Science.gov

Sample records for dual space analysis

  1. A Three-Level Analysis of Collaborative Learning in Dual-Interaction Spaces

    ERIC Educational Resources Information Center

    Lonchamp, Jacques

    2009-01-01

    CSCL systems which follow the dual-interaction spaces paradigm support the synchronous construction and discussion of shared artifacts by distributed or colocated small groups of learners. The most recent generic dual-interaction space environments, either model based or component based, can be deeply customized by teachers for supporting…

  2. Toward Food Policy for the Dual Burden of Malnutrition: An Exploratory Policy Space Analysis in India.

    PubMed

    Thow, Anne Marie; Kadiyala, Suneetha; Khandelwal, Shweta; Menon, Purnima; Downs, Shauna; Reddy, K Srinath

    2016-06-16

    There is global consensus that a strong policy response is essential for addressing the dual burden of malnutrition. However, policy makers in low- and middle-income countries may perceive a conflict between food supply policies to combat persistent undernutrition and more recent recommendations for policies addressing rising rates of diet-related noncommunicable diseases (NCDs). This article explores the potential to use policy space analysis to identify food supply policy opportunities for addressing both undernutrition and diet-related NCDs and to support improved policy coherence. We conducted an exploratory policy space analysis to identify opportunities and constraints for integrated nutrition policy with respect to the food supply in India, where a dual burden of malnutrition has been well documented. We conducted a review of food supply policies and 27 key informant interviews (16 with stakeholders active in India's national nutrition policy space, and 11 with policy makers and experts in food supply policy). The analysis suggests several opportunities for an integrated food supply policy agenda, including targeting common foods of concern (such as highly processed foods) and foods that present common benefits (such as fruits and vegetables), and scaling up existing small-scale policy initiatives that support the availability of nutrient-rich foods. Challenges include policy inertia and competing priorities within the economic sector. This scoping study indicates that the policy space analysis framework used here can help to identify specific, contextually appropriate policy options and strategies for strengthening public health nutrition policy within sectors responsible for food supply policy. © The Author(s) 2016.

  3. Dual Space Technology Transfer

    NASA Astrophysics Data System (ADS)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  4. Dual keel Space Station payload pointing system design and analysis feasibility study

    NASA Technical Reports Server (NTRS)

    Smagala, Tom; Class, Brian F.; Bauer, Frank H.; Lebair, Deborah A.

    1988-01-01

    A Space Station attached Payload Pointing System (PPS) has been designed and analyzed. The PPS is responsible for maintaining fixed payload pointing in the presence of disturbance applied to the Space Station. The payload considered in this analysis is the Solar Optical Telescope. System performance is evaluated via digital time simulations by applying various disturbance forces to the Space Station. The PPS meets the Space Station articulated pointing requirement for all disturbances except Shuttle docking and some centrifuge cases.

  5. Quantum dynamics in dual spaces

    SciTech Connect

    Sudarshan, E.C.G.

    1993-12-31

    Quantum mechanics gives us information about spectra of dynamical variables and transition rates including scattering cross sections. They can be exhibited as spectral information in analytically continued spaces and their duals. Quantum mechanics formulated in these generalized spaces is used to study scattering and time evolution. It is shown that the usual asymptotic condition is inadequate to deal with scattering of composite or unstable particles. Scattering theory needs amendment when the interacting system is not isospectral with the free Hamiltonian, and the amendment is formulated. Perturbation theory in generalized spaces is developed and used to study the deletion and augmentation of the spectrum of the Hamiltonian. A complete set of algebraically independent constants for an interacting system is obtained. The question of the breaking of time symmetry is discussed.

  6. Dual-fuel, dual-throat engine preliminary analysis

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1979-01-01

    A propulsion system analysis of the dual fuel, dual throat engine for launch vehicle applications was conducted. Basic dual throat engine characterization data were obtained to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined.

  7. Analysis of Genotoxic and Cytotoxic Responses Induced by Simulated Space Radiation Qualities by Use of Recombinant Bacteria Carrying a Dual-Function Dual-Reporter Construct

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Hellweg, Christine; Zahoor, Ahmed; Testard, Isabelle; Reitz, Guenther

    Along with the long-term space exploration come various potential health risks due to unique physical factors of the space environment. Space radiation is one of the primary environmental hazards associated with space flight. In order to deal with space-related risk radiation exposure must be properly characterised and quantified, and biological effects of charged particles have to be analysed in ground based research, especially as astronauts are subjected to a differing radiation quality in space than they receive on Earth. For risk assessment, the mutagenic potential of the heavy ion component of the galactic cosmic radiation is of major concern for tumour induction as radiation late effects. The recombinant SWITCH test is based on TA1535 Salmonella typhimurium cells transformed with a dual-function dual-reporter vector harbouring (a) the genes for bioluminescence production from Photobacterium leiognathi under the control of a DNA-damage inducible promoter and (b) the gene for green fluorescent protein from the jellyfish Aequorea victoria under the control of a constitutive promoter. Suchlike genetically modified organism report on the presence of genotoxic conditions by dose dependent increase of bioluminescence induction and on the presence of cytotoxic conditions by dose dependent decrease in GFP fluorescence. By this, it is possible to analyse bacterial inactivation and mutation induction by ionizing radiation in parallel in the same cell within short time. Experiments with heavy ions have been performed with the SWITCH test at GANIL with the following accelerated heavy ions: 35 MeV/u (72 keV/µm) and 75 MeV/u (37 keV/µm) carbon, 95 MeV/u argon (377 keV/µm), 95 MeV/u neon (98 keV/µm), 75 MeV/u nickel (967 keV/µm) and 29 MeV/u lead (10238 keV/µm). The results obtained clearly show that the numbers of hits (particles per cm2 ) necessary to inactivate the bacteria (cytotoxicity) depend on LET. The higher the ionisation capacity of the accelerated ion, the

  8. Dual-Pulse Pulse Position Modulation (DPPM) for Deep-Space Optical Communications: Performance and Practicality Analysis

    NASA Technical Reports Server (NTRS)

    Li, Jing; Hylton, Alan; Budinger, James; Nappier, Jennifer; Downey, Joseph; Raible, Daniel

    2012-01-01

    Due to its simplicity and robustness against wavefront distortion, pulse position modulation (PPM) with photon counting detector has been seriously considered for long-haul optical wireless systems. This paper evaluates the dual-pulse case and compares it with the conventional single-pulse case. Analytical expressions for symbol error rate and bit error rate are first derived and numerically evaluated, for the strong, negative-exponential turbulent atmosphere; and bandwidth efficiency and throughput are subsequently assessed. It is shown that, under a set of practical constraints including pulse width and pulse repetition frequency (PRF), dual-pulse PPM enables a better channel utilization and hence a higher throughput than it single-pulse counterpart. This result is new and different from the previous idealistic studies that showed multi-pulse PPM provided no essential information-theoretic gains than single-pulse PPM.

  9. Dual-Use system architecture for a space situational awareness system in Japan

    NASA Astrophysics Data System (ADS)

    Otani, Y.; Kohtake, N.; Ohkami, Y.

    The use of outer space plays a vital role in both defense and civil fields. Since the separation of space activities between civil and defense applications is extremely inefficient, the Dual-Use concept has been considered fundamental for promoting the effective use of space. To the best of the authors' knowledge, most previous studies on Dual-Use focused on the technological aspects, and very few on a system engineering approach to Dual-Use. This left some important issues untouched such as the operational aspects of a system of systems, which need to be understood in a more generic context. This paper presents the results of a conceptual study, system design and management analysis of Dual-Use system architecture. First, an outline of the Dual-Use concept will be described and a definition of Dual-Use given. The effectiveness of applying the Dual-Use system concept to Space Situational Awareness (SSA) for both defense and civil users as a system of systems will then be discussed and investigated with a stakeholders analysis, context diagram and design structure matrix method. It has demonstrated that there is a need for a Dual-Use SSA Data Center which works as a binder between defense and civil systems as well as a data policy for constructing a Dual-Use SSA system.

  10. Space Shuttle Program (SSP) Dual Docked Operations (DDO)

    NASA Technical Reports Server (NTRS)

    Sills, Joel W., Jr.; Bruno, Erica E.

    2016-01-01

    This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.

  11. Dual-Use Space Technology Transfer Conference and Exhibition

    SciTech Connect

    Krishen, K.

    1994-05-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies. Separate abstracts have been submitted to the database for some articles from this meeting.

  12. Dual-Use Space Technology Transfer Conference and Exhibition

    SciTech Connect

    Krishen, K.

    1994-05-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technology. Separate abstracts have beem submitted to the database for some articles from this conference.

  13. Explicit derivation of Yang-Mills self-dual solutions on non-commutative harmonic space

    NASA Astrophysics Data System (ADS)

    Belhaj, A.; Hssaini, M.; Sahraoui, E. M.; Saidi, E. H.

    2001-06-01

    We develop the non-commutative harmonic space (NHS) analysis to study the problem of solving the nonlinear constraint equations of non-commutative Yang-Mills self-duality in four dimensions. We show that this space, denoted also as NHS(η,θ), has two SU(2) isovector deformations η(ij) and θ(ij) parametrizing, respectively, two non-commutative harmonic subspaces NHS(η,0) and NHS(0, θ) used to study the self-dual and anti self-dual non-commutative Yang-Mills solutions. We reformulate the Yang-Mills self-dual constraint equations on NHS(η,0) by extending the idea of harmonic analyticity to linearize them. We then give a perturbative self-dual solution recovering the ordinary one. Finally, we present the explicit computation of an exact self-dual solution.

  14. Anthropomorphic dual-arm space telemanipulation system

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    1990-01-01

    Dexterous dual-arm manipulations are feasible with the system described and illustrated in the paper. The structure is based on an extensible host arm that carries the dual-arm robot which comprises two 7-DOF arms each of which includes a hand with a thumb and three fingers with 4 DOF each. Joint compliance can be stiffened to any level, and the operator uses arm harnesses and gloves to utilize the robotics in an anthropomorphic fashion. The configuration eliminates coordinate-transformation computations, and the system is found to achieve a control-frequency rate of 1000 Hz for its direct man/machine interfaces based on fiber-optic cables. The electronics control for the system utilizes a sensory system consisting of force, position, and compliance sensors. The robotics system is expected to be a user-friendly device that permits assembly, repair, tethering, and other complex mechanical operations.

  15. DUAL USE OF SCHOOL FALLOUT SHELTER SPACE.

    ERIC Educational Resources Information Center

    SAYERS, JOHN

    THIS REPORT DISCUSSES CONSIDERATIONS IN THE USE OF FALLOUT SHELTER SPACE FOR NORMAL SCHOOL ACTIVITIES, INCLUDING THE REQUIREMENTS FOR FALLOUT SHELTERS AND PROBLEMS RELATED TO WINDOWLESS ROOMS. THE PRESENT LACK OF INFORMATION ABOUT PSYCHOLOGICAL PROBLEMS RELATED TO WINDOWLESS ROOMS IS MENTIONED. THE BEST USES FOR WINDOWLESS SPACE ARE NOTED--(1)…

  16. Dual throat thruster cold flow analysis

    NASA Technical Reports Server (NTRS)

    Lundgreen, R. B.; Nickerson, G. R.; Obrien, C. J.

    1978-01-01

    The concept was evaluated with cold flow (nitrogen gas) testing and through analysis for application as a tripropellant engine for single-stage-to-orbit type missions. Three modes of operation were tested and analyzed: (1) Mode 1 Series Burn, (2) Mode 1 Parallel Burn, and (3) Mode 2. Primary emphasis was placed on the Mode 2 plume attachment aerodynamics and performance. The conclusions from the test data analysis are as follows: (1) the concept is aerodynamically feasible, (2) the performance loss is as low as 0.5 percent, (3) the loss is minimized by an optimum nozzle spacing corresponding to an AF-ATS ratio of about 1.5 or an Le/Rtp ratio of 3.0 for the dual throat hardware tested, requiring only 4% bleed flow, (4) the Mode 1 and Mode 2 geometry requirements are compatible and pose no significant design problems.

  17. Dual nozzle aerodynamic and cooling analysis study. [dual throat and dual expander nozzles

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1980-01-01

    Geometric, aerodynamic flow field, performance prediction, and heat transfer analyses are considered for two advanced chamber nozzle concepts applicable to Earth-to-orbit engine systems. Topics covered include improvements to the dual throat aerodynamic and performance prediction program; geometric and flow field analyses of the dual expander concept; heat transfer analysis of both concepts, and engineering analysis of data from the NASA/MSFC hot-fire testing of a dual throat thruster model thrust chamber assembly. Preliminary results obtained are presented in graphs.

  18. Dual Use Space Technology Transfer Conference Paper

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    1994-01-01

    New textile fibers have been developed or modified to meet the complex and constraining criteria of space applications. The most common of these criteria are light weight, nonflammability or flame retardancy, and high strength and durability in both deep space environment and the oxygen enriched crew bay area of the spacecraft. The fibers which successfully pass the tests of flammability and toxicity, and display the desired mechanical properties are selected for space applications. Such advanced fibers developed for the Crew and Thermal Systems Division (CTSD) at the Johnson Space Center include 'Beta' fiber, heat stabilized polybenzimidazole and polyimide, as well as modified aramid Durette(TM), multi-fibrous Ortho(TM) fabric, and flame resistant cotton. The physical, mechanical, and chemical properties of these fibers are briefly discussed. The testing capabilities in the CTSD laboratory to ascertain some of the properties of these and other fibrous materials are also discussed. Most of these materials developed for spacecraft, space suit, and flight equipment applications have found other commercial applications. These advanced textile fibers are used mostly for aircraft, transportation, public buildings, hospitals, and protective clothing applications.

  19. Dual Use Space Technology Transfer Conference Paper

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    1994-01-01

    New textile fibers have been developed or modified to meet the complex and constraining criteria of space applications. The most common of these criteria are light weight, nonflammability or flame retardancy, and high strength and durability in both deep space environment and the oxygen enriched crew bay area of the spacecraft. The fibers which successfully pass the tests of flammability and toxicity, and display the desired mechanical properties are selected for space applications. Such advanced fibers developed for the Crew and Thermal Systems Division (CTSD) at the Johnson Space Center include 'Beta' fiber, heat stabilized polybenzimidazole and polyimide, as well as modified aramid Durette(TM), multi-fibrous Ortho(TM) fabric, and flame resistant cotton. The physical, mechanical, and chemical properties of these fibers are briefly discussed. The testing capabilities in the CTSD laboratory to ascertain some of the properties of these and other fibrous materials are also discussed. Most of these materials developed for spacecraft, space suit, and flight equipment applications have found other commercial applications. These advanced textile fibers are used mostly for aircraft, transportation, public buildings, hospitals, and protective clothing applications.

  20. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  1. Control strategy for a dual-arm maneuverable space robot

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1987-01-01

    A simple strategy for the attitude control and arm coordination of a maneuverable space robot with dual arms is proposed. The basic task for the robot consists of the placement of marked rigid solid objects with specified pairs of gripping points and a specified direction of approach for gripping. The strategy consists of three phases each of which involves only elementary rotational and translational collision-free maneuvers of the robot body. Control laws for these elementary maneuvers are derived by using a body-referenced dynamic model of the dual-arm robot.

  2. Social network analysis and dual rover communications

    NASA Astrophysics Data System (ADS)

    Litaker, Harry L.; Howard, Robert L.

    2013-10-01

    Social network analysis (SNA) refers to the collection of techniques, tools, and methods used in sociometry aiming at the analysis of social networks to investigate decision making, group communication, and the distribution of information. Human factors engineers at the National Aeronautics and Space Administration (NASA) conducted a social network analysis on communication data collected during a 14-day field study operating a dual rover exploration mission to better understand the relationships between certain network groups such as ground control, flight teams, and planetary science. The analysis identified two communication network structures for the continuous communication and Twice-a-Day Communication scenarios as a split network and negotiated network respectfully. The major nodes or groups for the networks' architecture, transmittal status, and information were identified using graphical network mapping, quantitative analysis of subjective impressions, and quantified statistical analysis using Sociometric Statue and Centrality. Post-questionnaire analysis along with interviews revealed advantages and disadvantages of each network structure with team members identifying the need for a more stable continuous communication network, improved robustness of voice loops, and better systems training/capabilities for scientific imagery data and operational data during Twice-a-Day Communications.

  3. The dual spaces of new λm-sequence spaces and their matrix maps

    NASA Astrophysics Data System (ADS)

    Ercan, Sinan; Bektaş, ćiǧdem A.

    2017-01-01

    In this paper, we compute alpha-, beta- and gamma- duals of the new BK-spaces ℓ∞ (λm), c(λm) and c(λm). We also give some classes of matrix transformations from these spaces to ℓ∞, c, c0, f and f0.

  4. Is dual-task performance necessarily impaired in space?

    PubMed

    Fowler, B; Bock, O; Comfort, D

    2000-01-01

    Recent single-subject experiments in space have reported impaired dual-task performance that could result from either a direct effect of microgravity on the central nervous system or from the multistressor environment. We sought to distinguish between these hypotheses using 6 astronauts in the 16-day NASA Neurolab mission, testing them at intervals with a dual task consisting of primary pursuit tracking without vision of the hand and secondary reaction time (RT). The participants were highly trained, instructed to maintain a fixed attention strategy, and restrained in the apparatus. The results showed that absolute and variable tracking error, as well as correct RT and the standard deviation of RT, were unimpaired. However, RT errors became more variable, an effect attributed to a decrease in strategic control. We conclude that the impairments observed in previous dual-task space experiments can be attributed to stressors rather than to microgravity and that performance deficits are probably not a necessary concomitant of space flight if attention is paid to task design and astronaut training.

  5. Dynamic characteristics of two 300 kW class dual keel space station concepts

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.; Sutter, T. R.; Lake, M. S.; Cooper, P. A.

    1986-01-01

    Results from an investigation of the dynamic behavior of a 300 kW class solar dynamic powered, dual kell space station are presented. The purpose of the investigation was to determine and assess the influence of space station truss bay size on station controllability during rigid body attitude adjustment and orbit reboost maneuvers. The dual keel space station concept is defined and two finite element models (one which has a truss bay size of 5m and another with a truss bay size of 9 feet) are described. Rigid and flexible body characteristics of the two space station models are also presented. Finally, results from a transient response analysis, where the stations are subjected to an orbit reboost maneuver, are summarized.

  6. Dual structural-control optimization of large space structures

    NASA Technical Reports Server (NTRS)

    Messac, A.; Turner, J.

    1984-01-01

    A new approach is proposed for solving dual structural-control optimization problems for high-order flexible space structures where reduced-order structural models are employed. For a given initial structural dessign, a quadratic control cost is minimized subject to a constant-mass constraint. The sensitivity of the optimal control cost with respect to the stuctural design variables is then determined and used to obtain successive structural redesigns using a contrained gradient optimization algorithm. This process is repeated until the constrained control cost sensitivity becomes negligible. A numerical example is presented which demonstrates that this new approach effectively addresses the problem of dual optimization for potentially very high-order structures.

  7. Gauge theories on hyperbolic spaces and dual wormhole instabilities

    SciTech Connect

    Buchel, Alex

    2004-09-15

    We study supergravity duals of strongly coupled four-dimensional gauge theories formulated on compact quotients of hyperbolic spaces. The resulting background geometries are represented by Euclidean wormholes, which complicate establishing the precise gauge theory/string theory correspondence dictionary. These backgrounds suffer from the nonperturbative instabilities arising from the D3D3-bar pair-production in the background four-form potential. We discuss conditions for suppressing this Schwingerlike instability. We find that Euclidean wormholes arising in this construction develop a naked singularity before they can be stabilized.

  8. Adaptive momentum management for the dual keel Space Station

    NASA Technical Reports Server (NTRS)

    Hopkins, M.; Hahn, E.

    1987-01-01

    The report discusses momentum management for a large space structure with the structure selected configuration being the Initial Orbital Configuration of the dual-keel Space Station. The external torques considered were gravity gradient and aerodynamic torques. The goal of the momentum management scheme developed is to remove the bias components of the external torques and center the cyclic components of the stored angular momentum. The scheme investigated is adaptive to uncertainties of the inertia tensor and requires only approximate knowledge of principal moments of inertia. Computational requirements are minimal and should present no implementation problem in a flight-type computer. The method proposed is shown to be effective in the presence of attitude control bandwidths as low as 0.01 radian/sec.

  9. Future of dual-use space awareness technologies

    NASA Astrophysics Data System (ADS)

    Czyzak, Stanley R.

    2000-10-01

    The use of all classes of space systems, whether owned by defense, civil, commercial, scientific, allied or foreign organizations, is increasing rapidly. In turn, the surveillance of such systems and activities in space are of interest to all parties. Interests will only increase in time and with the new ways to exploit the space environment. However, the current space awareness infrastructure and capabilities are not maintaining pace with the demands and advanced technologies being brought online. The use of surveillance technologies, some of which will be discussed in the conference, will provide us the eventual capability to observe and assess the environment, satellite health and status, and the uses of assets on orbit. This provides us a space awareness that is critical to the military operator and to the commercial entrepreneur for their respective successes. Thus the term 'dual-use technologies' has become a reality. For this reason we will briefly examine the background, current, and future technology trends that can lead us to some insights for future products and services.

  10. Robust coordinated control of a dual-arm space robot

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Kayastha, Sharmila; Katupitiya, Jay

    2017-09-01

    Dual-arm space robots are more capable of implementing complex space tasks compared with single arm space robots. However, the dynamic coupling between the arms and the base will have a serious impact on the spacecraft attitude and the hand motion of each arm. Instead of considering one arm as the mission arm and the other as the balance arm, in this work two arms of the space robot perform as mission arms aimed at accomplishing secure capture of a floating target. The paper investigates coordinated control of the base's attitude and the arms' motion in the task space in the presence of system uncertainties. Two types of controllers, i.e. a Sliding Mode Controller (SMC) and a nonlinear Model Predictive Controller (MPC) are verified and compared with a conventional Computed-Torque Controller (CTC) through numerical simulations in terms of control accuracy and system robustness. Both controllers eliminate the need to linearly parameterize the dynamic equations. The MPC has been shown to achieve performance with higher accuracy than CTC and SMC in the absence of system uncertainties under the condition that they consume comparable energy. When the system uncertainties are included, SMC and CTC present advantageous robustness than MPC. Specifically, in a case where system inertia increases, SMC delivers higher accuracy than CTC and costs the least amount of energy.

  11. Visualization of the spaces W (u, v; ℓp) and their duals

    NASA Astrophysics Data System (ADS)

    Veličković, Vesna; Malkowsky, Eberhard; Özger, Faruk

    2016-08-01

    We consider the weighted means spaces W (u, v; ℓp) and their α-, β- and γ-duals. The duality of the spaces is visualized in three dimensional real space by representing the norm as a potential surface and the dual norm as the corresponding Wulff's crystal.

  12. Volumic omit maps in ab initio dual-space phasing.

    PubMed

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed.

  13. Dual thermostating in flow analysis.

    PubMed

    Dias, Tuanne R; Sasaki, Milton K; Zagatto, Elias A G

    2017-06-01

    An advanced strategy involving concentric tubes is proposed for fast and controlled heating (or cooling) of the reaction medium in flow analysis. Different temperatures are set by sequentially circulating two thermostated water streams through the outer larged bore (2.0mm i.d.) silicone tube, which acted as a water-jacket of the inner (0.8mm i.d.) PTFE tube, and directing the sample zone to flow through it. Each end of the outer tube is connected to a three-way valve that selects the stream to flow inside it. For 25-85cm tube lengths and a 12.0mLmin(-1) flow rate, the time interval required for temperature attainment, and the uniformity of temperature along the tube were evaluated. For the 85-cm tube, low differences in temperatures along the coil (1.1-8.7°C) and between programmed and attained values (2.3-13.4°C) were noted within a wide range of pre-set temperatures (15-75°C). The feasibility of the innovation in flow analysis was demonstrated in a model system relying on the iodide-nitrite reaction. The strategy allows fast (15-120s) thermostating of the reaction medium in a versatile and simple way, and is especially attractive when two controlled temperatures are set during the analytical course. Potentialities and limitations of the innovation are discussed.

  14. Free-floating dual-arm robots for space assembly

    NASA Technical Reports Server (NTRS)

    Agrawal, Sunil Kumar; Chen, M. Y.

    1994-01-01

    Freely moving systems in space conserve linear and angular momentum. As moving systems collide, the velocities get altered due to transfer of momentum. The development of strategies for assembly in a free-floating work environment requires a good understanding of primitives such as self motion of the robot, propulsion of the robot due to onboard thrusters, docking of the robot, retrieval of an object from a collection of objects, and release of an object in an object pool. The analytics of such assemblies involve not only kinematics and rigid body dynamics but also collision and impact dynamics of multibody systems. In an effort to understand such assemblies in zero gravity space environment, we are currently developing at Ohio University a free-floating assembly facility with a dual-arm planar robot equipped with thrusters, a free-floating material table, and a free-floating assembly table. The objective is to pick up workpieces from the material table and combine them into prespecified assemblies. This paper presents analytical models of assembly primitives and strategies for overall assembly. A computer simulation of an assembly is developed using the analytical models. The experiment facility will be used to verify the theoretical predictions.

  15. Design of a dual species atom interferometer for space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Schubert, Christian; Krutzik, Markus; Bote, Lluis Gesa; Gaaloul, Naceur; Hartwig, Jonas; Ahlers, Holger; Herr, Waldemar; Posso-Trujillo, Katerine; Rudolph, Jan; Seidel, Stephan; Wendrich, Thijs; Ertmer, Wolfgang; Herrmann, Sven; Kubelka-Lange, André; Milke, Alexander; Rievers, Benny; Rocco, Emanuele; Hinton, Andrew; Bongs, Kai; Oswald, Markus; Franz, Matthias; Hauth, Matthias; Peters, Achim; Bawamia, Ahmad; Wicht, Andreas; Battelier, Baptiste; Bertoldi, Andrea; Bouyer, Philippe; Landragin, Arnaud; Massonnet, Didier; Lévèque, Thomas; Wenzlawski, Andre; Hellmig, Ortwin; Windpassinger, Patrick; Sengstock, Klaus; von Klitzing, Wolf; Chaloner, Chris; Summers, David; Ireland, Philip; Mateos, Ignacio; Sopuerta, Carlos F.; Sorrentino, Fiodor; Tino, Guglielmo M.; Williams, Michael; Trenkel, Christian; Gerardi, Domenico; Chwalla, Michael; Burkhardt, Johannes; Johann, Ulrich; Heske, Astrid; Wille, Eric; Gehler, Martin; Cacciapuoti, Luigi; Gürlebeck, Norman; Braxmaier, Claus; Rasel, Ernst

    2015-06-01

    Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth's gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species 85Rb/87Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for 10-11 mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system. The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (814 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.

  16. Morrey spaces in harmonic analysis

    NASA Astrophysics Data System (ADS)

    Adams, David R.; Xiao, Jie

    2012-10-01

    Through a geometric capacitary analysis based on space dualities, this paper addresses several fundamental aspects of functional analysis and potential theory for the Morrey spaces in harmonic analysis over the Euclidean spaces.

  17. Analysis of interacting dual lifting ejector systems

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Tavella, D. A.; Roberts, L.

    1986-01-01

    An analytical treatment is presented for a flowfield generated by a pair of interacting, two-dimensional parallel jets, representative of the two exhaust streams issuing from the thrust augmentor nozzles of dual lifting jet VTOL aircraft propulsion systems. Predictions of the analysis for the ratio of primary to secondary velocity are in close agreement with experimentally observed values, if the spreading rate parameter is allowed to assume a value greater than that which applies to a free jet. Theoretical results are combined with existing experimental data for unventilated jets, in order to arrive at an estimate of the thrust augmentation produced by a jet pair with an arbitrary degree of ventilation.

  18. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  19. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  20. Dual nozzle aerodynamic and cooling analysis study

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1981-01-01

    Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.

  1. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.

    PubMed

    Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.

  2. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands

    PubMed Central

    Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli. PMID:28081187

  3. Dual-Use Concept on Civil and Defense Uses of Outer Space

    NASA Astrophysics Data System (ADS)

    Otani, Yasuo; Ohkami, Yoshiaki; Naohiko Kohtake; Sakurai, Tomoaki

    The outer space utilizations play a vital role for both civil and defense fields. As for Japan, after the Basic Space Law was enacted, the new utilizations and R&D of space are promoted to enforce the national security. Under the circumstances, Dual-Use has become an important concept. However, the past studies were often focused on the technologies themselves which could be used for both civil and defense purposes as well. This paper deals with Japanese space policy, focuses on the Dual-Use concept on civil and defense uses and developments of outer space. First, the meaning of Dual-Use concept and the effectiveness of the system would be defined, and the key aspects such as data policy for integrating the dual system were dissected. Then, the operational configurations and retaining Dual-Use system were suggested, and early warning satellite system and space situational awareness project as the concrete applications of Dual-Use system would be discussed.

  4. Space shuttle navigation analysis

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.

    1976-01-01

    A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.

  5. Space station commonality analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This study was conducted on the basis of a modification to Contract NAS8-36413, Space Station Commonality Analysis, which was initiated in December, 1987 and completed in July, 1988. The objective was to investigate the commonality aspects of subsystems and mission support hardware while technology experiments are accommodated on board the Space Station in the mid-to-late 1990s. Two types of mission are considered: (1) Advanced solar arrays and their storage; and (2) Satellite servicing. The point of departure for definition of the technology development missions was a set of missions described in the Space Station Mission Requirements Data Base. (MRDB): TDMX 2151 Solar Array/Energy Storage Technology; TDMX 2561 Satellite Servicing and Refurbishment; TDMX 2562 Satellite Maintenance and Repair; TDMX 2563 Materials Resupply (to a free-flyer materials processing platform); TDMX 2564 Coatings Maintenance Technology; and TDMX 2565 Thermal Interface Technology. Issues to be addressed according to the Statement of Work included modularity of programs, data base analysis interactions, user interfaces, and commonality. The study was to consider State-of-the-art advances through the 1990s and to select an appropriate scale for the technology experiments, considering hardware commonality, user interfaces, and mission support requirements. The study was to develop evolutionary plans for the technology advancement missions.

  6. Dual Language Graduates' Participation in Bilingual and Biliterate Communities of Practice across Time and Space

    ERIC Educational Resources Information Center

    Granados, Nadia Regina

    2015-01-01

    Through a Communities of Practice Network Analysis, this research illustrates the ways in which dual language graduates participate in multiple, varied, and overlapping communities of practice across time. Findings highlight that the dual language school as a shared community of practice represents a critical and formative part of participants'…

  7. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    PubMed Central

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  8. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing.

    PubMed

    Wang, Weiqiang; Chu, Sai T; Little, Brent E; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-06-24

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

  9. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    NASA Astrophysics Data System (ADS)

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-06-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

  10. Dual-task performance in space: results from a single-case study during a short-term space mission.

    PubMed

    Manzey, D; Lorenz, B; Schiewe, A; Finell, G; Thiele, G

    1995-12-01

    During spaceflights, astronauts are exposed to many stressors (e.g., microgravity, confinement) that may impair human information-processing capabilities. In order to analyze the possible effects of the space environment on human time-sharing efficiency, a single-case experiment was conducted in which the time course of dual-task performance (unstable tracking with concurrent memory search) of one space crew member was monitored repeatedly (13 times) throughout an 8-day space mission. Tasks were taken from the Advisory Group for Aerospace Research and Development battery of Standardized Tests for Research with Environmental Stressors. Comparisons of in-flight, preflight, and postflight performance revealed no decrements in single-task memory search performance but did reveal clear impairments in single-task tracking and dual-task performance. From these results we conclude that psychomotor processes and higher attentional functions are particularly prone to disturbance effects in space.

  11. Manipulability measure of dual-arm space robot and its application to design an optimal configuration

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Liang, Bin; Wang, Xueqian; Li, Gang; Chen, Zhang; Zhu, Xiaojun

    2016-11-01

    Coupling effect exists among different arms and the base in a multi-arm space robot. The manipulability measure of one arm can be affected by the base and the other arms, which has important effects on the configuration optimization, the singularity avoidance and the compliant control. The manipulability measure for a multi-arm space robot is more complex than that of a single-arm space robot. At present, the manipulability measure of a multi-arm space robot has not been studied. In the paper, a new concept of manipulability measure is applied to analyze the manipulability measure for a dual-arm space robot, especially for the manipulability measure of the mission arm subjecting to the influence from coupling effect of auxiliary arm and the base. Based on the manipulability measure of mission arm, a performance index is introduced and used to design and choose an optimization configuration for a dual-arm space robot. Finally, a plane dual-arm space robot is simulated, which is illustrated the influence of joint angles and the base attitude on mission arm's manipulability measure. Simulation results show that the proposed manipulability measure is useful for a multi-arm space robot and optimal configuration can be extended and applied to the coordinated soft rendezvous and docking and the target capture in the field of on-orbit servicing.

  12. Certain topological properties and duals of the domain of a triangle matrix in a sequence space

    NASA Astrophysics Data System (ADS)

    Altay, Bilâl; Basar, Feyzi

    2007-12-01

    The matrix domain of the particular limitation methods Cesàro, Riesz, difference, summation and Euler were studied by several authors. In the present paper, certain topological properties and [beta]- and [gamma]-duals of the domain of a triangle matrix in a sequence space have been examined as an application of the characterization of the related matrix classes.

  13. A Community Facilities Center with Fallout Shelter as Dual Purpose Space.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    A presentation is made of five award-winning designs for a fireproof community recreation facility, on a selected site in New York City, incorporating a fallout shelter as a dual-purpose space. Graphic illustrations are given of the award winning designs, each of which used one of the following solutions--(1) the fallout structure above grade with…

  14. A Community Facilities Center with Fallout Shelter as Dual Purpose Space.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    A presentation is made of five award-winning designs for a fireproof community recreation facility, on a selected site in New York City, incorporating a fallout shelter as a dual-purpose space. Graphic illustrations are given of the award winning designs, each of which used one of the following solutions--(1) the fallout structure above grade with…

  15. Compact dual channel optical fiber amplifier for space communication applications

    NASA Astrophysics Data System (ADS)

    Stevens, G.; Henwood-Moroney, L.; Hosking, P.; Kehayas, E.; Stampoulidis, L.; Robertson, A.

    2015-03-01

    We present results from the development of a dual channel Optical Fiber Amplifier (OFA) that consists of two copropagating low noise EDFAs at 1565 and 1545nm. The two channels have separate outputs but can also be combined via an optical switch to a common output channel for an increased output signal power. The OFA produces up to 35dB gain at low signal input powers and a total of over 350mW optical signal power combined from both EDFA channels with a 5mW signal input. The OFA was tested with input signals between 0.1 - 20 mW over the C-band and with pump power varying from 0 - 100% of the maximum operating pump power. The OFA module has total mass of 583 g including all electrical and optical components, as well as optical and electrical bulkheads, and a total module volume of 430 cm3. The module was also radiation tested via gamma irradiation up to 100 krad TID, validating the robustness of the optical amplifier against RIA effects and its suitability for LEO and GEO satellite missions.

  16. Cognitive demand of human sensorimotor performance during an extended space mission: a dual-task study.

    PubMed

    Bock, Otmar; Weigelt, Cornelia; Bloomberg, Jacob J

    2010-09-01

    Two previous single-case studies found that the dual-task costs of manual tracking plus memory search increased during a space mission, and concluded that sensorimotor deficits during spaceflight may be related to cognitive overload. Since dual-task costs were insensitive to the difficulty of memory search, the authors argued that the overload may reflect stress-related problems of multitasking, rather than a scarcity of specific cognitive resources. Here we expand the available database and compare different types of concurrent task. Three subjects were repeatedly tested before, during, and after an extended mission on the International Space Station (ISS). They performed an unstable tracking task and four reaction-time tasks, both separately and concurrently. Inflight data could only be obtained during later parts of the mission. The tracking error increased from pre- to in flight by a factor of about 2, both under single- and dual-task conditions. The dual-task costs with a reaction-time task requiring rhythm production was 2.4 times higher than with a reaction-time task requiring visuo-spatial transformations, and 8 times higher than with a regular choice reaction-time task. Long-term sensorimotor deficits during spaceflight may reflect not only stress, but also a scarcity of resources related to complex motor programming; possibly those resources are tied up by sensorimotor adaptation to the space environment.

  17. The dual of the space of interactions in neural network models

    NASA Astrophysics Data System (ADS)

    de Martino, D.

    2016-01-01

    In this work, the Gardner problem of inferring interactions and fields for an Ising neural network from given patterns under a local stability hypothesis is addressed under a dual perspective. By means of duality arguments, an integer linear system is defined whose solution space is the dual of the Gardner space and whose solutions represent mutually unstable patterns. We propose and discuss Monte Carlo methods in order to find and remove unstable patterns and uniformly sample the space of interactions thereafter. We illustrate the problem on a set of real data and perform ensemble calculation that shows how the emergence of phase dominated by unstable patterns can be triggered in a nonlinear discontinuous way.

  18. Design and analysis of dual axis MEMS magnetometer

    NASA Astrophysics Data System (ADS)

    Madhu, Aswathi M.; Aditi, Gopal, Ram

    2017-06-01

    Magnetometers are sensors used in magnetic field detection, which are often used in oceanographic, industrial and biomedical field. Present work deals with the design and analysis of dual axis MEMS Magnetometer based on Lorentz force principle, with a sensing range of 1uT to 1001uT. Designing of MEMS Magnetometer is carried out using COMSOL Multiphysics 5.0. FEM analysis including model analysis, FEM Thermomechanical analysis, Frequency analysis for finding displacement sensitivity are carried out.

  19. Dual Nozzle Aerodynamic and Cooling Analysis Study.

    DTIC Science & Technology

    1981-02-27

    8217 Final Report 33553- F 27 February 1981 - Prepared For: C National Aeronautics And Space Administration ( ;George C. Marshall Space Flight Center o...Unit No. 9. Performing Organization Name and Address Aerojet Liquid Rocket Company P.O. Box 13222 If.- CoRNA of-33553t. Sacramento, California 95813 A8...Administration 14. Washington, D.C. 20546 onsoring Agncy 15. Supplementary Notes Project Manager, F . Braam, Propulsion Division NASA-Marshall Space Flight Center

  20. Dual Solutions for Nonlinear Flow Using Lie Group Analysis

    PubMed Central

    Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman

    2015-01-01

    `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered. PMID:26575996

  1. Dual Solutions for Nonlinear Flow Using Lie Group Analysis.

    PubMed

    Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman

    2015-01-01

    `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered.

  2. Multiverse Space-Antispace Dual Calabi-Yau `Exciplex-Zitterbewegung' Particle Creation

    NASA Astrophysics Data System (ADS)

    Amoroso, Richard L.

    Modeling the `creation/emergence' of matter from spacetime is as old as modern cosmology itself and not without controversy within each model such as Static, Steady-state, Big Bang or Multiverse Continuous-State. In this paper we present only a brief primitive introduction to a new form of `Exciplex-Zitterbewegung' dual space-antispace vacuum Particle Creation applicable especially to Big Bang alternatives which are well-known but ignored; Hubble discovered `Redshift' not a Doppler expansion of the universe which remains the currently popular interpretation. Holographic Anthropic Multiverse cosmology provides viable alternatives to all seemingly sacrosanct pillars of the Big Bang. A model for Multiverse Space-Antispace Dual Calabi-Yau `Exciplex-Zitterbewegung' particle creation has only become possible by incorporating the additional degrees of freedom provided by the capacity complex dimensional extended Yang-Mills Kaluza-Klein correspondence provides.

  3. Exploring the evolution of London's street network in the information space: a dual approach.

    PubMed

    Masucci, A Paolo; Stanilov, Kiril; Batty, Michael

    2014-01-01

    We study the growth of London's street network in its dual representation, as the city has evolved over the past 224 years. The dual representation of a planar graph is a content-based network, where each node is a set of edges of the planar graph and represents a transportation unit in the so-called information space, i.e., the space where information is handled in order to navigate through the city. First, we discuss a novel hybrid technique to extract dual graphs from planar graphs, called the hierarchical intersection continuity negotiation principle. Then we show that the growth of the network can be analytically described by logistic laws and that the topological properties of the network are governed by robust log-normal distributions characterizing the network's connectivity and small-world properties that are consistent over time. Moreover, we find that the double-Pareto-like distributions for the connectivity emerge for major roads and can be modeled via a stochastic content-based network model using simple space-filling principles.

  4. Space lab system analysis

    NASA Technical Reports Server (NTRS)

    Rives, T. B.; Ingels, F. M.

    1988-01-01

    An analysis of the Automated Booster Assembly Checkout System (ABACS) has been conducted. A computer simulation of the ETHERNET LAN has been written. The simulation allows one to investigate different structures of the ABACS system. The simulation code is in PASCAL and is VAX compatible.

  5. Experimental validation of a dual uplink multifrequency dispersive noise calibration scheme for Deep Space tracking

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Tortora, P.

    2013-03-01

    We discuss the implementation and effectiveness of a dispersive noise multifrequency calibration scheme for Deep Space tracking. We show that the combination of two phase-coherent links at X band and Ka-band, with two separate uplink carriers, can provide an effective plasma and ionospheric noise removal, in the order of 75% of the plasma noise affecting the Ka-band link. This algorithm, which we refer to as "Dual Uplink, Dual Downlink", shows a modest loss in the radio link stability, if compared to the complete, state-of-the-art calibration achieved by a more complex radio system, which supplements the two separate uplinks and downlinks at X band and Ka-band with an additional "cross-link" (X-up/Ka-down). The calibration accuracy of these two algorithms is thoroughly compared to define their advantages and shortcomings. Finally, Cassini's multifrequency tracking data acquired in 2002 during a General Relativity solar conjunction experiment aimed at the estimation of the parametrized post Newtonian parameter γ were reanalyzed to assess the capability of the Dual Uplink, Dual Downlink calibration algorithm to support accurate radio science experiments.

  6. Effects of dual tasks and dual-task training on postural stability: a systematic review and meta-analysis

    PubMed Central

    Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O

    2017-01-01

    The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review’s inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16–2.10) and in patients suffering from chronic stroke (−0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (−0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive–motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings. PMID:28356727

  7. Analysis of a dual-wavelength surface reference radar technique

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Jones, Jeffrey A.; Gesell, Leslie H.

    1987-01-01

    The use of the single-wavelength surface reference technique (SRT), the standard dual-wavelength technique (DWT), and dual-wavelength surface reference technique (DSRT) for measuring precipitation from space is analyzed, and the results are compared. The characteristics of the three methods are described, and the surface return powers during clear air conditions are measured. It is observed that the rain rate estimates obtained with the DWT and DSRT are identical in form, and the surface reflectance can be derived from the estimates by replacing the rain reflectivity statistics with those of the backscattering cross section of the surface. The data reveal that the DSRT is more applicable than the SRT when the wavelength correlation in the backscattering cross section of the surface is high or when the mean values of the backscattering cross section at the two wavelengths are nearly equal.

  8. The space-dependent model and output characteristics of intra-cavity pumped dual-wavelength lasers

    NASA Astrophysics Data System (ADS)

    He, Jin-Qi; Dong, Yuan; Zhang, Feng-Dong; Yu, Yong-Ji; Jin, Guang-Yong; Liu, Li-Da

    2016-01-01

    The intra-cavity pumping scheme which is used to simultaneously generate dual-wavelength lasers was proposed and published by us and the space-independent model of quasi-three-level and four-level intra-cavity pumped dual-wavelength lasers was constructed based on this scheme. In this paper, to make the previous study more rigorous, the space-dependent model is adopted. As an example, the output characteristics of 946 nm and 1064 nm dual-wavelength lasers under the conditions of different output mirror transmittances are numerically simulated by using the derived formula and the results are nearly identical to what was previously reported.

  9. Space lab system analysis

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Rives, T. B.

    1987-01-01

    An analytical analysis of the HOSC Generic Peripheral processing system was conducted. The results are summarized and they indicate that the maximum delay in performing screen change requests should be less than 2.5 sec., occurring for a slow VAX host to video screen I/O rate of 50 KBps. This delay is due to the average I/O rate from the video terminals to their host computer. Software structure of the main computers and the host computers will have greater impact on screen change or refresh response times. The HOSC data system model was updated by a newly coded PASCAL based simulation program which was installed on the HOSC VAX system. This model is described and documented. Suggestions are offered to fine tune the performance of the ETERNET interconnection network. Suggestions for using the Nutcracker by Excelan to trace itinerate packets which appear on the network from time to time were offered in discussions with the HOSC personnel. Several visits to the HOSC facility were to install and demonstrate the simulation model.

  10. Closely spaced nanomagnets by dual e-beam exposure for low-energy nanomagnet logic

    SciTech Connect

    Shah, Faisal A.; Csaba, Gyorgy; Butler, Katherine; Bernstein, Gary H.

    2013-05-07

    The effect of nanomagnet spacing on required clock field has been studied by micromagnetic simulation for supermalloy (Ni{sub 79}Fe{sub 16}Mo{sub 5}) dots with dimensions 90 Multiplication-Sign 60 Multiplication-Sign 20 nm{sup 3} and 120 Multiplication-Sign 60 Multiplication-Sign 20 nm{sup 3}. Reduction of the inter-magnet spacing for both dimensions has resulted in reduction of the required clock field in the simulation. A dual e-beam exposure technique has been developed to allow fabrication of ultra dense features using conventional poly(methylmethacrylate) e-beam resist. Nanomagnet logic (NML) datalines of supermalloy dots with {approx}10 nm and {approx}15 nm spacing have been fabricated using dual e-beam exposure with a 3{sigma} overlay accuracy of {approx}4 nm. Fabricated NML datalines have been characterized using magnetic force microscopy for various clock fields. Datalines of both spacing have shown proper NML functionality with a clock field as low as 60 mT.

  11. The space physics analysis network

    NASA Astrophysics Data System (ADS)

    Green, James L.

    1988-04-01

    The Space Physics Analysis Network, or SPAN, is emerging as a viable method for solving an immediate communication problem for space and Earth scientists and has been operational for nearly 7 years. SPAN and its extension into Europe, utilizes computer-to-computer communications allowing mail, binary and text file transfer, and remote logon capability to over 1000 space science computer systems. The network has been used to successfully transfer real-time data to remote researchers for rapid data analysis but its primary function is for non-real-time applications. One of the major advantages for using SPAN is its spacecraft mission independence. Space science researchers using SPAN are located in universities, industries and government institutions all across the United States and Europe. These researchers are in such fields as magnetospheric physics, astrophysics, ionosperic physics, atmospheric physics, climatology, meteorology, oceanography, planetary physics and solar physics. SPAN users have access to space and Earth science data bases, mission planning and information systems, and computational facilities for the purposes of facilitating correlative space data exchange, data analysis and space research. For example, the National Space Science Data Center (NSSDC), which manages the network, is providing facilities on SPAN such as the Network Information Center (SPAN NIC). SPAN has interconnections with several national and international networks such as HEPNET and TEXNET forming a transparent DECnet network. The combined total number of computers now reachable over these combined networks is about 2000. In addition, SPAN supports full function capabilities over the international public packet switched networks (e.g. TELENET) and has mail gateways to ARPANET, BITNET and JANET.

  12. Kennedy Space Center Spaceport Analysis

    NASA Technical Reports Server (NTRS)

    Wary, Samantha A.

    2013-01-01

    Until the Shuttle Atlantis' final landing on July 21, 2011, Kennedy Space Center (KSC) served as NASA's main spaceport, which is a launch and landing facility for rockets and spacecraft that are attempting to enter orbit. Many of the facilities at KSC were created to assist the Shuttle Program. One of the most important and used facilities is the Shuttle Landing Facility (SLF), This was the main landing area for the return of the shuttle after her mission in space. · However, the SLF has also been used for a number of other projects including straight-line testing by Gibbs Racing, weather data collection by NOAA, and an airfield for the KSC helicopters. This runway is three miles long with control tower at midfield and a fire department located at the end in care of an emergency. This facility, which was part of the great space race, will continue to be used for historical events as Kennedy begins to commercialize its facilities. KSC continues to be an important spaceport to the government, and it will transform into an important spaceport for the commercial industry as well. During my internship at KSC's Center Planning and Development Directorate, I had the opportunity to be a part of the negotiation team working on the agreement for Space Florida to control the Shuttle Landing Facility. This gave me the opportunity to learn about all the changes that are occurring here at Kennedy Space Center. Through various meetings, I discovered the Master Plan and its focus is to transform the existing facilities that were primarily used for the Shuttle Program, to support government operations and commercial flights in the future. This. idea is also in a new strategic business plan and completion of a space industry market analysis. All of these different documentations were brought to my attention and I. saw how they came together in the discussions of transitioning the SLF to a commercial operator, Space Florida. After attending meetings and partaking in discussions for

  13. Space Debris Detection and Analysis

    DTIC Science & Technology

    1994-02-28

    7F AD-A282 012 PL.-TR-94-206 Space Debris Detection and Analysis Robert H. Eather Ron Siewert Keo Consultants 27 Irving St. Brookline MA 02146 28...PERFORMING ORGANIZATION REPORT NUMBER Keo Consultants 27 Irving St. Brookline MA 02146 9. SPONSORINGI MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING

  14. Anyonic Strings and Membranes in Anti-de Sitter Space and Dual Aharonov-Bohm Effects

    SciTech Connect

    Hartnoll, Sean A.

    2007-03-16

    It is observed that strings in AdS{sub 5}xS{sup 5} and membranes in AdS{sub 7}xS{sup 4} exhibit long range phase interactions. Two well separated membranes dragged around one another in anti-de Sitter space (AdS) acquire phases of 2{pi}/N. The same phases are acquired by a well separated F and D string dragged around one another. The phases are shown to correspond to both the standard and a novel type of Aharonov-Bohm effect in the dual field theory.

  15. Anyonic strings and membranes in anti-de Sitter space and dual Aharonov-Bohm effects.

    PubMed

    Hartnoll, Sean A

    2007-03-16

    It is observed that strings in AdS(5) x S(5) and membranes in AdS(7) x S(4) exhibit long range phase interactions. Two well separated membranes dragged around one another in anti-de Sitter space (AdS) acquire phases of 2 pi/N. The same phases are acquired by a well separated F and D string dragged around one another. The phases are shown to correspond to both the standard and a novel type of Aharonov-Bohm effect in the dual field theory.

  16. A Dual-Chamber Hybrid Inflatable Suitlock (DCIS) for Planetary Surfaces or Deep Space

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Kennedy, Kriss; Guirgis, Peggy; Boyle, Robert

    2011-01-01

    The Habitat Demonstration Unit (HDU) Project in conjunction with the NASA Extravehicular Activity (EVA) team has identified a need for a hybrid inflatable and hard shell suitlock that can be used for planetary surface and deep space human exploration missions. Through ongoing analog studies at NASA Desert Research and Technologies Studies (D-RATS) and in NASA's Prototyping Testbed Facility, it has been determined that a compactly stowed, deployable suitlock unit is needed to accommodate advanced EVA egress and ingress operations for various environments with only minor modification.The Dual-Chamber Inflatable Suitlock (DCIS) consists of three hard in-line bulkheads, separating two cylindrical membrane-walled compartments. A dual-compartment suitlock will allow for dust and contaminant control, suit maintenance, and efficient egress / ingress; and the inflatable aspect of the design will allow the unit to stow in a compact package for transport. This paper describes the DCIS functionality, subsystems, and operational scenarios.The novel concepts included in the DCIS are the triple bulkhead, dual-chamber that has one compartment that is continuously pressurized (either at cabin pressure, or may be used for transitional pressure from high-pressure habitats), and a nominal unpressurized second compartment where the suits will be kept for normal operations. The advantages include quicker egress / ingress, capacity for 'shirt sleeve' suit maintenance, and portability of the entire unit.

  17. A Dual-Chamber Hybrid Inflatable Suitlock (DCIS) for Planetary Surfaces or Deep Space

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Kennedy, Kriss; Guirgis, Peggy; Boyle, Robert

    2011-01-01

    The Habitat Demonstration Unit (HDU) Project in conjunction with the NASA Extravehicular Activity (EVA) team has identified a need for a hybrid inflatable and hard shell suitlock that can be used for planetary surface and deep space human exploration missions. Through ongoing analog studies at NASA Desert Research and Technologies Studies (D-RATS) and in NASA's Prototyping Testbed Facility, it has been determined that a compactly stowed, deployable suitlock unit is needed to accommodate advanced EVA egress and ingress operations for various environments with only minor modification.The Dual-Chamber Inflatable Suitlock (DCIS) consists of three hard in-line bulkheads, separating two cylindrical membrane-walled compartments. A dual-compartment suitlock will allow for dust and contaminant control, suit maintenance, and efficient egress / ingress; and the inflatable aspect of the design will allow the unit to stow in a compact package for transport. This paper describes the DCIS functionality, subsystems, and operational scenarios.The novel concepts included in the DCIS are the triple bulkhead, dual-chamber that has one compartment that is continuously pressurized (either at cabin pressure, or may be used for transitional pressure from high-pressure habitats), and a nominal unpressurized second compartment where the suits will be kept for normal operations. The advantages include quicker egress / ingress, capacity for 'shirt sleeve' suit maintenance, and portability of the entire unit.

  18. Space elevator systems level analysis

    SciTech Connect

    Laubscher, B. E.

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. It involves new, untried technologies in most of its subsystems. Thus the successful construction of the SE requires a significant amount of development, This in turn implies a high level of risk for the SE. This paper will present a systems level analysis of the SE by subdividing its components into their subsystems to determine their level of technological maturity. such a high-risk endeavor is to follow a disciplined approach to the challenges. A systems level analysis informs this process and is the guide to where resources should be applied in the development processes. It is an efficient path that, if followed, minimizes the overall risk of the system's development. systems level analysis is that the overall system is divided naturally into its subsystems, and those subsystems are further subdivided as appropriate for the analysis. By dealing with the complex system in layers, the parameter space of decisions is kept manageable. Moreover, A rational way to manage One key aspect of a resources are not expended capriciously; rather, resources are put toward the biggest challenges and most promising solutions. This overall graded approach is a proven road to success. The analysis includes topics such as nanotube technology, deployment scenario, power beaming technology, ground-based hardware and operations, ribbon maintenance and repair and climber technology.

  19. On Study of Air/Space-borne Dual-Wavelength Radar for Estimates of Rain Profiles

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert

    2004-01-01

    In this study, a framework is discussed to apply air/space-borne dual-wavelength radar for the estimation of characteristic parameters of hydrometeors. The focus of our study is on the Global Precipitation Measurements (GPM) precipitation radar, a dual-wavelength radar that operates at Ku (13.8 GHz) and Ka (35 GHz) bands. As the droplet size distributions (DSD) of rain are expressed as the Gamma function, a procedure is described to derive the median volume diameter (D(sub 0)) and particle number concentration (N(sub T)) of rain. The correspondences of an important quantity of dual-wavelength radar, defined as deferential frequency ratio (DFR), to the D(sub 0) in the melting region are given as a function of the distance from the 0 C isotherm. A self-consistent iterative algorithm that shows a promising to account for rain attenuation of radar and infer the DSD without use of surface reference technique (SRT) is examined by applying it to the apparent radar reflectivity profiles simulated from the DSD model and then comparing the estimates with the model (true) results. For light to moderate rain the self-consistent rain profiling approach converges to unique and correct solutions only if the same shape factors of Gamma functions are used both to generate and retrieve the rain profiles, but does not converges to the true solutions if the DSD form is not chosen correctly. To further examine the dual-wavelength techniques, the self-consistent algorithm, along with forward and backward rain profiling algorithms, is then applied to the measurements taken from the 2nd generation Precipitation Radar (PR-2) built by Jet Propulsion Laboratory. It is found that rain profiles estimated from the forward and backward approaches are not sensitive to shape factor of DSD Gamma distribution, but the self-consistent method is.

  20. Space radiator simulation system analysis

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A transient heat transfer analysis was carried out on a space radiator heat rejection system exposed to an arbitrarily prescribed combination of aerodynamic heating, solar, albedo, and planetary radiation. A rigorous analysis was carried out for the radiation panel and tubes lying in one plane and an approximate analysis was used to extend the rigorous analysis to the case of a curved panel. The analysis permits the consideration of both gaseous and liquid coolant fluids, including liquid metals, under prescribed, time dependent inlet conditions. The analysis provided a method for predicting: (1) transient and steady-state, two dimensional temperature profiles, (2) local and total heat rejection rates, (3) coolant flow pressure in the flow channel, and (4) total system weight and protection layer thickness.

  1. Dual discounting in cost-benefit analysis for environmental impacts

    SciTech Connect

    Kula, Erhun; Evans, David

    2011-04-15

    Discounting has been a long-established intertemporal efficiency tool in cost-benefit analysis which focuses on project selection at communal level with a view to maximising the social welfare. However, with the relentless growth in environmental stress that, in good parts, stems from investment projects the established criterion in discounting appears to be inadequate especially when environmental issues are taken into consideration. This paper looks at how dual focus on efficiency and sustainability can be achieved by using dual discounting, i.e. discounting environmental benefits separately and differently from other costs and benefits and applies this alternative criterion to an afforestation scheme in the United Kingdom which contains carbon sequestration in addition to timber benefits.

  2. Comments on dual-mode nuclear space power and propulsion system concepts

    NASA Technical Reports Server (NTRS)

    Layton, J. Preston; Grey, Jerry

    1991-01-01

    Some form of Dual-Mode Nuclear Space Power & Propulsion System (D-MNSP&PS) will be essential to spacefaring throughout teh solar system and that such systems must evolve as mankind moves into outer space. The initial D-MNPSP&PS Reference System should be based on (1) present (1990), and (2) advanced (1995) technology for use on comparable mission in the 2000 and 2005 time period respectively. D-MNSP&PS can be broken down into a number of subsystems: Nuclear subsystems including the energy source and controls for the release of thermal power at elevated temperatures; power conversion subsystems; waste heat rejection subsystems; and control and safety subsystems. These systems are briefly detailed.

  3. Visualization of dual-arm robot motion space under kinematic constraints

    SciTech Connect

    Tarn, T.J. ); De, P.K. ); Bejczy, A.K. ); Li, Z. )

    1995-02-01

    This article presents a technique for determining and visualizing the geometric motion capabilities of dual-arm robotic systems when the arms work on an object in a closed kinematic chain configuration, taking account of robot arms' base placements, object dimensions, object holding and contact constraints, and space occupancy conflicts of the two arms' links. The constrained and object orientation restricted motion space in general can be visualized as a complex 3D object with hidden unreachable holes or cavities of varying shapes. An automated visualization methodology is presented together with its graphical implementation, illustrated by an example. The methodology is an inverse computer vision technique in the sense that it creates rather than recognizes visual forms. 18 refs., 5 figs.

  4. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robots

    NASA Technical Reports Server (NTRS)

    Erikson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  5. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robotics

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an objective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  6. Feature space analysis of MRI

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Hamid; Windham, Joe P.; Peck, Donald J.

    1997-04-01

    This paper presents development and performance evaluation of an MRI feature space method. The method is useful for: identification of tissue types; segmentation of tissues; and quantitative measurements on tissues, to obtain information that can be used in decision making (diagnosis, treatment planning, and evaluation of treatment). The steps of the work accomplished are as follows: (1) Four T2-weighted and two T1-weighted images (before and after injection of Gadolinium) were acquired for ten tumor patients. (2) Images were analyed by two image analysts according to the following algorithm. The intracranial brain tissues were segmented from the scalp and background. The additive noise was suppressed using a multi-dimensional non-linear edge- preserving filter which preserves partial volume information on average. Image nonuniformities were corrected using a modified lowpass filtering approach. The resulting images were used to generate and visualize an optimal feature space. Cluster centers were identified on the feature space. Then images were segmented into normal tissues and different zones of the tumor. (3) Biopsy samples were extracted from each patient and were subsequently analyzed by the pathology laboratory. (4) Image analysis results were compared to each other and to the biopsy results. Pre- and post-surgery feature spaces were also compared. The proposed algorithm made it possible to visualize the MRI feature space and to segment the image. In all cases, the operators were able to find clusters for normal and abnormal tissues. Also, clusters for different zones of the tumor were found. Based on the clusters marked for each zone, the method successfully segmented the image into normal tissues (white matter, gray matter, and CSF) and different zones of the lesion (tumor, cyst, edema, radiation necrosis, necrotic core, and infiltrated tumor). The results agreed with those obtained from the biopsy samples. Comparison of pre- to post-surgery and radiation

  7. Space station functional relationships analysis

    NASA Technical Reports Server (NTRS)

    Tullis, Thomas S.; Bied, Barbra R.

    1988-01-01

    A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.

  8. Dual Heat Pulse, Dual Layer Thermal Protection System Sizing Analysis and Trade Studies for Human Mars Entry Descent and Landing

    NASA Technical Reports Server (NTRS)

    McGuire, Mary Kathleen

    2011-01-01

    NASA has been recently updating design reference missions for the human exploration of Mars and evaluating the technology investments required to do so. The first of these started in January 2007 and developed the Mars Design Reference Architecture 5.0 (DRA5). As part of DRA5, Thermal Protection System (TPS) sizing analysis was performed on a mid L/D rigid aeroshell undergoing a dual heat pulse (aerocapture and atmospheric entry) trajectory. The DRA5 TPS subteam determined that using traditional monolithic ablator systems would be mass expensive. They proposed a new dual-layer TPS concept utilizing an ablator atop a low thermal conductivity insulative substrate to address the issue. Using existing thermal response models for an ablator and insulative tile, preliminary hand analysis of the dual layer concept at a few key heating points indicated that the concept showed potential to reduce TPS masses and warranted further study. In FY09, the followon Entry, Descent and Landing Systems Analysis (EDL-SA) project continued by focusing on Exploration-class cargo or crewed missions requiring 10 to 50 metric tons of landed payload. The TPS subteam advanced the preliminary dual-layer TPS analysis by developing a new process and updated TPS sizing code to rapidly evaluate mass-optimized, full body sizing for a dual layer TPS that is capable of dual heat pulse performance. This paper describes the process and presents the results of the EDL-SA FY09 dual-layer TPS analyses on the rigid mid L/D aeroshell. Additionally, several trade studies were conducted with the sizing code to evaluate the impact of various design factors, assumptions and margins.

  9. Primal and Dual Integrated Force Methods Used for Stochastic Analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.

    2005-01-01

    At the NASA Glenn Research Center, the primal and dual integrated force methods are being extended for the stochastic analysis of structures. The stochastic simulation can be used to quantify the consequence of scatter in stress and displacement response because of a specified variation in input parameters such as load (mechanical, thermal, and support settling loads), material properties (strength, modulus, density, etc.), and sizing design variables (depth, thickness, etc.). All the parameters are modeled as random variables with given probability distributions, means, and covariances. The stochastic response is formulated through a quadratic perturbation theory, and it is verified through a Monte Carlo simulation.

  10. Modelling and Analysis of Dual-Stator Induction Motors

    NASA Astrophysics Data System (ADS)

    Razik, Hubert; Rezzoug, Abderrezak; Hadiouche, Djafar

    In this paper, the analysis and the modelling of a Dual-Stator Induction Motor (DSIM) are presented. In particular, the effects of the shift angle between its three-phase windings are studied. A complex steady state model is first established in order to analyse its harmonic behavior when it is supplied by a non-sinusoidal voltage source. Then, a new transformation matrix is proposed to develop a suitable dynamic model. In both cases, the study is made using an arbitrary shift angle. Simulation results of its PWM control are also presented and compared in order to confirm our theoretical observations.

  11. A reliability analysis tool for SpaceWire network

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  12. Quantization of liver tissue in dual kVp computed tomography using linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Tkaczyk, J. Eric; Langan, David; Wu, Xiaoye; Xu, Daniel; Benson, Thomas; Pack, Jed D.; Schmitz, Andrea; Hara, Amy; Palicek, William; Licato, Paul; Leverentz, Jaynne

    2009-02-01

    Linear discriminate analysis (LDA) is applied to dual kVp CT and used for tissue characterization. The potential to quantitatively model both malignant and benign, hypo-intense liver lesions is evaluated by analysis of portal-phase, intravenous CT scan data obtained on human patients. Masses with an a priori classification are mapped to a distribution of points in basis material space. The degree of localization of tissue types in the material basis space is related to both quantum noise and real compositional differences. The density maps are analyzed with LDA and studied with system simulations to differentiate these factors. The discriminant analysis is formulated so as to incorporate the known statistical properties of the data. Effective kVp separation and mAs relates to precision of tissue localization. Bias in the material position is related to the degree of X-ray scatter and partial-volume effect. Experimental data and simulations demonstrate that for single energy (HU) imaging or image-based decomposition pixel values of water-like tissues depend on proximity to other iodine-filled bodies. Beam-hardening errors cause a shift in image value on the scale of that difference sought between in cancerous and cystic lessons. In contrast, projection-based decomposition or its equivalent when implemented on a carefully calibrated system can provide accurate data. On such a system, LDA may provide novel quantitative capabilities for tissue characterization in dual energy CT.

  13. MCP-based dual band far UV spectrograph with single channel readouts for space use

    NASA Astrophysics Data System (ADS)

    Rhee, Jingeun; Min, Kyoungwook; Ryu, Kwangsun; Han, Wonyong; Nam, Ukwon; Lee, Daehee; Jin, Ho; Siegmund, Oswald H.; Korpela, Eric J.; Edelstein, Jerry; Lampton, Michael; Hull, Jeff

    2007-06-01

    A compact far ultraviolet (FUV) spectrograph has been developed and applied to space observation on a micro-satellite. The dual channel imaging spectrograph utilized two micro-channel plate (MCP) detectors with a single crossed delay line (XDL) anode to record photon arrival events. The unconventional anode design allows for the use of a single set of position encoding electronics for both detector fields, thereby reducing the size, weight, and power of the associated electronics. The ground and on-orbit performance tests verified the successful application of the system for astrophysical observations. In this note, we report the design, the development, and the test results of the system, focusing on the XDL anode system.

  14. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    PubMed

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with <8% of EVM in a turbulent channel. Based on the results, we show that transmitting the LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  15. Space Mission Analysis and Design

    SciTech Connect

    Larson, W.J. ); Wertz, J.R. )

    1992-01-01

    The goal of this second edition is siniflar to the first: to allow you to begin with a blank sheet of paper'' and design a space mission to meet a set of broad, often poorly defined, objectives. You should be able to define the mission in sufficient detail to identify principal drivers and make a preliminary assessment of overan performance, size, cost, and risk. The emphasis of the book is on low-Earth orbit, unmanned spacecraft. However, we hope that the principles are broad enough to be applicable to other n-dssions as well. We intend the book to be a practical guide, rather than a theoretical treatise. As much as possible, we have provided rules of thumb, empirical formulas, and design algorithms based on past experience. We assume that the reader has a general knowledge of physics, math, and basic engineering, but is not necessarily familiar with any aspect of space technology. This book was written by a group of over 50 senior space engineers. It reflects the insight gained from this practical experience, and suggests how things might be done better in the future. From time to time the views of authors and editors conflict, as must necessarily occur given the broad diversity of experience. We believe it is important to reflect this diversity rather than suppress the opinions of individual authors. Similarly, the level of treatment varies among topics, depending both on the issues each author feels is critical and our overan assessment of the level of detail in each topic that is important to the preliminary mission analysis and design process. The book is appropriate as a textbook for either introductory graduate or advanced undergraduate courses, or as a reference for those already working in space technology.

  16. Compact Dual Ion Composition Experiment for space plasmas—CoDICE

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Ogasawara, K.; Ebert, R. W.; Allegrini, F.; McComas, D. J.; Livi, S.; Weidner, S. E.

    2016-07-01

    The Compact Dual Ion Composition Experiment—CoDICE—simultaneously provides high-quality plasma and energetic ion composition measurements over six decades in energy in a wide variety of space plasma environments. CoDICE measures two critical ion populations in space plasmas: (1) Elemental and charge state composition, and 3-D velocity distributions of <10 eV/q-40 keV/q plasma ions; and (2) Elemental composition, energy spectra, and angular distributions of ˜30 keV->10 MeV energetic ions. CoDICE uses a novel, integrated, common time-of-flight subsystem that provides several advantages over the commonly used separate plasma and energetic ion sensors currently flying on several space missions. These advantages include reduced mass and volume compared to two separate instruments, reduced shielding in high-radiation environments, and simplified spacecraft interface and accommodation requirements. This paper describes the operation principles, electro-optic simulation results and applies the CoDICE concept for measuring plasma and energetic ion populations in Jupiter's magnetosphere.

  17. Nano-casted Metal Oxide Aerogels as Dual Purpose Structural Components for Space Exploration

    NASA Technical Reports Server (NTRS)

    Vassilaras, Plousia E.

    2004-01-01

    NASA missions and space exploration rely on strong, ultra lightweight materials. Such materials are needed for building up past and present space vehicles such as the Sojourner Rover (1997) or the two MERs (2003), but also for a number of components and/or systems including thermal insulators, Solar Sails, Rigid Aeroshells, and Ballutes. The purpose of my internship here at Glenn Research Center is to make dual purpose materials; materials that in addition to being lightweight have electronic, photophysical and magnetic properties and, therefore, act as electronic components and sensors as well as structural components. One type of ultra lightweight material of great interest is aerogels, which have densities ranging from 0.003 g/cc to 0.8 g/cc . However, aerogels are extremely fragile and, as a result, have limited practical applications. Recently, Glenn Research Center has developed a process of nano-casting polymers onto the inorganic network of silica-based aerogels increasing the strength 300 fold while only increasing the density 3 fold. By combining the process of nano-casting polymers with inorganic oxide networks other than silica, we are actively pursuing lightweight dual purpose materials. To date, thirty different inorganic oxide aerogels have been prepared using either standard sol-gel chemistry or a non-alkoxide method involving metal chloride precursors and an epoxide; epichlorohydrin, propylene oxide or trimethylene oxide, as proton scavengers. More importantly, preliminary investigations show that the residual surface hydroxyl groups on each of these inorganic oxide aerogels can be successfully crosslinked with urethane. In addition to characterizing physical and mechanical properties such as density, strength and flexibility, each of these metal oxide aerogels are being characterized for thermal and electronic conductivity and magnetic and optical properties.

  18. Nano-casted Metal Oxide Aerogels as Dual Purpose Structural Components for Space Exploration

    NASA Technical Reports Server (NTRS)

    Vassilaras, Plousia E.

    2004-01-01

    NASA missions and space exploration rely on strong, ultra lightweight materials. Such materials are needed for building up past and present space vehicles such as the Sojourner Rover (1997) or the two MERs (2003), but also for a number of components and/or systems including thermal insulators, Solar Sails, Rigid Aeroshells, and Ballutes. The purpose of my internship here at Glenn Research Center is to make dual purpose materials; materials that in addition to being lightweight have electronic, photophysical and magnetic properties and, therefore, act as electronic components and sensors as well as structural components. One type of ultra lightweight material of great interest is aerogels, which have densities ranging from 0.003 g/cc to 0.8 g/cc . However, aerogels are extremely fragile and, as a result, have limited practical applications. Recently, Glenn Research Center has developed a process of nano-casting polymers onto the inorganic network of silica-based aerogels increasing the strength 300 fold while only increasing the density 3 fold. By combining the process of nano-casting polymers with inorganic oxide networks other than silica, we are actively pursuing lightweight dual purpose materials. To date, thirty different inorganic oxide aerogels have been prepared using either standard sol-gel chemistry or a non-alkoxide method involving metal chloride precursors and an epoxide; epichlorohydrin, propylene oxide or trimethylene oxide, as proton scavengers. More importantly, preliminary investigations show that the residual surface hydroxyl groups on each of these inorganic oxide aerogels can be successfully crosslinked with urethane. In addition to characterizing physical and mechanical properties such as density, strength and flexibility, each of these metal oxide aerogels are being characterized for thermal and electronic conductivity and magnetic and optical properties.

  19. Space Flight Plasma Data Analysis

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Minow, Joseph I.

    2009-01-01

    This slide presentation reviews a method to analyze the plasma data that is reported on board the International Space station (ISS). The Floating Potential Measurement Unit (FPMU), the role of which is to obtain floating potential and ionosphere plasma measurements for validation of the ISS charging model, assess photo voltaic array variability and interpreting IRI predictions, is composed of four probes: Floating Potential Probe (FPP), Wide-sweep Langmuir Probe (WLP), Narrow-sweep Langmuir Probe (NLP) and the Plasma Impedance Probe (PIP). This gives redundant measurements of each parameter. There are also many 'boxes' that the data must pass through before being captured by the ground station, which leads to telemetry noise. Methods of analysis for the various signals from the different sets are reviewed. There is also a brief discussion of LP analysis of Low Earth Orbit plasma simulation source.

  20. Health care utilization among Medicare-Medicaid dual eligibles: a count data analysis.

    PubMed

    Moon, Sangho; Shin, Jaeun

    2006-04-05

    Medicare-Medicaid dual eligibles are the beneficiaries of both Medicare and Medicaid. Dual eligibles satisfy the eligibility conditions for Medicare benefit. Dual eligibles also qualify for Medicaid because they are aged, blind, or disabled and meet the income and asset requirements for receiving Supplement Security Income (SSI) assistance. The objective of this study is to explore the relationship between dual eligibility and health care utilization among Medicare beneficiaries. The household component of the nationally representative Medical Expenditure Panel Survey (MEPS) 1996-2000 is used for the analysis. Total 8,262 Medicare beneficiaries are selected from the MEPS data. The Medicare beneficiary sample includes individuals who are covered by Medicare and do not have private health insurance during a given year. Zero-inflated negative binomial (ZINB) regression model is used to analyse the count data regarding health care utilization: office-based physician visits, hospital inpatient nights, agency-sponsored home health provider days, and total dental visits. Dual eligibility is positively correlated with the likelihood of using hospital inpatient care and agency-sponsored home health services and the frequency of agency-sponsored home health days. Frequency of dental visits is inversely associated with dual eligibility. With respect to racial differences, dually eligible Afro-Americans use more office-based physician and dental services than white duals. Asian duals use more home health services than white duals at the 5% statistical significance level. The dual eligibility programs seem particularly beneficial to Afro-American duals. Dual eligibility has varied impact on health care utilization across service types. More utilization of home healthcare among dual eligibles appears to be the result of delayed realization of their unmet healthcare needs under the traditional Medicare-only program rather than the result of overutilization in response to the

  1. Ballistic limit regression analysis for Space Station Freedom meteoroid and space debris protection system

    NASA Technical Reports Server (NTRS)

    Jolly, William H.

    1992-01-01

    Relationships defining the ballistic limit of Space Station Freedom's (SSF) dual wall protection systems have been determined. These functions were regressed from empirical data found in Marshall Space Flight Center's (MSFC) Hypervelocity Impact Testing Summary (HITS) for the velocity range between three and seven kilometers per second. A stepwise linear least squares regression was used to determine the coefficients of several expressions that define a ballistic limit surface. Using statistical significance indicators and graphical comparisons to other limit curves, a final set of expressions is recommended for potential use in Probability of No Critical Flaw (PNCF) calculations for Space Station. The three equations listed below represent the mean curves for normal, 45 degree, and 65 degree obliquity ballistic limits, respectively, for a dual wall protection system consisting of a thin 6061-T6 aluminum bumper spaced 4.0 inches from a .125 inches thick 2219-T87 rear wall with multiple layer thermal insulation installed between the two walls. Normal obliquity is d(sub c) = 1.0514 v(exp 0.2983 t(sub 1)(exp 0.5228). Forty-five degree obliquity is d(sub c) = 0.8591 v(exp 0.0428) t(sub 1)(exp 0.2063). Sixty-five degree obliquity is d(sub c) = 0.2824 v(exp 0.1986) t(sub 1)(exp -0.3874). Plots of these curves are provided. A sensitivity study on the effects of using these new equations in the probability of no critical flaw analysis indicated a negligible increase in the performance of the dual wall protection system for SSF over the current baseline. The magnitude of the increase was 0.17 percent over 25 years on the MB-7 configuration run with the Bumper II program code.

  2. Simulation of springback and microstructural analysis of dual phase steels

    NASA Astrophysics Data System (ADS)

    Kalyan, T. Sri.; Wei, Xing; Mendiguren, Joseba; Rolfe, Bernard

    2013-12-01

    With increasing demand for weight reduction and better crashworthiness abilities in car development, advanced high strength Dual Phase (DP) steels have been progressively used when making automotive parts. The higher strength steels exhibit higher springback and lower dimensional accuracy after stamping. This has necessitated the use of simulation of each stamped component prior to production to estimate the part's dimensional accuracy. Understanding the micro-mechanical behaviour of AHSS sheet may provide more accuracy to stamping simulations. This work can be divided basically into two parts: first modelling a standard channel forming process; second modelling the micro-structure of the process. The standard top hat channel forming process, benchmark NUMISHEET'93, is used for investigating springback effect of WISCO Dual Phase steels. The second part of this work includes the finite element analysis of microstructures to understand the behaviour of the multi-phase steel at a more fundamental level. The outcomes of this work will help in the dimensional control of steels during manufacturing stage based on the material's microstructure.

  3. Hybrid state-space self-tuning control using dual-rate sampling

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Zhao, Xiao M.; Sunkel, John W.

    1991-01-01

    This paper presents a hybrid state-space self-tuning control scheme using dual-rate sampling for suboptimal digital adaptive control of linear time-invariant continuous-time multivariable stochastic systems with unknown parameters. An equivalent fast-rate discrete-time state-space innovation model (with estimated states) of the continuous-time system is constructed by using the estimated system parameters and Kalman gain. To utilize the existing optimal regional-pole assignment method developed in the continuous-time domain, the constructed fast-rate discrete-time model is converted into an equivalent continuous-time model for the development of a state-feedback optimal control law with pole placement in a specific region. The developed analog optimal control law is then converted into an equivalent pseudo-slow-rate digital control law via the proposed digital redesign technique, which can be realized via slow-rate digital electronics. The proposed method enables the development of a digitally implementable advanced control algorithm for digital adaptive control of continuous-time multivariable stochastic systems which may be unstable and/or have nonminimum phase.

  4. The Research of Affine Bivariate Dual Frames Associated with a Generalized Multiresolution Analysis and Filter Banks

    NASA Astrophysics Data System (ADS)

    Ke-zhong, Han

    The rise of frame theory in applied mathematics is due to the flexibility and redundancy of frames. In the work, the notion of bivariate affine pseudoframes is introduced and the no-tion of a bivariate generalized multiresolution analysis (GMRA) is introduced. A novel approach for designing one GMRA of Paley Wiener subspaces of L2(R2) is proposed. The sufficient condition for the existence of a sort of affine pseudoframes with fi-filter banks is obtained by virtue of a generalized multiresolution analysis. The pyramid decomposition scheme is established based on such a generalized multiresolution analysis. An approach for designing a sort of affine biariate dual frames in two-dimensional space is presented.

  5. Analysis of a combined refrigerator-generator space power system

    NASA Technical Reports Server (NTRS)

    Klann, J. L.

    1973-01-01

    Description of a single-shaft and a two-shaft rotating machinery arrangements using neon for application in a combined refrigerator-generator power system for space missions. The arrangements consist of combined assemblies of a power turbine, alternator, compressor, and cry-turbine with a single-stage radial-flow design. A computer program was prepared to study the thermodynamics of the dual system in the evaluation of its cryocooling/electric capacity and appropriate weight. A preliminary analysis showed that a two-shaft arrangement of the power- and refrigeration-loop rotating machinery provided better output capacities than a single-shaft arrangement, without prohibitive operating compromises.

  6. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  7. Performance analysis of charge plasma based dual electrode tunnel FET

    NASA Astrophysics Data System (ADS)

    Anand, Sunny; Intekhab Amin, S.; Sarin, R. K.

    2016-05-01

    This paper proposes the charge plasma based dual electrode doping-less tunnel FET (DEDLTFET). The paper compares the device performance of the conventional doping-less TFET (DLTFET) and doped TFET (DGTFET). DEDLTEFT gives the superior results with high ON state current (ION ∼ 0.56 mA/μm), ION/IOFF ratio ∼ 9.12 × 1013 and an average subthreshold swing (AV-SS ∼ 48 mV/dec). The variation of different device parameters such as channel length, gate oxide material, gate oxide thickness, silicon thickness, gate work function and temperature variation are done and compared with DLTFET and DGTFET. Through the extensive analysis it is found that DEDLTFET shows the better performance than the other two devices, which gives the indication for an excellent future in low power applications.

  8. 3D space analysis of dental models

    NASA Astrophysics Data System (ADS)

    Chuah, Joon H.; Ong, Sim Heng; Kondo, Toshiaki; Foong, Kelvin W. C.; Yong, Than F.

    2001-05-01

    Space analysis is an important procedure by orthodontists to determine the amount of space available and required for teeth alignment during treatment planning. Traditional manual methods of space analysis are tedious and often inaccurate. Computer-based space analysis methods that work on 2D images have been reported. However, as the space problems in the dental arch exist in all three planes of space, a full 3D analysis of the problems is necessary. This paper describes a visualization and measurement system that analyses 3D images of dental plaster models. Algorithms were developed to determine dental arches. The system is able to record the depths of the Curve of Spee, and quantify space liabilities arising from a non-planar Curve of Spee, malalignment and overjet. Furthermore, the difference between total arch space available and the space required to arrange the teeth in ideal occlusion can be accurately computed. The system for 3D space analysis of the dental arch is an accurate, comprehensive, rapid and repeatable method of space analysis to facilitate proper orthodontic diagnosis and treatment planning.

  9. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    SciTech Connect

    TURNER DA; KIRCH NW; WASHENFELDER DJ; SCHAUS PS; WODRICH DD; WIEGMAN SA

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  10. Analysis of microgravity space experiments Space Shuttle programmatic safety requirements

    NASA Technical Reports Server (NTRS)

    Terlep, Judith A.

    1996-01-01

    This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.

  11. A Burke-Schumann Analysis of Dual-Flame Structure Supported by a Burning Droplet

    NASA Technical Reports Server (NTRS)

    Nayagam, V.; Dietrich, D.; Williams, F. A.

    2016-01-01

    Droplet combustion experiments carried out onboard the International Space Station (ISS), using pure fuels and fuel mixtures, have shown that quasi-steady burning can be sustained by a non-traditional flame configuration, namely a "cool flame" burning in the "partial-burning" regime where both fuel and oxygen leak through the low-temperature controlled flame-sheet. Recent experiments involving large, bi-component fuel (n-decane and hexanol, 50/50 by volume) droplets at elevated pressures show that the visible, hot flame becomes extremely weak while the burning rate remains relatively high, suggesting the possibility of simultaneous presence of "cool" and "hot" flames of roughly equal importance. The radiant output from these bi-component droplets is relatively high and cannot be accounted for only by the presence of a visible hot-flame. In this analysis we explore the theoretical possibility of a dual-flame structure, where one flame lies close to the droplet surface called the "cool-flame," and other farther away from the droplet surface, termed the "hot-flame." A Burke-Schumann analysis of this dual-structure seems to indicate such flame structures are possible over a narrow range of initial conditions. Theoretical results can be compared against available experimental data for pure and bi-component fuel droplet combustion to test how realistic the model may be.

  12. Space Utilization Analysis, Fall 1995.

    ERIC Educational Resources Information Center

    Hamilton, John

    In an effort to inform space allocation decisions, Gainesville College (GC) in Georgia, undertook a project to analyze classroom usage for fall 1995 and make projections to the year 2000 based on annual enrollment increases of 3%. Factors potentially affecting the use of space were determined to include the following: (1) conversion to the…

  13. Dual Enrollment: An Analysis of Persistence, Ethnicity and Gender

    ERIC Educational Resources Information Center

    Habersham, Sherida L.

    2013-01-01

    There is a need to quantitatively relate student demographics along with dual enrollment program participation and analyze those associations on postsecondary academic persistence. This task is made more difficult in that there is limited foundation research in these areas. Further, dual enrollment programmatic guidelines differ between states.…

  14. Design and analysis of dual U slot reflectarray antenna for X-band applications

    NASA Astrophysics Data System (ADS)

    Ismail, M. Y.; Malik, H. I.; Amin, M.

    2017-05-01

    A novel design of a dual frequency single layer reflectarray antenna is presented for X-band frequency applications. Dual U slots embedded on conventional rectangular microstrip reflectarray have been designed to attain a dual frequency operation. A detailed analysis of the effect on surface current distributions with the introduction of dual U slots is presented. Moreover a parametric study on the variation of significant dimensions of the design have been carried out and analysed thoroughly using a commercially available CST computer model. Proposed design configurations were fabricated above a 0.508 mm thick substrate of Rogers Duroid 5880. The dual U slot configuration offers a significant dual frequency behavior at 8.54 and 11.56 GHz with 10% bandwidth improvement of 47 and 56 MHz with a reflection loss of -4.54 and 4.11 dB respectively.

  15. Target spacespace

    NASA Astrophysics Data System (ADS)

    Huggett, Nick

    2017-08-01

    This paper investigates the significance of T-duality in string theory: the indistinguishability with respect to all observables, of models attributing radically different radii to space-larger than the observable universe, or far smaller than the Planck length, say. Two interpretational branch points are identified and discussed. First, whether duals are physically equivalent or not: by considering a duality of the familiar simple harmonic oscillator, I argue that they are. Unlike the oscillator, there are no measurements 'outside' string theory that could distinguish the duals. Second, whether duals agree or disagree on the radius of 'target space', the space in which strings evolve according to string theory. I argue for the latter position, because the alternative leaves it unknown what the radius is. Since duals are physically equivalent yet disagree on the radius of target space, it follows that the radius is indeterminate between them. Using an analysis of Brandenberger and Vafa (1989), I explain why-even so-space is observed to have a determinate, large radius. The conclusion is that observed, 'phenomenal' space is not target space, since a space cannot have both a determinate and indeterminate radius: instead phenomenal space must be a higher-level phenomenon, not fundamental.

  16. The performance of coherent receiver controlled by the phase lock loop in dual rate free-space laser communication

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoping; Sun, Jianfeng; Hou, Peipei; Lu, Wei; Xu, Qian; Liu, Liren

    2015-09-01

    The technique of differential phase shift keying(DPSK) modulation is applied into demodulating phase information in the coherent optical receiver. The dual rate free-space receiving structure on the base of Mach-Zehnder delay interferometer with the lens is used suitably for differential delay which is equal to the one bit corresponding to a certain data rate. Delay distance at the interference receiver is varied with transmission rata from satellite to ground. Differential information is obtained by the subtraction of the two successive wave-front phases when made to interfere. The phase demodulation is extremely sensitive to phase fluctuation. Because of the incident light through atmospheric turbulence, the wave-front of optical signal became jittered in the temporal and spatial domain rapidly. In the paper, the dual rate free-space laser communication receiver for phase lock to stable signal light phase is proposed, increasing the homodyne efficiency and decreasing the bit error rate.

  17. Space Station ECLSS Integration Analysis

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) contract with NASA MSFC covered the time frame from 9 May 1985 to 31 Dec. 1992. The contract roughly covered the period of Space Station Freedom (SSF) development from early Phase B through Phase C/D Critical Design Review (CDR). During this time, McDonnell Douglas Aerospace-Huntsville (formerly McDonnell Douglas Space Systems Company) performed an analytical support role to MSFC for the development of analytical math models and engineering trade studies related to the design of the ECLSS for the SSF.

  18. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters

    NASA Astrophysics Data System (ADS)

    Jia, Ying-Hong; Hu, Quan; Xu, Shi-Jie

    2014-02-01

    A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the position and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters being estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach. [Figure not available: see fulltext.

  19. State-Space Formulation for Circuit Analysis

    ERIC Educational Resources Information Center

    Martinez-Marin, T.

    2010-01-01

    This paper presents a new state-space approach for temporal analysis of electrical circuits. The method systematically obtains the state-space formulation of nondegenerate linear networks without using concepts of topology. It employs nodal/mesh systematic analysis to reduce the number of undesired variables. This approach helps students to…

  20. State-Space Formulation for Circuit Analysis

    ERIC Educational Resources Information Center

    Martinez-Marin, T.

    2010-01-01

    This paper presents a new state-space approach for temporal analysis of electrical circuits. The method systematically obtains the state-space formulation of nondegenerate linear networks without using concepts of topology. It employs nodal/mesh systematic analysis to reduce the number of undesired variables. This approach helps students to…

  1. Bi-directional free space laser communication of gigabit ethernet telemetry data using dual atmospheric effect mitigation approach

    NASA Astrophysics Data System (ADS)

    Chan, Eric; Saint Clair, Jonathan

    2016-05-01

    This paper presents experimental demonstration of optical components applicable in free space laser communication systems for bi-directional transmission of Gigabit Ethernet (GBE) telemetry data and control messages using a dual atmospheric effect mitigation approach. The objective is to address the challenges for optical transmission of telemetry data. (1) Turbulence effects which cause optical beam scintillation, wander and breakup, all of which cause signal degradation at the receiver. (2) An optical signal in free space has a fading effect which is caused by communications terminal equipment`s in-ability to maintain perfect pointing along a line of sight due to vibrations/motions of the mobile platform.

  2. Space transportation analysis and design

    NASA Astrophysics Data System (ADS)

    Hartunian, R.; Moss, B.; Wolfe, M.; Statsinger, J.; Forrest, L.

    1992-03-01

    This TOR is intended to be a living document that will be updated at regular intervals, and will be linked to an ever-increasing body of easily accessed space transportation corporate knowledge in the form of both paper, magnetic, and intellectual media. This body of knowledge will include reports, computer-based analytical tools, technical databases, and human skills/knowledge databases. It is expected that its growth will be very much influenced by customer demand and the evolving future role of Aerospace in the global space community. Consequently, the table of contents should in no way be assumed to be definitive.

  3. Space Station communications system design and analysis

    NASA Technical Reports Server (NTRS)

    Ratliff, J. E.

    1986-01-01

    Attention is given to the methodologies currently being used as the framework within which the NASA Space Station's communications system is to be designed and analyzed. A key aspect of the CAD/analysis system being employed is its potential growth in size and capabilities, since Space Station design requirements will continue to be defined and modified. The Space Station is expected to furnish communications between itself and astronauts on EVA, Orbital Maneuvering Vehicles, Orbital Transfer Vehicles, Space Shuttle orbiters, free-flying spacecraft, coorbiting platforms, and the Space Shuttle's own Mobile Service Center.

  4. Dual-fuel propulsion - Why it works, possible engines, and results of vehicle studies. [on earth-to-orbit Space Shuttle flights

    NASA Technical Reports Server (NTRS)

    Martin, J. A.; Wilhite, A. W.

    1979-01-01

    The reasons why dual-fuel propulsion works are discussed. Various engine options are discussed, and vehicle mass and cost results are presented for earth-to-orbit vehicles. The results indicate that dual-fuel propulsion is attractive, particularly with the dual-expander engine. A unique orbit-transfer vehicle is described which uses dual-fuel propulsion. One Space Shuttle flight and one flight of a heavy-lift Shuttle derivative are used for each orbit-transfer vehicle flight, and the payload capability is quite attractive.

  5. Technology Roadmap for Dual-Mode Scramjet Propulsion to Support Space-Access Vision Vehicle Development

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Auslender, Aaron H.; Guy, R. Wayne; McClinton, Charles R.; Welch, Sharon S.

    2002-01-01

    Third-generation reusable launch vehicle (RLV) systems are envisioned that utilize airbreathing and combined-cycle propulsion to take advantage of potential performance benefits over conventional rocket propulsion and address goals of reducing the cost and enhancing the safety of systems to reach earth orbit. The dual-mode scramjet (DMSJ) forms the core of combined-cycle or combination-cycle propulsion systems for single-stage-to-orbit (SSTO) vehicles and provides most of the orbital ascent energy. These concepts are also relevant to two-stage-to-orbit (TSTO) systems with an airbreathing first or second stage. Foundation technology investments in scramjet propulsion are driven by the goal to develop efficient Mach 3-15 concepts with sufficient performance and operability to meet operational system goals. A brief historical review of NASA scramjet development is presented along with a summary of current technology efforts and a proposed roadmap. The technology addresses hydrogen-fueled combustor development, hypervelocity scramjets, multi-speed flowpath performance and operability, propulsion-airframe integration, and analysis and diagnostic tools.

  6. Generation of stable and narrow spacing dual-wavelength ytterbium-doped fiber laser using a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ahmad, Harith; Aizi Mat Salim, Muhammad; Soltanian, Mohammad Reza K.; Razalli Azzuhri, Saaidal; Wadi Harun, Sulaiman; Yasin, Moh.

    2016-05-01

    We demonstrate the design and operation of novel narrow spacing and stable dual-wavelength fiber laser (DWFL). A 70-cm ytterbium-doped fiber has been chosen as the gain medium in a ring cavity arrangement. Our design includes a short length photonic crystal fiber, acting as a dual-wavelength stabilizer based on its birefringence coefficient and nonlinear behavior and tunable band pass filter (TBPF) to achieve narrow spacing spectrum lasing. Our laser output is considered to be highly stable, with power fluctuation less than 0.8 dB over a period of 15 min. The flexibility and tunability of TBPF, together with polarization controller enable the spacing tuning of the DWFL from 0.03 nm up to 0.07 nm for 1040 nm region, and 0.10 nm up to 0.40 nm for 1060 nm region. The tunable wavelength spacing shows the flexibility of the DWFL in addition to stable and reliable properties of fiber laser in 1-μm region.

  7. Design of a dual-mode electrochemical measurement and analysis system.

    PubMed

    Yang, Jr-Fu; Wei, Chia-Ling; Wu, Jian-Fu; Liu, Bin-Da

    2013-01-01

    A dual-mode electrochemical measurement and analysis system is proposed. This system includes a dual-mode chip, which was designed and fabricated by using TSMC 0.35 µm 3.3 V/5 V 2P4M mixed-signal CMOS process. Two electrochemical measurement and analysis methods, chronopotentiometry and voltammetry, can be performed by using the proposed chip and system. The proposed chip and system are verified successfully by performing voltammetry and chronopotentiometry on solutions.

  8. The Integrated Space Weather Analysis System

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Hesse, M.; Kuznetsova, M.; Rastaetter, L.; MacNeice, P. J.; Jain, P.; Garneau, J. W.; Berrios, D. H.; Pulkinnen, A.; Rowland, D.

    2008-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions is therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products, along with the lack of single-portal access, renders its practical use for space weather analysis and forecasting unfeasible. There exists a compelling need for accurate real-time forecasting of both large-scale and local space environments - and their probable impacts for missions. A vital design driver for any system that is created to solve this problem lies in the fact that information needs to be presented in a form that is useful and as such, must be both easily accessible and understandable. The Integrated Space Weather Analysis System is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system will be a turnkey, web-based dissemination system for NASA-relevant space weather information that combines forecasts based on the most advanced space weather models with concurrent space environment information. It will be customer configurable and adaptable for use as a powerful decision making tool offering an unprecedented ability to analyze the present and expected future space weather impacts on virtually all NASA human and robotic missions. We will discuss some of the key design considerations for the system and present some of the initial space weather analysis products that have been created to date.

  9. Aerodynamic-structural analysis of dual bladed helicopter systems

    NASA Technical Reports Server (NTRS)

    Selberg, B. P.; Cronin, D. L.; Rokhsaz, K.; Dykman, J. R.; Yager, C. J.

    1980-01-01

    The aerodynamic and structural feasibility of the birotor blade concept is assessed. The inviscid flow field about the dual bladed rotor was investigated to determine the aerodynamic characteristics for various dual rotor blade placement combinations with respect to blade stagger, gap, and angle of attack between the two blades. The boundary layer separation on the rotors was studied and three dimensional induced drag calculations for the dual rotor system are presented. The thrust and power requirements of the rotor system were predicted. NASTRAN, employed as the primary modeling tool, was used to obtain a model for predicting in plane bending, out of plane bending, and the torsional behavior of the birotors. Local hub loads, blade loads, and the natural frequencies for the birotor configuration are discussed.

  10. Progress in thermostructural analysis of space structures

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Mahaney, J.; Pandey, A. K.

    1982-01-01

    A finite element space structures research focused on the interdisciplinary problems of heating, thermal, and structural analysis is discussed. Slender member shadowing effects, and cable stiffened structures are described.

  11. Chung-Li, Taiwan dual mode (Doppler and spaced antenna) VHF radar: Preliminary specifications

    NASA Technical Reports Server (NTRS)

    Brosnahan, J. W.; Chao, J.; Rottger, J.

    1983-01-01

    A major unresolved question in the field of atmospheric research using VHF radar techniques is the relative merit of the two most widely used systems. These systems are the Doppler method and the spaced antenna method. It has been suggested that one radar of each type be operated side by side for a direct comparison of the two techniques. This duplication of effort is not cost effective. The major components of both systems are identical, and one radar could be operated in both modes by proper design of a suitable antenna system and by proper data analysis. The Chung-Li radar will be able to switch between modes on a time scale of seconds and is the first VHF radar to be able to directly compare the Doppler data with spaced antenna data. The system will have performance comparable with the present SOUSY spaced antenna system and will provide mesospheric data in addition to stratospheric and tropospheric data. The major specifications of the Chung-Li radar are given.

  12. Analysis of observations with dual sensor superconducting gravimeters

    NASA Astrophysics Data System (ADS)

    Kroner, C.; Dierks, O.; Neumeyer, J.; Wilmes, H.

    2005-12-01

    Among the 21 superconducting gravimeters presently operating worldwide four instruments exist that are equipped with two vertically aligned sensor units. Three of the instruments are installed in Germany (Bad Homburg, Moxa, Wettzell) and one in South Africa (Sutherland). Comparisons of the data sets obtained with the dual sensor systems yield information on instrumental effects and sensitivity as well as on the efficiency of reductions of environmental effects applied to the data. The latter is an important constraint when looking for small geodynamic signals like Slichter and core modes or aperiodic variations. From analyses of the two data sets of each instrument a small but significant difference of 1-3% in the response of the sensor units on barometric pressure variations is found. Likewise, the records of lower and upper sensor vary slightly but not systematically with regard to the noise levels in the different frequency ranges. The tidal analyses yield an agreement of the tidal parameters generally well within the standard deviations determined from the least squares adjustment in the tidal analysis. The deviations are in the range between 0×10-4 and 3×10-4 for the amplitude factor and the phases differ between 0.0005° and 0.01° for the four main tidal constituents O1, K1, M2, and S2. The comparison of the gravity residuals of the two sensors with each other as well as with their sum and difference in the time and frequency domain shows the existence of identical signals in the records of the two sensors in the whole range of observation. This probably means that either the environmental reductions applied are not sufficient or there are additional disturbing effects in the data which have not been taken care of yet. From the study it emerges that it is not possible to get entirely rid of the tidal signals in the data. This is probably also due to the fact that despite reductions the data sets contain additional signals and slightly different noise at

  13. The Benefits of Acceleration: An Outcomes Analysis of Dual Enrollment

    ERIC Educational Resources Information Center

    Morrison, Michael C.

    2007-01-01

    This study adds to the growing body of research with a focus on (1) the characteristics of accelerated (dual enrolled) students versus their counterparts who did not participate in accelerated programs; (2) differences in academic outcomes of accelerated and non-accelerated students; and (3) differences in days to complete the associate degree for…

  14. Computational Analysis of Dual Radius Circulation Control Airfoils

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Vatsa, V. N.; Rumsey, C. L.

    2006-01-01

    The goal of the work is to use multiple codes and multiple configurations to provide an assessment of the capability of RANS solvers to predict circulation control dual radius airfoil performance and also to identify key issues associated with the computational predictions of these configurations that can result in discrepancies in the predicted solutions. Solutions were obtained for the Georgia Tech Research Institute (GTRI) dual radius circulation control airfoil and the General Aviation Circulation Control (GACC) dual radius airfoil. For the GTRI-DR airfoil, two-dimensional structured and unstructured grid computations predicted the experimental trend in sectional lift variation with blowing coefficient very well. Good code to code comparisons between the chordwise surface pressure coefficients and the solution streamtraces also indicated that the detailed flow characteristics were matched between the computations. For the GACC-DR airfoil, two-dimensional structured and unstructured grid computations predicted the sectional lift and chordwise pressure distributions accurately at the no blowing condition. However at a moderate blowing coefficient, although the code to code variation was small, the differences between the computations and experiment were significant. Computations were made to investigate the sensitivity of the sectional lift and pressure distributions to some of the experimental and computational parameters, but none of these could entirely account for the differences in the experimental and computational results. Thus, CFD may indeed be adequate as a prediction tool for dual radius CC flows, but limited and difficult to obtain two-dimensional experimental data prevents a confident assessment at this time.

  15. State Approaches to Funding Dual Enrollment. ECS Education Policy Analysis

    ERIC Educational Resources Information Center

    Zinth, Jennifer

    2015-01-01

    Research shows that students who dually enroll are more likely to finish high school and succeed in postsecondary education than their peers with a similar grade point average (GPA), test scores, demographics, etc. Yet in many states, students and parents are largely--if not entirely--responsible for covering dual enrollment course costs, placing…

  16. Solar-powered dual absorption system - Selection criteria using fuzzy decision analysis

    NASA Astrophysics Data System (ADS)

    Sofrata, H.; Abdul-Fattah, A. F.

    1982-07-01

    A fuzzy sets decision model was employed to evaluate the choice between a simple and a dual cycle solar absorption refrigeration and air conditioning system. A Li-Br dual cycle was considered, which employs solar heat to supply generator power to cool both the absorber and condenser. The options for system configurations and components such as cooling water, capital cost, running cost, installation, O and M, and design were ranked in several categories from poor to good, with particular attention to applications in arid climates. The MAFDA computer program was employed for the analysis, which led to the conclusion that dual cycle system is preferable for regions such as Saudi Arabia.

  17. Failure Analysis at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Salazar, Victoria L.; Wright, M. Clara

    2010-01-01

    History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program and at the beginning of a new and untested program. The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation Branch in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic materials failure analyses and accident investigations on both flight hardware and ground support equipment for the Space Shuttle, International Space Station, Constellation, and Launch Services Programs. This paper will explore a variety of failure case studies at the Kennedy Space Center and the lessons learned that can be applied in future programs.

  18. Space station synergetic RAM-logistics analysis

    NASA Technical Reports Server (NTRS)

    Dejulio, Edmund T.; Leet, Joel H.

    1988-01-01

    NASA's Space Station Maintenance Planning and Analysis (MP&A) Study is a step in the overall Space Station Program to define optimum approaches for on-orbit maintenance planning and logistics support. The approach used in the MP&A study and the analysis process used are presented. Emphasis is on maintenance activities and processes that can be accomplished on orbit within the known design and support constraints of the Space Station. From these analyses, recommendations for maintainability/maintenance requirements are established. The ultimate goal of the study is to reduce on-orbit maintenance requirements to a practical and safe minimum, thereby conserving crew time for productive endeavors. The reliability, availability, and maintainability (RAM) and operations performance evaluation models used were assembled and developed as part of the MP&A study and are described. A representative space station system design is presented to illustrate the analysis process.

  19. Space station synergetic RAM-logistics analysis

    NASA Technical Reports Server (NTRS)

    Dejulio, Edmund T.; Leet, Joel H.

    1988-01-01

    NASA's Space Station Maintenance Planning and Analysis (MP&A) Study is a step in the overall Space Station Program to define optimum approaches for on-orbit maintenance planning and logistics support. The approach used in the MP&A study and the analysis process used are presented. Emphasis is on maintenance activities and processes that can be accomplished on orbit within the known design and support constraints of the Space Station. From these analyses, recommendations for maintainability/maintenance requirements are established. The ultimate goal of the study is to reduce on-orbit maintenance requirements to a practical and safe minimum, thereby conserving crew time for productive endeavors. The reliability, availability, and maintainability (RAM) and operations performance evaluation models used were assembled and developed as part of the MP&A study and are described. A representative space station system design is presented to illustrate the analysis process.

  20. Modeling and Analysis of Space Based Transceivers

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Liebetreu, John; Moore, Michael S.; Price, Jeremy C.; Abbott, Ben

    2005-01-01

    This paper presents the tool chain, methodology, and initial results of a study to provide a thorough, objective, and quantitative analysis of the design alternatives for space Software Defined Radio (SDR) transceivers. The approach taken was to develop a set of models and tools for describing communications requirements, the algorithm resource requirements, the available hardware, and the alternative software architectures, and generate analysis data necessary to compare alternative designs. The Space Transceiver Analysis Tool (STAT) was developed to help users identify and select representative designs, calculate the analysis data, and perform a comparative analysis of the representative designs. The tool allows the design space to be searched quickly while permitting incremental refinement in regions of higher payoff.

  1. Modeling and Analysis of Space Based Transceivers

    NASA Technical Reports Server (NTRS)

    Moore, Michael S.; Price, Jeremy C.; Abbott, Ben; Liebetreu, John; Reinhart, Richard C.; Kacpura, Thomas J.

    2007-01-01

    This paper presents the tool chain, methodology, and initial results of a study to provide a thorough, objective, and quantitative analysis of the design alternatives for space Software Defined Radio (SDR) transceivers. The approach taken was to develop a set of models and tools for describing communications requirements, the algorithm resource requirements, the available hardware, and the alternative software architectures, and generate analysis data necessary to compare alternative designs. The Space Transceiver Analysis Tool (STAT) was developed to help users identify and select representative designs, calculate the analysis data, and perform a comparative analysis of the representative designs. The tool allows the design space to be searched quickly while permitting incremental refinement in regions of higher payoff.

  2. Space borne GPM dual-frequency radar simulation from high resolution ground radar observations.

    SciTech Connect

    Rose, C. R.; Chandrasekar, V.

    2004-01-01

    The Global Precipitation Measurement (GPM) mission is dedicated to improving the understanding of the global water cycle by measuring and mapping precipitation throughout the globe. The core GPM satellite will incorporate two separate precipitation radars: one operating at Ku-band (13.6 GHz) and the other at Ka band (35.6 GHz). Each radar beam will be steered such that they both point to the same location in the atmosphere. The main purpose of the dual-frequency radar system is to resolve the DSD in precipitation as well as discriminate between rain and ice. With the two beams collocated on the same precipitation volume, new algorithms are being developed to reliably es timate attenuation and rain rate. Any algorithm is based on models of precipitation. In addition, the GPM system assumes collocated beams and matched resolu tion volumes. Electromagnetic and microphysical models have been developed based on ground-based dual-frequency radar data at S-band to simulate Ku- and Ka-band results for comparison with the new GPM algorithms. This paper evaluates the dual-frequency inversion algorithm with synthesized S-band and known perfect data and presents results. Results show the expected performance of the new dual-precipitation radar algorithms with the potential for guiding algorithm and system improvements.

  3. Space Mission Human Reliability Analysis (HRA) Project

    NASA Technical Reports Server (NTRS)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  4. Space Propulsion Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj; Brinckman, Kevin; Ayyalasomayajula, Hanitha; Dash, Sanford

    2007-01-01

    This software provides an improved methodology for predicting launcher base pressure and heat loads for RSRM (Reusable Solid Rocket Motor) launchers by accounting for complex anisotropic stress/strains and variable turbulent Prandtl and Schmidt numbers. A "building block" approach to turbulence model development, and validation has been applied for improved missile/launcher base region analysis. Modifications to existing kappa - epsilon turbulence models and application of scalar variance models are incorporated into a RANS-based method for aeropropulsive flow modeling, directly related to base flow methodology. (RANS stands for Reynolds-averaged Navier-Stokes.) The models are applied in a RANS solver framework and can improve analysis of other complex flow fields. The enhanced models provide a more accurate predictive capability for improving the design and analysis of RSRM launcher configuration. The kappa - epsilon model enhancements have been shown to improve the capability for predicting turbulence effects in base blow environments. The scalar variance models have been assessed over a wide range of flow configurations to improve prediction of turbulent scalar mixing.

  5. Space station interior noise analysis program

    NASA Astrophysics Data System (ADS)

    Stusnick, E.; Burn, M.

    1987-02-01

    Documentation is provided for a microcomputer program which was developed to evaluate the effect of the vibroacoustic environment on speech communication inside a space station. The program, entitled Space Station Interior Noise Analysis Program (SSINAP), combines a Statistical Energy Analysis (SEA) prediction of sound and vibration levels within the space station with a speech intelligibility model based on the Modulation Transfer Function and the Speech Transmission Index (MTF/STI). The SEA model provides an effective analysis tool for predicting the acoustic environment based on proposed space station design. The MTF/STI model provides a method for evaluating speech communication in the relatively reverberant and potentially noisy environments that are likely to occur in space stations. The combinations of these two models provides a powerful analysis tool for optimizing the acoustic design of space stations from the point of view of speech communications. The mathematical algorithms used in SSINAP are presented to implement the SEA and MTF/STI models. An appendix provides an explanation of the operation of the program along with details of the program structure and code.

  6. Space station interior noise analysis program

    NASA Technical Reports Server (NTRS)

    Stusnick, E.; Burn, M.

    1987-01-01

    Documentation is provided for a microcomputer program which was developed to evaluate the effect of the vibroacoustic environment on speech communication inside a space station. The program, entitled Space Station Interior Noise Analysis Program (SSINAP), combines a Statistical Energy Analysis (SEA) prediction of sound and vibration levels within the space station with a speech intelligibility model based on the Modulation Transfer Function and the Speech Transmission Index (MTF/STI). The SEA model provides an effective analysis tool for predicting the acoustic environment based on proposed space station design. The MTF/STI model provides a method for evaluating speech communication in the relatively reverberant and potentially noisy environments that are likely to occur in space stations. The combinations of these two models provides a powerful analysis tool for optimizing the acoustic design of space stations from the point of view of speech communications. The mathematical algorithms used in SSINAP are presented to implement the SEA and MTF/STI models. An appendix provides an explanation of the operation of the program along with details of the program structure and code.

  7. Singing numbers…in cognitive space--a dual-task study of the link between pitch, space, and numbers.

    PubMed

    Fischer, Martin H; Riello, Marianna; Giordano, Bruno L; Rusconi, Elena

    2013-04-01

    We assessed the automaticity of spatial-numerical and spatial-musical associations by testing their intentionality and load sensitivity in a dual-task paradigm. In separate sessions, 16 healthy adults performed magnitude and pitch comparisons on sung numbers with variable pitch. Stimuli and response alternatives were identical, but the relevant stimulus attribute (pitch or number) differed between tasks. Concomitant tasks required retention of either color or location information. Results show that spatial associations of both magnitude and pitch are load sensitive and that the spatial association for pitch is more powerful than that for magnitude. These findings argue against the automaticity of spatial mappings in either stimulus dimension.

  8. Designing dual-plate meteoroid shields: A new analysis

    NASA Technical Reports Server (NTRS)

    Swift, H. F.; Bamford, R.; Chen, R.

    1982-01-01

    Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts.

  9. Incremental Discriminant Analysis in Tensor Space

    PubMed Central

    Chang, Liu; Weidong, Zhao; Tao, Yan; Qiang, Pu; Xiaodan, Du

    2015-01-01

    To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space complexity in detail. The experiments on facial image detection have shown that the algorithm not only achieves sound performance compared with other algorithms, but also reduces the computational issues apparently. PMID:26339229

  10. International Space Station Remote Sensing Pointing Analysis

    NASA Technical Reports Server (NTRS)

    Jacobson, Craig A.

    2007-01-01

    This paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument (in prototype development) is SHORE (Station High-Performance Ocean Research Experiment), a multiband optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. This analysis supported the preliminary studies to determine feasibility of utilizing the International Space Station as an observing platform for a SHORE type of instrument. Rigorous analyses will be performed if a SHORE flight program is initiated. The analysis begins with the discussion of the coordinate systems involved and then conversion from the target coordinate system to the instrument coordinate system. Next the geometry of remote observations from the Space Station is investigated including the effects of the instrument location in Space Station and the effects of the line of sight to the target. The disturbance and error environment on Space Station is discussed covering factors contributing to drift and jitter, accuracy of pointing data and target and instrument accuracies.

  11. Analysis of preservatives with different polarities in beverage samples by dual-phase dual stir bar sorptive extraction combined with high-performance liquid chromatography.

    PubMed

    Xu, Jin; Chen, Beibei; He, Man; Hu, Bin

    2013-02-22

    A new concept of "dual-phase dual stir bar sorptive extraction (SBSE)" was proposed to simultaneously extract six preservatives with different polarities (logKo/w values of 1.27-3.41), namely, benzoic acid (BA), sorbic acid (SA), methyl p-hydroxybenzoate (MP), ethyl p-hydroxybenzoate (EP), propyl p-hydroxybenzoate (PP), and butyl p-hydroxybenzoate (BP). The dual-phase dual SBSE apparatus was consisted of two differently coated stir bars, a 3-aminopropyltriethoxysilane (APTES)-hydroxy-terminated silicone oil (OH-TSO)-coated stir bar that was prepared by sol-gel technique and a C(18) silica (C(18))-polydimethylsiloxane (PDMS)-coated stir bar that was prepared by adhesion. In dual-phase dual SBSE, the two stir bars with different coatings were placed in the same sample solution for the simultaneous extraction of the target analytes with different polarities, and then the bars were desorbed in the same desorption solvent. The extraction performance of the dual-phase dual SBSE for the six preservatives was evaluated by comparing with the conventional SBSE (individual stir bar) with different coatings, including commercial PDMS, homemade PDMS, C(18)-APTES-OH-TSO, APTES-OH-TSO, and C(18)-PDMS. The experimental results showed that the dual-phase dual SBSE had the highest extraction efficiency for the six target preservatives. Based on this fact, a novel method by combining the dual-phase dual SBSE which was consisted of the APTES-OH-TSO-coated and C(18)-PDMS-coated stir bars with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was developed for the simultaneous analysis of six target beverage preservatives in beverages. Under optimal conditions, the limits of detection (LODs) for six target preservatives ranged from 0.6 to 2.7 μgL(-1) with the relative standard deviations (RSDs) of 4.6-9.2% (C(BA,SA)=5 μgL(-1),C(MP)=20 μgL(-1),C(EP,PP,BP)=10 μgL(-1), n=7). The enrichment factors (EFs) were approximately 16-42-fold (theoretical EF was 50-fold

  12. Performance analysis of pseudo 4-phase dual-rail asynchronous protocol

    NASA Astrophysics Data System (ADS)

    Santhi, M.; Sarangan, Siddharth; Murali, K.; Lakshminarayanan, G.

    2012-08-01

    This article presents the performance analysis of novel pseudo 4-phase dual-rail protocol with self-reset and multiple-reset logic for high speed asynchronous applications. The self-reset logic eliminates the need for separate empty phase and hence reduces the number of transitions at the input and the output. The multiple-reset logic reduces the reset phase and hence increases the throughput. The performance of the pseudo 4-phase dual-rail protocol is compared with the existing 4-phase dual-rail protocol by implementing 8-bit and 16-bit asynchronously pipelined carry look ahead adders (CLA) in 0.35 µm technology. The time period decreases up to 32.58% and 35.93% respectively, the reset phase reduces up to 66.39% and 76.18%, respectively, and the operating frequency increases up to 48.4% and 56.2%, respectively, for 8- and 16-bit CLA adders with the pseudo 4-phase dual-rail protocol compared to the conventional 4-phase dual-rail protocol at the cost of increase in area of 8.8% and 3.3%, respectively. The delay-power product in ns-mW of the 8- and 16-bit CLAs is reduced at the maximum of 11.29% and 23.74%, respectively, with the pseudo 4-phase dual-rail protocol compared to the conventional 4-phase dual-rail protocol. The pseudo 4-phase dual-rail protocol is suitable for interfacing with synchronous environments.

  13. Failure Analysis at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Salazar, Victoria L.; Wright, Clara

    2010-01-01

    History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program (i.e. Shuttle) and at the beginning of a new and untested program (i.e. Constellation). The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation section in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic failure analysis and accident investigations on both flight hardware and ground support equipment (GSE) for the Shuttle, International Space Station, Constellation, and Launch Services Programs. This presentation will explore a variety of failure case studies at KSC and the lessons learned that can be applied in future programs.

  14. Dynamic modelling and analysis of space webs

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Baoyin, HeXi; Li, JunFeng

    2011-04-01

    Future space missions demand operations on large flexible structures, for example, space webs, the lightweight cable nets deployable in space, which can serve as platforms for very large structures or be used to capture orbital objects. The interest in research on space webs is likely to increase in the future with the development of promising applications such as Furoshiki sat-ellite of JAXA, Robotic Geostationary Orbit Restorer (ROGER) of ESA and Grapple, Retrieve And Secure Payload (GRASP) of NASA. Unlike high-tensioned nets in civil engineering, space webs may be low-tensioned or tensionless, and extremely flexible, owing to the microgravity in the orbit and the lack of support components, which may cause computational difficulties. Mathematical models are necessary in the analysis of space webs, especially in the conceptual design and evaluation for prototypes. A full three-dimensional finite element (FE) model was developed in this work. Trivial truss elements were adopted to reduce the computational complexity. Considering cable is a compression-free material and its tensile stiffness is also variable, we introduced the cable material constitutive relationship to work out an accurate and feasible model for prototype analysis and design. In the static analysis, the stress distribution and global deformation of the webs were discussed to get access to the knowledge of strength of webs with different types of meshes. In the dynamic analysis, special attention was paid to the impact problem. The max stress and global deformation were investigated. The simulation results indicate the interesting phenomenon which may be worth further research.

  15. Development of a Gimballed, dual frequency, space-based, microwave antenna for volume production

    NASA Technical Reports Server (NTRS)

    Leckie, Martin; Laidig, Dave

    1996-01-01

    A dual-frequency, two-axis Gimballed, Microwave Antenna (GMA) has been developed by COM DEV and Motorola for commercial satellites. The need for volume production of over three hundred antennas at a rate of four per week, a compressed development schedule, and the commercial nature of the effort necessitated a paradigm shift to an 'overall' cost-driven design approach. The translation of these demands into antenna requirements, a description of the resulting GMA design, and examples of development issues are detailed herein.

  16. State-space formulations for flutter analysis

    NASA Technical Reports Server (NTRS)

    Weiss, S. J.; Tseng, K.; Morino, L.

    1976-01-01

    Various methods are presented and assessed for approximating the aerodynamic forces so that the State Space formulation and off-the-imaginary axis analysis are retained. The advantages of retaining these features are considerable, not only in simplifying the flutter analysis, but especially for more advanced applications such as optimal design of active control in which the flutter is merely a constraint to the optimization problem.

  17. Theoretical Analysis of a Dual-Probe Scanning Tunneling Microscope Setup on Graphene

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Power, Stephen R.; Petersen, Dirch H.; Jauho, Antti-Pekka

    2014-03-01

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements.

  18. Operational Aspects of Space Radiation Analysis

    NASA Technical Reports Server (NTRS)

    Weyland, M. D.; Johnson, A. S.; Semones, E. J.; Shelfer, T.; Dardano, C.; Lin, T.; Zapp, N. E.; Rutledge, R.; George, T.

    2005-01-01

    Minimizing astronaut's short and long-term medical risks arising from exposure to ionizing radiation during space missions is a major concern for NASA's manned spaceflight program, particularly exploration missions. For ethical and legal reasons, NASA follows the "as low as reasonably achievable" (ALARA) principal in managing astronaut's radiation exposures. One implementation of ALARA is the response to space weather events. Of particular concern are energetic solar particle events, and in low Earth orbit (LEO), electron belt enhancements. To properly respond to these events, NASA's Space Radiation Analysis Group (SRAG), in partnership with the NOAA Space Environment Center (SEC), provides continuous flight support during U.S. manned missions. In this partnership, SEC compiles space weather data from numerous ground and space based assets and makes it available in near real-time to SRAG (along with alerts and forecasts), who in turn uses these data as input to models to calculate estimates of the resulting exposure to astronauts. These calculations and vehicle instrument data form the basis for real-time recommendations to flight management. It is also important to implement ALARA during the design phase. In order to appropriately weigh the risks associated with various shielding and vehicle configuration concepts, the expected environment must be adequately characterized for nominal and worst case scenarios for that portion of the solar cycle and point in space. Even with the best shielding concepts and materials in place (unlikely), there will be numerous occasions where the crew is at greater risk due to being in a lower shielded environment (short term transit or lower shielded vehicles, EVAs), so that accurate space weather forecasts and nowcasts, of particles at the relevant energies, will be crucial to protecting crew health and safety.

  19. A dual use case study of space technologies for terrestrial medical applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cozmuta, Ioana

    2017-05-01

    Many challenges exist in understanding the human body as a whole, its adaptability, its resilience, its immunological response, its healing and regeneration power. New knowledge is usually obtained by exploring unique conditions and environments and space is one such variable. Primarily, these attributes have been studied in space for the purpose of understanding the effect of the space environment on long duration space travel. However a myriad of lessons learned have emerged that are important for terrestrial medicine problems such as cardiovascular changes, intracranial pressure changes, vision changes, reduced immunity, etc. For medical study purposes, the changes induced by the space environment on the human body are in general fast and predictable; they persist while in the space environment but also revert to the initial pre-flight healthy state upon return to Earth. This provides a unique cycle to study wellness and disease prediction as well as to develop more effective countermeasures for the benefit of people on earth. At a scientific level, the environment of space can be used to develop new lines of investigations and new knowledge to push the terrestrial state of the art (i.e. study of phase diagrams, identification of new system's states, etc). Moreover, the specialized requirements for space medicine have driven advances in terrestrial medical technologies in areas such as monitoring, diagnostic, prevention and treatment. This talk will provide an overview of compelling examples in key areas of interest for terrestrial medical applications.

  20. Stochastic Evolution Equations with Values on the Dual of a Countably Hilbert Nuclear Space.

    DTIC Science & Technology

    1986-07-01

    Banach space, as e.g., in the Example 4.1 or the works by Dawson and Gorostiza (1985), Kato (1976) and Tanabe (1975). In such cases the problem of...Hill. Dawson D.A. and L.G. Gorostiza (1985) "Solution of evolution equations in Hilbert space", preprint. Hitsuda M. and I. Mitoma (1985) "Tightness

  1. Space construction system analysis. Part 2: Space construction experiments concepts

    NASA Technical Reports Server (NTRS)

    Boddy, J. A.; Wiley, L. F.; Gimlich, G. W.; Greenberg, H. S.; Hart, R. J.; Lefever, A. E.; Lillenas, A. N.; Totah, R. S.

    1980-01-01

    Technology areas in the orbital assembly of large space structures are addressed. The areas included structures, remotely operated assembly techniques, and control and stabilization. Various large space structure design concepts are reviewed and their construction procedures and requirements are identified.

  2. Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Soltanian, M. R. K.; Alimadad, M.; Harun, S. W.

    2014-10-01

    An ultra-stable dual-wavelength saturable absorber based on a cladding-embedded commercial graphene oxide (GO) solution by capillary action in a solid core photonic crystal fiber (PCF) is demonstrated for the first time. The saturation absorption property is achieved through evanescent coupling between the guided light and the cladding-filled graphene layers. Stable spacing dual-wavelength fiber lasing is attained by controlling the polarization state of a simple 0.9 m long ring of highly doped Leikki Er80-8/125 erbium-doped fiber as the primary gain medium with PCF, polarization controller and tunable bandpass filter. Embedded GO is used to generate the desired pulsed output, and the laser is capable of generating pulses having a repetition rate of 24 kHz with an average output power and pulse energy of 0.167 mW and 8.98 nJ, respectively, at the maximum pump power of 220 mW.

  3. Economic analysis of the space shuttle system, volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An economic analysis of the space shuttle system is presented. The analysis is based on economic benefits, recurring costs, non-recurring costs, and ecomomic tradeoff functions. The most economic space shuttle configuration is determined on the basis of: (1) objectives of reusable space transportation system, (2) various space transportation systems considered and (3) alternative space shuttle systems.

  4. Dual processing and discourse space: Exploring fifth grade students' language, reasoning, and understanding through writing

    NASA Astrophysics Data System (ADS)

    Yoon, Sae Yeol

    The purpose of this study was to explore the development of students' understanding through writing while immersed in an environment where there was a strong emphasis on a language-based argument inquiry approach. Additionally, this study explored students' spoken discourse to gain a better understanding of what role(s) talking plays in the development of understanding through writing. Finally, the study proposed a new concept of Discourse Space, which enabled researchers to improve their understanding of the characteristics of the development of student cognition through writing, and of the roles talking plays in cognitive development through writing. This study was guided by the research question: What patterns of the development of fifth grade students' cognition over time emerge in their private and public negotiations under a teacher who is ranked as a low-level implementer of the SWH approach? This question was divided into two sub-questions: (a) Throughout a unit, Ecosystems, what patterns emerge regarding the development of six fifth grade students' understanding through writing, and b) What patterns of the development of Discourse Space emerge through talking in three different contexts. In order to answer these questions, this qualitative research employed a generic qualitative study. Twenty-one fifth grade students participated in this study, and six students were purposefully selected through which to further investigate the development of an understanding of science through private negotiation while immersed in a language-based argument inquiry approach. Major data sources included students' writing samples, informal conversations with the teacher, researcher's field notes, and classroom videos. Additionally, the teacher's modified RTOP scores and semi-structured interviews were used to deepen the contextual understanding of the learning environment and the teacher's instructional performance. The data analysis was conducted by utilizing discourse

  5. Limits of spatial attention in three-dimensional space and dual-task driving performance.

    PubMed

    Andersen, George J; Ni, Rui; Bian, Zheng; Kang, Julie

    2011-01-01

    The present study examined the limits of spatial attention while performing two driving relevant tasks that varied in depth. The first task was to maintain a fixed headway distance behind a lead vehicle that varied speed. The second task was to detect a light-change target in an array of lights located above the roadway. In Experiment 1 the light detection task required drivers to encode color and location. The results indicated that reaction time to detect a light-change target increased and accuracy decreased as a function of the horizontal location of the light-change target and as a function of the distance from the driver. In a second experiment the light change task was changed to a singleton search (detect the onset of a yellow light) and the workload of the car following task was systematically varied. The results of Experiment 2 indicated that RT increased as a function of task workload, the 2D position of the light-change target and the distance of the light-change target. A multiple regression analysis indicated that the effect of distance on light detection performance was not due to changes in the projected size of the light target. In Experiment 3 we found that the distance effect in detecting a light change could not be explained by the location of eye fixations. The results demonstrate that when drivers attend to a roadway scene attention is limited in three-dimensional space. These results have important implications for developing tests for assessing crash risk among drivers as well as the design of in vehicle technologies such as head-up displays. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Limits of Spatial Attention in Three-Dimensional Space and Dual-task Driving Performance

    PubMed Central

    Andersen, George J.; Ni, Rui; Bian, Zheng; Kang, Julie

    2010-01-01

    The present study examined the limits of spatial attention while performing two driving relevant tasks that varied in depth. The first task was to maintain a fixed headway distance behind a lead vehicle that varied speed. The second task was to detect a light-change target in an array of lights located above the roadway. In Experiment 1 the light detection task required drivers to encode color and location. The results indicated that reaction time to detect a light-change target increased and accuracy decreased as a function of the horizontal location of the light-change target and as a function of the distance from the driver. In a second experiment the light change task was changed to a singleton search (detect the onset of a yellow light) and the workload of the car following task was systematically varied. The results of Experiment 2 indicated that RT increased as a function of task workload, the 2D position of the light-change target and the distance of the light-change target. A multiple regression analysis indicated that the effect of distance on light detection performance was not due to changes in the projected size of the light target. In Experiment 3 we found that the distance effect in detecting a light change could not be explained by the location of eye fixations. The results demonstrate that when drivers attend to a roadway scene attention is limited in three-dimensional space. These results have important implications for developing tests for assessing crash risk among drivers as well as the design of in vehicle technologies such as head-up displays. PMID:21094336

  7. International Space Station Configuration Analysis and Integration

    NASA Technical Reports Server (NTRS)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  8. Performance and Operational Characteristics for a Dual Brayton Space Power System With Common Gas Inventory

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Mason, Lee S.

    2006-01-01

    This paper provides an analytical evaluation on the operation and performance of a dual Brayton common gas system. The NASA Glenn Research Center in-house computer program Closed Cycle System Simulation (CCSS) was used to construct a model of two identical 50 kWe-class recuperated closed-Brayton-cycle (CBC) power conversion units that share a common gas inventory and single heat source. As operating conditions for each CBC change, the total gas inventory is redistributed between the two units and overall system performance is affected. Several steady-state off-design operating points were analyzed by varying turbine inlet temperature and turbo-alternator shaft rotational speed to investigate the interaction of the two units.

  9. SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space

    NASA Astrophysics Data System (ADS)

    Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; Nicol, P.; Kirschstein, S.; Hennig, T.; Engel, W.; Frerick, J.; Nieke, J.

    2010-10-01

    SLSTR is a high accuracy infrared radiometer which will be embarked in the Earth low-orbit Sentinel 3 operational GMES mission. SLSTR is an improved version of the previous AATSR and ATSR-1/2 instruments which have flown respectively on Envisat and ERS-1/2 ESA missions. SLSTR will provide data continuity with respect to these previous missions but with a substantial improvement due to its higher swaths (750 km in dual view and 1400 km in single view) which should permit global coverage of SST and LST measurements (at 1 km of spatial resolution in IR channels) with daily revisit time, useful for climatological and meteorological applications. Two more SWIR channels and a higher spatial resolution in the VIS/SWIR channels (0.5 km) are also implemented for a better clouds/aerosols screening. Two further additional channels for global scale fire monitoring are present at the same time as the other nominal channels.

  10. Merger-driven fueling of active galactic nuclei: Six dual and of AGNs discovered with Chandra and Hubble Space Telescope observations

    SciTech Connect

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; Greene, Jenny E.; Zakamska, Nadia L.; Madejski, Greg M.; Cooper, Michael C.

    2015-06-19

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates at $z\\lt 0.34$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation ${\\rm \\Delta }x=2.2$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations ${\\rm \\Delta }x\\lt 10$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.

  11. Merger-driven fueling of active galactic nuclei: Six dual and of AGNs discovered with Chandra and Hubble Space Telescope observations

    DOE PAGES

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; ...

    2015-06-19

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates atmore » $$z\\lt 0.34$$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation $${\\rm \\Delta }x=2.2$$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations $${\\rm \\Delta }x\\lt 10$$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.« less

  12. Merger-driven Fueling of Active Galactic Nuclei: Six Dual and Offset AGNs Discovered with Chandra and Hubble Space Telescope Observations

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; Greene, Jenny E.; Zakamska, Nadia L.; Madejski, Greg M.; Cooper, Michael C.

    2015-06-01

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates at z\\lt 0.34, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation Δ x=2.2 kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations Δ x\\lt 10 kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O iii] λ5007 luminosity, on average. This could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.

  13. Extended duration dual antiplatelet therapy and mortality: a systematic review and meta-analysis.

    PubMed

    Elmariah, Sammy; Mauri, Laura; Doros, Gheorghe; Galper, Benjamin Z; O'Neill, Kelly E; Steg, Philippe Gabriel; Kereiakes, Dean J; Yeh, Robert W

    2015-02-28

    Treatment with aspirin and a P2Y12 inhibitor is commonly used in patients with cardiovascular disorders. The overall effect of such treatment on all-cause mortality is unknown. In the Dual Antiplatelet Therapy (DAPT) Study, continuation of dual antiplatelet therapy beyond 12 months after coronary stenting was associated with an unexpected increase in non-cardiovascular death. In view of the potential public health importance of these findings, we aimed to assess the effect of extended duration dual antiplatelet therapy on mortality by doing a meta-analysis of all randomised, controlled trials of treatment duration in various cardiovascular disorders. We searched Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) to identify randomised controlled trials assessing the effect of extended duration versus no or short duration dual antiplatelet therapy, published before Oct 1, 2014. We did a meta-analysis to pool results with a hierarchical Bayesian random-effects model. The primary outcomes were hazard ratios comparing rates of all-cause, cardiovascular, and non-cardiovascular death. Including the DAPT Study, we identified 14 eligible trials that randomly assigned 69,644 participants to different durations of dual antiplatelet therapy. Compared with aspirin alone or short duration dual antiplatelet therapy (≤6 months), continued treatment was not associated with a difference in all-cause mortality (hazard ratio [HR] 1·05, 95% credible interval [CrI] 0·96-1·19; p=0·33). Similarly, cardiovascular (1·01, 0·93-1·12; p=0·81) and non-cardiovascular mortality (1·04, 0·90-1·26; p=0·66) were no different with extended duration versus short duration dual antiplatelet therapy or aspirin alone. Extended duration dual antiplatelet therapy was not associated with a difference in the risk of all-cause, cardiovascular, or non-cardiovascular death compared with aspirin alone or short duration dual antiplatelet therapy. None. Copyright © 2015

  14. Switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror.

    PubMed

    Liu, Shuo; Yan, Fengping; Feng, Ting; Wu, Beilei; Dong, Ze; Chang, Gee-Kung

    2014-08-20

    A kind of switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror is presented and experimentally demonstrated. By adjusting the polarization controllers (PCs), stable dual-wavelength operation is obtained at the 2 μm band. The optical signal-to-noise ratio (OSNR) is better than 56 dB. The wavelength tuning is performed by applying static strain into the fiber Bragg grating. A tuning range from 0 to 5.14 nm is achieved for the dual-wavelength spacing. By adjusting the PCs properly, the fiber laser can also operate in single-wavelength state with the OSNR for each wavelength more than 50 dB.

  15. Uniting Secondary and Postsecondary Education: An Event History Analysis of State Adoption of Dual Enrollment Policies

    ERIC Educational Resources Information Center

    Mokher, Christine G.; McLendon, Michael K.

    2009-01-01

    This study, as the first empirical test of P-16 policy antecedents, reports the findings from an event history analysis of the origins of state dual enrollment policies adopted between 1976 and 2005. First, what characteristics of states are associated with the adoption of these policies? Second, to what extent do conventional theories on policy…

  16. Cost-benefit analysis of space technology

    NASA Technical Reports Server (NTRS)

    Hein, G. F.; Stevenson, S. M.; Sivo, J. N.

    1976-01-01

    A discussion of the implications and problems associated with the use of cost-benefit techniques is presented. Knowledge of these problems is useful in the structure of a decision making process. A methodology of cost-benefit analysis is presented for the evaluation of space technology. The use of the methodology is demonstrated with an evaluation of ion thrusters for north-south stationkeeping aboard geosynchronous communication satellites. A critique of the concept of consumers surplus for measuring benefits is also presented.

  17. Thermodynamic Analysis of Dual-Mode Scramjet Engine Operation and Performance

    NASA Technical Reports Server (NTRS)

    Riggins, David; Tacket, Regan; Taylor, Trent; Auslender, Aaron

    2006-01-01

    Recent analytical advances in understanding the performance continuum (the thermodynamic spectrum) for air-breathing engines based on fundamental second-law considerations have clarified scramjet and ramjet operation, performance, and characteristics. Second-law based analysis is extended specifically in this work to clarify and describe the performance characteristics for dual-mode scramjet operation in the mid-speed range of flight Mach 4 to 7. This is done by a fundamental investigation of the complex but predictable interplay between heat release and irreversibilities in such an engine; results demonstrate the flow and performance character of the dual mode regime and of dual mode transition behavior. Both analytical and computational (multi-dimensional CFD) studies of sample dual-mode flow-fields are performed in order to demonstrate the second-law capability and performance and operability issues. The impact of the dual-mode regime is found to be characterized by decreasing overall irreversibility with increasing heat release, within the operability limits of the system.

  18. Dual mode use requirements analysis for the institutional cluster.

    SciTech Connect

    Leland, Robert W.

    2003-09-01

    This paper analyzes what additional costs would be incurred in supporting dual-mode, i.e. both classified and unclassified use of the Institutional Computing (IC) hardware. The following five options are considered: periods processing in which a fraction of the system alternates in time between classified and unclassified modes, static split in which the system is constructed as a set of smaller clusters which remain in one mode or the other, re-configurable split in which the system is constructed in a split fashion but a mechanism is provided to reconfigure it very infrequently, red/black switching in which a mechanism is provided to switch sections of the system between modes frequently, and complementary operation in which parts of the system are operated entirely in one mode at one geographical site and entirely in the other mode at the other geographical site and other systems are repartitioned to balance work load. These options are evaluated against eleven criteria such as disk storage costs, distance computing costs, reductions in capability and capacity as a result of various factors etc. The evaluation is both qualitative and quantitative, and is captured in various summary tables.

  19. Risk analysis of space transportation during the space station era

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This study addresses the operational risks of manned space transportation during the era of space station deployment along with alternative launch vehicle architectures to reduce the risks. Vehicle architectures considered included shuttle only, an additional unmanned launch vehicle, and a second manned/unmanned launch vehicle. Projections are made for the operational parameters and flight event probabilities. Using these projections and Space Station era mission models, the operability of alternative vehicle architectures are examined, and implications to future manned space program plans are summarized.

  20. The ESA's Space Trajectory Analysis software suite

    NASA Astrophysics Data System (ADS)

    Ortega, Guillermo

    The European Space Agency (ESA) initiated in 2005 an internal activity to develop an open source software suite involving university science departments and research institutions all over the world. This project is called the "Space Trajectory Analysis" or STA. This article describes the birth of STA and its present configuration. One of the STA aims is to promote the exchange of technical ideas, and raise knowledge and competence in the areas of applied mathematics, space engineering, and informatics at University level. Conceived as a research and education tool to support the analysis phase of a space mission, STA is able to visualize a wide range of space trajectories. These include among others ascent, re-entry, descent and landing trajectories, orbits around planets and moons, interplanetary trajectories, rendezvous trajectories, etc. The article explains that STA project is an original idea of the Technical Directorate of ESA. It was born in August 2005 to provide a framework in astrodynamics research at University level. As research and education software applicable to Academia, a number of Universities support this development by joining ESA in leading the development. ESA and Universities partnership are expressed in the STA Steering Board. Together with ESA, each University has a chair in the board whose tasks are develop, control, promote, maintain, and expand the software suite. The article describes that STA provides calculations in the fields of spacecraft tracking, attitude analysis, coverage and visibility analysis, orbit determination, position and velocity of solar system bodies, etc. STA implements the concept of "space scenario" composed of Solar system bodies, spacecraft, ground stations, pads, etc. It is able to propagate the orbit of a spacecraft where orbital propagators are included. STA is able to compute communication links between objects of a scenario (coverage, line of sight), and to represent the trajectory computations and

  1. Space Shuttle booster thrust imbalance analysis

    NASA Technical Reports Server (NTRS)

    Bailey, W. R.; Blackwell, D. L.

    1985-01-01

    An analysis of the Shuttle SRM thrust imbalance during the steady-state and tailoff portions of the boost phase of flight are presented. Results from flights STS-1 through STS-13 are included. A statistical analysis of the observed thrust imbalance data is presented. A 3 sigma thrust imbalance history versus time was generated from the observed data and is compared to the vehicle design requirements. The effect on Shuttle thrust imbalance from the use of replacement SRM segments is predicted. Comparisons of observed thrust imbalances with respect to predicted imbalances are presented for the two space shuttle flights which used replacement aft segments (STS-9 and STS-13).

  2. A lightweight high performance dual-axis gimbal for space applications

    SciTech Connect

    Pines, D.J.; Hakala, D.B.; Malueg, R.

    1995-05-05

    This paper describes the design, development and performance of a lightweight precision gimbal with dual-axis slew capability to be used in a closed-loop optical tracking system at Lawrence Livermore National Laboratory-LLNL. The motivation for the development of this gimbal originates from the need to acquire and accurately localize warm objects (T{approximately}500 K) in a cluttered background. The design of the gimbal is centered around meeting the following performance requirements: pointing accuracy with control < 35 {mu}rad-(1-{omega}); slew capability > 0.2 rad/sec; mechanical weight < 5 kg. These performance requirements are derived by attempting to track a single target from multiple satellites in low Earth orbit using a mid-wave infrared camera. Key components in the gimbal hardware that are essential to meeting the performance objectives include a nickel plated beryllium mirro, an accurate lightweight capacitive pickoff device for angular measurement about the elevation axis, a 16-bit coarse/fine resolver for angular measurement about the azimuth axis, a toroidally wound motor with low hysteresis for providing torque about the azimuth axis, and the selection of beryllium parts to insure high stiffness to weight ratios and more efficient thermal conductivity. Each of these elements are discussed in detail to illustrate the design trades performed to meet the tracking and slewing requirements demanded. Preliminary experimental results are also given for various commanded tracking maneuvers.

  3. Analysis of Designs of Space Laboratories

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M.

    2003-01-01

    A report presents a review of the development of laboratories in outer space, starting from the pioneering Skylab and Salyut stations of the United States and the former Soviet Union and progressing through current and anticipated future developments. The report includes textual discussions of space station designs, illustrated with drawings, photographs, and tables. The approach taken in the review was not to provide a comprehensive catalog of each space laboratory and every design topic that applies to it, but, rather, to illustrate architectural precedents by providing examples that illustrate major design problems and principles to be applied in solving them. Hence, the report deemphasizes information from the most recent space-station literature and concentrates on information from original design reports that show how designs originated and evolved. The most important contribution of the review was the development of a methodology, called "units of analysis," for identifying and analyzing design issues from the perspectives of four broad domains: laboratory science, crew, modes of operations, and the system as a whole.

  4. Mission Success Driven Space System Sparing Analysis

    NASA Technical Reports Server (NTRS)

    Knezevic, J.

    1995-01-01

    Among the maintenance resources, the spare parts are the most difficult to predict. Items in the space systems are very different from the point of view of reliability, cost, weight, volume, etc. The different combinations of spares make different contribution to the: mission success, spare investment, volume occupied and weight. Hence, the selection of spares for a mission planned must take into account all of these features. This paper presents the generic mission success driven sparing model developed, for the complex space systems. The mathematical analysis used in the model enables the user to select the most suitable selection of the spare package for the mission planned. The illustrative examples presented clearly demonstrate the applicability and usefulness of the model introduced.

  5. Novel Materials, Processing and Device Technologies for Space Exploration with Potential Dual-Use Applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K.V.; Hanson, W.; Amos, D.; hide

    2014-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multiwalled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be repurposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual-use or

  6. Novel Materials, Processing, and Device Technologies for Space Exploration with Potential Dual-Use Applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K. V.; Hanson, W.; Amos, D.; hide

    2015-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multi-walled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be re-purposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual

  7. A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Jokhio, G. A.; Izzuddin, B. A.

    2015-05-01

    This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.

  8. Analysis of Space Station Operations in the Space Debris Environment.

    DTIC Science & Technology

    1984-12-01

    THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the...The 1983 TRW Space Log listed fourteen nations involved in sponsoring launches (32:120). As nations develop their technology , it is logical that...incentives to develop technology , forming a positive loop as indicated by the causal diagram. Again, the American and Russian space programs verify this

  9. Visual interface for space and terrestrial analysis

    NASA Technical Reports Server (NTRS)

    Dombrowski, Edmund G.; Williams, Jason R.; George, Arthur A.; Heckathorn, Harry M.; Snyder, William A.

    1995-01-01

    The management of large geophysical and celestial data bases is now, more than ever, the most critical path to timely data analysis. With today's large volume data sets from multiple satellite missions, analysts face the task of defining useful data bases from which data and metadata (information about data) can be extracted readily in a meaningful way. Visualization, following an object-oriented design, is a fundamental method of organizing and handling data. Humans, by nature, easily accept pictorial representations of data. Therefore graphically oriented user interfaces are appealing, as long as they remain simple to produce and use. The Visual Interface for Space and Terrestrial Analysis (VISTA) system, currently under development at the Naval Research Laboratory's Backgrounds Data Center (BDC), has been designed with these goals in mind. Its graphical user interface (GUI) allows the user to perform queries, visualization, and analysis of atmospheric and celestial backgrounds data.

  10. A Comparative Study of High School Advanced Placement and Dual Enrollment Programs Using a Mixed Methods Analysis

    ERIC Educational Resources Information Center

    Haley, Katrina A.

    2013-01-01

    This study provides an in-depth analysis of whether students who take dual enrollment and/or AP classes have higher ACT test scores compared to a group of their peers that did not take dual enrollment or AP courses. The study also identified the demographic characteristics (ethnicity, gender, and socio-economic status) of students with a 3.0 or…

  11. A Comparative Study of High School Advanced Placement and Dual Enrollment Programs Using a Mixed Methods Analysis

    ERIC Educational Resources Information Center

    Haley, Katrina A.

    2013-01-01

    This study provides an in-depth analysis of whether students who take dual enrollment and/or AP classes have higher ACT test scores compared to a group of their peers that did not take dual enrollment or AP courses. The study also identified the demographic characteristics (ethnicity, gender, and socio-economic status) of students with a 3.0 or…

  12. Trade-space Analysis for Constellations

    NASA Astrophysics Data System (ADS)

    Le Moigne, J.; Dabney, P.; de Weck, O. L.; Foreman, V.; Grogan, P.; Holland, M. P.; Hughes, S. P.; Nag, S.

    2016-12-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: "How many spacecraft should be included in the constellation? Which design has the best cost/risk value?" The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time. This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance. TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model

  13. Benefits of texture analysis of dual energy CT for Computer-Aided pulmonary embolism detection.

    PubMed

    Foncubierta-Rodríguez, Antonio; Jiménez del Toro, Óscar Alfonso; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning; Depeursinge, Adrien

    2013-01-01

    Pulmonary embolism is an avoidable cause of death if treated immediately but delays in diagnosis and treatment lead to an increased risk. Computer-assisted image analysis of both unenhanced and contrast-enhanced computed tomography (CT) have proven useful for diagnosis of pulmonary embolism. Dual energy CT provides additional information over the standard single energy scan by generating four-dimensional (4D) data, in our case with 11 energy levels in 3D. In this paper a 4D texture analysis method capable of detecting pulmonary embolism in dual energy CT is presented. The method uses wavelet-based visual words together with an automatic geodesic-based region of interest detection algorithm to characterize the texture properties of each lung lobe. Results show an increase in performance with respect to the single energy CT analysis, as well as an accuracy gain compared to preliminary work on a small dataset.

  14. Systematic Review and Meta-analysis of Dual Versus Single Antiplatelet Therapy in Carotid Interventions.

    PubMed

    Barkat, M; Hajibandeh, S; Hajibandeh, S; Torella, F; Antoniou, G A

    2017-01-01

    The importance of antiplatelet therapy for the management and prevention of ischaemic stroke cannot be overstated. Despite the established guidelines, there is no clear consensus on how to manage antiplatelet therapy during and after carotid interventions. The objective was to undertake a systematic literature review and perform a meta-analysis to assess the effects of dual antiplatelet therapy in carotid endarterectomy (CEA) and stenting (CAS). Electronic information sources (MEDLINE, EMBASE, CINAHL, CENTRAL) and bibliographic reference lists were searched to identify randomised controlled trials (RCTs) and observational studies reporting comparative outcomes of dual versus single antiplatelet therapy in CEA and CAS. Primary outcomes were mortality and stroke within 30 days of intervention. Secondary outcomes were transient ischaemic attack (TIA), major bleeding, groin or neck haematoma, and myocardial infarction (MI). Dichotomous outcome measures were reported using the risk difference (RD) and 95% confidence interval (CI). Combined overall treatment effects were calculated using fixed-effect or random-effects models. Three RCTs and seven observational studies were identified reporting a total of 36,881 CEAs and 150 CAS procedures. In CEA, there were no differences in stroke/TIA/death between single and dual antiplatelet therapy, but there was a significant risk of major bleeding (RD, 0.00; 95% CI, 0.00-0.01; p = .0003) and neck haematoma with dual therapy (RD, 0.04; 95% CI, 0.01-0.06; p = .001). In addition, the rate of MI was higher in the dual therapy group than the single therapy group (RD, 0.00; 95% CI, 0.00-0.01; p = .003). In CAS, there was no difference in major bleeding or haematoma formation, but a significant difference in TIA in favour of dual therapy was identified (RD -0.13, 95% CI, -0.22 to -0.05; p = .003). Dual antiplatelet therapy demonstrates advantages over single therapy only in CAS, as indicated by a reduced risk of TIA. Dual

  15. Dual parallel mass spectrometry for lipid and vitamin D analysis

    USDA-ARS?s Scientific Manuscript database

    There are numerous options for mass spectrometric analysis of lipids, including different types of ionization, and a wide variety of experiments using different scan modes that can be conducted. Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) provide complementary ...

  16. Deep Space Optical Link ARQ Performance Analysis

    NASA Technical Reports Server (NTRS)

    Clare, Loren; Miles, Gregory

    2016-01-01

    Substantial advancements have been made toward the use of optical communications for deep space exploration missions, promising a much higher volume of data to be communicated in comparison with present -day Radio Frequency (RF) based systems. One or more ground-based optical terminals are assumed to communicate with the spacecraft. Both short-term and long-term link outages will arise due to weather at the ground station(s), space platform pointing stability, and other effects. To mitigate these outages, an Automatic Repeat Query (ARQ) retransmission method is assumed, together with a reliable back channel for acknowledgement traffic. Specifically, the Licklider Transmission Protocol (LTP) is used, which is a component of the Disruption-Tolerant Networking (DTN) protocol suite that is well suited for high bandwidth-delay product links subject to disruptions. We provide an analysis of envisioned deep space mission scenarios and quantify buffering, latency and throughput performance, using a simulation in which long-term weather effects are modeled with a Gilbert -Elliot Markov chain, short-term outages occur as a Bernoulli process, and scheduled outages arising from geometric visibility or operational constraints are represented. We find that both short- and long-term effects impact throughput, but long-term weather effects dominate buffer sizing and overflow losses as well as latency performance.

  17. Robust trajectory tracking control of a dual-arm space robot actuated by control moment gyroscopes

    NASA Astrophysics Data System (ADS)

    Jia, Yinghong; Misra, Arun K.

    2017-08-01

    It is a new design concept to employ control moment gyroscopes (CMGs) as reactionless actuators for space robots. Such actuation has several noticeable advantages such as weak dynamical coupling and low power consumption over traditional joint motor actuation. This paper presents a robust control law for a CMG-actuated space robot in presence of system uncertainties and closed-chain constraints. The control objective is to make the manipulation variables to track the desired trajectories, and reduce the possibility of CMG saturation simultaneously. A reduced-order dynamical equation in terms of independent motion variables is derived using Kane's equations. Desired trajectories of the independent motion variables are derived by minimum-norm trajectory planning algorithm, and an adaptive sliding mode controller with improved adaptation laws is proposed to drive the independent motion variables tracking the desired trajectories. Uniformly ultimate boundedness of the closed loop system is proven using Lyapunov method. The redundancy of the full-order actual control torques is utilized to generate a null torque vector which reduces the possibility of CMG angular momentum saturation while producing no effect on the reduced-order control input. Simulation results demonstrate the effectiveness of the proposed algorithms and the advantage of weak dynamical coupling of the CMG-actuated system.

  18. Space Mission Analysis and Design. Second edition

    SciTech Connect

    Larson, W.J.; Wertz, J.R.

    1992-12-31

    The goal of this second edition is siniflar to the first: to allow you to begin with a ``blank sheet of paper`` and design a space mission to meet a set of broad, often poorly defined, objectives. You should be able to define the mission in sufficient detail to identify principal drivers and make a preliminary assessment of overan performance, size, cost, and risk. The emphasis of the book is on low-Earth orbit, unmanned spacecraft. However, we hope that the principles are broad enough to be applicable to other n-dssions as well. We intend the book to be a practical guide, rather than a theoretical treatise. As much as possible, we have provided rules of thumb, empirical formulas, and design algorithms based on past experience. We assume that the reader has a general knowledge of physics, math, and basic engineering, but is not necessarily familiar with any aspect of space technology. This book was written by a group of over 50 senior space engineers. It reflects the insight gained from this practical experience, and suggests how things might be done better in the future. From time to time the views of authors and editors conflict, as must necessarily occur given the broad diversity of experience. We believe it is important to reflect this diversity rather than suppress the opinions of individual authors. Similarly, the level of treatment varies among topics, depending both on the issues each author feels is critical and our overan assessment of the level of detail in each topic that is important to the preliminary mission analysis and design process. The book is appropriate as a textbook for either introductory graduate or advanced undergraduate courses, or as a reference for those already working in space technology.

  19. Wavelet Analysis of Space Solar Telescope Images

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-An; Jin, Sheng-Zhen; Wang, Jing-Yu; Ning, Shu-Nian

    2003-12-01

    The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.

  20. Surface analysis of space telescope material specimens

    NASA Technical Reports Server (NTRS)

    Fromhold, A. T.

    1984-01-01

    Surface analysis by electron spectroscopy for chemical analysis (ESCA) was used to characterize a number of the material samples for the space telescope. With ESCA, the sample is irradiated with monoenergetic soft X-rays and the resulting emitted electrons are energy analyzed to determine the binding energy of electrons to the surface atoms. The major peaks were used in the quantitative determination of the surface composition. The presence of trace elements (impurities below 1% atomic composition) was also detailed. Initially a survey scan was run for each sample to deduce the elemental composition. Then the major peaks of interest and those of the trace elements were individually examined. After this, the samples were argon sputtered to etch away surface layers, and then additional measurements were carried out in order to obtain depth profile information. In this way it was possible for those species present only on the surface to be distinguished from those having a significant depth distribution within the sample.

  1. Medical impact analysis for the Space Station

    NASA Technical Reports Server (NTRS)

    Nelson, Brent D.; Gardner, Reed M.; Ostler, David V.; Schulz, John M.; Logan, James S.

    1990-01-01

    In this study, Space Station medical care priorities were determined by a medical impact analysis of two analog populations, U.S. Army and U.S. Navy personnel. Diseases and injuries in the International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) were ranked, using a Medical Impact Score (MIS) combining modified incidence rate and a function of disease outcome. The validity of the analysis method was tested by measuring rank order correlation between the two analog populations. Despite virtually identical age and sex distributions, Army and Navy incidence rates differed significantly for half of the ICD-9-CM categories, p less than 0.05. Disability rates differed for 76 percent, p less than 0.05. Nevertheless, Army and Navy MIS rank orders for categories and sections were not significantly different, p less than 0.001. In critical ways, the Space Station will be a safer environment than earth. Cardiac events, musculoskeletal injuries, affective psychoses, and renal calculi were among the highest scoring categories.

  2. Pulse-modulated dual-gas control subsystem for space cabin atmosphere

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for use in a closed manned cabin, such as the Space Shuttle Orbiter. This subsystem uses the Perkin Elmer mass spectrometer for continuous measurement of major atmospheric constituents (H2, H2O, N2, O2, and CO2). The O2 and N2 analog signals are used as inputs to the controller, which produces a pulse-frequency-modulated output to operate the N2 gas admission solenoid valve and an on-off signal to operate the O2 valve. The proportional controller characteristic results in improved control accuracy as compared with previously used on-off controllers having significant dead-band. A 60-day evaluation test was performed on the ACS during which operation was measured at various values of control setpoint and simulated cabin leakage.

  3. Propagation of Chaos and the McKean-Vlasov Equation in Duals of Nuclear Spaces

    DTIC Science & Technology

    1990-05-01

    and # E 0, let L2 denote the space of progressively T ~ measurable processes H: IR ~x[2 -. L(0.0) for which Ef; Q[HO.HO]ds < -, where H* is the operator...on the existence and uniqueness of solutions of stochastic differential equations. For a probability measure go on V and a pair of functions A: IR +x...34.x 0.’ For any fixed r~l. 3 a r-* A ( 11 i=1.2 so that A 3 ((R1 .P2) -1 l 1 0 ii-2" Thus 2 2 < 62a2(314 ( 1 1,e2 ): "l"l-r + -l Ir / 1)(314 On the

  4. Pulse-modulated dual-gas control subsystem for space cabin atmosphere

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for use in a closed manned cabin, such as the Space Shuttle Orbiter. This subsystem uses the Perkin Elmer mass spectrometer for continuous measurement of major atmospheric constituents (H2, H2O, N2, O2, and CO2). The O2 and N2 analog signals are used as inputs to the controller, which produces a pulse-frequency-modulated output to operate the N2 gas admission solenoid valve and an on-off signal to operate the O2 valve. The proportional controller characteristic results in improved control accuracy as compared with previously used on-off controllers having significant dead-band. A 60-day evaluation test was performed on the ACS during which operation was measured at various values of control setpoint and simulated cabin leakage.

  5. Single- and dual-carrier microwave noise abatement in the deep space network. [microwave antennas

    NASA Technical Reports Server (NTRS)

    Bathker, D. A.; Brown, D. W.; Petty, S. M.

    1975-01-01

    The NASA/JPL Deep Space Network (DSN) microwave ground antenna systems are presented which simultaneously uplink very high power S-band signals while receiving very low level S- and X-band downlinks. Tertiary mechanisms associated with elements give rise to self-interference in the forms of broadband noise burst and coherent intermodulation products. A long-term program to reduce or eliminate both forms of interference is described in detail. Two DSN antennas were subjected to extensive interference testing and practical cleanup program; the initial performance, modification details, and final performance achieved at several planned stages are discussed. Test equipment and field procedures found useful in locating interference sources are discussed. Practices deemed necessary for interference-free operations in the DSN are described. Much of the specific information given is expected to be easily generalized for application in a variety of similar installations. Recommendations for future investigations and individual element design are given.

  6. On achieving sufficient dual station range accuracy for deep space navigation at zero declination

    NASA Technical Reports Server (NTRS)

    Siegel, H. L.; Christensen, C. S.; Green, D. W.; Winn, F. B.

    1977-01-01

    Since the Voyager Mission will encounter Saturn at a time when the planet will be nearly in the earth's equatorial plane, earth-based orbit determination will be more difficult than usual because of the so-called zero-declination singularity associated with conventional radiometric observations. Simulation studies show that in order to meet the required delivery accuracy at Saturn, a relative range measurement between the Goldstone and Canberra Deep Space Stations must be accurate to 4.5 times the square root of two meters. Topics discussed include the nature of error sources, the methodology and technology required for calibration, the verification process concerning the nearly simultaneous range capability, a description of the ranging system, and tracking strategy.

  7. Comparison of Procedures for Dual and Triple Closely Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Verma, Savita; Ballinger, Deborah; Subramanian Shobana; Kozon, Thomas

    2012-01-01

    A human-in-the-loop high fidelity flight simulation experiment was conducted, which investigated and compared breakout procedures for Very Closely Spaced Parallel Approaches (VCSPA) with two and three runways. To understand the feasibility, usability and human factors of two and three runway VCSPA, data were collected and analyzed on the dependent variables of breakout cross track error and pilot workload. Independent variables included number of runways, cause of breakout and location of breakout. Results indicated larger cross track error and higher workload using three runways as compared to 2-runway operations. Significant interaction effects involving breakout cause and breakout location were also observed. Across all conditions, cross track error values showed high levels of breakout trajectory accuracy and pilot workload remained manageable. Results suggest possible avenues of future adaptation for adopting these procedures (e.g., pilot training), while also showing potential promise of the concept.

  8. Space station (modular) mission analysis. Volume 1: Mission analysis

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The mission analysis on the modular space station considers experimental requirements and options characterized by low initial cost and incremental manning. Features that affect initial development and early operating costs are identified and their impacts on the program are assessed. Considered are the areas of experiment, mission, operations, information management, and long life and safety analyses.

  9. A Task that Elicits Reasoning: A Dual Analysis

    ERIC Educational Resources Information Center

    Yankelewitz, Dina; Mueller, Mary; Maher, Carolyn A.

    2010-01-01

    This paper reports on the forms of reasoning elicited as fourth grade students in a suburban district and sixth grade students in an urban district worked on similar tasks involving reasoning with the use of Cuisenaire rods. Analysis of the two data sets shows similarities in the reasoning used by both groups of students on specific tasks, and the…

  10. A Task that Elicits Reasoning: A Dual Analysis

    ERIC Educational Resources Information Center

    Yankelewitz, Dina; Mueller, Mary; Maher, Carolyn A.

    2010-01-01

    This paper reports on the forms of reasoning elicited as fourth grade students in a suburban district and sixth grade students in an urban district worked on similar tasks involving reasoning with the use of Cuisenaire rods. Analysis of the two data sets shows similarities in the reasoning used by both groups of students on specific tasks, and the…

  11. System-level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Perchonok, Michele H.

    2004-01-01

    In order to ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of required makeup water. Makeup water may come from a variety of sources, including water in shipped tanks, water stored in prepackaged food, product water from fuel cells, and in-situ water resources. This paper specifically addresses the issue of storing required makeup water in prepackaged food versus storing the water in shipped tanks for the Mars Dual Lander Transit Mission, one of the Advanced Life Support Reference Missions. In this paper, water mass balances have been performed for the Dual Lander Transit Mission, to determine the necessary requirement of makeup water under nominal operation (i.e. no consideration of contingency needs), on a daily basis. Contingency issues are briefly discussed with respect to impacts on makeup water storage (shipped tanks versus storage in prepackaged food). The Dual Lander Transit Mission was selected for study because it has been considered by the Johnson Space Center Exploration Office in enough detail to define a reasonable set of scenario options for nominal system operation and contingencies. This study also illustrates the concept that there are multiple, reasonable life support system scenarios for any one particular mission. Thus, the need for a particular commodity can depend upon many variables in the system. In this study, we examine the need for makeup water as it depends upon the configuration of the rest of the life support system.

  12. System-level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Perchonok, Michele H.

    2004-01-01

    In order to ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of required makeup water. Makeup water may come from a variety of sources, including water in shipped tanks, water stored in prepackaged food, product water from fuel cells, and in-situ water resources. This paper specifically addresses the issue of storing required makeup water in prepackaged food versus storing the water in shipped tanks for the Mars Dual Lander Transit Mission, one of the Advanced Life Support Reference Missions. In this paper, water mass balances have been performed for the Dual Lander Transit Mission, to determine the necessary requirement of makeup water under nominal operation (i.e. no consideration of contingency needs), on a daily basis. Contingency issues are briefly discussed with respect to impacts on makeup water storage (shipped tanks versus storage in prepackaged food). The Dual Lander Transit Mission was selected for study because it has been considered by the Johnson Space Center Exploration Office in enough detail to define a reasonable set of scenario options for nominal system operation and contingencies. This study also illustrates the concept that there are multiple, reasonable life support system scenarios for any one particular mission. Thus, the need for a particular commodity can depend upon many variables in the system. In this study, we examine the need for makeup water as it depends upon the configuration of the rest of the life support system.

  13. Modeling, Analysis, and Optimization Issues for Large Space Structures

    NASA Technical Reports Server (NTRS)

    Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)

    1983-01-01

    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.

  14. Cell boundary analysis using radial search for dual staining techniques

    NASA Astrophysics Data System (ADS)

    Iftikhar, Saadia; Bharath, Anil Anthony

    2009-02-01

    In medical image analysis and segmentation, many conventional methods work very well on good quality tissue section images, but often fail when the images are not of good quality. Active contours or snakes are widely used in medical image processing applications especially for boundary detection. However, the problems with initialization and poor performance of snakes on noisy images limit their efficacy. As an alternative, this research presents an efficient and robust method to segment cell nuclei and their respective boundaries for low contrast cell images using a combination of a radial search and interpolation methods. This radial search method can be used in medical image analysis and segmentation applications for images which are very noisy or whose structural regions are not very clear. The processes in this method consists of (1) extracting the location of the cell nuclei (2) finding the edge information of the given image (3) applying radial search on the edge image patch for finding the radial initialization and finally (4) using an interpolation method to find the desired boundary points, which describe the potential boundary points to best fit to that candidate shape or cell. The results shown on the images of branch aorta of rabbit are suggesting that the proposed radial search method correctly finds the boundaries even on very low contrast images, which can be used for further medical image analysis.

  15. Multi-Mode Analysis of Dual Ridged Waveguide Systems for Material Characterization

    DTIC Science & Technology

    2015-09-17

    Ross-Weir xi MULTI-MODE ANALYSIS OF DUAL RIDGED WAVEGUIDE SYSTEMS FOR MATERIAL CHARACTERIZATION I. Introduction 1.1 Introduction Electromagnetic material...machined or altered in some way in order to fit into the electromagnetic testing device (e.g., waveguide). Destructive techniques often have the...accurately model new designs such as antennas and absorbing coatings. While many numerous techniques exist in the microwave spectrum , their

  16. An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas

    SciTech Connect

    Desai, M. I.; McComas, D. J.; Allegrini, F.; Livi, S. A.; Ogasawara, K.; Ebert, R. W.; Weidner, S. E.; Alexander, N.

    2015-05-15

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q–40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV–10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs’ singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.

  17. The superior aspect of the perirenal space: could it be depicted by dual-source CT in vivo in adults

    PubMed Central

    Qi, R; Zhou, X P; Li, Z L

    2015-01-01

    Objective: This study aims to observe whether the renal fascias could be effectively shown by dual-source CT (DSCT) and to explore the superior communication of the perirenal space (PS) in vivo in adults. Methods: 275 cases were included in the normal group and 124 cases in the acute pancreatitis group in this study; all images obtained by DSCT were observed; the superior adherence of the renal fascias and the pattern of superior communication of the PS were judged; and the consistency between the two groups was compared. Results: The superior adherence of the renal fascias was reliably displayed in 57.8% of the normal group and 69.4% of the acute pancreatitis group, the anterior renal fascia (ARF) did not fuse with the posterior renal fascia superiorly. The left ARF fused with the posterior parietal peritoneum in 57.9% of the normal group and 45.3% of the pancreatitis group, where the left PS communicated with the subdiaphragmatic retroperitoneal space (SDRS). The left ARF fused with the peritoneum laterally and simultaneously with the inferior phrenic fascia medially in 42.1% and 54.7% of each group, respectively, where the left PS was open towards the SDRS laterally but sealed off from the SDRS medially. The right ARF fused with the peritoneum in all cases; and the right PS was open towards the bare area of the liver. Conclusion: To some extent, DSCT can display renal fascia and its superior adherence and reflect the superior communication of the PS. Advances in knowledge: This study was conducted in vivo in adults by high-resolution DSCT, and more samples could be provided. PMID:25411900

  18. An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas.

    PubMed

    Desai, M I; Ogasawara, K; Ebert, R W; McComas, D J; Allegrini, F; Weidner, S E; Alexander, N; Livi, S A

    2015-05-01

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.

  19. Visualization of parameter space for image analysis.

    PubMed

    Pretorius, A Johannes; Bray, Mark-Anthony P; Carpenter, Anne E; Ruddle, Roy A

    2011-12-01

    Image analysis algorithms are often highly parameterized and much human input is needed to optimize parameter settings. This incurs a time cost of up to several days. We analyze and characterize the conventional parameter optimization process for image analysis and formulate user requirements. With this as input, we propose a change in paradigm by optimizing parameters based on parameter sampling and interactive visual exploration. To save time and reduce memory load, users are only involved in the first step--initialization of sampling--and the last step--visual analysis of output. This helps users to more thoroughly explore the parameter space and produce higher quality results. We describe a custom sampling plug-in we developed for CellProfiler--a popular biomedical image analysis framework. Our main focus is the development of an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. We implemented this in a prototype called Paramorama. It provides users with a visual overview of parameters and their sampled values. User-defined areas of interest are presented in a structured way that includes image-based output and a novel layout algorithm. To find optimal parameter settings, users can tag high- and low-quality results to refine their search. We include two case studies to illustrate the utility of this approach.

  20. Visualization of Parameter Space for Image Analysis

    PubMed Central

    Pretorius, A. Johannes; Bray, Mark-Anthony P.; Carpenter, Anne E.; Ruddle, Roy A.

    2013-01-01

    Image analysis algorithms are often highly parameterized and much human input is needed to optimize parameter settings. This incurs a time cost of up to several days. We analyze and characterize the conventional parameter optimization process for image analysis and formulate user requirements. With this as input, we propose a change in paradigm by optimizing parameters based on parameter sampling and interactive visual exploration. To save time and reduce memory load, users are only involved in the first step - initialization of sampling - and the last step - visual analysis of output. This helps users to more thoroughly explore the parameter space and produce higher quality results. We describe a custom sampling plug-in we developed for CellProfiler - a popular biomedical image analysis framework. Our main focus is the development of an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. We implemented this in a prototype called Paramorama. It provides users with a visual overview of parameters and their sampled values. User-defined areas of interest are presented in a structured way that includes image-based output and a novel layout algorithm. To find optimal parameter settings, users can tag high- and low-quality results to refine their search. We include two case studies to illustrate the utility of this approach. PMID:22034361

  1. SOSPAC- SOLAR SPACE POWER ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1994-01-01

    The Solar Space Power Analysis Code, SOSPAC, was developed to examine the solar thermal and photovoltaic power generation options available for a satellite or spacecraft in low earth orbit. SOSPAC is a preliminary systems analysis tool and enables the engineer to compare the areas, weights, and costs of several candidate electric and thermal power systems. The configurations studied include photovoltaic arrays and parabolic dish systems to produce electricity only, and in various combinations to provide both thermal and electric power. SOSPAC has been used for comparison and parametric studies of proposed power systems for the NASA Space Station. The initial requirements are projected to be about 40 kW of electrical power, and a similar amount of thermal power with temperatures above 1000 degrees Centigrade. For objects in low earth orbit, the aerodynamic drag caused by suitably large photovoltaic arrays is very substantial. Smaller parabolic dishes can provide thermal energy at a collection efficiency of about 80%, but at increased cost. SOSPAC allows an analysis of cost and performance factors of five hybrid power generating systems. Input includes electrical and thermal power requirements, sun and shade durations for the satellite, and unit weight and cost for subsystems and components. Performance equations of the five configurations are derived, and the output tabulates total weights of the power plant assemblies, area of the arrays, efficiencies, and costs. SOSPAC is written in FORTRAN IV for batch execution and has been implemented on an IBM PC computer operating under DOS with a central memory requirement of approximately 60K of 8 bit bytes. This program was developed in 1985.

  2. SOSPAC- SOLAR SPACE POWER ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1994-01-01

    The Solar Space Power Analysis Code, SOSPAC, was developed to examine the solar thermal and photovoltaic power generation options available for a satellite or spacecraft in low earth orbit. SOSPAC is a preliminary systems analysis tool and enables the engineer to compare the areas, weights, and costs of several candidate electric and thermal power systems. The configurations studied include photovoltaic arrays and parabolic dish systems to produce electricity only, and in various combinations to provide both thermal and electric power. SOSPAC has been used for comparison and parametric studies of proposed power systems for the NASA Space Station. The initial requirements are projected to be about 40 kW of electrical power, and a similar amount of thermal power with temperatures above 1000 degrees Centigrade. For objects in low earth orbit, the aerodynamic drag caused by suitably large photovoltaic arrays is very substantial. Smaller parabolic dishes can provide thermal energy at a collection efficiency of about 80%, but at increased cost. SOSPAC allows an analysis of cost and performance factors of five hybrid power generating systems. Input includes electrical and thermal power requirements, sun and shade durations for the satellite, and unit weight and cost for subsystems and components. Performance equations of the five configurations are derived, and the output tabulates total weights of the power plant assemblies, area of the arrays, efficiencies, and costs. SOSPAC is written in FORTRAN IV for batch execution and has been implemented on an IBM PC computer operating under DOS with a central memory requirement of approximately 60K of 8 bit bytes. This program was developed in 1985.

  3. Dual-slot antennas for microwave tissue heating: parametric design analysis and experimental validation.

    PubMed

    Brace, Christopher L

    2011-07-01

    Design and validate an efficient dual-slot coaxial microwave ablation antenna that produces an approximately spherical heating pattern to match the shape of most abdominal and pulmonary tumor targets. A dual-slot antenna geometry was utilized for this study. Permutations of the antenna geometry using proximal and distal slot widths from 1 to 10 mm separated by 1-20 mm were analyzed using finite-element electromagnetic simulations. From this series, the most optimal antenna geometry was selected using a two-term sigmoidal objective function to minimize antenna reflection coefficient and maximize the diameter-to-length aspect ratio of heat generation. Sensitivities to variations in tissue properties and insertion depth were also evaluated in numerical models. The most optimal dual-slot geometry of the parametric analysis was then fabricated from semirigid coaxial cable. Antenna reflection coefficients at various insertion depths were recorded in ex vivo bovine livers and compared to numerical results. Ablation zones were then created by applying 50 W for 2-10 min in simulations and ex vivo livers. Mean zone diameter, length, aspect ratio, and reflection coefficients before and after heating were then compared to a conventional monopole antenna using ANOVA with post-hoc t-tests. Statistical significance was indicated for P <0.05. Antenna performance was highly sensitive to dual-slot geometry. The best-performing designs utilized a proximal slot width of 1 mm, distal slot width of 4 mm +/- 1 mm and separation of 8 mm +/- 1 mm. These designs were characterized by an active choking mechanism that focused heating to the distal tip of the antenna. A dual-band resonance was observed in the most optimal design, with a minimum reflection coefficient of -20.9 dB at 2.45 and 1.25 GHz. Total operating bandwidth was greater than 1 GHz, but the desired heating pattern was achieved only near 2.45 GHz. As a result, antenna performance was robust to changes in insertion depth and

  4. Evolutions in time and space of laser ablated species by dual-laser photoabsorption spectroscopy

    SciTech Connect

    Ribiere, M.; Mees, L.; Allano, D.; Cheron, B. G.

    2008-08-15

    An atmospheric aluminum laser induced plasma is investigated by means of absorption and emission spectroscopies in the near ultraviolet range. The absorbed radiation is produced by a second aluminum laser induced plasma, which is generated at adjustable time delay. The measurements of both ground and resonant state number densities are derived from the fitting of the experimental 308.21 nm ({sup 2}P{sub 1/2}{sup 0}-{sup 2}D{sub 3/2}) and 396.15 nm ({sup 2}P{sub 3/2}{sup 0}-{sup 2}S{sub 1/2}) line absorption profiles on the numerical solution of the radiative transfer equation. Owing to the dominant role played by the Stark effect in the line broadening and shifting, the calculation also provides the evolution in time and in space of the free electron density along the line of sight. More classically, the same method is applied to the emission profiles which exhibit strong self-absorbed shapes. The reliability of the results derived from both absorption and emission experiments is analyzed and the origin of the asymmetric shape of the absorption lines is discussed.

  5. Force spectroscopy with dual-trap optical tweezers: molecular stiffness measurements and coupled fluctuations analysis.

    PubMed

    Ribezzi-Crivellari, M; Ritort, F

    2012-11-07

    Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Force Spectroscopy with Dual-Trap Optical Tweezers: Molecular Stiffness Measurements and Coupled Fluctuations Analysis

    PubMed Central

    Ribezzi-Crivellari, M.; Ritort, F.

    2012-01-01

    Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies. PMID:23199920

  7. Dynamic analysis of trapping and escaping in dual beam optical trap

    NASA Astrophysics Data System (ADS)

    Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu

    2016-10-01

    In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.

  8. Principal component analysis on chemical abundances spaces

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Freeman, Kenneth C.; Kobayashi, Chiaki; De Silva, Gayandhi M.; Bland-Hawthorn, Joss

    2012-04-01

    In preparation for the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) chemical tagging survey of about a million Galactic FGK stars, we estimate the number of independent dimensions of the space defined by the stellar chemical element abundances [X/Fe]. This leads to a way to study the origin of elements from observed chemical abundances using principal component analysis. We explore abundances in several environments, including solar neighbourhood thin/thick disc stars, halo metal-poor stars, globular clusters, open clusters, the Large Magellanic Cloud and the Fornax dwarf spheroidal galaxy. By studying solar-neighbourhood stars, we confirm the universality of the r-process that tends to produce [neutron-capture elements/Fe] in a constant ratio. We find that, especially at low metallicity, the production of r-process elements is likely to be associated with the production of α-elements. This may support the core-collapse supernovae as the r-process site. We also verify the overabundances of light s-process elements at low metallicity, and find that the relative contribution decreases at higher metallicity, which suggests that this lighter elements primary process may be associated with massive stars. We also verify the contribution from the s-process in low-mass asymptotic giant branch (AGB) stars at high metallicity. Our analysis reveals two types of core-collapse supernovae: one produces mainly α-elements, the other produces both α-elements and Fe-peak elements with a large enhancement of heavy Fe-peak elements which may be the contribution from hypernovae. Excluding light elements that may be subject to internal mixing, K and Cu, we find that the [X/Fe] chemical abundance space in the solar neighbourhood has about six independent dimensions both at low metallicity (-3.5 ≲ [Fe/H] ≲-2) and high metallicity ([Fe/H] ≳-1). However the dimensions come from very different origins in these two cases. The extra contribution from low-mass AGB

  9. Evaluation of Thermo-Mechanical Stability of COTS Dual-Axis MEMS Accelerometers for Space Applications

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Teverovksy, Alexander; Day, John H. (Technical Monitor)

    2000-01-01

    Microelectromechanical systems in MEMS is one of the fastest growing technologies in microelectronics, and is of great interest for military and aerospace applications. Accelerometers are the earliest and most developed representatives of MEMS. First demonstrated in 1979, micromachined accelerometers were used in automobile industry for air bag crash- sensing applications since 1990. In 1999, N4EMS accelerometers were used in NASA-JPL Mars Microprobe. The most developed accelerometers for airbag crash- sensing are rated for a full range of +/- 50 G. The range of sensitivity for accelerometers required for military or aerospace applications is much larger, varying from 20,000 G (to measure acceleration during gun and ballistic munition launches), and to 10(exp -6) G, when used as guidance sensors (to measure attitude and position of a spacecraft). The presence of moving parts on the surface of chip is specific to MEMS, and particularly, to accelerometers. This characteristic brings new reliability issues to micromachined accelerometers, including cyclic fatigue cracking of polysilicon cantilevers and springs, mechanical stresses that are caused by packaging and contamination in the internal cavity of the package. Studies of fatigue cracks initiation and growth in polysilicon showed that the fatigue damage may influence MEMS device performance, and the presence of water vapor significantly enhances crack initiation and growth. Environmentally induced failures, particularly, failures due to thermal cycling and mechanical shock are considered as one of major reliability concerns in MEMS. These environmental conditions are also critical for space applications of the parts. For example, the Mars pathfinder mission had experienced 80 mechanical shock events during the pyrotechnic separation processes.

  10. Conformational analysis of proteins with a dual polarisation silicon microring.

    PubMed

    Hoste, J-W; Werquin, S; Claes, T; Bienstman, P

    2014-02-10

    Optical microresonator biosensors have proven to be a valid tool to perform affinity analysis of a biological binding event. However, when these microresonators are excited with a single optical mode they can not distinguish between a thin dense layer of biomolecules or a thick sparse layer. This means the sensor is "blind" to changes in shape of bound biomolecules. We succeeded in exciting a Silicon-on-Insulator (SOI) microring with TE and TM polarisations simultaneously by using an asymmetrical directional coupler and as such were able to separately determine the thickness and the density (or refractive index) of a bound biolayer. A proof-of-concept is given by determining both parameters of deposited dielectric layers and by analysing the conformational changes of Bovine Serum Albumin (BSA) proteins due to a change in pH of the buffer.

  11. Link-space formalism for network analysis.

    PubMed

    Smith, David M D; Lee, Chiu Fan; Onnela, Jukka-Pekka; Johnson, Neil F

    2008-03-01

    We introduce the link-space formalism for analyzing network models with degree-degree correlations. The formalism is based on a statistical description of the fraction of links l(i,j) connecting nodes of degrees i and j. To demonstrate its use, we apply the framework to some pedagogical network models, namely, random attachment, Barabási-Albert preferential attachment, and the classical Erdos and Rényi random graph. For these three models the link-space matrix can be solved analytically. We apply the formalism to a simple one-parameter growing network model whose numerical solution exemplifies the effect of degree-degree correlations for the resulting degree distribution. We also employ the formalism to derive the degree distributions of two very simple network decay models, more specifically, that of random link deletion and random node deletion. The formalism allows detailed analysis of the correlations within networks and we also employ it to derive the form of a perfectly nonassortative network for arbitrary degree distribution.

  12. Target Analysis for the Twinkle Space Mission

    NASA Astrophysics Data System (ADS)

    Rice, Malena; Tinetti, Giovanna; Zingales, Tiziano; Twinkle Consortium

    2016-10-01

    Twinkle is a dedicated exoplanet space mission planned for launch in 2019 to observe and characterize the atmospheres of planets around F, G, K, and M type stars. By obtaining high-resolution near-infrared transit spectra (0.5 - 4.5 microns), Twinkle will identify molecules of interest within planetary atmospheres. Twinkle will provide critical data for the characterization of individual exoplanets, leading to an improved understanding of planetary systems as a whole. In this study, we provide an analysis of potential targets for the Twinkle space mission, and we find that the spacecraft will be capable of observing a wide range of planet types, including Earths, Super Earths, Sub Neptunes, Large Neptunes, and Hot Jupiters. We discuss the population distribution of observable targets in terms of planet temperature and radius, host star temperature, and observation time necessary to achieve the desired signal-to-noise ratios. We also include sample Twinkle spectra from a simulated data set, as well as an example retrieval using the TauRex program to retrieve molecules in these simulated spectra. We conclude with a discussion of these results and their implications for the Twinkle mission.

  13. Passivity analysis for flexible multilink space manipulators

    NASA Astrophysics Data System (ADS)

    Damaren, Christopher J.

    1995-03-01

    The important input-output property of passivity is explored for a general flexible space manipulator with chain topology. The manipulator is assumed to consist of rigid and/or flexible links interconnected via revolute joints, and a free rigid spacecraft and cantilevered payload are modeled at the base and tip, respectively. Actuation on the spacecraft and torques at the joints serve as control inputs and a suitably modified input variable is constructed. The notion of reflected tip position introduced by Wang and Vidyasagar for a single flexible link is extended to the multilink case and used to define a corresponding modified output variable. The dynamics governing the system are developed using a Lagrangian approach and both linearized and nonlinear forms of the mapping relating modified inputs to modified outputs are examined. Our major result shows that the transfer function in the linear case is positive real when the spacecraft and payload are much more massive than the manipulator links. The corresponding nonlinear analysis shows that the mapping is, in fact, passive and uncovers an approximate static relationship between the elastic coordinates and applied torques. A numerical example employing the Space Shuttle, remote manipulator system, and payload is used to demonstrate the validity of the theoretical results. Applications to control system design are indicated.

  14. Abstract folding space analysis based on helices

    PubMed Central

    Huang, Jiabin; Backofen, Rolf; Voß, Björn

    2012-01-01

    RNA has many pivotal functions especially in the regulation of gene expression by ncRNAs. Identification of their structure is an important requirement for understanding their function. Structure prediction alone is often insufficient for this task, due to algorithmic problems, parameter inaccuracies, and biological peculiarities. Among the latter, there are base modifications, cotranscriptional folding leading to folding traps, and conformational switching as in the case of riboswitches. All these require more in-depth analysis of the folding space. The major drawback, which all methods have to cope with, is the exponential growth of the folding space. Therefore, methods are often limited in the sequence length they can analyze, or they make use of heuristics, sampling, or abstraction. Our approach adopts the abstraction strategy and remedies some problems of existing methods. We introduce a position-specific abstraction based on helices that we term helix index shapes, or hishapes for short. Utilizing a dynamic programming framework, we have implemented this abstraction in the program RNAHeliCes. Furthermore, we developed two hishape-based methods, one for energy barrier estimation, called HiPath, and one for abstract structure comparison, termed HiTed. We demonstrate the superior performance of HiPath compared to other existing methods and the competitive accuracy of HiTed. RNAHeliCes, together with HiPath and HiTed, are available for download at http://www.cyanolab.de/software/RNAHeliCes.htm. PMID:23104999

  15. Dual Analysis for Mycobacteria and Propionibacteria in Sarcoidosis BAL

    PubMed Central

    Oswald-Richter, Kyra A.; Beachboard, Dia C.; Seeley, Erin H.; Abraham, Susamma; Shepherd, Bryan E.; Jenkins, Cathy A.; Culver, Daniel A.; Caprioli, Richard M.; Drake, Wonder P.

    2012-01-01

    Purpose Sarcoidosis is a non-caseating granulomatous disease for which a role for infectious antigens continues to strengthen. Recent studies have reported molecular evidence of mycobacteria or propionibacteria. We assessed for immune responses against mycobacterial and propionibacterial antigens in sarcoidosis bronchoalveolar lavage (BAL) using flow cytometry, and localized signals consistent with microbial antigens with sarcoidosis specimens, using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS). Methods BAL cells from 27 sarcoidosis, 14 PPD- controls, and 9 subjects with nontuberculosis mycobacterial (NTM) infections were analyzed for production of IFN-γ after stimulation with mycobacterial ESAT-6 and Propionibacterium acnes proteins. To complement the immunological data, MALDI-IMS was performed to localize ESAT-6 and Propionibacterium acnes signals within sarcoidosis and control specimens. Results CD4+ immunologic analysis for mycobacteria was positive in 17/27 sarcoidosis subjects, compared to 2/14 PPD-subjects, and 5/9 NTM subjects (p=00.008 and p=00.71 respectively, Fisher's exact test). There was no significant difference for recognition of P. acnes, which occurred only in sarcoidosis subjects that also recognized ESAT-6. Similar results were also observed for the CD8+ immunologic analysis. MALDI-IMS localized signals consistent with ESAT-6 only within sites of granulomatous inflammation, whereas P. acnes signals were distributed throughout the specimen. Conclusions MALDI-IMS localizes signals consistent with ESAT-6 to sarcoidosis granulomas, whereas no specific localization of P. acnes signals is detected. Immune responses against both mycobacterial and P. acnes are present within sarcoidosis BAL, but only mycobacterial signals are distinct from disease controls. These immunologic and molecular investigations support further investigation of the microbial community within sarcoidosis granulomas. PMID:22552860

  16. Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall

    NASA Astrophysics Data System (ADS)

    Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo

    2013-04-01

    Recently, the necessity for rainfall estimation and forecasting using the radar is being highlighted, due to the frequent occurrence of torrential rainfall resulting from abnormal changes of weather. Radar rainfall data represents temporal and spatial distributions properly and replace the existing rain gauge networks. It is also frequently applied in many hydrologic field researches. However, the radar rainfall data has an accuracy limitation since it estimates rainfall, by monitoring clouds and precipitation particles formed around the surface of the earth(1.5-3km above the surface) or the atmosphere. In a condition like Korea where nearly 70% of the land is covered by mountainous areas, there are lots of restrictions to use rainfall radar, because of the occurrence of beam blocking areas by topography. This study is aiming at analyzing runoff and examining the applicability of (R(Z), R(ZDR) and R(KDP)) provided by the Han River Flood Control Office(HRFCO) based on the basin elevation of Nakdong river watershed. For this purpose, the amount of radar rainfall of each rainfall event was estimated according to three sub-basins of Nakdong river watershed with the average basin elevation above 400m which are Namgang dam, Andong dam and Hapcheon dam and also another three sub-basins with the average basin elevation below 150m which are Waegwan, Changryeong and Goryeong. After runoff analysis using a distribution model, Vflo model, the results were reviewed and compared with the observed runoff. This study estimated the rainfall by using the radar-rainfall transform formulas, (R(Z), R(Z,ZDR) and R(Z,ZDR,KDP) for four stormwater events and compared the results with the point rainfall of the rain gauge. As the result, it was overestimated or underestimated, depending on rainfall events. Also, calculation indicates that the values from R(Z,ZDR) and R(Z,ZDR,KDP) relatively showed the most similar results. Moreover the runoff analysis using the estimated radar rainfall is

  17. James Webb Space Telescope Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Yoon, Sungpil; Rosales, Jose; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-Earth/Moon L2 libration point, 1.5 million km away from Earth. This paper describes the results of an orbit determination (OD) analysis of the JWST mission emphasizing the challenges specific to this mission in various mission phases. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate OD solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cm/sec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.

  18. Reachability Analysis Applied to Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Holzinger, M.; Scheeres, D.

    Several existing and emerging applications of Space Situational Awareness (SSA) relate directly to spacecraft Rendezvous, Proximity Operations, and Docking (RPOD) and Formation / Cluster Flight (FCF). When multiple Resident Space Ob jects (RSOs) are in vicinity of one another with appreciable periods between observations, correlating new RSO tracks to previously known objects becomes a non-trivial problem. A particularly difficult sub-problem is seen when long breaks in observations are coupled with continuous, low- thrust maneuvers. Reachability theory, directly related to optimal control theory, can compute contiguous reachability sets for known or estimated control authority and can support such RSO search and correlation efforts in both ground and on-board settings. Reachability analysis can also directly estimate the minimum control authority of a given RSO. For RPOD and FCF applications, emerging mission concepts such as fractionation drastically increase system complexity of on-board autonomous fault management systems. Reachability theory, as applied to SSA in RPOD and FCF applications, can involve correlation of nearby RSO observations, control authority estimation, and sensor track re-acquisition. Additional uses of reachability analysis are formation reconfiguration, worst-case passive safety, and propulsion failure modes such as a "stuck" thruster. Existing reachability theory is applied to RPOD and FCF regimes. An optimal control policy is developed to maximize the reachability set and optimal control law discontinuities (switching) are examined. The Clohessy-Wiltshire linearized equations of motion are normalized to accentuate relative control authority for spacecraft propulsion systems at both Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO). Several examples with traditional and low thrust propulsion systems in LEO and GEO are explored to illustrate the effects of relative control authority on the time-varying reachability set surface. Both

  19. Analysis method and principle of dual-mode electro-mechanical variable transmission program

    NASA Astrophysics Data System (ADS)

    Li, Hongcai; Yan, Qingdong; Xiang, Changle; Wang, Weida

    2012-05-01

    Automotive industry, as an important pillar of the national economy, has been rapidly developing in recent years. But proplems such as energy comsumption and environmental pollution are posed at the same time. Electro-mechanical variable transmission system is considered one of avilable workarounds. It is brought forward a kind of design methods of dual-mode electro-mechanical variable transmission system rotational speed characteristics and dual-mode drive diagrams. With the motor operating behavior of running in four quadrants and the speed characteristics of the simple internal and external meshing single planetary gear train, four kinds of dual-mode electro-mechanical transmission system scheme are designed. And the velocity, torque and power characteristics of one of the programs are analyzed. The magnitude of the electric split-flow power is an important factor which influences the system performance, so in the parameters matching design, it needs to reduce the power needs under the first mode of the motor. The motor, output rotational speed range and the position of the mode switching point have relationships with the characteristics design of the planetary gear set. The analysis method is to provide a reference for hybrid vehicles' design. As the involved rotational speed and torque relationships are the natural contact of every part of transmission system, a theory basis of system program and performance analysis is provided.

  20. Dual-energy x-ray image decomposition by independent component analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  1. Image analysis using a dual-tree M-band wavelet transform.

    PubMed

    Chaux, Caroline; Duval, Laurent; Pesquet, Jean-Christophe

    2006-08-01

    We propose a two-dimensional generalization to the M-band case of the dual-tree decomposition structure (initially proposed by Kingsbury and further investigated by Selesnick) based on a Hilbert pair of wavelets. We particularly address: 1) the construction of the dual basis and 2) the resulting directional analysis. We also revisit the necessary pre-processing stage in the M-band case. While several reconstructions are possible because of the redundancy of the representation, we propose a new optimal signal reconstruction technique, which minimizes potential estimation errors. The effectiveness of the proposed M-band decomposition is demonstrated via denoising comparisons on several image types (natural, texture, seismics), with various M-band wavelets and thresholding strategies. Significant improvements in terms of both overall noise reduction and direction preservation are observed.

  2. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.

    PubMed

    Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong

    2016-04-04

    A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  3. Microchemical Analysis Of Space Operation Debris

    NASA Technical Reports Server (NTRS)

    Cummings, Virginia J.; Kim, Hae Soo

    1995-01-01

    Report discusses techniques used in analyzing debris relative to space shuttle operations. Debris collected from space shuttle, expendable launch vehicles, payloads carried by space shuttle, and payloads carried by expendable launch vehicles. Optical microscopy, scanning electron microscopy with energy-dispersive spectrometry, analytical electron microscopy with wavelength-dispersive spectrometry, and X-ray diffraction chosen as techniques used in examining samples of debris.

  4. WHB/WTB SPACE PROGRAM ANALYSIS FOR SITE RECOMMENDATION

    SciTech Connect

    W.D. Lindholm

    2000-05-25

    The purpose of this analysis is to identify and evaluate the functional space and spatial relationship requirements for the two main nuclear buildings, the Waste Handling Building (WHB) and the Waste Treatment Building (WTB), which are part of the Repository Surface Facilities. This analysis is consistent with the Development Plan for ''WHB/WTB Space Program Analysis for Site Recommendation'' (CRWMS M&O 2000r), which concentrates on the primary, primary support, facility support, and miscellaneous building support areas located in the WHB and WTB. The development plan was completed in accordance with AP-2.134, ''Technical Product Development Planning''. The objective and scope of this analysis is to develop a set of spatial parameters (e.g., square footage, room heights, etc.) and layout requirements (e.g., adjacency and access/circulation requirements, etc.) from which preliminary building floor plans are developed and presented as figures. The resulting figures will provide information to support the Site Recommendation and the total system life cycle cost. This analysis uses the Viability Assessment (VA) ''Surface Nuclear Facilities Space Program Analysis'' (SPA) (CRWMS M&O 1997c) as the baseline reference document and further develops the functional requirements based on Project-directed changes, including incorporation of a new design basis waste stream and the applicable elements of Enhanced Design Alternative (EDA)-II, as identified in the ''License Application Design Selection Report'' (CRWMS M&O 1999e), which followed the initial SPA (baseline). The impacts of the EDA-II were almost entirely to the WHB. To meet the EDA-II thermal requirements, hotter fuel would be handled, therefore requiring a fuel-blending pool to be added to the WHB in order to age the hotter he1 at the repository and provide for commercial spent nuclear fuel (CSNF) blending. In addition to EDA-II recommendations, the waste stream was modified, including the elimination of approximately

  5. James Webb Space Telescope Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Yoon, Sungpil; Rosales, Jose; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-EarthMoon L2 libration point, 1.5 million km away from Earth. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate orbit determination (OD) solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cmsec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.

  6. Space construction system analysis. Part 2: Cost and programmatics

    NASA Technical Reports Server (NTRS)

    Vonflue, F. W.; Cooper, W.

    1980-01-01

    Cost and programmatic elements of the space construction systems analysis study are discussed. The programmatic aspects of the ETVP program define a comprehensive plan for the development of a space platform, the construction system, and the space shuttle operations/logistics requirements. The cost analysis identified significant items of cost on ETVP development, ground, and flight segments, and detailed the items of space construction equipment and operations.

  7. International Space Station Modal Correction Analysis

    NASA Technical Reports Server (NTRS)

    Fotz[atrocl. Lrostom; Grugoer. < ocjae; Laible, Michael; Sugavanam, Sujatha

    2012-01-01

    This paper summarizes the on-orbit modal test and the related modal analysis, model validation and correlation performed for the ISS Stage ULF4, DTF S4-1A, October 11,2010, GMT 284/06:13:00.00. The objective of this analysis is to validate and correlate analytical models with the intent to verify the ISS critical interface dynamic loads and improve fatigue life prediction. For the ISS configurations under consideration, on-orbit dynamic responses were collected with Russian vehicles attached and without the Orbiter attached to the ISS. ISS instrumentation systems that were used to collect the dynamic responses during the DTF S4-1A included the Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS), Structural Dynamic Measurement System (SDMS), Space Acceleration Measurement System (SAMS), Inertial Measurement Unit (IMU) and ISS External Cameras. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping and mode shape information. Correlation and comparisons between test and analytical modal parameters were performed to assess the accuracy of models for the ISS configuration under consideration. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. Section 2.0 of this report presents the math model used in the analysis. This section also describes the ISS configuration under consideration and summarizes the associated primary modes of interest along with the fundamental appendage modes. Section 3.0 discusses the details of the ISS Stage ULF4 DTF S4-1A test. Section 4.0 discusses the on-orbit instrumentation systems that were used in the collection of the data analyzed in this paper. The modal analysis approach and results used in the analysis of the collected data are summarized in Section 5.0. The model correlation and validation effort is reported in Section 6.0. Conclusions and

  8. Military Space Control: An Intuitive Analysis

    DTIC Science & Technology

    2004-04-01

    information dominance is the impetus for an increasing military dependence on space services. This reliance on space systems is compelling military decision makers to make key strategic choices about the future of space control. The purpose of this paper is to analyze major aspects of military space control strategy and determine if U.S. initiatives are on track to meet the needs of the warfighter. To analyze U.S. military space control strategy, this research takes an intuitive approach based on a methodology introduced by Newman, Logan, and Hegarty in their book,

  9. Performance requirements analysis for payload delivery from a space station

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Soldner, J. K.; Bell, J. (Editor); Ricks, G. W.; Kincade, R. E.; Deatkins, D.; Reynolds, R.; Nader, B. A.; Hill, O.; Babb, G. R.

    1983-01-01

    Operations conducted from a space station in low Earth orbit which have different constraints and opportunities than those conducted from direct Earth launch were examined. While a space station relieves many size and performance constraints on the space shuttle, the space station's inertial orbit has different launch window constraints from those associated with customary Earth launches which reflect upon upper stage capability. A performance requirements analysis was developed to provide a reference source of parametric data, and specific case solutions and upper stage sizing trade to assist potential space station users and space station and upper stage developers assess the impacts of a space station on missions of interest.

  10. Performance analysis of a dual-buffer architecture for digital flow cytometry.

    PubMed

    Murthi, Shiva; Sankaranarayanan, Sundararajan; Xia, Bo; Lambert, Georgina M; Rodríguez, Jeffrey J; Galbraith, David W

    2005-08-01

    Most current commercial flow cytometers employ analog circuitry to provide feature values describing the pulse waveforms produced from suspended cells and particles. This restricts the type of features that can be extracted (typically pulse height, width, and integral) and consequently places a limit on classification performance. In previous work, we described a first-generation digital data acquisition and processing system that was used to demonstrate the classification advantages provided by the extraction of additional waveform features. An improved version of the system is discussed in this paper, focusing on dual-buffering to ensure increased pulse capture. A mathematical model of the system is also presented for performance analysis. The second-generation system incorporates fast digitization of analog pulse waveforms, instantaneous pulse detection hardware, and a novel dual-buffering scheme. A mathematical model of the system was developed to theoretically compute the capture-rate performance. The capture rate of the system was theoretically analyzed and empirically measured. Under typical conditions, a capture rate of 8,000 pulses/s was experimentally achieved. Based on these results, the dual-buffer architecture shows great potential for use in flow cytometry. (c) 2005 Wiley-Liss, Inc.

  11. A Priori Analysis of Flamelet-Based Modeling for a Dual-Mode Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; McDaniel, James C.; Drozda, Tomasz G.; Lacaze, Guilhem; Oefelein, Joseph

    2014-01-01

    An a priori investigation of the applicability of flamelet-based combustion models to dual-mode scramjet combustion was performed utilizing Reynolds-averaged simulations (RAS). For this purpose, the HIFiRE Direct Connect Rig (HDCR) flowpath, fueled with a JP-7 fuel surrogate and operating in dual- and scram-mode was considered. The chemistry of the JP-7 fuel surrogate was modeled using a 22 species, 18-step chemical reaction mechanism. Simulation results were compared to experimentally-obtained, time-averaged, wall pressure measurements to validate the RAS solutions. The analysis of the dual-mode operation of this flowpath showed regions of predominately non-premixed, high-Damkohler number, combustion. Regions of premixed combustion were also present but associated with only a small fraction of the total heat-release in the flow. This is in contrast to the scram-mode operation, where a comparable amount of heat is released from non-premixed and premixed combustion modes. Representative flamelet boundary conditions were estimated by analyzing probability density functions for temperature and pressure for pure fuel and oxidizer conditions. The results of the present study reveal the potential for a flamelet model to accurately model the combustion processes in the HDCR and likely other high-speed flowpaths of engineering interest.

  12. A dual analysis for recycled particulate composites: linking micro- and macro-mechanics

    SciTech Connect

    Avila, Antonio F.; Rodrigues, Paulo C.M.; Santos, Dagoberto B.; Faria, Ana C.A

    2003-06-15

    The large amount of disposable bottles produced nowadays makes imperative the search for alternative procedures for recycling them since they are not biodegradable. This paper takes into consideration the thermomechanical recycling of post-consumed plastic bottles, especially the ones made of polyethylene terephthalate (PET) and high-density polyethylene (HDPE), and their use as composite materials for engineering applications. As changes on the composite's microstructure can have an influence on macroscopic behavior, a new type of analysis is needed. To be able to evaluate the composite performance, a dual analysis procedure was developed. It consists of a micro-mechanical analysis where the microstructure is observed by optical microscopy, and variations in morphology are related to composite overall mechanical behavior. The macro-mechanical analysis is performed by ASTM D 3039/3039 M tensile tests. By doing this, the composite effective moduli can be determined. The new composite seems to be encouraging, i.e., an HDPE/PET composite with 40:60 ratio, in weight, experiments a stiffness recovery from the third to the fourth recycle. Moreover, the dual analysis was able to capture this variation.

  13. Single Superficial versus Dual Systems Venous Anastomoses in Radial Forearm Free Flap: A Meta-Analysis

    PubMed Central

    Bai, Shuang; Xu, Zhong-Fei; Duan, Wei-Yi; Liu, Fa-Yu; Huang, Dong-Hui; Sun, Chang-Fu

    2015-01-01

    Background The radial forearm free flap (RFFF) has been widely used with increasing frequency in head and neck reconstruction following extirpative surgery. The controversy of the venous anastomoses patterns still exists. Thus, we conducted a meta-analysis to assess the relationship between the venous anastomoses patterns and venous compromise. Methods MEDLINE, PubMed, Web of Science, and Wanfang databases were searched for studies reporting the different venous anastomoses patterns of the RFFF. A meta-analysis was conducted using the random effects models. Publication bias and sensitivity analysis were also assessed. Results 6 studies with 992 cases were included in this meta-analysis. The dual anastomosis group tended to have a lower incidence of venous compromise (RR = 1.39). However, the difference was not statistically significant (95%CI: 0.59, 3.24). Conclusions This meta-analysis indicated that performing dual venous anatomoses consisting of superficial and deep systems conferred a tendency of the reduction with regard to venous compromise. PMID:26270854

  14. Improved Persistent Scatterer analysis using Amplitude Dispersion Index optimization of dual polarimetry data

    NASA Astrophysics Data System (ADS)

    Esmaeili, Mostafa; Motagh, Mahdi

    2016-07-01

    Time-series analysis of Synthetic Aperture Radar (SAR) data using the two techniques of Small BAseline Subset (SBAS) and Persistent Scatterer Interferometric SAR (PSInSAR) extends the capability of conventional interferometry technique for deformation monitoring and mitigating many of its limitations. Using dual/quad polarized data provides us with an additional source of information to improve further the capability of InSAR time-series analysis. In this paper we use dual-polarized data and combine the Amplitude Dispersion Index (ADI) optimization of pixels with phase stability criterion for PSInSAR analysis. ADI optimization is performed by using Simulated Annealing algorithm to increase the number of Persistent Scatterer Candidate (PSC). The phase stability of PSCs is then measured using their temporal coherence to select the final sets of pixels for deformation analysis. We evaluate the method for a dataset comprising of 17 dual polarization SAR data (HH/VV) acquired by TerraSAR-X data from July 2013 to January 2014 over a subsidence area in Iran and compare the effectiveness of the method for both agricultural and urban regions. The results reveal that using optimum scattering mechanism decreases the ADI values in urban and non-urban regions. As compared to single-pol data the use of optimized polarization increases initially the number of PSCs by about three times and improves the final PS density by about 50%, in particular in regions with high rate of deformation which suffer from losing phase stability over the time. The classification of PS pixels based on their optimum scattering mechanism revealed that the dominant scattering mechanism of the PS pixels in the urban area is double-bounce while for the non-urban regions (ground surfaces and farmlands) it is mostly single-bounce mechanism.

  15. High efficiency tandem mass spectrometry analysis using dual linear ion traps.

    PubMed

    Li, Linfan; Zhou, Xiaoyu; Hager, James W; Ouyang, Zheng

    2014-10-07

    Tandem mass spectrometry (MS/MS) plays an essential role in modern chemical analysis. It is used for differentiating isomers and isobars and suppressing chemical noise, which allows high precision quantitation. The MS/MS analysis has been typically applied by isolating the target precursor ions, while disregarding other ions, followed by a fragmentation process that produces the product ions. In this study, configurations of dual linear ion traps were explored to develop high efficiency MS/MS analysis. The ions trapped in the first linear ion trap were axially, mass-selectively transferred to the second linear ion trap for MS/MS analysis. Ions from multiple compounds simultaneously introduced into the mass spectrometer could be sequentially analyzed. This development enables highly efficient use of the sample. For miniature ion trap mass spectrometers with discontinuous atmospheric pressure interfaces, the analysis speed and the quantitation precision can be significantly improved.

  16. FDMA system design and analysis for Space Station

    NASA Technical Reports Server (NTRS)

    Tsang, Chit-Sang; Chie, Chak-Ming; Ratliff, James E.

    1986-01-01

    Space Station FDMA communications system requirements, design, and analysis are addressed. The analysis is primarily based on numerical results generated by a computer simulation system called SCSS. The time-line communications performance during real time mission operation is also discussed. The purpose of this paper is three-fold: introduction to Space Station multiple access communications system requirements, demonstration of system analysis by a computer tool, and design of an FDMA communications system for the Space Station.

  17. Endoscopic image analysis in semantic space.

    PubMed

    Kwitt, R; Vasconcelos, N; Rasiwasia, N; Uhl, A; Davis, B; Häfner, M; Wrba, F

    2012-10-01

    A novel approach to the design of a semantic, low-dimensional, encoding for endoscopic imagery is proposed. This encoding is based on recent advances in scene recognition, where semantic modeling of image content has gained considerable attention over the last decade. While the semantics of scenes are mainly comprised of environmental concepts such as vegetation, mountains or sky, the semantics of endoscopic imagery are medically relevant visual elements, such as polyps, special surface patterns, or vascular structures. The proposed semantic encoding differs from the representations commonly used in endoscopic image analysis (for medical decision support) in that it establishes a semantic space, where each coordinate axis has a clear human interpretation. It is also shown to establish a connection to Riemannian geometry, which enables principled solutions to a number of problems that arise in both physician training and clinical practice. This connection is exploited by leveraging results from information geometry to solve problems such as (1) recognition of important semantic concepts, (2) semantically-focused image browsing, and (3) estimation of the average-case semantic encoding for a collection of images that share a medically relevant visual detail. The approach can provide physicians with an easily interpretable, semantic encoding of visual content, upon which further decisions, or operations, can be naturally carried out. This is contrary to the prevalent practice in endoscopic image analysis for medical decision support, where image content is primarily captured by discriminative, high-dimensional, appearance features, which possess discriminative power but lack human interpretability. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Space Shuttle Columbia Aging Wiring Failure Analysis

    NASA Technical Reports Server (NTRS)

    McDaniels, Steven J.

    2005-01-01

    A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.

  19. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics.

    PubMed

    Pujol-Vila, F; Vigués, N; Díaz-González, M; Muñoz-Berbel, X; Mas, J

    2015-05-15

    Global urban and industrial growth, with the associated environmental contamination, is promoting the development of rapid and inexpensive general toxicity methods. Current microbial methodologies for general toxicity determination rely on either bioluminescent bacteria and specific medium solution (i.e. Microtox(®)) or low sensitivity and diffusion limited protocols (i.e. amperometric microbial respirometry). In this work, fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics is presented, using Escherichia coli as a bacterial model. Ferricyanide reduction kinetic analysis (variation of ferricyanide absorption with time), much more sensitive than single absorbance measurements, allowed for direct and fast toxicity determination without pre-incubation steps (assay time=10 min) and minimizing biomass interference. Dual wavelength analysis at 405 (ferricyanide and biomass) and 550 nm (biomass), allowed for ferricyanide monitoring without interference of biomass scattering. On the other hand, refractive index (RI) matching with saccharose reduced bacterial light scattering around 50%, expanding the analytical linear range in the determination of absorbent molecules. With this method, different toxicants such as metals and organic compounds were analyzed with good sensitivities. Half maximal effective concentrations (EC50) obtained after 10 min bioassay, 2.9, 1.0, 0.7 and 18.3 mg L(-1) for copper, zinc, acetic acid and 2-phenylethanol respectively, were in agreement with previously reported values for longer bioassays (around 60 min). This method represents a promising alternative for fast and sensitive water toxicity monitoring, opening the possibility of quick in situ analysis.

  20. Hydrological analysis of single and dual storage systems for stormwater harvesting.

    PubMed

    Brodie, I M

    2008-01-01

    As stormwater flows are intermittent, the requirement to store urban runoff is important to the design of a stormwater re-use scheme. In many urban areas, the space available to provide storage is limited and thus the need to optimise the storage volume becomes critical. This paper will highlight the advantages and disadvantages of two different approaches of providing storage: 1) a single shallow storage (0.5 m depth) in which stormwater capture and a balanced release to supply users is provided by the one unit; and 2) a dual system in which the functions of stormwater capture and supply release are provided by two separate deeper storage units (2 m depth). The comparison between the two strategies is supported by water balance modelling assessing the supply reliability and storage volume requirements for both options. Above a critical volumetric capacity, the supply yield of a dual storage system is higher than that from a single storage of equal volume mainly because of a smaller assumed footprint. The single storage exhibited greater evaporation loss and is more susceptible to algae blooms due to long water residence times. Results of the comparison provide guidance to the design of more efficient storages associated with stormwater harvesting systems. Copyright IWA Publishing 2008.

  1. Analysis of Big Data from Space

    NASA Astrophysics Data System (ADS)

    Tan, J.; Osborne, B.

    2017-09-01

    Massive data have been collected through various space mission. To maximize the investment, the data need to be exploited to the fullest. In this paper, we address key topics on big data from space about the status and future development using the system engineering method. First, we summarized space data including operation data and mission data, on their sources, access way, characteristics of 5Vs and application models based on the concept of big data, as well as the challenges they faced in application. Second, we gave proposals on platform design and architecture to meet the demand and challenges on space data application. It has taken into account of features of space data and their application models. It emphasizes high scalability and flexibility in the aspects of storage, computing and data mining. Thirdly, we suggested typical and promising practices for space data application, that showed valuable methodologies for improving intelligence on space application, engineering, and science. Our work will give an interdisciplinary knowledge to space engineers and information engineers.

  2. Analysis of space telescope data collection systems

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.

    1984-01-01

    The Multiple Access (MA) communication link of the Space Telescope (ST) is described. An expected performance bit error rate is presented. The historical perspective and rationale behind the ESTL space shuttle end-to-end tests are given. The concatenated coding scheme using a convolutional encoder for the outer coder is developed. The ESTL end-to-end tests on the space shuttle communication link are described. Most important is how a concatenated coding system will perform. This is a go-no-go system with respect to received signal-to-noise ratio. A discussion of the verification requirements and Specification document is presented, and those sections that apply to Space Telescope data and communications system are discussed. The Space Telescope System consists of the Space Telescope Orbiting Observatory (ST), the Space Telescope Science Institute, and the Space Telescope Operation Control Center. The MA system consists of the ST, the return link from the ST via the Tracking and Delay Relay Satellite system to White Sands, and from White Sands via the Domestic Communications Satellite to the STOCC.

  3. Analysis of Space Coherent LIDAR Wind Mission

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1997-01-01

    An evaluation of the performance of a coherent Doppler lidar proposed by a team comprising the NASA Marshall Space Flight Center, Lockheed Martin Space Company, University of Wisconsin and Los Alamos National Laboratory to NASA's Earth System Science Pathfinder (ESSP) program was performed. The design went through several iterations and only the performance of the final design is summarized here.

  4. Economic analysis of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.

    1972-01-01

    Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.

  5. Navigation accuracy analysis for the Halley flyby phase of a dual comet mission using ion drive

    NASA Technical Reports Server (NTRS)

    Wood, L. J.; Hast, S. L.

    1980-01-01

    A dual comet (Halley Flyby/Tempel 2 Rendezvous) mission, making use of the solar electric propulsion system, is under consideration for a 1985 launch. This paper presents navigation accuracy analysis results for the Halley flyby phase of this mission. Orbit determination and guidance accuracies are presented for the baseline navigation strategy, along with the results of a number of sensitivity studies involving parameters such as data frequencies, data accuracies, ion drive thrust vector errors, comet ephemeris uncertainties, time lags associated with data processing and command sequence generation, probe release time, and navigation coast arc duration.

  6. Phase analysis on dual-phase steel using band slope of electron backscatter diffraction pattern.

    PubMed

    Kang, Jun-Yun; Park, Seong-Jun; Moon, Man-Been

    2013-08-01

    A quantitative and automated phase analysis of dual-phase (DP) steel using electron backscatter diffraction (EBSD) was attempted. A ferrite-martensite DP microstructure was produced by intercritical annealing and quenching. An EBSD map of the microstructure was obtained and post-processed for phase discrimination. Band slope (BS), which was a measure of pattern quality, exhibited much stronger phase contrast than another conventional one, band contrast. Owing to high sensitivity to lattice defect and little orientation dependence, BS provided handiness in finding a threshold for phase discrimination. Its grain average gave a superior result on the discrimination and volume fraction measurement of the constituent phases in the DP steel.

  7. An analysis of possible advanced space strategies featuring the role of space resource utilization

    NASA Astrophysics Data System (ADS)

    Cordell, Bruce; Steinbronn, Otto

    A major weakness of space planning in the U.S.A. has been the lack of clearly defined, major space goals within a coherent, politically palatable, long-range national space strategy. Unresolved issues include the Space Station's role, the most profitable space exploration strategies, and space resource use. We present an analysis of these factors with special emphasis on space resource utilization. Our performance modeling reveals that lunar oxygen is useful on or near the Moon and—if lunar hydrogen is available—lunar oxygen is also economical in LEO. Use of volatile materials from Phobos/Deimos is preferred or attractive in LEO, low lunar orbit, and—if lunar hydrogen is unavailable—on the Moon. Thus it appears that resource synergisms between operations in the Mars system and in Earth-Moon space could become commercially important.

  8. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1994-01-01

    Accomplishments in the following areas of research are presented: receiver performance study of spaceborne laser altimeters and cloud and aerosol lidars; receiver performance analysis for space-to-space laser ranging systems; and receiver performance study for the Mars Environmental Survey (MESUR).

  9. Space Launch System Vibration Analysis Support

    NASA Technical Reports Server (NTRS)

    Johnson, Katie

    2016-01-01

    The ultimate goal for my efforts during this internship was to help prepare for the Space Launch System (SLS) integrated modal test (IMT) with Rodney Rocha. In 2018, the Structural Engineering Loads and Dynamics Team will have 10 days to perform the IMT on the SLS Integrated Launch Vehicle. After that 10 day period, we will have about two months to analyze the test data and determine whether the integrated vehicle modes/frequencies are adequate for launching the vehicle. Because of the time constraints, NASA must have newly developed post-test analysis methods proven well and with technical confidence before testing. NASA civil servants along with help from rotational interns are working with novel techniques developed and applied external to Johnson Space Center (JSC) to uncover issues in applying this technique to much larger scales than ever before. We intend to use modal decoupling methods to separate the entangled vibrations coming from the SLS and its support structure during the IMT. This new approach is still under development. The primary goal of my internship was to learn the basics of structural dynamics and physical vibrations. I was able to accomplish this by working on two experimental test set ups, the Simple Beam and TAURUS-T, and by doing some light analytical and post-processing work. Within the Simple Beam project, my role involves changing the data acquisition system, reconfiguration of the test set up, transducer calibration, data collection, data file recovery, and post-processing analysis. Within the TAURUS-T project, my duties included cataloging and removing the 30+ triaxial accelerometers, coordinating the removal of the structure from the current rolling cart to a sturdy billet for further testing, preparing the accelerometers for remounting, accurately calibrating, mounting, and mapping of all accelerometer channels, and some testing. Hammer and shaker tests will be performed to easily visualize mode shapes at low frequencies. Short

  10. Space tug economic analysis study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An economic analysis of space tug operations is presented. The space tug is defined as any liquid propulsion stage under 100,000 pounds propellant loading that is flown from the space shuttle cargo bay. Two classes of vehicles are the orbit injection stages and reusable space tugs. The vehicle configurations, propellant combinations, and operating modes used for the study are reported. The summary contains data on the study approach, results, conclusions, and recommendations.

  11. Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms

    NASA Astrophysics Data System (ADS)

    Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei

    2016-09-01

    In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  12. Preliminary benefit analysis of biological space processing

    NASA Technical Reports Server (NTRS)

    Perrine, J.

    1976-01-01

    The value of weightlessness in bioprocessing is assessed. The ecomonic benefits are assessed for space processing urokinase and human lymphocytes for treatment of end stage renal disease and thromboembolisms.

  13. Space Construction System Analysis. Part 2: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A detailed, end-to-end analysis of the activities, techniques, equipment and Shuttle provisions required to construct a reference project system is described. Included are: platform definition; construction analysis; cost and programmatics; and space construction experiments concepts.

  14. Space Station Program threat and vulnerability analysis

    NASA Technical Reports Server (NTRS)

    Van Meter, Steven D.; Veatch, John D.

    1987-01-01

    An examination has been made of the physical security of the Space Station Program at the Kennedy Space Center in a peacetime environment, in order to furnish facility personnel with threat/vulnerability information. A risk-management approach is used to prioritize threat-target combinations that are characterized in terms of 'insiders' and 'outsiders'. Potential targets were identified and analyzed with a view to their attractiveness to an adversary, as well as to the consequentiality of the resulting damage.

  15. Responsive space: Concept analysis and theoretical framework

    NASA Astrophysics Data System (ADS)

    Saleh, Joseph H.; Dubos, Gregory F.

    2009-08-01

    Customers' needs are dynamic and evolve in response to unfolding environmental uncertainties. The ability of a company or an industry to address these changing customers' needs in a timely and cost-effective way is a measure of its responsiveness. In the space industry, a systemic discrepancy exists between the time constants associated with the change of customers' needs, and the response time of the industry in delivering on-orbit solutions to these needs. There are important penalties associated with such delays, and space responsiveness is recognized as a strategic imperative in commercial competitive and military environments. In this paper, we provide a critical assessment of the literature on responsive space and introduce a new multi-disciplinary framework for thinking about and addressing issues of space responsiveness. Our framework advocates three levels of responsiveness: a global industry-wide responsiveness, a local stakeholder responsiveness, and an interactive or inter-stakeholder responsiveness. We introduce and motivate the use of "responsiveness maps" for multiple stakeholders. We then identify "levers of responsiveness": technical spacecraft- and launch-centric, as well as "soft" levers (e.g., acquisition policies) for improving the responsiveness of the space industry. Finally, we propose a series of research questions to aggressively tackle problems associated with space responsiveness.

  16. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Covered here is the second phase of a broad scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 1, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from the Stafford Committee Synthesis Report.

  17. Probabilistic structural analysis methods for space transportation propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.

    1991-01-01

    Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .

  18. Space tug economic analysis study. Volume 2: Tug concepts analysis. Part 2: Economic analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An economic analysis of space tug operations is presented. The subjects discussed are: (1) cost uncertainties, (2) scenario analysis, (3) economic sensitivities, (4) mixed integer programming formulation of the space tug problem, and (5) critical parameters in the evaluation of a public expenditure.

  19. Dual-channel microcantilever heaters for volatile organic compound detection and mixture analysis

    NASA Astrophysics Data System (ADS)

    Jahangir, Ifat; Koley, Goutam

    2016-07-01

    We report on novel microcantilever heater sensors with separate AlGaN/GaN heterostructure based heater and sensor channels to perform advanced volatile organic compound (VOC) detection and mixture analysis. Operating without any surface functionalization or treatment, these microcantilevers utilize the strong surface polarization of AlGaN, as well as the unique heater and sensor channel geometries, to perform selective detection of analytes based on their latent heat of evaporation and molecular dipole moment over a wide concentration range with sub-ppm detection limit. The dual-channel microcantilevers have demonstrated much superior sensing behavior compared to the single-channel ones, with the capability to not only identify individual VOCs with much higher specificity, but also uniquely detect them in a generic multi-component mixture of VOCs. In addition, utilizing two different dual channel configurations and sensing modalities, we have been able to quantitatively determine individual analyte concentration in a VOC mixture. An algorithm for complete mixture analysis, with unique identification of components and accurate determination of their concentration, has been presented based on simultaneous operation of an array of these microcantilever heaters in multiple sensing modalities.

  20. A dual-cooled hydrogen-oxygen rocket engine heat transfer analysis

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Kazaroff, John M.; Jankovsky, Robert S.

    1991-01-01

    The potential benefits of simultaneously using hydrogen and oxygen as rocket engine coolants are described. A plug-and-spool rocket engine was examined at heat fluxes ranging from 9290 to 163,500 kW/sq m, using a combined 3-D conduction/advection analysis. Both counter flow and parallel flow cooling arrangements were analyzed. The results indicate that a significant amount of heat transfer to the oxygen occurs, reducing both the hot side wall temperature of the rocket engine and also reducing the exit temperature of the hydrogen coolant. In all heat flux and coolant flow rates examined, the total amount of heat transferred to the oxygen was found to be largely independent of the oxygen coolant flow direction. At low heat flux/low coolant flow (throttled) conditions, the oxygen coolant absorbed more than 30 percent of the overall heat transfer from the rocket engine exhaust gasses. Also, hot side wall temperatures were judged to decrease by approximately 120 K in the throat area and up to a 170 K combustion chamber wall temperature reduction is expected if dual cooling is applied. The reduction in combustion chamber wall temperatures at throttled conditions is especially desirable since tha analysis indicates that a double temperature maxima, one at the throat and another in the combustion chamber, occurs with a traditional hydrogen cooled only engine. Conversely, a dual cooled engine essentially eliminates any concern for overheating in the combustion chamber.

  1. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution.

    PubMed Central

    Schwille, P; Meyer-Almes, F J; Rigler, R

    1997-01-01

    The present paper describes a new experimental scheme for following diffusion and chemical reaction systems of fluorescently labeled molecules in the nanomolar concentration range by fluorescence correlation analysis. In the dual-color fluorescence cross-correlation spectroscopy provided here, the concentration and diffusion characteristics of two fluorescent species in solution as well as their reaction product can be followed in parallel. By using two differently labeled reaction partners, the selectivity to investigate the temporal evolution of reaction product is significantly increased compared to ordinary one-color fluorescence autocorrelation systems. Here we develop the theoretical and experimental basis for carrying out measurements in a confocal dual-beam fluorescence correlation spectroscopy setup and discuss conditions that are favorable for cross-correlation analysis. The measurement principle is explained for carrying out DNA-DNA renaturation kinetics with two differently labeled complementary strands. The concentration of the reaction product can be directly determined from the cross-correlation amplitude. Images FIGURE 2 FIGURE 3 PMID:9083691

  2. Dual-channel microcantilever heaters for volatile organic compound detection and mixture analysis

    PubMed Central

    Jahangir, Ifat; Koley, Goutam

    2016-01-01

    We report on novel microcantilever heater sensors with separate AlGaN/GaN heterostructure based heater and sensor channels to perform advanced volatile organic compound (VOC) detection and mixture analysis. Operating without any surface functionalization or treatment, these microcantilevers utilize the strong surface polarization of AlGaN, as well as the unique heater and sensor channel geometries, to perform selective detection of analytes based on their latent heat of evaporation and molecular dipole moment over a wide concentration range with sub-ppm detection limit. The dual-channel microcantilevers have demonstrated much superior sensing behavior compared to the single-channel ones, with the capability to not only identify individual VOCs with much higher specificity, but also uniquely detect them in a generic multi-component mixture of VOCs. In addition, utilizing two different dual channel configurations and sensing modalities, we have been able to quantitatively determine individual analyte concentration in a VOC mixture. An algorithm for complete mixture analysis, with unique identification of components and accurate determination of their concentration, has been presented based on simultaneous operation of an array of these microcantilever heaters in multiple sensing modalities. PMID:27381318

  3. Preliminary assessment of high power, NERVA-class dual-mode space nuclear propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Buksa, John J.; Kirk, William L.; Cappiello, Michael W.

    A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on the NERVA rocket engine has been completed. Results indicate that the coupling of the Rover reactor to a direct Brayton power conversion system can be accomplished through a number of design features. Furthermore, based on previously published and independently calculated component masses, the dual-mode system was found to have the potential to be mass competitive with propulsion/power systems that use separate reactors. The uncertainties of reactor design modification and shielding requirements were identified as important issues requiring future investigation.

  4. Space Shuttle Main Engine performance analysis

    NASA Astrophysics Data System (ADS)

    Santi, L. Michael

    1993-11-01

    For a number of years, NASA has relied primarily upon periodically updated versions of Rocketdyne's power balance model (PBM) to provide space shuttle main engine (SSME) steady-state performance prediction. A recent computational study indicated that PBM predictions do not satisfy fundamental energy conservation principles. More recently, SSME test results provided by the Technology Test Bed (TTB) program have indicated significant discrepancies between PBM flow and temperature predictions and TTB observations. Results of these investigations have diminished confidence in the predictions provided by PBM, and motivated the development of new computational tools for supporting SSME performance analysis. A multivariate least squares regression algorithm was developed and implemented during this effort in order to efficiently characterize TTB data. This procedure, called the 'gains model,' was used to approximate the variation of SSME performance parameters such as flow rate, pressure, temperature, speed, and assorted hardware characteristics in terms of six assumed independent influences. These six influences were engine power level, mixture ratio, fuel inlet pressure and temperature, and oxidizer inlet pressure and temperature. A BFGS optimization algorithm provided the base procedure for determining regression coefficients for both linear and full quadratic approximations of parameter variation. Statistical information relative to data deviation from regression derived relations was also computed. A new strategy for integrating test data with theoretical performance prediction was also investigated. The current integration procedure employed by PBM treats test data as pristine and adjusts hardware characteristics in a heuristic manner to achieve engine balance. Within PBM, this integration procedure is called 'data reduction.' By contrast, the new data integration procedure, termed 'reconciliation,' uses mathematical optimization techniques, and requires both

  5. Space Shuttle Main Engine performance analysis

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1993-01-01

    For a number of years, NASA has relied primarily upon periodically updated versions of Rocketdyne's power balance model (PBM) to provide space shuttle main engine (SSME) steady-state performance prediction. A recent computational study indicated that PBM predictions do not satisfy fundamental energy conservation principles. More recently, SSME test results provided by the Technology Test Bed (TTB) program have indicated significant discrepancies between PBM flow and temperature predictions and TTB observations. Results of these investigations have diminished confidence in the predictions provided by PBM, and motivated the development of new computational tools for supporting SSME performance analysis. A multivariate least squares regression algorithm was developed and implemented during this effort in order to efficiently characterize TTB data. This procedure, called the 'gains model,' was used to approximate the variation of SSME performance parameters such as flow rate, pressure, temperature, speed, and assorted hardware characteristics in terms of six assumed independent influences. These six influences were engine power level, mixture ratio, fuel inlet pressure and temperature, and oxidizer inlet pressure and temperature. A BFGS optimization algorithm provided the base procedure for determining regression coefficients for both linear and full quadratic approximations of parameter variation. Statistical information relative to data deviation from regression derived relations was also computed. A new strategy for integrating test data with theoretical performance prediction was also investigated. The current integration procedure employed by PBM treats test data as pristine and adjusts hardware characteristics in a heuristic manner to achieve engine balance. Within PBM, this integration procedure is called 'data reduction.' By contrast, the new data integration procedure, termed 'reconciliation,' uses mathematical optimization techniques, and requires both

  6. The German Dual Apprenticeship System: An Analysis of Its Evolution and Present Challenges.

    ERIC Educational Resources Information Center

    Tremblay, Diane-Gabrielle; Le Bot, Irene

    The evolution of Germany's dual apprenticeship system and the challenges now facing it were reviewed. The following topics were considered: (1) the progression from craft guilds to vocational training; (2) the history of Germany's dual apprenticeship system from its organization in the 1970s; (4) apprenticeship in the dual system; (3) Germany's…

  7. Factor analysis for genetic evaluation of linear type traits in dual-purpose autochthonous breeds.

    PubMed

    Mazza, S; Guzzo, N; Sartori, C; Mantovani, R

    2016-03-01

    Factor analysis was applied to individual type traits (TT) scored in primiparous cows belonging to two dual purpose Italian breeds, Rendena (REN; 20 individual type traits evaluated on 11 399 first parity cows), and Aosta Red Pied (ARP; 22 individual type traits evaluated on 36 168 primiparous cows). Six common latent factors (F1 to F6; eigenvalues ⩾1) which explained 63% (REN) and 58% (ARP) of the total variance were obtained. F1 included TT mainly related to muscularity, and F2 to body size. The F3 and F4 accounted for udder size and conformation, respectively. F5 included rear legs and feet. Biological significance for F6 was not readily obtained. Moderate to low heritability were estimated through REML single-trait analysis from factor scores (from 0.22 to 0.52 in REN, and from 0.08 to 0.37 in ARP). The greatest heritability values were estimated for body size and muscularity (0.52 and 0.37 for body size; and 0.40 and 0.32 for muscularity in REN and ARP, respectively). As expected, rank correlations, obtained considering estimated breeding values derived from best linear unbiased prediction analysis on the individual TT and factor score, showed similar coefficients to those observed in the factor analysis following loading of TT within each latent factor. These results suggest the possibility to implement the factor analysis in the morphological evaluation, simplifying the information given by the type traits into new variables useful for the genetic improvement of dual purpose cattle.

  8. Space Operations Center - A concept analysis

    NASA Astrophysics Data System (ADS)

    1980-12-01

    The Space Operations Center (SOC) which is a concept for a Shuttle serviced, permanent, manned facility in low earth orbit is viewed as a major candidate for the manned space flight following the completion of an operational Shuttle. The primary objectives of SOC are: (1) the construction, checkout, and transfer to operational orbit of large, complex space systems, (2) on-orbit assembly, launch, recovery, and servicing of manned and unmanned spacecraft, (3) managing operations of co-orbiting free-flying satellites, and (4) the development of reduced dependence on earth for control and resupply. The structure of SOC, a self-contained orbital facility containing several Shuttle launched modules, includes the service, habitation, and logistics modules as well as construction, and flight support facilities. A schedule is proposed for the development of SOC over ten years and costs for the yearly programs are estimated.

  9. Coupling effect and control strategies of the maglev dual-stage inertially stabilization system based on frequency-domain analysis.

    PubMed

    Lin, Zhuchong; Liu, Kun; Zhang, Li; Zeng, Delin

    2016-09-01

    Maglev dual-stage inertially stabilization (MDIS) system is a newly proposed system which combines a conventional two-axis gimbal assembly and a 5-DOF (degree of freedom) magnetic bearing with vernier tilting capacity to perform dual-stage stabilization for the LOS of the suspended optical instrument. Compared with traditional dual-stage system, maglev dual-stage system exhibits different characteristics due to the negative position stiffness of the magnetic forces, which introduces additional coupling in the dual stage control system. In this paper, the coupling effect on the system performance is addressed based on frequency-domain analysis, including disturbance rejection, fine stage saturation and coarse stage structural resonance suppression. The difference between various control strategies is also discussed, including pile-up(PU), stabilize-follow (SF) and stabilize-compensate (SC). A number of principles for the design of a maglev dual stage system are proposed. A general process is also suggested, which leads to a cost-effective design striking a balance between high performance and complexity. At last, a simulation example is presented to illustrate the arguments in the paper.

  10. Uncertainty Analysis in Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.

  11. Reliability Driven Space Logistics Demand Analysis

    NASA Technical Reports Server (NTRS)

    Knezevic, J.

    1995-01-01

    Accurate selection of the quantity of logistic support resources has a strong influence on mission success, system availability and the cost of ownership. At the same time the accurate prediction of these resources depends on the accurate prediction of the reliability measures of the items involved. This paper presents a method for the advanced and accurate calculation of the reliability measures of complex space systems which are the basis for the determination of the demands for logistics resources needed during the operational life or mission of space systems. The applicability of the method presented is demonstrated through several examples.

  12. Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2006-01-01

    Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.

  13. FEM analysis of an single stator dual PM rotors axial synchronous machine

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.

    2017-01-01

    The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors. The proposed topologies, the magneto-motive force analysis and quasi 3D-FEM analysis are the core of the paper.

  14. Highly flexible nearest-neighbor-search associative memory with integrated k nearest neighbor classifier, configurable parallelism and dual-storage space

    NASA Astrophysics Data System (ADS)

    An, Fengwei; Mihara, Keisuke; Yamasaki, Shogo; Chen, Lei; Jürgen Mattausch, Hans

    2016-04-01

    VLSI-implementations are often applied to solve the high computational cost of pattern matching but have usually low flexibility for satisfying different target applications. In this paper, a digital word-parallel associative memory architecture for k nearest neighbor (KNN) search, which is one of the most basic algorithms in pattern recognition, is reported applying the squared Euclidean distance measure. The reported architecture features reconfigurable parallelism, dual-storage space to achieve a flexible number of reference vectors, and a dedicated majority vote circuit. Programmable switching circuits, located between vector components, enable scalability of the searching parallelism by configuring the reference feature-vector dimensionality. A pipelined storage with dual static-random-access-memory (SRAM) cells for each unit and an intermediate winner control circuit are designed to extend the applicability by improving the flexibility of the reference storage. A test chip in 180 nm CMOS technology, which has 32 rows, 4 elements in each row and 2-parallel 8-bit dual-components in each element, consumes altogether 61.4 mW and in particular only 11.9 mW during the reconfigurable KNN classification (at 45.58 MHz and 1.8 V).

  15. Switchable 10 nm-spaced dual-wavelength SLM fiber laser with sub-kHz linewidth and high OSNR using a novel multiple-ring configuration

    NASA Astrophysics Data System (ADS)

    Feng, Ting; Ding, Dongliang; Zhao, Ziwei; Su, Hongxin; Yan, Fengping; Yao, X. Steve

    2016-10-01

    A switchable dual-wavelength (10 nm spacing) single-longitudinal-mode (SLM) erbium-doped fiber laser (EDFL) that uses a multiple-ring configuration was demonstrated experimentally. A novel theoretically lossless triple-ring passive secondary cavity composed of three optical couplers was utilized to select the SLM from the dense main cavity longitudinal modes for the first time. Using two superimposed fiber Bragg gratings as one compact mode-restricting element and introducing the nonlinear polarization rotation effect to alleviate the strong mode competition for the fiber laser, a highly stable dual-wavelength mode-hop-free SLM operation with sub-kHz linewidths and optical signal to noise ratios (OSNRs) of  >69 dB was achieved for both lasing wavelengths. By adjusting the polarization controllers, the dual-wavelength operation could be easily switched to single-wavelength lasing with a linewidth of  <1 kHz and an OSNR of  >72 dB. The proposed EDFL may find many important applications, such as the generation of very pure terahertz waves.

  16. Dual-band beacon experiment over Southeast Asia for ionospheric irregularity analysis

    NASA Astrophysics Data System (ADS)

    Watthanasangmechai, K.; Yamamoto, M.; Saito, A.; Saito, S.; Maruyama, T.; Tsugawa, T.; Nishioka, M.

    2013-12-01

    An experiment of dual-band beacon over Southeast Asia was started in March 2012 in order to capture and analyze ionospheric irregularities in equatorial region. Five GNU Radio Beacon Receivers (GRBRs) were aligned along 100 degree geographic longitude. The distances between the stations reach more than 500 km. The field of view of this observational network covers +/- 20 degree geomagnetic latitude including the geomagnetic equator. To capture ionospheric irregularities, the absolute TEC estimation technique was developed. The two-station method (Leitinger et al., 1975) is generally accepted as a suitable method to estimate TEC offsets of dual-band beacon experiment. However, the distances between the stations directly affect on the robustness of the technique. In Southeast Asia, the observational network is too sparse to attain a benefit of the classic two-station method. Moreover, the least-squares approch used in the two-station method tries too much to adjust the small scales of the TEC distribution which are the local minima. We thus propose a new technique to estimate the TEC offsets with the supporting data from absolute GPS-TEC from local GPS receivers and the ionospheric height from local ionosondes. The key of the proposed technique is to utilize the brute-force technique with weighting function to find the TEC offset set that yields a global minimum of RMSE in whole parameter space. The weight is not necessary when the TEC distribution is smooth, while it significantly improves the TEC estimation during the ESF events. As a result, the latitudinal TEC shows double-hump distribution because of the Equatorial Ionization Anomaly (EIA). In additions, the 100km-scale fluctuations from an Equatorial Spread F (ESF) are captured at night time in equinox seasons. The plausible linkage of the meridional wind with triggering of ESF is under invatigating and will be presented. The proposed method is successful to estimate the latitudinal TEC distribution from dual

  17. Dual-wavelength pump-probe microscopy analysis of melanin composition

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.

    2016-11-01

    Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry.

  18. Dual-wavelength pump-probe microscopy analysis of melanin composition

    PubMed Central

    Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.

    2016-01-01

    Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry. PMID:27833147

  19. Combined analysis of intracellular calcium with dual excitation fluorescence photometry and imaging

    NASA Astrophysics Data System (ADS)

    Uttenweiler, Dietmar; Wojciechowski, Reinhold; Makabe, Makoto; Veigel, Claudia; Fink, Rainer H.

    1995-10-01

    We have developed an integrated microscopy system combining fast dual-excitation fluorescence photometry and digital image analysis with high spatial resolution, based mainly on standard components. With the combination of these well-established techniques in one setup it is possible to monitor intracellular calcium with both sufficiently high temporal and high spatial resolution on the same preparation for many biological applications. Our system consists of a commercially available dual-excitation photometric system, an attached ICCD camera, and a frame grabber board. With this integrated setup one can easily switch between the fast photometric mode and the imaging mode. We used the system to record Fura-2 calcium images (340/380 nm ratios), which were correlated with the faster spot measurements and were analyzed by means of image processing. As an example for its application we reconstructed caffeine-induced calcium transient released from the sarcoplasmic reticulum of isolated and permeabilized skeletal muscle fiber preparations. Such a combined technique will also be important for cellular studies using other fluorescence indicators. Additionally, the described system has an external trigger facility that enables combination with other cell physiological methods, e.g., electrophysiological techniques.

  20. Profiling and screening analysis of 27 aromatic amino acids by capillary electrophoresis in dual modes.

    PubMed

    La, Sookie; Kim, Ahrrum; Kim, Jung-Han; Choi, One-Kyun; Kim, Kyoung-Rae

    2002-04-01

    An efficient capillary electrophoretic (CE) profiling and screening system based on dual modes of capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) was developed for the simultaneous determination of 23 nonprotein amino acids (NPAAs) and 4 protein amino acids with aromatic moiety. It involves separation by an uncoated fused-silica capillary under phosphoric acid buffer in CZE mode and by another uncoated fused-silica capillary under neutral sodium dihydrogen phosphate buffer containing sodium dodecyl sulfate in MEKC mode. Migration orders of the amino acids studied on the two separation modes under each optimum condition were very different. The repeatability of migration times measured by the CZE and MEKC was found to be better than 4.8 and 3.4%, respectively, thereby enabling to cross-check the identification of each amino acid. The method linearity and limit of detection of the CZE for each amino acid were found to be adequate for the assay of aromatic amino acids. When the present CE profiling and screening analysis in dual modes was applied to plant seeds, NPAAs such as mimosine from Mimosa pudica Linné, and 2-phenylglycine from Lindera erythrocarpa Makino were positively detected along with tryptophan, phenylalanine and tyrosine.

  1. Dual-wavelength pump-probe microscopy analysis of melanin composition.

    PubMed

    Thompson, Andrew; Robles, Francisco E; Wilson, Jesse W; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S

    2016-11-11

    Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry.

  2. Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo M.; Mullinix, Richard E.; Berrios, David H.; Hesse, Michael; Rastaetter, Lutz; Pulkkinen, Antti; Hourcle, Joseph A.; Thompson, Barbara J.

    2011-01-01

    The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities.

  3. Space Environment Automated Alerts & Anomaly Analysis Assistant (SEA5)

    NASA Astrophysics Data System (ADS)

    Boblitt, J. M.; Maddox, M. M.; Schiewe, T.; Jiang, D.; Zheng, Y.; Wold, A. M.

    2016-12-01

    Space Environment Automated Alerts & Anomaly Analysis Assistant (SEA5) is a comprehensive analysis and dissemination system that will provide past, present, and predicted space environment information for specific missions, orbits, and user-specified locations throughout the heliosphere, geospace, and on the ground. Existing space weather resources provide global and large-scale environmental information, but presently there are no highly-tailored services that target specific missions, orbits, or locations in space for any given time period. The targeted outcome of this project is to build an extensible software system for NASA that provides an unprecedented capability for (1) viewing space environment conditions for specific missions/orbits, (2) providing automated space weather alerts for specific missions/orbits, (3) assimilating and displaying spacecraft anomaly information, and (4) managing and displaying spacecraft/mission data.

  4. A Cost Analysis of Space Available Travel

    DTIC Science & Technology

    2014-06-14

    The views expressed in this thesis are those of the author and do not reflect the official policy or position... thesis documented that the government spent approximately $30 million on processing and transporting Space Available passengers in FY97 and FY98...evaluate if the internal control procedures over cash collection of fees were adequate. The audit took place from December 1989 through June 1990

  5. Hubble Space Telescope Crew Rescue Analysis

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri L.; Canga, Michael A.; Cates, Grant R.

    2010-01-01

    In the aftermath of the 2003 Columbia accident, NASA removed the Hubble Space Telescope (HST) Servicing Mission 4 (SM4) from the Space Shuttle manifest. Reasons cited included concerns that the risk of flying the mission would be too high. The HST SM4 was subsequently reinstated and flown as Space Transportation System (STS)-125 because of improvements in the ascent debris environment, the development of techniques for astronauts to perform on orbit repairs to damaged thermal protection, and the development of a strategy to provide a viable crew rescue capability. However, leading up to the launch of STS-125, the viability of the HST crew rescue capability was a recurring topic. For STS-125, there was a limited amount of time available to perform a crew rescue due to limited consumables (power, oxygen, etc.) available on the Orbiter. The success of crew rescue depended upon several factors, including when a problem was identified; when and what actions, such as powering down, were begun to conserve consumables; and where the Launch on Need (LON) vehicle was in its ground processing cycle. Crew rescue success also needed to be weighed against preserving the Orbiter s ability to have a landing option in case there was a problem with the LON vehicle. This paper focuses on quantifying the HST mission loss of crew rescue capability using Shuttle historical data and various power down strategies. Results from this effort supported NASA s decision to proceed with STS-125, which was successfully completed on May 24th 2009.

  6. EEG source analysis using space mapping techniques

    NASA Astrophysics Data System (ADS)

    Crevecoeur, G.; Hallez, H.; van Hese, P.; D'Asseler, Y.; Dupre, L.; van de Walle, R.

    2008-06-01

    The electroencephalogram (EEG) measures potential differences, generated by electrical activity in brain tissue, between scalp electrodes. The EEG potentials can be calculated by the quasi-static Poisson equation in a certain head model. It is well known that the electrical dipole (source) which best fits the measured EEG potentials is obtained by an inverse problem. The dipole parameters are obtained by finding the global minimum of the relative residual energy (RRE). For the first time, the space mapping technique (SM technique) is used for minimizing the RRE. The SM technique aims at aligning two different simulation models: a fine model, accurate but CPU-time expensive, and a coarse model, computationally fast but less accurate than the fine one. The coarse model is a semi-analytical model, the so-called three-shell concentric sphere model. The fine model numerically solves the Poisson equation in a realistic head model. If we use the aggressive space mapping (ASM) algorithm, the errors on the dipole location are too large. The hybrid aggressive space mapping (HASM) on the other hand has better convergence properties, yielding a reduction in dipole location errors. The computational effort of HASM is greater than ASM but smaller than using direct optimization techniques.

  7. Application of Three-Class ROC Analysis to Task-Based Image Quality Assessment of Simultaneous Dual-Isotope Myocardial Perfusion SPECT (MPS)

    PubMed Central

    He, Xin; Song, Xiyun; Frey, Eric C.

    2009-01-01

    The diagnosis of cardiac disease using dual-isotope myocardial perfusion SPECT (MPS) is based on the defect status in both stress and rest images, and can be modeled as a three-class task of classifying patients as having no, reversible, or fixed perfusion defects. Simultaneous acquisition protocols for dual-isotope MPS imaging have gained much interest due to their advantages including perfect registration of the 201Tl and 99mTc images in space and time, increased patient comfort, and higher clinical throughput. As a result of simultaneous acquisition, however, crosstalk contamination, where photons emitted by one isotope contribute to the image of the other isotope, degrades image quality. Minimizing the crosstalk is important in obtaining the best possible image quality. One way to minimize the crosstalk is to optimize the injected activity of the two isotopes by considering the three-class nature of the diagnostic problem. To effectively do so, we have previously developed a three-class receiver operating characteristic (ROC) analysis methodology that extends and unifies the decision theoretic, linear discriminant analysis, and psychophysical foundations of binary ROC analysis in a three-class paradigm. In this work, we applied the proposed three-class ROC methodology to the assessment of the image quality of simultaneous dual-isotope MPS imaging techniques and the determination of the optimal injected activity combination. In addition to this application, the rapid development of diagnostic imaging techniques has produced an increasing number of clinical diagnostic tasks that involve not only disease detection, but also disease characterization and are thus multiclass tasks. This paper provides a practical example of the application of the proposed three-class ROC analysis methodology to medical problems. PMID:18955172

  8. Dual redundant arm system operational quality measures and their applications - Dynamic measures

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Kim, Sungbok

    1990-01-01

    Dual-arm dynamic operation quality measures are presented which quantify the efficiency and capability of generating Cartesian accelerations by two cooperative arms based on the analysis of dual-arm dynamic interactions. Dual-arm dynamic manipulability is defined as the efficiency of generating Cartesian accelerations under the dynamic and kinematic interactions between individual arms and an object under manipulation. The analysis of dual-arm dynamic interactions is based on the so-called Cartesian space agent model of an arm, which represents an individual arm as a force source acting upon a point mass with the effective Cartesian space arm dynamics and an environment or an object under manipulation. The Cartesian space agent model of an arm makes it possible to derive the dynamic and kinematic constraints involved in the transport, assembly and grasping modes of dual-arm cooperation. A task-oriented operational quality measure, (TOQd) is defined by evaluating dual-arm dynamic manipulability in terms of given task requirements. TOQd is used in dual-arm joint configuration optimization. Simulation results are shown. A complete set of forward dynamic equations for a dual-arm system is derived, and dual-arm dynamic operational quality measures for various modes of dual-arm cooperation allowing sliding contacts are established.

  9. Dual redundant arm system operational quality measures and their applications - Dynamic measures

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Kim, Sungbok

    1990-01-01

    Dual-arm dynamic operation quality measures are presented which quantify the efficiency and capability of generating Cartesian accelerations by two cooperative arms based on the analysis of dual-arm dynamic interactions. Dual-arm dynamic manipulability is defined as the efficiency of generating Cartesian accelerations under the dynamic and kinematic interactions between individual arms and an object under manipulation. The analysis of dual-arm dynamic interactions is based on the so-called Cartesian space agent model of an arm, which represents an individual arm as a force source acting upon a point mass with the effective Cartesian space arm dynamics and an environment or an object under manipulation. The Cartesian space agent model of an arm makes it possible to derive the dynamic and kinematic constraints involved in the transport, assembly and grasping modes of dual-arm cooperation. A task-oriented operational quality measure, (TOQd) is defined by evaluating dual-arm dynamic manipulability in terms of given task requirements. TOQd is used in dual-arm joint configuration optimization. Simulation results are shown. A complete set of forward dynamic equations for a dual-arm system is derived, and dual-arm dynamic operational quality measures for various modes of dual-arm cooperation allowing sliding contacts are established.

  10. Dual-Doppler Feasibility Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  11. Investigating the environmental factors affecting the toxicity of silver nanoparticles in Escherichia coli with dual fluorescence analysis.

    PubMed

    Hong, Wei; Li, Luzhi; Liang, Junting; Wang, Jingjing; Wang, Xuanyu; Xu, Shengmin; Wu, Lijun; Zhao, Guoping; Xu, An; Chen, Shaopeng

    2016-07-01

    Flow cytometric investigation of the toxic effects of nanoparticles on bacteria is highly challenging and not sensitive due to the interference of aggregated nanoparticles: aggregated nanoparticles and bacteria are similar in size. In this study, an optimized dual fluorescence flow cytometric analysis was developed using PI-Lac::GFP (propidium iodide stained Escherichia coli (lac::GFP)) to monitor the toxicity of silver nanoparticles (AgNPs). As compared with single fluorescence analysis, the dual fluorescence analysis enabled more accurate evaluation of the toxic effects of AgNPs. We used this dual fluorescence analysis to investigate how AgNPs toxicity was affected by two typical environmental factors, divalent metal ions and surfactants. Our data revealed that Cu(2+) and SDS significantly enhanced the toxicity of AgNPs in a dose-dependent manner. SDS enhanced the toxicity of both AgNPs and Ag(+) ions, whereas Cu(2+) increased the toxicity of AgNPs but not dissolved Ag(+) ions. Our results suggest that this dual fluorescence analysis can be used to evaluate the toxicity of AgNPs accurately and sensitively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS-BDS RTK analysis

    NASA Astrophysics Data System (ADS)

    Odolinski, Robert; Teunissen, Peter J. G.

    2016-11-01

    The concept of single-frequency, dual-system (SF-DS) real-time kinematic (RTK) positioning has become feasible since, for instance, the Chinese BeiDou Navigation Satellite System (BDS) has become operational in the Asia-Pacific region. The goal of the present contribution is to investigate the single-epoch RTK performance of such a dual-system and compare it to a dual-frequency, single-system (DF-SS). As the SF-DS we investigate the L1 GPS + B1 BDS model, and for DF-SS we take L1, L2 GPS and B1, B2 BDS, respectively. Two different locations in the Asia-Pacific region are analysed with varying visibility of the BDS constellation, namely Perth in Australia and Dunedin in New Zealand. To emphasize the benefits of such a model we also look into using low-cost ublox single-frequency receivers and compare such SF-DS RTK performance to that of a DF-SS, based on much more expensive survey-grade receivers. In this contribution a formal and empirical analysis is given. It will be shown that with the SF-DS higher elevation cut-off angles than the conventional 10° or 15° can be used. The experiment with low-cost receivers for the SF-DS reveals (for the first time) that it has the potential to achieve comparable ambiguity resolution performance to that of a DF-SS (L1, L2 GPS), based on the survey-grade receivers.

  13. Economic analysis of new space transportation systems: Executive summary

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An economic analysis of alternative space transportation systems is presented. Results indicate that the expendable systems represent modest investments, but the recurring costs of operation would remain high. The space shuttle and tug system requires a substantial investment, but would substantially reduce the recurring costs of operation. Economic benefits and costs of the different systems are also analyzed. Findings are summarized.

  14. Design and multifidelity analysis of dual mode scramjet compression system using coupled NPSS and fluent simulation

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Nandakumar

    Hypersonic airbreathing engines mark a potential future development of the aerospace industry and immense efforts have been taken in gaining knowledge in them for the past decades. The physical phenomenon occurring at the hypersonic flow regime makes the design and performance prediction of a scramjet engine hard. Though cutting-edge simulation tools fight their way toward accurate prediction of the environment, the time consumed by the entire process in designing and analyzing a scramjet engine and its component may be exorbitant. A multi-fidelity approach for designing a scramjet with a cruising Mach number of 6 is detailed in this research where high-order simulations are applied according to the physics involved in the component. Two state-of-the-art simulation tools were used to take the aerodynamic and propulsion disciplines into account for realistic prediction of the individual components as well as the entire scramjet. The specific goal of this research is to create a virtual environment to design and analyze a hypersonic, two-dimensional, planar inlet and isolator to check its operability for a dual-mode scramjet engine. The dual mode scramjet engine starts at a Mach number of 3.5 where it operates as a ramjet and accelerates to Mach 6 to be operated as a scramjet engine. The intercomponent interaction between the compression components with the rest of the engine is studied by varying the fidelity of the numerical simulation according to the complexity of the situation. Efforts have been taken to track the transition Mach number as it switches from ramjet to scramjet. A complete scramjet assembly was built using the Numerical Propulsion Simulation System (NPSS) and the performance of the engine was evaluated for various scenarios. Different numerical techniques were opted for varying the fidelity of the analysis with the highest fidelity consisting of 2D RANS CFD simulation. The interaction between the NPSS elements with the CFD solver is governed by the

  15. Social model treatment and individuals with dual diagnoses: an ethnographic analysis of therapeutic practice.

    PubMed

    Weinberg, D; Koegel, P

    1996-01-01

    Concurrent substance and psychiatric problems have been shown to significantly reduce the probability of successful treatment outcomes while increasing vulnerability to a range of troubles including homelessness, incarceration, physical health problems, and criminal victimization. This article presents an ethnographic analysis of treatment processes in a residential social model treatment program specifically designed for individuals with dual diagnoses in an effort to inform current debates with empirically grounded knowledge regarding therapeutic practice itself. The article focuses on four fundamental themes bearing on therapeutic practice in this residential program: social model treatment; the formulation of clinical identities; recovery, personal responsibility, and authority; and the measurement of therapeutic success. In conclusion, the article suggests that the central role played by program residents in the therapeutic process deserves particular attention and makes recommendations regarding mental health services delivery that, if followed, might invigorate treatment efficacy.

  16. Measuring the Capacity Utilization of Public District Hospitals in Tunisia: Using Dual Data Envelopment Analysis Approach

    PubMed Central

    Arfa, Chokri; Leleu, Hervé; Goaïed, Mohamed; van Mosseveld, Cornelis

    2017-01-01

    Background: Public district hospitals (PDHs) in Tunisia are not operating at full plant capacity and underutilize their operating budget. Methods: Individual PDHs capacity utilization (CU) is measured for 2000 and 2010 using dual data envelopment analysis (DEA) approach with shadow prices input and output restrictions. The CU is estimated for 101 of 105 PDH in 2000 and 94 of 105 PDH in 2010. Results: In average, unused capacity is estimated at 18% in 2010 vs. 13% in 2000. Of PDHs 26% underutilize their operating budget in 2010 vs. 21% in 2000. Conclusion: Inadequate supply, health quality and the lack of operating budget should be tackled to reduce unmet user’s needs and the bypassing of the PDHs and, thus to increase their CU. Social health insurance should be turned into a direct purchaser of curative and preventive care for the PDHs. PMID:28005538

  17. Advanced development in analysis of phytochemicals from medicine and food dual purposes plants used in China.

    PubMed

    Zhao, Jing; Lv, Guang-Ping; Chen, Yi-Wen; Li, Shao-Ping

    2011-10-21

    The concept of "Let food be thy medicine and medicine be thy food" was widely accepted for thousand years. It is now well known that some foods and food components have beneficial physiological and psychological effects. In China, the Ministry of Health of the People's Republic of China announced 87 items of materials, including 81 plants, could be used as both medicine and food. Increasing consumer demand for safety and health benefits, it is of critical importance to have high-quality and comprehensive data on bioactive compounds (phytochemicals) in these materials. In this review, we summarized the advanced development (2006-2010) in analysis of phytochemicals from medicine and food dual purposes plants (MFDPP) used in China. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Measuring the Capacity Utilization of Public District Hospitals in Tunisia: Using Dual Data Envelopment Analysis Approach.

    PubMed

    Arfa, Chokri; Leleu, Hervé; Goaïed, Mohamed; van Mosseveld, Cornelis

    2016-06-06

    Public district hospitals (PDHs) in Tunisia are not operating at full plant capacity and underutilize their operating budget. Individual PDHs capacity utilization (CU) is measured for 2000 and 2010 using dual data envelopment analysis (DEA) approach with shadow prices input and output restrictions. The CU is estimated for 101 of 105 PDH in 2000 and 94 of 105 PDH in 2010. In average, unused capacity is estimated at 18% in 2010 vs. 13% in 2000. Of PDHs 26% underutilize their operating budget in 2010 vs. 21% in 2000. Inadequate supply, health quality and the lack of operating budget should be tackled to reduce unmet user's needs and the bypassing of the PDHs and, thus to increase their CU. Social health insurance should be turned into a direct purchaser of curative and preventive care for the PDHs.

  19. Hubble Space Telescope Crew Rescue Analysis

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri L.; Canga, Michael; Boyer, Roger; Thigpen, Eric

    2009-01-01

    In the aftermath of the 2003 Columbia accident NASA removed the Hubble Space Telescope (HST) Servicing Mission 4 (SM4) from the Space Shuttle manifest. Reasons cited included concerns that the risk of flying the mission would be too high. There was at the time no viable technique to repair the orbiter s thermal protection system if it were to be damaged by debris during ascent. Furthermore in the event of damage, since the mission was not to the International Space Station, there was no safe haven for the crew to wait for an extended period of time for a rescue. The HST servicing mission was reconsidered because of improvements in the ascent debris environment, the development of techniques for the astronauts to perform on orbit repairs to damage thermal protection, and the development of a strategy to provide a crew rescue capability. However, leading up to the launch of servicing mission, the HST crew rescue capability was a recurring topic. For HST there was a limited amount of time available to perform a crew rescue because of the limited consumables available on the Orbiter. The success of crew rescue depends upon several factors including when a problem is identified, when and to what extent power down procedures are begun, and where the rescue vehicle is in its ground processing cycle. Severe power downs maximize crew rescue success but would eliminate the option for the orbiter servicing the HST to attempt a landing. Therefore, crew rescue success needed to be weighed against preserving the ability of the orbiter to have landing option in case there was a problem with the rescue vehicle. This paper focuses on quantification of the HST mission loss of crew rescue capability using Shuttle historical data and various power down capabilities. That work supported NASA s decision to proceed with the HST service mission, which was successfully completed on May 24th 2009.

  20. Space Shuttle Orbiter windshield bird impact analysis

    NASA Technical Reports Server (NTRS)

    Edelstein, Karen S.; Mccarty, Robert E.

    1988-01-01

    The NASA Space Shuttle Orbiter's windshield employs three glass panes separated by air gaps. The brittleness of the glass offers much less birdstrike energy-absorption capability than the laminated polycarbonate windshields of more conventional aircraft; attention must accordingly be given to the risk of catastrophic bird impact, and to methods of strike prevention that address bird populations around landing sites rather than the modification of the window's design. Bird populations' direct reduction, as well as careful scheduling of Orbiter landing times, are suggested as viable alternatives. The question of birdstrike-resistant glass windshield design for hypersonic aerospacecraft is discussed.

  1. Space Station GPS Multipath Analysis and Validation

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Loh, Y. C.

    1999-01-01

    To investigate the multipath effects on the International Space Station (ISS) Global Positioning System (GPS) measurement accuracy, experimental and computational investigations were performed to estimate the carrier phase errors due to multipath. A new modeling approach is used to reduce the required computing time by separating the dynamic structure elements from the static structure elements in the multipath computations. This study confirmed that the multipath is a major error source to the ISS GPS performance and can possibly degrade the attitude determination solution. It is demonstrated that the GPS antenna carrier phase errors due to multipath can be analyzed using the electromagnetic modeling technique such as the Uniform Geometrical Theory of Diffraction (UTD).

  2. Feasibility analysis of gravitational experiments in space

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. F.

    1977-01-01

    Experiments on gravitation and general relativity suggested by different workers in the past ten or more years are reviewed, their feasibility examined, and the advantages of performing them in space were studied. The experiments include: (1) the gyro relativity experiment; (2) experiments to test the equivalence of gravitational and inertial mass; (3) an experiment to look for nongeodesic motion of spinning bodies in orbit around the earth; (4) experiments to look for changes of the gravitational constant G with time; (5) a variety of suggestions; laboratory tests of experimental gravity; and (6) gravitational wave experiments.

  3. A gap analysis of meteorological requirements for commercial space operators

    NASA Astrophysics Data System (ADS)

    Stapleton, Nicholas James

    Commercial space companies will soon be the primary method of launching people and supplies into orbit. Among the critical aspects of space launches are the meteorological concerns. Laws and regulations pertaining to meteorological considerations have been created to ensure the safety of the space industry and those living around spaceports; but, are they adequate? Perhaps the commercial space industry can turn to the commercial aviation industry to help answer that question. Throughout its history, the aviation industry has dealt with lessons learned from mishaps due to failures in understanding the significance of weather impacts on operations. Using lessons from the aviation industry, the commercial space industry can preempt such accidents and maintain viability as an industry. Using Lanicci's Strategic Planning Model, this study identified the weather needs of the commercial space industry by conducting three gap analyses. First, a comparative analysis was done between laws and regulations in commercial aviation and those in the commercial space industry pertaining to meteorological support, finding a "legislative gap" between the two industries, as no legal guarantee is in place to ensure weather products remain available to the commercial space industry. A second analysis was conducted between the meteorological services provided for the commercial aviation industry and commercial space industry, finding a gap at facilities not located at an established launch facility or airport. At such facilities, many weather observational technologies would not be present, and would need to be purchased by the company operating the spaceport facility. A third analysis was conducted between the meteorological products and regulations that are currently in existence, and those needed for safe operations within the commercial space industry, finding gaps in predicting lightning, electric field charge, and space weather. Recommendations to address these deficiencies have

  4. Spectral Analysis in High Radiation Space Backgrounds with Robust Fitting

    NASA Technical Reports Server (NTRS)

    Lasche, G. P.; Coldwell, R. L.; Nobel, L. A.; Rester, A. C.; Trombka, J. I.

    1997-01-01

    Spectral analysis software is tested for its ability to fit spectra from space. The approach, which emphasizes the background shape function, is uniquely suited to the identification of weak-strength nuclides in high-radiation background environments.

  5. NASA Aeronautics and Space Database for bibliometric analysis

    NASA Technical Reports Server (NTRS)

    Powers, R.; Rudman, R.

    2004-01-01

    The authors use the NASA Aeronautics and Space Database to perform bibliometric analysis of citations. This paper explains their research methodology and gives some sample results showing collaboration trends between NASA Centers and other institutions.

  6. An analysis of space power system masses

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Cull, Ronald C.; Kankam, M. D.

    1990-01-01

    Various space electrical power system masses are analyzed with particular emphasis on the power management and distribution (PMAD) portion. The electrical power system (EPS) is divided into functional blocks: source, interconnection, storage, transmission, distribution, system control and load. The PMAD subsystem is defined as all the blocks between the source, storage and load, plus the power conditioning equipment required for the source, storage and load. The EPS mass of a wide range of spacecraft is then classified as source, storage or PMAD and tabulated in a database. The intent of the database is to serve as a reference source for PMAD masses of existing and in-design spacecraft. The PMAD masses in the database range from 40 kg/kW to 183 kg/kW across the spacecraft systems studied. Factors influencing the power system mass are identified. These include the total spacecraft power requirements, total amount of load capacity and physical size of the spacecraft. It is found that a new utility class of power systems, represented by Space Station Freedom, is evolving.

  7. An analysis of space power system masses

    SciTech Connect

    Kenny, B.H.; Cull, R.C.; Kankam, M.D.

    1990-01-01

    Various space electrical power system masses are analyzed with particular emphasis on the power management and distribution (PMAD) portion. The electrical power system (EPS) is divided into functional blocks: source, interconnection, storage, transmission, distribution, system control and load. The PMAD subsystem is defined as all the blocks between the source, storage and load, plus the power conditioning equipment required for the source, storage and load. The EPS mass of a wide range of spacecraft is then classified as source, storage or PMAD and tabulated in a database. The intent of the database is to serve as a reference source for PMAD masses of existing and in-design spacecraft. The PMAD masses in the database range from 40 kg/kW to 183 kg/kW across the spacecraft systems studied. Factors influencing the power system mass are identified. These include the total spacecraft power requirements, total amount of load capacity and physical size of the spacecraft. It is found that a new utility class of power systems, represented by Space Station Freedom, is evolving.

  8. ALT space shuttle barometric altimeter altitude analysis

    NASA Technical Reports Server (NTRS)

    Killen, R.

    1978-01-01

    The accuracy was analyzed of the barometric altimeters onboard the space shuttle orbiter. Altitude estimates from the air data systems including the operational instrumentation and the developmental flight instrumentation were obtained for each of the approach and landing test flights. By comparing the barometric altitude estimates to altitudes derived from radar tracking data filtered through a Kalman filter and fully corrected for atmospheric refraction, the errors in the barometric altitudes were shown to be 4 to 5 percent of the Kalman altitudes. By comparing the altitude determined from the true atmosphere derived from weather balloon data to the altitude determined from the U.S. Standard Atmosphere of 1962, it was determined that the assumption of the Standard Atmosphere equations contributes roughly 75 percent of the total error in the baro estimates. After correcting the barometric altitude estimates using an average summer model atmosphere computed for the average latitude of the space shuttle landing sites, the residual error in the altitude estimates was reduced to less than 373 feet. This corresponds to an error of less than 1.5 percent for altitudes above 4000 feet for all flights.

  9. Phase space analysis of velocity bunched beams

    NASA Astrophysics Data System (ADS)

    Filippetto, D.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Cultrera, L.; di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Gatti, G.; Pace, E.; Vaccarezza, C.; Vicario, C.; Bacci, A.; Rossi, A. R.; Serafini, L.; Cianchi, A.; Marchetti, B.; Giannessi, L.; Labat, M.; Quattromini, M.; Ronsivalle, C.; Marrelli, C.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serluca, M.

    2011-09-01

    Peak current represents a key demand for new generation electron beam photoinjectors. Many beam applications, such as free electron laser, inverse Compton scattering, terahertz radiation generation, have efficiencies strongly dependent on the bunch length and current. A method of beam longitudinal compression (called velocity bunching) has been proposed some years ago, based on beam longitudinal phase space rotation in a rf field potential. The control of such rotation can lead to a compression factor in excess of 10, depending on the initial longitudinal emittance. Code simulations have shown the possibility to fully compensate the transverse emittance growth during rf compression, and this regime has been experimentally proven recently at SPARC. The key point is the control of transverse beam plasma oscillations, in order to freeze the emittance at its lowest value at the end of compression. Longitudinal and transverse phase space distortions have been observed during the experiments, leading to asymmetric current profiles and higher final projected emittances. In this paper we discuss in detail the results obtained at SPARC in the regime of velocity bunching, analyzing such nonlinearities and identifying the causes. The beam degradation is discussed, both for slice and projected parameters. Analytical tools are derived to experimentally quantify the effect of such distortions on the projected emittance.

  10. Body Composition Comparison: Bioelectric Impedance Analysis with Dual-Energy X-Ray Absorptiometry in Adult Athletes

    ERIC Educational Resources Information Center

    Company, Joe; Ball, Stephen

    2010-01-01

    The primary purpose of this study was to investigate the accuracy of the DF50 (ImpediMed Ltd, Eight Mile Plains, Queensland, Australia) bioelectrical impedance analysis device using dual-energy x-ray absorptiometry as the criterion in two groups: endurance athletes and power athletes. The secondary purpose was to develop accurate body fat…

  11. Body Composition Comparison: Bioelectric Impedance Analysis with Dual-Energy X-Ray Absorptiometry in Adult Athletes

    ERIC Educational Resources Information Center

    Company, Joe; Ball, Stephen

    2010-01-01

    The primary purpose of this study was to investigate the accuracy of the DF50 (ImpediMed Ltd, Eight Mile Plains, Queensland, Australia) bioelectrical impedance analysis device using dual-energy x-ray absorptiometry as the criterion in two groups: endurance athletes and power athletes. The secondary purpose was to develop accurate body fat…

  12. Space system operations and support cost analysis using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Dean, Edwin B.; Moore, Arlene A.; Fairbairn, Robert E.

    1990-01-01

    This paper evaluates the use of Markov chain process in probabilistic life cycle cost analysis and suggests further uses of the process as a design aid tool. A methodology is developed for estimating operations and support cost and expected life for reusable space transportation systems. Application of the methodology is demonstrated for the case of a hypothetical space transportation vehicle. A sensitivity analysis is carried out to explore the effects of uncertainty in key model inputs.

  13. Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme

    NASA Astrophysics Data System (ADS)

    Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.

    2015-06-01

    Multiscale modelling and simulation play an important role in sheet metal forming analysis, since the overall material responses at macroscopic engineering scales, e.g. formability and anisotropy, are strongly influenced by microstructural properties, such as grain size and crystal orientations (texture). In the present report, multiscale analysis on deep drawing of dual-phase steels is performed using an efficient grain cluster-based homogenization scheme. The homogenization scheme, called relaxed grain cluster (RGC), is based on a generalization of the grain cluster concept, where a (representative) volume element consists of p  ×  q  ×  r (hexahedral) grains. In this scheme, variation of the strain or deformation of individual grains is taken into account through the, so-called, interface relaxation, which is formulated within an energy minimization framework. An interfacial penalty term is introduced into the energy minimization framework in order to account for the effects of grain boundaries. The grain cluster-based homogenization scheme has been implemented and incorporated into the advanced material simulation platform DAMASK, which purposes to bridge the macroscale boundary value problems associated with deep drawing analysis to the micromechanical constitutive law, e.g. crystal plasticity model. Standard Lankford anisotropy tests are performed to validate the model parameters prior to the deep drawing analysis. Model predictions for the deep drawing simulations are analyzed and compared to the corresponding experimental data. The result shows that the predictions of the model are in a very good agreement with the experimental measurement.

  14. Transient loads analysis for space flight applications

    NASA Technical Reports Server (NTRS)

    Thampi, S. K.; Vidyasagar, N. S.; Ganesan, N.

    1992-01-01

    A significant part of the flight readiness verification process involves transient analysis of the coupled Shuttle-payload system to determine the low frequency transient loads. This paper describes a methodology for transient loads analysis and its implementation for the Spacelab Life Sciences Mission. The analysis is carried out using two major software tools - NASTRAN and an external FORTRAN code called EZTRAN. This approach is adopted to overcome some of the limitations of NASTRAN's standard transient analysis capabilities. The method uses Data Recovery Matrices (DRM) to improve computational efficiency. The mode acceleration method is fully implemented in the DRM formulation to recover accurate displacements, stresses, and forces. The advantages of the method are demonstrated through a numerical example.

  15. Dynamics analysis of space robot manipulator with joint clearance

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Bai, Zheng Feng

    2011-04-01

    A computational methodology for analysis of space robot manipulator systems, considering the effects of the clearances in the joint, is presented. The contact dynamics model in joint clearance is established using the nonlinear equivalent spring-damp model and the friction effect is considered using the Coulomb friction model. The space robot system dynamic equation of manipulator with clearance is established. Then the dynamics simulation is presented and the dynamics characteristics of robot manipulator with clearance are analyzed. This work provides a practical method to analyze the dynamics characteristics of space robot manipulator with joint clearance and improves the engineering application. The computational methodology can predict the effects of clearance on space robot manipulator preferably, which is the basis of space robot manipulator design, precision analysis and ground test.

  16. Analysis of dual-frequency MEMS antenna using H-MRTD method

    NASA Astrophysics Data System (ADS)

    Yu, Wenge; Zhong, Xianxin; Chen, Yu; Wu, Zhengzhong

    2004-10-01

    For applying micro/nano technologies and Micro-Electro-Mechanical System (MEMS) technologies in the Radio Frequency (RF) field to manufacture miniature microstrip antennas. A novel MEMS dual-band patch antenna designed using slot-loaded and short-circuited size-reduction techniques is presented in this paper. By controlling the short-plane width, the two resonant frequencies, f10 and f30, can be significantly reduced and the frequency ratio (f30/f10) is tunable in the range 1.7~2.3. The Haar-Wavelet-Based multiresolution time domain (H-MRTD) with compactly supported scaling function for a full three-dimensional (3-D) wave to Yee's staggered cell is used for modeling and analyzing the antenna for the first time. Associated with practical model, an uniaxial perfectly matched layer (UPML) absorbing boundary conditions was developed, In addition , extending the mathematical formulae to an inhomogenous media. Numerical simulation results are compared with those using the conventional 3-D finite-difference time-domain (FDTD) method and measured. It has been demonstrated that, with this technique, space discretization with only a few cells per wavelength gives accurate results, leading to a reduction of both memory requirement and computation time.

  17. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on

  18. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on

  19. Space shuttle entry and landing navigation analysis

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Crawford, B. S.

    1974-01-01

    A navigation system for the entry phase of a Space Shuttle mission which is an aided-inertial system which uses a Kalman filter to mix IMU data with data derived from external navigation aids is evaluated. A drag pseudo-measurement used during radio blackout is treated as an additional external aid. A comprehensive truth model with 101 states is formulated and used to generate detailed error budgets at several significant time points -- end-of-blackout, start of final approach, over runway threshold, and touchdown. Sensitivity curves illustrating the effect of variations in the size of individual error sources on navigation accuracy are presented. The sensitivity of the navigation system performance to filter modifications is analyzed. The projected overall performance is shown in the form of time histories of position and velocity error components. The detailed results are summarized and interpreted, and suggestions are made concerning possible software improvements.

  20. Surface analysis of space telescope material specimens

    NASA Technical Reports Server (NTRS)

    Fromhold, A. T.; Daneshvar, K.

    1985-01-01

    Qualitative and quantitative data on Space Telescope materials which were exposed to low Earth orbital atomic oxygen in a controlled experiment during the 41-G (STS-17) mission were obtained utilizing the experimental techniques of Rutherford backscattering (RBS), particle induced X-ray emission (PIXE), and ellipsometry (ELL). The techniques employed were chosen with a view towards appropriateness for the sample in question, after consultation with NASA scientific personnel who provided the material specimens. A group of eight samples and their controls selected by NASA scientists were measured before and after flight. Information reported herein include specimen surface characterization by ellipsometry techniques, a determination of the thickness of the evaporated metal specimens by RBS, and a determination of trace impurity species present on and within the surface by PIXE.

  1. Space Propulsion Hazards Analysis Manual (SPHAM), volume 1

    NASA Technical Reports Server (NTRS)

    Becker, Dorothy L. (Editor)

    1989-01-01

    The Space Propulsion Hazards Analysis Manual (SPHAM) is a compilation of methods and data directed at hazards analysis and safety for space propulsion and associated vehicles, but broadly applicable to other environments and systems. Methods are described of compiling relevant regulatory documentation, deriving design requirements and specifications, modeling accident scenarios in formal risk assessments, and correlation real-time data to risk probability modeling. Also, SPHAM provides methods for predicting post-accident blast, fragmentation, thermal, and environmental damage. Included in the appendices are an exhaustive bibliography, hazardous properties information on selected space propulsion commodities, and system descriptions of various launch vehicles, upper stages, and spacecrafts.

  2. Thermal analysis of the ACCESS space truss. [Assembly Concept for Construction of Erectable Space Structure

    NASA Technical Reports Server (NTRS)

    Foss, R. A.; Bradley, O. H.

    1985-01-01

    This paper introduces the Assembly Concept for the Construction of Erectable Space Structure (ACCESS) experiment and describes the thermal requirements in detail. The experiment, an erectable truss beam to be flown and assembled aboard the Space Shuttle, was thermally modeled using the TRASYS and SINDA computer codes. Results from the thermal analysis are presented. Development tests dictate the application of a metallized film insulation on the aluminum beam struts to control transient orbital temperature extremes.

  3. Genetic Evaluation of Dual-Purpose Buffaloes (Bubalus bubalis) in Colombia Using Principal Component Analysis

    PubMed Central

    Agudelo-Gómez, Divier; Pineda-Sierra, Sebastian; Cerón-Muñoz, Mario Fernando

    2015-01-01

    Genealogy and productive information of 48621 dual-purpose buffaloes born in Colombia between years 1996 and 2014 was used. The following traits were assessed using one-trait models: milk yield at 270 days (MY270), age at first calving (AFC), weaning weight (WW), and weights at the following ages: first year (W12), 18 months (W18), and 2 years (W24). Direct additive genetic and residual random effects were included in all the traits. Maternal permanent environmental and maternal additive genetic effects were included for WW and W12. The fixed effects were: contemporary group (for all traits), sex (for WW, W12, W18, and W24), parity (for WW, W12, and MY270). Age was included as covariate for WW, W12, W18 and W24. Principal component analysis (PCA) was conducted using the genetic values of 133 breeding males whose breeding-value reliability was higher than 50% for all the traits in order to define the number of principal components (PC) which would explain most of the variation. The highest heritabilities were for W18 and MY270, and the lowest for AFC; with 0.53, 0.23, and 0.17, respectively. The first three PCs represented 66% of the total variance. Correlation of the first PC with meat production traits was higher than 0.73, and it was -0.38 with AFC. Correlations of the second PC with maternal genetic component traits for WW and W12 were above 0.75. The third PC had 0.84 correlation with MY270. PCA is an alternative approach for analyzing traits in dual-purpose buffaloes and reduces the dimension of the traits. PMID:26230093

  4. Genetic Evaluation of Dual-Purpose Buffaloes (Bubalus bubalis) in Colombia Using Principal Component Analysis.

    PubMed

    Agudelo-Gómez, Divier; Pineda-Sierra, Sebastian; Cerón-Muñoz, Mario Fernando

    2015-01-01

    Genealogy and productive information of 48621 dual-purpose buffaloes born in Colombia between years 1996 and 2014 was used. The following traits were assessed using one-trait models: milk yield at 270 days (MY270), age at first calving (AFC), weaning weight (WW), and weights at the following ages: first year (W12), 18 months (W18), and 2 years (W24). Direct additive genetic and residual random effects were included in all the traits. Maternal permanent environmental and maternal additive genetic effects were included for WW and W12. The fixed effects were: contemporary group (for all traits), sex (for WW, W12, W18, and W24), parity (for WW, W12, and MY270). Age was included as covariate for WW, W12, W18 and W24. Principal component analysis (PCA) was conducted using the genetic values of 133 breeding males whose breeding-value reliability was higher than 50% for all the traits in order to define the number of principal components (PC) which would explain most of the variation. The highest heritabilities were for W18 and MY270, and the lowest for AFC; with 0.53, 0.23, and 0.17, respectively. The first three PCs represented 66% of the total variance. Correlation of the first PC with meat production traits was higher than 0.73, and it was -0.38 with AFC. Correlations of the second PC with maternal genetic component traits for WW and W12 were above 0.75. The third PC had 0.84 correlation with MY270. PCA is an alternative approach for analyzing traits in dual-purpose buffaloes and reduces the dimension of the traits.

  5. Inverse Calibration of the Dual-Permeability Model MACRO: Theoretical Analysis and Application to Microlysimeter Experiments.

    NASA Astrophysics Data System (ADS)

    Roulier, S.; Jarvis, N.

    2003-12-01

    Macropore flow is a key factor for determining chemical transport in unsaturated soils, but the description of the complex processes involved in macropore flow requires several parameters that cannot be easily measured. Inverse modeling procedures are increasingly used for model calibration, because they are objective and reproducible. But this is only true when the problem is well-posed: an ill-posed problem leads to parameter nonuniqueness, and thus contributes to poor model performance, like error and/or uncertainty in model predictions. Factors linked to nonuniqueness are most often related to sensitivity issues and/or correlation among two or several parameters. This study focused on the use of inverse techniques to estimate parameters controlling macropore flow, transport, and transformation processes in the dual porosity/dual-permeability model of water flow and solute transport MACRO. MACRO was used together with the inverse modeling package SUFI. The Bayesian (global) approach followed by SUFI is stable, converging, and robust. Moreover, the procedure also predicts a posterior uncertainty domain for the estimated parameters. A theoretical study was carried out to test the inverse modeling tool SUFI/MACRO. Generated "dummy" data set were used for this purpose, representing transient leaching experiment for tracers and reactive solutes in small soil columns (20 cm height). General issues related to inverse modeling such as internal correlation and sensitivity were investigated, with the help of response surface analysis, as well as the influence of the choice of the goal function used in the inverse procedure. Attention was also focused on the most appropriate experimental design necessary for a reliable parameter estimation. The procedure was then applied to real data, obtained from tracer leaching experiments carried out on microlysimeters. Based on calculated model efficiencies, MACRO/SUFI gave good predictions of water movement and tracer transport. This

  6. Statistical analysis of cocaine head-space vapors

    NASA Astrophysics Data System (ADS)

    Fortuna, Joseph J.

    1994-03-01

    Forensic Laboratories performed qualitative analyses on the vapors above (head-space) seized cocaine samples during the period of 1986 - 1991. Thirty-two solvents were targets of the chemical head-space analyses. The results of the chemical analyses were statistically analyzed. The statistical analysis revealed trends in chemicals solvents being used or substituted for previously used solvents. This is critical to targeting the right chemicals for diversion control. In the 1991 head-space analyses, five chemical solvents could have been used as screening targets for cocaine contraband. The analysis showed strong trends in chemicals found. Routine statistical analysis of the head-space data will be needed to update the list of target screening chemicals.

  7. Large space antennas: A systems analysis case history

    NASA Technical Reports Server (NTRS)

    Keafer, Lloyd S. (Compiler); Lovelace, U. M. (Compiler)

    1987-01-01

    The value of systems analysis and engineering is aptly demonstrated by the work on Large Space Antennas (LSA) by the NASA Langley Spacecraft Analysis Branch. This work was accomplished over the last half-decade by augmenting traditional system engineering, analysis, and design techniques with computer-aided engineering (CAE) techniques using the Langley-developed Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. This report chronicles the research highlights and special systems analyses that focused the LSA work on deployable truss antennas. It notes developmental trends toward greater use of CAE techniques in their design and analysis. A look to the future envisions the application of improved systems analysis capabilities to advanced space systems such as an advanced space station or to lunar and Martian missions and human habitats.

  8. Design and rigorous analysis of generalized axially- symmetric dual-reflector antennas

    NASA Astrophysics Data System (ADS)

    Moreira, Fernando J. S.

    1997-10-01

    The development of reflector antennas is continuously driven by ever increasing performance requirements, creating a demand for improved design and analysis tools. Ideally, the antenna synthesis should rely on general closed-form design equations (to establish the initial geometry and performance), as well as on accurate analysis techniques (to tune up the antenna performance by accounting for all pertinent electrical effects). Driven by these motivations, this dissertation provides the required formulation for the rigorous (in a numerical sense) analysis of axially-symmetric dual-reflector antennas and for their effective design. The rigorous analysis is performed using integral-equation techniques, which permit the inclusion of all relevant antenna components (i.e., reflector surfaces and feed structure), with the exception of the supporting struts and radomes. These techniques allow the electrical performance of a designed antenna to be accurately determined, hence minimizing the use of hardware models. The design portion starts with a unified investigation of generalized classical axially-symmetric dual-reflector antennas- conic-section generated configurations that minimize the main-reflector scattering towards the subreflector while providing a uniform-phase aperture illumination. It is shown that all possible configurations can be grouped in four basic categories. Using Geometrical Optics principles, useful closed-form design expressions are obtained, allowing a straightforward determination of the initial geometry and its upper-bound high-frequency performance. The improvement of the antenna radiation characteristics through the reflector shaping is also explored. An amplitude distribution is proposed for the shaped-antenna aperture field (with constant phase), providing high efficiency while controlling the sidelobe envelope. The diffraction and spillover effects are also investigated using Geometrical Theory of Diffraction, yielding useful formulas and

  9. Feasibility study for a novel method of dual energy x-ray analysis

    NASA Astrophysics Data System (ADS)

    Midgley, S. M.

    2011-09-01

    Dual energy x-ray analysis (DEXA) is investigated using a nonlinear model for the x-ray linear attenuation coefficient μ that is expressed as a function of electron density Ne and the fourth compositional ratio R4. Nonlinear simultaneous equations are solved using a least-squares algorithm based upon the method of Levenberg and Marquardt. Measurements of μ for low atomic number materials (containing elements hydrogen to calcium) at energies 32-66 keV are used to study DEXA accuracy as a function of sample composition, photon energy and their separation ΔE. Results are presented for ΔE = 5-30 keV, for 2% measurement precision, and the doses involved are quantified. The model is subject to propagation of error analysis and results are presented for the relationship between measurement uncertainties and those for Ne and R4. The analysis shows how DEXA accuracy is controlled by the fractional compositional cross-product, which represents the contribution of composition to μ, and how this can be optimized by careful selection of beam energies according to the compositional range of interest. Accurate DEXA is achieved over restricted energy and compositional ranges: soft tissues only at approximately 15-25 keV, all tissues at approximately 30-80 keV and, for situations where a higher dose can be tolerated, all tissues at approximately 4-8 MeV.

  10. The 2008 Super Tuesday Tornado Outbreak: Synthetic Dual Doppler Analysis of Contrasting Tornadic Storm Types

    NASA Technical Reports Server (NTRS)

    Knupp, Kevin R.; Coleman, Timothy; Carey, Larry; Peterson, Walt; Elkins, Calvin

    2008-01-01

    During the Super Tuesday Tornado Outbreak on 5-6 February, a significant number of storms passed within about 40 km of WSR-88D radars. This distance, combined with the significant motion vector (from the southwest at 20-25 m per second) of relatively steady storms, is amenable to a synthetic dual Doppler analysis during the times when the storms passed the WSR-88D locations. Nine storms will be analyzed using the SDD technique. The following table provides their general characteristics and nearest approach to the 88D radars. For this data set, storm structure ranges from isolated supercell to QLCS. Each storm will be analyzed for a 40-60 min period during passage by the WSR-88D radar to determine general storm properties. Analysis of high-resolution single Doppler data around the time of passage (plus or minus 30 min), combined with 1-2 SDD analyses, will be used to examine the kinematic structure of low-level circulations (e.g., mesocyclone, downdraft) and the relation to the parent storm. This analysis may provide insights on the fundamental differences between cyclonic circulations in supercell storms and those within QCLS's.

  11. [Comparative analysis of cosmonauts skeleton changes after space flights on orbital station Mir and international space station and possibilities of prognosis for interplanetary missions].

    PubMed

    Oganov, V S; Bogomolov, V V; Bakulin, A V; Novikov, V E; Kabitskaia, O E; Murashko, L M; Morgun, V V; Kasparskiĭ, R R

    2010-01-01

    A summary of investigations results of human bone tissue changes in space flight on the orbital station (OS) Mir and international space station (ISS) using dual energy X-ray absorptiometry (DXA) is given. Results comparative analysis revealed an absence of significant differences in bone mass (BM) changes on the both OS. Theoretically expected BM loss was observed in bone trabecular structure of skeleton low part after space flight lasting 5-7 month. The BM losses are qualified in some cases as quicly developed but reversible osteopenia and generally interpreted as evidence of bone functional adaptation to the alterating mechanical loading. It was demonstrated the high individual variability BM loss amplitudes. Simultaneously was observed the individual pattern of BM loss distribution across different segments of skeleton after repetitive flights independently upon type of OS. In according with the above mentioned individual peculiarities it was impossible to establish the dependence of BM changes upon duration of space missions. Therefore we have not sufficiently data for calculation of probability to achive the critical demineralization level by the augmentation the space mission duration till 1.5-2 years. It is more less possibility of the bone quality changes prognosis, which in the aggregate with BM losses determines the bone fracture risk. It become clearly that DXA technology is unsuffitiently for this purpose. It is considered the main direction which may optimized the elaboration of the interplanetary project meaning the perfectly safe of skeleton mechanical function.

  12. Analysis of space telescope data collection system

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Schoggen, W. O.

    1982-01-01

    An analysis of the expected performance for the Multiple Access (MA) system is provided. The analysis covers the expected bit error rate performance, the effects of synchronization loss, the problem of self-interference, and the problem of phase ambiguity. The problem of false acceptance of a command word due to data inversion is discussed. A mathematical determination of the probability of accepting an erroneous command word due to a data inversion is presented. The problem is examined for three cases: (1) a data inversion only, (2) a data inversion and a random error within the same command word, and a block (up to 256 48-bit words) containing both a data inversion and a random error.

  13. SAVS: A Space Analysis and Visualization System

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.; Mankofsky, Alan; Goodrich, Charles C.

    1993-01-01

    We propose to develop, test, demonstrate, and deliver to NASA a powerful and versatile data acquisition, manipulation, analysis and visualization system which will enhance scientific capabilities in the display and interpretation of diverse and distributed data within an integrated user-friendly environment. Our approach exploits existing technologies and combines three major elements into an easy-to-use interactive package: (1) innovative visualization software; (2) advanced database techniques; and (3) a rich set of mathematical and image processing tools. Visualization capabilities will include one-, two-, and three-dimensinal displays, along with animation, compression, warping and slicing functions. Analysis tools will include generic mathematical and statistical techniques along with the ability to use large scale models for interactive interpretation of large volume data sets. Our system will be implemented on Sun and EC UNIX workstations and on the Stardent Graphics Supercomputer. Our final deliverable will include complete documentation and a NASA/NSF-CDAW/SUNDIAL campaign demonstration.

  14. SAVS: A Space Analysis and Visualization System

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.; Mankofsky, Alan; Goodrich, Charles C.

    1992-01-01

    We propose to develop, test, demonstrate, and deliver to NASA a powerful and versatile data acquisition, manipulation, analysis and visualization system which will enhance scientific capabilities in the display and interpretation of diverse and distributed data within an integrated user-friendly environment. Our approach exploits existing technologies and combines three major elements into an easy-to-use interactive package: (1) innovative visualization software; (2) advanced database techniques; and (3) a rich set of mathematical and image processing tools. Visualization capabilities will include one-, two-, and three-dimensional displays, along with animation, compression, warping and slicing functions. Analysis tools will include generic mathematical and statistical techniques along with the ability to use large scale models for interactive interpretation of large volume data sets. Our system will be implemented on Sun and DEC UNIX workstations and on the Stardent Graphics Super computer. Our final deliverable will include complete documentation and a NASA/NSF-CDAW/SUNDIAL campaign demonstration.

  15. Efficacy and safety of dual blockade of the renin-angiotensin system: meta-analysis of randomised trials

    PubMed Central

    Makani, Harikrishna; Bangalore, Sripal; Desouza, Kavit A; Shah, Arpit

    2013-01-01

    Objective To compare the long term efficacy and adverse events of dual blockade of the renin-angiotensin system with monotherapy. Design Systematic review and meta-analysis. Data sources PubMed, Embase, and the Cochrane central register of controlled trials, January 1990 to August 2012. Study selection Randomised controlled trials comparing dual blockers of the renin-angiotensin system with monotherapy, reporting data on either long term efficacy (≥1 year) or safety events (≥4 weeks), and with a sample size of at least 50. Analysis was stratified by trials with patients with heart failure versus patients without heart failure. Results 33 randomised controlled trials with 68 405 patients (mean age 61 years, 71% men) and mean duration of 52 weeks were included. Dual blockade of the renin-angiotensin system was not associated with any significant benefit for all cause mortality (relative risk 0.97, 95% confidence interval 0.89 to 1.06) and cardiovascular mortality (0.96, 0.88 to 1.05) compared with monotherapy. Compared with monotherapy, dual therapy was associated with an 18% reduction in admissions to hospital for heart failure (0.82, 0.74 to 0.92). However, compared with monotherapy, dual therapy was associated with a 55% increase in the risk of hyperkalaemia (P<0.001), a 66% increase in the risk of hypotension (P<0.001), a 41% increase in the risk of renal failure (P=0.01), and a 27% increase in the risk of withdrawal owing to adverse events (P<0.001). Efficacy and safety results were consistent in cohorts with and without heart failure when dual therapy was compared with monotherapy except for all cause mortality, which was higher in the cohort without heart failure (P=0.04 v P=0.15), and renal failure was significantly higher in the cohort with heart failure (P<0.001 v P=0.79). Conclusion Although dual blockade of the renin-angiotensin system may have seemingly beneficial effects on certain surrogate endpoints, it failed to reduce mortality and was

  16. Analysis of molecular and (di)atomic dual-descriptor functions and matrices.

    PubMed

    Alcoba, Diego R; Oña, Ofelia B; Torre, Alicia; Lain, Luis; Bultinck, Patrick

    2017-06-01

    In this work, the dual-descriptor is studied in matrix form [Formula: see text] and both coordinates condensed to atoms, resulting in atomic and diatomic (or where applicable, bond) condensed single values. This double partitioning method of the dual-descriptor matrix is proposed within the Hirshfeld-I atoms-in-molecule framework although it is easily extended to other atoms-in-molecules methods. Diagonalizing the resulting atomic and bond dual-descriptor matrices gives eigenvalues and eigenvectors describing the reactivity of atoms and bonds. The dual-descriptor function is the diagonal element of the underlying matrix. The extra information contained in the atom and bond resolution is highlighted and the effect of choosing either the fragment of molecular response or response of molecular fragment approach is quantified. Graphical Abstract Atom and bond condensed dual descriptor matrices and functions are derived from molecular ones using Hirshfeld-I atoms in molecules weight functions.

  17. Coupled Loads Analysis Accuracy from the Space Vehicle Perspective

    NASA Astrophysics Data System (ADS)

    Dickens, J. M.; Wittbrodt, M. J.; Gate, M. M.; Li, L. H.; Stroeve, A.

    2001-01-01

    Coupled loads analysis (CLA) consists of performing a structural response analysis, usually a time-history response analysis, with reduced dynamic models typically provided by two different companies to obtain the coupled response of a launch vehicle and space vehicle to the launching and staging events required to place the space vehicle into orbit. The CLA is performed by the launch vehicle contractor with a reduced dynamics mathematical model that is coupled to the launch vehicle, or booster, model to determine the coupled loads for each substructure. Recently, the booster and space vehicle contractors have been from different countries. Due to the language differences and governmental restrictions, the verification of the CLA is much more difficult than when working with launch vehicle and space vehicle contractors of the same country. This becomes exceedingly clear when the CLA analysis results do not seem to pass an intuitive judgement. Presented in the sequel are three checks that a space vehicle contractor can perform on the results of a coupled loads analysis to partially verify the analysis.

  18. Multi-spectral image analysis for improved space object characterization

    NASA Astrophysics Data System (ADS)

    Glass, William; Duggin, Michael J.; Motes, Raymond A.; Bush, Keith A.; Klein, Meiling

    2009-08-01

    The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground-based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). This information can be used to improve our catalog of space objects and will be helpful in the resolution of satellite anomalies. At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space-Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.

  19. Swarm Utilisation Analysis: LEO satellite observations for the ESA's SSA Space Weather network

    NASA Astrophysics Data System (ADS)

    Kervalishvili, Guram; Stolle, Claudia; Rauberg, Jan; Olsen, Nils; Vennerstrøm, Susanne; Gullikstad Johnsen, Magnar; Hall, Chris

    2017-04-01

    ESA's (European Space Agency) constellation mission Swarm was successfully launched on 22 November 2013. The three satellites achieved their final constellation on 17 April 2014 and since then Swarm-A and Swarm-C orbiting the Earth at about 470 km (flying side-by-side) and Swarm-B at about 520 km altitude. Each of Swarm satellite carries instruments with high precision to measure magnetic and electric fields, neutral and plasma densities, and TEC (Total Electron Content) for which a dual frequency GPS receiver is used. SUA (Swarm Utilisation Analysis) is a project of the ESA's SSA (Space Situational Awareness) SWE (Space Weather) program. Within this framework GFZ (German Research Centre for Geosciences, Potsdam, Germany) and DTU (National Space Institute, Kongens Lyngby, Denmark) have developed two new Swarm products ROT (Rate Of change of TEC) and PEJ (Location and intensity level of Polar Electrojets), respectively. ROT is derived as the first time derivative from the Swarm measurements of TEC at 1 Hz sampling. ROT is highly relevant for users in navigation and communications: strong plasma gradients cause GPS signal degradation or even loss of GPS signal. Also, ROT is a relevant space weather asset irrespective of geomagnetic activity, e.g., high amplitude values of ROT occur during all geomagnetic conditions. PEJ is derived from the Swarm measurements of the magnetic field strength at 1 Hz sampling. PEJ has a high-level importance for power grid companies since the polar electrojet is a major cause for ground-induced currents. ROT and PEJ together with five existing Swarm products TEC, electron density, IBI (Ionospheric Bubble Index), FAC (Field-Aligned Current), and vector magnetic field build the SUA service prototype. This prototype will be integrated into ESA's SSA Space Weather network as a federated service and will be available soon from ESA's SSA SWE Ionospheric Weather and Geomagnetic Conditions Expert Service Centres (ESCs).

  20. New space sensor and mesoscale data analysis

    NASA Technical Reports Server (NTRS)

    Hickey, John S.

    1987-01-01

    The developed Earth Science and Application Division (ESAD) system/software provides the research scientist with the following capabilities: an extensive data base management capibility to convert various experiment data types into a standard format; and interactive analysis and display package (AVE80); an interactive imaging/color graphics capability utilizing the Apple III and IBM PC workstations integrated into the ESAD computer system; and local and remote smart-terminal capability which provides color video, graphics, and Laserjet output. Recommendations for updating and enhancing the performance of the ESAD computer system are listed.

  1. Multi-mission space vehicle subsystem analysis tools

    NASA Technical Reports Server (NTRS)

    Kordon, M.; Wood, E.

    2003-01-01

    Spacecraft engineers often rely on specialized simulation tools to facilitate the analysis, design and operation of space systems. Unfortunately these tools are often designed for one phase of a single mission and cannot be easily adapted to other phases or other misions. The Multi-Mission Pace Vehicle Susbsystem Analysis Tools are designed to provide a solution to this problem.

  2. Single-cell analysis reveals gene-expression heterogeneity in syntrophic dual-culture of Desulfovibrio vulgaris with Methanosarcina barkeri

    NASA Astrophysics Data System (ADS)

    Qi, Zhenhua; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2014-12-01

    Microbial syntrophic metabolism has been well accepted as the heart of how methanogenic and other anaerobic microbial communities function. In this work, we applied a single-cell RT-qPCR approach to reveal gene-expression heterogeneity in a model syntrophic system of Desulfovibrio vulgaris and Methanosarcina barkeri, as compared with the D. vulgaris monoculture. Using the optimized primers and single-cell analytical protocol, we quantitatively determine gene-expression levels of 6 selected target genes in each of the 120 single cells of D. vulgaris isolated from its monoculture and dual-culture with M. barkeri. The results demonstrated very significant cell-to-cell gene-expression heterogeneity for the selected D. vulgaris genes in both the monoculture and the syntrophic dual-culture. Interestingly, no obvious increase in gene-expression heterogeneity for the selected genes was observed for the syntrophic dual-culture when compared with its monoculture, although the community structure and cell-cell interactions have become more complicated in the syntrophic dual-culture. In addition, the single-cell RT-qPCR analysis also provided further evidence that the gene cluster (DVU0148-DVU0150) may be involved syntrophic metabolism between D. vulgaris and M. barkeri. Finally, the study validated that single-cell RT-qPCR analysis could be a valuable tool in deciphering gene functions and metabolism in mixed-cultured microbial communities.

  3. Single-cell analysis reveals gene-expression heterogeneity in syntrophic dual-culture of Desulfovibrio vulgaris with Methanosarcina barkeri.

    PubMed

    Qi, Zhenhua; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2014-12-15

    Microbial syntrophic metabolism has been well accepted as the heart of how methanogenic and other anaerobic microbial communities function. In this work, we applied a single-cell RT-qPCR approach to reveal gene-expression heterogeneity in a model syntrophic system of Desulfovibrio vulgaris and Methanosarcina barkeri, as compared with the D. vulgaris monoculture. Using the optimized primers and single-cell analytical protocol, we quantitatively determine gene-expression levels of 6 selected target genes in each of the 120 single cells of D. vulgaris isolated from its monoculture and dual-culture with M. barkeri. The results demonstrated very significant cell-to-cell gene-expression heterogeneity for the selected D. vulgaris genes in both the monoculture and the syntrophic dual-culture. Interestingly, no obvious increase in gene-expression heterogeneity for the selected genes was observed for the syntrophic dual-culture when compared with its monoculture, although the community structure and cell-cell interactions have become more complicated in the syntrophic dual-culture. In addition, the single-cell RT-qPCR analysis also provided further evidence that the gene cluster (DVU0148-DVU0150) may be involved syntrophic metabolism between D. vulgaris and M. barkeri. Finally, the study validated that single-cell RT-qPCR analysis could be a valuable tool in deciphering gene functions and metabolism in mixed-cultured microbial communities.

  4. A dual-cooled hydrogen-oxygen rocket engine heat transfer analysis

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Kazaroff, John M.; Jankovsky, Robert S.

    1991-01-01

    The potential benefits of simultaneously using hydrogen and oxygen as rocket engine coolants are described. A plug-and-spool rocket engine was examined at heat fluxes ranging from 9290 to 163,500 kW/sq m, using a combined 3D conduction/advection analysis. Both counterflow and parallel flow cooling arrangements were analyzed. The results indicate that a significant amount of heat transfer to the oxygen occurs, reducing both the hot-side wall temperature of the rocket engine and also reducing the exit temperature of the hydrogen coolant. The total heat transferred to the oxygen was found to be largely independent of the oxygen coolant flow direction. The reduction in combustion chamber wall temperatures at throttled conditions is especially desirable since the analysis indicates that double temperature maxima, one at the throat and another in the combustion chamber, occur with a traditional hydrogen-only cooled engine. A dual-cooled engine eliminates any concern for overheating in the combustion chamber.

  5. Application of dual carbon-bromine isotope analysis for investigating abiotic transformations of tribromoneopentyl alcohol (TBNPA).

    PubMed

    Kozell, Anna; Yecheskel, Yinon; Balaban, Noa; Dror, Ishai; Halicz, Ludwik; Ronen, Zeev; Gelman, Faina

    2015-04-07

    Many of polybrominated organic compounds, used as flame retardant additives, belong to the group of persistent organic pollutants. Compound-specific isotope analysis is one of the potential analytical tools for investigating their fate in the environment. However, the isotope effects associated with transformations of brominated organic compounds are still poorly explored. In the present study, we investigated carbon and bromine isotope fractionation during degradation of tribromoneopentyl alcohol (TBNPA), one of the widely used flame retardant additives, in three different chemical processes: transformation in aqueous alkaline solution (pH 8); reductive dehalogenation by zero-valent iron nanoparticles (nZVI) in anoxic conditions; oxidative degradation by H2O2 in the presence of CuO nanoparticles (nCuO). Two-dimensional carbon-bromine isotope plots (δ(13)C/Δ(81)Br) for each reaction gave different process-dependent isotope slopes (Λ(C/Br)): 25.2 ± 2.5 for alkaline hydrolysis (pH 8); 3.8 ± 0.5 for debromination in the presence of nZVI in anoxic conditions; ∞ in the case of catalytic oxidation by H2O2 with nCuO. The obtained isotope effects for both elements were generally in agreement with the values expected for the suggested reaction mechanisms. The results of the present study support further applications of dual carbon-bromine isotope analysis as a tool for identification of reaction pathway during transformations of brominated organic compounds in the environment.

  6. Fate and Transport of Nitrate in an Alpine Catchment Based on Dual-Isotopic and End-Member Mixing Analysis

    NASA Astrophysics Data System (ADS)

    Williams, M. W.; Liu, F.; Kendall, C.

    2003-12-01

    Attempts to understand nitrate loss from small watersheds have been the focus of much research. In general, these results have shown that understanding how sources and flowpaths of nitrate-rich waters change with time necessitates a combination of isotopic, chemical, and hydrometric data. New and evolving tools to understand the fate and transport of nitrate include dual-isotopic analysis of both the nitrogen and oxygen atoms in the nitrate molecule, and end-member mixing analysis (EMMA). However, to-date no one has combined these two approaches. Here we present results from both dual-isotope analysis and EMMA to understand the fate and transport of nitrate in the high-elevation Green Lakes watershed of the Colorado Front Range. Thirty-five samples were collected and analyzed for the dual isotopes of nitrate, and showed that values of δ 18O in atmospheric deposition had considerable overlap with values in stream waters. There was a strong counterclockwise pattern of hysteresis when δ 18O is plotted versus stream discharge, consistent with a mixture of atmospheric and microbial nitrate sources on the rising limb of the hydrograph, then mostly a microbial source on the recession limb of the hydrograph. A chemograph of nitrate sources developed using EMMA shows atmospheric deposition the predominant source at the initiation of snowmelt runoff, with soil water and talus becoming the dominant source at peak runoff, and talus-water and baseflow both important on the recession limb of the hydrograph. We were able to qualitatively evaluate the EMMA results by developing a 2-component nitrate source model using the dual-isotope values. The dual-isotope mixing model agreed well with the atmospheric and subsurface sources of nitrate identified using EMMA.

  7. Energy loss analysis of an integrated space power distribution system

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Ribeiro, P. F.

    1992-01-01

    The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.

  8. Energy loss analysis of an integrated space power distribution system

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Ribeiro, P. F.

    1992-01-01

    The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.

  9. Key-space analysis of double random phase encryption technique

    NASA Astrophysics Data System (ADS)

    Monaghan, David S.; Gopinathan, Unnikrishnan; Naughton, Thomas J.; Sheridan, John T.

    2007-09-01

    We perform a numerical analysis on the double random phase encryption/decryption technique. The key-space of an encryption technique is the set of possible keys that can be used to encode data using that technique. In the case of a strong encryption scheme, many keys must be tried in any brute-force attack on that technique. Traditionally, designers of optical image encryption systems demonstrate only how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. However, this type of demonstration does not discuss the properties of the key-space nor refute the feasibility of an efficient brute-force attack. To clarify these issues we present a key-space analysis of the technique. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute-force attack.

  10. Manufacturing in space: Fluid dynamics numerical analysis

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.; Nicholson, L. A.; Spradley, L. W.

    1981-01-01

    Natural convection in a spherical container with cooling at the center was numerically simulated using the Lockheed-developed General Interpolants Method (GIM) numerical fluid dynamic computer program. The numerical analysis was simplified by assuming axisymmetric flow in the spherical container, with the symmetry axis being a sphere diagonal parallel to the gravity vector. This axisymmetric spherical geometry was intended as an idealization of the proposed Lal/Kroes growing experiments to be performed on board Spacelab. Results were obtained for a range of Rayleigh numbers from 25 to 10,000. For a temperature difference of 10 C from the cooling sting at the center to the container surface, and a gravitional loading of 0.000001 g a computed maximum fluid velocity of about 2.4 x 0.00001 cm/sec was reached after about 250 sec. The computed velocities were found to be approximately proportional to the Rayleigh number over the range of Rayleigh numbers investigated.

  11. Space processing float zone thermal analysis

    NASA Technical Reports Server (NTRS)

    Pogson, J. T.; Anderson, D. M.

    1976-01-01

    Thermal analysis (BETA) computer program adaptations were prepared to analyze phase change histories in crystal specimens. The first program (BETA-CYL) treats right circular cylinder configurations and the second, more general, program (BETA-BOR) treats a generalized body-of-revolution configuration. A series of computer runs were made for silicon material to determine boundary conditions which produce flat solidification interfaces while, at the same time, minimizing peak temperatures in the molten zone. Flat solidification interfaces are a goal believed by some investigators to be required to produce high quality semiconductor materials. The thermal effects of convection in a molten zone were examined and found to be negligible in comparison to the conduction heat transfer of the melt.

  12. Investigation of multilevel amplitude modulation for a dual-wavelength free-space optical communications system using realistic channel estimation and minimum mean-squared-error linear equalization.

    PubMed

    Reinhardt, Colin N; Jaruwatanadilok, Sermsak; Kuga, Yasuo; Ishimaru, Akira; Ritcey, James A

    2008-10-10

    Fog is a highly dispersive medium at optical wavelengths, and the received pulse waveform may suffer significant distortion. Thus it is desirable to have the impulse response of the propagation channel to recover data transmitted through fog. The fog particle density and the particle size distribution both strongly influence the channel impulse response, yet it is difficult to estimate these parameters. We present a method using a dual-wavelength free-space optical system for estimating the average particle diameter and the particle number density and for approximating the particle distribution function. These parameters serve as inputs to estimate the atmospheric channel impulse response using simulation based on the modified vector radiative transfer theory. The estimated channel response is used to design a minimum mean-square-error equalization filter to improve the bit error rate by correcting distortion in the received signal waveform due to intersymbol interference and additive white Gaussian noise. (c) 2008 Optical Society of America

  13. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  14. Multi-Spectral Image Analysis for Improved Space Object Characterization

    NASA Astrophysics Data System (ADS)

    Duggin, M.; Riker, J.; Glass, W.; Bush, K.; Briscoe, D.; Klein, M.; Pugh, M.; Engberg, B.

    The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.

  15. Physical analysis of breast cancer using dual-source computed tomography

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, H. K.; Cho, J. H.

    2014-12-01

    This study was aimed to analyze various physical characteristics of breast cancer using dual-source computed tomography (CT). A phantom study and a clinical trial were performed in order and a 64-multidetector CT device was used for the examinations. In the phantom study, single-source (SS) CT was set up with a conventional scanning condition that is usually applied for breast CT examination and implementation was done at tube voltage of 120 kVp. Dual-source CT acquired images by irradiating X-ray sources with fast switching between two kilovoltage settings (80 and 140 kVp). After scanning, Hounsfield Unit (HU) values and radiation doses in a region of interest were measured and analyzed. In the clinical trial, the HU values were measured and analyzed after single-source computed tomography (SSCT) and dual-source CT in patients diagnosed with breast cancer. Also, the tumor size measured by dual-source CT was compared with the actual tumor size. The phantom study determined that the tumor region was especially measured by dual-source CT, while nylon fiber and specks region were especially measured by SSCT. The radiation dose was high with dual-source CT. The clinical trial showed a higher HU value of cancerous regions when scanned by dual-source CT compared with SSCT.

  16. Dual phylogenetic staining protocol for simultaneous analysis of yeast and bacteria in artworks

    NASA Astrophysics Data System (ADS)

    González-Pérez, Marina; Brinco, Catarina; Vieira, Ricardo; Rosado, Tânia; Mauran, Guilhem; Pereira, António; Candeias, António; Caldeira, Ana Teresa

    2017-02-01

    The detection and analysis of metabolically active microorganisms are useful to determine those directly involved in the biodeterioration of cultural heritage (CH). Fluorescence in situ hybridization with oligonucleotide probes targeted at rRNA (RNA-FISH) has demonstrated to be a powerful tool for signaling them. However, more efforts are required for the technique to become a vital tool for the analysis of CH's microbiological communities. Simultaneous analysis of microorganisms belonging to different kingdoms, by RNA-FISH in-suspension approach, could represent an important progress: it could open the door for the future use of the technique to analyze the microbial communities by flow cytometry, which has shown to be a potent tool in environmental microbiology. Thus, in this work, various already implemented in-suspension RNA-FISH protocols for ex situ analysis of yeast and bacteria were investigated and adapted for allowing the simultaneous detection of these types of microorganisms. A deep investigation of the factors that can affect the results was carried out, focusing particular attention on the selection of the fluorochromes used for labelling the probe set. The resultant protocol, involving the use of EUK516-6-FAM/EUB338-Cy3 probes combination, was validated using artificial consortia and gave positive preliminary results when applied in samples from a real case study: the Paleolithic archaeological site of Escoural Cave (Alentejo, Portugal). This approach represents the first dual-staining RNA-FISH in-suspension protocol developed and applied for the simultaneous investigation of CH biodeteriogenic agents belonging to different kingdoms.

  17. Partial pressure analysis in space testing

    NASA Technical Reports Server (NTRS)

    Tilford, Charles R.

    1994-01-01

    For vacuum-system or test-article analysis it is often desirable to know the species and partial pressures of the vacuum gases. Residual gas or Partial Pressure Analyzers (PPA's) are commonly used for this purpose. These are mass spectrometer-type instruments, most commonly employing quadrupole filters. These instruments can be extremely useful, but they should be used with caution. Depending on the instrument design, calibration procedures, and conditions of use, measurements made with these instruments can be accurate to within a few percent, or in error by two or more orders of magnitude. Significant sources of error can include relative gas sensitivities that differ from handbook values by an order of magnitude, changes in sensitivity with pressure by as much as two orders of magnitude, changes in sensitivity with time after exposure to chemically active gases, and the dependence of the sensitivity for one gas on the pressures of other gases. However, for most instruments, these errors can be greatly reduced with proper operating procedures and conditions of use. In this paper, data are presented illustrating performance characteristics for different instruments and gases, operating parameters are recommended to minimize some errors, and calibrations procedures are described that can detect and/or correct other errors.

  18. Dynamic characterization and analysis of space shuttle SRM solid propellant

    NASA Technical Reports Server (NTRS)

    Hufferd, W. L.

    1979-01-01

    The dynamic response properties of the space shuttle solid rocket moter (TP-H1148) propellant were characterized and the expected limits of propellant variability were established. Dynamic shear modulus tests conducted on six production batches of TP-H1148 at various static and dynamic strain levels over the temperature range from 40 F to 90 F. A heat conduction analysis and dynamic response analysis of the space shuttle solid rocket motor (SRM) were also conducted. The dynamic test results show significant dependence on static and dynamic strain levels and considerable batch-to-batch and within-batch variability. However, the results of the SRM dynamic response analyses clearly demonstrate that the stiffness of the propellant has no consequential on the overall SRM dynamic response. Only the mass of the propellant needs to be considered in the dynamic analysis of the space shuttle SRM.

  19. Protective Effect of Dual-Strain Probiotics in Preterm Infants: A Multi-Center Time Series Analysis

    PubMed Central

    Schwab, Frank; Garten, Lars; Geffers, Christine; Gastmeier, Petra; Piening, Brar

    2016-01-01

    Objective To determine the effect of dual-strain probiotics on the development of necrotizing enterocolitis (NEC), mortality and nosocomial bloodstream infections (BSI) in preterm infants in German neonatal intensive care units (NICUs). Design A multi-center interrupted time series analysis. Setting 44 German NICUs with routine use of dual-strain probiotics on neonatal ward level. Patients Preterm infants documented by NEO-KISS, the German surveillance system for nosocomial infections in preterm infants with birth weights below 1,500 g, between 2004 and 2014. Intervention Routine use of dual-strain probiotics containing Lactobacillus acidophilus and Bifidobacterium spp. (Infloran) on the neonatal ward level. Main outcome measures Incidences of NEC, overall mortality, mortality following NEC and nosocomial BSI. Results Data from 10,890 preterm infants in 44 neonatal wards was included in this study. Incidences of NEC and BSI were 2.5% (n = 274) and 15.0%, (n = 1631), respectively. Mortality rate was 6.1% (n = 665). The use of dual-strain probiotics significantly reduced the risk of NEC (HR = 0.48; 95% CI = 0.38–0.62), overall mortality (HR = 0.60, 95% CI = 0.44–0.83), mortality after NEC (HR = 0.51, 95% CI = 0.26–0.999) and nosocomial BSI (HR = 0.89, 95% CI = 0.81–0.98). These effects were even more pronounced in the subgroup analysis of preterm infants with birth weights below 1,000 g. Conclusion In order to reduce NEC and mortality in preterm infants, it is advisable to add routine prophylaxis with dual-strain probiotics to clinical practice in neonatal wards. PMID:27332554

  20. 3D Network Analysis for Indoor Space Applications

    NASA Astrophysics Data System (ADS)

    Tsiliakou, E.; Dimopoulou, E.

    2016-10-01

    Indoor space differs from outdoor environments, since it is characterized by a higher level of structural complexity, geometry, as well as topological relations. Indoor space can be considered as the most important component in a building's conceptual modelling, on which applications such as indoor navigation, routing or analysis are performed. Therefore, the conceptual meaning of sub spaces or the activities taking place in physical building boundaries (e.g. walls), require the comprehension of the building's indoor hierarchical structure. The scope of this paper is to perform 3D network analysis in a building's interior and is structured as follows: In Section 1 the definition of indoor space is provided and indoor navigation requirements are analysed. Section 2 describes the processes of indoor space modeling, as well as routing applications. In Section 3, a case study is examined involving a 3D building model generated in CityEngine (exterior shell) and ArcScene (interior parts), in which the use of commercially available software tools (ArcGIS, ESRI), in terms of indoor routing and 3D network analysis, are explored. The fundamentals of performing 3D analysis with the ArcGIS Network Analyst extension were tested. Finally a geoprocessing model was presented, which was specifically designed to be used to interactively find the best route in ArcScene. The paper ends with discussion and concluding remarks on Section 4.

  1. Analysis of In-Space Assembly of Modular Systems

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; VanLaak, James; Johnson, Spencer L.; Chytka, Trina M.; Reeves, John D.; Todd, B. Keith; Moe, Rud V.; Stambolian, Damon B.

    2005-01-01

    Early system-level life cycle assessments facilitate cost effective optimization of system architectures to enable implementation of both modularity and in-space assembly, two key Exploration Systems Research & Technology (ESR&T) Strategic Challenges. Experiences with the International Space Station (ISS) demonstrate that the absence of this rigorous analysis can result in increased cost and operational risk. An effort is underway, called Analysis of In-Space Assembly of Modular Systems, to produce an innovative analytical methodology, including an evolved analysis toolset and proven processes in a collaborative engineering environment, to support the design and evaluation of proposed concepts. The unique aspect of this work is that it will produce the toolset, techniques and initial products to analyze and compare the detailed, life cycle costs and performance of different implementations of modularity for in-space assembly. A multi-Center team consisting of experienced personnel from the Langley Research Center, Johnson Space Center, Kennedy Space Center, and the Goddard Space Flight Center has been formed to bring their resources and experience to this development. At the end of this 30-month effort, the toolset will be ready to support the Exploration Program with an integrated assessment strategy that embodies all life-cycle aspects of the mission from design and manufacturing through operations to enable early and timely selection of an optimum solution among many competing alternatives. Already there are many different designs for crewed missions to the Moon that present competing views of modularity requiring some in-space assembly. The purpose of this paper is to highlight the approach for scoring competing designs.

  2. NEQ and task in dual-energy imaging: from cascaded systems analysis to human observer performance

    NASA Astrophysics Data System (ADS)

    Richard, Samuel; Siewerdsen, Jeffrey H.; Tward, Daniel J.

    2008-03-01

    The relationship between theoretical descriptions of imaging performance (Fourier-based cascaded systems analysis) and the performance of real human observers was investigated for various detection and discrimination tasks. Dual-energy (DE) imaging provided a useful basis for investigating this relationship, because it presents a host of acquisition and processing parameters that can significantly affect signal and noise transfer characteristics and, correspondingly, human observer performance. The detectability index was computed theoretically using: 1) cascaded systems analysis of the modulation transfer function (MTF), and noise-power spectrum (NPS) for DE imaging; 2) a Fourier description of imaging task; and 3.) integration of MTF, NPS, and task function according to various observer models, including Fisher-Hotelling and non-prewhitening with and without an eye filter and internal noise. Three idealized tasks were considered: sphere detection, shape discrimination (sphere vs. disk), and texture discrimination (uniform vs. textured disk). Using images of phantoms acquired on a prototype DE imaging system, human observer performance was assessed in multiple-alternative forced choice (MAFC) tests, giving an estimate of area under the ROC curve (A Ζ). The degree to which the theoretical detectability index correlated with human observer performance was investigated, and results agreed well over a broad range of imaging conditions, depending on the choice of observer model. Results demonstrated that optimal DE image acquisition and decomposition parameters depend significantly on the imaging task. These studies provide important initial validation that the detectability index derived theoretically by Fourier-based cascaded systems analysis correlates well with actual human observer performance and represents a meaningful metric for system optimization.

  3. Performance analysis of dual-hop optical wireless communication systems over k-distribution turbulence channel with pointing error

    NASA Astrophysics Data System (ADS)

    Mishra, Neha; Sriram Kumar, D.; Jha, Pranav Kumar

    2017-06-01

    In this paper, we investigate the performance of the dual-hop free space optical (FSO) communication systems under the effect of strong atmospheric turbulence together with misalignment effects (pointing error). We consider a relay assisted link using decode and forward (DF) relaying protocol between source and destination with the assumption that Channel State Information is available at both transmitting and receiving terminals. The atmospheric turbulence channels are modeled by k-distribution with pointing error impairment. The exact closed form expression is derived for outage probability and bit error rate and illustrated through numerical plots. Further BER results are compared for the different modulation schemes.

  4. Dual Credit in Oregon: An Analysis of Students Taking Dual Credit in High School in 2005-06 with Subsequent Performance in College

    ERIC Educational Resources Information Center

    Jacobs, Jonathan; North, Tom

    2008-01-01

    A dual credit course is a college/university level course that is taught at a high school, by a high school teacher, in partnership with a community college (CCWD) or Oregon University System (OUS) institution. Successful completion of a dual credit course counts as credit for both high school and college. In 2005-06, about 12,000 students took…

  5. Non-local effects in dual-probe-sideband Brillouin optical time domain analysis.

    PubMed

    Dominguez-Lopez, Alejandro; Angulo-Vinuesa, Xabier; Lopez-Gil, Alexia; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel

    2015-04-20

    According to recent models, non-local effects in dual-probe-sideband Brillouin Optical Time Domain Analysis (BOTDA) systems should be essentially negligible whenever the probe power is below the Stimulated Brillouin Scattering (SBS) threshold. This paper shows that actually there appear non-local effects in this type of systems before the SBS threshold. To explain these effects it is necessary to take into account a full spectral description of the SBS process. The pump pulse experiences a frequency-dependent spectral deformation that affects the readout process differently in the gain and loss configurations. This paper provides a simple analytical model of this phenomenon, which is validated against compelling experimental data, showing good agreement. The main conclusion of our study is that the measurements in gain configuration are more robust to this non-local effect than the loss configuration. Experimental and theoretical results show that, for a total probe wave power of ~1 mW (500 μW on each sideband), there is an up-shifting of ~1 MHz in the Brillouin Frequency Shift (BFS) retrieved from the Brillouin Loss Spectrum, whereas the BFS extracted from the measured Brillouin Gain Spectrum is up-shifted only ~0.6 MHz. These results are of particular interest for manufacturers of long-range BOTDA systems.

  6. Dual analysis of host and pathogen transcriptomes in ostreid herpesvirus 1-positive Crassostrea gigas.

    PubMed

    Rosani, U; Varotto, L; Domeneghetti, S; Arcangeli, G; Pallavicini, A; Venier, P

    2015-11-01

    Ostreid herpesvirus type 1 (OsHV-1) has become a problematic infective agent for the Pacific oyster Crassostrea gigas. In particular, the OsHV-1 μVar subtype has been associated with severe mortality episodes in oyster spat and juvenile oysters in France and other regions of the world. Factors enhancing the infectivity of the virus and its interactions with susceptible and resistant bivalve hosts are still to be understood, and only few studies have explored the expression of oyster or viral genes during productive infections. In this work, we have performed a dual RNA sequencing analysis on an oyster sample with a high viral load. High sequence coverage allowed us to thoroughly explore the OsHV-1 transcriptome and identify the activated molecular pathways in C. gigas. The identification of several highly induced and defence-related oyster transcripts supports the crucial role played by the innate immune system against the virus and opportunistic microbes possibly contributing to subsequent spat mortality.

  7. SAR analysis of new dual targeting fluoroquinolones. Implications of the benzenesulfonyl group.

    PubMed

    Nieto, Marcelo J; Pierini, Adriana B; Singh, Nidhi; McCurdy, Christopher R; Manzo, Ruben H; Mazzieri, María R

    2012-05-01

    When a benzenesulfonyl moiety (BS) was bound to the N-piperazinyl ring of antibacterial fluoroquinolones (AMFQs) norfloxacin (NOR) or ciprofloxacin (CIP), the resulting benzenesulfonyl-fluoroquinolone (BSFQs) analogs showed an improved in vitro activity against Gram-positive strains. A bioisosterical replacement of the sulfonyl group for a carbonyl group led to the benzenecarboxamide-fluoroquinolones (BCFQs) that showed a similar trend in the antibacterial activity and spectrum. The BSFQs and BCFQs are considered members of the "dual targeting" fluoroquinolones, targeting both DNA gyrase and topoisomerase IV. To disclose the real contribution of the BS/BC moiety in anti-staphylococcal activity, a 3D-QSAR analysis that included calculation of theoretical molecular descriptors and pharmacophore generation was performed. Previous and present QSAR results have confirmed the positive influence on activity of small electron donating p-substituent on the BS or BC moiety. The generated phamacophore model showed that both phenyl and SO2/CO groups are involved in the interaction with receptor. We postulate that the enhanced potency of BSFQs against Staphylococcus aureus compared to CIP and NOR could be caused by the presence of the BS moiety that resulted in enhanced binding to DNA gyrase of Sa. Additionally, their greater ability to enter bacterial cells by diffusion and a reduced susceptibility to FQ-specific efflux pumps could also make a contribution.

  8. Dual stacked partial least squares for analysis of near-infrared spectra.

    PubMed

    Bi, Yiming; Xie, Qiong; Peng, Silong; Tang, Liang; Hu, Yong; Tan, Jie; Zhao, Yuhui; Li, Changwen

    2013-08-20

    A new ensemble learning algorithm is presented for quantitative analysis of near-infrared spectra. The algorithm contains two steps of stacked regression and Partial Least Squares (PLS), termed Dual Stacked Partial Least Squares (DSPLS) algorithm. First, several sub-models were generated from the whole calibration set. The inner-stack step was implemented on sub-intervals of the spectrum. Then the outer-stack step was used to combine these sub-models. Several combination rules of the outer-stack step were analyzed for the proposed DSPLS algorithm. In addition, a novel selective weighting rule was also involved to select a subset of all available sub-models. Experiments on two public near-infrared datasets demonstrate that the proposed DSPLS with selective weighting rule provided superior prediction performance and outperformed the conventional PLS algorithm. Compared with the single model, the new ensemble model can provide more robust prediction result and can be considered an alternative choice for quantitative analytical applications.

  9. Scanning Tunneling Microscopy analysis of space-exposed polymer films

    NASA Technical Reports Server (NTRS)

    Kalil, Carol R.; Young, Philip R.

    1993-01-01

    The characterization of the surface of selected space-exposed polymer films by Scanning Tunneling Microscopy (STM) is reported. Principles of STM, an emerging new technique for materials analysis, are reviewed. The analysis of several films which received up to 5.8 years of low Earth orbital (LEO) exposure onboard the NASA Long Duration Exposure Facility (LDEF) is discussed. Specimens included FEP Teflon thermal blanket material, Kapton film, and several experimental polymer films. Ultraviolet and atomic oxygen-induced crazing and erosion are described. The intent of this paper is to demonstrate how STM is enhancing the understanding of LEO space environmental effects on polymer films.

  10. Review article: Wave analysis methods for space plasma experiment

    NASA Astrophysics Data System (ADS)

    Narita, Yasuhito

    2017-05-01

    A review of analysis methods is given on quasi-monochromatic waves, turbulent fluctuations, and wave-wave and wave-particle interactions for single-spacecraft data in situ in near-Earth space and interplanetary space, in particular using magnetic field and electric field data. Energy spectra for different components of the fluctuating fields, minimum variance analysis, propagation and polarization properties of electromagnetic waves, wave distribution function, helicity quantities, higher-order statistics, and detection methods for wave-particle interactions are explained.

  11. Multi-species trace gas analysis with dual-wavelength quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Jágerská, Jana; Tuzson, Béla; Looser, Herbert; Jouy, Pierre; Hugi, Andreas; Mangold, Markus; Soltic, Patrik; Faist, Jérôme; Emmenegger, Lukas

    2015-04-01

    Simultaneous detection of multiple gas species using mid-IR laser spectroscopy is highly appealing for a large variety of applications ranging from air quality monitoring, medical breath analysis to industrial process control. However, state-of-the-art distributed-feedback (DFB) mid-IR lasers are usually tunable only within a narrow spectral range, which generally leads to one-laser-one-compound measurement strategy. Thus, multi-species detection involves several lasers and elaborate beam combining solutions [1]. This makes them bulky, costly, and highly sensitive to optical alignment, which limits their field deployment. In this paper, we explore an alternative measurement concept based on a dual-wavelength quantum cascade laser (DW-QCL) [2]. Such a laser can emit at two spectrally distinct wavelengths using a succession of two DFB gratings with different periodicities and a common waveguide to produce one output beam. The laser design was optimized for NOx measurements and correspondingly emits single-mode at 5.26 and 6.25 μm. Electrical separation of the respective laser sections makes it possible to address each wavelength independently. Thereby, it is possible to detect NO and NO2 species with one laser using the same optical path, without any beam combining optics, i.e. in a compact and cost-efficient single-path optical setup. Operated in a time-division multiplexed mode, the spectrometer reaches detection limits at 100 s averaging of 0.5 and 1.5 ppb for NO2 and NO, respectively. The performance of the system was validated against the well-established chemiluminescence detection while measuring the NOx emissions on an automotive test-bench, as well as monitoring the pollution at a suburban site. [1] B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, 'Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,' Atmospheric Measurement Techniques 6, 927-936 (2013

  12. Dual-Tracer PET Using Generalized Factor Analysis of Dynamic Sequences

    PubMed Central

    Fakhri, Georges El; Trott, Cathryn M.; Sitek, Arkadiusz; Bonab, Ali; Alpert, Nathaniel M.

    2013-01-01

    Purpose With single-photon emission computed tomography, simultaneous imaging of two physiological processes relies on discrimination of the energy of the emitted gamma rays, whereas the application of dual-tracer imaging to positron emission tomography (PET) imaging has been limited by the characteristic 511-keV emissions. Procedures To address this limitation, we developed a novel approach based on generalized factor analysis of dynamic sequences (GFADS) that exploits spatio-temporal differences between radiotracers and applied it to near-simultaneous imaging of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) (brain metabolism) and 11C-raclopride (D2) with simulated human data and experimental rhesus monkey data. We show theoretically and verify by simulation and measurement that GFADS can separate FDG and raclopride measurements that are made nearly simultaneously. Results The theoretical development shows that GFADS can decompose the studies at several levels: (1) It decomposes the FDG and raclopride study so that they can be analyzed as though they were obtained separately. (2) If additional physiologic/anatomic constraints can be imposed, further decomposition is possible. (3) For the example of raclopride, specific and nonspecific binding can be determined on a pixel-by-pixel basis. We found good agreement between the estimated GFADS factors and the simulated ground truth time activity curves (TACs), and between the GFADS factor images and the corresponding ground truth activity distributions with errors less than 7.3±1.3 %. Biases in estimation of specific D2 binding and relative metabolism activity were within 5.9±3.6 % compared to the ground truth values. We also evaluated our approach in simultaneous dual-isotope brain PET studies in a rhesus monkey and obtained accuracy of better than 6 % in a mid-striatal volume, for striatal activity estimation. Conclusions Dynamic image sequences acquired following near-simultaneous injection of two PET radiopharmaceuticals

  13. Dual Recovery among People with Serious Mental Illnesses and Substance Problems: A Qualitative Analysis

    PubMed Central

    Green, Carla A.; Yarborough, Micah T.; Polen, Michael R.; Janoff, Shannon L.; Yarborough, Bobbi Jo H.

    2014-01-01

    Objective Individuals with serious mental illnesses are more likely to have substance-related problems than those without mental health problems. They also face more difficult recovery trajectories as they cope with dual disorders. Nevertheless, little is known about individuals’ perspectives regarding their dual recovery experiences. Methods This qualitative analysis was conducted as part of an exploratory mixed-methods study of mental health recovery. Members of Kaiser Permanente Northwest (a group-model, not-for-profit, integrated health plan) who had serious mental illness diagnoses were interviewed four times over two years about factors affecting their mental health recovery. Interviews were recorded, transcribed, and coded with inductively-derived codes. Themes were identified by reviewing text coded “alcohol or other drugs.” Results Participants (N = 177) were diagnosed with schizophrenia/schizoaffective disorder (n = 75, 42%), bipolar I/II disorder (n = 84, 48%), or affective psychosis (n = 18, 10%). At baseline, 63% (n = 112) spontaneously described addressing substance use as part of their mental health recovery. When asked at follow-up, 97% (n = 171) provided codeable answers about substances and mental health. We identified differing pathways to recovery, including through formal treatment, self-help groups or peer support, “natural” recovery (without the help of others), and continued but controlled use of alcohol. We found three overarching themes in participants’ experiences of recovering from serious mental illnesses and substance-related problems: Learning about the effects of alcohol and drugs provided motivation and a foundation for sobriety; achieving sobriety helped people to initiate their mental health recovery processes; and achieving and maintaining sobriety built self-efficacy, self-confidence, improved functioning and a sense of personal growth. Non-judgmental support from clinicians adopting chronic disease approaches also

  14. Dual recovery among people with serious mental illnesses and substance problems: a qualitative analysis.

    PubMed

    Green, Carla A; Yarborough, Micah T; Polen, Michael R; Janoff, Shannon L; Yarborough, Bobbi Jo H

    2015-01-01

    Individuals with serious mental illnesses are more likely to have substance-related problems than those without mental health problems. They also face more difficult recovery trajectories as they cope with dual disorders. Nevertheless, little is known about individuals' perspectives regarding their dual recovery experiences. This qualitative analysis was conducted as part of an exploratory mixed-methods study of mental health recovery. Members of Kaiser Permanente Northwest (a group-model, not-for-profit, integrated health plan) who had serious mental illness diagnoses were interviewed four times over two years about factors affecting their mental health recovery. Interviews were recorded, transcribed, and coded with inductively derived codes. Themes were identified by reviewing text coded "alcohol or other drugs." Participants (N = 177) had diagnosed schizophrenia/schizoaffective disorder (n = 75, 42%), bipolar I/II disorder (n = 84, 48%), or affective psychosis (n = 18, 10%). At baseline, 63% (n = 112) spontaneously described addressing substance use as part of their mental health recovery. When asked at follow-up, 97% (n = 171) provided codeable answers about substances and mental health. We identified differing pathways to recovery, including through formal treatment, self-help groups or peer support, "natural" recovery (without the help of others), and continued but controlled use of alcohol. We found three overarching themes in participants' experiences of recovering from serious mental illnesses and substance-related problems: Learning about the effects of alcohol and drugs provided motivation and a foundation for sobriety; achieving sobriety helped people to initiate their mental health recovery processes; and achieving and maintaining sobriety built self-efficacy, self-confidence, improved functioning and a sense of personal growth. Non-judgmental support from clinicians adopting chronic disease approaches also facilitated recovery. Irrespective of how

  15. Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimer's disease.

    PubMed

    Kumar, Akhil; Srivastava, Gaurava; Srivastava, Swati; Verma, Seema; Negi, Arvind S; Sharma, Ashok

    2017-08-01

    BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.

  16. Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection

    NASA Technical Reports Server (NTRS)

    Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.

    2009-01-01

    The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.

  17. Introduction to the Space Physics Analysis Network (SPAN)

    NASA Technical Reports Server (NTRS)

    Green, J. L. (Editor); Peters, D. J. (Editor)

    1985-01-01

    The Space Physics Analysis Network or SPAN is emerging as a viable method for solving an immediate communication problem for the space scientist. SPAN provides low-rate communication capability with co-investigators and colleagues, and access to space science data bases and computational facilities. The SPAN utilizes up-to-date hardware and software for computer-to-computer communications allowing binary file transfer and remote log-on capability to over 25 nationwide space science computer systems. SPAN is not discipline or mission dependent with participation from scientists in such fields as magnetospheric, ionospheric, planetary, and solar physics. Basic information on the network and its use are provided. It is anticipated that SPAN will grow rapidly over the next few years, not only from the standpoint of more network nodes, but as scientists become more proficient in the use of telescience, more capability will be needed to satisfy the demands.

  18. X-framework: Space system failure analysis framework

    NASA Astrophysics Data System (ADS)

    Newman, John Steven

    Space program and space systems failures result in financial losses in the multi-hundred million dollar range every year. In addition to financial loss, space system failures may also represent the loss of opportunity, loss of critical scientific, commercial and/or national defense capabilities, as well as loss of public confidence. The need exists to improve learning and expand the scope of lessons documented and offered to the space industry project team. One of the barriers to incorporating lessons learned include the way in which space system failures are documented. Multiple classes of space system failure information are identified, ranging from "sound bite" summaries in space insurance compendia, to articles in journals, lengthy data-oriented (what happened) reports, and in some rare cases, reports that treat not only the what, but also the why. In addition there are periodically published "corporate crisis" reports, typically issued after multiple or highly visible failures that explore management roles in the failure, often within a politically oriented context. Given the general lack of consistency, it is clear that a good multi-level space system/program failure framework with analytical and predictive capability is needed. This research effort set out to develop such a model. The X-Framework (x-fw) is proposed as an innovative forensic failure analysis approach, providing a multi-level understanding of the space system failure event beginning with the proximate cause, extending to the directly related work or operational processes and upward through successive management layers. The x-fw focus is on capability and control at the process level and examines: (1) management accountability and control, (2) resource and requirement allocation, and (3) planning, analysis, and risk management at each level of management. The x-fw model provides an innovative failure analysis approach for acquiring a multi-level perspective, direct and indirect causation of

  19. The reconnaissance and early-warning optical system design for dual field of space-based "solar blind ultraviolet"

    NASA Astrophysics Data System (ADS)

    Wang, Wen-cong; Jin, Dong-dong; Shao, Fei; Hu, Hui-jun; Shi, Yu-feng; Song, Juan; Zhang, Yu-tu; Yong, Liu

    2016-07-01

    With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes a reconnaissance and early-warning optical system, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure takes advantage of a narrow field of view and long focal length optical system to achieve the target object detection, uses wide-field and short focal length optical system to achieve early warning of the target object. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm. A single pixel energy concentration is greater than 80%.

  20. Analysis of orbit determination for space based optical space surveillance system

    NASA Astrophysics Data System (ADS)

    Sciré, Gioacchino; Santoni, Fabio; Piergentili, Fabrizio

    2015-08-01

    The detection capability and orbit determination performance of a space based optical observation system exploiting the visible band is analyzed. The sensor characteristics, in terms of sensitivity and resolution are those typical of present state of the art star trackers. A mathematical model of the system has been built and the system performance assessed by numerical simulation. The selection of the observer satellite's has been done in order to maximize the number of observed objects in LEO, based on a statistical analysis of the space debris population in this region. The space objects' observability condition is analyzed and two batch estimator based on the Levenberg-Marquardt and on the Powell dog-leg algorithms have been implemented and their performance compared. Both the algorithms are sensitive to the initial guess. Its influence on the algorithms' convergence is assessed, showing that the Powell dog-leg, which is a trust region method, performs better.

  1. Analysis on the detection capability of the space-based camera for the space debris

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wang, Fugang; Ye, Zhao; Ge, Xianying; Yin, Huan; Cao, Qipeng; Zhu, Jun

    2016-10-01

    Based on the maximum detection range, the detection capability of space-based camera for space debris is analyzed in the paper. We perform grid generation method on the debris target and analyze the shadowing effects among the grids, building the geometry modeling of cone target sequentially. The calculation model of optical infrared characteristics is established, taking into consideration the target self-radiation and radiation reflection characteristics of the material on surface. The radiation energy of the target is only depended on the reflection of earth's radiation and its self-radiation in the simulation proposed in the paper. Based on the maximum detection range formula, the numerical simulation presented shows that when the space-based target radiation intensity is 21.54W/sr and optical system aperture is 0.5m, the maximum detection range is 17279km. The simulation results theoretically contribute to the estimation of camera parameters and analysis on the detection capability.

  2. Symmetries of self-dual Yang-Mills equations dimensionally reduced from (2, 2) space-time

    NASA Astrophysics Data System (ADS)

    Mansfield, Paul; Wardlow, Adam

    2011-01-01

    We construct infinite-dimensional symmetries of the two dimensional equation which results from the dimensional reduction of the self-duality condition in (2, 2) signature space-time. These are symmetries of the dimensionally reduced Chalmers-Siegel action and so hold off-shell.

  3. Real-time analysis of dual-display phage immobilization and autoantibody screening using quartz crystal microbalance with dissipation monitoring.

    PubMed

    Rajaram, Kaushik; Losada-Pérez, Patricia; Vermeeren, Veronique; Hosseinkhani, Baharak; Wagner, Patrick; Somers, Veerle; Michiels, Luc

    2015-01-01

    Over the last three decades, phage display technology has been used for the display of target-specific biomarkers, peptides, antibodies, etc. Phage display-based assays are mostly limited to the phage ELISA, which is notorious for its high background signal and laborious methodology. These problems have been recently overcome by designing a dual-display phage with two different end functionalities, namely, streptavidin (STV)-binding protein at one end and a rheumatoid arthritis-specific autoantigenic target at the other end. Using this dual-display phage, a much higher sensitivity in screening specificities of autoantibodies in complex serum sample has been detected compared to single-display phage system on phage ELISA. Herein, we aimed to develop a novel, rapid, and sensitive dual-display phage to detect autoantibodies presence in serum samples using quartz crystal microbalance with dissipation monitoring as a sensing platform. The vertical functionalization of the phage over the STV-modified surfaces resulted in clear frequency and dissipation shifts revealing a well-defined viscoelastic signature. Screening for autoantibodies using antihuman IgG-modified surfaces and the dual-display phage with STV magnetic bead complexes allowed to isolate the target entities from complex mixtures and to achieve a large response as compared to negative control samples. This novel dual-display strategy can be a potential alternative to the time consuming phage ELISA protocols for the qualitative analysis of serum autoantibodies and can be taken as a departure point to ultimately achieve a point of care diagnostic system.

  4. Liver in the analysis of body composition by dual-energy X-ray absorptiometry.

    PubMed

    Bazzocchi, A; Diano, D; Albisinni, U; Marchesini, G; Battista, G; Guglielmi, G

    2014-09-01

    To investigate the predictive value for hepatic steatosis of a new software for the quantification of visceral fat by dual-energy X-ray absorptiometry (DXA) and to design new regions of interest (ROIs). Adult volunteers were prospectively screened for hepatic steatosis by ultrasonography to obtain a well-balanced population according to the presence/absence of the disease. 90 adult patients without steatosis and 90 with steatosis (mild, 53.3%; moderate, 37.7%; and severe, 10.0%) were recruited. On the same day, all subjects were submitted to blood testing and to anthropometric and whole-body DXA for body composition evaluation. A new software for android visceral fat assessment was employed, and six new "liver-suited" ROIs as well as two modified android ROIs were designed. Their association with steatosis grade was tested by correlation analysis. Fat mass (FM) of the new ROIs showed the highest correlation coefficients with steatosis grade (ρ = 0.610-0.619; p < 0.001), which was also confirmed by multivariate analysis. On the whole population, the new ROIs maintained the highest predictive role for liver steatosis, with areas under the receiver operating characteristic curve up to 0.820 ± 0.032. Inter- and intra-operator agreement for the new ROIs was excellent (k = 0.915-1.000 and k = 0.927-1.000). New ROIs could be designed, standardized and implemented in DXA whole-body scan to provide more specific and predictive values of hepatic lipid content. This is the first study to investigate the predictive value for hepatic steatosis of visceral and regional FM assessed on the hepatic site by DXA in comparison with ultrasonography, anthropometry and surrogate markers derived by previously validated algorithms (fatty liver index).

  5. Determination of space use by laying hens using kinematic analysis.

    PubMed

    Mench, Joy A; Blatchford, Richard A

    2014-04-01

    Two states in the United States now have legislation requiring that laying hens be provided with sufficient space to perform particular behaviors. To provide a framework for translating these performance standards into a space requirement, kinematic analysis was used to measure the amount of space needed for White Leghorn hens to stand, turn around 180°, lie down, and wing flap. Hyline W-36 hens (n = 9) were marked on the tops of their heads and the tips of both wings and 3 toes with black livestock marker. Each hen was then placed in a floor pen (91.4 × 91.4 cm) and filmed using 2 high-speed cameras. The resulting images were processed using a software program that generated 3-dimensional space use for each behavior. Because none of the hens lay down in the test pen, the 2-dimensional space required for lying was determined by superimposing a grid over videos of the hens lying down in their home cages. On average, hens required a mean area of 563 (± 8) cm(2) to stand, 1,316 (± 23) cm(2) to turn around, 318 (± 6) cm(2) to lie down, and 1,693 (± 136) cm(2) to wing flap. The mean heights used were 34.8 (± 1.3) cm for standing, 38.6 (± 2.3) cm for turning, and 49.5 (± 1.8) cm for wing flapping. However, space requirements for hens housed in multiple-hen groups in cage or noncage systems cannot be based simply on information about the space required for local movement by a single hen. It must also incorporate consideration of the tendency of hens in a flock to synchronize their behaviors. In addition, it must include not just local movement space but also the space that hens may need to use for longer-distance movements to access resources such as food, water, perches, and nest boxes.

  6. Different screening strategies (single or dual) for the diagnosis of suspected latent tuberculosis: a cost effectiveness analysis

    PubMed Central

    2010-01-01

    Background Previous health economic studies recommend either a dual screening strategy [tuberculin skin test (TST) followed by interferon-γ-release assay (IGRA)] or a single one [IGRA only] for latent tuberculosis infection (LTBI), the former largely based on claims that it is more cost-effective. We sought to examine that conclusion through the use of a model that accounts for the additional costs of adverse drug reactions and directly compares two commercially available versions of the IGRA: the Quantiferon-TB-Gold-In-Tube (QFT-GIT) and T-SPOT.TB. Methods A LTBI screening model directed at screening contacts was used to perform a cost-effectiveness analysis, from a UK healthcare perspective, taking into account the risk of isoniazid-related hepatotoxicity and post-exposure TB (2 years post contact) using the TST, QFT-GIT and T-SPOT.TB IGRAs. Results Examining costs alone, the TST/IGRA dual screening strategies (TST/T-SPOT.TB and TST/QFT-GIT; £162,387 and £157,048 per 1000 contacts, respectively) cost less than their single strategy counterparts (T-SPOT.TB and QFT-GIT; £203,983 and £202,921 per 1000 contacts) which have higher IGRA test costs and greater numbers of persons undergoing LTBI treatment. However, IGRA alone strategies direct healthcare interventions and costs more accurately to those that are truly infected. Subsequently, less contacts need to be treated to prevent an active case of TB (T-SPOT.TB and QFT-GIT; 61.7 and 69.7 contacts) in IGRA alone strategies. IGRA single strategies also prevent more cases of post-exposure TB. However, this greater effectiveness does not outweigh the lower incremental costs associated with the dual strategies. Consequently, when these costs are combined with effectiveness, the IGRA dual strategies are more cost-effective than their single strategy counterparts. Comparing between the IGRAs, T-SPOT.TB-based strategies (single and dual; £39,712 and £37,206 per active TB case prevented, respectively) were more cost

  7. The Volatility of Data Space: Topology Oriented Sensitivity Analysis

    PubMed Central

    Du, Jing; Ligmann-Zielinska, Arika

    2015-01-01

    Despite the difference among specific methods, existing Sensitivity Analysis (SA) technologies are all value-based, that is, the uncertainties in the model input and output are quantified as changes of values. This paradigm provides only limited insight into the nature of models and the modeled systems. In addition to the value of data, a potentially richer information about the model lies in the topological difference between pre-model data space and post-model data space. This paper introduces an innovative SA method called Topology Oriented Sensitivity Analysis, which defines sensitivity as the volatility of data space. It extends SA into a deeper level that lies in the topology of data. PMID:26368929

  8. Space construction system analysis. Part 2: Construction analysis

    NASA Technical Reports Server (NTRS)

    Roebuck, J. A.; Buck, P. A.; Gimlich, G. W.; Greenberg, H. S.; Hart, R. J.; Indrikis, J.; Lefever, A. E.; Lillenas, A. N.; Mcbaine, C. K.

    1980-01-01

    The construction methods specific to the end to end construction process for building the ETVP in low Earth orbit, using the space shuttle orbiter as a construction base, are analyzed. The analyses concerned three missions required to build the basic platform. The first mission involved performing the fabrication of beams in space and assembling the beams into a basic structural framework. The second mission was to install the forward support structure and aft support structure, the forward assembly, and a TT&C antenna. The third mission plan was to complete the construction of the platform and activate it to begin operations in low Earth orbit. The integration of the activities for each mission is described along with the construction requirements and construction logic.

  9. Digital processing of mesoscale analysis and space sensor data

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.

    1985-01-01

    The mesoscale analysis and space sensor (MASS) data management and analysis system on the research computer system is presented. The MASS data base management and analysis system was implemented on the research computer system which provides a wide range of capabilities for processing and displaying large volumes of conventional and satellite derived meteorological data. The research computer system consists of three primary computers (HP-1000F, Harris/6, and Perkin-Elmer 3250), each of which performs a specific function according to its unique capabilities. The overall tasks performed concerning the software, data base management and display capabilities of the research computer system in terms of providing a very effective interactive research tool for the digital processing of mesoscale analysis and space sensor data is described.

  10. Experimental verification of long-term evolution radio transmissions over dual-polarization combined fiber and free-space optics optical infrastructures.

    PubMed

    Bohata, J; Zvanovec, S; Pesek, P; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2016-03-10

    This paper describes the experimental verification of the utilization of long-term evolution radio over fiber (RoF) and radio over free space optics (RoFSO) systems using dual-polarization signals for cloud radio access network applications determining the specific utilization limits. A number of free space optics configurations are proposed and investigated under different atmospheric turbulence regimes in order to recommend the best setup configuration. We show that the performance of the proposed link, based on the combination of RoF and RoFSO for 64 QAM at 2.6 GHz, is more affected by the turbulence based on the measured difference error vector magnitude value of 5.5%. It is further demonstrated the proposed systems can offer higher noise immunity under particular scenarios with the signal-to-noise ratio reliability limit of 5 dB in the radio frequency domain for RoF and 19.3 dB in the optical domain for a combination of RoF and RoFSO links.

  11. NASA's Accident Precursor Analysis Process and the International Space Station

    NASA Technical Reports Server (NTRS)

    Groen, Frank; Lutomski, Michael

    2010-01-01

    This viewgraph presentation reviews the implementation of Accident Precursor Analysis (APA), as well as the evaluation of In-Flight Investigations (IFI) and Problem Reporting and Corrective Action (PRACA) data for the identification of unrecognized accident potentials on the International Space Station.

  12. Q-space analysis of scattering by small irregular particles

    NASA Astrophysics Data System (ADS)

    Sorensen, C. M.; Zubko, E.; Heinson, W. R.; Chakrabarti, A.

    2014-01-01

    This paper applies the Q-space analysis method to the scattering phase function of small irregular particles. Q-space analysis involves plotting the scattered intensity versus the magnitude of the scattering wave vector q=(4π/λ) sin(θ/2) on a double log plot. Four types of irregularly shaped particles were studied: strongly damaged spheres, rough surface spheres, pocked spheres, and agglomerated debris particles. The angular scattering phase function was calculated using the discrete dipole approximation (DDA). The Q-space analysis uncovered power law descriptions of the scattering as it has previously for aggregates, spheres and dusts, although in some situations the description is marginal. It also showed that the forward scattering lobe has Rayleigh functionalities on size and refractive index. These results imply that Q-space analysis can yield a comprehensive description of scattering in terms of power laws with quantifiable exponents for a wide variety of particle shapes. However, a theoretical explanation of the power laws and the values of the numerical exponents is lacking.

  13. Patterns of Intergenerational Occupational Movements: A Smallest-Space Analysis

    ERIC Educational Resources Information Center

    Mortimer, Jeylan T.

    1974-01-01

    Data collected by the smallest-space analysis technique indicates a pattern of occupational inheritance from father to son and the tendency of sons to choose work offering their fathers' vocational experiences, which supports the hypothesis that attributes of fathers' occupations are related to values transmitted to sons and reflected in their…

  14. Space Station polar orbiting platform - Mission analysis and planning

    NASA Technical Reports Server (NTRS)

    Miller, P. A.

    1986-01-01

    The Space Station Polar Orbiting Platform will be a serviceable spacecraft supporting a range of missions. The planning and analysis of these missions is investigated. The subjects of STS compatibility, rendezvous strategy, and requisite launch windows are addressed. General, as well as, two specific cases are detailed with respect to their incremental velocity requirements.

  15. Differentiating malignant from benign gastric mucosal lesions with quantitative analysis in dual energy spectral computed tomography

    PubMed Central

    Meng, Xiaoyan; Ni, Cheng; Shen, Yaqi; Hu, Xuemei; Chen, Xiao; Li, Zhen; Hu, Daoyu

    2017-01-01

    Abstract To investigate the value of quantitative analysis in dual energy spectral computed tomography (DESCT) for differentiating malignant gastric mucosal lesions from benign gastric mucosal lesions (including gastric inflammation [GI] and normal gastric mucosa [NGM]). This study was approved by the ethics committee, and all patients provided written informed consent. A total of 161 consecutive patients (63 with gastric cancer [GC], 48 with GI, and 50 with NGM) who underwent dual-phase contrast enhanced DESCT scans in the arterial phase (AP) and portal venous phase (PVP) were included in this study. Iodine concentration (IC) in lesions was derived from the iodine-based material-decomposition images and normalized to that in the aorta to obtain normalized IC (nIC). The ratios of IC and nIC between the AP and PVP were calculated. Diagnostic confidence for GC and GI was evaluated with reviewing the features including gastric wall thickness, focal, and eccentric on the conventional polychromatic images. All statistical analyses were performed by using statistical software SPSS 17.0 (SPSS, Chicago, IL). IC and nIC in GC differed significantly from those in GI and NGM, except for nICAP in comparing GC with GI. Mean nIC values of GC (0.18 ± 0.06 in AP and 0.62 ± 0.16 in PVP) were significantly higher than that of NGM (0.12 ± 0.03 in AP and 0.37 ± 0.08 in PVP) (all P < 0.05). There was also significant difference for IC values in GC, GI, and NGM (24.19 ± 8.27, 19.07 ± 5.82, and 13.61 ± 2.52 mg/mL, respectively, in AP and 28.00 ± 7.01, 24.66 ± 6.55, and 16.94 ± 3.06 mg/mL, respectively, in PVP). Based on Receiver Operating Characteristic Curve analysis, nIC and IC in PVP had high sensitivities of 88.89% and 90.48%, respectively, in differentiating GC from NGM, while the sensitivities were 71.43% and 88.89% during AP. Ratios IC and nIC ratios did not provide adequate diagnostic accuracy with their area under curves

  16. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The progress and results are summarized for mission/system requirements database; mission analysis; GN and C (Guidance, Navigation, and Control), aeroheating, Mars landing; radiation protection; aerobrake mass analysis; Shuttle-Z, TMIS (Trans-Mars Injection Stage); Long Duration Habitat Trade Study; evolutionary lunar and Mars options; NTR (Nuclear Thermal Rocket); NEP (Nuclear Electric Propulsion) update; SEP (Solar Electric Propulsion) update; orbital and space-based requirements; technology; piloted rover; programmatic task; and evolutionary and innovative architecture.

  17. Space and phase resolved ion energy and angular distributions in single- and dual-frequency capacitively coupled plasmas

    SciTech Connect

    Zhang, Yiting; Kushner, Mark J.; Moore, Nathaniel; Pribyl, Patrick; Gekelman, Walter

    2013-11-15

    The control of ion energy and angular distributions (IEADs) is critically important for anisotropic etching or deposition in microelectronic fabrication processes. With single frequency capacitively coupled plasmas (CCPs), the narrowing in angle and spread in energy of ions as they cross the sheath are definable functions of frequency, sheath width, and mean free path. With increases in wafer size, single frequency CCPs are finding difficulty in meeting the requirement of simultaneously controlling plasma densities, ion fluxes, and ion energies. Dual-frequency CCPs are being investigated to provide this flexible control. The high frequency (HF) is intended to control the plasma density and ion fluxes, while the ion energies are intended to be controlled by the low frequency (LF). However, recent research has shown that the LF can also influence the magnitude of ion fluxes and that IEADs are determined by both frequencies. Hence, separate control of fluxes and IEADs is complex. In this paper, results from a two-dimensional computational investigation of Ar/O{sub 2} plasma properties in an industrial reactor are discussed. The IEADs are tracked as a function of height above the substrate and phase within the rf cycles from the bulk plasma to the presheath and through the sheath with the goal of providing insights to this complexity. Comparison is made to laser-induced fluorescence experiments. The authors found that the ratios of HF/LF voltage and driving frequency are critical parameters in determining the shape of the IEADs, both during the transit of the ion through the sheath and when ions are incident onto the substrate. To the degree that contributions from the HF can modify plasma density, sheath potential, and sheath thickness, this may provide additional control for the IEADs.

  18. Aerosol Profile Retrievals from Integrated Dual Wavelengths Space Lidar ESSP3-CENA and Spectral Radiance MODIS Data

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Mattoo, Shana; Tanre, Didier; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The ESSP3-CENA space mission (formally PICASSO-CENA) will provide continues global observations with a two wavelength lidar. The attenuated backscattering coefficients measured by the lidar, have valuable information about the vertical distribution of aerosol particles and their sizes. However the information cannot be mapped into unique aerosol physical properties. Infinite number of physical solutions with different attenuations through the atmosphere can reconstruct the same two wavelength backscattered profile measured from space. Spectral radiance measured by MODIS simultaneously with the ESSP3 data can constrain the problem and resolve this ambiguity to a large extent. Sensitivity study shows that inversion of the integrated MODIS+ESSP3 data can derive the vertical profiles of the fine and coarse modes mixed in the same atmospheric column in the presence of moderate calibration uncertainties and electronic noise (approx. 10%). We shall present the sensitivity study and results from application of the technique to measurements in the SAFARI-2000 and SHADE experiments.

  19. Open space suitability analysis for emergency shelter after an earthquake

    NASA Astrophysics Data System (ADS)

    Anhorn, J.; Khazai, B.

    2014-06-01

    In an emergency situation shelter space is crucial for people affected by natural hazards. Emergency planners in disaster relief and mass care can greatly benefit from a sound methodology that identifies suitable shelter areas and sites where shelter services need to be improved. A methodology to rank suitability of open spaces for contingency planning and placement of shelter in the immediate aftermath of a disaster is introduced. The Open Space Suitability Index (OSSI) uses the combination of two different measures: a qualitative evaluation criterion for the suitability and manageability of open spaces to be used as shelter sites, and a second quantitative criterion using a capacitated accessibility analysis based on network analysis. For the qualitative assessment, implementation issues, environmental considerations, and basic utility supply are the main categories to rank candidate shelter sites. Geographic Information System (GIS) is used to reveal spatial patterns of shelter demand. Advantages and limitations of this method are discussed on the basis of a case study in Kathmandu Metropolitan City (KMC). According to the results, out of 410 open spaces under investigation, 12.2% have to be considered not suitable (Category D and E) while 10.7% are Category A and 17.6% are Category B. Almost two third (59.5%) are fairly suitable (Category C).

  20. Open space suitability analysis for emergency shelter after an earthquake

    NASA Astrophysics Data System (ADS)

    Anhorn, J.; Khazai, B.

    2015-04-01

    In an emergency situation shelter space is crucial for people affected by natural hazards. Emergency planners in disaster relief and mass care can greatly benefit from a sound methodology that identifies suitable shelter areas and sites where shelter services need to be improved. A methodology to rank suitability of open spaces for contingency planning and placement of shelter in the immediate aftermath of a disaster is introduced. The Open Space Suitability Index uses the combination of two different measures: a qualitative evaluation criterion for the suitability and manageability of open spaces to be used as shelter sites and another quantitative criterion using a capacitated accessibility analysis based on network analysis. For the qualitative assessment implementation issues, environmental considerations and basic utility supply are the main categories to rank candidate shelter sites. A geographic information system is used to reveal spatial patterns of shelter demand. Advantages and limitations of this method are discussed on the basis of an earthquake hazard case study in the Kathmandu Metropolitan City. According to the results, out of 410 open spaces under investigation, 12.2% have to be considered not suitable (Category D and E) while 10.7% are Category A and 17.6% are Category B. Almost two-thirds (59.55%) are fairly suitable (Category C).

  1. A space crane concept: Preliminary design and static analysis

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Davis, Robert C.; Greene, William H.

    1988-01-01

    Future in-space construction and assembly facilities will require the use of space cranes capable of supporting and manipulating large and massive loads. The large size of the space components being considered for construction will require that these cranes have a reach on the order of 100 meters. A space crane constructed from an erectable four-longeron truss beam with 19 5-sq-m truss bays is considered. This concept was selected to be compatible with the Space Station truss. This truss is hinged at three locations along its bottom edge and attached at one end to a rotary joint cantilevered to the assembly depot's main truss structure. The crane's boom sections are rotated by extensible longeron actuators located along the top edge of the beam. To achieve maximum position maneuvering capability for the crane requires that the individual sections be capable of rotating 180 degrees about the hinge point. This can only be accomplished by offsetting the hinges from the longeron axes. Since offset hinges introduce bending moments in the truss members, an analysis of the effect of hinge offsets on the load-carrying capacity of the structure is required. The objective of the static finite element analysis described is to determine the effect of various offset lengths on the overall bending stiffness of the crane and on the maximum stresses.

  2. Application of human error analysis to aviation and space operations

    SciTech Connect

    Nelson, W.R.

    1998-03-01

    For the past several years at the Idaho National Engineering and Environmental Laboratory (INEEL) the authors have been working to apply methods of human error analysis to the design of complex systems. They have focused on adapting human reliability analysis (HRA) methods that were developed for Probabilistic Safety Assessment (PSA) for application to system design. They are developing methods so that human errors can be systematically identified during system design, the potential consequences of each error can be assessed, and potential corrective actions (e.g. changes to system design or procedures) can be identified. The primary vehicle the authors have used to develop and apply these methods has been a series of projects sponsored by the National Aeronautics and Space Administration (NASA) to apply human error analysis to aviation operations. They are currently adapting their methods and tools of human error analysis to the domain of air traffic management (ATM) systems. Under the NASA-sponsored Advanced Air Traffic Technologies (AATT) program they are working to address issues of human reliability in the design of ATM systems to support the development of a free flight environment for commercial air traffic in the US. They are also currently testing the application of their human error analysis approach for space flight operations. They have developed a simplified model of the critical habitability functions for the space station Mir, and have used this model to assess the affects of system failures and human errors that have occurred in the wake of the collision incident last year. They are developing an approach so that lessons learned from Mir operations can be systematically applied to design and operation of long-term space missions such as the International Space Station (ISS) and the manned Mars mission.

  3. A dual mode breath sampler for the collection of the end-tidal and dead space fractions.

    PubMed

    Salvo, P; Ferrari, C; Persia, R; Ghimenti, S; Lomonaco, T; Bellagambi, F; Di Francesco, F

    2015-06-01

    This work presents a breath sampler prototype automatically collecting end-tidal (single and multiple breaths) or dead space air fractions (multiple breaths). This result is achieved by real time measurements of the CO2 partial pressure and airflow during the expiratory and inspiratory phases. Suitable algorithms, used to control a solenoid valve, guarantee that a Nalophan(®) bag is filled with the selected breath fraction even if the subject under test hyperventilates. The breath sampler has low pressure drop (<0.5 kPa) and uses inert or disposable components to avoid bacteriological risk for the patients and contamination of the breath samples. A fully customisable software interface allows a real time control of the hardware and software status. The performances of the breath sampler were evaluated by comparing (a) the CO2 partial pressure calculated during the sampling with the CO2 pressure measured off-line within the Nalophan(®) bag; (b) the concentrations of four selected volatile organic compounds in dead space, end-tidal and mixed breath fractions. Results showed negligible deviations between calculated and off-line CO2 pressure values and the distributions of the selected compounds into dead space, end-tidal and mixed breath fractions were in agreement with their chemical-physical properties.

  4. Magnifications of Single and Dual Element Accommodative Intraocular Lenses: Paraxial Optics Analysis

    PubMed Central

    Ale, Jit B; Manns, Fabrice; Ho, Arthur

    2010-01-01

    Purpose Using an analytical approach of paraxial optics, we evaluated the magnification of a model eye implanted with single-element (1E) and dual-element (2E) translating-optics accommodative intraocular lenses (AIOL) with an objective of understanding key control parameters relevant to their design. Potential clinical implications of the results arising from pseudophakic accommodation were also considered. Methods Lateral and angular magnifications in a pseudophakic model eye were analyzed using the matrix method of paraxial optics. The effects of key control parameters such as direction (forward or backward) and distance (0 to 2 mm) of translation, power combinations of the 2E-AIOL elements (front element power range +20.0 D to +40.0 D), and amplitudes of accommodation (0 to 4 D) were tested. Relative magnification, defined as the ratio of the retinal image size of the accommodated eye to that of unaccommodated phakic (rLM1) or pseudophakic (rLM2) model eyes, was computed to determine how retinal image size changes with pseudophakic accommodation. Results Both lateral and angular magnifications increased with increased power of the front element in 2E-AIOL and amplitude of accommodation. For a 2E-AIOL with front element power of +35 D, rLM1 and rLM2 increased by 17.0% and 16.3%, respectively, per millimetre of forward translation of the element, compared to the magnification at distance focus (unaccommodated). These changes correspond to a change of 9.4% and 6.5% per dioptre of accommodation, respectively. Angular magnification also increased with pseudophakic accommodation. 1E-AIOLs produced consistently less magnification than 2E-AIOLs. Relative retinal image size decreased at a rate of 0.25% with each dioptre of accommodation in the phakic model eye. The position of the image space nodal point shifted away from the retina (towards the cornea) with both phakic and pseudophakic accommodation. Conclusion Power of the mobile element, and amount and direction of

  5. Space Shuttle program communication and tracking systems interface analysis

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Holmes, J. K.; Huth, G. K.; Iwasaki, R. S.; Nilsen, P. W.; Polydoros, A.; Sampaio, D. R.; Udalov, S.

    1984-01-01

    The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis.

  6. Royal London space analysis: plaster versus digital model assessment.

    PubMed

    Grewal, Balpreet; Lee, Robert T; Zou, Lifong; Johal, Ama

    2017-06-01

    With the advent of digital study models, the importance of being able to evaluate space requirements becomes valuable to treatment planning and the justification for any required extraction pattern. This study was undertaken to compare the validity and reliability of the Royal London space analysis (RLSA) undertaken on plaster as compared with digital models. A pilot study (n = 5) was undertaken on plaster and digital models to evaluate the feasibility of digital space planning. This also helped to determine the sample size calculation and as a result, 30 sets of study models with specified inclusion criteria were selected. All five components of the RLSA, namely: crowding; depth of occlusal curve; arch expansion/contraction; incisor antero-posterior advancement and inclination (assessed from the pre-treatment lateral cephalogram) were accounted for in relation to both model types. The plaster models served as the gold standard. Intra-operator measurement error (reliability) was evaluated along with a direct comparison of the measured digital values (validity) with the plaster models. The measurement error or coefficient of repeatability was comparable for plaster and digital space analyses and ranged from 0.66 to 0.95mm. No difference was found between the space analysis performed in either the upper or lower dental arch. Hence, the null hypothesis was accepted. The digital model measurements were consistently larger, albeit by a relatively small amount, than the plaster models (0.35mm upper arch and 0.32mm lower arch). No difference was detected in the RLSA when performed using either plaster or digital models. Thus, digital space analysis provides a valid and reproducible alternative method in the new era of digital records.

  7. Macro-level pedestrian and bicycle crash analysis: Incorporating spatial spillover effects in dual state count models.

    PubMed

    Cai, Qing; Lee, Jaeyoung; Eluru, Naveen; Abdel-Aty, Mohamed

    2016-08-01

    This study attempts to explore the viability of dual-state models (i.e., zero-inflated and hurdle models) for traffic analysis zones (TAZs) based pedestrian and bicycle crash frequency analysis. Additionally, spatial spillover effects are explored in the models by employing exogenous variables from neighboring zones. The dual-state models such as zero-inflated negative binomial and hurdle negative binomial models (with and without spatial effects) are compared with the conventional single-state model (i.e., negative binomial). The model comparison for pedestrian and bicycle crashes revealed that the models that considered observed spatial effects perform better than the models that did not consider the observed spatial effects. Across the models with spatial spillover effects, the dual-state models especially zero-inflated negative binomial model offered better performance compared to single-state models. Moreover, the model results clearly highlighted the importance of various traffic, roadway, and sociodemographic characteristics of the TAZ as well as neighboring TAZs on pedestrian and bicycle crash frequency.

  8. [Dual-index sequence analysis of common and variant peak ratio in far-infrared fingerprint of Pyritum].

    PubMed

    Huang, Liping; Wu, Jing

    2011-06-01

    To set up the dual-indexes sequence analytical method for far-infrared fingerprint in which the dual indexes are common peak ratio and variant ration. Two new indexes, common peak ratio and variant peak ratio, were applied and their values were calculated by means of sequential analysis, in which each Pyritum sample's far-infrared fingerprint spectra were set up and the common peak ratio sequences were arranged in order of size in comparision with other samples. The analytical results suggested that samples S3 and S4, S5, S6 and S7, S8 and S9 from the same region showed higher common peak ratio and lower variant peak ratio. However, the sample S1 from Anhui showed little similarity with others. The method, applied to distinguish Pyritum of different areas and batches, is reasonable to characterize of traditional Chinese medicine.

  9. OASIS Observation and Analysis of Smectic Islands in Space

    NASA Technical Reports Server (NTRS)

    Tin, Padetha

    2014-01-01

    The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that will probe the interfacial and hydrodynamic behavior of freely suspended liquid crystal films in space. These are the thinnest known stable condensed phase structures, making them ideal for studies of fluctuation and interface phenomena. The experiments seek to verify theories of coarsening dynamics, hydrodynamic flow, relaxation of hydrodynamic perturbations, and hydrodynamic interactions of a near two-dimensional structure. The effects of introducing islands or droplets on a very thin bubble will be studied, both as controllable inclusions that modify the flow and as markers of flow.

  10. Hubble Space Telescope maintenance and refurbishment planning analysis

    NASA Technical Reports Server (NTRS)

    Pizzano, F.; Kincade, R. S.

    1989-01-01

    This paper presents an updated analytical approach toward the identification of Hubble Space Telescope system failures and downstates, maintenance requirements, and overall support to maintenance mission planning. Different sparing options of Orbital Replacement Units are evaluated, and the optimum spares complement that satisfies the expected servicing requirements is identified. Specific Space Telescope Reliability and maintenance Simulation Computer Program (SPATEL) updates and refinements are reported, and input data updates relevant to failure rates, downstate ground rules, and maintenance policy are addressed. A summary of the latest SPATEL outputs is provided along with maintenance analysis results.

  11. Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.

  12. Statistical analysis of flight times for space shuttle ferry flights

    NASA Technical Reports Server (NTRS)

    Graves, M. E.; Perlmutter, M.

    1974-01-01

    Markov chain and Monte Carlo analysis techniques are applied to the simulated Space Shuttle Orbiter Ferry flights to obtain statistical distributions of flight time duration between Edwards Air Force Base and Kennedy Space Center. The two methods are compared, and are found to be in excellent agreement. The flights are subjected to certain operational and meteorological requirements, or constraints, which cause eastbound and westbound trips to yield different results. Persistence of events theory is applied to the occurrence of inclement conditions to find their effect upon the statistical flight time distribution. In a sensitivity test, some of the constraints are varied to observe the corresponding changes in the results.

  13. Hubble Space Telescope maintenance and refurbishment planning analysis

    NASA Technical Reports Server (NTRS)

    Pizzano, F.; Kincade, R. S.

    1989-01-01

    This paper presents an updated analytical approach toward the identification of Hubble Space Telescope system failures and downstates, maintenance requirements, and overall support to maintenance mission planning. Different sparing options of Orbital Replacement Units are evaluated, and the optimum spares complement that satisfies the expected servicing requirements is identified. Specific Space Telescope Reliability and maintenance Simulation Computer Program (SPATEL) updates and refinements are reported, and input data updates relevant to failure rates, downstate ground rules, and maintenance policy are addressed. A summary of the latest SPATEL outputs is provided along with maintenance analysis results.

  14. Harmonic analysis tools for stochastic magnetohydrodynamics equations in Besov spaces

    NASA Astrophysics Data System (ADS)

    Sango, Mamadou; Tegegn, Tesfalem Abate

    2016-08-01

    We establish a regularity result for stochastic heat equations in probabilistic evolution spaces of Besov type and we use it to prove a global in time existence and uniqueness of solution to a stochastic magnetohydrodynamics equation. The existence result holds with a positive probability which can be made arbitrarily close to one. The work is carried out by blending harmonic analysis tools such as Littlewood-Paley decomposition, Jean-Micheal Bony paradifferential calculus and stochastic calculus. The law of large numbers is a key tool in our investigation. Our global existence result is new in three-dimensional spaces.

  15. Analysis of physiological signals using state space correlation entropy.

    PubMed

    Tripathy, Rajesh Kumar; Deb, Suman; Dandapat, Samarendra

    2017-02-01

    In this letter, the authors propose a new entropy measure for analysis of time series. This measure is termed as the state space correlation entropy (SSCE). The state space reconstruction is used to evaluate the embedding vectors of a time series. The SSCE is computed from the probability of the correlations of the embedding vectors. The performance of SSCE measure is evaluated using both synthetic and real valued signals. The experimental results reveal that, the proposed SSCE measure along with SVM classifier have sensitivity value of 91.60%, which is higher than the performance of both sample entropy and permutation entropy features for detection of shockable ventricular arrhythmia.

  16. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    NASA Technical Reports Server (NTRS)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  17. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    NASA Technical Reports Server (NTRS)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  18. Analysis on singular spaces: Lie manifolds and operator algebras

    NASA Astrophysics Data System (ADS)

    Nistor, Victor

    2016-07-01

    We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called ;Lie manifolds; -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory.

  19. Thermodynamic analysis of nucleation in confined space: generalized Gibbs approach.

    PubMed

    Schmelzer, Jürn W P; Abyzov, Alexander S

    2011-02-07

    A general thermodynamic analysis of nucleation-growth processes in confined space in initially metastable states of the ambient phase is performed based on the generalized Gibbs approach to the description of heterogeneous systems. In particular, it is shown analytically how the parameters of critical clusters and clusters in stable equilibrium with the ambient phase depend on the volume of the system for initially fixed intensive state parameters of the ambient phase. Qualitatively, the results are shown to be similar independent on the boundary conditions employed. It is demonstrated further that the behavior of systems in confined space is directly related to the kinetics of phase transformation processes in spatially extended systems, when ensembles of clusters are formed. The results of the thermodynamic analysis of cluster formation and growth in a confined space are employed then, in particular, to the derivation of kinetic equations for the description of the process of coarsening or Ostwald ripening. In the analysis of both the nucleation in confined space and the description of Ostwald ripening, no specific assumptions concerning the equations of state of the system under consideration and the number of components both in the ambient and newly evolving phases are made. Consequently, the results are of very general nature and hold always as far as the necessary condition for the possibility of a phase transformation is fulfilled.

  20. Repair-level analysis for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chadwick, M.; Yaniec, J.

    1992-01-01

    To assign repair or discard-at-failure designations for orbital replacement units (ORUs) used on Space Station Freedom Electric Power System (SSFEPS), new algorithms and methods were required. Unique parameters, such as upmass costs, extravehicular activity costs and intravehicular activity (IVA) costs specific to Space Station Freedom's maintenance concept were incorporated into the Repair-Level Analysis (RLA). Additional outputs were also required of the SSFEPS RLA that were not required of previous RLAs. These outputs included recommendations for the number of launches that an ORU should be capable of attaining and an economic basis for condemnation rate. These unique parameters were not addressable using existing RLA models: therefore, a new approach was developed. In addition, it was found that preemptive analysis could be performed using spreadsheet-based Boolean expressions to represent the logical condition of the items under analysis.

  1. State Space Modelling and Data Analysis Exercises in LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Nofrarias, M.; Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Bogenstahl, J.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; Cavalleri, A.; Congedo, G.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Ferroni, V.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Huesler, J.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Korsakova, N.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Mateos, I.; McNamara, P.; Mendes, J.; Mitchell, E.; Nicolodi, D.; Perreur-Lloyd, M.; Plagnol, E.; Prat, P.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Schleicher, A.; Shaul, D.; Sopuerta, C. F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Ziegler, T.; Zweifel, P.

    2013-01-01

    LISA Pathfinder is a mission planned by the European Space Agency (ESA) to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionality required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data.

  2. Improving the detection limit of conformational analysis by utilizing a dual polarization Vernier cascade.

    PubMed

    Hoste, J-W; Soetaert, P; Bienstman, P

    2016-01-11

    The dual polarization microring technique enables the simultaneous and accurate detection of thickness and refractive index of a bound molecular layer. By using three microring resonators in a double Vernier cascade configuration, the dual polarization technique is improved on three distinct levels: an increase of the sensitivity, a suppression of common noise due to self-referencing and the ability to migrate from a standard tunable laser to a cheap broadband LED and an on-chip arrayed waveguide grating as read-out system, allowing for a system which is orders of magnitude faster and cheaper. A dual polarization Vernier cascade proof-of-concept is fabricated and characterized, a read-out computational framework is constructed and it is shown on a theoretical basis that the limit of detection is improved.

  3. Algebraic dual-energy magnetic analysis with application to variable reluctance motor design

    SciTech Connect

    Tolikas, M.; Lang, J.H.; Kirtley, J.L. Jr.

    1995-12-31

    The dual-energy method has been successfully employed in the calculation of static resistances, capacitances and inductances, yielding fast and accurate solutions. Two different directions can be followed in applying the method, one is the more widely known method of tubes and slices, the other is the algebraic approach and is explored further in this paper. The present literature on the algebraic dual-energy method involves trivial examples with boundaries, boundary conditions and source distributions that are easily handled. However, the geometry of the variable reluctance motor at the unaligned position, the dominating curvatures characterizing its electromagnetic field distribution and the presence of a large number of boundary conditions arising at the steel boundaries, provide a challenging exercise in the application, behavior and effectiveness of the dual-energy method in a realistic framework.

  4. Recent advances in electromagnetic synthesis and analysis of dual-shaped reflector antennas

    NASA Technical Reports Server (NTRS)

    Galindo-Israel, V.; Rahmat-Samii, Y.; Imbriale, W.; Mittra, R.

    1982-01-01

    Dual-shaped reflectors have been used for many years. Thus, these reflectors have been used as high gain antennas on Voyagers 1 and 2. The objectives of the geometrical optics (GO) dual shaped synthesis are considered. Concerning the synthesis of dual shaped reflectors, it has been shown for circular symmetric reflectors that an exact GO solution can be found to the problem of transforming, by two reflections, any feed pattern into any aperture distribution. This problem involves solving two simultaneous nonlinear ordinary differential equations. The same approach for offset geometry leads to two simultaneous nonlinear partial differential equations. It is shown that these equations could also be integrated numerically, except that in general these equations are not total and therefore, in general, they do not have a 'smooth' solution. It is further shown that the offset partial differentials often very nearly form a total differential in many cases of practical importance.

  5. An analysis of clinical reasoning through a recent and comprehensive approach: the dual-process theory

    PubMed Central

    Pelaccia, Thierry; Tardif, Jacques; Triby, Emmanuel; Charlin, Bernard

    2011-01-01

    Context Clinical reasoning plays a major role in the ability of doctors to make diagnoses and decisions. It is considered as the physician's most critical competence, and has been widely studied by physicians, educationalists, psychologists and sociologists. Since the 1970s, many theories about clinical reasoning in medicine have been put forward. Purpose This paper aims at exploring a comprehensive approach: the “dual-process theory”, a model developed by cognitive psychologists over the last few years. Discussion After 40 years of sometimes contradictory studies on clinical reasoning, the dual-process theory gives us many answers on how doctors think while making diagnoses and decisions. It highlights the importance of physicians’ intuition and the high level of interaction between analytical and non-analytical processes. However, it has not received much attention in the medical education literature. The implications of dual-process models of reasoning in terms of medical education will be discussed. PMID:21430797

  6. Methods of space radiation dose analysis with applications to manned space systems

    NASA Technical Reports Server (NTRS)

    Langley, R. W.; Billings, M. P.

    1972-01-01

    The full potential of state-of-the-art space radiation dose analysis for manned missions has not been exploited. Point doses have been overemphasized, and the critical dose to the bone marrow has been only crudely approximated, despite the existence of detailed man models and computer codes for dose integration in complex geometries. The method presented makes it practical to account for the geometrical detail of the astronaut as well as the vehicle. Discussed are the major assumptions involved and the concept of applying the results of detailed proton dose analysis to the real-time interpretation of on-board dosimetric measurements.

  7. Design and assembly sequence analysis of option 3 for CETF reference space station

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Andersen, Gregory C.; Hall, John B., Jr.; Allen, Cheryl L.; Scott, A. D., Jr.; So, Kenneth T.

    1987-01-01

    A design and assembly sequence was conducted on one option of the Dual Keel Space Station examined by a NASA Critical Evaluation Task Force to establish viability of several variations of that option. A goal of the study was to produce and analyze technical data to support Task Force decisions to either examine particular Option 3 variations in more depth or eliminate them from further consideration. An analysis of the phasing assembly showed that use of an Expendable Launch Vehicle in conjunction with the Space Transportation System (STS) can accelerate the buildup of the Station and ease the STS launch rate constraints. The study also showed that use of an Orbital Maneuvering Vehicle on the first flight can significantly benefit Station assembly and, by performing Station subsystem functions, can alleviate the need for operational control and reboost systems during the early flights. In addition to launch and assembly sequencing, the study assessed stability and control, and analyzed node-packaging options and the effects of keel removal on the structural dynamics of the Station. Results of these analyses are presented and discussed.

  8. Correlation analysis of dual-energy CT iodine maps with quantitative pulmonary perfusion MRI

    PubMed Central

    Hansmann, Jan; Apfaltrer, Paul; Zoellner, Frank G; Henzler, Thomas; Meyer, Mathias; Weisser, Gerald; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-01-01

    AIM: To correlate dual-energy computed tomography (DECT) pulmonary angiography derived iodine maps with parameter maps of quantitative pulmonary perfusion magnetic resonance imaging (MRI). METHODS: Eighteen patients with pulmonary perfusion defects detected on DECT derived iodine maps were included in this prospective study and additionally underwent time-resolved contrast-enhanced pulmonary MRI [dynamic contrast enhanced (DCE)-MRI]. DCE-MRI data were quantitatively analyzed using a pixel-by-pixel deconvolution analysis calculating regional pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) in visually normal lung parenchyma and perfusion defects. Perfusion parameters were correlated to mean attenuation values of normal lung and perfusion defects on DECT iodine maps. Two readers rated the concordance of perfusion defects in a visual analysis using a 5-point Likert-scale (1 = no correlation, 5 = excellent correlation). RESULTS: In visually normal pulmonary tissue mean DECT and MRI values were: 22.6 ± 8.3 Hounsfield units (HU); PBF: 58.8 ± 36.0 mL/100 mL per minute; PBV: 16.6 ± 8.5 mL; MTT: 17.1 ± 10.3 s. In areas with restricted perfusion mean DECT and MRI values were: 4.0 ± 3.9 HU; PBF: 10.3 ± 5.5 mL/100 mL per minute, PBV: 5 ± 4 mL, MTT: 21.6 ± 14.0 s. The differences between visually normal parenchyma and areas of restricted perfusion were statistically significant for PBF, PBV and DECT (P < 0.0001). No linear correlation was found between MRI perfusion parameters and attenuation values of DECT iodine maps (PBF: r = 0.35, P = 0.15; PBV: r = 0.34, P = 0.16; MTT: r = 0.41, P = 0.08). Visual analysis revealed a moderate correlation between perfusion defects on DECT iodine maps and the parameter maps of DCE-MRI (mean score 3.6, κ 0.45). CONCLUSION: There is a moderate visual but not statistically significant correlation between DECT iodine maps and perfusion parameter maps of DCE-MRI. PMID:23805370

  9. Correlation analysis of dual-energy CT iodine maps with quantitative pulmonary perfusion MRI.

    PubMed

    Hansmann, Jan; Apfaltrer, Paul; Zoellner, Frank G; Henzler, Thomas; Meyer, Mathias; Weisser, Gerald; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-05-28

    To correlate dual-energy computed tomography (DECT) pulmonary angiography derived iodine maps with parameter maps of quantitative pulmonary perfusion magnetic resonance imaging (MRI). Eighteen patients with pulmonary perfusion defects detected on DECT derived iodine maps were included in this prospective study and additionally underwent time-resolved contrast-enhanced pulmonary MRI [dynamic contrast enhanced (DCE)-MRI]. DCE-MRI data were quantitatively analyzed using a pixel-by-pixel deconvolution analysis calculating regional pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) in visually normal lung parenchyma and perfusion defects. Perfusion parameters were correlated to mean attenuation values of normal lung and perfusion defects on DECT iodine maps. Two readers rated the concordance of perfusion defects in a visual analysis using a 5-point Likert-scale (1 = no correlation, 5 = excellent correlation). In visually normal pulmonary tissue mean DECT and MRI values were: 22.6 ± 8.3 Hounsfield units (HU); PBF: 58.8 ± 36.0 mL/100 mL per minute; PBV: 16.6 ± 8.5 mL; MTT: 17.1 ± 10.3 s. In areas with restricted perfusion mean DECT and MRI values were: 4.0 ± 3.9 HU; PBF: 10.3 ± 5.5 mL/100 mL per minute, PBV: 5 ± 4 mL, MTT: 21.6 ± 14.0 s. The differences between visually normal parenchyma and areas of restricted perfusion were statistically significant for PBF, PBV and DECT (P < 0.0001). No linear correlation was found between MRI perfusion parameters and attenuation values of DECT iodine maps (PBF: r = 0.35, P = 0.15; PBV: r = 0.34, P = 0.16; MTT: r = 0.41, P = 0.08). Visual analysis revealed a moderate correlation between perfusion defects on DECT iodine maps and the parameter maps of DCE-MRI (mean score 3.6, κ 0.45). There is a moderate visual but not statistically significant correlation between DECT iodine maps and perfusion parameter maps of DCE-MRI.

  10. A Cellular Space for Classification and Process Analysis

    NASA Astrophysics Data System (ADS)

    Kuhn, Christian

    2001-06-01

    the analysis of the fitness of the whole classification system. In this article we want to discuss the feature level especially. A new tool for the analysis of the feature space --- the cellular space --- is shown. The cellular space is the result of the discretization process of a part of the feature space. The orthogonal area of the feature space including the whole learning sample is called as analysis space, which we want to rasterize in subspaces. Now we need mathematical models for working with this cellular space and describing the relations of between data objects of a learning sample. This article describes two models: the density model and the field model. Both models have advantages, but disadvantages, too. The models are developed for various conditions: the density model leads to good results with large sets of objects, it is recommended for investigations of heterogeneity and feature extraction. The field model leads to smooth object descriptions in the analysis space. The possibility of the extrapolation im empty, new areas in the feature space is its advantage. The favourite application field is the clustering of data, but it has the possibility for the reconstruction of the trajectory of dynamic processes, too. Two simulations calculated with these models are discussed.

  11. Optomechanical design and analysis for the LLCD space terminal telescope

    NASA Astrophysics Data System (ADS)

    Nevin, Kate E.; Doyle, Keith B.; Pillsbury, Allen D.

    2011-10-01

    An earth-based ground terminal and a lunar orbiting space terminal are being developed as part of NASA's Lunar Laser Communications Demonstration program. The space terminal is designed to minimize mass and power requirements while delivering high data rates using a four-inch aperture telescope and a 0.5 watt beam. Design challenges for the space terminal include providing telescope pointing stability to 4 μrad RMS and diffraction-limited wavefront quality. Conflicting design requirements including stress, LOS jitter, mounting errors, and thermal distortion were balanced to meet performance requirements in the presence of operational vibration and thermal disturbances while assuring that the system will survive the launch load environment. Analysis techniques including finite element analyses, closed-loop LOS jitter simulations, and integrated optomechanical analyses were utilized to evaluate and drive proposed design solutions to the final telescope configuration.

  12. Advanced development in phytochemicals analysis of medicine and food dual purposes plants used in China (2011-2014).

    PubMed

    Zhao, Jing; Ge, Li-Ya; Xiong, Wei; Leong, Fong; Huang, Lu-Qi; Li, Shao-Ping

    2016-01-08

    In 2011, we wrote a review for summarizing the phytochemical analysis (2006-2010) of medicine and food dual purposes plants used in China (Zhao et al., J. Chromatogr. A 1218 (2011) 7453-7475). Since then, more than 750 articles related to their phytochemical analysis have been published. Therefore, an updated review for the advanced development (2011-2014) in this topic is necessary for well understanding the quality control and health beneficial phytochemicals in these materials, as well as their research trends.

  13. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  14. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  15. Space shuttle booster multi-engine base flow analysis

    NASA Technical Reports Server (NTRS)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  16. Space shuttle booster multi-engine base flow analysis

    NASA Technical Reports Server (NTRS)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  17. Cyber threat impact assessment and analysis for space vehicle architectures

    NASA Astrophysics Data System (ADS)

    McGraw, Robert M.; Fowler, Mark J.; Umphress, David; MacDonald, Richard A.

    2014-06-01

    This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.

  18. Failure Analysis in Space: International Space Station (ISS) Starboard Solar Alpha Rotary Joint (SARJ) Debris Analysis

    NASA Technical Reports Server (NTRS)

    Long, V. S.; Wright, M. C.; McDanels, S. J.; Lubas, D.; Tucker, B.; Marciniak, P. J.

    2010-01-01

    This slide presentation reviews the debris analysis of the Starboard Solar Alpha Rotary Joint (SARJ), a mechanism that is designed to keep the solar arrays facing the sun. The goal of this was to identify the failure mechanism based on surface morphology and to determine the source of debris through elemental and particle analysis.

  19. Development of a near-infrared/mid-infrared dual-region spectrometer for online process analysis.

    PubMed

    Genkawa, Takuma; Watari, Masahiro; Nishii, Takashi; Ozaki, Yukihiro

    2012-07-01

    A near-infrared (NIR) and mid-infrared (mid-IR) dual-region spectrometer having two immersion probes, a transmission probe for NIR, and an attenuated total reflection (ATR) probe for mid-IR has been developed for highly reliable process monitoring and deep process understanding. This spectrometer facilitates sequential acquisition of both NIR (10,000-4000 cm(-1)) and mid-IR (5000-1200 cm(-1)) spectra by switching the light path leading to the probes without the need for probe replacement. The use of a single light source and a single beam splitter enables achievement of a permanent alignment of the optical system and sequential data acquisition. The transmission NIR and ATR mid-IR probes designed and developed in the present study facilitate the acquisition of NIR/mid-IR spectra with optimized absorption intensities in both regions by simply placing the probes into a sample solution. The performance of the developed spectrometer was demonstrated in monitoring the ethanol fermentation process. NIR/mid-IR spectra of the fermentation solution with multiplicative scatter correction (MSC) represent the relative changes in the concentrations of glucose and ethanol in both regions. Principal component analysis (PCA) was performed on the MSC-treated spectra in the regions 6300-5650 cm(-1), 4850-4300 cm(-1), and 3500-2880 cm(-1) to detect the end-point of the fermentation as an example of process monitoring. For all the regions, the score plot of the first principal component (PC) indicates that the fermentation progresses with the fermentation time and stops after 210 minutes and thus the end-point of the fermentation exists at around 210 minutes. The loading plot indicates that all of the first PCs are the relative changes in the concentrations of glucose and ethanol. This result reveals that the same chemical changes are observed in both transmission NIR and ATR mid-IR spectra. Multiple and simultaneous analysis was also performed, and intensity change in light

  20. Slight pressure imbalances can affect accuracy and precision of dual inlet-based clumped isotope analysis.

    PubMed

    Fiebig, Jens; Hofmann, Sven; Löffler, Niklas; Lüdecke, Tina; Methner, Katharina; Wacker, Ulrike

    2016-01-01

    It is well known that a subtle nonlinearity can occur during clumped isotope analysis of CO2 that - if remaining unaddressed - limits accuracy. The nonlinearity is induced by a negative background on the m/z 47 ion Faraday cup, whose magnitude is correlated with the intensity of the m/z 44 ion beam. The origin of the negative background remains unclear, but is possibly due to secondary electrons. Usually, CO2 gases of distinct bulk isotopic compositions are equilibrated at 1000 °C and measured along with the samples in order to be able to correct for this effect. Alternatively, measured m/z 47 beam intensities can be corrected for the contribution of secondary electrons after monitoring how the negative background on m/z 47 evolves with the intensity of the m/z 44 ion beam. The latter correction procedure seems to work well if the m/z 44 cup exhibits a wider slit width than the m/z 47 cup. Here we show that the negative m/z 47 background affects precision of dual inlet-based clumped isotope measurements of CO2 unless raw m/z 47 intensities are directly corrected for the contribution of secondary electrons. Moreover, inaccurate results can be obtained even if the heated gas approach is used to correct for the observed nonlinearity. The impact of the negative background on accuracy and precision arises from small imbalances in m/z 44 ion beam intensities between reference and sample CO2 measurements. It becomes the more significant the larger the relative contribution of secondary electrons to the m/z 47 signal is and the higher the flux rate of CO2 into the ion source is set. These problems can be overcome by correcting the measured m/z 47 ion beam intensities of sample and reference gas for the contributions deriving from secondary electrons after scaling these contributions to the intensities of the corresponding m/z 49 ion beams. Accuracy and precision of this correction are demonstrated by clumped isotope analysis of three internal carbonate standards. The

  1. Cascaded systems analysis of noise reduction algorithms in dual-energy imaging.

    PubMed

    Richard, Samuel; Siewerdsen, Jeffrey H

    2008-02-01

    An important aspect of dual-energy (DE) x-ray image decomposition is the incorporation of noise reduction techniques to mitigate the amplification of quantum noise. This article extends cascaded systems analysis of imaging performance to DE imaging systems incorporating linear noise reduction algorithms. A general analytical formulation of linear DE decomposition is derived, with weighted log subtraction and several previously reported noise reduction algorithms emerging as special cases. The DE image noise-power spectrum (NPS) and modulation transfer function (MTF) demonstrate that noise reduction algorithms impart significant, nontrivial effects on the spatial-frequency-dependent transfer characteristics which do not cancel out of the noise-equivalent quanta (NEQ). Theoretical predictions were validated in comparison to the measured NPS and MTF. The resulting NEQ was integrated with spatial-frequency-dependent task functions to yield the detectability index, d', for evaluation of DE imaging performance using different decomposition algorithms. For a 3 mm lung nodule detection task, the detectability index varied from d' < 1 (i.e., nodule barely visible) in the absence of noise reduction to d' > 2.5 (i.e., nodule clearly visible) for "anti-correlated noise reduction" (ACNR) or "simple-smoothing of the high-energy image" (SSH) algorithms applied to soft-tissue or bone-only decompositions, respectively. Optimal dose allocation (A*, the fraction of total dose delivered in the low-energy projection) was also found to depend on the choice of noise reduction technique. At fixed total dose, multi-function optimization suggested a significant increase in optimal dose allocation from A* = 0.32 for conventional log subtraction to A* = 0.79 for ACNR and SSH in soft-tissue and bone-only decompositions, respectively. Cascaded systems analysis extended to the general formulation of DE image decomposition provided an objective means of investigating DE imaging performance across

  2. Space Human Factors Engineering Gap Analysis Project Final Report

    NASA Technical Reports Server (NTRS)

    Hudy, Cynthia; Woolford, Barbara

    2006-01-01

    Humans perform critical functions throughout each phase of every space mission, beginning with the mission concept and continuing to post-mission analysis (Life Sciences Division, 1996). Space missions present humans with many challenges - the microgravity environment, relative isolation, and inherent dangers of the mission all present unique issues. As mission duration and distance from Earth increases, in-flight crew autonomy will increase along with increased complexity. As efforts for exploring the moon and Mars advance, there is a need for space human factors research and technology development to play a significant role in both on-orbit human-system interaction, as well as the development of mission requirements and needs before and after the mission. As part of the Space Human Factors Engineering (SHFE) Project within the Human Research Program (HRP), a six-month Gap Analysis Project (GAP) was funded to identify any human factors research gaps or knowledge needs. The overall aim of the project was to review the current state of human factors topic areas and requirements to determine what data, processes, or tools are needed to aid in the planning and development of future exploration missions, and also to prioritize proposals for future research and technology development.

  3. Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations.

    PubMed

    Centler, Florian; Heße, Falk; Thullner, Martin

    2013-09-01

    At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways.

  4. Dual Enrollment Course Content and Instructor Quality. ECS Education Policy Analysis

    ERIC Educational Resources Information Center

    Dounay Zinth, Jennifer

    2015-01-01

    Knowing that the majority of dual enrollment courses are taught on high school campuses by high school instructors, it is critical that mechanisms are in place to ensure the quality of the curriculum and the many components surrounding the curriculum--including textbooks, learning outcomes, course syllabuses, assignments, grading practices,…

  5. Social Work Education in Dual Relationships: An Analysis of Undergraduate Knowledge of Ethical Relationships

    ERIC Educational Resources Information Center

    Carney, Jeremy William

    2010-01-01

    This study examined ethics education as it relates to non-sexual dual relationships in accredited bachelor of social work programs in the state of Minnesota. The results of the study indicated that the majority of undergraduate social work students in Minnesota reported receiving instruction in ethical issues surrounding non-sexual dual…

  6. Social Work Education in Dual Relationships: An Analysis of Undergraduate Knowledge of Ethical Relationships

    ERIC Educational Resources Information Center

    Carney, Jeremy William

    2010-01-01

    This study examined ethics education as it relates to non-sexual dual relationships in accredited bachelor of social work programs in the state of Minnesota. The results of the study indicated that the majority of undergraduate social work students in Minnesota reported receiving instruction in ethical issues surrounding non-sexual dual…

  7. An analysis of the effects of secondary reflections on dual-frequency reflectometers

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.; Cockrell, C. R.; Harrah, S. D.

    1990-01-01

    The error-producing mechanism involving secondary reflections in a dual-frequency, distance measuring reflectometer is examined analytically. Equations defining the phase, and hence distance, error are derived. The error-reducing potential of frequency-sweeping is demonstrated. It is shown that a single spurious return can be completely nullified by optimizing the sweep width.

  8. The Postsecondary Achievement of Participants in Dual Enrollment: "An Analysis of Student Outcomes in Two States"

    ERIC Educational Resources Information Center

    Karp, Melinda Mechur; Calcagno, Juan Carlos; Hughes, Katherine L.; Jeong, Dong Wook; Bailey, Thomas R.

    2007-01-01

    Dual enrollment programs enable high school students to enroll in college courses and earn college credit. Once limited to high-achieving students, such programs are increasingly seen as a means to support the postsecondary preparation of average-achieving students and students in career and technical education (CTE) programs. This report seeks to…

  9. Applying AI tools to operational space environmental analysis

    NASA Technical Reports Server (NTRS)

    Krajnak, Mike; Jesse, Lisa; Mucks, John

    1995-01-01

    The U.S. Air Force and National Oceanic Atmospheric Agency (NOAA) space environmental operations centers are facing increasingly complex challenges meeting the needs of their growing user community. These centers provide current space environmental information and short term forecasts of geomagnetic activity. Recent advances in modeling and data access have provided sophisticated tools for making accurate and timely forecasts, but have introduced new problems associated with handling and analyzing large quantities of complex data. AI (Artificial Intelligence) techniques have been considered as potential solutions to some of these problems. Fielding AI systems has proven more difficult than expected, in part because of operational constraints. Using systems which have been demonstrated successfully in the operational environment will provide a basis for a useful data fusion and analysis capability. Our approach uses a general purpose AI system already in operational use within the military intelligence community, called the Temporal Analysis System (TAS). TAS is an operational suite of tools supporting data processing, data visualization, historical analysis, situation assessment and predictive analysis. TAS includes expert system tools to analyze incoming events for indications of particular situations and predicts future activity. The expert system operates on a knowledge base of temporal patterns encoded using a knowledge representation called Temporal Transition Models (TTM's) and an event database maintained by the other TAS tools. The system also includes a robust knowledge acquisition and maintenance tool for creating TTM's using a graphical specification language. The ability to manipulate TTM's in a graphical format gives non-computer specialists an intuitive way of accessing and editing the knowledge base. To support space environmental analyses, we used TAS's ability to define domain specific event analysis abstractions. The prototype system defines

  10. Statistical Analysis of Micrometeoroid and Space Debris Impacts on the Space Station "Salyut-4"

    NASA Astrophysics Data System (ADS)

    Rebrikov, V. N.

    2009-03-01

    It is common to consider the flow of micrometeoroids and space debris (MM/SD) as the Poisson one when calculating risks for spaceship [1]. However even the first studies of the near Earth space with the aid of spaceships where sensors of particle registrations have been set allow us to suppose that registered streams have very complex features [2-3].The objective of this work is the statistical analysis of MM/SD registration data onboard station "Salut-4" and specification of their distribution models in the near Earth. As initial data we used results of studies performed on stations "Salyut-4" and obtained with the help of the control system. This system was used for detecting of the MM/SD impacts and consisted of condenser sensors (CS) and an electronic device.

  11. Micro-Logistics Analysis for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Cirillo, William; Stromgren, Chel; Galan, Ricardo

    2008-01-01

    Traditionally, logistics analysis for space missions has focused on the delivery of elements and goods to a destination. This type of logistics analysis can be referred to as "macro-logistics". While the delivery of goods is a critical component of mission analysis, it captures only a portion of the constraints that logistics planning may impose on a mission scenario. The other component of logistics analysis concerns the local handling of goods at the destination, including storage, usage, and disposal. This type of logistics analysis, referred to as "micro-logistics", may also be a primary driver in the viability of a human lunar exploration scenario. With the rigorous constraints that will be placed upon a human lunar outpost, it is necessary to accurately evaluate micro-logistics operations in order to develop exploration scenarios that will result in an acceptable level of system performance.

  12. Space mission scenario development and performance analysis tool

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Baker, John; Gilbert, John; Hanks, David

    2004-01-01

    This paper discusses a new and innovative approach for a rapid spacecraft multi-disciplinary performance analysis using a tool called the Mission Scenario Development Workbench (MSDW). To meet the needs of new classes of space missions, analysis tools with proven models were developed and integrated into a framework to enable rapid trades and analyses between spacecraft designs and operational scenarios during the formulation phase of a mission. Generally speaking, spacecraft resources are highly constrained on deep space missions and this approach makes it possible to maximize the use of existing resources to attain the best possible science return. This approach also has the potential benefit of reducing the risk of costly design changes made later in the design cycle necessary to meet the mission requirements by understanding system design sensitivities early and adding appropriate margins. This paper will describe the approach used by the Mars Science Laboratory Project to accomplish this result.

  13. Space mission scenario development and performance analysis tool

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Baker, John; Gilbert, John; Hanks, David

    2004-01-01

    This paper discusses a new and innovative approach for a rapid spacecraft multi-disciplinary performance analysis using a tool called the Mission Scenario Development Workbench (MSDW). To meet the needs of new classes of space missions, analysis tools with proven models were developed and integrated into a framework to enable rapid trades and analyses between spacecraft designs and operational scenarios during the formulation phase of a mission. Generally speaking, spacecraft resources are highly constrained on deep space missions and this approach makes it possible to maximize the use of existing resources to attain the best possible science return. This approach also has the potential benefit of reducing the risk of costly design changes made later in the design cycle necessary to meet the mission requirements by understanding system design sensitivities early and adding appropriate margins. This paper will describe the approach used by the Mars Science Laboratory Project to accomplish this result.

  14. Launch Window Trade Analysis for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Yu, Wayne H.; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  15. James Webb Space Telescope Launch Window Trade Analysis

    NASA Technical Reports Server (NTRS)

    Yu, Wayne; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-EarthMoon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  16. Analysis of a dual domain phosphoglycosyl transferase reveals a ping-pong mechanism with a covalent enzyme intermediate

    PubMed Central

    Das, Debasis; Kuzmic, Petr

    2017-01-01

    Phosphoglycosyl transferases (PGTs) are integral membrane proteins with diverse architectures that catalyze the formation of polyprenol diphosphate-linked glycans via phosphosugar transfer from a nucleotide diphosphate-sugar to a polyprenol phosphate. There are two PGT superfamilies that differ significantly in overall structure and topology. The polytopic PGT superfamily, represented by MraY and WecA, has been the subject of many studies because of its roles in peptidoglycan and O-antigen biosynthesis. In contrast, less is known about a second, extensive superfamily of PGTs that reveals a core structure with dual domain architecture featuring a C-terminal soluble globular domain and a predicted N-terminal membrane-associated domain. Representative members of this superfamily are the Campylobacter PglCs, which initiate N-linked glycoprotein biosynthesis and are implicated in virulence and pathogenicity. Despite the prevalence of dual domain PGTs, their mechanism of action is unknown. Here, we present the mechanistic analysis of PglC, a prototypic dual domain PGT from Campylobacter concisus. Using a luminescence-based assay, together with substrate labeling and kinetics-based approaches, complementary experiments were carried out that support a ping-pong mechanism involving a covalent phosphosugar intermediate for PglC. Significantly, mass spectrometry-based approaches identified Asp93, which is part of a highly conserved AspGlu dyad found in all dual domain PGTs, as the active-site nucleophile of the enzyme involved in the formation of the covalent adduct. The existence of a covalent phosphosugar intermediate provides strong support for a ping-pong mechanism of PglC, differing fundamentally from the ternary complex mechanisms of representative polytopic PGTs. PMID:28630348

  17. Analysis of a dual domain phosphoglycosyl transferase reveals a ping-pong mechanism with a covalent enzyme intermediate.

    PubMed

    Das, Debasis; Kuzmic, Petr; Imperiali, Barbara

    2017-07-03

    Phosphoglycosyl transferases (PGTs) are integral membrane proteins with diverse architectures that catalyze the formation of polyprenol diphosphate-linked glycans via phosphosugar transfer from a nucleotide diphosphate-sugar to a polyprenol phosphate. There are two PGT superfamilies that differ significantly in overall structure and topology. The polytopic PGT superfamily, represented by MraY and WecA, has been the subject of many studies because of its roles in peptidoglycan and O-antigen biosynthesis. In contrast, less is known about a second, extensive superfamily of PGTs that reveals a core structure with dual domain architecture featuring a C-terminal soluble globular domain and a predicted N-terminal membrane-associated domain. Representative members of this superfamily are the Campylobacter PglCs, which initiate N-linked glycoprotein biosynthesis and are implicated in virulence and pathogenicity. Despite the prevalence of dual domain PGTs, their mechanism of action is unknown. Here, we present the mechanistic analysis of PglC, a prototypic dual domain PGT from Campylobacter concisus Using a luminescence-based assay, together with substrate labeling and kinetics-based approaches, complementary experiments were carried out that support a ping-pong mechanism involving a covalent phosphosugar intermediate for PglC. Significantly, mass spectrometry-based approaches identified Asp93, which is part of a highly conserved AspGlu dyad found in all dual domain PGTs, as the active-site nucleophile of the enzyme involved in the formation of the covalent adduct. The existence of a covalent phosphosugar intermediate provides strong support for a ping-pong mechanism of PglC, differing fundamentally from the ternary complex mechanisms of representative polytopic PGTs.

  18. Perspectives about Family Meals from Single-Headed and Dual-Headed Households: A Qualitative Analysis

    PubMed Central

    Berge, Jerica M.; Hoppmann, Caroline; Hanson, Carrie; Neumark-Sztainer, Dianne

    2013-01-01

    Cross-sectional and longitudinal research has shown that family meals are protective for adolescent healthful eating behaviors. However, little is known about what parents think of these findings and whether parents from single- versus dual-headed households have differing perspectives about the findings. Additionally, parents’ perspectives regarding barriers to applying the findings on family meals in their own homes and suggestions for more wide-spread adoption of the findings are unknown. The current study aimed to identify single- and dual-headed household parents’ perspectives regarding the research findings on family meals, barriers to applying the findings in their own homes and suggestions for helping families have more family meals. The current qualitative study included 59 parents who participated in sub-study of two linked multi-level studies—EAT 2010 (Eating and Activity in Teens) and Families and Eating and Activity in Teens (F-EAT). Parents (91.5% female) were racially/ethnically and socio-economically diverse. Data were analyzed using a grounded theory approach. Results from the current study suggest that parents from both single- and dual-headed households have similar perspectives regarding why family meals are protective for healthful eating habits for adolescents (e.g., provides structure/routine, opportunities for communication, connection), but provide similar and different reasons for barriers to family meals (e.g., single-headed=cost vs. dual-headed=lack of creativity) and ideas and suggestions for how to increase the frequency of family meals (e.g., single-headed=give fewer options vs. dual-headed=include children in the meal preparation). Findings may help inform public health intervention researchers and providers who work with adolescents and their families to understand how to approach discussions regarding reasons for having family meals, barriers to carrying out family meals and ways to increase family meals depending on family

  19. Perspectives about family meals from single-headed and dual-headed households: a qualitative analysis.

    PubMed

    Berge, Jerica M; Hoppmann, Caroline; Hanson, Carrie; Neumark-Sztainer, Dianne

    2013-12-01

    Cross-sectional and longitudinal research has shown that family meals are protective for adolescent healthful eating behaviors. However, little is known about what parents think of these findings and whether parents from single- vs dual-headed households have differing perspectives about the findings. In addition, parents' perspectives regarding barriers to applying the findings on family meals in their own homes and suggestions for more widespread adoption of the findings are unknown. The current study aimed to identify single- and dual-headed household parents' perspectives regarding the research findings on family meals, barriers to applying the findings in their own homes, and suggestions for helping families have more family meals. The current qualitative study included 59 parents who participated in substudy of two linked multilevel studies-EAT 2010 (Eating and Activity in Teens) and Families and Eating and Activity in Teens (F-EAT). Parents (91.5% female) were racially/ethnically and socioeconomically diverse. Data were analyzed using a grounded theory approach. Results from the current study suggest that parents from both single- and dual-headed households have similar perspectives regarding why family meals are protective for healthful eating habits for adolescents (eg, provides structure/routine, opportunities for communication, connection), but provide similar and different reasons for barriers to family meals (eg, single-headed=cost vs dual-headed=lack of creativity) and ideas and suggestions for how to increase the frequency of family meals (eg, single-headed=give fewer options vs dual-headed=include children in the meal preparation). Findings can help inform public health intervention researchers and providers who work with adolescents and their families to understand how to approach discussions regarding reasons for having family meals, barriers to carrying out family meals, and ways to increase family meals depending on family structure. Copyright

  20. Phase space analysis of some interacting Chaplygin gas models

    NASA Astrophysics Data System (ADS)

    Khurshudyan, M.; Myrzakulov, R.

    2017-02-01

    In this paper we discuss a phase space analysis of various interacting Chaplygin gas models in general relativity. Linear and nonlinear sign changeable interactions are considered. For each case appropriate late time attractors of field equations are found. The Chaplygin gas is one of the dark fluids actively considered in modern cosmology due to the fact that it is a joint model of dark energy and dark matter.

  1. Energy consumption analysis for the Mars deep space station

    NASA Technical Reports Server (NTRS)

    Hayes, N. V.

    1982-01-01

    Results for the energy consumption analysis at the Mars deep space station are presented. It is shown that the major energy consumers are the 64-Meter antenna building and the operations support building. Verification of the antenna's energy consumption is highly dependent on an accurate knowlege of the tracking operations. The importance of a regular maintenance schedule for the watt hour meters installed at the station is indicated.

  2. Analysis of Space-Based Lidar for Aircraft Tracking

    DTIC Science & Technology

    1988-11-01

    space. As a first step to a complete analysis, this thesis investigated the laser energy propagation as defined by the lidar range equation. The...which were developed from FASCODE data. define the atmospheric losses for two type of atmospheres (clear and haze). Other lidar range equation...To define the length of time that the satellite takes to complete one orbit of the earth tthe orbital perioa), the speed of the satellite must first

  3. Environmental analysis of the chemical release module. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.; Dubin, M.

    1980-01-01

    The environmental analysis of the Chemical Release Module (a free flying spacecraft deployed from the space shuttle to perform chemical release experiments) is reviewed. Considerations of possible effects of the injectants on human health, ionosphere, weather, ground based optical astronomical observations, and satellite operations are included. It is concluded that no deleterious environmental effects of widespread or long lasting nature are anticipated from chemical releases in the upper atmosphere of the type indicated for the program.

  4. Energy consumption analysis for the Mars deep space station

    NASA Technical Reports Server (NTRS)

    Hayes, N. V.

    1982-01-01

    Results for the energy consumption analysis at the Mars deep space station are presented. It is shown that the major energy consumers are the 64-Meter antenna building and the operations support building. Verification of the antenna's energy consumption is highly dependent on an accurate knowlege of the tracking operations. The importance of a regular maintenance schedule for the watt hour meters installed at the station is indicated.

  5. Mathematical analysis techniques for modeling the space network activities

    NASA Technical Reports Server (NTRS)

    Foster, Lisa M.

    1992-01-01

    The objective of the present work was to explore and identify mathematical analysis techniques, and in particular, the use of linear programming. This topic was then applied to the Tracking and Data Relay Satellite System (TDRSS) in order to understand the space network better. Finally, a small scale version of the system was modeled, variables were identified, data was gathered, and comparisons were made between actual and theoretical data.

  6. Properties Of A Qualified Space Solar Sheet With InGaP/GaAs Dual-Junction Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Imaizumi, Mitsuru; Shimazaki, Kazunori; Kobayashi, Yuki; Takahashi, Masato; Nakamura, Kazuyo; Takamoto, Tatsuya; Sata, Shin-ichiro; Ohshima, Takeshi

    2011-10-01

    JAXA's approach to realizing a high specific power solar paddle by utilizing thin-film III-V multi-junction solar cells is introduced. Thin-film cells laminated with thin and transparent sustaining materials have been named a "Space Solar Sheet (SSS)." Development of the first-generation SSS (SSS-1) was completed in 2010. Thin-film InGaP/GaAs dual-junction (TF2J) cells are used as solar cells in the SSS-1. The AM0 efficiency of the TF2J cells is ~25%. Two types of lamination structure for the active side are employed: one uses transparent films with UV coating, and the other has a conventional configuration using a coverglass. The specific power of the SSS-1 is 0.4-0.5 W/g. Characterization and environmental qualification tests have confirmed their space quality and life at more than 5 years in the LEO environment (the film type) and 10 years in the GEO environment (the coverglass type). The SSS-1 is now commercially available. The second- generation SSS (SSS-2) development started in 2010. The major improvement from the SSS-1 to the SSS-2 will be cell efficiency, achieved by adopting an inverted metamorphic InGaP/GaAs/InGaAs triple-junction solar cell: the target efficiency is 32% at BOL. The lamination technology will be also modified for the SSS-2 to improve specific power. The achievement of such a SSS will enable us to realize lightweight solar paddles with specific power of 150 W/kg or greater.

  7. Three-Dimensional Analysis of Deep Space Network Antenna Coverage

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah; Fuentes, Michael; Meyer, Nicholas; Sil, Amy

    2012-01-01

    There is a need to understand NASA s Deep Space Network (DSN) coverage gaps and any limitations to provide redundant communication coverage for future deep space missions, especially for manned missions to Moon and Mars. The DSN antennas are required to provide continuous communication coverage for deep space flights, interplanetary missions, and deep space scientific observations. The DSN consists of ground antennas located at three sites: Goldstone in USA, Canberra in Australia, and Madrid in Spain. These locations are not separated by the exactly 120 degrees and some DSN antennas are located in the bowl-shaped mountainous terrain to shield against radiofrequency interference resulting in a coverage gap in the southern hemisphere for the current DSN architecture. To analyze the extent of this gap and other coverage limitations, simulations of the DSN architecture were performed. In addition to the physical properties of the DSN assets, the simulation incorporated communication forward link calculations and azimuth/elevation masks that constrain the effects of terrain for each DSN antenna. Analysis of the simulation data was performed to create coverage profiles with the receiver settings at a deep space altitudes ranging from 2 million to 10 million km and a spherical grid resolution of 0.25 degrees with respect to longitude and latitude. With the results of these simulations, two- and three-dimensional representations of the area without communication coverage and area with coverage were developed, showing the size and shape of the communication coverage gap projected in space. Also, the significance of this communication coverage gap is analyzed from the simulation data.

  8. Projection of the Dynamics of Electron Transfer Reaction in Dual Space onto the One-Dimensional Slower Reaction Coordinate Axis.

    PubMed

    Patra, Aniket; Acharya, Kanagala Ajay; Samanta, Alok

    2015-08-27

    We have derived here for the first time an exact dynamical equation within the domain of classical mechanics for the time dependent density distribution function of one-dimensional reaction coordinate (RC) in the condensed phase for electron transfer reaction by projecting the dynamics of slower modes in multidimensional Liouville space starting with a given set of coordinates of the faster modes. After the faster modes were ensemble averaged, the dynamics of the whole system solely depends on the slower RC. To simplify the complicated equation into a tractable form, benchmark approximations are employed to reduce the formally exact equation into an equation similar to the Smoluchowski equation with a delocalized sink term. As a test case, a Hamiltonian for the solute-solvent system modeled by quadratic functions for fast-relaxing vibrational and slow-relaxing polarization modes, respectively, has been considered. Interestingly, our simplified kinetic equation corresponding to this model Hamiltonian is transformed into the well-known phenomenological Sumi-Marcus equation.

  9. Procedures for analysis of debris relative to Space Shuttle systems

    NASA Technical Reports Server (NTRS)

    Kim, Hae Soo; Cummings, Virginia J.

    1993-01-01

    Debris samples collected from various Space Shuttle systems have been submitted to the Microchemical Analysis Branch. This investigation was initiated to develop optimal techniques for the analysis of debris. Optical microscopy provides information about the morphology and size of crystallites, particle sizes, amorphous phases, glass phases, and poorly crystallized materials. Scanning electron microscopy with energy dispersive spectrometry is utilized for information on surface morphology and qualitative elemental content of debris. Analytical electron microscopy with wavelength dispersive spectrometry provides information on the quantitative elemental content of debris.

  10. Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash

    NASA Astrophysics Data System (ADS)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are

  11. Sources and transformations of nitrate from streams draining varying land uses: Evidence from dual isotope analysis

    USGS Publications Warehouse

    Burns, Douglas A.; Boyer, E.W.; Elliott, E.M.; Kendall, C.

    2009-01-01

    Knowledge of key sources and biogeochemical processes that affect the transport of nitrate (NO3-) in streams can inform watershed management strategies for controlling downstream eutrophication. We applied dual isotope analysis of NO3- to determine the dominant sources and processes that affect NO3- concentrations in six stream/river watersheds of different land uses. Samples were collected monthly at a range of flow conditions for 15 mo during 2004-05 and analyzed for NO3- concentrations, ?? 15NNO3, and ??18ONO3. Samples from two forested watersheds indicated that NO3- derived from nitrification was dominant at baseflow. A watershed dominated by suburban land use had three ??18ONO3 values greater than +25???, indicating a large direct contribution of atmospheric NO 3- transported to the stream during some high flows. Two watersheds with large proportions of agricultural land use had many ??15NNO3 values greater than +9???, suggesting an animal waste source consistent with regional dairy farming practices. These data showed a linear seasonal pattern with a ??18O NO3:??15NNO3 of 1:2, consistent with seasonally varying denitrification that peaked in late summer to early fall with the warmest temperatures and lowest annual streamflow. The large range of ?? 15NNO3 values (10???) indicates that NO 3- supply was likely not limiting the rate of denitrification, consistent with ground water and/or in-stream denitrification. Mixing of two or more distinct sources may have affected the seasonal isotope patterns observed in these two agricultural streams. In a mixed land use watershed of large drainage area, none of the source and process patterns observed in the small streams were evident. These results emphasize that observations at watersheds of a few to a few hundred km2 may be necessary to adequately quantify the relative roles of various NO 3- transport and process patterns that contribute to streamflow in large basins. Copyright ?? 2009 by the American Society of

  12. System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1994-01-01

    This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.

  13. Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1982-01-01

    The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.

  14. Performance analysis of a dual-tree algorithm for computing spatial distance histograms

    PubMed Central

    Chen, Shaoping; Tu, Yi-Cheng; Xia, Yuni

    2011-01-01

    Many scientific and engineering fields produce large volume of spatiotemporal data. The storage, retrieval, and analysis of such data impose great challenges to database systems design. Analysis of scientific spatiotemporal data often involves computing functions of all point-to-point interactions. One such analytics, the Spatial Distance Histogram (SDH), is of vital importance to scientific discovery. Recently, algorithms for efficient SDH processing in large-scale scientific databases have been proposed. These algorithms adopt a recursive tree-traversing strategy to process point-to-point distances in the visited tree nodes in batches, thus require less time when compared to the brute-force approach where all pairwise distances have to be computed. Despite the promising experimental results, the complexity of such algorithms has not been thoroughly studied. In this paper, we present an analysis of such algorithms based on a geometric modeling approach. The main technique is to transform the analysis of point counts into a problem of quantifying the area of regions where pairwise distances can be processed in batches by the algorithm. From the analysis, we conclude that the number of pairwise distances that are left to be processed decreases exponentially with more levels of the tree visited. This leads to the proof of a time complexity lower than the quadratic time needed for a brute-force algorithm and builds the foundation for a constant-time approximate algorithm. Our model is also general in that it works for a wide range of point spatial distributions, histogram types, and space-partitioning options in building the tree. PMID:21804753

  15. Modal Analysis and Model Correlation of the Mir Space Station

    NASA Technical Reports Server (NTRS)

    Kim, Hyoung M.; Kaouk, Mohamed

    2000-01-01

    This paper will discuss on-orbit dynamic tests, modal analysis, and model refinement studies performed as part of the Mir Structural Dynamics Experiment (MiSDE). Mir is the Russian permanently manned Space Station whose construction first started in 1986. The MiSDE was sponsored by the NASA International Space Station (ISS) Phase 1 Office and was part of the Shuttle-Mir Risk Mitigation Experiment (RME). One of the main objectives for MiSDE is to demonstrate the feasibility of performing on-orbit modal testing on large space structures to extract modal parameters that will be used to correlate mathematical models. The experiment was performed over a one-year span on the Mir-alone and Mir with a Shuttle docked. A total of 45 test sessions were performed including: Shuttle and Mir thruster firings, Shuttle-Mir and Progress-Mir dockings, crew exercise and pushoffs, and ambient noise during night-to-day and day-to-night orbital transitions. Test data were recorded with a variety of existing and new instrumentation systems that included: the MiSDE Mir Auxiliary Sensor Unit (MASU), the Space Acceleration Measurement System (SAMS), the Russian Mir Structural Dynamic Measurement System (SDMS), the Mir and Shuttle Inertial Measurement Units (IMUs), and the Shuttle payload bay video cameras. Modal analysis was performed on the collected test data to extract modal parameters, i.e. frequencies, damping factors, and mode shapes. A special time-domain modal identification procedure was used on free-decay structural responses. The results from this study show that modal testing and analysis of large space structures is feasible within operational constraints. Model refinements were performed on both the Mir alone and the Shuttle-Mir mated configurations. The design sensitivity approach was used for refinement, which adjusts structural properties in order to match analytical and test modal parameters. To verify the refinement results, the analytical responses calculated using

  16. Analysis of the Space Propulsion System Problem Using RAVEN

    SciTech Connect

    diego mandelli; curtis smith; cristian rabiti; andrea alfonsi

    2014-06-01

    This paper presents the solution of the space propulsion problem using a PRA code currently under development at Idaho National Laboratory (INL). RAVEN (Reactor Analysis and Virtual control ENviroment) is a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities. It is designed to derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures) and to perform both Monte- Carlo sampling of random distributed events and Event Tree based analysis. In order to facilitate the input/output handling, a Graphical User Interface (GUI) and a post-processing data-mining module are available. RAVEN allows also to interface with several numerical codes such as RELAP5 and RELAP-7 and ad-hoc system simulators. For the space propulsion system problem, an ad-hoc simulator has been developed and written in python language and then interfaced to RAVEN. Such simulator fully models both deterministic (e.g., system dynamics and interactions between system components) and stochastic behaviors (i.e., failures of components/systems such as distribution lines and thrusters). Stochastic analysis is performed using random sampling based methodologies (i.e., Monte-Carlo). Such analysis is accomplished to determine both the reliability of the space propulsion system and to propagate the uncertainties associated to a specific set of parameters. As also indicated in the scope of the benchmark problem, the results generated by the stochastic analysis are used to generate risk-informed insights such as conditions under witch different strategy can be followed.

  17. The MATHEMATICA economic analysis of the Space Shuttle System

    NASA Technical Reports Server (NTRS)

    Heiss, K. P.

    1973-01-01

    Detailed economic analysis shows the Thrust Assisted Orbiter Space Shuttle System (TAOS) to be the most economic Space Shuttle configuration among the systems studied. The development of a TAOS Shuttle system is economically justified within a level of space activities between 300 and 360 Shuttle flights in the 1979-1990 period, or about 25 to 30 flights per year, well within the U.S. Space Program including NASA and DoD missions. If the NASA and DoD models are taken at face value (624 flights), the benefits of the Shuttle system are estimated to be $13.9 billion with a standard deviation of plus or minus $1.45 billion in 1970 dollars (at a 10% social rate of discount). If the expected program is modified to 514 flights (in the 1979-1990 period), the estimated benefits of the Shuttle system are $10.2 billion, with a standard deviation of $940 million (at a 10% social rate of discount).

  18. The MATHEMATICA economic analysis of the Space Shuttle System

    NASA Technical Reports Server (NTRS)

    Heiss, K. P.

    1973-01-01

    Detailed economic analysis shows the Thrust Assisted Orbiter Space Shuttle System (TAOS) to be the most economic Space Shuttle configuration among the systems studied. The development of a TAOS Shuttle system is economically justified within a level of space activities between 300 and 360 Shuttle flights in the 1979-1990 period, or about 25 to 30 flights per year, well within the U.S. Space Program including NASA and DoD missions. If the NASA and DoD models are taken at face value (624 flights), the benefits of the Shuttle system are estimated to be $13.9 billion with a standard deviation of plus or minus $1.45 billion in 1970 dollars (at a 10% social rate of discount). If the expected program is modified to 514 flights (in the 1979-1990 period), the estimated benefits of the Shuttle system are $10.2 billion, with a standard deviation of $940 million (at a 10% social rate of discount).

  19. Economic analysis of open space box model utilization in spacecraft

    NASA Astrophysics Data System (ADS)

    Mohammad, Atif F.; Straub, Jeremy

    2015-05-01

    It is a known fact that the amount of data about space that is stored is getting larger on an everyday basis. However, the utilization of Big Data and related tools to perform ETL (Extract, Transform and Load) applications will soon be pervasive in the space sciences. We have entered in a crucial time where using Big Data can be the difference (for terrestrial applications) between organizations underperforming and outperforming their peers. The same is true for NASA and other space agencies, as well as for individual missions and the highly-competitive process of mission data analysis and publication. In most industries, conventional opponents and new candidates alike will influence data-driven approaches to revolutionize and capture the value of Big Data archives. The Open Space Box Model is poised to take the proverbial "giant leap", as it provides autonomic data processing and communications for spacecraft. We can find economic value generated from such use of data processing in our earthly organizations in every sector, such as healthcare, retail. We also can easily find retailers, performing research on Big Data, by utilizing sensors driven embedded data in products within their stores and warehouses to determine how these products are actually used in the real world.

  20. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.