the TOJ performance was not improved from that in the passive condition. These results suggest that the improvement in sensitivity to temporal disparity between somatosensory and auditory events caused by the voluntary action cannot be attributed to sensory-based prediction and kinesthetic cues. Rather, the prediction from the efference copy of the motor command would be crucial for improving the temporal sensitivity. PMID:28018189

  9. Intrinsic Signal Imaging of Deprivation-Induced Contraction of Whisker Representations in Rat Somatosensory Cortex

    PubMed Central

    Drew, Patrick J.

    2009-01-01

    In classical sensory cortical map plasticity, the representation of deprived or underused inputs contracts within cortical sensory maps, whereas spared inputs expand. Expansion of spared inputs occurs preferentially into nearby cortical columns representing temporally correlated spared inputs, suggesting that expansion involves correlation-based learning rules at cross-columnar synapses. It is unknown whether deprived representations contract in a similar anisotropic manner, which would implicate similar learning rules and sites of plasticity. We briefly deprived D-row whiskers in 20-day-old rats, so that each deprived whisker had deprived (D-row) and spared (C- and E-row) neighbors. Intrinsic signal optical imaging revealed that D-row deprivation weakened and contracted the functional representation of deprived D-row whiskers in L2/3 of somatosensory (S1) cortex. Spared whisker representations did not strengthen or expand, indicating that D-row deprivation selectively engages the depression component of map plasticity. Contraction of deprived whisker representations was spatially uniform, with equal withdrawal from spared and deprived neighbors. Single-unit electrophysiological recordings confirmed these results, and showed substantial weakening of responses to deprived whiskers in layer 2/3 of S1, and modest weakening in L4. The observed isotropic contraction of deprived whisker representations during D-row deprivation is consistent with plasticity at intracolumnar, rather than cross-columnar, synapses. PMID:18515797

  10. Roll-Tilt Perception Using a Somatosensory Bar Task

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Wade, S. W.; Arshi, A.

    1999-01-01

    Visual estimates of roll-tilt perception during static roll-tilt are confounded by an offset due to the ocular counterroll that simultaneously occurs. An alternative, non-visual ('somatosensory') measure of roll-tilt perception was developed which is not contaminated by this offset. The aims of this study were to determine: 1) inter-subject variability of somatosensory settings across test session in normal subjects and patients with unilateral or bilateral vestibular loss and 2) intra-subject variability of settings across test session in normal subjects.

  11. Somatosensory Evoked Potential Findings in Ankylosing Spondylitis

    PubMed Central

    Cidem, Muharrem; Sahin, Zerrin; Aydin, Teoman; Aysal, Fikret

    2014-01-01

    Objective: Somatosensory evoked potential (SSEP) abnormalities were reported in patients with ankylosing spondylitis (AS). This study aimed to investigate SSEP abnormalities and its relation with clinical findings in AS patients. Materials and Methods: The study included 26 patients with AS and 17 age-matched health volunteers (Control for SSEP). Median nerve SSEP findings were normal in all AS cases. Results: However, delayed latency and/or very low amplitude of tibial nerve SSEP was found in 20 (76.9%) AS patients. There were significant correlations between tibial SSEP latency and disease duration (R=0.433 to 0.635). There was also an inverse correlation between tibial SSEP amplitude and disease duration (R=−0.429, p=0.047). Serum estradiol level, hip total bone mineral density, The Bath Ankylosing Spondylitis Functional Index (BASFI) score and Beck depression score were significantly lower in AS patients with SSEP abnormalities (37.3±10.8 pg/mL, 0.916±0.123 g/cm2, 35.0±27.9, 12.8±8.4, respectively) than in AS patients without SSEP abnormalities (53.7±12.3 pg/mL, 1.103±0.197 g/cm2, 64.8±15.5, 24.8±10.1, respectively). Conclusion: Significant inverse correlations between SSEP latencies and dehydroepiandrosterone sulphate (DHEAS) levels were found (R=−0.400 to −0.713). There were also significant inverse correlation between SSEP latencies and DHEAS/oestrogen index (R=−0.596 to −0.868), and between SSEP latencies and DHEAS/Progesterone index (R=−0.467 to −0.685). As a conclusion, this study indicates that tibial nerve SSEP abnormalities are common in patients with AS and there are significant correlations between clinical findings of AS and SSEP abnormalities. PMID:25610293

  12. Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation.

    PubMed

    Donishi, T; Kimura, A; Imbe, H; Yokoi, I; Kaneoke, Y

    2011-02-03

    Recent studies have highlighted cross-modal sensory modulations in the primary sensory areas in the cortex, suggesting that cross-modal sensory interactions occur at early stages in the hierarchy of sensory processing. Multi-modal sensory inputs from non-lemniscal thalamic nuclei and cortical inputs from the secondary sensory and association areas are considered responsible for the modulations. On the other hand, there is little evidence of cross-sensory modal sensitivities in lemniscal thalamic nuclei. In the present study, we were interested in a possibility that somatosensory stimulation may affect auditory response in the ventral division (MGV) of the medial geniculate nucleus (MG), a lemniscal thalamic nucleus that is considered to be dedicated to auditory uni-modal processing. Experiments were performed on anesthetized rats. Transcutaneous electrical stimulation of the hindpaw, which is thought to evoke nociception and seems unrelated to auditory processing, modulated unit discharges in response to auditory stimulation (noise bursts). The modulation was observed in the MGV and non-lemniscal auditory thalamic nuclei such as the dorsal and medial divisions of the MG. The major effect of somatosensory stimulation was suppression. The most robust suppression was induced by electrical stimuli given simultaneously with noise bursts or preceding noise bursts by 10 to 20 ms. The results indicate that the lemniscal (MGV) and non-lemniscal auditory nuclei are subject to somatosensory influence. In everyday experience intense somatosensory stimuli such as pain interrupt our ongoing hearing or interfere with clear recognition of sound. The modulation of lemniscal auditory response by somatosensory stimulation may underlie such cross-modal disturbance of auditory perception as a form of cross-modal switching of attention. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Early modality-specific somatosensory cortical regions are modulated by attended visual stimuli: interaction of vision, touch and behavioral intent

    PubMed Central

    Staines, W. Richard; Popovich, Christina; Legon, Jennifer K.; Adams, Meaghan S.

    2014-01-01

    Bimodal interactions between relevant visual and tactile inputs can facilitate attentional modulation at early stages in somatosensory cortices to achieve goal-oriented behaviors. However, the specific contribution of each sensory system during attentional processing and, importantly, how these interact with the required behavioral motor goals remains unclear. Here we used electroencephalography and event-related potentials (ERPs) to test the hypothesis that activity from modality-specific somatosensory cortical regions would be enhanced with task-relevant bimodal (visual-tactile) stimuli and that the degree of modulation would depend on the difficulty of the associated sensory-motor task demands. Tactile stimuli were discrete vibrations to the index finger and visual stimuli were horizontal bars on a computer screen, both with random amplitudes. Streams of unimodal (tactile) and crossmodal (visual and tactile) stimuli were randomly presented and participants were instructed to attend to one type of stimulus (unimodal or crossmodal) and responses involved either an indication of the presence of an attended stimulus (detect), or the integration and summation of two stimulus amplitudes using a pressure-sensitive ball (grade). Force-amplitude associations were learned in a training session, and no feedback was provided during the task. ERPs were time-locked to tactile stimuli and extracted for early modality-specific components (P50, P100, N140). The P50 was enhanced with bimodal (visual-tactile) stimuli that were attended to. This was maximal when the motor requirements involved integration of the two stimuli in the grade task and when the visual stimulus occurred before (100 ms) the tactile stimulus. These results suggest that visual information relevant for movement modulates somatosensory processing as early as the primary somatosensory cortex (S1) and that the motor behavioral context influences this likely through interaction of top-down attentional and motor

  14. Somatotopic direct projections from orofacial areas of secondary somatosensory cortex to trigeminal sensory nuclear complex in rats.

    PubMed

    Haque, T; Akhter, F; Kato, T; Sato, F; Takeda, R; Higashiyama, K; Moritani, M; Bae, Y-C; Sessle, B J; Yoshida, A

    2012-09-06

    Little is known about the projections from the orofacial areas of the secondary somatosensory cortex (S2) to the pons and medulla including the second-order somatosensory neuron pools. To address this in rats, we first examined the distribution of S2 neurons projecting to the trigeminal principal nucleus (Vp) or oral subnucleus (Vo) of the trigeminal sensory nuclear complex (TSNC) after injections of a retrograde tracer, Fluorogold (FG), into five regions in the Vp/Vo which were responsive to stimulation of trigeminal nerves innervating the orofacial tissues. A large number of FG-labeled neurons were found with a somatotopic arrangement in the dorsal areas of S2 (orofacial S2 area). This somatotopic arrangement in the orofacial S2 area was shown to closely match that of the orofacial afferent inputs by recording cortical surface potentials evoked by stimulation of the trigeminal nerves. We then examined the morphology of descending projections from these electrophysiologically defined areas of the orofacial S2 to the pons and medulla after injections of an anterograde tracer, biotinylated dextranamine (BDA), into the areas. A large number of BDA-labeled axon fibers and terminals were seen only in some of the second-order somatosensory neuron pools, most notably in the contralateral TSNC, although the labeled terminals were not seen in certain rostrocaudal levels of the contralateral TSNC including the rostrocaudal middle level of the trigeminal interpolar subnucleus. The projections to the TSNC showed somatotopic arrangements in dorsoventral, superficial-deep and rostrocaudal directions. The somatotopic arrangements in the Vp/Vo closely matched those of the electrophysiologically defined central projection sites of the orofacial trigeminal afferents in the TSNC. The present results suggest that the orofacial S2 projects selectively to certain rostrocaudal levels of the contralateral TSNC, and the projections may allow the orofacial S2 to accurately modulate

  15. Somatosensory amplification and its relationship to somatosensory, auditory, and visual evoked and event-related potentials (P300).

    PubMed

    Nakao, Mutsuhiro; Barsky, Arthur J; Nishikitani, Mariko; Yano, Eiji; Murata, Katsuyuki

    2007-03-26

    Somatosensory amplification refers to the tendency to experience benign and ambiguous somatic sensation as intense, noxious, and disturbing. The construct is helpful in assessing the perceptual style of a variety of somatizing conditions, but there is no human study clarifying the effects of neurological function on somatosensory amplification. The present study examines the relationship between somatosensory amplification and different types of evoked potentials. In 33 healthy volunteers (mean age 24 years, 18 men), latencies and amplitudes were recorded using the following parameters: short-latency somatosensory, brainstem-auditory, and visual evoked potentials (SSEP, BAEP, and VEP, respectively) and auditory event-related potentials (ERP). All subjects completed questionnaires for the Somatosensory Amplification Scale (SSAS), 20-item Toronto Alexithymia Scale (TAS-20), and Profile of Mood State (POMS). The SSAS scores were significantly associated with the P200 latency (p=0.020) and P300 amplitude of ERP (p=0.041), controlling for the significant effect of the TAS and POMS depression and tension-anxiety scales. The SSEP, BAEP, and VEP latencies or amplitudes were not statistically significant (all p>0.05). When the subjects were divided into high and low SSAS groups based on the median of the SSAS scores, the P300 amplitude of ERP significantly discriminated the two groups (p=0.023) by multiple logistic regression analysis. Although the findings should be viewed as preliminary because of the small sample size, somatosensory amplification appears to reflect some aspects of long-latency cognitive processing rather than short-latency interceptive sensitivity from the viewpoint of encephalography.

  16. Low-level Taekwondo practitioners have better somatosensory organisation in standing balance than sedentary people.

    PubMed

    Leong, Hio-Teng; Fu, Siu N; Ng, Gabriel Y F; Tsang, William W N

    2011-08-01

    Sports training, especially for those requiring fast and skilled movements have been reported to improve one's postural control, but the underlying sensory integration mechanism is unknown. The purpose is to explore the sensory organisation strategies for maintaining standing balance in Taekwondo practitioners, and to examine the quasi-static and dynamic balance performance in subjects with and without TKD training. Case-control study was used as a study design. Eleven subjects with low level of Taekwondo training for 1-3 years, and eleven sedentary healthy subjects were assessed with the sensory organisation tests (SOT) under six visual and somatosensory input conditions and their balance upon landing from self- or operator-triggered drop test with the eyes closed condition. The SOT measured the equilibrium scores, whereas the drop test assessed the time to stabilisation (TTS), normalised peak force and distance of antero-posterior and medial-lateral centre of pressure on landing. Results for the SOT test revealed that Taekwondo subjects performed better during stance with eyes closed on a fixed support than the untrained group (p = 0.011). For the drop tests, the untrained group was slower in postural correction as revealed by the longer TTS than the Taekwondo group after the operator-triggered drops (p = 0.018). All subjects had a larger normalised peak force in operator-triggered than self-triggered drops. In conclusion, we observed that people with low-level Taekwondo training have better balance performance than untrained subjects as shown in the SOT results and shorter TTS with the drop test. They may rely more on the somatosensory and vestibular inputs for maintaining balance. People with balance problems may benefit from Taekwondo training.

  17. An embedded four-channel receive-only RF coil array for fMRI experiments of the somatosensory pathway in conscious awake marmosets.

    PubMed

    Papoti, Daniel; Yen, Cecil Chern-Chyi; Mackel, Julie B; Merkle, Hellmut; Silva, Afonso C

    2013-11-01

    fMRI has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a four-channel receive-only surface RF coil array with excellent signal-to-noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet-based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home-built low-input-impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. An Embedded 4-Channel Receive-Only RF Coil Array for fMRI Experiments of the Somatosensory Pathway in Conscious Awake Marmosets at 7T

    PubMed Central

    Papoti, Daniel; Yen, Cecil Chern-Chyi; Mackel, Julie B.; Merkle, Hellmut; Silva, Afonso C.

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a 4-channel receive-only surface RF coil array with excellent signal-to-noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet-based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home-built low input impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets. PMID:23696219

  19. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites.

    PubMed

    Kameda, Hiroshi; Hioki, Hiroyuki; Tanaka, Yasuyo H; Tanaka, Takuma; Sohn, Jaerin; Sonomura, Takahiro; Furuta, Takahiro; Fujiyama, Fumino; Kaneko, Takeshi

    2012-03-01

    To examine inputs to parvalbumin (PV)-producing interneurons, we generated transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein specifically in the interneurons, and completely visualized their dendrites and somata. Using immunolabeling for vesicular glutamate transporter (VGluT)1, VGluT2, and vesicular GABA transporter, we found that VGluT1-positive terminals made contacts 4- and 3.1-fold more frequently with PV-producing interneurons than VGluT2-positive and GABAergic terminals, respectively, in the primary somatosensory cortex. Even in layer 4, where VGluT2-positive terminals were most densely distributed, VGluT1-positive inputs to PV-producing interneurons were 2.4-fold more frequent than VGluT2-positive inputs. Furthermore, although GABAergic inputs to PV-producing interneurons were as numerous as VGluT2-positive inputs in most cortical layers, GABAergic inputs clearly preferred the proximal dendrites and somata of the interneurons, indicating that the sites of GABAergic inputs were more optimized than those of VGluT2-positive inputs. Simulation analysis with a PV-producing interneuron model compatible with the present morphological data revealed a plausible reason for this observation, by showing that GABAergic and glutamatergic postsynaptic potentials evoked by inputs to distal dendrites were attenuated to 60 and 87%, respectively, of those evoked by somatic inputs. As VGluT1-positive and VGluT2-positive axon terminals were presumed to be cortical and thalamic glutamatergic inputs, respectively, cortical excitatory inputs to PV-producing interneurons outnumbered the thalamic excitatory and intrinsic inhibitory inputs more than two-fold in any cortical layer. Although thalamic inputs are known to evoke about two-fold larger unitary excitatory postsynaptic potentials than cortical ones, the present results suggest that cortical inputs control PV-producing interneurons at least as strongly as thalamic inputs.

  20. Primary somatosensory contextual modulation is encoded by oscillation frequency change.

    PubMed

    Götz, T; Milde, T; Curio, G; Debener, S; Lehmann, T; Leistritz, L; Witte, O W; Witte, H; Haueisen, J

    2015-09-01

    This study characterized thalamo-cortical communication by assessing the effect of context-dependent modulation on the very early somatosensory evoked high-frequency oscillations (HF oscillations). We applied electrical stimuli to the median nerve together with an auditory oddball paradigm, presenting standard and deviant target tones representing differential cognitive contexts to the constantly repeated electrical stimulation. Median nerve stimulation without auditory stimulation served as unimodal control. A model consisting of one subcortical (near thalamus) and two cortical (Brodmann areas 1 and 3b) dipolar sources explained the measured HF oscillations. Both at subcortical and the cortical levels HF oscillations were significantly smaller during bimodal (somatosensory plus auditory) than unimodal (somatosensory only) stimulation. A delay differential equation model was developed to investigate interactions within the 3-node thalamo-cortical network. Importantly, a significant change in the eigenfrequency of Brodmann area 3b was related to the context-dependent modulation, while there was no change in the network coupling. This model strongly suggests cortico-thalamic feedback from both cortical Brodmann areas 1 and 3b to the thalamus. With the 3-node network model, thalamo-cortical feedback could be described. Frequency encoding plays an important role in contextual modulation in the somatosensory thalamo-cortical network. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex.

    PubMed

    Overstreet, Cynthia K; Hellman, Randall B; Ponce Wong, Ruben D; Santos, Veronica J; Helms Tillery, Stephen I

    2016-01-01

    The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex.

  2. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex

    PubMed Central

    Overstreet, Cynthia K.; Hellman, Randall B.; Ponce Wong, Ruben D.; Santos, Veronica J.; Helms Tillery, Stephen I.

    2016-01-01

    The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex. PMID:27995126

  3. Effect of ischaemia on somatosensory evoked potentials in diabetic patients.

    PubMed Central

    López-Alburquerque, T; García Miguel, A; Ruiz Ezquerro, J J; de Portugal Alvarez, J

    1987-01-01

    The nerve action potential at the elbow and somatosensory evoked potentials (SEPs) at the scalp were recorded over 30 minutes of tourniquet-induced limb ischaemia in 10 diabetic patients and 10 controls. According to the SEP changes, an increased resistance to nerve ischaemia in diabetic patients was observed. The pathways involved in SEP conduction are discussed. PMID:3585354

  4. Spatial frames of reference and somatosensory processing: a neuropsychological perspective.

    PubMed Central

    Vallar, G

    1997-01-01

    In patients with lesions in the right hemisphere, frequently involving the posterior parietal regions, left-sided somatosensory (and visual and motor) deficits not only reflect a disorder of primary sensory processes, but also have a higher-order component related to a defective spatial representation of the body. This additional factor, related to right brain damage, is clinically relevant: contralesional hemianaesthesia (and hemianopia and hemiplegia) is more frequent in right brain-damaged patients than in patients with damage to the left side of the brain. Three main lines of investigation suggest the existence of this higher-order pathological factor. (i) Right brain-damaged patients with left hemineglect may show physiological evidence of preserved processing of somatosensory stimuli, of which they are not aware. Similar results have been obtained in the visual domain. (ii) Direction-specific vestibular, visual optokinetic and somatosensory or proprioceptive stimulations may displace spatial frames of reference in right brain-damaged patients with left hemineglect, reducing or increasing the extent of the patients' ipsilesional rightward directional error, and bring about similar directional effects in normal subjects. These stimulations, which may improve or worsen a number of manifestations of the neglect syndrome (such as extrapersonal and personal hemineglect), have similar effects on the severity of left somatosensory deficits (defective detection of tactile stimuli, position sense disorders). However, visuospatial hemineglect and the somatosensory deficits improved by these stimulations are independent, albeit related, disorders. (iii) The severity of left somatosensory deficits is affected by the spatial position of body segments, with reference to the midsagittal plane of the trunk. A general implication of these observations is that spatial (non-somatotopic) levels of representation contribute to corporeal awareness. The neural basis of these spatial

  5. Whole-brain mapping of direct inputs to midbrain dopamine neurons.

    PubMed

    Watabe-Uchida, Mitsuko; Zhu, Lisa; Ogawa, Sachie K; Vamanrao, Archana; Uchida, Naoshige

    2012-06-07

    Recent studies indicate that dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) convey distinct signals. To explore this difference, we comprehensively identified each area's monosynaptic inputs using the rabies virus. We show that dopamine neurons in both areas integrate inputs from a more diverse collection of areas than previously thought, including autonomic, motor, and somatosensory areas. SNc and VTA dopamine neurons receive contrasting excitatory inputs: the former from the somatosensory/motor cortex and subthalamic nucleus, which may explain their short-latency responses to salient events; and the latter from the lateral hypothalamus, which may explain their involvement in value coding. We demonstrate that neurons in the striatum that project directly to dopamine neurons form patches in both the dorsal and ventral striatum, whereas those projecting to GABAergic neurons are distributed in the matrix compartment. Neuron-type-specific connectivity lays a foundation for studying how dopamine neurons compute outputs.

  6. Properties of the primary somatosensory cortex projection to the primary motor cortex in the mouse.

    PubMed

    Petrof, Iraklis; Viaene, Angela N; Sherman, S Murray

    2015-04-01

    The primary somatosensory (S1) and primary motor (M1) cortices are reciprocally connected, and their interaction has long been hypothesized to contribute to coordinated motor output. Very little is known, however, about the nature and synaptic properties of the S1 input to M1. Here we wanted to take advantage of a previously developed sensorimotor slice preparation that preserves much of the S1-to-M1 connectivity (Rocco MM, Brumberg JC. J Neurosci Methods 162: 139-147, 2007), as well as available optogenetic methodologies, in order to investigate the synaptic profile of this projection. Our data show that S1 input to pyramidal cells of M1 is highly homogeneous, possesses many features of a "driver" pathway, such as paired-pulse depression and lack of metabotropic glutamate receptor activation, and is mediated through axons that terminate in both small and large synaptic boutons. Our data suggest that S1 provides M1 with afferents that possess synaptic and anatomical characteristics ideal for the delivery of strong inputs that can "drive" postsynaptic M1 cells, thereby potentially affecting their output.

  7. Functional organization of the thalamic input to the thalamic reticular nucleus.

    PubMed

    Lam, Ying-Wan; Sherman, S Murray

    2011-05-04

    Most axons connecting the thalamus and cortex in both directions pass through the thalamic reticular nucleus (TRN), a thin layer of GABAergic cells adjacent to the thalamus, and innervate neurons there. The TRN, therefore, is in a strategic location to regulate thalamocortical communication. We recorded neurons of the somatosensory region of the TRN in a thalamocortical slice preparation and studied the spatial organization of their thalamic input using laser scanning photostimulation. We show that the thalamoreticular pathway is organized topographically for most neurons. The somatosensory region of the TRN can be organized into three tiers. From the inner (thalamoreticular) border to the outer, in a manner roughly reciprocal to the reticulothalamic pathway, each of these tiers receives its input from one of the somatosensory relays of the thalamus--the posterior medial, ventroposterior medial, and ventroposterior lateral nuclei. What is surprising is that approximately a quarter of the recorded neurons received input from multiple thalamic regions usually located in different nuclei. These neurons distribute evenly throughout the thickness of the TRN. Our results, therefore, suggest that there exist a subpopulation of TRN neurons that receive convergent inputs from multiple thalamic sources and engage in more complex patterns of inhibition of relay cells. We propose these neurons enable the TRN to act as an externally driven "searchlight" that integrates cortical and subcortical inputs and then inhibits or disinhibits specific thalamic relay cells, so that appropriate information can get through the thalamus to the cortex.

  8. Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG.

    PubMed

    Bradley, Claire; Joyce, Niamh; Garcia-Larrea, Luis

    2016-01-01

    Adaptation in sensory cortices has been seen as a mechanism allowing the creation of transient memory representations. Here we tested the adapting properties of early responses in human somatosensory areas SI and SII by analysing somatosensory-evoked potentials over the very first repetitions of a stimulus. SI and SII generators were identified by well-defined scalp potentials and source localisation from high-density 128-channel EEG. Earliest responses (~20 ms) from area 3b in the depth of the post-central gyrus did not show significant adaptation to stimuli repeated at 300 ms intervals. In contrast, responses around 45 ms from the crown of the gyrus (areas 1 and 2) rapidly lessened to a plateau and abated at the 20th stimulation, and activities from SII in the parietal operculum at ~100 ms displayed strong adaptation with a steady amplitude decrease from the first repetition. Although responses in both SI (1-2) and SII areas showed adapting properties and hence sensory memory capacities, evidence of sensory mismatch detection has been demonstrated only for responses reflecting SII activation. This may index the passage from an early form of sensory storage in SI to more operational memory codes in SII, allowing the prediction of forthcoming input and the triggering of a specific signal when such input differs from the previous sequence. This is consistent with a model whereby the length of temporal receptive windows increases with progression in the cortical hierarchy, in parallel with the complexity and abstraction of neural representations.

  9. Somatosensory imprinting in spinal reflex modules.

    PubMed

    Schouenborg, Jens

    2003-05-01

    Understanding how sensory information is used by motor systems for motor commands requires detailed knowledge about how the body shape and biomechanics are represented in the motor circuits. We have used the withdrawal reflex system as a model for studies of sensorimotor transformation. This system has a modular organisation in the adult. Each module performs a detailed and functionally adapted sensorimotor transformation related to the withdrawal efficacy of its output muscle(s). The weight distribution of the cutaneous input to a module is determined by the pattern of withdrawal efficacy of the muscle. Recently, we found that the somatotopic organisation and weight of the cutaneous input to the dorsal horn of the lower lumbar cord is related to this modular organisation. The dorsal horn in the lower lumbar cord thus appears to be organised in a column-like fashion, where each column performs a basic sensorimotor transformation related to the movement caused by a single muscle and the body shape. Since the withdrawal reflex system encodes error signals to the cerebellum through some of the spino-olivo cerebellar pathways, the modular concept is, in fact, a key to understanding sensory processing in higher order motor systems as well. Developmental studies indicate that each module is a self-organising circuitry that uses sensory feedback on muscle contractions to adjust its synaptic organisation. Furthermore, these studies suggest that the spontaneous movements during development, by providing structured sensory information related to movement pattern of single muscles and body shape, are instrumental in shaping the sensorimotor transformation in the spinal cord. These findings and their implications for the understanding of higher motor functions and their clinical aspects will be discussed.

  10. A somatosensory circuit for cooling perception in mice.

    PubMed

    Milenkovic, Nevena; Zhao, Wen-Jie; Walcher, Jan; Albert, Tobias; Siemens, Jan; Lewin, Gary R; Poulet, James F A

    2014-11-01

    The temperature of an object provides important somatosensory information for animals performing tactile tasks. Humans can perceive skin cooling of less than one degree, but the sensory afferents and central circuits that they engage to enable the perception of surface temperature are poorly understood. To address these questions, we examined the perception of glabrous skin cooling in mice. We found that mice were also capable of perceiving small amplitude skin cooling and that primary somatosensory (S1) cortical neurons were required for cooling perception. Moreover, the absence of the menthol-gated transient receptor potential melastatin 8 ion channel in sensory afferent fibers eliminated the ability to perceive cold and the corresponding activation of S1 neurons. Our results identify parts of a neural circuit underlying cold perception in mice and provide a new model system for the analysis of thermal processing and perception and multimodal integration.

  11. Spatial coincidence modulates interaction between visual and somatosensory evoked potentials.

    PubMed

    Schürmann, Martin; Kolev, Vasil; Menzel, Kristina; Yordanova, Juliana

    2002-05-07

    The time course of interaction between concurrently applied visual and somatosensory stimulation with respect to evoked potentials (EPs) was studied. Visual stimuli, either in the left or right hemifield, and electric stimuli to the left wrist were delivered either alone or simultaneously. Visual and somatosensory EPs were summed and compared to bimodal EPs (BiEP, response to actual combination of both modalities). Temporal coincidence of stimuli lead to sub-additive or over-additive amplitudes in BiEPs in several time windows between 75 and 275 ms. Additional effects of spatial coincidence (left wrist with left hemifield) were found between 75 and 300 ms and beyond 450 ms. These interaction effects hint at a temporo-spatial pattern of multiple brain areas participating in the process of multimodal integration.

  12. Diagnosis and management of somatosensory tinnitus: review article

    PubMed Central

    Sanchez, Tanit Ganz; Rocha, Carina Bezerra

    2011-01-01

    Tinnitus is the perception of sound in the absence of an acoustic external stimulus. It affects 10–17% of the world's population and it a complex symptom with multiple causes, which is influenced by pathways other than the auditory one. Recently, it has been observed that tinnitus may be provoked or modulated by stimulation arising from the somatosensorial system, as well as from the somatomotor and visual–motor systems. This specific subgroup – somatosensory tinnitus – is present in 65% of cases, even though it tends to be underdiagnosed. As a consequence, it is necessary to establish evaluation protocols and specific treatments focusing on both the auditory pathway and the musculoskeletal system. PMID:21808880

  13. Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons

    PubMed Central

    Bhattacharya, Martha R. C.; Bautista, Diana M.; Wu, Karin; Haeberle, Henry; Lumpkin, Ellen A.; Julius, David

    2008-01-01

    Primary afferent somatosensory neurons mediate our sense of touch in response to changes in ambient pressure. Molecules that detect and transduce thermal stimuli have been recently identified, but mechanisms underlying mechanosensation, particularly in vertebrate organisms, remain enigmatic. Traditionally, mechanically evoked responses in somatosensory neurons have been assessed one cell at a time by recording membrane currents in response to application of focal pressure, suction, or osmotic challenge. Here, we used radial stretch in combination with live-cell calcium imaging to gain a broad overview of mechanosensitive neuronal subpopulations. We found that different stretch intensities activate distinct subsets of sensory neurons as defined by size, molecular markers, or pharmacological attributes. In all subsets, stretch-evoked responses required extracellular calcium, indicating that mechanical force triggers calcium influx. This approach extends the repertoire of stimulus paradigms that can be used to examine mechanotransduction in mammalian sensory neurons, facilitating future physiological and pharmacological studies. PMID:19060212

  14. Enhanced Somatosensory Feedback Reduces Prefrontal Cortical Activity During Walking in Older Adults

    PubMed Central

    Christou, Evangelos A.; Ring, Sarah A.; Williamson, John B.; Doty, Leilani

    2014-01-01

    Background. The coordination of steady state walking is relatively automatic in healthy humans, such that active attention to the details of task execution and performance (controlled processing) is low. Somatosensation is a crucial input to the spinal and brainstem circuits that facilitate this automaticity. Impaired somatosensation in older adults may reduce automaticity and increase controlled processing, thereby contributing to deficits in walking function. The primary objective of this study was to determine if enhancing somatosensory feedback can reduce controlled processing during walking, as assessed by prefrontal cortical activation. Methods. Fourteen older adults (age 77.1±5.56 years) with mild mobility deficits and mild somatosensory deficits participated in this study. Functional near-infrared spectroscopy was used to quantify metabolic activity (tissue oxygenation index, TOI) in the prefrontal cortex. Prefrontal activity and gait spatiotemporal data were measured during treadmill walking and overground walking while participants wore normal shoes and under two conditions of enhanced somatosensation: wearing textured insoles and no shoes. Results. Relative to walking with normal shoes, textured insoles yielded a bilateral reduction of prefrontal cortical activity for treadmill walking (ΔTOI = −0.85 and −1.19 for left and right hemispheres, respectively) and for overground walking (ΔTOI = −0.51 and −0.66 for left and right hemispheres, respectively). Relative to walking with normal shoes, no shoes yielded lower prefrontal cortical activity for treadmill walking (ΔTOI = −0.69 and −1.13 for left and right hemispheres, respectively), but not overground walking. Conclusions. Enhanced somatosensation reduces prefrontal activity during walking in older adults. This suggests a less intensive utilization of controlled processing during walking. PMID:25112494

  15. The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates

    PubMed Central

    Qi, Hui-Xin; Kaas, Jon H.; Reed, Jamie L.

    2014-01-01

    In our experiments, we removed a major source of activation of somatosensory cortex in mature monkeys by unilaterally sectioning the sensory afferents in the dorsal columns of the spinal cord at a high cervical level. At this level, the ascending branches of tactile afferents from the hand are cut, while other branches of these afferents remain intact to terminate on neurons in the dorsal horn of the spinal cord. Immediately after such a lesion, the monkeys seem relatively unimpaired in locomotion and often use the forelimb, but further inspection reveals that they prefer to use the unaffected hand in reaching for food. In addition, systematic testing indicates that they make more errors in retrieving pieces of food, and start using visual inspection of the rotated hand to confirm the success of the grasping of the food. Such difficulties are not surprising as a complete dorsal column lesion totally deactivates the contralateral hand representation in primary somatosensory cortex (area 3b). However, hand use rapidly improves over the first post-lesion weeks, and much of the hand representational territory in contralateral area 3b is reactivated by inputs from the hand in roughly a normal somatotopic pattern. Quantitative measures of single neuron response properties reveal that reactivated neurons respond to tactile stimulation on the hand with high firing rates and only slightly longer latencies. We conclude that preserved dorsal column afferents after nearly complete lesions contribute to the reactivation of cortex and the recovery of the behavior, but second-order sensory pathways in the spinal cord may also play an important role. Our microelectrode recordings indicate that these preserved first-order, and second-order pathways are initially weak and largely ineffective in activating cortex, but they are potentiated during the recovery process. Therapies that would promote this potentiation could usefully enhance recovery after spinal cord injury. PMID:24860443

  16. Congenital foot deformation alters the topographic organization in the primate somatosensory system

    PubMed Central

    Liao, Chia-Chi; Qi, Hui-Xin; Reed, Jamie L.; Miller, Daniel J.; Kaas, Jon H.

    2015-01-01

    Limbs may fail to grow properly during fetal development, but the extent to which such growth alters the nervous system has not been extensively explored. Here we describe the organization of the somatosensory system in a 6-year-old monkey (Macaca radiata) born with a deformed left foot in comparison to the results from a normal monkey (Macaca fascicularis). Toes 1, 3, and 5 were missing, but the proximal parts of toes 2 and 4 were present. We used anatomical tracers to characterize the patterns of peripheral input to the spinal cord and brainstem, as well as between thalamus and cortex. We also determined the somatotopic organization of primary somatosensory area 3b of both hemispheres using multiunit electrophysiological recording. Tracers were subcutaneously injected into matching locations of each foot to reveal their representations within the lumbar spinal cord, and the gracile nucleus (GrN) of the brainstem. Tracers injected into the representations of the toes and plantar pads of cortical area 3b labeled neurons in the ventroposterior lateral nucleus (VPL) of the thalamus. Contrary to the orderly arrangement of the foot representation throughout the lemniscal pathway in the normal monkey, the plantar representation of the deformed foot was significantly expanded and intruded into the expected representations of toes in the spinal cord, GrN, VPL, and area 3b. We also observed abnormal representation of the intact foot in the ipsilateral spinal cord and contralateral area 3b. Thus, congenital malformation influences the somatotopic representation of the deformed as well as the intact foot. PMID:25326245

  17. Congenital foot deformation alters the topographic organization in the primate somatosensory system.

    PubMed

    Liao, Chia-Chi; Qi, Hui-Xin; Reed, Jamie L; Miller, Daniel J; Kaas, Jon H

    2016-01-01

    Limbs may fail to grow properly during fetal development, but the extent to which such growth alters the nervous system has not been extensively explored. Here we describe the organization of the somatosensory system in a 6-year-old monkey (Macaca radiata) born with a deformed left foot in comparison to the results from a normal monkey (Macaca fascicularis). Toes 1, 3, and 5 were missing, but the proximal parts of toes 2 and 4 were present. We used anatomical tracers to characterize the patterns of peripheral input to the spinal cord and brainstem, as well as between thalamus and cortex. We also determined the somatotopic organization of primary somatosensory area 3b of both hemispheres using multiunit electrophysiological recording. Tracers were subcutaneously injected into matching locations of each foot to reveal their representations within the lumbar spinal cord, and the gracile nucleus (GrN) of the brainstem. Tracers injected into the representations of the toes and plantar pads of cortical area 3b labeled neurons in the ventroposterior lateral nucleus (VPL) of the thalamus. Contrary to the orderly arrangement of the foot representation throughout the lemniscal pathway in the normal monkey, the plantar representation of the deformed foot was significantly expanded and intruded into the expected representations of toes in the spinal cord, GrN, VPL, and area 3b. We also observed abnormal representation of the intact foot in the ipsilateral spinal cord and contralateral area 3b. Thus, congenital malformation influences the somatotopic representation of the deformed as well as the intact foot.

  18. Somatosensory Contribution to the Initial Stages of Human Motor Learning

    PubMed Central

    Bernardi, Nicolò F.; Darainy, Mohammad

    2015-01-01

    The early stages of motor skill acquisition are often marked by uncertainty about the sensory and motor goals of the task, as is the case in learning to speak or learning the feel of a good tennis serve. Here we present an experimental model of this early learning process, in which targets are acquired by exploration and reinforcement rather than sensory error. We use this model to investigate the relative contribution of motor and sensory factors to human motor learning. Participants make active reaching movements or matched passive movements to an unseen target using a robot arm. We find that learning through passive movements paired with reinforcement is comparable with learning associated with active movement, both in terms of magnitude and durability, with improvements due to training still observable at a 1 week retest. Motor learning is also accompanied by changes in somatosensory perceptual acuity. No stable changes in motor performance are observed for participants that train, actively or passively, in the absence of reinforcement, or for participants who are given explicit information about target position in the absence of somatosensory experience. These findings indicate that the somatosensory system dominates learning in the early stages of motor skill acquisition. SIGNIFICANCE STATEMENT The research focuses on the initial stages of human motor learning, introducing a new experimental model that closely approximates the key features of motor learning outside of the laboratory. The finding indicates that it is the somatosensory system rather than the motor system that dominates learning in the early stages of motor skill acquisition. This is important given that most of our computational models of motor learning are based on the idea that learning is motoric in origin. This is also a valuable finding for rehabilitation of patients with limited mobility as it shows that reinforcement in conjunction with passive movement results in benefits to motor

  19. Discrimination of Finger Area of Somatosensory Cortex by NIRS

    NASA Astrophysics Data System (ADS)

    Xu, Mingdi; Hayami, Takehito; Iramina, Keiji

    We carried out a near-infrared spectroscopy (NIRS) study to observe the hemodynamic responses associated with cortical activation in the primary somatosensory cortex (SI) by finger electrical stimulation. We examined whether NIRS can assist in investigating the somatotopic arrangement of fingers on the SI hand area. We found that although relatively low in spatial resolution, NIRS can to some extent help to discriminate the representations of thumb and ring finger on the SI hand area.

  20. Somatosensory Contribution to the Initial Stages of Human Motor Learning.

    PubMed

    Bernardi, Nicolò F; Darainy, Mohammad; Ostry, David J

    2015-10-21

    The early stages of motor skill acquisition are often marked by uncertainty about the sensory and motor goals of the task, as is the case in learning to speak or learning the feel of a good tennis serve. Here we present an experimental model of this early learning process, in which targets are acquired by exploration and reinforcement rather than sensory error. We use this model to investigate the relative contribution of motor and sensory factors to human motor learning. Participants make active reaching movements or matched passive movements to an unseen target using a robot arm. We find that learning through passive movements paired with reinforcement is comparable with learning associated with active movement, both in terms of magnitude and durability, with improvements due to training still observable at a 1 week retest. Motor learning is also accompanied by changes in somatosensory perceptual acuity. No stable changes in motor performance are observed for participants that train, actively or passively, in the absence of reinforcement, or for participants who are given explicit information about target position in the absence of somatosensory experience. These findings indicate that the somatosensory system dominates learning in the early stages of motor skill acquisition. The research focuses on the initial stages of human motor learning, introducing a new experimental model that closely approximates the key features of motor learning outside of the laboratory. The finding indicates that it is the somatosensory system rather than the motor system that dominates learning in the early stages of motor skill acquisition. This is important given that most of our computational models of motor learning are based on the idea that learning is motoric in origin. This is also a valuable finding for rehabilitation of patients with limited mobility as it shows that reinforcement in conjunction with passive movement results in benefits to motor learning that are as great

  1. The human primary somatosensory cortex response contains components related to stimulus frequency and perception in a frequency discrimination task.

    PubMed

    Liu, L C; Fenwick, P B C; Laskaris, N A; Schellens, M; PoghosyaN, V; Shibata, T; Ioannides, A A

    2003-01-01

    Somatosensory stimulation of primary somatosensory cortex (SI) using frequency discrimination offers a direct, well-defined and accessible way of studying cortical decisions at the locus of early input processing. Animal studies have identified and classified the neuronal responses in SI but they have not yet resolved whether during prolonged stimulation the collective SI response just passively reflects the input or actively participates in the comparison and decision processes. This question was investigated using tomographic analysis of single trial magnetoencephalographic data. Four right-handed males participated in a frequency discrimination task to detect changes in the frequency of an electrical stimulus applied to the right-hand digits 2+3+4. The subjects received approximately 600 pairs of stimuli with Stim1 always at 21 Hz, while Stim2 was either 21 Hz (50%) or varied from 22 to 29 Hz in steps of 1 Hz. Both stimuli were 1 s duration, separated by a 1 s interval of no stimulation. The left-SI was the most consistently activated area and showed the first activation peak at 35-48 ms after Stim1 onset and sustained activity during both stimulus periods. During the Stim2 period, we found that the left-SI activation started to differ significantly between two groups of trials (21 versus 26-29 Hz) within the first 100 ms and this difference was sustained and enhanced thereafter (approximately 600 ms). When only correct responses from the above two groups were used, the difference was even higher at later latencies (approximately 650 ms). For one subject who had enough trials of same perception to different input frequencies, e.g. responded 21 Hz to Stim2 at 21 Hz (correct) and 26-29 Hz (error), we found the sustained difference only before 650 ms. Our results suggest that SI is involved with the analysis of an input frequency and related to perception and decision at different latencies.

  2. Representation of tactile curvature in macaque somatosensory area 2

    PubMed Central

    Connor, Charles E.; Hsiao, Steven S.

    2013-01-01

    Tactile shape information is elaborated in a cortical hierarchy spanning primary (SI) and secondary somatosensory cortex (SII). Indeed, SI neurons in areas 3b and 1 encode simple contour features such as small oriented bars and edges, whereas higher order SII neurons represent large curved contour features such as angles and arcs. However, neural coding of these contour features has not been systematically characterized in area 2, the most caudal SI subdivision in the postcentral gyrus. In the present study, we analyzed area 2 neural responses to embossed oriented bars and curved contour fragments to establish whether curvature representations are generated in the postcentral gyrus. We found that many area 2 neurons (26 of 112) exhibit clear curvature tuning, preferring contours pointing in a particular direction. Fewer area 2 neurons (15 of 112) show preferences for oriented bars. Because area 2 response patterns closely resembled SII patterns, we also compared area 2 and SII response time courses to characterize the temporal dynamics of curvature synthesis in the somatosensory system. We found that curvature representations develop and peak concurrently in area 2 and SII. These results reveal that transitions from orientation tuning to curvature selectivity in the somatosensory cortical hierarchy occur within SI rather than between SI and SII. PMID:23536717

  3. Four-dimensional maps of the human somatosensory system

    PubMed Central

    Avanzini, Pietro; Abdollahi, Rouhollah O.; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A.

    2016-01-01

    A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans. PMID:26976579

  4. Touch and personality: extraversion predicts somatosensory brain response.

    PubMed

    Schaefer, Michael; Heinze, Hans-Jochen; Rotte, Michael

    2012-08-01

    The Five-Factor-Model describes human personality in five core dimensions (extraversion, neuroticism, agreeableness, conscientiousness, and openness). These factors are supposed to have different neural substrates. For example, it has been suggested that behavioral differences between introverts and extraverts can be explained by the fact that introverts exhibit an inherent drive to compensate for overactive cortical activity in reticulo-thalamo-cortical pathways. The current study examined if responses in somatosensory cortices due to tactile stimulation are affected by personality traits. Based on previous studies and theoretical models we hypothesized a relationship of extraversion with somatosensory responses in primary somatosensory cortex (SI). In order to test this hypothesis we applied nonpainful tactile stimulation on the fingers of both hands of 23 healthy young participants (mean 25 years, standard deviation ± 2.8 years). Personality traits were assessed according to the Five-Factor-Model (NEO-FFI). Neuromagnetic source imaging revealed that the cortical activity (dipole strengths) for sources in SI were closely associated with the personality trait extraversion. Thus, the less extraverted the participants were, the higher was the cortical activity in SI. This relationship was in particular valid for the right hemisphere. We conclude that personality seems to depend on primary cortex activity. Furthermore, our results provide further evidence for an inter-hemispheric asymmetry of the social brain.

  5. Somatosensory cortical representation in the Australian ghost bat, Macroderma gigas.

    PubMed

    Wise, L Z; Pettigrew, J D; Calford, M B

    1986-06-08

    Bats of the two suborders Microchiroptera and Megachiroptera have a modified hand in which the digits of the forelimb are caudally oriented to form the wing. In a previous study of a megachiropteran species, this modification of body plan was found to be reflected in the somatosensory cortical representation such that the orientation of the digit representation was reversed compared with walking mammals. This finding suggests that the precise details of arrangement of topographical maps are functionally significant and do not merely reflect an order imposed by peripheral innervation. Recent evidence for separate origins of Microchiroptera and Megachiroptera raises the question of whether the cortical somatosensory representation in Microchiroptera will also have a reversal of digit orientation compared with walking mammals. We recorded multiunit activity from the somatosensory cortex of a microchiropteran bat, Macroderma gigas. We found two orderly representations of the body surface, SI and SII, in both of which the digit orientation was opposite to the head orientation in accordance with adaptation for flight, and reversed with respect to equivalent maps in other mammals. We also found minor variations in body surface representation compared with Megachiroptera, in line with their proposed independent evolution.

  6. Somatosensory-evoked potentials and MRI in tuberculous spondylodiscitis.

    PubMed

    Titlic, M; Isgum, V; Buca, A; Kolic, K; Tonkic, A; Jukic, I; Milas, I

    2007-01-01

    Early diagnosis of spondylodiscitis is a condition of efficient conservative treatment. Somatosensory-evoked potentials with clinical examination results are used in assessing the diagnosis, as well as in monitoring the course of disease and healing. MRI clearly shows the inflammatory process, healing and scars. We report a 46-year-old woman suffering from non-specific interscapular pains. The evoked somatosensory potentials of the tibial nerveshow potential conductivity being slowed down through the thoracic spine, which is clearly evident from the prolonged latency and the decreased amplitude of the evoked response. The performed thoracic spine MRI shows spondylodiscitis at the Thl0-11 level. The subject is a nurse administering BCG therapy at a urology clinic, due to the fact of which this was deemed to have been a case of tuberculous spondylodiscitis. Due to the possibility of scattering the causative agent by needle, the biopsy was given up and antituberculous therapy was administered ex juvantibus. The disease was followed up by clinical examinations, somatosensory-evoked potentials and MRI up to fully successful and final recovery from spondylodiscitis. The above examinations are of great help in diagnosing the tuberculous spondylodiscitis and monitoring the recovery (Fig. 6, Ref. 16).

  7. Representation of tactile curvature in macaque somatosensory area 2.

    PubMed

    Yau, Jeffrey M; Connor, Charles E; Hsiao, Steven S

    2013-06-01

    Tactile shape information is elaborated in a cortical hierarchy spanning primary (SI) and secondary somatosensory cortex (SII). Indeed, SI neurons in areas 3b and 1 encode simple contour features such as small oriented bars and edges, whereas higher order SII neurons represent large curved contour features such as angles and arcs. However, neural coding of these contour features has not been systematically characterized in area 2, the most caudal SI subdivision in the postcentral gyrus. In the present study, we analyzed area 2 neural responses to embossed oriented bars and curved contour fragments to establish whether curvature representations are generated in the postcentral gyrus. We found that many area 2 neurons (26 of 112) exhibit clear curvature tuning, preferring contours pointing in a particular direction. Fewer area 2 neurons (15 of 112) show preferences for oriented bars. Because area 2 response patterns closely resembled SII patterns, we also compared area 2 and SII response time courses to characterize the temporal dynamics of curvature synthesis in the somatosensory system. We found that curvature representations develop and peak concurrently in area 2 and SII. These results reveal that transitions from orientation tuning to curvature selectivity in the somatosensory cortical hierarchy occur within SI rather than between SI and SII.

  8. Somatosensory temporal discrimination threshold is increased in patients with cerebellar atrophy.

    PubMed

    Manganelli, Fiore; Dubbioso, Raffaele; Pisciotta, Chiara; Antenora, Antonella; Nolano, Maria; De Michele, Giuseppe; Filla, Alessandro; Berardelli, Alfredo; Santoro, Lucio

    2013-08-01

    Processing of time in the millisecond range seems to depend on cerebellar function and it can be assessed by using the somatosensory temporal discrimination threshold testing. No studies have yet investigated this temporal discrimination task in patients with cerebellar atrophy. Eleven patients with degenerative cerebellar ataxia and 11 controls underwent somatosensory temporal discrimination threshold evaluation. The degree of cerebellar dysfunction was measured by the International Cooperative Ataxia Rating Scale. Somatosensory temporal discrimination threshold was higher in patients compared to controls for each stimulated site (hand, neck, and eye). Age, disease duration, and International Cooperative Ataxia Rating Scale scores were not correlated to somatosensory temporal discrimination threshold. Somatosensory temporal discrimination threshold is abnormal in patients with cerebellar atrophy. These findings suggest that the cerebellum plays a role in modulating the somatosensory temporal discrimination threshold and confirm the role of cerebellum in the processing of time in the millisecond range.

  9. Somatosensory Event-Related Potentials and Association with Tactile Behavioral Responsiveness Patterns in Children with ASD.

    PubMed

    Cascio, Carissa J; Gu, Chang; Schauder, Kimberly B; Key, Alexandra P; Yoder, Paul

    2015-11-01

    The goal of this study was to explore neural response to touch in children with and without autism spectrum disorder (ASD). Patterns of reduced (hypo-responsiveness) and enhanced (hyper-responsiveness) behavioral reaction to sensory input are prevalent in ASD, but their neural mechanisms are poorly understood. We measured event-related potentials (ERP) to a puff of air on the fingertip and collected parent report of tactile hypo- and hyper-responsiveness in children with ASD (n = 21, mean (SD) age 11.25 (3.09), 2 female), and an age-matched typically developing comparison group (n = 28, mean (SD) age 10.1 (3.08, 2 female). A global measure of ERP response strength approximately 220-270 ms post-stimulus was associated with tactile hypo-responsiveness in ASD, while tactile hyper-responsiveness was associated with earlier neural response (approximately 120-220 ms post-stimulus) in both groups. These neural responses also related to autism severity. These results suggest that, in ASD, tactile hypo- and hyper-responsiveness may reflect different waypoints in the neural processing stream of sensory input. The timing of the relationship for hyper-responsiveness is consistent with somatosensory association cortical response, while that for hypo-responsiveness is more consistent with later processes that may involve allocation of attention or emotional valence to the stimulus.

  10. Somatosensory event-related potentials and association with tactile behavioral responsiveness patterns in children with ASD

    PubMed Central

    Cascio, Carissa J.; Gu, Chang; Schauder, Kimberly B.; Key, Alexandra P.; Yoder, Paul

    2015-01-01

    The goal of this study was to explore neural response to touch in children with and without autism spectrum disorder (ASD). Patterns of reduced (hypo-responsiveness) and enhanced (hyper-responsiveness) behavioral reaction to sensory input are prevalent in ASD, but their neural mechanisms are poorly understood. We measured event-related potentials (ERP) to a puff of air on the fingertip and collected parent report of tactile hypo- and hyper-responsiveness in children with ASD (n=21, mean(SD) age: 11.25(3.09), 2 female), and an age-matched typically developing (TD) comparison group (n=28, mean(SD) age:10.1(3.08, 2 female). A global measure of ERP response strength approximately 220–270 msec post-stimulus was associated with tactile hypo-responsiveness in ASD, while tactile hyper-responsiveness was associated with earlier neural response (approximately 120–220 msec post-stimulus) in both groups. These neural responses also related to autism severity. These results suggest that, in ASD, tactile hypo- and hyper-responsiveness may reflect different waypoints in the neural processing stream of sensory input. The timing of the relationship for hyper-responsiveness is consistent with somatosensory association cortical response, while that for hypo-responsiveness is more consistent with later processes that may involve allocation of attention or emotional valence to the stimulus. PMID:26016951

  11. Somatosensory temporal discrimination is prolonged during migraine attacks.

    PubMed

    Boran, H Evren; Cengiz, Bülent; Bolay, Hayrunnisa

    2016-01-01

    Symptoms and signs of sensorial disturbances are characteristic features of a migraine headache. Somatosensory temporal discrimination measures the temporal threshold to perceive two separate somaesthetic stimuli as clearly distinct. This study aimed to evaluate somaesthetic perception in migraine patients by measuring the somatosensory temporal discrimination thresholds. The study included 12 migraine patients without aura and 12 volunteers without headache. Somatosensory temporal discrimination threshold (STDT) values were measured in the face (V3) and hands (C7) during a lateralized headache attack and the headache-free interictal period. The disease duration, pain intensity, phonophobia, photophobia, nausea, vomiting, and brush allodynia were also recorded during the migraine attack. STDT values were within normal limits and not different between the control group and the interictal period in migraine patients. Compared to the headache-free period, STDT values during the attack were significantly prolonged in the contralateral hand (C7) (155.7 ± 84.2 vs 40.6 ± 16.1 ms [P < .001]), ipsilateral hand (C7) (88.6 ± 51.3 vs 31.4 ± 14.2 ms [P < 0.001]), contralateral face (V3) (65.5 ± 35.4 vs 37.6 ± 22.2 ms [P = .006]) and ipsilateral face (V3) (104.1 ± 44.5 vs 37.5 ± 21.4 ms [P < 0.001]) according to the lateralization of the headache. Ictal STDT values of the contralateral hand and ipsilateral face were significantly increased compared to that of the ipsilateral hand and contralateral face (155.7 ± 84.2 ms vs 88.6 ± 5.1.3 ms [P = .001], 104.1 ± 44.5 ms vs 65.5 ± 35.4 ms [P = 0.001]). No allodynia was detected in the areas that were tested for somatosensory temporal discrimination. The visual analog scale scores were correlated with the somatosensory temporal discrimination thresholds of the contralateral hand (r = 0.602, P = .038), whereas no correlation was detected between

  12. The eloquence of silent cortex: analysis of afferent input to deafferented cortex in arm amputees.

    PubMed

    Mackert, Bruno-Marcel; Sappok, Tanja; Grüsser, Sabine; Flor, Herta; Curio, Gabriel

    2003-03-03

    Cortical reorganisation after limb amputation includes topographic displacements of body representation areas and changes of areal extent. Remarkably, truncated nerves, which had innervated amputated limb parts and remained in the residual limbs, can retain access to the deafferented somatosensory cortex. Using somatosensory evoked potentials (SEP) we characterized afferences from electrically stimulated truncated nerves to the brachial plexus and cortex in 12 arm amputees. While peripheral responses were highly variable, thalamocortical input to S-1, as reflected by the primary cortical SEP component, was present in 11 of 12 patients. Despite long-term deafferentation, macroscopic phenomena of inhibition/refractoriness, as assessed by stimulus rate variations, appeared to be changed only marginally. Thus, deafferented cortex remains responsive when given artificial phantom input and could provide a neuronal substrate for spontaneous phantom limb sensations, including phantom pain.

  13. Increased cortical responses to forepaw stimuli immediately after peripheral deafferentation of hindpaw inputs

    PubMed Central

    Humanes-Valera, D.; Foffani, G.; Aguilar, J.

    2014-01-01

    Both central and peripheral injuries of the nervous system induce dramatic reorganization of the primary somatosensory cortex. We recently showed that spinal cord injuries at thoracic level in anesthetized rats can immediately increase the responses evoked in the forepaw cortex by forepaw stimuli (above the level of the lesion), suggesting that the immediate cortical reorganization after deafferentation can extend across cortical representations of different paws. Here we show that a complete deafferentation of inputs from the hindpaw induced by injury or pharmacological block of the peripheral nerves in anesthetized rats also increases the responses evoked in the forepaw cortex by forepaw stimuli. This increase of cortical responses after peripheral deafferentation is not associated with gross alterations in the state of cortical spontaneous activity. The results of the present study, together with our previous works on spinal cord injury, suggest that the forepaw somatosensory cortex is critically involved in the reorganization that starts immediately after central or peripheral deafferentation of hindpaw inputs. PMID:25451619

  14. Age-dependent modulation of the somatosensory network upon eye closure.

    PubMed

    Brodoehl, Stefan; Klingner, Carsten; Witte, Otto W

    2016-02-01

    Eye closure even in complete darkness can improve somatosensory perception by switching the brain to a uni-sensory processing mode. This causes an increased information flow between the thalamus and the somatosensory cortex while decreasing modulation by the visual cortex. Previous work suggests that these modulations are age-dependent and that the benefit in somatosensory performance due to eye closing diminishes with age. The cause of this age-dependency and to what extent somatosensory processing is involved remains unclear. Therefore, we intended to characterize the underlying age-dependent modifications in the interaction and connectivity of different sensory networks caused by eye closure. We performed functional MR-imaging with tactile stimulation of the right hand under the conditions of opened and closed eyes in healthy young and elderly participants. Conditional Granger causality analysis was performed to assess the somatosensory and visual networks, including the thalamus. Independent of age, eye closure improved the information transfer from the thalamus to and within the somatosensory cortex. However, beyond that, we found an age-dependent recruitment strategy. Whereas young participants were characterized by an optimized information flow within the relays of the somatosensory network, elderly participants revealed a stronger modulatory influence of the visual network upon the somatosensory cortex. Our results demonstrate that the modulation of the somatosensory and visual networks by eye closure diminishes with age and that the dominance of the visual system is more pronounced in the aging brain.

  15. Dual function conducting polymer diodes

    DOEpatents

    Heeger, Alan J.; Yu, Gang

    1996-01-01

    Dual function diodes based on conjugated organic polymer active layers are disclosed. When positively biased the diodes function as light emitters. When negatively biased they are highly efficient photodiodes. Methods of preparation and use of these diodes in displays and input/output devices are also disclosed.

  16. Coupling of fingertip somatosensory information to head and body sway

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Schoner, G.; Dijkstra, T.; Ribeiro, P.; Lackner, J. R.

    1997-01-01

    Light touch contact of a fingertip with a stationary surface can provide orientation information that enhances control of upright stance. Slight changes in contact force at the fingertip provide sensory cues about the direction of body sway, allowing attenuation of sway. In the present study, we asked to which extent somatosensory cues are part of the postural control system, that is, which sensory signal supports this coupling? We investigated postural control not only when the contact surface was stationary, but also when it was moving rhythmically (from 0.1 to 0.5 Hz). In doing so, we brought somatosensory cues from the hand into conflict with other parts of the postural control system. Our focus was the temporal relationship between body sway and the contact surface. Postural sway was highly coherent with contact surface motion. Head and body sway assumed the frequency of the moving contact surface at all test frequencies. To account for these results, a simple model was formulated by approximating the postural control system as a second-order linear dynamical system. The influence of the touch stimulus was captured as the difference between the velocity of the contact surface and the velocity of body sway, multiplied by a coupling constant. Comparison of empirical results (relative phase, coherence, and gain) with model predictions supports the hypothesis of coupling between body sway and touch cues through the velocity of the somatosensory stimulus at the fingertip. One subject, who perceived movement of the touch surface, demonstrated weaker coupling than other subjects, suggesting that cognitive mechanisms introduce flexibility into the postural control scheme.

  17. The modulation of somatosensory resonance by psychopathic traits and empathy.

    PubMed

    Marcoux, Louis-Alexandre; Michon, Pierre-Emmanuel; Voisin, Julien I A; Lemelin, Sophie; Vachon-Presseau, Etienne; Jackson, Philip L

    2013-01-01

    A large number of neuroimaging studies have shown neural overlaps between first-hand experiences of pain and the perception of pain in others. This shared neural representation of vicarious pain is thought to involve both affective and sensorimotor systems. A number of individual factors are thought to modulate the cerebral response to other's pain. The goal of this study was to investigate the impact of psychopathic traits on the relation between sensorimotor resonance to other's pain and self-reported empathy. Our group has previously shown that a steady-state response to non-painful stimulation is modulated by the observation of other people's bodily pain. This change in somatosensory response was interpreted as a form of somatosensory gating (SG). Here, using the same technique, SG was compared between two groups of 15 young adult males: one scoring very high on a self-reported measure of psychopathic traits [60.8 ± 4.98; Levenson's Self-Report Psychopathy Scale (LSRP)] and one scoring very low (42.7 ± 2.94). The results showed a significantly greater reduction of SG to pain observation for the high psychopathic traits group compared to the low psychopathic traits group. SG to pain observation was positively correlated with affective and interpersonal facet of psychopathy in the whole sample. The high psychopathic traits group also reported lower empathic concern (EC) scores than the low psychopathic traits group. Importantly, primary psychopathy, as assessed by the LSRP, mediated the relation between EC and SG to pain observation. Together, these results suggest that increase somatosensory resonance to other's pain is not exclusively explained by trait empathy and may be linked to other personality dimensions, such as psychopathic traits.

  18. Coupling of fingertip somatosensory information to head and body sway

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Schoner, G.; Dijkstra, T.; Ribeiro, P.; Lackner, J. R.

    1997-01-01

    Light touch contact of a fingertip with a stationary surface can provide orientation information that enhances control of upright stance. Slight changes in contact force at the fingertip provide sensory cues about the direction of body sway, allowing attenuation of sway. In the present study, we asked to which extent somatosensory cues are part of the postural control system, that is, which sensory signal supports this coupling? We investigated postural control not only when the contact surface was stationary, but also when it was moving rhythmically (from 0.1 to 0.5 Hz). In doing so, we brought somatosensory cues from the hand into conflict with other parts of the postural control system. Our focus was the temporal relationship between body sway and the contact surface. Postural sway was highly coherent with contact surface motion. Head and body sway assumed the frequency of the moving contact surface at all test frequencies. To account for these results, a simple model was formulated by approximating the postural control system as a second-order linear dynamical system. The influence of the touch stimulus was captured as the difference between the velocity of the contact surface and the velocity of body sway, multiplied by a coupling constant. Comparison of empirical results (relative phase, coherence, and gain) with model predictions supports the hypothesis of coupling between body sway and touch cues through the velocity of the somatosensory stimulus at the fingertip. One subject, who perceived movement of the touch surface, demonstrated weaker coupling than other subjects, suggesting that cognitive mechanisms introduce flexibility into the postural control scheme.

  19. Microstimulation: Principles, Techniques, and Approaches to Somatosensory Neuroprosthesis.

    PubMed

    Semework, Mulugeta

    2015-01-01

    The power of movement of electrically charged particles has been used to alleviate an array of illnesses and help control some human body parts. Microstimulation, the electrical current-driven excitation of neural elements, is now being aimed at brain-machine interfaces (BMIs), brain-controlled external devices that improve quality of life for people such as those who have lost the ability to use their limbs. This effort is motivated by behavioral experiments that indicate a direct link between microstimulation-induced sensory experience and behavior, pointing to the possibility of optimizing and controlling the outputs of BMIs. Several laboratories have focused on using electrical stimulation to return somatosensory feedback from prosthetic limbs directly to the user's central nervous system. However, the difficulty of the problem has led to limited success thus far, and there is a need for a better understanding of the basic principles of neural microstimulation. This article provides a review of the available literature and some recent work at Downstate Medical Center and Columbia University on microstimulation of the primate and rodent somatosensory (S1) cortex and the ventral posterolateral thalamus. It is aimed at contributing to the existing knowledge base to generate good behavioral responses and effective, BMI-appropriate somatosensory feedback. In general, the threshold for the particular brain tissue in response to current-amplitude has to be determined by rigorous experimentation. For consistently reproducible results, hardware and thresholds for microstimulation have to be specified. In addition, effects on motor functions, including unwanted side effects in response to the microstimulation of brain tissue, must be examined to take the field from bench to bedside.

  20. Neural interfaces for somatosensory feedback: bringing life to a prosthesis

    PubMed Central

    Tyler, Dustin J.

    2017-01-01

    Purpose of review When an individual loses a limb, he/she loses touch with the world and with the people around him/her. Somatosensation is critical to the feeling of connection and control of one’s own body. Decades of attempts to replace lost somatosensation by sensory substitutions have been ineffective outside of the laboratory. This review discusses important recent results demonstrating chronic somatosensory restoration through direct peripheral nerve stimulation. Recent findings Stimulation of peripheral nerves results in somatosensory perception on the phantom limb. Sensations are localized to several independent and functionally relevant locations, such as the fingertips, thenar eminence, ulnar border and dorsal surface. Patterns in stimulation intensity change the perception experience by the user, opening new dimensions on neuromodulation. Summary Neural interfaces with sophisticated stimulation paradigms create a user’s perception of his/her hand to touch and manipulate objects. The pattern of intensity and frequency of stimulation is critical to the quality and intensity of perceived sensation. Restoring feeling has allowed the individuals to, ‘feel [my] hand for the first time since the accident,’ and ‘feel [my] wife touch my hand’. Individuals using a prosthetic hand with sensation can pull cherries and grapes from the stem, open water bottles and move objects without destroying these objects – all while audio and visually deprived. After regaining sensation, phantom pain is eliminated in individuals that had frequent, sometimes debilitating, pain following limb loss. With over 5 subject-years of experience, this work is leading the evolution of a new era in prostheses. Somatosensory prosthetics as a standard procedure to augment and restore somatosensation are now within our reach. PMID:26544029

  1. The modulation of somatosensory resonance by psychopathic traits and empathy

    PubMed Central

    Marcoux, Louis-Alexandre; Michon, Pierre-Emmanuel; Voisin, Julien I. A.; Lemelin, Sophie; Vachon-Presseau, Etienne; Jackson, Philip L.

    2013-01-01

    A large number of neuroimaging studies have shown neural overlaps between first-hand experiences of pain and the perception of pain in others. This shared neural representation of vicarious pain is thought to involve both affective and sensorimotor systems. A number of individual factors are thought to modulate the cerebral response to other's pain. The goal of this study was to investigate the impact of psychopathic traits on the relation between sensorimotor resonance to other's pain and self-reported empathy. Our group has previously shown that a steady-state response to non-painful stimulation is modulated by the observation of other people's bodily pain. This change in somatosensory response was interpreted as a form of somatosensory gating (SG). Here, using the same technique, SG was compared between two groups of 15 young adult males: one scoring very high on a self-reported measure of psychopathic traits [60.8 ± 4.98; Levenson's Self-Report Psychopathy Scale (LSRP)] and one scoring very low (42.7 ± 2.94). The results showed a significantly greater reduction of SG to pain observation for the high psychopathic traits group compared to the low psychopathic traits group. SG to pain observation was positively correlated with affective and interpersonal facet of psychopathy in the whole sample. The high psychopathic traits group also reported lower empathic concern (EC) scores than the low psychopathic traits group. Importantly, primary psychopathy, as assessed by the LSRP, mediated the relation between EC and SG to pain observation. Together, these results suggest that increase somatosensory resonance to other's pain is not exclusively explained by trait empathy and may be linked to other personality dimensions, such as psychopathic traits. PMID:23801950

  2. Multilevel Cortical Processing of Somatosensory Novelty: A Magnetoencephalography Study

    PubMed Central

    Naeije, Gilles; Vaulet, Thibaut; Wens, Vincent; Marty, Brice; Goldman, Serge; De Tiège, Xavier

    2016-01-01

    Using magnetoencephalography (MEG), this study investigates the spatio-temporal dynamics of the multilevel cortical processing of somatosensory change detection. Neuromagnetic signals of 16 healthy adult subjects (7 females and 9 males, mean age 29 ± 3 years) were recorded using whole-scalp-covering MEG while they underwent an oddball paradigm based on simple standard (right index fingertip tactile stimulation) and deviant (simultaneous right index fingertip and middle phalanx tactile stimulation) stimuli gathered into sequences to create and then deviate from stimulus patterns at multiple (local vs. global) levels of complexity. Five healthy adult subjects (3 females and 2 males, mean age 31, 6 ± 2 years) also underwent a similar oddball paradigm in which standard and deviant stimuli were flipped. Local deviations led to a somatosensory mismatch response peaking at 55–130 ms post-stimulus onset with a cortical generator located at the contralateral secondary somatosensory (cSII) cortex. The mismatch response was independent of the deviant stimuli physical characteristics. Global deviants led to a P300 response with cortical sources located bilaterally at temporo-parietal junction (TPJ) and supplementary motor area (SMA). The posterior parietal cortex (PPC) and the SMA were found to generate a contingent magnetic variation (CMV) attributed to top-down expectations. Amplitude of mismatch responses were modulated by top-down expectations and correlated with both the magnitude of the CMV and the P300 amplitude at the right TPJ. These results provide novel empirical evidence for a unified sensory novelty detection system in the human brain by linking detection of salient sensory stimuli in personal and extra-personal spaces to a common framework of multilevel cortical processing. PMID:27313523

  3. [Somatotopy and information processing in the somatosensory cortex].

    PubMed

    Iwamura, Yoshiaki

    2009-12-01

    The present article reviews studies on the somatotopic representation of the body in the postcentral gyrus. The review consists of 3 sections namely the early studies on the cortical localization of somatosensory in humans and animals, earlier neurophysiological studies in monkeys by recording single units, and more recent studies in human subjects. Results of the neurophysiological studies in monkeys established a hierarchical scheme of information processing and have guided the latest studies on human subjects that use various modern techniques such as neuroimaging. This review illustrates the origin of the concept of somatotopic representation of the body, its utilization in the later cortical mapping studies, and what is the reality of the concept.

  4. Evaluation of breast sensibility using dermatomal somatosensory evoked potentials.

    PubMed

    DelVecchyo, Carlos; Caloca, Jaime; Caloca, Jaime; Gómez-Jauregui, Jesica

    2004-06-01

    This study was undertaken to prospectively evaluate breast sensibility before and after reduction mammaplasty with a new, objective, and quantitative neurophysiologic method based on the anatomic knowledge of breast innervation and the congruent areas of dermatomal maps. An innovative application of dermatomal somatosensory evoked potentials was used to study the breast regions of 42 healthy women, bilaterally. The areas stimulated in each breast were the superior quadrant, the nipple-areola complex and the medial and lateral quadrants, and the inferior quadrant; these areas correspond to T3, T4, and T5 dermatomes, respectively, following the accepted concepts of segmentary innervation of the skin. The two groups of 21 patients each were formed according to breast size: group I comprised small-breasted, unoperated controls (brassiere cup size A or B); group II comprised macromastia patients (brassiere cup size C or greater) who presented to a general plastic surgery department for breast reduction surgery. First the authors established the normal range of latency and amplitude in the dermatomal somatosensory evoked potentials for the five areas stimulated in patients with small breasts and compared these parameters with those obtained from patients with macromastia. Then, after the macromastia patients underwent reduction mammaplasty using the McKissock technique, the authors compared the postoperative sensory values with their own preoperative values and with those from the small-breasted group. Using dermatomal somatosensory evoked potentials, they found that small breasts were statistically more sensitive than large breasts, which concurs with studies in the literature that use other methods to evaluate breast sensibility. They also found that after breast reduction, the macromastia patients presented statistically significant improvement in breast sensibility in relation to their own preoperative latency and amplitude values, with no statistical difference in

  5. Painful focal sensory seizure arising from the primary somatosensory cortex.

    PubMed

    Yazawa, Shogo; Ikeda, Akio; Sawamoto, Nobukatsu; Terada, Kiyohito; Fukuyama, Hidenao; Tanaka, Mayako; Shibasaki, Hiroshi

    2003-09-01

    A 31-year-old, right-handed woman had frequent focal painful seizures involving the right hand without any movement. EEG demonstrated an ictal activity arising from the left centroparietal region. No cerebral structural abnormality was seen on MRI. Ictal single photon emission CT showed markedly increased activity in the left perirolandic cortex, which remained active following the ictal symptoms when the EEG seizure pattern had completely disappeared. It is concluded that the painful seizures in the present patient originated from the primary somatosensory cortex. The prolonged increase of regional blood flow in the perirolandic area may reflect the possibility of persistent subclinical epileptogenicity.

  6. Somatosensory temporal discrimination in essential tremor and isolated head and voice tremors.

    PubMed

    Conte, Antonella; Ferrazzano, Gina; Manzo, Nicoletta; Leodori, Giorgio; Fabbrini, Giovanni; Fasano, Alfonso; Tinazzi, Michele; Berardelli, Alfredo

    2015-05-01

    The aim of this study was to investigate the somatosensory temporal discrimination threshold in patients with essential tremor (sporadic and familial) and to evaluate whether somatosensory temporal discrimination threshold values differ depending on the body parts involved by tremor. We also investigated the somatosensory temporal discrimination in patients with isolated voice tremor. We enrolled 61 patients with tremor: 48 patients with essential tremor (31 patients with upper limb tremor alone, nine patients with head tremor alone, and eight patients with upper limb plus head tremor; 22 patients with familial vs. 26 sporadic essential tremor), 13 patients with isolated voice tremor, and 45 healthy subjects. Somatosensory temporal discrimination threshold values were normal in patients with familial essential tremor, whereas they were higher in patients with sporadic essential tremor. When we classified patients according to tremor distribution, somatosensory temporal discrimination threshold values were normal in patients with upper limb tremor and abnormal only in patients with isolated head tremor. Temporal discrimination threshold values were also abnormal in patients with isolated voice tremor. Somatosensory temporal discrimination processing is normal in patients with familial as well as in patients with sporadic essential tremor involving the upper limbs. By contrast, somatosensory temporal discrimination is altered in patients with isolated head tremor and voice tremor. This study with somatosensory temporal discrimination suggests that isolated head and voice tremors might possibly be considered as separate clinical entities from essential tremor.

  7. The perception of pain in others suppresses somatosensory oscillations: a magnetoencephalography study.

    PubMed

    Cheng, Yawei; Yang, Chia-Yen; Lin, Ching-Po; Lee, Po-Lei; Decety, Jean

    2008-05-01

    Accumulating evidence demonstrates that similar neural circuits are activated during the first-hand experience of pain and the observation of pain in others. However, most functional MRI studies did not detect signal change in the primary somatosensory cortex during pain empathy. To test if the perception of pain in others involves the primary somatosensory cortex, neuromagnetic oscillatory activity was recorded from the primary somatosensory cortex in 16 participants while they observed static pictures depicting body parts in painful and non-painful situations. The left median nerve was stimulated at the wrist, and the poststimulus rebounds of the approximately 10-Hz somatosensory cortical oscillations were quantified. Compared to the baseline condition, the level of the approximately 10-Hz oscillations was suppressed during both of the observational situations, indicating the activation of the primary somatosensory cortex. Importantly, watching painful compared to non-painful situations suppressed somatosensory oscillations to a significant stronger degree. In addition, the suppression caused by perceiving others in the painful relative to the non-painful situations correlated with the perspective taking subscale of the interpersonal reaction index. These results, consistent with the mirror-neuron system, demonstrate that the perception of pain in others modulates neural activity in primary somatosensory cortex and supports the idea that the perception of pain in others elicits subtle somatosensory activity that may be difficult to detect by fMRI techniques.

  8. Talking Speech Input.

    ERIC Educational Resources Information Center

    Berliss-Vincent, Jane; Whitford, Gigi

    2002-01-01

    This article presents both the factors involved in successful speech input use and the potential barriers that may suggest that other access technologies could be more appropriate for a given individual. Speech input options that are available are reviewed and strategies for optimizing use of speech recognition technology are discussed. (Contains…

  9. MDS MIC Catalog Inputs

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette

    2006-01-01

    This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.

  10. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  11. Somatosensory Profiles but Not Numbers of Somatosensory Abnormalities of Neuropathic Pain Patients Correspond with Neuropathic Pain Grading

    PubMed Central

    Konopka, Karl-Heinz; Harbers, Marten; Houghton, Andrea; Kortekaas, Rudie; van Vliet, Andre; Timmerman, Wia; den Boer, Johan A.; Struys, Michel M. R. F.; van Wijhe, Marten

    2012-01-01

    Due to the lack of a specific diagnostic tool for neuropathic pain, a grading system to categorize pain as ‘definite’, ‘probable’, ‘possible’ and ‘unlikely’ neuropathic was proposed. Somatosensory abnormalities are common in neuropathic pain and it has been suggested that a greater number of abnormalities would be present in patients with ‘probable’ and ‘definite’ grades. To test this hypothesis, we investigated the presence of somatosensory abnormalities by means of Quantitative Sensory Testing (QST) in patients with a clinical diagnosis of neuropathic pain and correlated the number of sensory abnormalities and sensory profiles to the different grades. Of patients who were clinically diagnosed with neuropathic pain, only 60% were graded as ‘definite’ or ‘probable’, while 40% were graded as ‘possible’ or ‘unlikely’ neuropathic pain. Apparently, there is a mismatch between a clinical neuropathic pain diagnosis and neuropathic pain grading. Contrary to the expectation, patients with ‘probable’ and ‘definite’ grades did not have a greater number of abnormalities. Instead, similar numbers of somatosensory abnormalities were identified for each grade. The profiles of sensory signs in ‘definite’ and ‘probable’ neuropathic pain were not significantly different, but different from the ‘unlikely’ grade. This latter difference could be attributed to differences in the prevalence of patients with a mixture of sensory gain and loss and with sensory loss only. The grading system allows a separation of neuropathic and non-neuropathic pain based on profiles but not on the total number of sensory abnormalities. Our findings indicate that patient selection based on grading of neuropathic pain may provide advantages in selecting homogenous groups for clinical research. PMID:22927981

  12. The structure of somatosensory information for human postural control

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Ribeiro, P.; Oie, K.; Lackner, J. R.

    1998-01-01

    The goal of the present study was to determine the properties of the somatosensory stimulus that alter its temporal coupling to body sway. Six standing subjects were tested while touching a metal plate positioned either directly in front of or lateral to the subject. In each condition, the plate moved 4 mm at 0.2 Hz in either the medial-lateral (ML) or anterior-posterior direction (AP). The results showed that coupling between body sway and touch plate movement was strongest when the touch plate moved in a direction along the longitudinal axis of the arm. Coupling strength was weaker when the touch plate moved perpendicular to the longitudinal axis of the arm. The results consistently show that a radial expansion stimulus was more effective than a lamellar-type stimulus at the fingertip. Moreover, somatosensory information from a surface is interpreted in terms of the orientation of the contact limb and the potential degrees of freedom available through its movement.

  13. Focal dystonia in musicians: linking motor symptoms to somatosensory dysfunction.

    PubMed

    Konczak, Jürgen; Abbruzzese, Giovanni

    2013-01-01

    Musician's dystonia (MD) is a neurological motor disorder characterized by involuntary contractions of those muscles involved in the play of a musical instrument. It is task-specific and initially only impairs the voluntary control of highly practiced musical motor skills. MD can lead to a severe decrement in a musician's ability to perform. While the etiology and the neurological pathomechanism of the disease remain unknown, it is known that MD like others forms of focal dystonia is associated with somatosensory deficits, specifically a decreased precision of tactile and proprioceptive perception. The sensory component of the disease becomes also evident by the patients' use of "sensory tricks" such as touching dystonic muscles to alleviate motor symptoms. The central premise of this paper is that the motor symptoms of MD have a somatosensory origin and are not fully explained as a problem of motor execution. We outline how altered proprioceptive feedback ultimately leads to a loss of voluntary motor control and propose two scenarios that explain why sensory tricks are effective. They are effective, because the sensorimotor system either recruits neural resources normally involved in tactile-proprioceptive (sensory) integration, or utilizes a fully functioning motor efference copy mechanism to align experienced with expected sensory feedback. We argue that an enhanced understanding of how a primary sensory deficit interacts with mechanisms of sensorimotor integration in MD provides helpful insights for the design of more effective behavioral therapies.

  14. Brain micromotion around implants in the rodent somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Gilletti, Aaron; Muthuswamy, Jit

    2006-09-01

    The magnitude of brain tissue micromotion relative to stationary brain implants and its impact on the viability and function of the surrounding brain tissue due to mechanical stresses is poorly understood. The central goal of this study is to characterize surface micromotion in the somatosensory cortex against stationary cylindrical implants. We used a differential variable reluctance transducer (DVRT) in adult rats (n = 6) to monitor micromotion normal to the somatosensory cortex surface. Experiments were performed both in the presence and in the absence of dura mater and displacement measurements were made at three different locations within craniotomies of two different sizes. In anesthetized rats, pulsatile surface micromotion was observed to be in the order of 10-30 µm due to pressure changes during respiration and 2-4 µm due to vascular pulsatility. Brain displacement values due to respiration were significantly lower in the presence of the dura compared to those without the dura. In addition, large inward displacements of brain tissue between 10-60 µm were observed in n = 3 animals immediately following the administration of anesthesia. Such significant micromotion can impact a wide variety of acute and chronic procedures involving any brain implants, precise neurosurgery or imaging and therefore has to be factored in the design of such procedures.

  15. Decoding Visual Object Categories in Early Somatosensory Cortex

    PubMed Central

    Smith, Fraser W.; Goodale, Melvyn A.

    2015-01-01

    Neurons, even in the earliest sensory areas of cortex, are subject to a great deal of contextual influence from both within and across modality connections. In the present work, we investigated whether the earliest regions of somatosensory cortex (S1 and S2) would contain content-specific information about visual object categories. We reasoned that this might be possible due to the associations formed through experience that link different sensory aspects of a given object. Participants were presented with visual images of different object categories in 2 fMRI experiments. Multivariate pattern analysis revealed reliable decoding of familiar visual object category in bilateral S1 (i.e., postcentral gyri) and right S2. We further show that this decoding is observed for familiar but not unfamiliar visual objects in S1. In addition, whole-brain searchlight decoding analyses revealed several areas in the parietal lobe that could mediate the observed context effects between vision and somatosensation. These results demonstrate that even the first cortical stages of somatosensory processing carry information about the category of visually presented familiar objects. PMID:24122136

  16. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    NASA Astrophysics Data System (ADS)

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2014-10-01

    Objective. Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. Approach. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide ‘tactile’ sensation to a non-human primate. Main result. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Significance. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  17. The structure of somatosensory information for human postural control

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Ribeiro, P.; Oie, K.; Lackner, J. R.

    1998-01-01

    The goal of the present study was to determine the properties of the somatosensory stimulus that alter its temporal coupling to body sway. Six standing subjects were tested while touching a metal plate positioned either directly in front of or lateral to the subject. In each condition, the plate moved 4 mm at 0.2 Hz in either the medial-lateral (ML) or anterior-posterior direction (AP). The results showed that coupling between body sway and touch plate movement was strongest when the touch plate moved in a direction along the longitudinal axis of the arm. Coupling strength was weaker when the touch plate moved perpendicular to the longitudinal axis of the arm. The results consistently show that a radial expansion stimulus was more effective than a lamellar-type stimulus at the fingertip. Moreover, somatosensory information from a surface is interpreted in terms of the orientation of the contact limb and the potential degrees of freedom available through its movement.

  18. Morphological and functional diversity of first-order somatosensory neurons.

    PubMed

    de Moraes, Eder Ricardo; Kushmerick, Christopher; Naves, Lígia Araujo

    2017-09-09

    First-order somatosensory neurons transduce and convey information about the external or internal environment of the body to the central nervous system. They are pseudo unipolar neurons with cell bodies residing in one of several ganglia located near the central nervous system, with the short branch of the axon connecting to the spinal cord or the brain stem and the long branch extending towards the peripheral organ they innervate. Besides their sensory transducer and conductive role, somatosensory neurons also have trophic functions in the tissue they innervate and participate in local reflexes in the periphery. The cell bodies of these neurons are remarkably diverse in terms of size, molecular constitution, and electrophysiological properties. These parameters have provided criteria for classification that have proved useful to establish and study their functions. In this review, we discuss ways to measure and classify populations of neurons based on their size and action potential firing pattern. We also discuss attempts to relate the different populations to specific sensory modalities.

  19. Focal dystonia in musicians: linking motor symptoms to somatosensory dysfunction

    PubMed Central

    Konczak, Jürgen; Abbruzzese, Giovanni

    2013-01-01

    Musician's dystonia (MD) is a neurological motor disorder characterized by involuntary contractions of those muscles involved in the play of a musical instrument. It is task-specific and initially only impairs the voluntary control of highly practiced musical motor skills. MD can lead to a severe decrement in a musician's ability to perform. While the etiology and the neurological pathomechanism of the disease remain unknown, it is known that MD like others forms of focal dystonia is associated with somatosensory deficits, specifically a decreased precision of tactile and proprioceptive perception. The sensory component of the disease becomes also evident by the patients' use of “sensory tricks” such as touching dystonic muscles to alleviate motor symptoms. The central premise of this paper is that the motor symptoms of MD have a somatosensory origin and are not fully explained as a problem of motor execution. We outline how altered proprioceptive feedback ultimately leads to a loss of voluntary motor control and propose two scenarios that explain why sensory tricks are effective. They are effective, because the sensorimotor system either recruits neural resources normally involved in tactile-proprioceptive (sensory) integration, or utilizes a fully functioning motor efference copy mechanism to align experienced with expected sensory feedback. We argue that an enhanced understanding of how a primary sensory deficit interacts with mechanisms of sensorimotor integration in MD provides helpful insights for the design of more effective behavioral therapies. PMID:23805090

  20. The human somatosensory system: from perception to decision making.

    PubMed

    Pleger, Burkhard; Villringer, Arno

    2013-04-01

    Pioneering human and animal research has yielded a better understanding of the brain networks involved in somatosensory perception and decision making. New methodical achievements in combination with computational formalization allow research questions to be addressed which increasingly reflect not only the complex sensory demands of real environments, but also the cognitive ones. Here, we review the latest research on somatosensory perception and decision making with a special focus on the recruitment of supplementary brain networks which are dependent on the situation-associated sensory and cognitive demands. We also refer to literature on sensory-motor integration processes during visual decision making to delineate the complexity and dynamics of how sensory information is relayed to the motor output system. Finally, we review the latest literature which provides novel evidence that other everyday life situations, such as semantic decision making or social interactions, appear to depend on tactile experiences; suggesting that the sense of touch, being the first sense to develop ontogenetically, may essentially support later development of other conceptual knowledge.

  1. Somatosensory eye blink reflex in peripheral facial palsy.

    PubMed

    Erkol, Gökhan; Kiziltan, Meral E; Uluduz, Derya; Uzun, Nurten

    2009-09-04

    To investigate the association between somatosensory blink reflex (SBR) and peripheral facial palsy (PFP) severity and trigeminal blink reflex (BR) changes in cases with PFP and subsequent postparalytic facial syndrome development (PFS). One hundred and twenty subjects with peripheral facial palsy and post-facial syndrome and 44 age and gender matched healthy volunteers were enrolled to this study. Blink reflexes and somatosensory blink reflex were studied in all. The association between R1 and R2 responses of the BR and SBR positivity was investigated. SBR was elicited in 36.3% of normal subjects, in 18.3% of PFP and in 65.3% of PFS patients. In the paralytic side, the frequency of SBR positivity was significantly lower in PFP group compared to controls and SBR was most frequently observed in patients with PFS. Compared to PFP and control groups, SBR positivity on the non-paralytic side significantly revealed a higher rate in PFS patients. SBR positivity of patients in whom R1 or R2 were absent, was significantly lower than those subjects with prolonged or normal R1 or R2 responses. PFP and successive PFS are good models for the sensory motor gate mechanisms and/or excitability enhancement of brainstem neurons responsible for SBR.

  2. Transcranial Direct Current Stimulation Over the Primary and Secondary Somatosensory Cortices Transiently Improves Tactile Spatial Discrimination in Stroke Patients.

    PubMed

    Fujimoto, Shuhei; Kon, Noriko; Otaka, Yohei; Yamaguchi, Tomofumi; Nakayama, Takeo; Kondo, Kunitsugu; Ragert, Patrick; Tanaka, Satoshi

    2016-01-01

    In healthy subjects, dual hemisphere transcranial direct current stimulation (tDCS) over the primary (S1) and secondary somatosensory cortices (S2) has been found to transiently enhance tactile performance. However, the effect of dual hemisphere tDCS on tactile performance in stroke patients with sensory deficits remains unknown. The purpose of this study was to investigate whether dual hemisphere tDCS over S1 and S2 could enhance tactile discrimination in stroke patients. We employed a double-blind, crossover, sham-controlled experimental design. Eight chronic stroke patients with sensory deficits participated in this study. We used a grating orientation task (GOT) to measure the tactile discriminative threshold of the affected and non-affected index fingers before, during, and 10 min after four tDCS conditions. For both the S1 and S2 conditions, we placed an anodal electrode over the lesioned hemisphere and a cathodal electrode over the opposite hemisphere. We applied tDCS at an intensity of 2 mA for 15 min in both S1 and S2 conditions. We included two sham conditions in which the positions of the electrodes and the current intensity were identical to that in the S1 and S2 conditions except that current was delivered for the initial 15 s only. We found that GOT thresholds for the affected index finger during and 10 min after the S1 and S2 conditions were significantly lower compared with each sham condition. GOT thresholds were not significantly different between the S1 and S2 conditions at any time point. We concluded that dual-hemisphere tDCS over S1 and S2 can transiently enhance tactile discriminative task performance in chronic stroke patients with sensory dysfunction.

  3. Transcranial Direct Current Stimulation Over the Primary and Secondary Somatosensory Cortices Transiently Improves Tactile Spatial Discrimination in Stroke Patients

    PubMed Central

    Fujimoto, Shuhei; Kon, Noriko; Otaka, Yohei; Yamaguchi, Tomofumi; Nakayama, Takeo; Kondo, Kunitsugu; Ragert, Patrick; Tanaka, Satoshi

    2016-01-01

    In healthy subjects, dual hemisphere transcranial direct current stimulation (tDCS) over the primary (S1) and secondary somatosensory cortices (S2) has been found to transiently enhance tactile performance. However, the effect of dual hemisphere tDCS on tactile performance in stroke patients with sensory deficits remains unknown. The purpose of this study was to investigate whether dual hemisphere tDCS over S1 and S2 could enhance tactile discrimination in stroke patients. We employed a double-blind, crossover, sham-controlled experimental design. Eight chronic stroke patients with sensory deficits participated in this study. We used a grating orientation task (GOT) to measure the tactile discriminative threshold of the affected and non-affected index fingers before, during, and 10 min after four tDCS conditions. For both the S1 and S2 conditions, we placed an anodal electrode over the lesioned hemisphere and a cathodal electrode over the opposite hemisphere. We applied tDCS at an intensity of 2 mA for 15 min in both S1 and S2 conditions. We included two sham conditions in which the positions of the electrodes and the current intensity were identical to that in the S1 and S2 conditions except that current was delivered for the initial 15 s only. We found that GOT thresholds for the affected index finger during and 10 min after the S1 and S2 conditions were significantly lower compared with each sham condition. GOT thresholds were not significantly different between the S1 and S2 conditions at any time point. We concluded that dual-hemisphere tDCS over S1 and S2 can transiently enhance tactile discriminative task performance in chronic stroke patients with sensory dysfunction. PMID:27064531

  4. Large-Scale Expansion of the Face Representation in Somatosensory Areas of the Lateral Sulcus Following Spinal Cord Injuries in Monkeys

    PubMed Central

    Tandon, Shashank; Kambi, Niranjan; Lazar, Leslee; Mohammed, Hisham; Jain, Neeraj

    2009-01-01

    Transection of dorsal columns of the spinal cord in adult monkeys results in large-scale expansion of the face inputs into the deafferented hand region in the primary somatosensory cortex (area 3b) and the ventroposterior nucleus of thalamus. Here we determined if the upstream cortical areas, secondary somatosensory (S2) and parietal ventral (PV) areas, also undergo reorganization following lesions of the dorsal columns. Areas S2, PV and 3b were mapped after long-term unilateral lesions of the dorsal columns at cervical levels in adult macaque monkeys. In areas S2 and PV, we found neurons responding to touch on the face in regions where normally responses to touch on the hand and other body parts are seen. In the reorganized parts of S2 and PV inputs from the chin as well as other parts of the face were observed, whereas, in area 3b only the chin inputs expand into the deafferented regions. The results show that deafferentations lead to a more widespread brain reorganization than previously known. The data also show that reorganization in areas S2 and PV shares a common substrate with area 3b, but there are specific features that emerge in S2 and PV. PMID:19776287

  5. Identification of the source of the bilateral projection system from cortex to somatosensory neostriatum and an exploration of its physiological actions.

    PubMed

    Wright, A K; Ramanathan, S; Arbuthnott, G W

    2001-01-01

    Microinjections of cholera toxin B subunit were made into the area of the neostriatum that receives input from the primary somatosensory barrel cortex (SI) in the rat. Studies of the cortices then allowed retrograde identification of the cortical cells supplying the striatal input. When injections were restricted to the neostriatum, retrograde labelling was found in layer V of both SI cortices. Ipsilateral to the injection, cells were retrogradely filled with toxin in all parts of the barrel field, in adjacent parietal cortex, in the motor cortex and in prefrontal areas. A similar distribution across cortical areas was seen contralaterally; however, the stained cells in the SI were between rather than within barrel columns. An earlier anterograde study suggested two inputs from the SI to the neostriatum. The present results indicate that one input to the somatosensory area of the neostriatum arises bilaterally from neurons between the barrels of the SI, while the topographic pathway from below the barrels is present only ipsilaterally. These anatomical results indicate that separate stimulation of the two corticostriatal pathways from the barrel cortex is possible. Electrical stimulation of the contralateral cortex will activate the bilateral pathway, while electrical stimulation of the whisker pads activates the barrels and hence the topographic pathway. Neurons in the somatosensory region of the striatum responded to stimuli in the contralateral cortex and in the contralateral whisker pad. In spite of very different path lengths, stimuli via the two routes gave rise to excitatory postsynaptic potentials in the striatal cells with similar latencies. The excitatory postsynaptic potentials to whisker pad stimulation had a rapid rise time and usually resulted in at least one action potential. Responses to stimulation of the contralateral cortex rose to a peak more slowly and were more variable in latency, but also gave rise to an action potential in the majority of

  6. A Recurrent Network Model of Somatosensory Parametric Working Memory in the Prefrontal Cortex

    PubMed Central

    Miller, Paul; Brody, Carlos D; Romo, Ranulfo; Wang, Xiao-Jing

    2015-01-01

    A parametric working memory network stores the information of an analog stimulus in the form of persistent neural activity that is monotonically tuned to the stimulus. The family of persistent firing patterns with a continuous range of firing rates must all be realizable under exactly the same external conditions (during the delay when the transient stimulus is withdrawn). How this can be accomplished by neural mechanisms remains an unresolved question. Here we present a recurrent cortical network model of irregularly spiking neurons that was designed to simulate a somatosensory working memory experiment with behaving monkeys. Our model reproduces the observed positively and negatively monotonic persistent activity, and heterogeneous tuning curves of memory activity. We show that fine-tuning mathematically corresponds to a precise alignment of cusps in the bifurcation diagram of the network. Moreover, we show that the fine-tuned network can integrate stimulus inputs over several seconds. Assuming that such time integration occurs in neural populations downstream from a tonically persistent neural population, our model is able to account for the slow ramping-up and ramping-down behaviors of neurons observed in prefrontal cortex. PMID:14576212

  7. Exploring neuro-vascular and neuro-metabolic coupling in rat somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Mesquita, R. C.; Huppert, T. J.; Boas, D. A.

    2009-01-01

    The existence of a coupling between changes in neuronal activity, cerebral blood flow and blood oxygenation is well known. The explicit relationship between these systems, however, is complex and remains a subject of intense research. Here, we use direct electrophysiological recordings to predict blood flow and oxygenation changes measured with optical methods during parametric stimulation applied to the somatosensory cortex in rat brain. Using a multimodal model of the cerebral functional unit, we estimate a neuro-vascular and a neuro-metabolic transfer function relating the experimentally measured neural responses with the inputs to a vascular model predicting hemodynamic and blood oxygenation changes. We show that our model can accurately predict experimentally measured parametric hemodynamic evoked responses by using a single linear transfer function relationship with a reduced number of state parameters to relate the level of neural activity to evoked cerebral blood flow and oxygen metabolism changes. At the same time, we characterize the metabolic and vascular neural response functions and interpret their physiological significance.

  8. Receptive Field Properties of the Macaque Second Somatosensory Cortex: Evidence for Multiple Functional Representations

    PubMed Central

    Fitzgerald, Paul J.; Lane, John W.; Thakur, Pramodsingh H.; Hsiao, Steven S.

    2007-01-01

    The detailed functional organization of the macaque second somatosensory cortex (SII) is not well understood. Here we report the results of a study of the functional organization of the SII hand region that combines microelectrode mapping using hand-held stimuli with single-unit recordings using a motorized, computer-controlled tactile oriented bar. The data indicate that the SII hand region extends ~10 mm in the anteroposterior (AP) dimension, primarily within the upper bank of the lateral sulcus. Furthermore, we find evidence that this region consists of multiple functional fields, with a central field containing neurons that are driven well by cutaneous stimuli, flanked by an anterior field and a posterior field that each contain neurons that are driven well by proprioceptive stimuli and less well by cutaneous stimuli. The anterior field extends ~4 –5 mm AP, the central field extends ~3– 4 mm, and the posterior field extends ~3 mm. Data from the motorized stimulator indicate that neurons in the central field are more responsive to oriented bars, more frequently exhibit orientation tuning, and have larger receptive fields than neurons in the anterior and posterior fields. We speculate that the three putative fields play different functional roles in tactile perception; the anterior and posterior fields process information that involves both proprioceptive and cutaneous input such as sensorimotor integration or stereognosis, whereas the central field processes primarily cutaneous information. PMID:15590936

  9. Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex

    PubMed Central

    Tolner, Else A.; Sheikh, Aminah; Yukin, Alexey Y.; Kaila, Kai; Kanold, Patrick

    2012-01-01

    Patterned neuronal activity such as spindle bursts in the neonatal cortex is likely to promote the maturation of cortical synapses and neuronal circuits. Previous work on cats has shown that removal of subplate neurons, a transient neuronal population in the immature cortex, prevents the functional maturation of thalamocortical and intracortical connectivity. Here we studied the effect of subplate removal in the neonatal rat somatosensory cortex (S1). Using intracortical EEG we show that after selective removal of subplate neurons in the limb region of S1, endogenous and sensory evoked spindle burst activity is largely abolished. Consistent with the reduced in vivo activity in the S1 limb region, we find by in vitro recordings that thalamocortical inputs to layer 4 neurons are weak. In addition, we find that removal of subplate neurons in the S1 barrel region prevents the development of the characteristic histological barrel-like appearance. Thus, subplate neurons are crucially involved in the generation of particular types of early network activity in the neonatal cortex, which are an important feature of cortical development. The altered EEG pattern following subplate damage could be applicable in the neurological assessment of human neonates. PMID:22238105

  10. Rat claustrum coordinates but does not integrate somatosensory and motor cortical information.

    PubMed

    Smith, Jared B; Radhakrishnan, Harsha; Alloway, Kevin D

    2012-06-20

    The function of the claustrum is a fundamental issue in neuroscience. Anatomical data indicate that the rat claustrum is part of an interhemispheric circuit that could be involved in the bilateral coordination of whisker movements. Given that whisking is a somesthetic-guided motor behavior, the goal of the current study was to elucidate the connections of the claustrum with respect to the whisker representations in the primary somatosensory (wSI) and motor (wMI) cortical areas. Anterograde tracer injections showed that wMI projects most densely to the claustrum in the contralateral hemisphere, whereas wSI does not project to the claustrum in either hemisphere. Injections of different retrograde tracers into wMI and wSI of the same animal revealed intermingled populations of labeled neurons in the claustrum, as well as many double-labeled neurons. This indicates that the same part of the claustrum projects to the whisker representations in both SI and MI. Finally, injections of different anterograde tracers in the wMI regions of both hemispheres were combined with a retrograde tracer injection in wSI, and this produced dense terminal labeling around retrogradely labeled neurons in the claustrum of both hemispheres. Although the rodent claustrum is probably involved in the interhemispheric coordination of the MI and SI whisker representations, it does not receive inputs from both of these cortical regions. Hence, the claustrum should not be universally regarded as an integrator of somesthetic and motor information.

  11. Altered Onset Response Dynamics in Somatosensory Processing in Autism Spectrum Disorder

    PubMed Central

    Khan, Sheraz; Hashmi, Javeria A.; Mamashli, Fahimeh; Bharadwaj, Hari M.; Ganesan, Santosh; Michmizos, Konstantinos P.; Kitzbichler, Manfred G.; Zetino, Manuel; Garel, Keri-Lee A.; Hämäläinen, Matti S.; Kenet, Tal

    2016-01-01

    Abnormalities in cortical connectivity and evoked responses have been extensively documented in autism spectrum disorder (ASD). However, specific signatures of these cortical abnormalities remain elusive, with data pointing toward abnormal patterns of both increased and reduced response amplitudes and functional connectivity. We have previously proposed, using magnetoencephalography (MEG) data, that apparent inconsistencies in prior studies could be reconciled if functional connectivity in ASD was reduced in the feedback (top-down) direction, but increased in the feedforward (bottom-up) direction. Here, we continue this line of investigation by assessing abnormalities restricted to the onset, feedforward inputs driven, component of the response to vibrotactile stimuli in somatosensory cortex in ASD. Using a novel method that measures the spatio-temporal divergence of cortical activation, we found that relative to typically developing participants, the ASD group was characterized by an increase in the initial onset component of the cortical response, and a faster spread of local activity. Given the early time window, the results could be interpreted as increased thalamocortical feedforward connectivity in ASD, and offer a plausible mechanism for the previously observed increased response variability in ASD, as well as for the commonly observed behaviorally measured tactile processing abnormalities associated with the disorder. PMID:27375417

  12. Vibrotactile masking experiments reveal accelerated somatosensory processing in congenitally blind braille readers.

    PubMed

    Bhattacharjee, Arindam; Ye, Amanda J; Lisak, Joy A; Vargas, Maria G; Goldreich, Daniel

    2010-10-27

    Braille reading is a demanding task that requires the identification of rapidly varying tactile patterns. During proficient reading, neighboring characters impact the fingertip at ∼100 ms intervals, and adjacent raised dots within a character at 50 ms intervals. Because the brain requires time to interpret afferent sensorineural activity, among other reasons, tactile stimuli separated by such short temporal intervals pose a challenge to perception. How, then, do proficient Braille readers successfully interpret inputs arising from their fingertips at such rapid rates? We hypothesized that somatosensory perceptual consolidation occurs more rapidly in proficient Braille readers. If so, Braille readers should outperform sighted participants on masking tasks, which demand rapid perceptual processing, but would not necessarily outperform the sighted on tests of simple vibrotactile sensitivity. To investigate, we conducted two-interval forced-choice vibrotactile detection, amplitude discrimination, and masking tasks on the index fingertips of 89 sighted and 57 profoundly blind humans. Sighted and blind participants had similar unmasked detection (25 ms target tap) and amplitude discrimination (compared with 100 μm reference tap) thresholds, but congenitally blind Braille readers, the fastest readers among the blind participants, exhibited significantly less masking than the sighted (masker, 50 Hz, 50 μm; target-masker delays, ±50 and ±100 ms). Indeed, Braille reading speed correlated significantly and specifically with masking task performance, and in particular with the backward masking decay time constant. We conclude that vibrotactile sensitivity is unchanged but that perceptual processing is accelerated in congenitally blind Braille readers.

  13. Developmental alterations in noxious-evoked EEG activity recorded from rat primary somatosensory cortex.

    PubMed

    Devonshire, I M; Greenspon, C M; Hathway, G J

    2015-10-01

    Primary somatosensory cortex (S1) contains a nociceptive map that localizes potential tissue damage on the body and encodes stimulus intensity. An objective and specific biomarker of pain however is currently lacking and is urgently required for use in non-verbal clinical populations as well as in the validation of pre-clinical pain models. Here we describe studies to see if the responses of the S1 in juvenile rats are different to those in the adult. We recorded electroencephalogram (EEG) responses from S1 of lightly-anesthetized Sprague-Dawley rats at either postnatal day 21 or postnatal day 40 during the presentation of noxious (55 °C) or innocuous (30 °C) thermal stimuli applied to the plantar surface of the left hindpaw. The total EEG power across the recording period was the same in both ages after stimulation but the frequency distribution was significantly affected by age. Noxious heat evoked a significant increase in theta band (4-8 Hz) activity in adults only (P<0.0001 compared to baseline; P<0.0001 compared to juveniles). There were no significant differences in EEG responses to innocuous thermal stimuli. These data show that there are significant alterations in the processing of nociceptive inputs within the maturing cortex and that cortical theta activity is involved only in the adult cortical response to noxious stimulation.

  14. Deciphering laminar-specific neural inputs with line-scanning fMRI

    PubMed Central

    Yu, Xin; Qian, Chunqi; Chen, Der-yow; Dodd, Stephen; Koretsky, Alan P.

    2014-01-01

    Using a line-scanning method during functional magnetic resonance imaging (fMRI) we obtain high temporal (50 ms) and spatial (50 μm) resolution information along the cortical thickness, and show that the laminar position of fMRI onset coincides with distinct neural inputs t in therat somatosensory and motor cortices. This laminar specific fMRI onset allowed the identification of the neural inputs underlying ipsilateral fMRI activation in the barrel cortex due to peripheral denervation-induced plasticity. PMID:24240320

  15. Double anterograde tracing of outputs from adjacent "barrel columns" of rat somatosensory cortex. Neostriatal projection patterns and terminal ultrastructure.

    PubMed

    Wright, A K; Norrie, L; Ingham, C A; Hutton, E A; Arbuthnott, G W

    1999-01-01

    The sensory input to the neostriatum from groups of cortical cells related to individual facial vibrissae has been investigated at both light- and electron-microscopic resolution. The purpose of the study was to establish the extent to which corticostriatal input maintains the anatomical coding of spatial information that is present in cortex. A double anterograde tracing method was used to identify the output projections from groups of adjacent neurons in different barrel columns, so that the anatomical relationships between two groups could be studied throughout their length. Adjacent whiskers are represented in adjoining cortical barrels and an examination of corticostriatal projections from these reveals two patterns of projection. In one, the anatomical topography is partially preserved; the barrels are represented in adjoining, discrete, areas of the somatosensory neostriatum. In the second projection pattern, the neostriatal innervation is diffuse and adjacent barrels are represented in overlapping regions of the neostriatum. Moreover, the fibres are thinner, have smaller boutons, and are present in both the ipsilateral and contralateral neostriatum. The two systems also enter the neostriatal neuropile separately. The discrete topographic system enters the adjacent neostriatum as collaterals which leave the descending corticofugal fibres at right angles, while the diffuse system enters directly from the corpus callosum at an acute angle. Examination of the neostriatal terminal fields by correlated light and electron microscopy, shows that characteristic axospinous terminals on spiny neurons are made by both groups of cortical fibres, although they differ in their size and morphology. It is concluded that at least two corticostriatal pathways arise from the barrel cortex. One connection maintains some of the anatomical code implicit in the barrel pattern of primary somatosensory cortex, but another, more diffuse, system is overlaid upon it which may carry

  16. Test-retest reliability of concurrently recorded steady-state and somatosensory evoked potentials in somatosensory sustained spatial attention.

    PubMed

    Pang, Cheuk Yee; Mueller, Matthias M

    2014-07-01

    We investigated the test-retest reliability of sustained spatial attention modulation of steady-state somatosensory evoked potentials (SSSEPs) and the N140 component of the somatosensory evoked potentials (SEPs). Participants attended to one or both hands to perform a target detection task while concurrent mechanical vibrations were presented for 4500ms to both hands in two recording sessions. Results revealed that the amplitude and the attentional modulation of SSSEPs had high test-retest reliability, while the test-retest reliability for the N140 component was low. SSSEPs for stimuli with focused and divided attention had about the same amplitude. For the N140 component only the stimuli with focused attention were significantly enhanced. We found greater habituation effects for the N140 compared to SSSEP amplitudes but attentional modulation was unaffected in both signals. Given the great test-retest reliability of SSSEP amplitude modulation with attention, SSSEPs serve as an excellent tool for studying sustained spatial attention in somatosensation.

  17. UWB dual burst transmit driver

    SciTech Connect

    Dallum, Gregory E; Pratt, Garth C; Haugen, Peter C; Zumstein, James M; Vigars, Mark L; Romero, Carlos E

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  18. Vestibular and Somatosensory Covergence in Postural Equilibrium Control: Insights from Spaceflight and Bed Rest Studies

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Peters, B. T.; Phillips, T.; Platts, S. H.; hide

    2014-01-01

    resulting from prolonged bed-rest impacts functional performance particularly for tests with a greater requirement for postural equilibrium control. These changes in functional performance were paralleled by similar decrement in tests designed to specifically assess postural equilibrium and dynamic gait control. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions.

  19. Synaptic basis for whisker deprivation-induced synaptic depression in rat somatosensory cortex.

    PubMed

    Bender, Kevin J; Allen, Cara B; Bender, Vanessa A; Feldman, Daniel E

    2006-04-19

    Whisker deprivation weakens excitatory layer 4 (L4) inputs to L2/3 pyramidal cells in rat primary somatosensory (S1) cortex, which is likely to contribute to whisker map plasticity. This weakening has been proposed to represent long-term depression (LTD) induced by sensory deprivation in vivo. Here, we studied the synaptic expression mechanisms for deprivation-induced weakening of L4-L2/3 inputs and assessed its similarity to LTD, which is known to be expressed presynaptically at L4-L2/3 synapses. Whisker deprivation increased the paired pulse ratio at L4-L2/3 synapses and slowed the use-dependent block of NMDA receptor currents by MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate], indicating that deprivation reduced transmitter release probability at these synapses. In contrast, deprivation did not alter either miniature EPSC amplitude in L2/3 neurons or the amplitude of quantal L4-L2/3 synaptic responses measured in strontium, indicating that postsynaptic responsiveness was unchanged. In young postnatal day 12 (P12) rats, at least 4 d of deprivation were required to significantly weaken L4-L2/3 synapses. Similar weakening occurred when deprivation began at older ages (P20), when synapses are mostly mature, indicating that weakening is unlikely to represent a failure of synaptic maturation but instead represents a reduction in the strength of existing synapses. Thus, whisker deprivation weakens L4-L2/3 synapses by decreasing presynaptic function, similar to known LTD mechanisms at this synapse.

  20. Cellular mechanisms for response heterogeneity among L2/3 pyramidal cells in whisker somatosensory cortex.

    PubMed

    Elstrott, Justin; Clancy, Kelly B; Jafri, Haani; Akimenko, Igor; Feldman, Daniel E

    2014-07-15

    Whisker deflection evokes sparse, low-probability spiking among L2/3 pyramidal cells in rodent somatosensory cortex (S1), with spiking distributed nonuniformly between more and less responsive cells. The cellular and local circuit factors that determine whisker responsiveness across neurons are unclear. To identify these factors, we used two-photon calcium imaging and loose-seal recording to identify more and less responsive L2/3 neurons in S1 slices in vitro, during feedforward recruitment of the L2/3 network by L4 stimulation. We observed a broad gradient of spike recruitment thresholds within local L2/3 populations, with low- and high-threshold cells intermixed. This recruitment gradient was significantly correlated across different L4 stimulation sites, and between L4-evoked and whisker-evoked responses in vivo, indicating that a substantial component of responsiveness is independent of tuning to specific feedforward inputs. Low- and high-threshold L2/3 pyramidal cells differed in L4-evoked excitatory synaptic conductance and intrinsic excitability, including spike threshold and the likelihood of doublet spike bursts. A gradient of intrinsic excitability was observed across neurons. Cells that spiked most readily to L4 stimulation received the most synaptic excitation but had the lowest intrinsic excitability. Low- and high-threshold cells did not differ in dendritic morphology, passive membrane properties, or L4-evoked inhibitory conductance. Thus multiple gradients of physiological properties exist across L2/3 pyramidal cells, with excitatory synaptic input strength best predicting overall spiking responsiveness during network recruitment.

  1. A MEG investigation of somatosensory processing in the rhesus monkey.

    PubMed

    Wilson, Tony W; Godwin, Dwayne W; Czoty, Paul W; Nader, Michael A; Kraft, Robert A; Buchheimer, Nancy C; Daunais, James B

    2009-07-15

    The use of minimally and non-invasive neuroimaging methods in animal models has sharply increased over the past decade. Such studies have enhanced understanding of the neural basis of the physical signals quantified by these tools, and have addressed an assortment of fundamental and otherwise intractable questions in neurobiology. To date, these studies have almost exclusively utilized positron-emission tomography or variants of magnetic resonance based imaging. These methods provide largely indirect measures of brain activity and are strongly reliant on intact vasculature and normal blood-flow, which is known to be compromised in many clinical conditions. The current study provides the first demonstration of whole-head magnetoencephalography (MEG), a non-invasive and direct measure of neuronal activity, in a rhesus monkey, and in the process supplies the initial data on systems-level dynamics in somatosensory cortices. An adult rhesus monkey underwent three separate studies of tactile stimulation on the pad of the right second or fifth digit as whole-head MEG data were acquired. The neural generators of the primary neuromagnetic components were localized using an equivalent-current-dipole model. Second digit stimulation produced an initial cortical response peaking approximately 16 ms after stimulus onset in the contralateral somatosensory cortices, with a later response at approximately 96 ms in an overlapping or nearby neural area with a roughly orthogonal orientation. Stimulation of the fifth digit produced similar results, the main exception being a substantially weaker later response. We believe the 16 ms response is likely the monkey homologue of the human M50 response, as both are the earliest cortical response and localize to the contralateral primary somatosensory area. Thus, these data suggest that mechanoreception in nonhuman primates operates substantially faster than that in adult humans. More broadly, these results demonstrate that it is feasible to

  2. Hypothermia amplifies somatosensory-evoked potentials in uninjured rats.

    PubMed

    Madhok, Jai; Wu, Dan; Xiong, Wei; Geocadin, Romergryko G; Jia, Xiaofeng

    2012-07-01

    Temperature fluctuations significantly impact neurological injuries in intensive care units. As the benefits of therapeutic hypothermia continue to unfold, many of these discoveries are generated by studies in animal models undergoing experimental procedures under the influence of anesthetics. We studied the effect of induced hypothermia on neural electrophysiological signals of an uninjured brain in a rodent model while under isoflurane. Fourteen rats were divided into 2 groups (n=7 each), on the basis of electrode placement at either frontal-occipital or primary somatosensory cortical locations. Neural signals were recorded during normothermia (T=36.5 to 37.5°C), mild hypothermia (T=32 to 34°C), and hyperthermia (T=38.5 to 39.5°C). The burst-suppression ratio was used to evaluate electroencephalography (EEG), and amplitude-latency analysis was used to assess somatosensory-evoked potentials (SSEPs). Hypothermia was characterized by an increased burst-suppression ratio (mean±SD) of 0.58±0.06 in hypothermia versus 0.16±0.13 in normothermia, P<0.001 in frontal-occipital; and 0.30±0.13 in hypothermia versus 0.04±0.04 in normothermia, P=0.006 in somatosensory. There was potentiation of SSEP (2.89±1.24 times the normothermic baseline in hypothermia, P=0.02) and prolonged peak latency (N10: 10.8±0.4 ms in hypothermia vs. 9.1±0.3 ms in normothermia; P15: 16.2±0.8 ms in hypothermia vs. 13.7±0.6 ms in normothermia; P<0.001), whereas hyperthermia was primarily marked by shorter peak latencies (N10: 8.6±0.2 ms, P15: 12.6±0.4 m; P<0.001). In the absence of brain injury in a rodent model, hypothermia induces significant increase to the SSEP amplitude while increasing SSEP latency. Hypothermia also suppressed EEGs at different regions of the brain by different degrees. The changes to SSEP and EEG are both reversible with subsequent rewarming.

  3. A MEG investigation of somatosensory processing in the rhesus monkey

    PubMed Central

    Wilson, Tony W.; Godwin, Dwayne W.; Czoty, Paul W.; Nader, Michael A.; Kraft, Robert A.; Buchheimer, Nancy C.; Daunais, James B.

    2009-01-01

    The use of minimally and non-invasive neuroimaging methods in animal models has sharply increased over the past decade. Such studies have enhanced understanding of the neural basis of the physical signals quantified by these tools, and have addressed an assortment of fundamental and otherwise intractable questions in neurobiology. To date, these studies have almost exclusively utilized positron-emission tomography or variants of magnetic resonance based imaging. These methods provide largely indirect measures of brain activity and are strongly reliant on intact vasculature and normal blood flow, which is known to be compromised in many clinical conditions. The current study provides the first demonstration of whole-head magnetoencephalography (MEG), a non-invasive and direct measure of neuronal activity, in a rhesus monkey, and in the process supplies the initial data on systems-level dynamics in somatosensory cortices. An adult rhesus monkey underwent three separate studies of tactile stimulation on the pad of the right second or fifth digit as whole-head MEG data were acquired. The neural generators of the primary neuromagnetic components were localized using an equivalent-current-dipole model. Second digit stimulation produced an initial cortical response peaking ∼16 ms after stimulus onset in the contralateral somatosensory cortices, with a later response at ∼96 ms in an overlapping or nearby neural area with a roughly orthogonal orientation. Stimulation of the fifth digit produced similar results, the main exception being a substantially weaker later response. We believe the 16ms response is likely the monkey homologue of the human M50 response, as both are the earliest cortical response and localize to the contralateral primary somatosensory area. Thus, these data suggest that mechanoreception in nonhuman primates operates substantially faster than that in adult humans. More broadly, these results demonstrate that it is feasible to use current human whole

  4. Prism adaptation contrasts perceptual habituation for repetitive somatosensory stimuli.

    PubMed

    Torta, D M; Tatu, M K; Cotroneo, D; Alamia, A; Folegatti, A; Trojan, J

    2016-03-01

    Prism adaptation (PA) is a non-invasive procedure that requires performing a visuo-motor pointing task while wearing prism goggles inducing a visual displacement of the pointed target. This procedure involves a reorganization of sensorimotor coordination, and induces long-lasting effects on numerous higher-order cognitive functions in healthy volunteers and neglect patients. Prismatic displacement (PD) of the visual field can be induced when prisms are worn but no sensorimotor task is required. In this case, it is unlikely that any subsequent reorganization takes place. The effects of PD are short-lived in the sense that they last as long as prisms are worn. In this study we aimed, to the best of our knowledge for the first time, at investigating whether PA and PD induce changes in the perception of intensity of nociceptive and non- nociceptive somatosensory stimuli. We induced, in healthy volunteers, PD (experiment 1), or PA (experiment 2) and asked participants to rate the intensity of the stimuli applied to the hand undergoing the visuo-proprioceptive conflict (experiment 1) or adaptation (experiment 2). Our results indicate that: 1) the visuo-proprioceptive conflict induced by PD does not reduce the perceived intensity of the stimuli, 2) PA prevents perceptual habituation for both nociceptive and non-nociceptive somatosensory stimuli. Moreover, to investigate the possible underlying mechanisms of the effects of PA we conducted a third experiment in which stimuli were applied both at the adapted and the non-adapted hand. In line with the results of experiment 2, we found that perceptual habituation was prevented for stimuli applied onto the adapted hand. Moreover, we observed the same finding for stimuli applied onto the non-adapted hand. This result suggests that the detention of habituation is not merely driven by changes in spatial attention allocation. Taken together, these data indicate that prisms can affect the perceived intensity of somatosensory stimuli

  5. Distinct vestibular effects on early and late somatosensory cortical processing in humans.

    PubMed

    Pfeiffer, Christian; van Elk, Michiel; Bernasconi, Fosco; Blanke, Olaf

    2016-01-15

    In non-human primates several brain areas contain neurons that respond to both vestibular and somatosensory stimulation. In humans, vestibular stimulation activates several somatosensory brain regions and improves tactile perception. However, less is known about the spatio-temporal dynamics of such vestibular-somatosensory interactions in the human brain. To address this issue, we recorded high-density electroencephalography during left median nerve electrical stimulation to obtain Somatosensory Evoked Potentials (SEPs). We analyzed SEPs during vestibular activation following sudden decelerations from constant-velocity (90°/s and 60°/s) earth-vertical axis yaw rotations and SEPs during a non-vestibular control period. SEP analysis revealed two distinct temporal effects of vestibular activation: An early effect (28-32ms post-stimulus) characterized by vestibular suppression of SEP response strength that depended on rotation velocity and a later effect (97-112ms post-stimulus) characterized by vestibular modulation of SEP topographical pattern that was rotation velocity-independent. Source estimation localized these vestibular effects, during both time periods, to activation differences in a distributed cortical network including the right postcentral gyrus, right insula, left precuneus, and bilateral secondary somatosensory cortex. These results suggest that vestibular-somatosensory interactions in humans depend on processing in specific time periods in somatosensory and vestibular cortical regions. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Preserved somatosensory conduction in a patient with complete cervical spinal cord injury.

    PubMed

    Awad, Amar; Levi, Richard; Lindgren, Lenita; Hultling, Claes; Westling, Göran; Nyberg, Lars; Eriksson, Johan

    2015-05-01

    Neurophysiological investigation has shown that patients with clinically complete spinal cord injury can have residual motor sparing ("motor discomplete"). In the current study somatosensory conduction was assessed in a patient with clinically complete spinal cord injury and a novel methodology for assessing such preservation is described, in this case indicating "sensory discomplete" spinal cord injury. Blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine the somatosensory system in a healthy subject and in a subject with a clinically complete cervical spinal cord injury, by applying tactile stimulation above and below the level of spinal cord injury, with and without visual feedback. In the participant with spinal cord injury, somatosensory stimulation below the neurological level of the lesion gave rise to BOLD signal changes in the corresponding areas of the somatosensory cortex. Visual feedback of the stimulation strongly modulated the somatosensory BOLD signal, implying that cortico-cortical rather than spino-cortical connections can drive activity in the somatosensory cortex. Critically, BOLD signal change was also evident when the visual feedback of the stimulation was removed, thus demonstrating sensory discomplete spinal cord injury. Given the existence of sensory discomplete spinal cord injury, preserved but hitherto undetected somatosensory conduction might contribute to the unexplained variability related to, for example, the propensity to develop decubitus ulcers and neuropathic pain among patients with clinically complete spinal cord injury.

  7. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits

    PubMed Central

    Meyer, Sarah; Kessner, Simon S.; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C.; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert

    2015-01-01

    The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand. PMID:26900565

  8. Motor and somatosensory conversion disorder: a functional unawareness syndrome?

    PubMed

    Perez, David L; Barsky, Arthur J; Daffner, Kirk; Silbersweig, David A

    2012-01-01

    Although conversion disorder is closely connected to the origins of neurology and psychiatry, it remains poorly understood. In this article, the authors discuss neural and clinical parallels between lesional unawareness disorders and unilateral motor and somatosensory conversion disorder, emphasizing functional neuroimaging/disease correlates. Authors suggest that a functional-unawareness neurobiological framework, mediated by right hemisphere-lateralized, large-scale brain network dysfunction, may play a significant role in the neurobiology of conversion disorder. The perigenual anterior cingulate and the posterior parietal cortices are detailed as important in disease pathophysiology. Further investigations will refine the functional-unawareness concept, clarify the role of affective circuits, and delineate the process through which functional neurologic symptoms emerge.

  9. Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.

    PubMed

    Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo

    2016-09-01

    In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.

  10. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    PubMed Central

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2015-01-01

    Present day cortical brain machine interfaces (BMI) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available (for review see Robles-De-La-Torre, 2006). To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation (ICMS) to provide ‘tactile’ sensation to a non-human primate (NHP). Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area (AIP), the parietal reach region (PRR) and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. PMID:25242377

  11. Microglia contact induces synapse formation in developing somatosensory cortex

    PubMed Central

    Miyamoto, Akiko; Wake, Hiroaki; Ishikawa, Ayako Wendy; Eto, Kei; Shibata, Keisuke; Murakoshi, Hideji; Koizumi, Schuichi; Moorhouse, Andrew J.; Yoshimura, Yumiko; Nabekura, Junichi

    2016-01-01

    Microglia are the immune cells of the central nervous system that play important roles in brain pathologies. Microglia also help shape neuronal circuits during development, via phagocytosing weak synapses and regulating neurogenesis. Using in vivo multiphoton imaging of layer 2/3 pyramidal neurons in the developing somatosensory cortex, we demonstrate here that microglial contact with dendrites directly induces filopodia formation. This filopodia formation occurs only around postnatal day 8–10, a period of intense synaptogenesis and when microglia have an activated phenotype. Filopodia formation is preceded by contact-induced Ca2+ transients and actin accumulation. Inhibition of microglia by genetic ablation decreases subsequent spine density, functional excitatory synapses and reduces the relative connectivity from layer 4 neurons. Our data provide the direct demonstration of microglial-induced spine formation and provide further insights into immune system regulation of neuronal circuit development, with potential implications for developmental disorders of immune and brain dysfunction. PMID:27558646

  12. Perceiving Invisible Light through a Somatosensory Cortical Prosthesis

    PubMed Central

    Thomson, Eric E.; Carra, Rafael; Nicolelis, Miguel A.L.

    2013-01-01

    Sensory neuroprostheses show great potential for alleviating major sensory deficits. It is not known, however, whether such devices can augment the subject’s normal perceptual range. Here we show that adult rats can learn to perceive otherwise invisible infrared (IR) light through a neuroprosthesis that couples the output of a head-mounted IR sensor to their somatosensory cortex (S1) via intracortical microstimulation (ICMS). Rats readily learn to use this new information source, and generate active exploratory strategies to discriminate among IR sources in their environment. S1 neurons in these IR-perceiving rats respond to both whisker deflection and ICMS, suggesting that the IR representation does not displace the original tactile representation. Hence, sensory cortical prostheses, in addition to restoring normal neurological functions, may serve to expand natural perceptual capabilities in mammals. PMID:23403583

  13. Decoding stimulus features in primate somatosensory cortex during perceptual categorization

    PubMed Central

    Alvarez, Manuel; Zainos, Antonio; Romo, Ranulfo

    2015-01-01

    Neurons of the primary somatosensory cortex (S1) respond as functions of frequency or amplitude of a vibrotactile stimulus. However, whether S1 neurons encode both frequency and amplitude of the vibrotactile stimulus or whether each sensory feature is encoded by separate populations of S1 neurons is not known, To further address these questions, we recorded S1 neurons while trained monkeys categorized only one sensory feature of the vibrotactile stimulus: frequency, amplitude, or duration. The results suggest a hierarchical encoding scheme in S1: from neurons that encode all sensory features of the vibrotactile stimulus to neurons that encode only one sensory feature. We hypothesize that the dynamic representation of each sensory feature in S1 might serve for further downstream processing that leads to the monkey’s psychophysical behavior observed in these tasks. PMID:25825711

  14. Behavioral detection of passive whisker stimuli requires somatosensory cortex.

    PubMed

    Miyashita, Toshio; Feldman, Daniel E

    2013-07-01

    Rodent whisker sensation occurs both actively, as whiskers move rhythmically across objects, and in a passive mode in which externally applied deflections are sensed by static, non-moving whiskers. Passive whisker stimuli are robustly encoded in the somatosensory (S1) cortex, and provide a potentially powerful means of studying cortical processing. However, whether S1 contributes to passive sensation is debated. We developed 2 new behavioral tasks to assay passive whisker sensation in freely moving rats: Detection of unilateral whisker deflections and discrimination of right versus left whisker deflections. Stimuli were simple, simultaneous multi-whisker deflections. Local muscimol inactivation of S1 reversibly and robustly abolished sensory performance on these tasks. Thus, S1 is required for the detection and discrimination of simple stimuli by passive whiskers, in addition to its known role in active whisker sensation.

  15. THE NEURAL CODE FOR TACTILE ROUGHNESS IN THE SOMATOSENSORY NERVES.

    PubMed

    Lieber, Justin D; Xia, Xinyue; Weber, Alison I; Bensmaia, Sliman J

    2017-08-30

    Roughness is the most salient perceptual dimension of surface texture but has no well-defined physical basis. Here, we seek to determine the neural determinants of tactile roughness in the somatosensory nerves. Specifically, we record the patterns of activation evoked in tactile nerve fibers of anesthetized Rhesus macaques to a large and diverse set of natural textures and assess what aspect of these patterns of activation can account for psychophysical judgments of roughness, obtained from human observers. We show that perceived roughness is determined by the variation in the population response, weighted by fiber type. That is, a surface will feel rough to the extent that the activity varies across nerve fibers and varies across time within nerve fibers. We show that this variation-based neural code can account not only for magnitude estimates of roughness but also for roughness discrimination performance. Copyright © 2017, Journal of Neurophysiology.

  16. Electrical Circuit Modeling for Somatosensory Evoked Fields in Magnetoencephalogram

    NASA Astrophysics Data System (ADS)

    Ishihara, Shinichi; Tanaka, Keita; Uchikawa, Yoshinori; Kobayashi, Koichiro

    We measured somatosensory evoked fields (SEFs) by applying on electric stimulus to the right finger (medium nerve and ulnar nerve) and the right ankle (posterior tibial nerve) with a 39-channel SQUID system, which can measure magnetic-field components perpendicular (Br) and tangential to the scalp (Bθ, Bφ) simultaneously. To investigate the relationship between phase lag and stimulus repetition frequency (SRF), the delay time of a component synchronized with the SRFs was calculated by convoluting the reference signal and the measured SEF. The phase lag was linear to SRF for at least three different ranges of the SRFs in each SEF data. We simulated the SEF responses based on the results of phase-lag characteristics and determined the parameters for modeling. To quantitatively characterize the component of SEF, we proposed electric circuit model for the characteristics of phase-lag of the SEF with stimuli frequency.

  17. Neural correlates of ticklishness in the rat somatosensory cortex.

    PubMed

    Ishiyama, S; Brecht, M

    2016-11-11

    Rats emit ultrasonic vocalizations in response to tickling by humans. Tickling is rewarding through dopaminergic mechanisms, but the function and neural correlates of ticklishness are unknown. We confirmed that tickling of rats evoked vocalizations, approach, and unsolicited jumps (Freudensprünge). Recordings in the trunk region of the rat somatosensory cortex showed intense tickling-evoked activity in most neurons, whereas a minority of cells were suppressed by tickling. Tickling responses predicted nontactile neural responses to play behaviors, which suggests a neuronal link between tickling and play. Anxiogenic conditions suppressed tickling-evoked vocalizations and trunk cortex activity. Deep-layer trunk cortex neurons discharged during vocalizations, and deep-layer microstimulation evoked vocalizations. Our findings provide evidence for deep-layer trunk cortex activity as a neural correlate of ticklishness.

  18. Children with Autism Show Reduced Somatosensory Response: An MEG Study

    PubMed Central

    Marco, Elysa J.; Khatibi, Kasra; Hill, Susanna S.; Siegel, Bryna; Arroyo, Monica S.; Dowling, Anne F.; Neuhaus, John M.; Sherr, Elliott H.; Hinkley, Leighton N. B.; Nagarajan, Srikantan S.

    2012-01-01

    Lay Abstract Autism spectrum disorders are reported to affect nearly one out of every one hundred children, with over 90% of these children showing behavioral disturbances related to the processing of basic sensory information. Behavioral sensitivity to light touch, such as profound discomfort with clothing tags and physical contact, is a ubiquitous finding in children on the autism spectrum. In this study, we investigate the strength and timing of brain activity in response to simple, light taps to the fingertip. Our results suggest that children with autism show a diminished early response in the primary somatosensory cortex (S1). This finding is most evident in the left hemisphere. In exploratory analysis, we also show that tactile sensory behavior, as measured by the Sensory Profile, may be a better predictor of the intensity and timing of brain activity related to touch than a clinical autism diagnosis. We report that children with atypical tactile behavior have significantly lower amplitude somatosensory cortical responses in both hemispheres. Thus sensory behavioral phenotype appears to be a more powerful strategy for investigating neural activity in this cohort. This study provides evidence for atypical brain activity during sensory processing in autistic children and suggests that our sensory behavior based methodology may be an important approach to investigating brain activity in people with autism and neurodevelopmental disorders. Scientific Abstract The neural underpinnings of sensory processing differences in autism remain poorly understood. This prospective magnetoencephalography (MEG) study investigates whether children with autism show atypical cortical activity in the primary somatosensory cortex (S1) in comparison to matched controls. Tactile stimuli were clearly detectable, painless taps applied to the distal phalanx of the second (D2) and third (D3) fingers of the right and left hands. Three tactile paradigms were administered: an oddball

  19. Behavioral Detection of Passive Whisker Stimuli Requires Somatosensory Cortex

    PubMed Central

    Miyashita, Toshio; Feldman, Daniel E.

    2013-01-01

    Rodent whisker sensation occurs both actively, as whiskers move rhythmically across objects, and in a passive mode in which externally applied deflections are sensed by static, non-moving whiskers. Passive whisker stimuli are robustly encoded in the somatosensory (S1) cortex, and provide a potentially powerful means of studying cortical processing. However, whether S1 contributes to passive sensation is debated. We developed 2 new behavioral tasks to assay passive whisker sensation in freely moving rats: Detection of unilateral whisker deflections and discrimination of right versus left whisker deflections. Stimuli were simple, simultaneous multi-whisker deflections. Local muscimol inactivation of S1 reversibly and robustly abolished sensory performance on these tasks. Thus, S1 is required for the detection and discrimination of simple stimuli by passive whiskers, in addition to its known role in active whisker sensation. PMID:22661403

  20. MoS2 based dual input logic AND gate

    NASA Astrophysics Data System (ADS)

    Martinez, Luis M.; Pinto, Nicholas J.; Naylor, Carl H.; Johnson, A. T. Charlie

    2016-12-01

    Crystalline monolayers of CVD MoS2 are used as the active semiconducting channel in a split-gate field effect transistor. The device demonstrates logic AND functionality that is controlled by independently addressing each gate terminal with ±10V. When +10V was simultaneously applied to both gates, the device was conductive (ON), while any other combination of gate voltages rendered the device resistive (OFF). The ON/OFF ratio of the device was ˜ 35 and the charge mobility using silicon nitride as the gate dielectric was 1.2cm2/V-s and 0.1cm2/V-s in the ON and OFF states respectively. Clear discrimination between the two states was observed when a simple circuit containing a load resistor was used to test the device logic AND functionality at 10Hz. One advantage is that split gate technology can reduce the number of devices required in complex circuits, leading to compact electronics and large scale integration based on intrinsic 2-D semiconducting materials.

  1. Atypical visual and somatosensory adaptation in schizophrenia-spectrum disorders

    PubMed Central

    Andrade, G N; Butler, J S; Peters, G A; Molholm, S; Foxe, J J

    2016-01-01

    Neurophysiological investigations in patients with schizophrenia consistently show early sensory processing deficits in the visual system. Importantly, comparable sensory deficits have also been established in healthy first-degree biological relatives of patients with schizophrenia and in first-episode drug-naive patients. The clear implication is that these measures are endophenotypic, related to the underlying genetic liability for schizophrenia. However, there is significant overlap between patient response distributions and those of healthy individuals without affected first-degree relatives. Here we sought to develop more sensitive measures of sensory dysfunction in this population, with an eye to establishing endophenotypic markers with better predictive capabilities. We used a sensory adaptation paradigm in which electrophysiological responses to basic visual and somatosensory stimuli presented at different rates (ranging from 250 to 2550 ms interstimulus intervals, in blocked presentations) were compared. Our main hypothesis was that adaptation would be substantially diminished in schizophrenia, and that this would be especially prevalent in the visual system. High-density event-related potential recordings showed amplitude reductions in sensory adaptation in patients with schizophrenia (N=15 Experiment 1, N=12 Experiment 2) compared with age-matched healthy controls (N=15 Experiment 1, N=12 Experiment 2), and this was seen for both sensory modalities. At the individual participant level, reduced adaptation was more robust for visual compared with somatosensory stimulation. These results point to significant impairments in short-term sensory plasticity across sensory modalities in schizophrenia. These simple-to-execute measures may prove valuable as candidate endophenotypes and will bear follow-up in future work. PMID:27163205

  2. Early somatosensory processing in individuals at risk for developing psychoses

    PubMed Central

    Hagenmuller, Florence; Heekeren, Karsten; Theodoridou, Anastasia; Walitza, Susanne; Haker, Helene; Rössler, Wulf; Kawohl, Wolfram

    2014-01-01

    Human cortical somatosensory evoked potentials (SEPs) allow an accurate investigation of thalamocortical and early cortical processing. SEPs reveal a burst of superimposed early (N20) high-frequency oscillations around 600 Hz. Previous studies reported alterations of SEPs in patients with schizophrenia. This study addresses the question whether those alterations are also observable in populations at risk for developing schizophrenia or bipolar disorders. To our knowledge to date, this is the first study investigating SEPs in a population at risk for developing psychoses. Median nerve SEPs were investigated using multichannel EEG in individuals at risk for developing bipolar disorders (n = 25), individuals with high-risk status (n = 59) and ultra-high-risk status for schizophrenia (n = 73) and a gender and age-matched control group (n = 45). Strengths and latencies of low- and high-frequency components as estimated by dipole source analysis were compared between groups. Low- and high-frequency source activity was reduced in both groups at risk for schizophrenia, in comparison to the group at risk for bipolar disorders. HFO amplitudes were also significant reduced in subjects with high-risk status for schizophrenia compared to healthy controls. These differences were accentuated among cannabis non-users. Reduced N20 source strengths were related to higher positive symptom load. These results suggest that the risk for schizophrenia, in contrast to bipolar disorders, may involve an impairment of early cerebral somatosensory processing. Neurophysiologic alterations in schizophrenia precede the onset of initial psychotic episode and may serve as indicator of vulnerability for developing schizophrenia. PMID:25309363

  3. Somatosensory evoked potentials predict neurolysis outcome in meralgia paraesthetica.

    PubMed

    Siu, Timothy L T; Chandran, K Nadana

    2004-01-01

    The role of somatosensory evoked potentials (SEP) in predicting the outcome of nerve entrapment syndrome following surgical release has not been fully verified. All patients included in our study had preoperative SEP recordings and had undergone neurolysis for treatment of meralgia paraesthetica by our senior author (KNC) between 1996 and 2000. The outcome of surgery was assessed 6 weeks after the procedure; follow up was continued at 3 month intervals if symptoms persisted. Telephone interviews were conducted to assess long-term results. Univariate and multivariate logistic regression analyses were used to establish the predictive value of side-to-side N1 and P1 latency differences in obtaining complete relief of symptoms following surgery. Twenty-four patients who had preoperative SEP recordings and had undergone neurolysis for meralgia paraesthetica were followed for 4.0 +/- 1.5 (SD) years. A prolonged side-to-side N1 latency difference (DeltaN1) was found to be significantly associated with complete relief of symptoms at about 6 weeks postoperatively, after adjustment for age, sex and duration of symptoms (OR, 1.75; CI, 1.03-2.96). Logistic regression identified a critical cut-off value of 8 ms (OR, 27.2; CI, 1.4-547.0). This association disappeared with longer follow up. Somatosensory evoked potentials provide significant data for prediction of good surgical outcome for meralgia paraesthetica. Re-evaluation of the diagnosis, adequate trial of conservative treatments and special attention to anomalous branches are recommended for patients with low preoperative DeltaN1 values.

  4. Early somatosensory processing in individuals at risk for developing psychoses.

    PubMed

    Hagenmuller, Florence; Heekeren, Karsten; Theodoridou, Anastasia; Walitza, Susanne; Haker, Helene; Rössler, Wulf; Kawohl, Wolfram

    2014-01-01

    Human cortical somatosensory evoked potentials (SEPs) allow an accurate investigation of thalamocortical and early cortical processing. SEPs reveal a burst of superimposed early (N20) high-frequency oscillations around 600 Hz. Previous studies reported alterations of SEPs in patients with schizophrenia. This study addresses the question whether those alterations are also observable in populations at risk for developing schizophrenia or bipolar disorders. To our knowledge to date, this is the first study investigating SEPs in a population at risk for developing psychoses. Median nerve SEPs were investigated using multichannel EEG in individuals at risk for developing bipolar disorders (n = 25), individuals with high-risk status (n = 59) and ultra-high-risk status for schizophrenia (n = 73) and a gender and age-matched control group (n = 45). Strengths and latencies of low- and high-frequency components as estimated by dipole source analysis were compared between groups. Low- and high-frequency source activity was reduced in both groups at risk for schizophrenia, in comparison to the group at risk for bipolar disorders. HFO amplitudes were also significant reduced in subjects with high-risk status for schizophrenia compared to healthy controls. These differences were accentuated among cannabis non-users. Reduced N20 source strengths were related to higher positive symptom load. These results suggest that the risk for schizophrenia, in contrast to bipolar disorders, may involve an impairment of early cerebral somatosensory processing. Neurophysiologic alterations in schizophrenia precede the onset of initial psychotic episode and may serve as indicator of vulnerability for developing schizophrenia.

  5. Prestimulus oscillatory power and connectivity patterns predispose conscious somatosensory perception

    PubMed Central

    Weisz, Nathan; Wühle, Anja; Monittola, Gianpiero; Demarchi, Gianpaolo; Frey, Julia; Popov, Tzvetan; Braun, Christoph

    2014-01-01

    Which aspects of our sensory environment enter conscious awareness does not only depend on physical features of the stimulus, but also critically on the so-called current brain state. Results from magnetoencephalography/EEG studies using near-threshold stimuli have consistently pointed to reduced levels of α- (8–12 Hz) power in relevant sensory areas to predict whether a stimulus will be consciously perceived or not. These findings have been mainly interpreted in strictly “local” terms of enhanced excitability of neuronal ensembles in respective cortical regions. The present study aims to introduce a framework that complements this rather local perspective, by stating that the functional connectivity architecture before stimulation will predetermine information flow. Thus, information computed at a local level will be distributed throughout a network, thereby becoming consciously accessible. Data from a previously published experiment on conscious somatosensory near-threshold perception was reanalyzed focusing on the prestimulus period. Analysis of spectral power showed reduced α-power mainly in the contralateral S2 and middle frontal gyrus to precede hits, thus overall supporting the current literature. Furthermore, differences between hits and misses were obtained on global network (graph theoretical) features in the same interval. Most importantly, in accordance with our framework, we could show that the somatosensory cortex is “more efficiently” integrated into a distributed network in the prestimulus period. This finding means that when a relevant sensory stimulus impinges upon the system, it will encounter preestablished pathways for information flow. In this sense, prestimulus functional connectivity patterns form “windows” to conscious perception. PMID:24474792

  6. Prestimulus oscillatory power and connectivity patterns predispose conscious somatosensory perception.

    PubMed

    Weisz, Nathan; Wühle, Anja; Monittola, Gianpiero; Demarchi, Gianpaolo; Frey, Julia; Popov, Tzvetan; Braun, Christoph

    2014-01-28

    Which aspects of our sensory environment enter conscious awareness does not only depend on physical features of the stimulus, but also critically on the so-called current brain state. Results from magnetoencephalography/EEG studies using near-threshold stimuli have consistently pointed to reduced levels of α- (8-12 Hz) power in relevant sensory areas to predict whether a stimulus will be consciously perceived or not. These findings have been mainly interpreted in strictly "local" terms of enhanced excitability of neuronal ensembles in respective cortical regions. The present study aims to introduce a framework that complements this rather local perspective, by stating that the functional connectivity architecture before stimulation will predetermine information flow. Thus, information computed at a local level will be distributed throughout a network, thereby becoming consciously accessible. Data from a previously published experiment on conscious somatosensory near-threshold perception was reanalyzed focusing on the prestimulus period. Analysis of spectral power showed reduced α-power mainly in the contralateral S2 and middle frontal gyrus to precede hits, thus overall supporting the current literature. Furthermore, differences between hits and misses were obtained on global network (graph theoretical) features in the same interval. Most importantly, in accordance with our framework, we could show that the somatosensory cortex is "more efficiently" integrated into a distributed network in the prestimulus period. This finding means that when a relevant sensory stimulus impinges upon the system, it will encounter preestablished pathways for information flow. In this sense, prestimulus functional connectivity patterns form "windows" to conscious perception.

  7. Input and Input Processing in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Alcon, Eva

    1998-01-01

    Analyzes second-language learners' processing of linguistic data within the target language, focusing on input and intake in second-language acquisition and factors and cognitive processes that affect input processing. Input factors include input simplification, input enhancement, and interactional modifications. Individual learner differences…

  8. Input Decimated Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.

  9. The time window for generation of dendritic spikes by coincidence of action potentials and EPSPs is layer specific in somatosensory cortex.

    PubMed

    Ledergerber, Debora; Larkum, Matthew Evan

    2012-01-01

    The precise timing of events in the brain has consequences for intracellular processes, synaptic plasticity, integration and network behaviour. Pyramidal neurons, the most widespread excitatory neuron of the neocortex have multiple spike initiation zones, which interact via dendritic and somatic spikes actively propagating in all directions within the dendritic tree. For these neurons, therefore, both the location and timing of synaptic inputs are critical. The time window for which the backpropagating action potential can influence dendritic spike generation has been extensively studied in layer 5 neocortical pyramidal neurons of rat somatosensory cortex. Here, we re-examine this coincidence detection window for pyramidal cell types across the rat somatosensory cortex in layers 2/3, 5 and 6. We find that the time-window for optimal interaction is widest and shifted in layer 5 pyramidal neurons relative to cells in layers 6 and 2/3. Inputs arriving at the same time and locations will therefore differentially affect spike-timing dependent processes in the different classes of pyramidal neurons.

  10. Somatosensory Representations Link the Perception of Emotional Expressions and Sensory Experience.

    PubMed

    Kragel, Philip A; LaBar, Kevin S

    2016-01-01

    Studies of human emotion perception have linked a distributed set of brain regions to the recognition of emotion in facial, vocal, and body expressions. In particular, lesions to somatosensory cortex in the right hemisphere have been shown to impair recognition of facial and vocal expressions of emotion. Although these findings suggest that somatosensory cortex represents body states associated with distinct emotions, such as a furrowed brow or gaping jaw, functional evidence directly linking somatosensory activity and subjective experience during emotion perception is critically lacking. Using functional magnetic resonance imaging and multivariate decoding techniques, we show that perceiving vocal and facial expressions of emotion yields hemodynamic activity in right somatosensory cortex that discriminates among emotion categories, exhibits somatotopic organization, and tracks self-reported sensory experience. The findings both support embodied accounts of emotion and provide mechanistic insight into how emotional expressions are capable of biasing subjective experience in those who perceive them.

  11. Somatosensory Representations Link the Perception of Emotional Expressions and Sensory Experience123

    PubMed Central

    2016-01-01

    Abstract Studies of human emotion perception have linked a distributed set of brain regions to the recognition of emotion in facial, vocal, and body expressions. In particular, lesions to somatosensory cortex in the right hemisphere have been shown to impair recognition of facial and vocal expressions of emotion. Although these findings suggest that somatosensory cortex represents body states associated with distinct emotions, such as a furrowed brow or gaping jaw, functional evidence directly linking somatosensory activity and subjective experience during emotion perception is critically lacking. Using functional magnetic resonance imaging and multivariate decoding techniques, we show that perceiving vocal and facial expressions of emotion yields hemodynamic activity in right somatosensory cortex that discriminates among emotion categories, exhibits somatotopic organization, and tracks self-reported sensory experience. The findings both support embodied accounts of emotion and provide mechanistic insight into how emotional expressions are capable of biasing subjective experience in those who perceive them. PMID:27280154

  12. Somatosensory and auditory processing in opioid-exposed newborns with neonatal abstinence syndrome: a magnetoencephalographic approach.

    PubMed

    Kivistö, K; Nevalainen, P; Lauronen, L; Tupola, S; Pihko, E; Kivitie-Kallio, S

    2015-01-01

    Opioid exposure during pregnancy is a potential risk factor for the developing central nervous system of the fetus. We studied evoked responses in buprenorphine-exposed newborns who displayed neonatal abstinence syndrome (NAS) to elucidate the possible alterations in functioning of the somatosensory and auditory systems. We compared somatosensory (SEFs) and auditory evoked magnetic fields (AEFs), recorded with magnetoencephalography (MEG), of 11 prenatally buprenorphine-exposed newborns with those of 12 healthy newborns. Peak latencies, source strength and location of SEFs or AEFs were recorded. AEFs were present in all buprenorphine-exposed newborns without significant differences from those of healthy newborns. In contrast, though no group level differences in SEFs existed, at individual level the response deviated from the typical neonatal morphology in four buprenorphine-exposed newborns. Although buprenorphine exposure during pregnancy does not seem to cause constant deficiencies in somatosensory or auditory processing, in some newborns the typical development of somatosensory networks may be - at least transiently - disrupted.

  13. Unanticipated Disturbance in Somatosensory Evoked Potentials in a Patient in Park-Bench Position.

    PubMed

    Babakhani, Babak; Schott, Martin; Hosseinitabatabaei, Narges; Jantzen, Jan-Peter

    2015-06-01

    Perioperative neuropathy is a known complication of malpositioning during anaesthesia. Somatosensory evoked potentials are used for detecting such a complication in selected surgeries. Most reports of intraoperative nerve injuries due to malpositioning are limited to injuries to the peripheral nervous system, and there have been no previously reported cases of somatosensory evoked potential monitoring disturbance attributable to position-related cerebral ischemia in the park-bench position. We present the case of a patient with glioblastoma in the park-bench position whose somatosensory evoked potential waveforms disappeared after head and neck repositioning. A prompt diagnosis of this complication and elimination of the underlying cause led to the return of somatosensory evoked potential waveforms, and there was no relevant neurologic deficit at the end of the surgery.

  14. Investigation of brachial plexus traction lesions by peripheral and spinal somatosensory evoked potentials.

    PubMed Central

    Jones, S J

    1979-01-01

    Peripheral, spinal and cortical somatosensory evoked potentials were recorded in 26 patients with unilateral traction injuries of the brachial plexus ganglia. Of 10 cases explored surgically the recordings correctly anticipated the major site of the lesion in eight. PMID:422958

  15. Native Piezo2 Interactomics Identifies Pericentrin as a Novel Regulator of Piezo2 in Somatosensory Neurons.

    PubMed

    Narayanan, Pratibha; Sondermann, Julia; Rouwette, Tom; Karaca, Samir; Urlaub, Henning; Mitkovski, Mišo; Gomez-Varela, David; Schmidt, Manuela

    2016-08-05

    The ability of somatosensory neurons to perceive mechanical stimuli relies on specialized mechanotransducing proteins and their molecular environment. Only recently has the identity of a major transducer of mechanical forces in vertebrates been revealed by the discovery of Piezo2. Further work has established its pivotal role for innocuous touch in mice. Therefore, Piezo2 offers a unique platform for the molecular investigation of somatosensory mechanosensation. We performed a mass spectrometry-based interactomics screen on native Piezo2 in somatosensory neurons of mouse dorsal root ganglia (DRG). Stringent and quantitative data analysis yielded the identity of 36 novel binding partners of Piezo2. The biological significance of this data set is reflected by functional experiments demonstrating a role for Pericentrin in modulating Piezo2 activity and membrane expression in somatosensory neurons. Collectively, our findings provide a framework for understanding Piezo2 physiology and serve as a rich resource for the molecular dissection of mouse somatosensation.

  16. Unattended Dual Current Monitor

    SciTech Connect

    Newell, Matthew R.; Parker, Robert F.; Jones, David C.

    2016-08-11

    The Unattended Dual Current Monitor (UDCM) is an ideal solution for current measurement needs such as ion chamber gamma measurements. The UDCM has two independent inputs and each input detects currents in two user selectable ranges, -0.2nA to -20nA or -20nA to -2uA. Measurement results can be retrieved via an Ethernet connection or by monitoring the TTL output pulses with a simple counter. Measurement data is also stored on a user accessible micro-SD card and automatically downloaded to a USB flash drive. A programmable negative High Voltage (HV) power supply provides detector bias voltages from 0 to -1,000V. The UDCM is fully compatible with the IAEA Multi Instrument Collect (MIC) software and responds to the existing MiniGRAND commands. The Ethernet port provides an IAEA RAINSTORM compliant data transfer and data security interface. The UDCM produces TTL pulses at a rate proportional to the input current, 100cps/nA. The UDCM can simplify instrumentation needs by enabling the use of a simple pulse counter for both neutron and gamma measurements. The UDCM is a simple instrument, inexpensive to manufacturer and designed for reliability.

  17. Decoding thalamic afferent input using microcircuit spiking activity

    PubMed Central

    Sederberg, Audrey J.; Palmer, Stephanie E.

    2015-01-01

    A behavioral response appropriate to a sensory stimulus depends on the collective activity of thousands of interconnected neurons. The majority of cortical connections arise from neighboring neurons, and thus understanding the cortical code requires characterizing information representation at the scale of the cortical microcircuit. Using two-photon calcium imaging, we densely sampled the thalamically evoked response of hundreds of neurons spanning multiple layers and columns in thalamocortical slices of mouse somatosensory cortex. We then used a biologically plausible decoder to characterize the representation of two distinct thalamic inputs, at the level of the microcircuit, to reveal those aspects of the activity pattern that are likely relevant to downstream neurons. Our data suggest a sparse code, distributed across lamina, in which a small population of cells carries stimulus-relevant information. Furthermore, we find that, within this subset of neurons, decoder performance improves when noise correlations are taken into account. PMID:25695647

  18. Decoding thalamic afferent input using microcircuit spiking activity.

    PubMed

    Sederberg, Audrey J; Palmer, Stephanie E; MacLean, Jason N

    2015-04-01

    A behavioral response appropriate to a sensory stimulus depends on the collective activity of thousands of interconnected neurons. The majority of cortical connections arise from neighboring neurons, and thus understanding the cortical code requires characterizing information representation at the scale of the cortical microcircuit. Using two-photon calcium imaging, we densely sampled the thalamically evoked response of hundreds of neurons spanning multiple layers and columns in thalamocortical slices of mouse somatosensory cortex. We then used a biologically plausible decoder to characterize the representation of two distinct thalamic inputs, at the level of the microcircuit, to reveal those aspects of the activity pattern that are likely relevant to downstream neurons. Our data suggest a sparse code, distributed across lamina, in which a small population of cells carries stimulus-relevant information. Furthermore, we find that, within this subset of neurons, decoder performance improves when noise correlations are taken into account. Copyright © 2015 the American Physiological Society.

  19. Subjective Somatosensory Experiences Disclosed by Focused Attention: Cortical-Hippocampal-Insular and Amygdala Contributions

    PubMed Central

    Bauer, Clemens C. C.; Barrios, Fernando A.; Díaz, José-Luis

    2014-01-01

    In order to explore the neurobiological foundations of qualitative subjective experiences, the present study was designed to correlate objective third-person brain fMRI measures with subjective first-person identification and scaling of local, subtle, and specific somatosensory sensations, obtained directly after the imaging procedure. Thus, thirty-four volunteers were instructed to focus and sustain their attention to either provoked or spontaneous sensations of each thumb during the fMRI procedure. By means of a Likert scale applied immediately afterwards, the participants recalled and evaluated the intensity of their attention and identified specific somatosensory sensations (e.g. pulsation, vibration, heat). Using the subject's subjective scores as covariates to model both attention intensity and general somatosensory experiences regressors, the whole-brain random effect analyses revealed activations in the frontopolar prefrontal cortex (BA10), primary somatosensory cortex (BA1), premotor cortex (BA 6), precuneus (BA 7), temporopolar cortex (BA 38), inferior parietal lobe (BA 39), hippocampus, insula and amygdala. Furthermore, BA10 showed differential activity, with ventral BA10 correlating exclusively with attention (r(32) = 0.54, p = 0.0013) and dorsal BA10 correlating exclusively with somatosensory sensation (r(32) = 0.46, p = 0.007). All other reported brain areas showed significant positive correlations solely with subjective somatosensory experiences reports. These results provide evidence that the frontopolar prefrontal cortex has dissociable functions depending on specific cognitive demands; i.e. the dorsal portion of the frontopolar prefrontal cortex in conjunction with primary somatosensory cortex, temporopolar cortex, inferior parietal lobe, hippocampus, insula and amygdala are involved in the processing of spontaneous general subjective somatosensory experiences disclosed by focused and sustained attention. PMID:25166875

  20. Pre-stimulus alpha oscillations over somatosensory cortex predict tactile misperceptions.

    PubMed

    Craddock, Matt; Poliakoff, Ellen; El-Deredy, Wael; Klepousniotou, Ekaterini; Lloyd, Donna M

    2017-02-01

    Fluctuations of pre-stimulus oscillatory activity in the somatosensory alpha band (8-14Hz) observed using human EEG and MEG have been shown to influence the detection of supra- and peri-threshold somatosensory stimuli. However, some reports of touch occur even without a stimulus. We investigated the possibility that pre-stimulus alpha oscillations might also influence these false reports of touch - known as tactile misperceptions. We recorded EEG while participants performed the Somatic Signal Detection Task (SSDT), in which participants must detect brief, peri-threshold somatosensory targets. We found that pre-stimulus oscillatory power in the somatosensory alpha range exhibited a negative linear relationship with reporting of touch at electrode clusters over both contralateral and ipsilateral somatosensory regions. As pre-stimulus alpha power increased, the probability of reporting a touch declined; as it decreased, the probability of reporting a touch increased. This relationship was stronger on trials without a somatosensory stimulus than on trials with a somatosensory stimulus, although was present for both trial types. Spatio-temporal cluster-based permutation analysis also found that pre-stimulus alpha was lower on trials when touch was reported - irrespective of whether it was present - over contralateral and ipsilateral somatosensory cortices, as well as left frontocentral areas. We argue that alpha power may reflect changes in response criterion rather than sensitivity alone. Low alpha power relates to a low barrier to reporting a touch even when one is not present, while high alpha power is linked to less frequent reporting of touch overall.

  1. Cutaneous and periodontal inputs to the cerebellum of the naked mole-rat (Heterocephalus glaber).

    PubMed

    Sarko, Diana K; Leitch, Duncan B; Catania, Kenneth C

    2013-01-01

    The naked mole-rat (Heterocephalus glaber) is a small fossorial rodent with specialized dentition that is reflected by the large cortical area dedicated to representation of the prominent incisors. Due to naked mole-rats' behavioral reliance on the incisors for digging and for manipulating objects, as well as their ability to move the lower incisors independently, we hypothesized that expanded somatosensory representations of the incisors would be present within the cerebellum in order to accommodate a greater degree of proprioceptive, cutaneous, and periodontal input. Multiunit electrophysiological recordings targeting the ansiform lobule were used to investigate tactile inputs from receptive fields on the entire body with a focus on the incisors. Similar to other rodents, a fractured somatotopy appeared to be present with discrete representations of the same receptive fields repeated within each folium of the cerebellum. These findings confirm the presence of somatosensory inputs to a large area of the naked mole-rat cerebellum with particularly extensive representations of the lower incisors and mystacial vibrissae. We speculate that these extensive inputs facilitate processing of tactile cues as part of a sensorimotor integration network that optimizes how sensory stimuli are acquired through active exploration and in turn adjusts motor outputs (such as independent movement of the lower incisors). These results highlight the diverse sensory specializations and corresponding brain organizational schemes that have evolved in different mammals to facilitate exploration of and interaction with their environment.

  2. Cutaneous and periodontal inputs to the cerebellum of the naked mole-rat (Heterocephalus glaber)

    PubMed Central

    Sarko, Diana K.; Leitch, Duncan B.; Catania, Kenneth C.

    2013-01-01

    The naked mole-rat (Heterocephalus glaber) is a small fossorial rodent with specialized dentition that is reflected by the large cortical area dedicated to representation of the prominent incisors. Due to naked mole-rats’ behavioral reliance on the incisors for digging and for manipulating objects, as well as their ability to move the lower incisors independently, we hypothesized that expanded somatosensory representations of the incisors would be present within the cerebellum in order to accommodate a greater degree of proprioceptive, cutaneous, and periodontal input. Multiunit electrophysiological recordings targeting the ansiform lobule were used to investigate tactile inputs from receptive fields on the entire body with a focus on the incisors. Similar to other rodents, a fractured somatotopy appeared to be present with discrete representations of the same receptive fields repeated within each folium of the cerebellum. These findings confirm the presence of somatosensory inputs to a large area of the naked mole-rat cerebellum with particularly extensive representations of the lower incisors and mystacial vibrissae. We speculate that these extensive inputs facilitate processing of tactile cues as part of a sensorimotor integration network that optimizes how sensory stimuli are acquired through active exploration and in turn adjusts motor outputs (such as independent movement of the lower incisors). These results highlight the diverse sensory specializations and corresponding brain organizational schemes that have evolved in different mammals to facilitate exploration of and interaction with their environment. PMID:24302898

  3. Sensory perception changes induced by transcranial magnetic stimulation over the primary somatosensory cortex in Parkinson's disease.

    PubMed

    Palomar, Francisco J; Díaz-Corrales, Francisco; Carrillo, Fatima; Fernández-del-Olmo, Miguel; Koch, Giacomo; Mir, Pablo

    2011-09-01

    Sensory symptoms are common nonmotor manifestations of Parkinson's disease. It has been hypothesized that abnormal central processing of sensory signals occurs in Parkinson's disease and is related to dopaminergic treatment. The objective of this study was to investigate the alterations in sensory perception induced by transcranial magnetic stimulation of the primary somatosensory cortex in patients with Parkinson's disease and the modulatory effects of dopaminergic treatment. Fourteen patients with Parkinson's disease with and without dopaminergic treatment and 13 control subjects were included. Twenty milliseconds after peripheral electrical tactile stimuli in the contralateral thumb, paired-pulse transcranial magnetic stimulation over the right primary somatosensory cortex was delivered. We evaluated the perception of peripheral electrical tactile stimuli at 2 conditioning stimulus intensities, set at 70% and 90% of the right resting motor threshold, using different interstimulus intervals. At 70% of the resting motor threshold, paired-pulse transcranial magnetic stimulation over the right primary somatosensory cortex induced an increase in positive responses at short interstimulus intervals (1-7 ms) in controls but not in patients with dopaminergic treatment. At 90% of the resting motor threshold, controls and patients showed similar transcranial magnetic stimulation effects. Changes in peripheral electrical tactile stimuli perception after paired-pulse transcranial magnetic stimulation over the primary somatosensory cortex are altered in patients with Parkinson's disease with dopaminergic treatment compared with controls. These findings suggest that primary somatosensory cortex excitability could be involved in changes in somatosensory integration in Parkinson's disease with dopaminergic treatment.

  4. Somatosensory assessment and conditioned pain modulation in temporomandibular disorders pain patients.

    PubMed

    Kothari, Simple Futarmal; Baad-Hansen, Lene; Oono, Yuka; Svensson, Peter

    2015-12-01

    The pathophysiology and underlying pain mechanisms of temporomandibular disorders (TMD) are poorly understood. The aims were to assess somatosensory function at the temporomandibular joints (TMJs) and to examine whether conditioned pain modulation (CPM) differs between TMD pain patients (n = 34) and healthy controls (n = 34). Quantitative sensory testing was used to assess the somatosensory function. Z-scores were calculated for patients based on reference data. Conditioned pain modulation was tested by comparing pressure pain thresholds (PPTs) before, during, and after the application of painful and nonpainful cold stimuli. Pressure pain thresholds were measured at the most painful TMJ and thenar muscle (control). Data were analyzed with analyses of variance. Most (85.3%) of the patients exhibited at least 1 or more somatosensory abnormalities at the most painful TMJ with somatosensory gain with regard to PPT and punctate mechanical pain stimuli, and somatosensory loss with regard to mechanical detection and vibration detection stimuli as the most frequent abnormalities. There was a significant CPM effect (increased PPT) at both test sites during painful cold application in healthy controls and patients (P < 0.001). There was no significant difference in the relative CPM effect during painful cold application between groups (P = 0.227). In conclusion, somatosensory abnormalities were commonly detected in TMD pain patients and CPM effects were similar in TMD pain patients and healthy controls.

  5. Granger causal time-dependent source connectivity in the somatosensory network

    NASA Astrophysics Data System (ADS)

    Gao, Lin; Sommerlade, Linda; Coffman, Brian; Zhang, Tongsheng; Stephen, Julia M.; Li, Dichen; Wang, Jue; Grebogi, Celso; Schelter, Bjoern

    2015-05-01

    Exploration of transient Granger causal interactions in neural sources of electrophysiological activities provides deeper insights into brain information processing mechanisms. However, the underlying neural patterns are confounded by time-dependent dynamics, non-stationarity and observational noise contamination. Here we investigate transient Granger causal interactions using source time-series of somatosensory evoked magnetoencephalographic (MEG) elicited by air puff stimulation of right index finger and recorded using 306-channel MEG from 21 healthy subjects. A new time-varying connectivity approach, combining renormalised partial directed coherence with state space modelling, is employed to estimate fast changing information flow among the sources. Source analysis confirmed that somatosensory evoked MEG was mainly generated from the contralateral primary somatosensory cortex (SI) and bilateral secondary somatosensory cortices (SII). Transient Granger causality shows a serial processing of somatosensory information, 1) from contralateral SI to contralateral SII, 2) from contralateral SI to ipsilateral SII, 3) from contralateral SII to contralateral SI, and 4) from contralateral SII to ipsilateral SII. These results are consistent with established anatomical connectivity between somatosensory regions and previous source modeling results, thereby providing empirical validation of the time-varying connectivity analysis. We argue that the suggested approach provides novel information regarding transient cortical dynamic connectivity, which previous approaches could not assess.

  6. Cortex mapping of ipsilateral somatosensory area following anatomical hemispherectomy: a MEG study.

    PubMed

    Yao, Ning; Qiao, Hui; Shu, Ning; Wang, Zide; Chen, Daxing; Wu, Liang; Deng, Xiaofeng; Xu, Yulun

    2013-04-01

    A remarkable preservation of sensorimotor function is observed in patients with refractory epilepsy who were treated by hemispherectomy. Cortical regions in the remaining hemisphere or contralateral subcortical region contribute to the residual sensorimotor function. Somatosensory evoked field (SEF) is used to investigate the residual sensory function in hemispherectomized patients. The SEFs are usually recorded with magnetoencephalography (MEG). The objective is to investigate the ipsilateral cortical regions associated with residual sensory function in hemispherectomized patients using somatosensory evoked field techniques. Six patients with anatomical hemispherectomy were included. Ipsilateral and contralateral sensory functions were assessed by physical examination. Somatosensory evoked fields to electrical stimulation of the bilateral median nerves were recorded by MEG in the hemispherectomized patients and six control subjects. The stimulus intensity was adjusted to the minimum threshold that elicited a thumb twitch. The presumed neuronal source was identified as the equivalent current dipole. Six patients demonstrated different degrees of residual sensory function. Three patients had somatosensory evoked field activation in the ipsilateral cortex upon electrical stimulation of the hemiplegic hand. In these patients the locations of the ipsilateral sensorimotor cortex activation were in the primary somatosensory cortex (SI). The latency of the reliable somatosensory evoked field after stimulation of the median nerve was significantly longer for responses from the hemiplegic side compared with responses to stimulation of the median nerve from the normal side. In conclusion, ipsilateral sensory function has a time-locked relation to the cortical electromagnetic activation in the SI area of hemispherectomized patients.

  7. Multisensory processing in children with autism: high-density electrical mapping of auditory-somatosensory integration.

    PubMed

    Russo, Natalie; Foxe, John J; Brandwein, Alice B; Altschuler, Ted; Gomes, Hilary; Molholm, Sophie

    2010-10-01

    Successful integration of signals from the various sensory systems is crucial for normal sensory-perceptual functioning, allowing for the perception of coherent objects rather than a disconnected cluster of fragmented features. Several prominent theories of autism suggest that automatic integration is impaired in this population, but there have been few empirical tests of this thesis. A standard electrophysiological metric of multisensory integration (MSI) was used to test the integrity of auditory-somatosensory integration in children with autism (N=17, aged 6-16 years), compared to age- and IQ-matched typically developing (TD) children. High-density electrophysiology was recorded while participants were presented with either auditory or somatosensory stimuli alone (unisensory conditions), or as a combined auditory-somatosensory stimulus (multisensory condition), in randomized order. Participants watched a silent movie during testing, ignoring concurrent stimulation. Significant differences between neural responses to the multisensory auditory-somatosensory stimulus and the unisensory stimuli (the sum of the responses to the auditory and somatosensory stimuli when presented alone) served as the dependent measure. The data revealed group differences in the integration of auditory and somatosensory information that appeared at around 175 ms, and were characterized by the presence of MSI for the TD but not the autism spectrum disorder (ASD) children. Overall, MSI was less extensive in the ASD group. These findings are discussed within the framework of current knowledge of MSI in typical development as well as in relation to theories of ASD.

  8. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function

    PubMed Central

    Castejon, Carlos; Barros-Zulaica, Natali; Nuñez, Angel

    2016-01-01

    Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm) is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1) in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas. PMID:26820514

  9. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults.

    PubMed

    Custead, Rebecca; Oh, Hyuntaek; Rosner, Austin Oder; Barlow, Steven

    2015-10-05

    Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus).

  10. The anatomy of the bill tip of kiwi and associated somatosensory regions of the brain: comparisons with shorebirds.

    PubMed

    Cunningham, Susan J; Corfield, Jeremy R; Iwaniuk, Andrew N; Castro, Isabel; Alley, Maurice R; Birkhead, Tim R; Parsons, Stuart

    2013-01-01

    Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These 'bill-tip organs' allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill

  11. The Anatomy of the bill Tip of Kiwi and Associated Somatosensory Regions of the Brain: Comparisons with Shorebirds

    PubMed Central

    Iwaniuk, Andrew N.; Castro, Isabel; Alley, Maurice R.; Birkhead, Tim R.; Parsons, Stuart

    2013-01-01

    Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill

  12. Tactile impoverishment and sensorimotor restriction deteriorate the forepaw cutaneous map in the primary somatosensory cortex of adult rats.

    PubMed

    Coq, J O; Xerri, C

    1999-12-01

    We investigated the effects of sensory deprivation on the forepaw representation in the primary somatosensory cortex (SI) in the adult rat. Cortical maps were constructed from high-resolution multiunit recordings of the response of layer IV neurons to somatosensory stimuli. The main features of the forepaw representation were described in terms of areal extent and topography of the cortical map, and sensory submodality, size, and location of the receptive field (RF) of small clusters of the cortical neurons. After being weaned, two groups of Long-Evans rats were housed in a standard (SE) or impoverished (IE) environment for 65-115 days. A third group of SE rats was subjected to severe sensorimotor restriction (SR) of one forepaw for 7 days or 14 days, by using a one-sleeved cast. A concomitant effect of unilateral forelimb immobilization was a forced use of the nonrestricted forelimb in postural balance. The maps of both forepaws were derived 24 h after the cast was removed and the animal was allowed normal limb use. In a fourth group, SE rats experienced a 7-day immobilization followed by symmetrical limb use for 7 days before we mapped the hemisphere contralateral to the casted limb. For the SE and IE rats, the total areal extent of the cutaneous forepaw representation was similar, but IE rats exhibited a significant expansion of cortical islets serving high-threshold, presumably noncutaneous inputs, which were included in the cutaneous maps. In addition, SI neurons of IE rats had greatly enlarged glabrous, but not hairy, skin RFs. For the SR rats, the areal extent of the cutaneous map of the casted forepaw decreased by about 50%, after both 7- and 14-day forelimb immobilization. Large cortical sectors presumed to be formerly activated by cutaneous inputs were driven by high-threshold inputs that disrupted the somatotopic representation of the forepaw skin surfaces. These "emergent" representational sectors were topographically organized. By contrast, the areal

  13. Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans.

    PubMed

    Veldman, M P; Zijdewind, I; Solnik, S; Maffiuletti, N A; Berghuis, K M M; Javet, M; Négyesi, J; Hortobágyi, T

    2015-12-01

    Sensory input can modify voluntary motor function. We examined whether somatosensory electrical stimulation (SES) added to motor practice (MP) could augment motor learning, interlimb transfer, and whether physiological changes in neuronal excitability underlie these changes. Participants (18-30 years, n = 31) received MP, SES, MP + SES, or a control intervention. Visuomotor practice included 300 trials for 25 min with the right-dominant wrist and SES consisted of weak electrical stimulation of the radial and median nerves above the elbow. Single- and double-pulse transcranial magnetic stimulation (TMS) metrics were measured in the intervention and non-intervention extensor carpi radialis. There was 27 % motor learning and 9 % (both p < 0.001) interlimb transfer in all groups but SES added to MP did not augment learning and transfer. Corticospinal excitability increased after MP and SES when measured at rest but it increased after MP and decreased after SES when measured during contraction. No changes occurred in intracortical inhibition and facilitation. MP did not affect the TMS metrics in the transfer hand. In contrast, corticospinal excitability strongly increased after SES with MP + SES showing sharply opposite of these effects. Motor practice and SES each can produce motor learning and interlimb transfer and are likely to be mediated by different mechanisms. The results provide insight into the physiological mechanisms underlying the effects of MP and SES on motor learning and cortical plasticity and show that these mechanisms are likely to be different for the trained and stimulated motor cortex and the non-trained and non-stimulated motor cortex.

  14. Subcortical interactions between somatosensory stimuli of different modalities and their temporal profile.

    PubMed

    Costa, João; Valls-Solé, Josep; Valldeoriola, Francesc; Rumià, Jordi

    2008-09-01

    Interactions between inputs of different sensory modality occur along the sensory pathway, including the thalamus. However, the temporal profile of such interaction has not been fully studied. In eight patients who had been implanted an intrathalamic electrode for deep brain stimulation as symptomatic treatment of tremor, we investigated the interactions between mechanical taps and electrical nerve stimuli. Somatosensory evoked potentials (SEPs) were recorded from Erb's point, cervical spinal cord, nucleus ventrointermedialis of the thalamus, and parietal cortex. A handheld electronic reflex hammer was used to deliver a mechanical tap to the skin overlying the first dorsal interosseous muscle and to trigger an ipsilateral digital median nerve electrical stimulus time-locked to the mechanical tap with a variable delay of 0 to 50 ms. There were significant time-dependent interactions between the two sensory volleys at the subcortical level. Thalamic SEPs were decreased in amplitude at interstimulus intervals (ISIs) from 10 to 40 ms with maximum effect at 20 ms (-42.8 +/- 10.5%; P < 0.001). A similar decrease was also seen in the number and frequency of the high-frequency components of thalamic SEPs (-25 +/- 4%). A smaller reduction (-18.1 +/- 5.8%; P < 0.001) was present in upper cervical response at ISI = 20 ms. There were no changes in peripheral responses. Cortical SEPs were almost completely absent in some subjects at ISIs from 20 to 50 ms. There were no changes in SEP latencies. Our results indicate that significant time-dependent interactions between sensory volleys occur at the subcortical level. These observations provide further insight into the physiological mechanisms underlying afferent gating between sensory volleys of different modality.

  15. Precision mapping of the vibrissa representation within murine primary somatosensory cortex.

    PubMed

    Knutsen, Per M; Mateo, Celine; Kleinfeld, David

    2016-10-05

    The ability to form an accurate map of sensory input to the brain is an essential aspect of interpreting functional brain signals. Here, we consider the somatotopic map of vibrissa-based touch in the primary somatosensory (vS1) cortex of mice. The vibrissae are represented by a Manhattan-like grid of columnar structures that are separated by inter-digitating septa. The development, dynamics and plasticity of this organization is widely used as a model system. Yet, the exact anatomical position of this organization within the vS1 cortex varies between individual mice. Targeting of a particular column in vivo therefore requires prior mapping of the activated cortical region, for instance by imaging the evoked intrinsic optical signal (eIOS) during vibrissa stimulation. Here, we describe a procedure for constructing a complete somatotopic map of the vibrissa representation in the vS1 cortex using eIOS. This enables precise targeting of individual cortical columns. We found, using C57BL/6 mice, that although the precise location of the columnar field varies between animals, the relative spatial arrangement of the columns is highly preserved. This finding enables us to construct a canonical somatotopic map of the vibrissae in the vS1 cortex. In particular, the position of any column, in absolute anatomical coordinates, can be established with near certainty when the functional representations in the vS1 cortex for as few as two vibrissae have been mapped with eIOS.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  16. Laser and somatosensory evoked potentials in amyotrophic lateral sclerosis.

    PubMed

    Isak, Baris; Tankisi, Hatice; Johnsen, Birger; Pugdahl, Kirsten; Finnerup, Nanna Brix; Fuglsang-Frederiksen, Anders

    2016-10-01

    Mild involvement of sensory nerves has been reported in previous studies in ALS patients. In this study, we assessed sensory pathways in ALS patients using laser evoked potentials (LEPs) and somatosensory evoked potentials (SSEPs). We recruited 18 ALS patients and 31 healthy subjects. Neodymium-doped yttrium aluminium perovskite (Nd:YAP)-laser was used to evoke LEPs in upper (UE) and lower (LE) extremities. N1 and N2P2 potentials were obtained from contralateral insular cortex (T3 or T4) and vertex (Cz), respectively. Median SSEPs were recorded from C3' or C4' and tibial SSEPs from Cz'. Compared to controls, ALS patients had longer N2 and P2 latencies, and smaller N2P2 amplitudes in both UE- and LE-LEPs (p<0.05), and longer latencies for median and tibial SSEPs (p<0.05). LEPs and SSEPs were abnormal in 72.2% and 56.6% patients, respectively. Cortical potentials showed that A-beta or A-delta sensory fibres, or both, were impaired in more than half of the ALS patients. The findings support that ALS is a multi-systemic disorder involving, although to a lesser degree, other systems than the motor. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Ontogeny of somatostatin receptors in the rat somatosensory cortex

    SciTech Connect

    Gonzalez, B.J.; Leroux, P.; Bodenant, C.; Vaudry, H. )

    1991-03-08

    The distribution and density of SRIF receptors (SRIF-R) were studied during development in the rat somatosensory cortex by in vitro autoradiography with monoiodinated (Tyr0-DTrp8)S14. In 16-day-old fetuses (E16), intense labeling was evident in the intermediate zone of the cortex while low concentrations of SRIF-R were detected in the marginal and ventricular zones. The highest density of SRIF-R was measured in the intermediate zone at E18. At this stage, labeling was also intense in the internal part of the developing cortical plate; in contrast, the concentration of binding sites associated with the marginal and ventricular zones remained relatively low. Profound modifications in the distribution of SRIF-R appeared at birth. In particular, a transient reduction of receptor density occurred in the cortical plate. During the first postnatal week, the density of receptors measured in the intermediate zone decreased gradually; conversely, high levels of SRIF-R were observed in the developing cortical layers (II to VI). At postpartum day 13 (P13), a stage which just precedes completion of cell migration in the parietal cortex, the most intensely labeled regions were layers V-VI and future layers II-III. From P13 to adulthood, the concentrations of SRIF-R decreased in all cortical layers (I to VI) and the pattern of distribution of receptors at P21 was similar to that observed in the adults.

  18. Shape Invariant Coding of Motion Direction in Somatosensory Cortex

    PubMed Central

    Pei, Yu-Cheng; Hsiao, Steven S.; Craig, James C.; Bensmaia, Sliman J.

    2010-01-01

    Invariant representations of stimulus features are thought to play an important role in producing stable percepts of objects. In the present study, we assess the invariance of neural representations of tactile motion direction with respect to other stimulus properties. To this end, we record the responses evoked in individual neurons in somatosensory cortex of primates, including areas 3b, 1, and 2, by three types of motion stimuli, namely scanned bars and dot patterns, and random dot displays, presented to the fingertips of macaque monkeys. We identify a population of neurons in area 1 that is highly sensitive to the direction of stimulus motion and whose motion signals are invariant across stimulus types and conditions. The motion signals conveyed by individual neurons in area 1 can account for the ability of human observers to discriminate the direction of motion of these stimuli, as measured in paired psychophysical experiments. We conclude that area 1 contains a robust representation of motion and discuss similarities in the neural mechanisms of visual and tactile motion processing. PMID:20126380

  19. Feeling Touched: Emotional Modulation of Somatosensory Potentials to Interpersonal Touch

    PubMed Central

    Ravaja, N.; Harjunen, V.; Ahmed, I.; Jacucci, G.; Spapé, M. M.

    2017-01-01

    Although the previous studies have shown that an emotional context may alter touch processing, it is not clear how visual contextual information modulates the sensory signals, and at what levels does this modulation take place. Therefore, we investigated how a toucher’s emotional expressions (anger, happiness, fear, and sadness) modulate touchee’s somatosensory-evoked potentials (SEPs) in different temporal ranges. Participants were presented with tactile stimulation appearing to originate from expressive characters in virtual reality. Touch processing was indexed using SEPs, and self-reports of touch experience were collected. Early potentials were found to be amplified after angry, happy and sad facial expressions, while late potentials were amplified after anger but attenuated after happiness. These effects were related to two stages of emotional modulation of tactile perception: anticipation and interpretation. The findings show that not only does touch affect emotion, but also emotional expressions affect touch perception. The affective modulation of touch was initially obtained as early as 25 ms after the touch onset suggesting that emotional context is integrated to the tactile sensation at a very early stage. PMID:28079157

  20. An Intelligent Decision System for Intraoperative Somatosensory Evoked Potential Monitoring.

    PubMed

    Fan, Bi; Li, Han-Xiong; Hu, Yong

    2016-02-01

    Somatosensory evoked potential (SEP) is a useful, noninvasive technique widely used for spinal cord monitoring during surgery. One of the main indicators of a spinal cord injury is the drop in amplitude of the SEP signal in comparison to the nominal baseline that is assumed to be constant during the surgery. However, in practice, the real-time baseline is not constant and may vary during the operation due to nonsurgical factors, such as blood pressure, anaesthesia, etc. Thus, a false warning is often generated if the nominal baseline is used for SEP monitoring. In current practice, human experts must be used to prevent this false warning. However, these well-trained human experts are expensive and may not be reliable and consistent due to various reasons like fatigue and emotion. In this paper, an intelligent decision system is proposed to improve SEP monitoring. First, the least squares support vector regression and multi-support vector regression models are trained to construct the dynamic baseline from historical data. Then a control chart is applied to detect abnormalities during surgery. The effectiveness of the intelligent decision system is evaluated by comparing its performance against the nominal baseline model by using the real experimental datasets derived from clinical conditions.

  1. A novel shape analysis technique for somatosensory evoked potentials.

    PubMed

    Agrawal, Gracee; Sherman, David; Thakor, Nitish; All, Angelo

    2008-01-01

    Somatosensory evoked potentials (SEP) have been shown to be an important electrophysiological measure to assess the integrity of the spinal cord. However the peaks in the SEP waveform are often undetectable due to low signal-to-noise (SNR) ratio. Sometimes they also become indistinct during injury when the SEP flattens. Hence time-domain analysis methods are often subject to errors, and need human-expert intervention. In this paper, we propose a new technique for analyzing the shape of the evoked potentials, in which slope information is obtained for the entire signal in specific time bins. Apart from solving the problems associated with present methods, this technique has an added advantage of analyzing the SEP signal as a whole rather than simply a few peaks. The efficacy of this technique was investigated on SEP signals recorded from 12 rats before and after contusion spinal cord injury at thoracic vertebra T8. The statistical analysis results revealed significant effect of injury to hindlimbs, whereas almost none to forelimbs. Thus, the results show high potential of this technique to differentiate between normal and injured spinal cord.

  2. Feeling Touched: Emotional Modulation of Somatosensory Potentials to Interpersonal Touch.

    PubMed

    Ravaja, N; Harjunen, V; Ahmed, I; Jacucci, G; Spapé, M M

    2017-01-12

    Although the previous studies have shown that an emotional context may alter touch processing, it is not clear how visual contextual information modulates the sensory signals, and at what levels does this modulation take place. Therefore, we investigated how a toucher's emotional expressions (anger, happiness, fear, and sadness) modulate touchee's somatosensory-evoked potentials (SEPs) in different temporal ranges. Participants were presented with tactile stimulation appearing to originate from expressive characters in virtual reality. Touch processing was indexed using SEPs, and self-reports of touch experience were collected. Early potentials were found to be amplified after angry, happy and sad facial expressions, while late potentials were amplified after anger but attenuated after happiness. These effects were related to two stages of emotional modulation of tactile perception: anticipation and interpretation. The findings show that not only does touch affect emotion, but also emotional expressions affect touch perception. The affective modulation of touch was initially obtained as early as 25 ms after the touch onset suggesting that emotional context is integrated to the tactile sensation at a very early stage.

  3. [Normative aspects of somatosensory evoked P300 components].

    PubMed

    Louzã Neto, M R; Maurer, K; Neuhauser, B

    1989-06-01

    Using a somatosensory version of the oddball-paradigma the influence of age and gender on the P300-component and the comparison of the potential after stimulation of the right and left median nerve was studied in 30 healthy right handed volunteers (age: 20-35 years). Latency, amplitude, area and duration of the P300-potential were analysed. No relationship between age, gender and the P300-parameters were observed. The amplitude and the area of the potential obtained from the F3 electrode were greater after stimulation of the right median nerve compared to the potential after stimulation of the left median nerve. All other results were not significantly different. Strong positive correlations between the results after stimulation of the right and left median nerve were observed. These results showed that by a young group of volunteers age and gender did not influence the P300-component. Although the P300-Parameters had a between-subject variability, their mean remained constant over the study, their correlation coefficients were strong positive and the side of stimulation did not influence them (except for the electrode F3).

  4. Neuronal activity in somatosensory cortex related to tactile exploration.

    PubMed

    Fortier-Poisson, Pascal; Smith, Allan M

    2016-01-01

    The very light contact forces (∼0.60 N) applied by the fingertips during tactile exploration reveal a clearly optimized sensorimotor strategy. To investigate the cortical mechanisms involved with this behavior, we recorded 230 neurons in the somatosensory cortex (S1), as two monkeys scanned different surfaces with the fingertips in search of a tactile target without visual feedback. During the exploration, the monkeys, like humans, carefully controlled the finger forces. High-friction surfaces offering greater tangential shear force resistance to the skin were associated with decreased normal contact forces. The activity of one group of neurons was modulated with either the normal or tangential force, with little or no influence from the orthogonal force component. A second group responded to kinetic friction or the ratio of tangential to normal forces rather than responding to a specific parameter, such as force magnitude or direction. A third group of S1 neurons appeared to respond to particular vectors of normal and tangential force on the skin. Although 45 neurons correlated with scanning speed, 32 were also modulated by finger forces, suggesting that forces on the finger should be considered as the primary parameter encoding the skin compliance and that finger speed is a secondary parameter that co-varies with finger forces. Neurons (102) were also tested with different textures, and the activity of 62 of these increased or decreased in relation to the surface friction.

  5. Dodecapus: An MR-compatible system for somatosensory stimulation.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2007-02-01

    Somatotopic mapping of human body surface using fMRI is challenging. First, it is difficult to deliver tactile stimuli in the scanner. Second, multiple stimulators are often required to cover enough area of the complex-shaped body surface, such as the face. In this study, a computer-controlled pneumatic system was constructed to automatically deliver air puffs to 12 locations on the body surface through an MR-compatible manifold (Dodecapus) mounted on a head coil inside the scanner bore. The timing of each air-puff channel is completely programmable and this allows systematic and precise stimulation on multiple locations on the body surface during functional scans. Three two-condition block-design "Localizer" paradigms were employed to localize the cortical representations of the face, lips, and fingers, respectively. Three "Phase-encoded" paradigms were employed to map the detailed somatotopic organizations of the face, lips, and fingers following each "Localizer" paradigm. Multiple somatotopic representations of the face, lips, and fingers were localized and mapped in primary motor cortex (MI), ventral premotor cortex (PMv), polysensory zone (PZ), primary (SI) and secondary (SII) somatosensory cortex, parietal ventral area (PV) and 7b, as well as anterior and ventral intraparietal areas (AIP and VIP). The Dodecapus system is portable, easy to setup, generates no radio frequency interference, and can also be used for EEG and MEG experiments. This system could be useful for non-invasive somatotopic mapping in both basic and clinical studies.

  6. Neuronal activity in somatosensory cortex related to tactile exploration

    PubMed Central

    Fortier-Poisson, Pascal

    2015-01-01

    The very light contact forces (∼0.60 N) applied by the fingertips during tactile exploration reveal a clearly optimized sensorimotor strategy. To investigate the cortical mechanisms involved with this behavior, we recorded 230 neurons in the somatosensory cortex (S1), as two monkeys scanned different surfaces with the fingertips in search of a tactile target without visual feedback. During the exploration, the monkeys, like humans, carefully controlled the finger forces. High-friction surfaces offering greater tangential shear force resistance to the skin were associated with decreased normal contact forces. The activity of one group of neurons was modulated with either the normal or tangential force, with little or no influence from the orthogonal force component. A second group responded to kinetic friction or the ratio of tangential to normal forces rather than responding to a specific parameter, such as force magnitude or direction. A third group of S1 neurons appeared to respond to particular vectors of normal and tangential force on the skin. Although 45 neurons correlated with scanning speed, 32 were also modulated by finger forces, suggesting that forces on the finger should be considered as the primary parameter encoding the skin compliance and that finger speed is a secondary parameter that co-varies with finger forces. Neurons (102) were also tested with different textures, and the activity of 62 of these increased or decreased in relation to the surface friction. PMID:26467519

  7. Neuronal correlates of sensory discrimination in the somatosensory cortex

    PubMed Central

    Hernández, Adrián; Zainos, Antonio; Romo, Ranulfo

    2000-01-01

    Monkeys are able to discriminate the difference in frequency between two periodic mechanical vibrations applied sequentially to the fingertips. It has been proposed that this ability is mediated by the periodicity of the responses in the quickly adapting (QA) neurons of the primary somatosensory cortex (S1), instead of the average firing rates. We recorded from QA neurons of S1 while monkeys performed the vibrotactile discrimination task. We found that the periodic mechanical vibrations can be represented both in the periodicity and in the firing rate responses to varying degrees across the QA neuronal population. We then computed neurometric functions by using both the periodicity and the firing rate and sought to determine which of these two measures is associated with the psychophysical performance. We found that neurometric thresholds based on the firing rate are very similar to the animal's psychometric thresholds whereas neurometric thresholds based on periodicity are far lower than those thresholds. These results indicate that an observer could solve this task with a precision similar to that of the monkey, based only on the firing rate produced during the stimulus periods. PMID:10811922

  8. Extensive somatosensory innervation in infants with obstetric brachial palsy.

    PubMed

    Colon, A J; Vredeveld, J W; Blaauw, G; Slooff, A C J; Richards, R

    2003-01-01

    In the pre-operative screening of infants with obstetric brachial palsy (OBP), the results of routine electromyography are often overly optimistic when compared to the peri-operative findings. This prompted us to include investigation of the sensory innervation of these infants using the N20 (the first cortical response to a peripheral stimulation) of the somatosensory evoked potentials (SSEP). Three to seven months after birth, SSEP were recorded at the skull after stimulation of the thumb and middle finger in infants with obstetric rupture of the upper trunk or avulsion of roots C5, C6, or C7, and in whom no clinical improvement of motor function was observed in the biceps brachii and deltoid muscles. In most infants, a normal N20 could be evoked, indicating the existence of peripheral sensory pathways. From the thumb, these sensory pathways would necessarily bypass the upper trunk and dorsal roots of spinal nerves C5 and C6, and from the middle finger bypass the middle trunk and dorsal root C7, before extending into the dorsal column and projecting toward the thalamus and cerebral cortex. These data suggest that in infancy the segmental sensory innervation of the hand is more diverse than is described in most textbooks. Copyright 2002 Wiley-Liss, Inc.

  9. Subthalamic stimulation influences postmovement cortical somatosensory processing in Parkinson's disease.

    PubMed

    Devos, D; Labyt, E; Cassim, F; Bourriez, J L; Reyns, N; Touzet, G; Blond, S; Guieu, J D; Derambure, P; Destée, A; Defebvre, L

    2003-10-01

    In Parkinson's disease, poor motor performance (resulting primarily from abnormal cortical activation during movement preparation and execution) may also be due to impaired sensorimotor integration and defective cortical activity termination of the ongoing movement, thus delaying preparation of the following one. Reduced movement-related synchronization of the beta rhythm in Parkinson's disease compared to controls has been put forward as evidence for impaired postmovement cortical deactivation. We assessed the effects of subthalamic deep brain stimulation and l-dopa on beta rhythm synchronization over the premotor and primary sensorimotor cortex. Ten advanced patients performed self-paced wrist flexion in four conditions according to the presence or not of stimulation and l-dopa. Compared to without treatment, the motor score improved by approximately 60%; the beta synchronization was present over the contralateral frontocentral region and increased significantly over the contralateral central region under stimulation and under l-dopa, with a maximal effect when both treatments were associated. Our advanced patients displayed very focused and attenuated beta rhythm synchronization which, under stimulation, increased over the contralateral premotor and primary sensorimotor cortex. Stimulation and l-dopa both partly restored postmovement cortical deactivation in advanced Parkinson's disease, although the respective mechanisms probably differ. They may improve bradykinesia and cortical deactivation by reestablishing movement-related somatosensory processing at the end of the movement through the basal ganglia into the cortex.

  10. Widespread somatosensory sensitivity in naturally occurring canine model of osteoarthritis

    PubMed Central

    Knazovicky, David; Helgeson, Erika S.; Case, Beth; Gruen, Margaret E.; Maixner, William; Lascelles, B. Duncan X.

    2016-01-01

    Abstract Osteoarthritis (OA)-associated pain is a leading cause of disability. Central sensitization (CS), as a result of OA, is recognized as an important facet of human patients' chronic pain and has been measured in people using quantitative sensory testing (QST) testing. The spontaneous canine OA model has been suggested as a good translational model, but CS has not been explored in this model. In this study, QST was performed on dogs with and without spontaneous hip or stifle OA to determine whether OA is associated with CS in this model. Mechanical (von Frey and blunt pressure) and thermal (hot and cold) sensory thresholds obtained in dogs with chronic OA-associated pain (n = 31) were compared with those of normal dogs (n = 23). Dogs were phenotyped and joint-pain scored, and testing was performed at the OA-affected joint, cranial tibial muscle, and dorsal metatarsal region. QST summary data were evaluated using mixed-effect models to understand the influence of OA status and covariates, and dogs with OA and control dogs were compared. The presence of OA was strongly associated with hyperalgesia across all QST modalities at the index joint, cranial tibial muscle, and metatarsal site. Mechanical QST scores were significantly moderately negatively correlated with total joint-pain scores. The spontaneous canine OA model is associated with somatosensory sensitivity, likely indicative of CS. These data further validate the canine spontaneous OA model as an appropriate model of the human OA pain condition. PMID:26901805

  11. Dual-filter estimation for rotating-panel sample designs

    Treesearch

    Francis Roesch

    2017-01-01

    Dual-filter estimators are described and tested for use in the annual estimation for national forest inventories. The dual-filter approach involves the use of a moving widow estimator in the first pass, which is used as input to Theil’s mixed estimator in the second pass. The moving window and dual-filter estimators are tested along with two other estimators in a...

  12. Dual Brushless Resolver Rate Sensor

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor)

    1997-01-01

    A resolver rate sensor is disclosed in which dual brushless resolvers are mechanically coupled to the same output shaft. Diverse inputs are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. In one embodiment of the invention the outputs of the first resolver are directly inputted into two separate multipliers and the outputs of the second resolver are inputted into the two separate multipliers, after being demodulated in a pair of demodulator circuits. The multiplied signals are then added in an adder circuit to provide a directional sensitive output. In another embodiment the outputs from the first resolver is modulated in separate modulator circuits and the output from the modulator circuits are used to excite the second resolver. The outputs from the second resolver are demodulated in separate demodulator circuit and added in an adder circuit to provide a direction sensitive rate output.

  13. Development of somatosensory-evoked potentials in foetal sheep: effects of betamethasone.

    PubMed

    Anegroaie, P; Frasch, M G; Rupprecht, S; Antonow-Schlorke, I; Müller, T; Schubert, H; Witte, O W; Schwab, M

    2017-05-01

    Antenatal glucocorticoids are used to accelerate foetal lung maturation in babies threatened with premature labour. We examined the influence of glucocorticoids on functional and structural maturation of the central somatosensory pathway in foetal sheep. Somatosensory-evoked potentials (SEP) reflect processing of somatosensory stimuli. SEP latencies are determined by afferent stimuli transmission while SEP amplitudes reveal cerebral processing. After chronic instrumentation of foetal sheep, mothers received saline (n = 9) or three courses of betamethasone (human equivalent dose of 2 × 110 μg kg(-1) betamethasone i.m. 24 h apart, n = 12) at 0.7, 0.75 and 0.8 of gestational age. Trigeminal SEP were evoked prior to, 4 and 24 h after each injection and at 0.8 of gestational age before brains were histologically processed. Somatosensory-evoked potentials were already detectable at 0.7 of gestation age. The early and late responses N20 and N200 were the only reproducible peaks over the entire study period. With advancing gestational age, SEP latencies decreased but amplitudes remained unchanged. Acutely, betamethasone did not affect SEP latencies and amplitudes 4 and 24 h following administration. Chronically, betamethasone delayed developmental decrease in the N200 but not N20 latency by 2 weeks without affecting amplitudes. In parallel, betamethasone decreased subcortical white matter myelination but did not affect network formation and synaptic density in the somatosensory cortex. Somatosensory stimuli are already processed by the foetal cerebral cortex at the beginning of the third trimester. Subsequent developmental decrease in SEP latencies suggests ongoing maturation of afferent sensory transmission. Antenatal glucocorticoids affect structural and functional development of the somatosensory system with specific effects at subcortical level. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Evidence for a frontal cortex role in both auditory and somatosensory habituation: A MEG study

    PubMed Central

    Weiland, Barbara J.; Boutros, Nash N.; Moran, John M.; Tepley, Norman; Bowyer, Susan M.

    2008-01-01

    Auditory and somatosensory responses to paired stimuli were investigated for commonality of frontal activation that may be associated with gating using magnetoencephalography (MEG). A paired stimulus paradigm for each sensory evoked study tested right and left hemispheres independently in ten normal controls. MR-FOCUSS, a current density technique, imaged simultaneously active cortical sources. Each subject showed source localization, in the primary auditory or somatosensory cortex, for the respective stimuli following both the first (S1) and second (S2) impulses. Gating ratios for the auditory M50 response, equivalent to the P50 in EEG, were 0.54 ± 0.24 and 0.63 ± 0.52 for the right and left hemispheres. Somatosensory gating ratios were evaluated for early and late latencies as the pulse duration elicits extended response. Early gating ratios for right and left hemispheres were 0.69 ± 0.21 and 0.69 ± 0.41 while late ratios were 0.81 ± 0.41 and 0.80 ± 0.48. Regions of activation in the frontal cortex, beyond the primary auditory or somatosensory cortex, were mapped within 25 ms of peak S1 latencies in 9/10 subjects during auditory stimulus and in 10/10 subjects for somatosensory stimulus. Similar frontal activations were mapped within 25 ms of peak S2 latencies for 75% of auditory responses and for 100% of somatosensory responses. Comparison between modalities showed similar frontal region activations for 17/20 S1 responses and for 13/20 S2 responses. MEG offers a technique for evaluating cross modality gating. The results suggest similar frontal sources are simultaneously active during auditory and somatosensory habituation. PMID:18602839

  15. Facilitation of cutaneous inputs during the planning phase of gait initiation

    PubMed Central

    Fontan, Aurélie; Tandonnet, Christophe; Perrier, Joy; Saradjian, Anahid H.; Blouin, Jean; Simoneau, Martin

    2015-01-01

    It has been shown that during the planning of a voluntary movement the transmission of cutaneous afferent inputs to the somatosensory cortex is attenuated shortly before the motor output as well as during movement execution. However, it is not known whether the sensory suppression observed during the planning phase (i.e., before any movement execution) is a systemic phenomenon or whether it is dependent on movement context. For example, movements such as step initiation are controlled based on information received from cutaneous receptors in the feet. Because afferent information emerging from these receptors is critical for movement initiation, we hypothesized that suppression of these inputs may not occur during the planning phase prior to gait initiation. To examine this hypothesis we measured the cortical response to somatosensory stimulation during the planning phase of step initiation and during movement execution. Sensitivity to cutaneous stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following electrical stimulations of the plantar sole of one foot. Two stimulations were provided during the planning phase of a step movement and two stimulations during movement execution. It was found that the P50-N80 SEP was facilitated in the early planning phase (−700 ms before motor execution) compared with when participants remained still (control standing task). This mechanism might contribute to an enhanced perception of cutaneous input leading to a more accurate setting of the forces to be exerted onto the ground to shift the body's weight toward the supporting side prior to foot-off. PMID:25925329

  16. Cortical hyperexcitability in response to preserved spinothalamic inputs immediately after spinal cord hemisection.

    PubMed

    Yague, J G; Foffani, G; Aguilar, J

    2011-02-01

    Chronic injury of the main somatosensory pathways ascending along the spinal cord - the dorsal columns and the spinothalamic tract - can produce both changes in the organization of cortical somatotopic maps and neuropathic pain. Little is known, however, about the early neurophysiological changes occurring immediately after injury. We bilaterally recorded the neural activity of the hindpaw representation of the primary somatosensory cortex evoked by stimuli delivered to the hindpaws before and immediately after a thoracic spinal cord hemisection in anesthetized rats. This unilateral spinal cord injury allowed us to separately investigate the cortical effects of deafferenting the dorsal column (stimuli ipsilateral to the hemisection) or the spinothalamic tract (stimuli contralateral to the hemisection). The hemisection produced immediate bilateral changes in the cortical responses evoked by stimuli delivered to the hindpaw ipsilateral to the hemisection (deafferented dorsal column): an expected loss of classical short-latency cortical responses, accompanied by an unexpected appearance of long-latency activations. At the population level, these activations reflected a progressive stimulus-induced transition of the hindpaw somatosensory cortex from up-and-down states to a sustained activated state. At the single-cell level, these cortical activations resembled the "wind-up" typically observed - with the same type of stimuli - in the dorsal horn cells originating the spinothalamic tract. Virtually no changes were observed in the responses evoked by stimuli delivered to the hindpaw contralateral to the hemisection (deafferented spinothalamic tract). These results suggest that spinal cord hemisection immediately produces an abnormal hyperexcitability of the primary somatosensory cortex in response to preserved spinothalamic inputs from the hindpaw. This immediate cortical hyperexcitability could be important to understand the long-term development of cortical

  17. Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators.

    PubMed

    Ahissar, E; Haidarliu, S; Zacksenhouse, M

    1997-10-14

    The temporally encoded information obtained by vibrissal touch could be decoded "passively," involving only input-driven elements, or "actively," utilizing intrinsically driven oscillators. A previous study suggested that the trigeminal somatosensory system of rats does not obey the bottom-up order of activation predicted by passive decoding. Thus, we have tested whether this system obeys the predictions of active decoding. We have studied cortical single units in the somatosensory cortices of anesthetized rats and guinea pigs and found that about a quarter of them exhibit clear spontaneous oscillations, many of them around whisking frequencies ( approximately 10 Hz). The frequencies of these oscillations could be controlled locally by glutamate. These oscillations could be forced to track the frequency of induced rhythmic whisker movements at a stable, frequency-dependent, phase difference. During these stimulations, the response intensities of multiunits at the thalamic recipient layers of the cortex decreased, and their latencies increased, with increasing input frequency. These observations are consistent with thalamocortical loops implementing phase-locked loops, circuits that are most efficient in decoding temporally encoded information like that obtained by active vibrissal touch. According to this model, and consistent with our results, populations of thalamic "relay" neurons function as phase "comparators" that compare cortical timing expectations with the actual input timing and represent the difference by their population output rate.

  18. Orthogonal topography in the parallel input architecture of songbird HVC.

    PubMed

    Elliott, Kevin C; Wu, Wei; Bertram, Richard; Hyson, Richard L; Johnson, Frank

    2017-06-15

    Neural activity within the cortical premotor nucleus HVC (acronym is name) encodes the learned songs of adult male zebra finches (Taeniopygia guttata). HVC activity is driven and/or modulated by a group of five afferent nuclei (the Medial Magnocellular nucleus of the Anterior Nidopallium, MMAN; Nucleus Interface, NIf; nucleus Avalanche, Av; the Robust nucleus of the Arcopallium, RA; the Uvaeform nucleus, Uva). While earlier evidence suggested that HVC receives a uniformly distributed and nontopographic pattern of afferent input, recent evidence suggests this view is incorrect (Basista et al., ). Here, we used a double-labeling strategy (varying both the distance between and the axial orientation of dual tracer injections into HVC) to reveal a massively parallel and in some cases topographic pattern of afferent input. Afferent neurons target only one rostral or caudal location within medial or lateral HVC, and each HVC location receives convergent input from each afferent nucleus in parallel. Quantifying the distributions of single-labeled cells revealed an orthogonal topography in the organization of afferent input from MMAN and NIf, two cortical nuclei necessary for song learning. MMAN input is organized across the lateral-medial axis whereas NIf input is organized across the rostral-caudal axis. To the extent that HVC activity is influenced by afferent input during the learning, perception, or production of song, functional models of HVC activity may need revision to account for the parallel input architecture of HVC, along with the orthogonal input topography of MMAN and NIf. © 2017 Wiley Periodicals, Inc.

  19. Reticular thalamic responses to nociceptive inputs in anesthetized rats.

    PubMed

    Yen, Chen-Tung; Shaw, Fu-Zen

    2003-04-11

    The present study compares nociceptive responses of neurons in the reticular thalamic nucleus (RT) to those of the ventroposterior lateral nucleus (VPL). Extracellular single-unit activities of cells in the RT and VPL were recorded in anesthetized rats. Only units with identified tactile receptive fields in the forepaw or hindpaw were studied. In the first series of experiments, RT and VPL responses to pinching with a small artery clamp were tested with the rats under pentobarbital, urethane, ketamine, or halothane anesthesia. Under all types of anesthesia, many RT units were inhibited. Second, the specificity of the nociceptive response was tested by pinching and noxious heating of the unit's tactile receptive field. Of the 39 VPL units tested, 20 were excited by both types of noxious stimuli. In sharp contrast, of the 30 RT units tested, none were excited and 17 were inhibited. In a third series of experiments, low-intensity and beam-diffused CO(2) laser irradiation was used to activate peripheral nociceptive afferents. Wide-dynamic-range VPL units responded with short- and long-latency excitations. In contrast, RT units had short-latency excitation followed by long-latency inhibition. Nociceptive input inhibited RT units in less than 500 ms. We conclude that a significant portion of RT neurons were polysynaptically inhibited by nociceptive inputs. Since all the cells tested were excited by light tactile inputs, the somatosensory RT may serve in the role of a modality gate, which modifies (i.e. inhibits) tactile inputs while letting noxious inputs pass.

  20. Using constellation pharmacology to define comprehensively a somatosensory neuronal subclass.

    PubMed

    Teichert, Russell W; Memon, Tosifa; Aman, Joseph W; Olivera, Baldomero M

    2014-02-11

    Change is intrinsic to nervous systems; change is required for learning and conditioning and occurs with disease progression, normal development, and aging. To better understand mammalian nervous systems and effectively treat nervous-system disorders, it is essential to track changes in relevant individual neurons. A critical challenge is to identify and characterize the specific cell types involved and the molecular-level changes that occur in each. Using an experimental strategy called constellation pharmacology, we demonstrate that we can define a specific somatosensory neuronal subclass, cold thermosensors, across different species and track changes in these neurons as a function of development. Cold thermosensors are uniformly responsive to menthol and innocuous cool temperature (17 °C), indicating that they express TRPM8 channels. A subset of cold thermosensors expressed α7 nicotinic acetylcholine receptors (nAChRs) but not other nAChR subtypes. Differences in temperature threshold of cold thermosensors correlated with functional expression of voltage-gated K channels Kv1.1/1.2: Relatively higher expression of KV1.1/1.2 channels resulted in a higher threshold response to cold temperature. Other signaling components varied during development and between species. In cold thermosensors of neonatal mice and rats, ATP receptors were functionally expressed, but the expression disappeared with development. This developmental change occurred earlier in low-threshold than high-threshold cold thermosensors. Most rat cold thermosensors expressed TRPA1 channels, whereas mouse cold thermosensors did not. The broad implications of this study are that it is now feasible to track changes in receptor and ion-channel expression in individual neuronal subclasses as a function of development, learning, disease, or aging.

  1. Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury

    PubMed Central

    Lisembee, Amanda M.

    2012-01-01

    Disruption and consequent reorganization of central nervous system circuits following traumatic brain injury may manifest as functional deficits and behavioral morbidities. We previously reported axotomy and neuronal atrophy in the ventral basal (VB) complex of the thalamus, without gross degeneration after experimental diffuse brain injury in adult rats. Pathology in VB coincided with the development of late-onset aberrant behavioral responses to whisker stimulation, which lead to the current hypothesis that neurodegeneration after experimental diffuse brain injury includes the primary somatosensory barrel cortex (S1BF), which receives projection of VB neurons and mediates whisker somatosensation. Over 28 days after midline fluid percussion brain injury, argyrophilic reaction product within superficial layers and layer IV barrels at 1 day progresses into the cortex to subcortical white matter by 7 days, and selective inter-barrel septa and subcortical white matter labeling at 28 days. Cellular consequences were determined by stereological estimates of neuronal nuclear volumes and number. In all cortical layers, neuronal nuclear volumes significantly atrophied by 42–49% at 7 days compared to sham, which marginally attenuated by 28 days. Concomitantly, the number of healthy neurons was reduced by 34–45% at 7 days compared to sham, returning to control levels by 28 days. Progressive neurodegeneration, including argyrophilic reaction product and neuronal nuclear atrophy, indicates injury-induced damage and reorganization of the reciprocal thalamocortical projections that mediate whisker somatosensation. The rodent whisker barrel circuit may serve as a discrete model to evaluate the causes and consequences of circuit reorganization after diffuse brain injury. PMID:21597967

  2. Aging of the somatosensory system: a translational perspective.

    PubMed

    Shaffer, Scott W; Harrison, Anne L

    2007-02-01

    Balance in the elderly population is a major concern given the often catastrophic and disabling consequences of fall-related injuries. Structural and functional declines of the somatosensory system occur with aging and potentially contribute to postural instability in older adults. The objectives of this article are: (1) to discuss the evidence regarding age-related anatomical and physiological changes that occur in the peripheral proprioceptive and cutaneous systems, (2) to relate the basic science research to the current evidence regarding clinical changes associated with normal aging, and (3) to review the evidence regarding age-related proprioceptive and cutaneous clinical changes and relate it to research examining balance performance in older adults. The article is organized by an examination of the receptors responsible for activating afferent pathways (muscle spindle, golgi tendon organ, and articular and cutaneous receptors) and the corresponding sensory afferent fibers and neurons. It integrates basic science laboratory findings with clinical evidence suggesting that advanced aging results in a decline in cutaneous sensation and proprioception. The potential relationship between postural instability and sensory impairments in older adults also is discussed. Current laboratory and clinical evidence suggests that aging results in: (1) diverse and nonuniform declines in the morphology and physiological function of the various sensory structures examined, (2) preferential loss of distal large myelinated sensory fibers and receptors, and (3) impaired distal lower-extremity proprioception, vibration and discriminative touch, and balance. These findings provide foundational knowledge that emphasizes the importance of using reliable and valid sensory testing protocols for older adults and the need for further research that clarifies the relationship between sensory impairment and balance.

  3. Position and velocity coupling of postural sway to somatosensory drive.

    PubMed

    Jeka, J; Oie, K; Schöner, G; Dijkstra, T; Henson, E

    1998-04-01

    Light touch contact of a fingertip to a stationary surface provides orientation information that enhances control of upright stance. Slight changes in contact force at the fingertip lead to sensory cues about the direction of body sway, allowing attenuation of sway. In the present study, the coupling of postural sway to a moving contact surface was investigated in detail. Head, center of mass, and center of pressure displacement were measured as the contact surface moved rhythmically at 0.1, 0.2, 0.4, 0.6, and 0.8 Hz. Stimulus amplitude decreased with frequency to maintain peak velocity constant across frequency. Head and body sway were highly coherent with contact surface motion at all frequencies except 0.8 Hz, where a drop-off in coherence was observed. Mean frequency of head and body sway matched the driving frequency somatosensory system.

  4. Somatosensory-evoked blink response: investigation of the physiological mechanisms.

    PubMed

    Miwa, H; Nohara, C; Hotta, M; Shimo, Y; Amemiya, K

    1998-02-01

    The somatosensory-evoked blink response (SBR) is a newly identified blink reflex elicited by electrical stimulation of peripheral nerves. The present study was performed to investigate the physiological mechanism underlying the SBR elicited by median nerve stimulation in normal subjects. The peripheral afferents responsible for the SBR included low-threshold cutaneous fibres. In the SBR-positive subjects, the late (R2) component of the blink reflex elicited by supraorbital nerve stimulation and the SBR facilitated each other when both responses were induced at the same time, but they each caused long-lasting inhibition in the other when one stimulus was given as a conditioning stimulus. The extent of inhibition was correlated with the size of the preceding SBR. In the SBR-negative subjects, simultaneous inhibition of R2 was observed when median nerve stimulation was applied as a conditioning stimulus. Brainstem excitability, as evaluated by blink-reflex recovery studies, did not differ between SBR-positive and SBR-negative subjects. Therefore, based on anatomical and physiological findings, it appears that the reflex pathways of the SBR and R2 converge within the brainstem and compete with each other, presumably by presynaptic inhibition at the premotor level, before entering the common blink-reflex pathway. The influence of median nerve stimulation upon tonic contraction of the orbicularis oculi muscle was studied to detect the latent SBR. There was not only a facilitatory period corresponding to the SBR but also an active inhibitory period (exteroceptive suppression), suggesting that the mechanism generating the SBR is not only influenced by blink-reflex volleys but also by active exteroceptive suppression. Thus, the SBR may appear as a result of integration of facilitatory and inhibitory mechanisms within the brainstem.

  5. Using constellation pharmacology to define comprehensively a somatosensory neuronal subclass

    PubMed Central

    Teichert, Russell W.; Memon, Tosifa; Aman, Joseph W.; Olivera, Baldomero M.

    2014-01-01

    Change is intrinsic to nervous systems; change is required for learning and conditioning and occurs with disease progression, normal development, and aging. To better understand mammalian nervous systems and effectively treat nervous-system disorders, it is essential to track changes in relevant individual neurons. A critical challenge is to identify and characterize the specific cell types involved and the molecular-level changes that occur in each. Using an experimental strategy called constellation pharmacology, we demonstrate that we can define a specific somatosensory neuronal subclass, cold thermosensors, across different species and track changes in these neurons as a function of development. Cold thermosensors are uniformly responsive to menthol and innocuous cool temperature (17 °C), indicating that they express TRPM8 channels. A subset of cold thermosensors expressed α7 nicotinic acetylcholine receptors (nAChRs) but not other nAChR subtypes. Differences in temperature threshold of cold thermosensors correlated with functional expression of voltage-gated K channels Kv1.1/1.2: Relatively higher expression of KV1.1/1.2 channels resulted in a higher threshold response to cold temperature. Other signaling components varied during development and between species. In cold thermosensors of neonatal mice and rats, ATP receptors were functionally expressed, but the expression disappeared with development. This developmental change occurred earlier in low-threshold than high-threshold cold thermosensors. Most rat cold thermosensors expressed TRPA1 channels, whereas mouse cold thermosensors did not. The broad implications of this study are that it is now feasible to track changes in receptor and ion-channel expression in individual neuronal subclasses as a function of development, learning, disease, or aging. PMID:24469798

  6. Infrared thermal imaging of rat somatosensory cortex with whisker stimulation.

    PubMed

    Suzuki, Takashi; Ooi, Yasuhiro; Seki, Junji

    2012-04-01

    The present study aims to validate the applicability of infrared (IR) thermal imaging for the study of brain function through experiments on the rat barrel cortex. Regional changes in neural activity within the brain produce alterations in local thermal equilibrium via increases in metabolic activity and blood flow. We studied the relationship between temperature change and neural activity in anesthetized rats using IR imaging to visualize stimulus-induced changes in the somatosensory cortex of the brain. Sensory stimulation of the vibrissae (whiskers) was given for 10 s using an oscillating whisker vibrator (5-mm deflection at 10, 5, and 1 Hz). The brain temperature in the observational region continued to increase significantly with whisker stimulation. The mean peak recorded temperature changes were 0.048 ± 0.028, 0.054 ± 0.036, and 0.097 ± 0.015°C at 10, 5, and 1 Hz, respectively. We also observed that the temperature increase occurred in a focal spot, radiating to encompass a larger region within the contralateral barrel cortex region during single-whisker stimulation. Whisker stimulation also produced ipsilateral cortex temperature increases, which were localized in the same region as the pial arterioles. Temperature increase in the barrel cortex was also observed in rats treated with a calcium channel blocker (nimodipine), which acts to suppress the hemodynamic response to neural activity. Thus the location and area of temperature increase were found to change in accordance with the region of neural activation. These results indicate that IR thermal imaging is viable as a functional quantitative neuroimaging technique.

  7. Integrated approach for studying adaptation mechanisms in the human somatosensory cortical network.

    PubMed

    Venkatesan, Lalit; Barlow, Steven M; Popescu, Mihai; Popescu, Anda

    2014-11-01

    Magnetoencephalography and independent component analysis (ICA) was utilized to study and characterize neural adaptation in the somatosensory cortical network. Repetitive punctate tactile stimuli were applied unilaterally to the dominant hand and face using a custom-built pneumatic stimulator called the TAC-Cell. ICA-based source estimation from the evoked neuromagnetic responses indicated cortical activity in the contralateral primary somatosensory cortex (SI) for face stimulation, while hand stimulation resulted in robust contralateral SI and posterior parietal cortex (PPC) activation. Activity was also observed in the secondary somatosensory cortical area (SII) with reduced amplitude and higher variability across subjects. There was a significant difference in adaptation rate between SI and higher-order somatosensory cortices for hand stimulation. Adaptation was significantly dependent on stimulus frequency and pulse index within the stimulus train for both hand and face stimulation. The peak latency of the activity was significantly dependent on stimulation site (hand vs. face) and cortical area (SI vs. PPC). The difference in the peak latency of activity in SI and PPC is presumed to reflect a hierarchical serial-processing mechanism in the somatosensory cortex.

  8. Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury

    PubMed Central

    Ji, Yiming; Meng, Bin; Yuan, Chenxi; Yang, Huilin; Zou, Jun

    2013-01-01

    It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30–180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. PMID:25206629

  9. The clinical role of somatosensory evoked potential studies: a critical appraisal.

    PubMed

    Aminoff, M J

    1984-06-01

    The clinical utility and limitations of somatosensory evoked potential (SEP) studies are reviewed. Somatosensory evoked potentials may help to identify a lesion in the sensory pathways, but do not indicate its nature. In multiple sclerosis subjects, the SEP findings may help to establish that there is a multiplicity of lesions, but multimodality evoked potential abnormalities may occur in other disorders. Somatosensory evoked potential abnormalities do not reflect either the severity or the prognosis of cervical spondylosis and do not reliably permit early recognition of the totality of traumatic cord lesions, while the role of SEPs in monitoring cord function intraoperatively awaits definition. Somatosensory evoked potentials do not reliably indicate the individual prognosis after severe head injury, and discrepancies in published findings suggest that their use in the evaluation of brain death is premature. In hereditary spinocerebellar degenerations, SEP abnormalities may reflect central or peripheral pathology. Somatosensory evoked potentials can be used to determine conduction velocity in peripheral nerves and to identify inaccessible proximal lesions of these nerves, but the findings may lead to misleading conclusions about brachial plexus lesions, especially if pre- and postganglionic lesions coexist.

  10. Illusory and veridical mapping of tactile objects in the primary somatosensory and posterior parietal cortex.

    PubMed

    Bufalari, Ilaria; Di Russo, Francesco; Aglioti, Salvatore Maria

    2014-07-01

    While several behavioral and neuroscience studies have explored visual, auditory, and cross-modal illusions, information about the phenomenology and neural correlates of somatosensory illusions is meager. By combining psychophysics and somatosensory evoked potentials, we explored in healthy humans the neural correlates of 2 compelling tactuo-proprioceptive illusions, namely Aristotle (1 object touching the contact area between 2 crossed fingers is perceived as 2 lateral objects) and Reverse illusions (2 lateral objects are perceived as 1 between crossed-fingers object). These illusions likely occur because of the tactuo-proprioceptive conflict induced by fingers being crossed in a non-natural posture. We found that different regions in the somatosensory stream exhibit different proneness to the illusions. Early electroencephalographic somatosensory activity (at 20 ms) originating in the primary somatosensory cortex (S1) reflects the phenomenal rather than the physical properties of the stimuli. Notably, later activity (around 200 ms) originating in the posterior parietal cortex is higher when subjects resist the illusions. Thus, while S1 activity is related to illusory perception, PPC acts as a conflict resolver that recodes tactile events from somatotopic to spatiotopic frames of reference and ultimately enables veridical perception. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Impaired dynamic balance control in adolescents with idiopathic scoliosis and abnormal somatosensory evoked potentials.

    PubMed

    Lao, Miko L M; Chow, Daniel H K; Guo, Xia; Cheng, Jack C Y; Holmes, Andrew D

    2008-12-01

    Both balance control dysfunction and dysfunction of the central nervous system have been proposed as being causative factors in adolescent idiopathic scoliosis (AIS), yet the relationship between these factors has not been investigated in detail. An intergroup comparative study was conducted to investigate the effect of abnormal somatosensory function on the dynamic balance parameters of girls with AIS. The relationship between dynamic balance control and abnormal somatosensory function seen in AIS patients was examined by studying the dynamic balance parameters in normal controls, in AIS patients with normal posterior tibial nerve somatosensory cortical evoked potentials (PTN-SCEPs), and in AIS patients with abnormal PTN-SCEPs. Gait parameters were recorded in 18 AIS girls (8 showing abnormal PTN-SCEPs and 10 showing normal PTN-SCEPs). Eight healthy age-matched volunteers served as a control group. No significant left-right asymmetry of gait parameters was found for the controls or the AIS patients with normal PTN-SCEPs, whereas significantly higher gait parameters were found on the side of the curvature in the AIS patients with abnormal PTN-SCEPs. Somatosensory dysfunction in AIS patients shows to have an impact on dynamic balance control. Further studies to examine the association between somatosensory dysfunction and balance control and how they may be related to the etiology of AIS are recommended. Diagnostic study, level IV (case-control study).

  12. Architectonic mapping of somatosensory areas involved in skilled forelimb movements and tool use.

    PubMed

    Mayer, Andrei; Nascimento-Silva, Márcio L; Keher, Natalia B; Bittencourt-Navarrete, Ruben Ernesto; Gattass, Ricardo; Franca, João G

    2016-05-01

    Cebus monkeys stand out from other New World monkeys by their ability to perform fine hand movements, and by their spontaneous use of tools in the wild. Those behaviors rely on the integration of somatosensory information, which occurs in different areas of the parietal cortex. Although a few studies have examined and parceled the somatosensory areas of the cebus monkey, mainly using electrophysiological criteria, very little is known about its anatomical organization. In this study we used SMI-32 immunohistochemistry, myelin, and Nissl stains to characterize the architecture of the parietal cortical areas of cebus monkeys. Seven cortical areas were identified between the precentral gyrus and the anterior bank of the intraparietal sulcus. Except for areas 3a and 3b, distinction between different somatosensory areas was more evident in myelin-stained sections and SMI-32 immunohistochemistry than in Nissl stain, especially for area 2 and subdivisions of area 5. Our results show that cebus monkeys have a relatively complex somatosensory cortex, similar to that of macaques and humans. This suggests that, during primate evolution, the emergence of new somatosensory areas underpinned complex manual behaviors in most Old World simians and in the New World cebus monkey. J. Comp. Neurol. 524:1399-1423, 2016. © 2015 Wiley Periodicals, Inc.

  13. Sensory gating, inhibition control and gamma oscillations in the human somatosensory cortex

    PubMed Central

    Cheng, Chia-Hsiung; Chan, Pei-Ying S.; Niddam, David M.; Tsai, Shang-Yueh; Hsu, Shih-Chieh; Liu, Chia-Yih

    2016-01-01

    Inhibiting the responses to irrelevant stimuli is an essential component of human cognitive function. Pre-attentive auditory sensory gating (SG), an attenuated neural activation to the second identical stimulus, has been found to be related to the performance of higher-hierarchical brain function. However, it remains unclear whether other cortical regions, such as somatosensory cortex, also possess similar characteristics, or if such a relationship is modality-specific. This study used magnetoencephalography to record neuromagnetic responses to paired-pulse electrical stimulation to median nerve in 22 healthy participants. Somatosensory SG ratio and cortical brain oscillations were obtained and compared with the behavioral performance of inhibition control, as evaluated by somatosensory and auditory Go-Nogo tasks. The results showed that somatosensory P35m SG ratio correlated with behavioral performance of inhibition control. Such relationship was also established in relation to the auditory Go-Nogo task. Finally, a higher frequency value of evoked gamma oscillations was found to relate to a better somatosensory SG ability. In conclusion, our data provided an empirical link between automatic cortical inhibition and behavioral performance of attentive inhibition control. This study invites further research on the relationships among gamma oscillations, neurophysiological indices, and behavioral performance in clinical populations in terms of SG or cortical inhibition. PMID:26843358

  14. fMRI investigation of unexpected somatosensory feedback perturbation during speech.

    PubMed

    Golfinopoulos, Elisa; Tourville, Jason A; Bohland, Jason W; Ghosh, Satrajit S; Nieto-Castanon, Alfonso; Guenther, Frank H

    2011-04-01

    Somatosensory feedback plays a critical role in the coordination of articulator movements for speech production. In response to unexpected resistance to lip or jaw movements during speech, fluent speakers can use the difference between the somatosensory expectations of a speech sound and the actual somatosensory feedback to adjust the trajectories of functionally relevant but unimpeded articulators. In an effort to investigate the neural substrates underlying the somatosensory feedback control of speech, we used an event-related sparse sampling functional magnetic resonance imaging paradigm and a novel pneumatic device that unpredictably blocked subjects' jaw movements. In comparison to speech, perturbed speech, in which jaw perturbation prompted the generation of compensatory speech motor commands, demonstrated increased effects in bilateral ventral motor cortex, right-lateralized anterior supramarginal gyrus, inferior frontal gyrus pars triangularis and ventral premotor cortex, and bilateral inferior posterior cerebellum (lobule VIII). Structural equation modeling revealed a significant increased influence from left anterior supramarginal gyrus to right anterior supramarginal gyrus and from left anterior supramarginal gyrus to right ventral premotor cortex as well as a significant increased reciprocal influence between right ventral premotor cortex and right ventral motor cortex and right anterior supramarginal gyrus and right inferior frontal gyrus pars triangularis for perturbed speech relative to speech. These results suggest that bilateral anterior supramarginal gyrus, right inferior frontal gyrus pars triangularis, right ventral premotor and motor cortices are functionally coupled and influence speech motor output when somatosensory feedback is unexpectedly perturbed during speech production.

  15. Regularity of approaching visual stimuli influences spatial expectations for subsequent somatosensory stimuli.

    PubMed

    Kimura, Tsukasa; Katayama, Jun'ichi

    2017-06-01

    This study examines how the regularity of visual stimuli approaching the body influences spatial expectations of subsequent somatosensory stimuli by recording event-related brain potentials (ERPs) during a simple reaction time (RT) task involving responses to somatosensory stimuli. Twenty-one participants were instructed to put their arms on a desk, and three LEDs were placed equidistantly between their arms. Electrical stimuli were presented with a high probability (80%) of being applied to one wrist and a low probability (20%) of being applied to the opposite wrist. One trial was composed of three visual stimuli followed by one electrical stimulus. In the regular approach condition, LEDs flashed sequentially toward the wrist with the high-probability somatosensory stimulus. In the irregular approach condition, the first and second visual stimuli were presented randomly, but the third visual stimulus was invariably presented near the wrist with the high-probability stimulus. In both conditions, RTs for low-probability stimuli were slower than those for high-probability stimuli, and the low-probability stimuli elicited larger P3 amplitudes than the high-probability stimuli. Furthermore, the largest P3 amplitude was elicited by low-probability stimuli under the regular approach condition, whereas the amplitudes of contingent negative variation (CNV) elicited before the presentation of the somatosensory stimuli did not differ between conditions. These results indicate that regularity of visual stimuli approaching the body facilitates an automatic spatial expectation for subsequent somatosensory stimuli.

  16. Sustained attention to spontaneous thumb sensations activates brain somatosensory and other proprioceptive areas.

    PubMed

    Bauer, Clemens C C; Díaz, José-Luis; Concha, Luis; Barrios, Fernando A

    2014-06-01

    The present experiment was designed to test if sustained attention directed to the spontaneous sensations of the right or left thumb in the absence of any external stimuli is able to activate corresponding somatosensory brain areas. After verifying in 34 healthy volunteers that external touch stimuli to either thumb effectively activate brain contralateral somatosensory areas, and after subtracting attention mechanisms employed in both touch and spontaneous-sensation conditions, fMRI evidence was obtained that the primary somatosensory cortex (specifically left BA 3a/3b) becomes active when an individual is required to attend to the spontaneous sensations of either thumb in the absence of external stimuli. In addition, the left superior parietal cortex, anterior cingulate gyrus, insula, motor and premotor cortex, left dorsolateral prefrontal cortex, Broca's area, and occipital cortices were activated. Moreover, attention to spontaneous-sensations revealed an increased connectivity between BA 3a/3b, superior frontal gyrus (BA 9) and anterior cingulate cortex (BA 32), probably allowing top-down activations of primary somatosensory cortex. We conclude that specific primary somatosensory areas in conjunction with other left parieto-frontal areas are involved in processing proprioceptive and interoceptive bodily information that underlies own body-representations and that these networks and cognitive functions can be modulated by top-down attentional processes.

  17. Sensory gating, inhibition control and gamma oscillations in the human somatosensory cortex.

    PubMed

    Cheng, Chia-Hsiung; Chan, Pei-Ying S; Niddam, David M; Tsai, Shang-Yueh; Hsu, Shih-Chieh; Liu, Chia-Yih

    2016-02-04

    Inhibiting the responses to irrelevant stimuli is an essential component of human cognitive function. Pre-attentive auditory sensory gating (SG), an attenuated neural activation to the second identical stimulus, has been found to be related to the performance of higher-hierarchical brain function. However, it remains unclear whether other cortical regions, such as somatosensory cortex, also possess similar characteristics, or if such a relationship is modality-specific. This study used magnetoencephalography to record neuromagnetic responses to paired-pulse electrical stimulation to median nerve in 22 healthy participants. Somatosensory SG ratio and cortical brain oscillations were obtained and compared with the behavioral performance of inhibition control, as evaluated by somatosensory and auditory Go-Nogo tasks. The results showed that somatosensory P35m SG ratio correlated with behavioral performance of inhibition control. Such relationship was also established in relation to the auditory Go-Nogo task. Finally, a higher frequency value of evoked gamma oscillations was found to relate to a better somatosensory SG ability. In conclusion, our data provided an empirical link between automatic cortical inhibition and behavioral performance of attentive inhibition control. This study invites further research on the relationships among gamma oscillations, neurophysiological indices, and behavioral performance in clinical populations in terms of SG or cortical inhibition.

  18. Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum.

    PubMed

    Mizelle, J C; Oparah, Alexis; Wheaton, Lewis A

    2016-01-01

    The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.

  19. fMRI investigation of unexpected somatosensory feedback perturbation during speech

    PubMed Central

    Golfinopoulos, Elisa; Tourville, Jason A.; Bohland, Jason W.; Ghosh, Satrajit S.; Nieto-Castanon, Alfonso; Guenther, Frank H.

    2011-01-01

    Somatosensory feedback plays a critical role in the coordination of articulator movements for speech production. In response to unexpected resistance to lip or jaw movements during speech, fluent speakers can use the difference between the somatosensory expectations of a speech sound and the actual somatosensory feedback to adjust the trajectories of functionally relevant but unimpeded articulators. In an effort to investigate the neural substrates underlying the somatosensory feedback control of speech, we used an event-related sparse sampling functional magnetic resonance imaging paradigm and a novel pneumatic device that unpredictably blocked subjects’ jaw movements. In comparison to speech, perturbed speech, in which jaw perturbation prompted the generation of compensatory speech motor commands, demonstrated increased effects in bilateral ventral motor cortex, right-lateralized anterior supramarginal gyrus, inferior frontal gyrus pars triangularis and ventral premotor cortex, and bilateral inferior posterior cerebellum (lobule VIII). Structural equation modeling revealed a significant increased influence from left anterior supramarginal gyrus to right anterior supramarginal gyrus and from left anterior supramarginal gyrus to right ventral premotor cortex as well as a significant increased reciprocal influence between right ventral premotor cortex and right ventral motor cortex and right anterior supramarginal gyrus and right inferior frontal gyrus pars triangularis for perturbed speech relative to speech. These results suggest that bilateral anterior supramarginal gyrus, right inferior frontal gyrus pars triangularis, right ventral premotor and motor cortices are functionally coupled and influence speech motor output when somatosensory feedback is unexpectedly perturbed during speech production. PMID:21195191

  20. Pulse-train Stimulation of Primary Somatosensory Cortex Blocks Pain Perception in Tail Clip Test.

    PubMed

    Lee, Soohyun; Hwang, Eunjin; Lee, Dongmyeong; Choi, Jee Hyun

    2017-04-01

    Human studies of brain stimulation have demonstrated modulatory effects on the perception of pain. However, whether the primary somatosensory cortical activity is associated with antinociceptive responses remains unknown. Therefore, we examined the antinociceptive effects of neuronal activity evoked by optogenetic stimulation of primary somatosensory cortex. Optogenetic transgenic mice were subjected to continuous or pulse-train optogenetic stimulation of the primary somatosensory cortex at frequencies of 15, 30, and 40 Hz, during a tail clip test. Reaction time was measured using a digital high-speed video camera. Pulse-train optogenetic stimulation of primary somatosensory cortex showed a delayed pain response with respect to a tail clip, whereas no significant change in reaction time was observed with continuous stimulation. In response to the pulse-train stimulation, video monitoring and local field potential recording revealed associated paw movement and sensorimotor rhythms, respectively. Our results show that optogenetic stimulation of primary somatosensory cortex at beta and gamma frequencies blocks transmission of pain signals in tail clip test.

  1. TASSRAP Input Module

    DTIC Science & Technology

    1977-07-29

    retrieve data necessary for the other modules to function. Initially there are 13 inputs, with the CRT dis - playing the information to be entered...id 46aý .0sso somma % 4bt--f. ft Aa W #4t - lQ *a - 4 c ,0 45 40 aK 43 ’ C = 04 ZSC 0 de *020.4 %- li’l ~ ~ ~ ~ ~ ~ & 1&.1 gol~ -,.-’ ow. -6 -N*4••1L...tv Z (𔃽 - C- ft %- ftb 0*4 *- -1 *4* (30 w ag &h 𔃾 0 a _6a .N I 0 A. 6.2 IL ILN ’ S MS 6C 0 to ~ 0 " di a S 0 m J *- -j f’ md op9 -9 $-. -6 = -A U .Af

  2. Investigating the Effects of Multimedia Input Modality on L2 Listening Skills of Turkish EFL Learners

    ERIC Educational Resources Information Center

    Inceçay, Volkan; Koçoglu, Zeynep

    2017-01-01

    The present study examined whether or not different input delivery modes have an effect on listening comprehension of Turkish students learning English at the university level. It investigated the effect of one single mode, which is audio-only, and three dual input delivery modes, which were audio-video, audio-video with target language subtitles…

  3. Structural alterations of spiny stellate cells in the somatosensory cortex in ephrin-A5-deficient mice.

    PubMed

    Guellmar, André; Rudolph, Judith; Bolz, Jürgen

    2009-12-10

    Previous studies demonstrated that in ephrin-A5-deficient mice corticothalamic arbors are reduced by more than 50% in layer 4 of the somatosensory cortex (S1), where ephrin-A5 is normally expressed. Here we examined possible consequences of the reduced thalamic input on spiny stellate cells, the target neurons of thalamocortical afferents. Using ballistic delivery of particles coated with lipophilic dyes in fixed slices and confocal laser-microscopy, we could quantitatively analyze the morphology of these neurons. Cells were examined in S1 at postnatal day 8 (P8), when thalamic afferents establish synaptic contacts and the dendrites of their target cells are covered with filopodia, and at P23, after synapse formation and replacement of filopodia by spines. Our results indicate that at P8 the dendrites of cells in mutant animals exhibit more filopodia and are more branched than dendrites of wildtype cells. In contrast, there is no difference in the extent of the dendritic tree between knockout and control animals. At P23, dendrites of neurons in ephrin-A5-deficient mice are still more branched, but possess fewer spines than wildtype cells. Thus, at early stages layer 4 neurons appear to compensate the reduced thalamic input by increasing dendritic branching and the density of filopodia. However, while at later stages the dendrites of layer 4 neurons in mutants are still more branched, their spine density is now lower than in wildtype cells. Taken together, these data demonstrate that the structure of spiny stellate cells is shaped by thalamic input and Eph receptor signaling.

  4. Modeling and generating input processes

    SciTech Connect

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  5. Input Multiplicities in Process Control.

    ERIC Educational Resources Information Center

    Koppel, Lowell B.

    1983-01-01

    Describes research investigating potential effect of input multiplicity on multivariable chemical process control systems. Several simple processes are shown to exhibit the possibility of theoretical developments on input multiplicity and closely related phenomena are discussed. (JN)

  6. [Tactile agnosia and dysfunction of the primary somatosensory area. Data of the study by somatosensory evoked potentials in patients with deficits of tactile object recognition].

    PubMed

    Mauguière, F; Isnard, J

    1995-01-01

    The question as to whether a failure of recognition unrelated to impaired sensory processing or to disorder of naming can occur in the somato-sensory modality has been eagerly debated in the french neurology. Taking as an argument the fact that he had never observed a tactile agnosia in the absence of subtle sensory deficits Dejerine denied the localizing value of tactile agnosia (or asterognosis). Conversely Delay, 20 years later, identified tactile performances such as discrimination of texture and shapes, which he considered as a specific neocortical function, that were lost in parietal syndromes with astereognosis and preserved elementary sensations. He also coined the term "tactile asymbolia" to qualify the patients with astereognosis in whom these performances are preserved. When referring to the definition of agnosias only "tactile asymbolia" should be considered as a "true" tactile agnosia. The recording of early somatosensory evoked potentials (SEPs) now offers the possibility of assessing non invasively the function of the primary somatosensory cortex (in particular area 3b). We have recorded SEPs to median nerve or finger stimulation in 309 subjects with a focal hemispheric lesion presenting with a somatosensory deficit of any type. We could confirm that asterognosis referable to impaired discrimination of textures and/or shapes in the absence of impaired elementary sensation is quite rare since it was observed in only 12 of our patients (3.9%). Moreover early cortical SEPs reflecting the activity of the primary somatosensory area (N20 or/and P27) were clearly abnormal in all of them. A single patient of this group of 12 could be considered as a case of tactile asymbolia but his early cortical SEPs were abnormal. The only condition combining a failure of tactile recognition of objects with normal early SEPs is represented by the "tactile anomia" observed in callosal dysconnexions. Thus, in our patients unable to identify objects by palpation in spite of

  7. Chronic Migraine Is Associated With Sustained Elevation of Somatosensory Temporal Discrimination Thresholds.

    PubMed

    Vuralli, Doga; Evren Boran, H; Cengiz, Bulent; Coskun, Ozlem; Bolay, Hayrunnisa

    2016-10-01

    Migraine headache attacks have been shown to be accompanied by significant prolongation of somatosensory temporal discrimination threshold values, supporting signs of disrupted sensorial processing in migraine. Chronic migraine is one of the most debilitating and challenging headache disorders with no available biomarker. We aimed to test the diagnostic value of somatosensory temporal discrimination for chronic migraine in this prospective, controlled study. Fifteen chronic migraine patients and 15 healthy controls completed the study. Chronic migraine patients were evaluated twice, during a headache and headache-free period. Somatosensory temporal discrimination threshold values were evaluated in both hands. Duration of migraine and chronic migraine, headache intensity, clinical features accompanying headache such as nausea, photophobia, phonophobia and osmophobia, and pressure pain thresholds were also recorded. In the chronic migraine group, somatosensory temporal discrimination threshold values on the headache day (138.8 ± 21.8 ms for the right hand and 141.2 ± 17.4 ms for the left hand) were significantly higher than somatosensory temporal discrimination threshold values on the headache free day (121.5 ± 13.8 ms for the right hand and 122.8 ± 12.6 ms for the left hand, P = .003 and P < .0001, respectively) and somatosensory temporal discrimination thresholds of healthy volunteers (35.4 ± 5.5 ms for the right hand and 36.4 ± 5.4 ms for the left hand, P < .0001 and P < .0001, respectively). Somatosensory temporal discrimination threshold values of chronic migraine patients on the headache free day were significantly prolonged compared to somatosensory temporal discrimination threshold values of the control group (121.5 ± 13.8 ms vs 35.4 ± 5.5 ms for the right hand, P < .0001 and 122.8 ± 12.6 ms vs 36.4 ± 5.4 ms for the left hand, P < .0001). Somatosensory temporal discrimination threshold

  8. Steady-state activation in somatosensory cortex after changes in stimulus rate during median nerve stimulation.

    PubMed

    Manganotti, Paolo; Formaggio, Emanuela; Storti, Silvia Francesca; Avesani, Mirko; Acler, Michele; Sala, Francesco; Magon, Stefano; Zoccatelli, Giada; Pizzini, Francesca; Alessandrini, Franco; Fiaschi, Antonio; Beltramello, Alberto

    2009-11-01

    Passive electrical stimulation activates various human somatosensory cortical systems including the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII) and bilateral insula. The effect of stimulation frequency on blood oxygenation level-dependent (BOLD) activity remains unclear. We acquired 3-T functional magnetic resonance imaging (fMRI) in eight healthy volunteers during electrical median nerve stimulation at frequencies of 1, 3 and 10 Hz. During stimulation BOLD signal changes showed activation in the contralateral SI, bilateral SII and bilateral insula. Results of fMRI analysis showed that these areas were progressively active with the increase of rate of stimulation. As a major finding, the contralateral SI showed an increase of peak of BOLD activation from 1 to 3 Hz but reached a plateau during 10-Hz stimulation. Our finding is of interest for basic research and for clinical applications in subjects unable to perform cognitive tasks in the fMRI scanner.

  9. Beta 2-adrenergic receptors are colocalized and coregulated with whisker barrels in rat somatosensory cortex

    SciTech Connect

    Vos, P.; Kaufmann, D.; Hand, P.J.; Wolfe, B.B. )

    1990-07-01

    Autoradiography has been used to visualize independently the subtypes of beta-adrenergic receptors in rat somatosensory cortex. Beta 2-adrenergic receptors, but not beta 1-adrenergic receptors colocalize with whisker barrels in this tissue. Thus, each whisker sends a specific multisynaptic pathway to the somatosensory cortex that can be histochemically visualized and only one subtype of beta-adrenergic receptor is specifically associated with this cortical representation. Additionally, neonatal lesion of any or all of the whisker follicles results in loss of the corresponding barrel(s) as shown by histochemical markers. This loss is paralleled by a similar loss in the organization of beta 2-adrenergic receptors in the somatosensory cortex. Other results indicate that these beta 2-adrenergic receptors are not involved in moment-to-moment signal transmission in this pathway and, additionally, are not involved in a gross way in the development of whisker-barrel array.

  10. COMMUNICATION Designing a somatosensory neural prosthesis: percepts evoked by different patterns of thalamic stimulation

    NASA Astrophysics Data System (ADS)

    Heming, Ethan; Sanden, Andrew; Kiss, Zelma H. T.

    2010-12-01

    Although major advances have been made in the development of motor prostheses, fine motor control requires intuitive somatosensory feedback. Here we explored whether a thalamic site for a somatosensory neural prosthetic could provide natural somatic sensation to humans. Different patterns of electrical stimulation (obtained from thalamic spike trains) were applied in patients undergoing deep brain stimulation surgery. Changes in pattern produced different sensations, while preserving somatotopic representation. While most percepts were reported as 'unnatural', some stimulations produced more 'natural' sensations than others. However, the additional patterns did not elicit more 'natural' percepts than high-frequency (333 Hz) electrical stimulation. These features suggest that despite some limitations, the thalamus may be a feasible site for a somatosensory neural prosthesis and different stimulation patterns may be useful in its development.

  11. Evaluation of somatosensory cortical differences between flutter and vibration tactile stimuli.

    PubMed

    Han, Sang Woo; Chung, Yoon Gi; Kim, Hyung-Sik; Chung, Soon-Cheol; Park, Jang-Yeon; Kim, Sung-Phil

    2013-01-01

    In parallel with advances in haptic-based mobile computing systems, understanding of the neural processing of vibrotactile information becomes of great importance. In the human nervous system, two types of vibrotactile information, flutter and vibration, are delivered from mechanoreceptors to the somatosensory cortex through segregated neural afferents. To investigate how the somatosensory cortex differentiates flutter and vibration, we analyzed the cortical responses to vibrotactile stimuli with a wide range of frequencies. Specifically, we examined whether cortical activity changed most around 50 Hz, which is known as a boundary between flutter and vibration. We explored various measures to evaluate separability of cortical activity across frequency and found that the hypothesis margin method resulted in the greatest separability between flutter and vibration. This result suggests that flutter and vibration information may be processed by different neural processes in the somatosensory cortex.

  12. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  13. Short-Latency Median-Nerve Somatosensory-Evoked Potentials and Induced Gamma-Oscillations in Humans

    ERIC Educational Resources Information Center

    Fukuda, Miho; Nishida, Masaaki; Juhasz, Csaba; Muzik, Otto; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    Recent studies have suggested that cortical gamma-oscillations are tightly linked with various forms of physiological activity. In the present study, the dynamic changes of intracranially recorded median-nerve somatosensory-evoked potentials (SEPs) and somatosensory-induced gamma-oscillations were animated on a three-dimensional MR image, and the…

  14. Lack of activation of human secondary somatosensory cortex in Unverricht-Lundborg type of progressive myoclonus epilepsy.

    PubMed

    Forss, N; Silén, T; Karjalainen, T

    2001-01-01

    Previous electroencephalographic and magnetoencephalographic studies have demonstrated giant early somatosensory cortical responses in patients with cortical myoclonus. We applied whole-scalp magnetoencephalography to study activation sequences of the somatosensory cortical network in 7 patients with Unverricht-Lundborg-type progressive myoclonus epilepsy diagnostically verified by DNA analysis. Responses to electric median nerve stimuli displayed 30-msec peaks at the contralateral primary somatosensory cortex that were four times stronger in patients than in control subjects. The amplitudes of 20-msec responses did not significantly differ between the groups. In contrast to control subjects, 5 patients displayed ipsilateral primary somatosensory cortex activity at 48 to 61 msec in response to both left- and right-sided median nerve stimuli. Furthermore, their secondary somatosensory cortex was not significantly activated. These abnormalities indicate altered responsiveness of the entire somatosensory cortical network outside the contralateral primary somatosensory cortex in patients with Unverricht-Lundborg-type progressive myoclonus epilepsy. The deficient activation of the secondary somatosensory cortex in Unverricht-Lundborg patients may reflect disturbed sensorimotor integration, probably related to impaired movement coordination.

  15. Somatosensory-related gamma-, beta- and alpha-augmentation precedes alpha- and beta-attenuation in humans

    PubMed Central

    Fukuda, Miho; Juhász, Csaba; Hoechstetter, Karsten; Sood, Sandeep; Asano, Eishi

    2009-01-01

    Objective A number of human studies have demonstrated that the amplitudes of cortical oscillations are altered by various sensorimotor and cognitive tasks. Event-related augmentation of gamma-oscillations and attenuation of alpha- and beta-oscillations have been often used as surrogate markers of cortical activation elicited by tasks especially in presurgical identification of eloquent cortices. In the present study, we addressed a question whether somatosensory-related gamma-augmentation ‘precedes’ or ‘co-occurs with’ somatosensory-related attenuation of alpha-beta oscillations. Methods We studied 10 patients who underwent intracranial electrocorticography for epilepsy surgery, and determined the temporal and spatial characteristics of median-nerve somatosensory-related amplitude changes at gamma- (30–100 Hz), beta- (14–28 Hz) and alpha-band (8–12 Hz) oscillations. Results We found that somatosensory-related gamma-augmentation involving the post- and pre-central gyri evolved into beta- and alpha-augmentation, which was subsequently followed by beta- and alpha-attenuation involving the post- and pre-central gyri. Conclusions These observations support the hypothesis that somatosensory-related gamma-augmentation but not alpha-beta attenuation represents the initial cortical processing for external somatosensory stimuli. Somatosensory-related alpha-beta attenuation appears to represent a temporally distinct stage of somatosensory processing. Significance The present study has increased our understanding of event-related gamma-augmentation and alpha-beta attenuation seen on electrocorticography. PMID:20075003

  16. Short-Latency Median-Nerve Somatosensory-Evoked Potentials and Induced Gamma-Oscillations in Humans

    ERIC Educational Resources Information Center

    Fukuda, Miho; Nishida, Masaaki; Juhasz, Csaba; Muzik, Otto; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    Recent studies have suggested that cortical gamma-oscillations are tightly linked with various forms of physiological activity. In the present study, the dynamic changes of intracranially recorded median-nerve somatosensory-evoked potentials (SEPs) and somatosensory-induced gamma-oscillations were animated on a three-dimensional MR image, and the…

  17. Visual stimuli approaching toward the body influence temporal expectations about subsequent somatosensory stimuli.

    PubMed

    Kimura, Tsukasa; Katayama, Jun'ichi

    2017-06-01

    The present study investigated whether visual stimuli approaching the body influence temporal expectations about subsequent somatosensory stimuli. To examine this question, we recorded event-related brain potentials (ERPs) during a simple reaction time task using somatosensory stimuli. Fourteen participants were asked to place their arms on a desk, and three light-emitting diodes (LEDs) were placed at equal distances between their arms. Each trial was composed of three visual stimuli (i.e., LEDs), and one subsequent electrical stimulus (i.e., somatosensory stimulus) to one wrist. The stimulus onset asynchrony (SOA) between the visual stimuli was set to 1000ms. The SOA between the third visual stimulus and the somatosensory stimulus was set to 1000ms (standard; p=0.75), 500ms (early deviation; p=0.125), and 1500ms (late deviation; p=0.125). In the approach condition, the left, center, and right LEDs (or reverse) were turned sequentially toward the wrist to which the somatosensory stimulus was presented. In the neutral condition, the center LED was flashed three times. The N1 amplitudes for early deviations of stimuli were larger under the approach condition than under the neutral condition. These results show that prior visual stimuli facilitate temporal expectations about subsequent somatosensory stimuli, i.e., visual stimuli approaching toward the body facilitate the processing of early deviant stimuli. The present study indicates the existence of a function of supramodal temporal expectation and detection of deviation from this expectation using the approach of visual stimuli toward the body. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of repetitive transcranial magnetic stimulation on the somatosensory cortex during prism adaptation.

    PubMed

    Yoon, Hee-Chul; Lee, Kyung-Hyun; Huh, Dong-Chan; Lee, Ji-Hang; Lee, Dong-Hyun

    2014-04-01

    Although the behavioral characteristics and the neural correlates of prism adaptation processes have been studied extensively, the underlying mechanism is yet to be investigated. Recently, somatosensory suppression was heralded as a mechanism for the sensory re-alignment process accompanying the adaptation. Somatosensory suppression should facilitate the re-alignment process in the proprioceptive system. The shift in the proprioceptive system takes place mostly during a concurrent visual feedback (CVF) condition; during a terminal visual feedback (TVF) condition, the visual system experiences significant adaptation (visual shift), so somatosensory suppression should have minimal functional consequences under TVF. To test this hypothesis, a repetitive transcranial magnetic stimulation (rTMS) was applied to the primary somatosensory cortex as an artificial somatosensory suppression right after the reaching initiation in CVF and TVF conditions, and changes in adaptation were observed. Because somatosensory suppression is already in effect during CVF, rTMS would cause no significant changes. During TVF with rTMS, however, significantly different patterns of adaptation could be expected when compared to a sham rTMS condition. Young adults (N = 12) participated in 4 sessions (CVF/ TVF, real/sham rTMS); visual proprioceptive, and total shifts were measured. Movement time and curvature of the reaching movement were measured during the adaptation phase. Results showed that while the total shift was unchanged, the proprioceptive shift increased and the visual shift decreased in the TVF condition when rTMS was delivered. However, the total, proprioceptive, and visual shifts were not influenced by rTMS in the CVF condition. Suppression of proprioception induced by the rTMS could be one of the requisites for successful proprioceptive shift during prism adaptation.

  19. Vibration control in piping system by dual dynamic absorbers

    SciTech Connect

    Sodeyama, H.; Ikahata, N.; Sunakoda, K.; Seto, K.

    1995-12-31

    This paper deals with the applicability of a seismic response reduction method with a dual dynamic absorber for equipment, piping system, etc. in a nuclear power plant. The dual dynamic absorber which utilizes a magnetic damping effect was developed and the investigation was done to the characteristics of vibration controllability through excitation tests. As the primary stage of this study, a simple vertical straight pipe with a diameter of 60.8 mm and a length of 2,000 mm was excited by random vibration input, and amplitude of vibration level was reduced by the dual dynamic absorber mounted on the pipe. The mass ratio of the dual dynamic absorber to the straight pipe was 0.05. The result of this test was that the response reduction effect of the dual dynamic absorber for random excitations was verified. Also, the damping characteristic with fine linearity for the input level was obtained.

  20. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Benolken, M. S.

    1995-01-01

    The purpose of this study was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full-field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena were observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal subjects and subjects experiencing vestibular loss were nearly identical, implying (1) that normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) that subjects with vestibular loss did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system "gain" was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost 3 times greater than the amplitude of the visual stimulus in normal subjects and subjects with vestibular loss. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about 4 in tests where somatosensory cues provided

  1. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Benolken, Martha S.

    1993-01-01

    The purpose was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena was observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal and vestibular loss subjects were nearly identical implying that (1) normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) vestibular loss subjects did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system 'gain' was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost three times greater than the amplitude of the visual stimulus in normals and vestibular loss subjects. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about four in tests where somatosensory cues provided accurate versus inaccurate orientation information. This

  2. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Benolken, M. S.

    1995-01-01

    The purpose of this study was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full-field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena were observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal subjects and subjects experiencing vestibular loss were nearly identical, implying (1) that normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) that subjects with vestibular loss did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system "gain" was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost 3 times greater than the amplitude of the visual stimulus in normal subjects and subjects with vestibular loss. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about 4 in tests where somatosensory cues provided

  3. Intraoperative intrinsic optical imaging of human somatosensory cortex during neurosurgical operations.

    PubMed

    Sato, Katsushige; Nariai, Tadashi; Momose-Sato, Yoko; Kamino, Kohtaro

    2017-07-01

    Intrinsic optical imaging as developed by Grinvald et al. is a powerful technique for monitoring neural function in the in vivo central nervous system. The advent of this dye-free imaging has also enabled us to monitor human brain function during neurosurgical operations. We briefly describe our own experience in functional mapping of the human somatosensory cortex, carried out using intraoperative optical imaging. The maps obtained demonstrate new additional evidence of a hierarchy for sensory response patterns in the human primary somatosensory cortex.

  4. Cortical and medullary somatosensory projections to the cochlear nuclear complex in the hedgehog tenrec.

    PubMed

    Wolff, A; Künzle, H

    1997-01-17

    Various tracer substances were injected into the spinal cord, the dorsal column nuclei, the trigeminal nuclear complex and the somatosensory cortex in Madagascan hedgehog tenrecs. With the exception of the cases injected exclusively into the spinal cord all injections gave rise to sparse, but distinct anterograde projections to the cochlear nuclear complex, particularly the granular cell domain within and outside of the dorsal cochlear nucleus. Among these cochlear afferents the projection from the primary somatosensory cortex is the most remarkable because the hedgehog tenrec has one of the lowest encephalisation indices among mammals and a similar cortico-cochlear connection has not been demonstrated so far in other species.

  5. Transformations in Oscillatory Activity and Evoked Responses in Primary Somatosensory Cortex in Middle Age: A Combined Computational Neural Modeling and MEG Study

    PubMed Central

    Ziegler, David A.; Pritchett, Dominique L.; Hosseini-Varnamkhasti, Paymon; Corkin, Suzanne; Hämäläinen, Matti; Moore, Christopher I.; Jones, Stephanie R.

    2010-01-01

    Oscillatory brain rhythms and evoked responses are widely believed to impact cognition, but relatively little is known about how these measures are affected by healthy aging. The present study used MEG to examine age-related changes in spontaneous oscillations and tactile evoked responses in primary somatosensory cortex (SI) in healthy young (YA) and middle-aged (MA) adults. To make specific predictions about neurophysiological changes that mediate age-related MEG changes, we applied a biophysically realistic model of SI that accurately reproduces SI MEG mu rhythms, containing alpha (7-14Hz) and beta (15-30Hz) components, and evoked responses. Analyses of MEG data revealed a significant increase in prestimulus mu power in SI, driven predominately by greater mu-beta dominance, and a larger and delayed M70 peak in the SI evoked response in MA. Previous analysis with our computational model showed that the SI mu rhythm could be reproduced with a stochastic sequence of rhythmic ∼10Hz feedforward (FF) input to the granular layers of SI (representative of lemniscal thalamic input) followed nearly simultaneously by ∼10Hz feedback (FB) input to the supragranular layers (representative of input from high order cortical or non-specific thalamic sources) (Jones et al., 2009). In the present study, the model further predicted that the rhythmic FF and FB inputs become stronger with age. Further, the FB input is predicted to arrive more synchronously to SI on each cycle of the 10Hz input in MA. The simulated neurophysiological changes are sufficient to account for the age-related differences in both prestimulus mu rhythms and evoked responses. Thus, the model predicts that a single set of neurophysiological changes intimately links these age-related changes in neural dynamics. PMID:20149881

  6. Transformations in oscillatory activity and evoked responses in primary somatosensory cortex in middle age: a combined computational neural modeling and MEG study.

    PubMed

    Ziegler, David A; Pritchett, Dominique L; Hosseini-Varnamkhasti, Paymon; Corkin, Suzanne; Hämäläinen, Matti; Moore, Christopher I; Jones, Stephanie R

    2010-09-01

    Oscillatory brain rhythms and evoked responses are widely believed to impact cognition, but relatively little is known about how these measures are affected by healthy aging. The present study used MEG to examine age-related changes in spontaneous oscillations and tactile evoked responses in primary somatosensory cortex (SI) in healthy young (YA) and middle-aged (MA) adults. To make specific predictions about neurophysiological changes that mediate age-related MEG changes, we applied a biophysically realistic model of SI that accurately reproduces SI MEG mu rhythms, containing alpha (7-14 Hz) and beta (15-30 Hz) components, and evoked responses. Analyses of MEG data revealed a significant increase in prestimulus mu power in SI, driven predominately by greater mu-beta dominance, and a larger and delayed M70 peak in the SI evoked response in MA. Previous analysis with our computational model showed that the SI mu rhythm could be reproduced with a stochastic sequence of rhythmic approximately 10 Hz feedforward (FF) input to the granular layers of SI (representative of lemniscal thalamic input) followed nearly simultaneously by approximately 10 Hz feedback (FB) input to the supragranular layers (representative of input from high order cortical or non-specific thalamic sources) (Jones et al., 2009). In the present study, the model further predicted that the rhythmic FF and FB inputs become stronger with age. Further, the FB input is predicted to arrive more synchronously to SI on each cycle of the 10 Hz input in MA. The simulated neurophysiological changes are sufficient to account for the age-related differences in both prestimulus mu rhythms and evoked responses. Thus, the model predicts that a single set of neurophysiological changes intimately links these age-related changes in neural dynamics. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Primary afferent input critical for maintaining spontaneous pain in peripheral neuropathy.

    PubMed

    Haroutounian, Simon; Nikolajsen, Lone; Bendtsen, Thomas F; Finnerup, Nanna B; Kristensen, Anders D; Hasselstrøm, Jørgen B; Jensen, Troels S

    2014-07-01

    Central sensitization after peripheral nerve injury may result in ectopic neuronal activity in the spinal cord dorsal horn, implying a potential autonomous pain-generating mechanism. This study used peripheral nerve blockade and systemic lidocaine administration, with detailed somatosensory assessment, to determine the contribution of primary afferent input in maintaining peripheral neuropathic pain. Fourteen patients with neuropathic pain (7 with unilateral foot pain due to peripheral nerve injury and 7 with bilateral pain in the feet due to distal polyneuropathy) underwent comprehensive characterization of somatosensory function by quantitative sensory testing. Patients were then administered an ultrasound-guided peripheral nerve block with lidocaine and intravenous lidocaine infusion in randomized order. The effect of these interventions on spontaneous pain intensity and on evoked cold, warm, pinprick, and brush responses was assessed at each session. All patients had sensory disturbances at baseline. The peripheral nerve block resulted in a complete abolition of ipsilateral pain within 10 min (median) in all patients, with lidocaine plasma concentrations being too low to account for a systemic effect of the drug. Intravenous lidocaine infusion reduced the spontaneous pain by 45.5% (±31.7%), and it reduced mechanical and thermal hypersensitivity in most patients who displayed such signs. However, the improvement in evoked hypersensitivity was not related to the effect of the drug on spontaneous pain intensity. This study demonstrated that regardless of the individual somatosensory phenotype and signs of central sensitization, primary afferent input is critical for maintaining neuropathic pain in peripheral nerve injury and distal polyneuropathy. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  8. Identifying local and descending inputs for primary sensory neurons

    PubMed Central

    Zhang, Yi; Zhao, Shengli; Rodriguez, Erica; Takatoh, Jun; Han, Bao-Xia; Zhou, Xiang; Wang, Fan

    2015-01-01

    Primary pain and touch sensory neurons not only detect internal and external sensory stimuli, but also receive inputs from other neurons. However, the neuronal derived inputs for primary neurons have not been systematically identified. Using a monosynaptic rabies viruses–based transneuronal tracing method combined with sensory-specific Cre-drivers, we found that sensory neurons receive intraganglion, intraspinal, and supraspinal inputs, the latter of which are mainly derived from the rostroventral medulla (RVM). The viral-traced central neurons were largely inhibitory but also consisted of some glutamatergic neurons in the spinal cord and serotonergic neurons in the RVM. The majority of RVM-derived descending inputs were dual GABAergic and enkephalinergic (opioidergic). These inputs projected through the dorsolateral funiculus and primarily innervated layers I, II, and V of the dorsal horn, where pain-sensory afferents terminate. Silencing or activation of the dual GABA/enkephalinergic RVM neurons in adult animals substantially increased or decreased behavioral sensitivity, respectively, to heat and mechanical stimuli. These results are consistent with the fact that both GABA and enkephalin can exert presynaptic inhibition of the sensory afferents. Taken together, this work provides a systematic view of and a set of tools for examining peri- and extrasynaptic regulations of pain-afferent transmission. PMID:26426077

  9. The Kepler Input Catalog

    NASA Astrophysics Data System (ADS)

    Latham, D. W.; Brown, T. M.; Monet, D. G.; Everett, M.; Esquerdo, G. A.; Hergenrother, C. W.

    2005-12-01

    The Kepler mission will monitor 170,000 planet-search targets during the first year, and 100,000 after that. The Kepler Input Catalog (KIC) will be used to select optimum targets for the search for habitable earth-like transiting planets. The KIC will include all known catalogued stars in an area of about 177 square degrees centered at RA 19:22:40 and Dec +44:30 (l=76.3 and b=+13.5). 2MASS photometry will be supplemented with new ground-based photometry obtained in the SDSS g, r, i, and z bands plus a custom filter centered on the Mg b lines, using KeplerCam on the 48-inch telescope at the Whipple Observatory on Mount Hopkins, Arizona. The photometry will be used to estimate stellar characteristics for all stars brighter than K 14.5 mag. The KIC will include effective temperature, surface gravity, metallicity, reddening, distance, and radius estimates for these stars. The CCD images are pipeline processed to produce instrumental magnitudes at PSI. The photometry is then archived and transformed to the SDSS system at HAO, where the astrophysical analysis of the stellar characteristics is carried out. The results are then merged with catalogued data at the USNOFS to produce the KIC. High dispersion spectroscopy with Hectochelle on the MMT will be used to supplement the information for many of the most interesting targets. The KIC will be released before launch for use by the astronomical community and will be available for queries over the internet. Support from the Kepler mission is gratefully acknowledged.

  10. A low-cost rapid upper limb assessment method in manual assembly line based on somatosensory interaction technology

    NASA Astrophysics Data System (ADS)

    Jiang, Shengqian; Liu, Peng; Fu, Danni; Xue, Yiming; Luo, Wentao; Wang, Mingjie

    2017-04-01

    As an effective survey method of upper limb disorder, rapid upper limb assessment (RULA) has a wide application in industry period. However, it is very difficult to rapidly evaluate operator's postures in real complex work place. In this paper, a real-time RULA method is proposed to accurately assess the potential risk of operator's postures based on the somatosensory data collected from Kinect sensor, which is a line of motion sensing input devices by Microsoft. First, the static position information of each bone point is collected to obtain the effective angles of body parts based on the calculating methods based on joints angles. Second, a whole RULA score of body is obtained to assess the risk level of current posture in real time. Third, those RULA scores are compared with the results provided by a group of ergonomic practitionerswho were asked to observe the same static postures. All the experiments were carried out in an ergonomic lab. The results show that the proposed method can detect operator's postures more accurately. What's more, this method is applied in a real-time condition which can improve the evaluating efficiency.

  11. Age-related changes in primary somatosensory cortex of rats: evidence for parallel degenerative and plastic-adaptive processes.

    PubMed

    Godde, Ben; Berkefeld, Thomas; David-Jürgens, Marianne; Dinse, Hubert R

    2002-11-01

    Aged rats show a characteristic decline of the sensorimotor state, most strikingly expressed in an impairment of the hindlimbs leading to significantly reduced sensory stimulation on the hindpaw. We review recent studies using optical imaging and electrophysiological recordings to investigate the effects of aging on somatosensory cortex and to identify age-related changes in terms of degeneration or plastic adaptation. For the cortical hindpaw representation, reduction of map size, receptive field enlargement and reduced response strength were described. None of these changes were reported in the forepaw representation in the same individual, however, in both the fore-and hindpaw representations response latencies and cerebral blood flow were affected. Changes of latencies and blood flow are best explained by degeneration, but the regional and specific changes of maps, receptive fields and response strength by plastic phenomena arising from the reduced sensory inputs. While the degenerative changes are not modifiable by enriched environmental conditions or application of Ca(2+) blocker, the plastic changes were fully reversible under these conditions. We discuss the implications of these findings for cognitive functions at old age and possible treatments of age-related changes in human subjects.

  12. The biology of skin wetness perception and its implications in manual function and for reproducing complex somatosensory signals in neuroprosthetics.

    PubMed

    Filingeri, Davide; Ackerley, Rochelle

    2017-01-25

    Our perception of skin wetness is generated readily, yet humans have no known receptor (hygroreceptor) to signal this directly. It is easy to imagine the sensation of water running over our hands, or the feel of rain on our skin. The synthetic sensation of wetness is thought to be produced from a combination of specific skin thermal and tactile inputs, registered through thermoreceptors and mechanoreceptors, respectively. The present review explores how thermal and tactile afference from the periphery can generate the percept of wetness centrally. We propose that the main signals include information about skin cooling, signaled primarily by thinly-myelinated thermoreceptors, and rapid changes in touch, through fast-conducting, myelinated mechanoreceptors. Potential central sites for integration of these signals, and thus the perception of skin wetness, include the primary and secondary somatosensory cortices and the insula cortex. The interactions underlying these processes can also be modeled to aid in understanding and engineering the mechanisms. Further, we discuss the role that sensing wetness could play in precision grip and the dexterous manipulation of objects. We expand on these lines of inquiry to the application of the knowledge in designing and creating skin sensory feedback in prosthetics. The addition of real-time, complex sensory signals would mark a significant advance in the use and incorporation of prosthetic body parts for amputees in everyday life.

  13. Effects of propofol, sevoflurane, remifentanil, and (S)-ketamine in subanesthetic concentrations on visceral and somatosensory pain-evoked potentials.

    PubMed

    Untergehrer, Gisela; Jordan, Denis; Eyl, Sebastian; Schneider, Gerhard

    2013-02-01

    Although electroencephalographic parameters and auditory evoked potentials (AEP) reflect the hypnotic component of anesthesia, there is currently no specific and mechanism-based monitoring tool for anesthesia-induced blockade of nociceptive inputs. The aim of this study was to assess visceral pain-evoked potentials (VPEP) and contact heat-evoked potentials (CHEP) as electroencephalographic indicators of drug-induced changes of visceral and somatosensory pain. Additionally, AEP and electroencephalographic permutation entropy were used to evaluate sedative components of the applied drugs. In a study enrolling 60 volunteers, VPEP, CHEP (amplitude N2-P1), and AEP (latency Nb, amplitude Pa-Nb) were recorded without drug application and at two subanesthetic concentration levels of propofol, sevoflurane, remifentanil, or (s)-ketamine. Drug-induced changes of evoked potentials were analyzed. VPEP were generated by electric stimuli using bipolar electrodes positioned in the distal esophagus. For CHEP, heat pulses were given to the medial aspect of the right forearm using a CHEP stimulator. In addition to AEP, electroencephalographic permutation entropy was used to indicate level of sedation. With increasing concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine, VPEP and CHEP N2-P1 amplitudes decreased. AEP and electroencephalographic permutation entropy showed neither clinically relevant nor statistically significant suppression of cortical activity during drug application. Decreasing VPEP and CHEP amplitudes under subanesthetic concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine indicate suppressive drug effects. These effects seem to be specific for analgesia.

  14. BOLD fMRI and Somatosensory Evoked Potentials Are Well Correlated Over a Broad Range of Frequency Content of Somatosensory Stimulation of the Rat Forepaw

    PubMed Central

    Goloshevsky, Artem G.; Silva, Afonso C.; Dodd, Stephen J.; Koretsky, Alan P.

    2008-01-01

    Electrical stimulation of the rat paw is commonly used to study the hemodynamic, metabolic, and neuronal mechanisms of functional MRI (fMRI) responses in somatosensory cortex. Several groups have reported good correlation between the Blood Oxygenation Level Dependent (BOLD) fMRI signal and somatosensory evoked potentials (SEPs) using short, typically 300 μs, square stimulation pulses. The spectral power of these short pulses is evenly distributed over a wide range of frequencies and thus the effects of the frequency content of the stimulation pulse on fMRI responses have not been previously described. Here, the effects that different stimulation pulse waveforms with a range of frequency content have on neuronal activity, as measured by SEPs, and on the amplitude of the BOLD fMRI signal in rat somatosensory cortex are investigated. The peak-to-peak SEP amplitudes increased as the power in the high frequency harmonics of the different pulse waveforms increased, using either triangular or sinusoidal stimuli waveforms from 9 Hz to 180 Hz. Similarly, BOLD fMRI response increased with increased high frequency content of the stimulation pulse. There was a linear correlation between SEPs and BOLD fMRI over the full range of frequency content in the stimulations. PMID:18206862

  15. Event related aspects of somatosensory and auditory evoked potentials: noise or signals?

    PubMed

    Stowell, H

    1985-05-01

    The so-called Vertex Potential (VP) of human scalp-conducted and event related brain potential (ERBP), which occur as a slow and often large, biphasic sinusoid within the 100-400 msec time segment after transient stimulation in the three main sensory modalities, are the longest researched of all human evoked potential (EP) phenomena. Its variable amplitude has been directly correlated, in experiments expressly tailored for the purpose, with input/output variables such as the rate of acceleration of given stimulus parameters from a state of relative rest (RM function), interstimulus interval (ISI), stimulus intensity, skin potential and resistance changes (SPR and SRR), the peripheral electroneurogram (ENG), and experimentally isolated C-fiber afference; and with neuropsychological variables such as attention or vigilance, visual acuity, response time, subjective stimulus probability or expectancy, acute pain of both fast and slow kinds, intelligence quotient (IQ), and psychometric personality scores (e.g., extraversion versus introversion and neuroticism versus normality). Unfortunately, the cerebral, neural origins of the VP, if any, are unknown; it is reported as usually absent from cortex-surface EP in those primates and mammals hitherto studied, and also from human extracranial event related magnetic fields of the brain (ERMFb) insofar as these reveal only superficial tangential sources; but a possible analog has been recorded from deep subcortical electrodes during human neurosurgery. In view of the increasing published range and quantity of direct correlates of VP amplitude, and of the scarcity of data about its neuroanatomy and neurophysiology, it seemed a good idea to do some rudimentary signal analysis. Preliminary results from five subjects confirm earlier data: The VP of somatosensory (SEP) and auditory (AEP) evoked potentials, as obtained by scalp-conductance and either averaged or single-epoch, can be resolved into inconsistently stimulus synchronized

  16. Spontaneous and evoked activity of neurones in the somatosensory thalamus of the waking cat

    PubMed Central

    Baker, M. A.

    1971-01-01

    activity occurred in the form of high-frequency bursts. Interburst intervals were variable. 5. The level of spontaneous activity in VB in conscious cats is greater than in sensory and sensorimotor cortex to which it projects. The pronounced effect of behavioural state on spontaneous activity of these neurones suggests that the background activity in somatosensory systems may play some role in the processing of afferent input. ImagesABC PMID:5097605

  17. Serial Input Output

    SciTech Connect

    Waite, Anthony; /SLAC

    2011-09-07

    Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each

  18. SDR Input Power Estimation Algorithms

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  19. Intermediate inputs and economic productivity.

    PubMed

    Baptist, Simon; Hepburn, Cameron

    2013-03-13

    Many models of economic growth exclude materials, energy and other intermediate inputs from the production function. Growing environmental pressures and resource prices suggest that this may be increasingly inappropriate. This paper explores the relationship between intermediate input intensity, productivity and national accounts using a panel dataset of manufacturing subsectors in the USA over 47 years. The first contribution is to identify sectoral production functions that incorporate intermediate inputs, while allowing for heterogeneity in both technology and productivity. The second contribution is that the paper finds a negative correlation between intermediate input intensity and total factor productivity (TFP)--sectors that are less intensive in their use of intermediate inputs have higher productivity. This finding is replicated at the firm level. We propose tentative hypotheses to explain this association, but testing and further disaggregation of intermediate inputs is left for further work. Further work could also explore more directly the relationship between material inputs and economic growth--given the high proportion of materials in intermediate inputs, the results in this paper are suggestive of further work on material efficiency. Depending upon the nature of the mechanism linking a reduction in intermediate input intensity to an increase in TFP, the implications could be significant. A third contribution is to suggest that an empirical bias in productivity, as measured in national accounts, may arise due to the exclusion of intermediate inputs. Current conventions of measuring productivity in national accounts may overstate the productivity of resource-intensive sectors relative to other sectors.

  20. Neonatal Restriction of Tactile Inputs Leads to Long-Lasting Impairments of Cross-Modal Processing

    PubMed Central

    Röder, Brigitte; Hanganu-Opatz, Ileana L.

    2015-01-01

    Optimal behavior relies on the combination of inputs from multiple senses through complex interactions within neocortical networks. The ontogeny of this multisensory interplay is still unknown. Here, we identify critical factors that control the development of visual-tactile processing by combining in vivo electrophysiology with anatomical/functional assessment of cortico-cortical communication and behavioral investigation of pigmented rats. We demonstrate that the transient reduction of unimodal (tactile) inputs during a short period of neonatal development prior to the first cross-modal experience affects feed-forward subcortico-cortical interactions by attenuating the cross-modal enhancement of evoked responses in the adult primary somatosensory cortex. Moreover, the neonatal manipulation alters cortico-cortical interactions by decreasing the cross-modal synchrony and directionality in line with the sparsification of direct projections between primary somatosensory and visual cortices. At the behavioral level, these functional and structural deficits resulted in lower cross-modal matching abilities. Thus, neonatal unimodal experience during defined developmental stages is necessary for setting up the neuronal networks of multisensory processing. PMID:26600123

  1. Enhancement of median nerve regeneration by mesenchymal stem cells engraftment in an absorbable conduit: improvement of peripheral nerve morphology with enlargement of somatosensory cortical representation

    PubMed Central

    Oliveira, Julia T.; Bittencourt-Navarrete, Ruben Ernesto; de Almeida, Fernanda M.; Tonda-Turo, Chiara; Martinez, Ana Maria B.; Franca, João G.

    2014-01-01

    We studied the morphology and the cortical representation of the median nerve (MN), 10 weeks after a transection immediately followed by treatment with tubulization using a polycaprolactone (PCL) conduit with or without bone marrow-derived mesenchymal stem cell (MSC) transplant. In order to characterize the cutaneous representation of MN inputs in primary somatosensory cortex (S1), electrophysiological cortical mapping of the somatosensory representation of the forepaw and adjacent body parts was performed after acute lesion of all brachial plexus nerves, except for the MN. This was performed in ten adult male Wistar rats randomly assigned in three groups: MN Intact (n = 4), PCL-Only (n = 3), and PCL+MSC (n = 3). Ten weeks before mapping procedures in animals from PCL-Only and PCL+MSC groups, animal were subjected to MN transection with removal of a 4-mm-long segment, immediately followed by suturing a PCL conduit to the nerve stumps with (PCL+MSC group) or without (PCL-Only group) injection of MSC into the conduit. After mapping the representation of the MN in S1, animals had a segment of the regenerated nerve processed for light and transmission electron microscopy. For histomorphometric analysis of the nerve segment, sample size was increased to five animals per experimental group. The PCL+MSC group presented a higher number of myelinated fibers and a larger cortical representation of MN inputs in S1 (3,383 ± 390 fibers; 2.3 mm2, respectively) than the PCL-Only group (2,226 ± 575 fibers; 1.6 mm2). In conclusion, MSC-based therapy associated with PCL conduits can improve MN regeneration. This treatment seems to rescue the nerve representation in S1, thus minimizing the stabilization of new representations of adjacent body parts in regions previously responsive to the MN. PMID:25360086

  2. Enhancement of median nerve regeneration by mesenchymal stem cells engraftment in an absorbable conduit: improvement of peripheral nerve morphology with enlargement of somatosensory cortical representation.

    PubMed

    Oliveira, Julia T; Bittencourt-Navarrete, Ruben Ernesto; de Almeida, Fernanda M; Tonda-Turo, Chiara; Martinez, Ana Maria B; Franca, João G

    2014-01-01

    We studied the morphology and the cortical representation of the median nerve (MN), 10 weeks after a transection immediately followed by treatment with tubulization using a polycaprolactone (PCL) conduit with or without bone marrow-derived mesenchymal stem cell (MSC) transplant. In order to characterize the cutaneous representation of MN inputs in primary somatosensory cortex (S1), electrophysiological cortical mapping of the somatosensory representation of the forepaw and adjacent body parts was performed after acute lesion of all brachial plexus nerves, except for the MN. This was performed in ten adult male Wistar rats randomly assigned in three groups: MN Intact (n = 4), PCL-Only (n = 3), and PCL+MSC (n = 3). Ten weeks before mapping procedures in animals from PCL-Only and PCL+MSC groups, animal were subjected to MN transection with removal of a 4-mm-long segment, immediately followed by suturing a PCL conduit to the nerve stumps with (PCL+MSC group) or without (PCL-Only group) injection of MSC into the conduit. After mapping the representation of the MN in S1, animals had a segment of the regenerated nerve processed for light and transmission electron microscopy. For histomorphometric analysis of the nerve segment, sample size was increased to five animals per experimental group. The PCL+MSC group presented a higher number of myelinated fibers and a larger cortical representation of MN inputs in S1 (3,383 ± 390 fibers; 2.3 mm(2), respectively) than the PCL-Only group (2,226 ± 575 fibers; 1.6 mm(2)). In conclusion, MSC-based therapy associated with PCL conduits can improve MN regeneration. This treatment seems to rescue the nerve representation in S1, thus minimizing the stabilization of new representations of adjacent body parts in regions previously responsive to the MN.

  3. mGluR5 Exerts Cell-Autonomous Influences on the Functional and Anatomical Development of Layer IV Cortical Neurons in the Mouse Primary Somatosensory Cortex

    PubMed Central

    Ballester-Rosado, Carlos J.; Sun, Hao; Huang, Jui-Yen

    2016-01-01

    Glutamate neurotransmission refines synaptic connections to establish the precise neural circuits underlying sensory processing. Deleting metabotropic glutamate receptor 5 (mGluR5) in mice perturbs cortical somatosensory map formation in the primary somatosensory (S1) cortex at both functional and anatomical levels. To examine the cell-autonomous influences of mGluR5 signaling in the morphological and functional development of layer IV spiny stellate glutamatergic neurons receiving sensory input, mGluR5 genetic mosaic mice were generated through in utero electroporation. In the S1 cortex of these mosaic brains, we found that most wild-type neurons were located in barrel rings encircling thalamocortical axon (TCA) clusters while mGluR5 knock-out (KO) neurons were placed in the septal area, the cell-sparse region separating barrels. These KO neurons often displayed a symmetrical dendritic morphology with increased dendritic complexity, in contrast to the polarized pattern of wild-type neurons. The dendritic spine density of mGluR5 KO spiny stellate neurons was significantly higher than in wild-type neurons. Whole-cell electrophysiological recordings detected a significant increase in the frequencies of spontaneous and miniature excitatory postsynaptic events in mGluR5 KO neurons compared with neighboring wild-type neurons. Our mosaic analysis provides strong evidence supporting the cell-autonomous influence of mGluR5 signaling on the functional and anatomical development of cortical glutamatergic neurons. Specifically, mGluR5 is required in cortical glutamatergic neurons for the following processes: (1) the placement of cortical glutamatergic neurons close to TCA clusters; (2) the regulation of dendritic complexity and outgrowth toward TCA clusters; (3) spinogenesis; and (4) tuning of excitatory inputs. SIGNIFICANCE STATEMENT Glutamatergic transmission plays a critical role in cortical circuit formation. Its dysfunction has been proposed as a core factor in the

  4. Somatosensory Contribution to Motor Learning Due to Facial Skin Deformation

    PubMed Central

    Ito, Takayuki

    2010-01-01

    Motor learning is dependent on kinesthetic information that is obtained both from cutaneous afferents and from muscle receptors. In human arm movement, information from these two kinds of afferents is largely correlated. The facial skin offers a unique situation in which there are plentiful cutaneous afferents and essentially no muscle receptors and, accordingly, experimental manipulations involving the facial skin may be used to assess the possible role of cutaneous afferents in motor learning. We focus here on the information for motor learning provided by the deformation of the facial skin and the motion of the lips in the context of speech. We used a robotic device to slightly stretch the facial skin lateral to the side of the mouth in the period immediately preceding movement. We found that facial skin stretch increased lip protrusion in a progressive manner over the course of a series of training trials. The learning was manifest in a changed pattern of lip movement, when measured after learning in the absence of load. The newly acquired motor plan generalized partially to another speech task that involved a lip movement of different amplitude. Control tests indicated that the primary source of the observed adaptation was sensory input from cutaneous afferents. The progressive increase in lip protrusion over the course of training fits with the basic idea that change in sensory input is attributed to motor performance error. Sensory input, which in the present study precedes the target movement, is credited to the target-related motion, even though the skin stretch is released prior to movement initiation. This supports the idea that the nervous system generates motor commands on the assumption that sensory input and kinematic error are in register. PMID:20592121

  5. Governance of dual-use research: an ethical dilemma

    PubMed Central

    2009-01-01

    Abstract Scenarios where the results of well-intentioned scientific research can be used for both good and harmful purposes give rise to what is now widely known as the “dual-use dilemma”. There has been growing debate about the dual-use nature of life science research with implications for making biological weapons. This paper reviews several controversial publications that have been the focus of debates about dual-use life science research and critically examines relevant policy developments, particularly in the United States of America. Though the dual-use dilemma is inherently ethical in nature, the majority of debates about dual-use research have primarily involved science and security experts rather than ethicists. It is important that there is more ethical input into debates about the governance of dual-use research. PMID:19784453

  6. Left Lateralized Enhancement of Orofacial Somatosensory Processing Due to Speech Sounds

    ERIC Educational Resources Information Center

    Ito, Takayuki; Johns, Alexis R.; Ostry, David J.

    2013-01-01

    Purpose: Somatosensory information associated with speech articulatory movements affects the perception of speech sounds and vice versa, suggesting an intimate linkage between speech production and perception systems. However, it is unclear which cortical processes are involved in the interaction between speech sounds and orofacial somatosensory…

  7. Evoked response amplitudes from somatosensory cortices do not determine reaction times to tactile stimuli.

    PubMed

    Ploner, Markus; Platzen, Jens; Pollok, Bettina; Gross, Joachim; Schnitzler, Alfons

    2007-06-01

    Sensory events cause changes in brain activity, which underlie the perception of and behavioural responses to sensory stimuli. Evoked cortical responses are an important measure of these stimulus-evoked changes in brain activity. However, evidence on the relationship between behavioural responses and evoked responses is inconsistent. Therefore, we used magnetoencephalography to reinvestigate the relationship between evoked responses from somatosensory cortices and behavioural responses to somatosensory stimuli. We characterized modulations of somatosensory-evoked responses exerted by preceding painful and tactile conditioning stimuli (CS), and related these modulations of evoked responses to modulations of reaction times. Our results show that painful CS yield a long-lasting (> 4 s) facilitation of evoked responses, whereas tactile CS result in a shorter lasting (1-2 s) suppression of evoked responses to tactile stimuli. These contrary physiological effects were both associated with a significant shortening of reaction times. These findings indicate that the conditioning effects of painful and tactile stimuli represent essentially different modulatory mechanisms. Moreover, our results show that amplitudes of evoked responses from somatosensory cortices do not determine reaction times to tactile stimuli.

  8. Recovery function of somatosensory evoked brain response in patients with carpal tunnel syndrome: A magnetoencephalographic study.

    PubMed

    Iwatsuki, Katsuyuki; Yoshida, Akihito; Shinohara, Takaaki; Nakano, Tomonori; Uemura, Jun-Ichi; Goto, Sae; Hirayama, Masaaki; Hoshiyama, Minoru; Hirata, Hitoshi

    2016-08-01

    The recovery function of somatosensory evoked magnetic fields (SEFs) was recorded to investigate excitatory and inhibitory balance in the somatosensory cortex of patients with carpal tunnel syndrome. SEFs were recorded in patients and controls. Recordings were taken following median nerve stimulation with single and double pulses with interstimulus intervals of 10-200ms. The root mean square for the N20m component following the second stimulation was analyzed. SEFs following stimulation of the first and middle digits were also recorded and the location for the equivalent current dipoles was estimated in three-dimensional planes. Distances on the vertical axis between the equivalent current dipoles for the first and third digits were shorter in patients than in control participants. The root mean square for the N20m recovered earlier in patients compared to controls; this was statistically significant at an interstimulus interval of 10ms. There was no relationship between N20m recovery and the equivalent current dipole location in the primary somatosensory cortex. Carpal tunnel syndrome was associated with functional disinhibition and destruction of the somatotopic organization in the primary somatosensory cortex. Disinhibitory changes might induce a maladaptation of the central nervous system relating to pain. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Pain perception: predictive value of sex, depression, anxiety, somatosensory amplification, obesity, and age

    PubMed Central

    Kivrak, Yuksel; Kose-Ozlece, Hatice; Ustundag, Mehmet Fatih; Asoglu, Mehmet

    2016-01-01

    Objective Factors affecting pain sensation are still being investigated. In this study, we aimed to examine the effects of sex, age, body mass index (BMI), somatosensory amplification, anxiety, and depression on the perception of pain. Methods Venipuncture was performed on 140 healthy individuals. All the cases completed a sociodemographic data form, visual analog scale (VAS), Beck Anxiety Inventory (BAI), Beck Depression Inventory, and Somatosensory Amplification Scale. Height and weight were also measured. Results When both the sexes were compared, there was no difference in terms of VAS, BMI, age, and Beck Depression Inventory, but Somatosensory Amplification Scale and BAI were found to be higher in females. A correlation was found among VAS points, BAI, and BMI. The results of a regression analysis show that the BAI score is a predictor for the VAS score. Conclusion These results indicate that anxiety may be a predictor of pain, whereas sex, depression, somatosensory amplification, age, and weight do not appear to influence the perception of pain. PMID:27536113

  10. Functional assays of local connectivity in the somatosensory cortex of individuals with autism.

    PubMed

    Coskun, Mehmet Akif; Loveland, Katherine A; Pearson, Deborah A; Papanicolaou, Andrew C; Sheth, Bhavin R

    2013-06-01

    Emerging evidence for differences between individuals with autism spectrum disorder (ASD) and neurotypical (NT) individuals in somatic processing and brain response to touch suggests somatosensory cortex as a promising substrate for elucidating differences in functional brain connectivity between individuals with and without autism. Signals from adjacent digits project to neighboring locations or representations in somatosensory cortex. When a digit is stimulated, i.e. touched, its representation in cortex is directly activated; local intracortical connections indirectly activate nonprimary cortical representations corresponding to adjacent digits. The response of the nonprimary cortical representations is thus a proxy for connection strength. Local overconnectivity in autism implies that the nonprimary/primary response ratios of the ASD group will be higher than those of the NT group. D1 and D2 of the dominant hand of the participant were individually stimulated while we recorded neural responses using magnetoencephalography. The cortical representations of D1 and D2 (somatosensory-evoked fields) were computed from the ensemble-averaged data using (a) dipole model fits and (b) singular value decomposition. Individual adjacent/primary response ratios were measured, and group response ratio data were fitted with straight lines. Local overconnectivity in autism implies steeper ASD vs. NT group slopes. Our findings did not support local overconnectivity. Slopes were found to be significantly shallower for the ASD group than the NT group. Our findings support the idea of local underconnectivity in the somatosensory cortex of the brains of individuals with ASD.

  11. A Somatosensory Latency between the Thalamus and Cortex also Correlates with Level of Intelligence.

    ERIC Educational Resources Information Center

    Reed, T. Edward; Jensen, Arthur R.

    1993-01-01

    Results for sensory thalamocortical latency (3 somatosensory evoked potentials) for 205 college students agree with data that correlate a more extensive visual evoked potential latency with intelligence quotient. Findings suggest that the correlation occurs because the latency indexes cortical nerve conduction velocity. (SLD)

  12. The Role of Attention in Somatosensory Processing: A Multi-Trait, Multi-Method Analysis

    ERIC Educational Resources Information Center

    Wodka, Ericka L.; Puts, Nicolaas A. J.; Mahone, E. Mark; Edden, Richard A. E.; Tommerdahl, Mark; Mostofsky, Stewart H.

    2016-01-01

    Sensory processing abnormalities in autism have largely been described by parent report. This study used a multi-method (parent-report and measurement), multi-trait (tactile sensitivity and attention) design to evaluate somatosensory processing in ASD. Results showed multiple significant within-method (e.g., parent report of different…

  13. The Role of Attention in Somatosensory Processing: A Multi-Trait, Multi-Method Analysis

    ERIC Educational Resources Information Center

    Wodka, Ericka L.; Puts, Nicolaas A. J.; Mahone, E. Mark; Edden, Richard A. E.; Tommerdahl, Mark; Mostofsky, Stewart H.

    2016-01-01

    Sensory processing abnormalities in autism have largely been described by parent report. This study used a multi-method (parent-report and measurement), multi-trait (tactile sensitivity and attention) design to evaluate somatosensory processing in ASD. Results showed multiple significant within-method (e.g., parent report of different…

  14. Effects of parietal TMS on somatosensory judgments challenge interhemispheric rivalry accounts

    PubMed Central

    Eshel, Neir; Ruff, Christian C.; Spitzer, Bernhard; Blankenburg, Felix; Driver, Jon

    2010-01-01

    Interplay between the cerebral hemispheres is vital for coordinating perception and behavior. One influential account holds that the hemispheres engage in rivalry, each inhibiting the other. In the somatosensory domain, a seminal paper claimed to demonstrate such interhemispheric rivalry, reporting improved tactile detection sensitivity on the right hand after transcranial magnetic stimulation (TMS) to the right parietal lobe (Seyal, Ro, & Rafal, 1995). Such improvement in tactile detection ipsilateral to TMS could follow from interhemispheric rivalry, if one assumes that TMS disrupted cortical processing under the coil and thereby released the other hemisphere from inhibition. Here we extended the study by Seyal et al. (1995) to determine the effects of right parietal TMS on tactile processing for either hand, rather than only the ipsilateral hand. We performed two experiments applying TMS in the context of median-nerve stimulation; one experiment required somatosensory detection, the second somatosensory intensity discrimination. We found different TMS effects on detection versus discrimination, but neither set of results followed the prediction from hemispheric rivalry that enhanced performance for one hand should invariably be associated with impaired performance for the other hand, and vice-versa. Our results argue against a strict rivalry interpretation, instead suggesting that parietal TMS can provide a pedestal-like increment in somatosensory response. PMID:20678510

  15. Early changes in somatosensory function in spinal pain: protocol for a systematic review.

    PubMed

    Marcuzzi, Anna; Dean, Catherine M; Hush, Julia M

    2013-10-02

    Back and neck pain are common conditions that have a high burden of disease. Changes in somatosensory function in the periphery, the spinal cord and the brain have been well documented at the time when these conditions have become chronic. It is unknown, however, how early these changes occur, what the timecourse is of sensory dysfunction and what the specific nature of these changes are in the first 12 weeks after onset of pain. In this paper, we describe the protocol for a systematic review of the literature on somatosensory dysfunction in the first 12 weeks after pain onset. We will conduct a comprehensive search for articles indexed in the databases Ovid MEDLINE, Ovid Embase, Ovid PsycINFO and Cochrane Central Register of Controlled Trial (CENTRAL) from their inception to August 2013 that report on any aspect of somatosensory function in acute or subacute neck or back pain. Two independent reviewers will screen studies for eligibility, assess risk of bias and extract relevant data. Results will be tabulated and a narrative synthesis of the results conducted. Currently, there is a gap in our knowledge about the timing of somatosensory changes