Sample records for dual stack black

  1. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.

    PubMed

    Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang

    2015-05-20

    In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.

  2. Comparison of dual-k spacer and single-k spacer for single NWFET and 3-stack NWFET

    NASA Astrophysics Data System (ADS)

    Ko, Hyungwoo; Kim, Jongsu; Kim, Minsoo; Kang, Myounggon; Shin, Hyungcheol

    2018-02-01

    The investigation of the Dual-k spacer through comparative analysis of single nanowire-FET(NWFET)/3-stack NWFET and underlap/overlap channel is conducted. It is known that the dug 3-stack NWFET has better delay characteristics than single NWFET with the use of high permittivity material of Cin in Dual-k spacer structure. In addition, there is no difference of delay between overlap and underlap channel when it used Dual-k spacer structure but underlap channel of Dual-k 3-stack NWFET shows better short channel immunity.

  3. Stacking dependence of carrier transport properties in multilayered black phosphorous

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  4. Problems of Dual-Career Black Couples: Identification and Implications for Family Interventions.

    ERIC Educational Resources Information Center

    Thomas, Veronica G.

    1990-01-01

    Examined problems of 41 dual-career Black couples. Findings indicated that dual-career Black couples experienced a number of problems related to their lifestyle. Found unique problems perceived by dual-career Black families. In addition to problems experienced by White dual-career couples, Blacks also faced racial discrimination, social isolation,…

  5. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.

    PubMed

    An, Byung-Min; Heo, Yoon; Maitlo, Hubdar-Ali; Park, Joo-Yang

    2016-06-01

    The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Arbitrarily shaped dual-stacked patch antennas: A hybrid FEM simulation

    NASA Technical Reports Server (NTRS)

    Gong, Jian; Volakis, John L.

    1995-01-01

    A dual-stacked patch antenna is analyzed using a hybrid finite element - boundary integral (FE-BI) method. The metallic patches of the antenna are modeled as perfectly electric conducting (PEC) plates stacked on top of two different dielectric layers. The antenna patches may be of any shape and the lower patch is fed by a coaxial cable from underneath the ground plane or by an aperture coupled microstrip line. The ability of the hybrid FEM technique for the stacked patch antenna characterization will be stressed, and the EM coupling mechanism is also discussed with the aid of the computed near field patterns around the patches.

  7. Stacking Fault Enriching the Electronic and Transport Properties of Few-Layer Phosphorenes and Black Phosphorus.

    PubMed

    Lei, Shuangying; Wang, Han; Huang, Lan; Sun, Yi-Yang; Zhang, Shengbai

    2016-02-10

    Interface engineering is critical for enriching the electronic and transport properties of two-dimensional materials. Here, we identify a new stacking, named Aδ, in few-layer phosphorenes (FLPs) and black phosphorus (BP) based on first-principles calculation. With its low formation energy, the Aδ stacking could exist in FLPs and BP as a stacking fault. The presence of the Aδ stacking fault induces a direct to indirect transition of the band gap in FLPs. It also affects the carrier mobilities by significantly increasing the carrier effective masses. More importantly, the Aδ stacking enables the fabrication of a whole spectrum of lateral junctions with all the type-I, II, and III alignments simply through the manipulation of the van der Waals stacking without resorting to any chemical modification. This is achieved by the widely tunable electron affinity and ionization potential of FLPs and BP with the Aδ stacking.

  8. Anisotropic D3-D5 black holes with unquenched flavors

    NASA Astrophysics Data System (ADS)

    Penín, José Manuel; Ramallo, Alfonso V.; Zoakos, Dimitrios

    2018-02-01

    We construct a black hole geometry generated by the intersection of N c color D3- branes and N f flavor D5-branes along a 2+1 dimensional subspace. Working in the Veneziano limit in which N f is large and distributing homogeneously the D5-branes in the internal space, we calculate the solution of the equations of motion of supergravity plus sources which includes the backreaction of the flavor branes. The solution is analytic and dual to a 2+1 dimensional defect in a 3+1 dimensional gauge theory, with N f massless hypermultiplets living in the defect. The smeared background we obtain can be regarded as the holographic realization of a multilayered system. We study the thermodynamics of the resulting spatially anisotropic geometry and compute the first and second order transport coefficients for perturbations propagating along the defect. We find that, in our system, the dynamics of excitations within a layer can be described by a stack of effective D2-branes.

  9. Effect of stacking order on device performance of bilayer black phosphorene-field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, A., E-mail: arnabm.electinstru@gmail.com; Banerjee, L.; Sengupta, A.

    We investigate the effect of stacking order of bilayer black phosphorene on the device properties of p-MOSFET and n-MOSFET. Two layers of black phosphorus are stacked in three different orders and are used as channel material in both n-MOSFET and p-MOSFET devices. The effects of different stacking orders on electron and hole effective masses and output characteristics of MOSFETs, such as ON currents, ON/OFF ratio, and transconductance are analyzed. Our results show that about 1.37 times and 1.49 times increase in ON current is possible along armchair and zigzag directions, respectively, 55.11% variation in transconductance is possible along armchair direction,more » by changing stacking orders (AA, AB, and AC) and about 8 times increase in ON current is achievable by changing channel orientation (armchair or zigzag) in p-MOSFET. About 14.8 mV/V drain induced barrier lowering is observed for both p-MOSFET and n-MOSFET, which signifies good immunity to short channel effects.« less

  10. Tracing Supermassive Black Hole Growth with Offset and Dual AGN

    NASA Astrophysics Data System (ADS)

    Comerford, Julia

    The growth of supermassive black holes is tied to the evolution of their host galaxies, but we are still missing a fundamental understanding of how and when supermassive black holes build up their mass. Black hole mass growth can be traced when the black holes are powered as active galactic nuclei (AGN), and AGN activity can be triggered by the stochastic accretion of gas or by gas inflows driven by galaxy mergers. Galaxy merger simulations make a series of predictions about the AGN that are triggered by mergers: (1) major mergers preferentially trigger higher-luminosity AGN, (2) minor mergers more often trigger AGN activity in one supermassive black hole while major mergers more often trigger AGN activity in both black holes in a merger, and (3) black hole mass growth peaks when the black holes approach the center (<10 kpc separations) of the merger-remnant galaxy. Observational tests of these predictions from theory have been limited by the difficulty in defining a clean observational sample of AGN in galaxy mergers and the observational challenge of spatially resolving two AGN with small (<10kpc) separations. Here we present offset and dual AGN as a new observational tool that can be used to address how and when supermassive black hole mass growth occurs. A merger of two galaxies brings two supermassive black holes together, and the two black holes exist at kpc-scale separations for 100 Myr before ultimately merging. While the black holes are at kpc-scale separations, they are known as dual AGN when both of them are fueled as AGN and offset AGN when only one is fueled as an AGN. Since offset and dual AGN only occur in galaxy mergers, by their very definition, they provide a clean observational sample of black hole mass growth in galaxy mergers. The small, kpc-scale separations of offset and dual AGN also enable an observational test of black hole fueling near the centers of merger-remnant galaxies. The full potential of offset and dual AGN for such studies of black hole mass growth has not yet been realized, due to the small number of such systems known. To date, only 13 confirmed offset and dual AGN are known. Here we propose a new observational approach to identifying offset and dual AGN, which will increase the known number from 13 to 100. This technique depends on multiwavelength archival data from HST, Spitzer, XMM-Newton, and Chandra, and it selects offset/dual AGN candidates as active galaxies (identified by Spitzer, XMMNewton, and Chandra detections) that exhibit two stellar bulges in their HST images. Our follow-up longslit spectroscopy will then confirm whether the two nuclei in fact correspond to offset AGN or dual AGN. The catalog of 100 offset and dual AGN that we build with this approach will enable offset and dual AGN to be used, for the first time, for statistical studies of black hole mass growth. We will use the catalog to test theoretical predictions about (1) whether major mergers preferentially fuel higher-luminosity AGN, (2) whether offset AGN are preferentially triggered by minor mergers and dual AGN preferentially triggered by major mergers, and (3) at what black hole separations the mass growth of black holes peaks. The primary emphasis of this project is the analysis of multiwavelength archival data from several NASA space missions, which is aligned with the goals of the Astrophysics Data Analysis Program. This project will advance offset and dual AGN as a new tool for statistical studies of galaxy evolution, and the results of our study will promote the NASA Cosmic Origins program in one of its objectives, which is to understand how galaxies evolve.

  11. The production deployment of IPv6 on WLCG

    NASA Astrophysics Data System (ADS)

    Bernier, J.; Campana, S.; Chadwick, K.; Chudoba, J.; Dewhurst, A.; Eliáš, M.; Fayer, S.; Finnern, T.; Grigoras, C.; Hartmann, T.; Hoeft, B.; Idiculla, T.; Kelsey, D. P.; López Muñoz, F.; Macmahon, E.; Martelli, E.; Millar, A. P.; Nandakumar, R.; Ohrenberg, K.; Prelz, F.; Rand, D.; Sciabà, A.; Tigerstedt, U.; Voicu, R.; Walker, C. J.; Wildish, T.

    2015-12-01

    The world is rapidly running out of IPv4 addresses; the number of IPv6 end systems connected to the internet is increasing; WLCG and the LHC experiments may soon have access to worker nodes and/or virtual machines (VMs) possessing only an IPv6 routable address. The HEPiX IPv6 Working Group has been investigating, testing and planning for dual-stack services on WLCG for several years. Following feedback from our working group, many of the storage technologies in use on WLCG have recently been made IPv6-capable. This paper presents the IPv6 requirements, tests and plans of the LHC experiments together with the tests performed on the group's IPv6 test-bed. This is primarily aimed at IPv6-only worker nodes or VMs accessing several different implementations of a global dual-stack federated storage service. Finally the plans for deployment of production dual-stack WLCG services are presented.

  12. Holographic shell model: Stack data structure inside black holes?

    NASA Astrophysics Data System (ADS)

    Davidson, Aharon

    2014-03-01

    Rather than tiling the black hole horizon by Planck area patches, we suggest that bits of information inhabit, universally and holographically, the entire black core interior, a bit per a light sheet unit interval of order Planck area difference. The number of distinguishable (tagged by a binary code) configurations, counted within the context of a discrete holographic shell model, is given by the Catalan series. The area entropy formula is recovered, including Cardy's universal logarithmic correction, and the equipartition of mass per degree of freedom is proven. The black hole information storage resembles, in the count procedure, the so-called stack data structure.

  13. Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells

    NASA Astrophysics Data System (ADS)

    Sugaya, Takeyoshi; Tayagaki, Takeshi; Aihara, Taketo; Makita, Kikuo; Oshima, Ryuji; Mizuno, Hidenori; Nagato, Yuki; Nakamoto, Takashi; Okano, Yoshinobu

    2018-05-01

    We report high-quality dual-junction GaAs solar cells grown using solid-source molecular beam epitaxy and their application to smart stacked III–V//Si quadruple-junction solar cells with a two-terminal configuration for the first time. A high open-circuit voltage of 2.94 eV was obtained in an InGaP/GaAs/GaAs triple-junction top cell that was stacked to a Si bottom cell. The short-circuit current density of a smart stacked InGaP/GaAs/GaAs//Si solar cell was in good agreement with that estimated from external quantum efficiency measurements. An efficiency of 18.5% with a high open-circuit voltage of 3.3 V was obtained in InGaP/GaAs/GaAs//Si two-terminal solar cells.

  14. Compact, Lightweight Dual- Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya

    2004-01-01

    The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.

  15. Floating-Gate Manipulated Graphene-Black Phosphorus Heterojunction for Nonvolatile Ambipolar Schottky Junction Memories, Memory Inverter Circuits, and Logic Rectifiers.

    PubMed

    Li, Dong; Chen, Mingyuan; Zong, Qijun; Zhang, Zengxing

    2017-10-11

    The Schottky junction is an important unit in electronics and optoelectronics. However, its properties greatly degrade with device miniaturization. The fast development of circuits has fueled a rapid growth in the study of two-dimensional (2D) crystals, which may lead to breakthroughs in the semiconductor industry. Here we report a floating-gate manipulated nonvolatile ambipolar Schottky junction memory from stacked all-2D layers of graphene-BP/h-BN/graphene (BP, black phosphorus; h-BN, hexagonal boron nitride) in a designed floating-gate field-effect Schottky barrier transistor configuration. By manipulating the voltage pulse applied to the control gate, the device exhibits ambipolar characteristics and can be tuned to act as graphene-p-BP or graphene-n-BP junctions with reverse rectification behavior. Moreover, the junction exhibits good storability properties of more than 10 years and is also programmable. On the basis of these characteristics, we further demonstrate the application of the device to dual-mode nonvolatile Schottky junction memories, memory inverter circuits, and logic rectifiers.

  16. Application of dual-energy x-ray techniques for automated food container inspection

    NASA Astrophysics Data System (ADS)

    Shashishekhar, N.; Veselitza, D.

    2016-02-01

    Manufacturing for plastic food containers often results in small metal particles getting into the containers during the production process. Metal detectors are usually not sensitive enough to detect these metal particles (0.5 mm or lesser), especially when the containers are stacked in large sealed shipping packages; X-ray inspection of these packages provides a viable alternative. This paper presents the results of an investigation into dual-energy X-ray techniques for automated detection of small metal particles in plastic food container packages. The sample packages consist of sealed cardboard boxes containing stacks of food containers: plastic cups for food, and Styrofoam cups for noodles. The primary goal of the investigation was to automatically identify small metal particles down to 0.5 mm diameter in size or less, randomly located within the containers. The multiple container stacks in each box make it virtually impossible to reliably detect the particles with single-energy X-ray techniques either visually or with image processing. The stacks get overlaid in the X-ray image and create many indications almost identical in contrast and size to real metal particles. Dual-energy X-ray techniques were investigated and found to result in a clear separation of the metal particles from the food container stack-ups. Automated image analysis of the resulting images provides reliable detection of the small metal particles.

  17. Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    NASA Technical Reports Server (NTRS)

    Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon

    2009-01-01

    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.

  18. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers.

    PubMed

    Zhang, Nan; Zhou, Peiheng; Cheng, Dengmu; Weng, Xiaolong; Xie, Jianliang; Deng, Longjiang

    2013-04-01

    We present the simulation, fabrication, and characterization of a dual-band metamaterial absorber in the mid-infrared regime. Two pairs of circular-patterned metal-dielectric stacks are employed to excite the dual-band absorption peaks. Dielectric characteristics of the dielectric spacing layer determine energy dissipation in each resonant stack, i.e., dielectric or ohmic loss. By controlling material parameters, both two mechanisms are introduced into our structure. Up to 98% absorption is obtained at 9.03 and 13.32 μm in the simulation, which is in reasonable agreement with experimental results. The proposed structure holds promise for various applications, e.g., thermal radiation modulators and multicolor infrared focal plane arrays.

  19. Black start research of the wind and storage system based on the dual master-slave control

    NASA Astrophysics Data System (ADS)

    Leng, Xue; Shen, Li; Hu, Tian; Liu, Li

    2018-02-01

    Black start is the key to solving the problem of large-scale power failure, while the introduction of new renewable clean energy as a black start power supply was a new hotspot. Based on the dual master-slave control strategy, the wind and storage system was taken as the black start reliable power, energy storage and wind combined to ensure the stability of the micorgrid systems, to realize the black start. In order to obtain the capacity ratio of the storage in the small system based on the dual master-slave control strategy, and the black start constraint condition of the wind and storage combined system, obtain the key points of black start of wind storage combined system, but also provide reference and guidance for the subsequent large-scale wind and storage combined system in black start projects.

  20. Demonstration of 1024x1024 pixel dual-band QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.

    2010-04-01

    QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 μm and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 μm. Dual-band QWIP detector arrays were hybridized with direct injection 30 μm pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE▵T of 27 and 40 mK for MWIR and LWIR bands respectively.

  1. Mechanically Stacked Dual-Junction and Triple-Junction III-V/Si-IBC Cells with Efficiencies Exceeding 31.5% and 35.4%: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnabel, Manuel; Tamboli, Adele C; Warren, Emily L

    Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.

  2. 40 CFR 52.1524 - Compliance schedules.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 1974. (e) Heavy black liquor oxidation ......do 15 ......do June 1974. (f) No. 1 lime kiln stack ......do 15 ......do Jan. 1973. (g) No. 2 lime kiln stack ......do 15 ......do Dec. 1974. [38 FR 12713, May...

  3. Deployment of 464XLAT (RFC6877) alongside IPv6-only CPU resources at WLCG sites

    NASA Astrophysics Data System (ADS)

    Froy, T. S.; Traynor, D. P.; Walker, C. J.

    2017-10-01

    IPv4 is now officially deprecated by the IETF. A significant amount of effort has already been expended by the HEPiX IPv6 Working Group on testing dual-stacked hosts and IPv6-only CPU resources. Dual-stack adds complexity and administrative overhead to sites that may already be starved of resource. This has resulted in a very slow uptake of IPv6 from WLCG sites. 464XLAT (RFC6877) is intended for IPv6 single-stack environments that require the ability to communicate with IPv4-only endpoints. This paper will present a deployment strategy for 464XLAT, operational experiences of using 464XLAT in production at a WLCG site and important information to consider prior to deploying 464XLAT.

  4. Supermassive Black Hole Binaries: Multi-Messenger Astrophysics and Long Baselines with the Next-Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Burke-Spolaor, Sarah; Lazio, Joseph; Nyland, Kristina; Blecha, Laura; Bogdanovic, Tamara; Comerford, Julie; Liu, Xin; Taylor, Gregory; Shen, Yue; Maccarone, T. J.; Chomiuk, Laura; Reines, Amy

    2018-01-01

    Dual ( < ˜1 kpc separation) and binary (< ˜10 pc separation) supermassive black holes are formed during the merger of two massive galaxies. Their formation and subsequent evolution is controlled by interactions with their environment and, at close separations, the emission of gravitational waves. If we can determine the occurrance rate of dual active nuclei in galaxy mergers, we can directly measure merger-induced active nucleus activity, supermassive black hole growth, and the physical processes that drive both the remnant's dynamics and the inspiral of the black hole pair. A systematic census of the dual supermassive black hole population will also directly constrain the strength and distribution of objects emitting gravitational waves that will be detected by pulsar timing arrays and future space-based laser interferometers. Although the population of dual supermassive black holes in galaxy merger products is central to these topics and others, few have yet been discovered.A suite of radio, visible-infrared, and X-ray telescopes have just begun to reveal the population of kiloparsec-separation dual active nuclei. This poster will present the unique capability of radio observations to explore the dual and binary population of supermassive black hole binaries, and will highlight the observational techniques and discoveries expected for the Next-Generation Very Large Array.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The NANOGrav project receives support from NSF Physics Frontier Center award number 1430284.

  5. CXCR4-using HIV variants in a cohort of Black men who have sex with men: HIV Prevention Trials Network 061

    PubMed Central

    Chen, Iris; Huang, Wei; Connor, Matthew B.; Frantzell, Arne; Cummings, Vanessa; Beauchamp, Geetha G.; Griffith, Sam; Fields, Sheldon D.; Scott, Hyman M.; Shoptaw, Steven; del Rio, Carlos; Magnus, Manya; Mannheimer, Sharon; Tieu, Hong-Van; Wheeler, Darrell P.; Mayer, Kenneth H.; Koblin, Beryl A.; Eshleman, Susan H.

    2016-01-01

    Objective To evaluate factors associated with HIV tropism among Black men who have sex with men (MSM) in the United States enrolled in a clinical study (HIV Prevention Trials Network 061). Methods HIV tropism was analyzed using a phenotypic assay (Trofile assay, Monogram Biosciences). Samples were analyzed from 43 men who were HIV infected at enrollment and reported either exclusive insertive intercourse or exclusive receptive intercourse; samples were also analyzed from 20 men who were HIV uninfected at enrollment and seroconverted during the study. Clonal analysis of individual viral variants was performed for seroconverters who had dual/mixed viruses. Results Dual/mixed viruses were detected in samples from 11 (26%) of the 43 HIV-infected men analyzed at the enrollment visit; HIV tropism did not differ between those reporting exclusive insertive vs. receptive intercourse. Dual/mixed viruses were also detected in five (25%) of the 20 seroconverters. Dual/mixed viruses were associated with lower CD4 cell counts. Seroconverters with dual/mixed viruses had dual-tropic viruses only or mixed populations of CCR5− and dual-tropic viruses. Conclusions Dual/mixed viruses were frequently detected among Black MSM in this study, including seroconverters. Further studies are needed to understand factors driving transmission and selection of CXCR4− and dual-tropic viruses among Black MSM. PMID:27300696

  6. Deployment of IPv6-only CPU resources at WLCG sites

    NASA Astrophysics Data System (ADS)

    Babik, M.; Chudoba, J.; Dewhurst, A.; Finnern, T.; Froy, T.; Grigoras, C.; Hafeez, K.; Hoeft, B.; Idiculla, T.; Kelsey, D. P.; López Muñoz, F.; Martelli, E.; Nandakumar, R.; Ohrenberg, K.; Prelz, F.; Rand, D.; Sciabà, A.; Tigerstedt, U.; Traynor, D.

    2017-10-01

    The fraction of Internet traffic carried over IPv6 continues to grow rapidly. IPv6 support from network hardware vendors and carriers is pervasive and becoming mature. A network infrastructure upgrade often offers sites an excellent window of opportunity to configure and enable IPv6. There is a significant overhead when setting up and maintaining dual-stack machines, so where possible sites would like to upgrade their services directly to IPv6 only. In doing so, they are also expediting the transition process towards its desired completion. While the LHC experiments accept there is a need to move to IPv6, it is currently not directly affecting their work. Sites are unwilling to upgrade if they will be unable to run LHC experiment workflows. This has resulted in a very slow uptake of IPv6 from WLCG sites. For several years the HEPiX IPv6 Working Group has been testing a range of WLCG services to ensure they are IPv6 compliant. Several sites are now running many of their services as dual-stack. The working group, driven by the requirements of the LHC VOs to be able to use IPv6-only opportunistic resources, continues to encourage wider deployment of dual-stack services to make the use of such IPv6-only clients viable. This paper presents the working group’s plan and progress so far to allow sites to deploy IPv6-only CPU resources. This includes making experiment central services dual-stack as well as a number of storage services. The monitoring, accounting and information services that are used by jobs also need to be upgraded. Finally the VO testing that has taken place on hosts connected via IPv6-only is reported.

  7. Lifshitz black branes and DC transport coefficients in massive Einstein-Maxwell-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Mei; Papantonopoulos, Eleftherios; Wu, Jian-Pin; Zhou, Zhenhua

    2018-03-01

    We construct analytical Lifshitz massive black brane solutions in massive Einstein-Maxwell-dilaton gravity theory. We also study the thermodynamics of these black brane solutions and obtain the thermodynamical stability conditions. On the dual nonrelativistic boundary field theory with Lifshitz symmetry, we analytically compute the DC transport coefficients, including the electric conductivity, thermoelectric conductivity, and thermal conductivity. The novel property of our model is that the massive term supports the Lifshitz black brane solutions with z ≠1 in such a way that the DC transport coefficients in the dual field theory are finite. We also find that the Wiedemann-Franz law in this dual boundary field theory is violated, which indicates that it may involve strong interactions.

  8. Live-cell imaging of dual-labeled Golgi stacks in tobacco BY-2 cells reveals similar behaviors for different cisternae during movement and brefeldin A treatment.

    PubMed

    Madison, Stephanie L; Nebenführ, Andreas

    2011-09-01

    In plant cells, the Golgi apparatus consists of numerous stacks that, in turn, are composed of several flattened cisternae with a clear cis-to-trans polarity. During normal functioning within living cells, this unusual organelle displays a wide range of dynamic behaviors such as whole stack motility, constant membrane flux through the cisternae, and Golgi enzyme recycling through the ER. In order to further investigate various aspects of Golgi stack dynamics and integrity, we co-expressed pairs of established Golgi markers in tobacco BY-2 cells to distinguish sub-compartments of the Golgi during monensin treatments, movement, and brefeldin A (BFA)-induced disassembly. A combination of cis and trans markers revealed that Golgi stacks remain intact as they move through the cytoplasm. The Golgi stack orientation during these movements showed a slight preference for the cis side moving ahead, but trans cisternae were also found at the leading edge. During BFA treatments, the different sub-compartments of about half of the observed stacks fused with the ER sequentially; however, no consistent order could be detected. In contrast, the ionophore monensin resulted in swelling of trans cisternae while medial and particularly cis cisternae were mostly unaffected. Our results thus demonstrate a remarkable equivalence of the different cisternae with respect to movement and BFA-induced fusion with the ER. In addition, we propose that a combination of dual-label fluorescence microscopy and drug treatments can provide a simple alternative approach to the determination of protein localization to specific Golgi sub-compartments.

  9. Multi-clad black display panel

    DOEpatents

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin

    2002-01-01

    A multi-clad black display panel, and a method of making a multi-clad black display panel, are disclosed, wherein a plurality of waveguides, each of which includes a light-transmissive core placed between an opposing pair of transparent cladding layers and a black layer disposed between transparent cladding layers, are stacked together and sawed at an angle to produce a wedge-shaped optical panel having an inlet face and an outlet face.

  10. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    NASA Astrophysics Data System (ADS)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  11. Compact, Lightweight Dual-Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid

    2006-01-01

    The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.

  12. An exact algorithm for optimal MAE stack filter design.

    PubMed

    Dellamonica, Domingos; Silva, Paulo J S; Humes, Carlos; Hirata, Nina S T; Barrera, Junior

    2007-02-01

    We propose a new algorithm for optimal MAE stack filter design. It is based on three main ingredients. First, we show that the dual of the integer programming formulation of the filter design problem is a minimum cost network flow problem. Next, we present a decomposition principle that can be used to break this dual problem into smaller subproblems. Finally, we propose a specialization of the network Simplex algorithm based on column generation to solve these smaller subproblems. Using our method, we were able to efficiently solve instances of the filter problem with window size up to 25 pixels. To the best of our knowledge, this is the largest dimension for which this problem was ever solved exactly.

  13. Survey of Cyber Moving Target Techniques

    DTIC Science & Technology

    2013-09-25

    Description: Details: The authors propose a very simple form of multivariant execution with two replicas where one replica runs with the stack growing ...upwards and the other runs with the stack growing down. Normally any single architecture only supports the stack growing in one direction, but the...April 2012. 8. “The NX Bit and ASLR,” Tom’s Hardware, 25 March 2009. 9. “Pwn2Own day 2: iPhone, BlackBerry beaten; Chrome, Firefox no-shows,” Ars

  14. Voltage tunable plasmon propagation in dual gated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Farzaneh, Seyed M.; Rakheja, Shaloo

    2017-10-01

    In this paper, we theoretically investigate plasmon propagation characteristics in AB and AA stacked bilayer graphene (BLG) in the presence of energy asymmetry due to an electrostatic field oriented perpendicularly to the plane of the graphene sheet. We first derive the optical conductivity of BLG using the Kubo formalism incorporating energy asymmetry and finite electron scattering. All results are obtained for room temperature (300 K) operation. By solving Maxwell's equations in a dual gate device setup, we obtain the wavevector of propagating plasmon modes in the transverse electric (TE) and transverse magnetic (TM) directions at terahertz frequencies. The plasmon wavevector allows us to compare the compression factor, propagation length, and the mode confinement of TE and TM plasmon modes in bilayer and monolayer graphene sheets and also to study the impact of material parameters on plasmon characteristics. Our results show that the energy asymmetry can be harnessed to increase the propagation length of TM plasmons in BLG. AA stacked BLG shows a larger increase in the propagation length than AB stacked BLG; conversely, it is very insensitive to the Fermi level variations. Additionally, the dual gate structure allows independent modulation of the energy asymmetry and the Fermi level in BLG, which is advantageous for reconfiguring plasmon characteristics post device fabrication.

  15. SAFT nickel hydrogen cell cycling status

    NASA Technical Reports Server (NTRS)

    Borthomieu, Yannick; Duquesne, Didier

    1994-01-01

    An overview of the NiH2 cell development is given. The NiH2 SAFT system is an electrochemical (single or dual) stack (IPV). The stack is mounted in an hydroformed Inconel 718 vessel operating at high pressure, equipped with 'rabbit ears' ceramic brazed electrical feedthroughs. The cell design is described: positive electrode, negative electrode, and stack configuration. Overviews of low earth orbit and geostationary earth orbit cyclings are provided. DPA results are also provided. The cycling and DPA results demonstrate that SAFT NiH2 is characterized by high reliability and very stable performances.

  16. Dual door entry to exciplex emission in a chimeric DNA duplex containing non-nucleoside-nucleoside pair.

    PubMed

    Bag, Subhendu Sekhar; Talukdar, Sangita; Kundu, Rajen; Saito, Isao; Jana, Subhashis

    2014-01-25

    Dual door entry to exciplex formation was established in a chimeric DNA duplex wherein a fluorescent non-nucleosidic base surrogate () is paired against a fluorescent nucleosidic base surrogate (). Packing of the nucleobases via intercalative stacking interactions led to an exciplex emission either via FRET from the donor or direct excitation of the FRET acceptor .

  17. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    NASA Astrophysics Data System (ADS)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  18. Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.

    PubMed

    Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog

    2017-09-07

    We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.

  19. Classical lepidopteran wing scale colouration in the giant butterfly-moth Paysandisia archon.

    PubMed

    Stavenga, Doekele G; Leertouwer, Hein L; Meglič, Andrej; Drašlar, Kazimir; Wehling, Martin F; Pirih, Primož; Belušič, Gregor

    2018-01-01

    The palm borer moth Paysandisia archon (Castniidae; giant butterfly-moths) has brown dorsal forewings and strikingly orange-coloured dorsal hindwings with white spots surrounded by black margins. Here, we have studied the structure and pigments of the wing scales in the various coloured wing areas, applying light and electron microscopy and (micro)spectrophotometry, and we analysed the spatial reflection properties with imaging scatterometry. The scales in the white spots are unpigmented, those in the black and brown wing areas contain various amounts of melanin, and the orange wing scales contain a blue-absorbing ommochrome pigment. In all scale types, the upper lamina acts as a diffuser and the lower lamina as a thin film interference reflector, with thickness of about 200 nm. Scale stacking plays an important role in creating the strong visual signals: the colour of the white eyespots is created by stacks of unpigmented blue scales, while the orange wing colour is strongly intensified by stacking the orange scales.

  20. Merger-driven fueling of active galactic nuclei: Six dual and of AGNs discovered with Chandra and Hubble Space Telescope observations

    DOE PAGES

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; ...

    2015-06-19

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates atmore » $$z\\lt 0.34$$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation $${\\rm \\Delta }x=2.2$$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations $${\\rm \\Delta }x\\lt 10$$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.« less

  1. Validity of black hole complementarity in the BTZ black hole

    NASA Astrophysics Data System (ADS)

    Gim, Yongwan; Kim, Wontae

    2018-01-01

    Based on the gedanken experiment for black hole complementarity in the Schwarzschild black hole, we calculate the energy required to duplicate information in the BTZ black hole under the assumption of absorbing boundary condition and its dual solution of the black string, respectively, in order to justify the validity of the no-cloning theorem in quantum mechanics. For the BTZ black hole, the required energy for the duplication of information can be made fairly small, whereas for the black string it exceeds the total mass of the black string, although they are related to each other under the dual transformation. So, the duplication of information might be possible in the BTZ black hole in contrast to the case of the black string, so that the no-cloning theorem could be violated for the former case. To save the duplication of information for the BTZ black hole, we perform an improved gedanken experiment by using the local thermodynamic quantities near the horizon rather than those defined at infinity, and show that the no-cloning theorem could be made valid even in the BTZ black hole. We also discuss how this local treatment for the no-cloning theorem can be applied to the black string as well as the Schwarzschild black hole innocuously.

  2. Two separate outflows in the dual supermassive black hole system NGC 6240

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Nevin, R.; Comerford, J. M.; Davies, R. I.; Privon, G. C.; Treister, E.

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content1-3. Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows4-6, it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown7-9. Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O iii] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O iii] cone, respectively. Their combined mass outflow is comparable to the star formation rate10, suggesting that negative feedback on star formation is occurring.

  3. Two separate outflows in the dual supermassive black hole system NGC 6240.

    PubMed

    Müller-Sánchez, F; Nevin, R; Comerford, J M; Davies, R I; Privon, G C; Treister, E

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content 1-3 . Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows 4-6 , it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown 7-9 . Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O III] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O III] cone, respectively. Their combined mass outflow is comparable to the star formation rate 10 , suggesting that negative feedback on star formation is occurring.

  4. Toward holographic reconstruction of bulk geometry from lattice simulations

    NASA Astrophysics Data System (ADS)

    Rinaldi, Enrico; Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan; Vranas, Pavlos

    2018-02-01

    A black hole described in SU( N ) gauge theory consists of N D-branes. By separating one of the D-branes from others and studying the interaction between them, the black hole geometry can be probed. In order to obtain quantitative results, we employ the lattice Monte Carlo simulation. As a proof of the concept, we perform an explicit calculation in the matrix model dual to the black zero-brane in type IIA string theory. We demonstrate this method actually works in the high temperature region, where the stringy correction is large. We argue possible dual gravity interpretations.

  5. Toward holographic reconstruction of bulk geometry from lattice simulations

    DOE PAGES

    Rinaldi, Enrico; Berkowitz, Evan; Hanada, Masanori; ...

    2018-02-07

    A black hole described in SU(N ) gauge theory consists of N D-branes. By separating one of the D-branes from others and studying the interaction between them, the black hole geometry can be probed. In order to obtain quantitative results, we employ the lattice Monte Carlo simulation. As a proof of the concept, we perform an explicit calculation in the matrix model dual to the black zero-brane in type IIA string theory. We demonstrate this method actually works in the high temperature region, where the stringy correction is large. We argue possible dual gravity interpretations.

  6. CXCR4-using HIV variants in a cohort of Black men who have sex with men: HIV Prevention Trials Network 061.

    PubMed

    Chen, Iris; Huang, Wei; Connor, Matthew B; Frantzell, Arne; Cummings, Vanessa; Beauchamp, Geetha G; Griffith, Sam; Fields, Sheldon D; Scott, Hyman M; Shoptaw, Steven; Del Rio, Carlos; Magnus, Manya; Mannheimer, Sharon; Tieu, Hong-Van; Wheeler, Darrell P; Mayer, Kenneth H; Koblin, Beryl A; Eshleman, Susan H

    2016-07-01

    To evaluate factors associated with HIV tropism among Black men who have sex with men (MSM) in the United States enrolled in a clinical study (HIV Prevention Trials Network 061). HIV tropism was analyzed using a phenotypic assay (Trofile assay, Monogram Biosciences). Samples were analyzed from 43 men who were HIV infected at enrollment and reported either exclusive insertive intercourse or exclusive receptive intercourse; samples were also analyzed from 20 men who were HIV uninfected at enrollment and seroconverted during the study. Clonal analysis of individual viral variants was performed for seroconverters who had dual/mixed (DM) viruses. DM viruses were detected in samples from 11 (26%) of the 43 HIV-infected men analyzed at the enrollment visit; HIV tropism did not differ between those reporting exclusive insertive vs receptive intercourse. DM viruses were also detected in five (25%) of the 20 seroconverters. DM viruses were associated with lower CD4 cell counts. Seroconverters with DM viruses had dual-tropic viruses only or mixed populations of CCR5- and dual-tropic viruses. DM viruses were frequently detected among Black MSM in this study, including seroconverters. Further studies are needed to understand factors driving transmission and selection of CXCR4- and dual-tropic viruses among Black MSM.

  7. Performance analysis for wireless networks: an analytical approach by multifarious Sym Teredo.

    PubMed

    Punithavathani, D Shalini; Radley, Sheryl

    2014-01-01

    IPv4-IPv6 transition rolls out numerous challenges to the world of Internet as the Internet is drifting from IPv4 to IPv6. IETF recommends few transition techniques which includes dual stack and translation and tunneling. By means of tunneling the IPv6 packets over IPv4 UDP, Teredo maintains IPv4/IPv6 dual stack node in isolated IPv4 networks behindhand network address translation (NAT). However, the proposed tunneling protocol works with the symmetric and asymmetric NATs. In order to make a Teredo support several symmetric NATs along with several asymmetric NATs, we propose multifarious Sym Teredo (MTS), which is an extension of Teredo with a capability of navigating through several symmetric NATs. The work preserves the Teredo architecture and also offers a backward compatibility with the original Teredo protocol.

  8. Performance Analysis for Wireless Networks: An Analytical Approach by Multifarious Sym Teredo

    PubMed Central

    Punithavathani, D. Shalini; Radley, Sheryl

    2014-01-01

    IPv4-IPv6 transition rolls out numerous challenges to the world of Internet as the Internet is drifting from IPv4 to IPv6. IETF recommends few transition techniques which includes dual stack and translation and tunneling. By means of tunneling the IPv6 packets over IPv4 UDP, Teredo maintains IPv4/IPv6 dual stack node in isolated IPv4 networks behindhand network address translation (NAT). However, the proposed tunneling protocol works with the symmetric and asymmetric NATs. In order to make a Teredo support several symmetric NATs along with several asymmetric NATs, we propose multifarious Sym Teredo (MTS), which is an extension of Teredo with a capability of navigating through several symmetric NATs. The work preserves the Teredo architecture and also offers a backward compatibility with the original Teredo protocol. PMID:25506611

  9. "I'm Still Here:" Black Female Undergraduates' Self-Definition Narratives

    ERIC Educational Resources Information Center

    Robinson, Subrina J.; Esquibel, Elena; Rich, Marc D.

    2013-01-01

    Drawing on Black feminism and oral narrative research, we examine how Black women undergraduates make sense of their identities as Black females. More specifically, we explore the dual impact of gender and race by considering what it means to be a Black woman on campus. The women in this study articulate compelling, and at times, diverging…

  10. Super-Girl: Strength and Sadness in Black Girlhood

    ERIC Educational Resources Information Center

    Nunn, Nia Michelle

    2018-01-01

    This paper complicates notions of Black girlhood by examining the dual experiences of gendered racism that result in both strength and sadness in Black girls' educational experiences. I highlight the need for a curriculum of liberation to combat historical and current social conditions negatively impacting school-aged Black girls, such as harsh…

  11. Aspects of black holes and the information paradox

    NASA Astrophysics Data System (ADS)

    Levi, Thomas S.

    In this thesis we explore various aspects of string theory and the black hole information paradox. The thesis is divided into two parts. In the first part, we examine black holes in the context of the AdS/CFT correspondence and holography. We show how the correspondence is formulated in a time dependent background when multiple vacua exist. We explain how particle production and Hawking radiation is expressed in the dual field theory. We then investigate the rotating BTZ black hole using AdS/CFT. We show how to compute field theory correlation functions in two ways. The first involves integration over the region up to and including the inner (Cauchy) horizon. The second integrates over only the region outside the outer (event) horizon, but over a contour in the complex time plane. We then show that the inner horizon is unstable to generic perturbations and how this instability can be detected in the dual field theory. We conjecture that signatures in the complex time plane might encode information behind the horizon in the dual field theory. In the second part of the thesis we turn to the "fuzzball" conjecture where black holes are seen as emergent phenomena that arise from a coarse-graining over many smooth microstates. We present a solution generating technique for general three-charge spacetimes that are candidate microstates for finite area black holes and rings. We show these microstates have the same asymptotic behavior as black holes or black rings, but in the interior are characterized by an intricate geometry of 2-cycles we call spacetime foam.

  12. Dual-mode ultraflow access networks: a hybrid solution for the access bottleneck

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.; Shen, Thomas Shunrong; Dhaini, Ahmad R.; Yin, Shuang; De Leenheer, Marc; Detwiler, Benjamin A.

    2013-12-01

    Optical Flow Switching (OFS) is a promising solution for large Internet data transfers. In this paper, we introduce UltraFlow Access, a novel optical access network architecture that offers dual-mode service to its end-users: IP and OFS. With UltraFlow Access, we design and implement a new dual-mode control plane and a new dual-mode network stack to ensure efficient connection setup and reliable and optimal data transmission. We study the impact of the UltraFlow system's design on the network throughput. Our experimental results show that with an optimized system design, near optimal (around 10 Gb/s) OFS data throughput can be attained when the line rate is 10Gb/s.

  13. Black Hole Spectroscopy with Coherent Mode Stacking.

    PubMed

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  14. Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum).

    PubMed

    Anith, K N; Radhakrishnan, N V; Manomohandas, T P

    2003-01-01

    Bacterial antagonists of Phytophthora capsici were isolated from underground shoot portions of rooted cuttings of black pepper. Initially isolates were screened by dual culture on potato dextrose agar and carrot agar. Further, a screening was done on black pepper shoots for supression of lesion caused by the pathogen. Most of the antagonists showed varying levels of antagonism in the dual culture and the shoot assay. Isolate PN-026, showing the highest suppression of lesion development in the shoot assay was found to be the most efficient antagonist in reducing Phytophthora capsici induced nursery wilt of black pepper. This screening involving the host, pathogen, and the antagonist, performed on black pepper shoot (the planting material for this vegetatively propagated crop), could be used as a rapid and reliable method for the isolation of efficient bacterial antagonists of P. capsici.

  15. Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors

    DTIC Science & Technology

    2013-01-01

    013110 (2013) Demonstration of high performance bias-selectable dual- band short-/mid-wavelength infrared photodetectors based on type-II InAs/ GaSb ...been used for the growth of QD structures . These include the formation of self-assembled QD, for example, Stranski-Krastanov (SK) growth mode,8,9 atomic...confinement in SML-QD and the reduction in the amount of InAs used per layer of QD can help stack more layers in a 3-dimensional QD structure . Several

  16. Black hole entropy in massive Type IIA

    NASA Astrophysics Data System (ADS)

    Benini, Francesco; Khachatryan, Hrachya; Milan, Paolo

    2018-02-01

    We study the entropy of static dyonic BPS black holes in AdS4 in 4d N=2 gauged supergravities with vector and hyper multiplets, and how the entropy can be reproduced with a microscopic counting of states in the AdS/CFT dual field theory. We focus on the particular example of BPS black holes in AdS{\\hspace{0pt}}4 × S6 in massive Type IIA, whose dual three-dimensional boundary description is known and simple. To count the states in field theory we employ a supersymmetric topologically twisted index, which can be computed exactly with localization techniques. We find a perfect match at leading order.

  17. Entanglement entropy of black holes and anti-de Sitter space/conformal-field-theory correspondence.

    PubMed

    Solodukhin, Sergey N

    2006-11-17

    A recent proposal by Ryu and Takayanagi for a holographic interpretation of entanglement entropy in conformal field theories dual to supergravity on anti-de Sitter space is generalized to include entanglement entropy of black holes living on the boundary of anti-de Sitter space. The generalized proposal is verified in boundary dimensions d=2 and d=4 for both the uv-divergent and uv-finite terms. In dimension d=4 an expansion of entanglement entropy in terms of size L of the subsystem outside the black hole is considered. A new term in the entropy of dual strongly coupled conformal-field theory, which universally grows as L(2)lnL and is proportional to the value of the obstruction tensor at the black hole horizon, is predicted.

  18. Effectiveness of polyethylene sheeting in controlling spruce beetles (Coleoptera: Scolytidae) in infested stacks of spruce firewood in Alaska.

    Treesearch

    Edward H. Holsten; Richard A. Werner

    1993-01-01

    Covering stacks of spruce firewood with either clear or black polyethylene sheeting does not raise log temperatures high enough to kill spruce beetle brood in the logs. Based on the results of this study, we do not recommend the use of polyethylene sheeting as a remedial measure for the reduction of spruce beetle brood in infested firewood or log decks in south-central...

  19. Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions

    NASA Astrophysics Data System (ADS)

    Essig, Stephanie; Allebé, Christophe; Remo, Timothy; Geisz, John F.; Steiner, Myles A.; Horowitz, Kelsey; Barraud, Loris; Ward, J. Scott; Schnabel, Manuel; Descoeudres, Antoine; Young, David L.; Woodhouse, Michael; Despeisse, Matthieu; Ballif, Christophe; Tamboli, Adele

    2017-09-01

    Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the record III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.

  20. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Stephanie; Allebé, Christophe; Remo, Timothy

    Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the recordmore » III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.« less

  1. Topological transport from a black hole

    NASA Astrophysics Data System (ADS)

    Melnikov, Dmitry

    2018-03-01

    In this paper the low temperature zero-frequency transport in a 2 + 1-dimensional theory dual to a dyonic black hole is discussed. It is shown that transport exhibits topological features: the transverse electric and heat conductivities satisfy the Wiedemann-Franz law of free electrons; the direct heat conductivity is measured in units of the central charge of CFT2+1, while the direct electric conductivity vanishes; the thermoelectric conductivity is non-zero at vanishing temperature, while the O (T) behavior, controlled by the Mott relation, is subleading. Provided that the entropy of the black hole, and the dual system, is non-vanishing at T = 0, the observations indicate that the dyonic black hole describes a ħ → 0 limit of a highly degenerate topological state, in which the black hole charge measures the density of excited non-abelian quasiparticles. The holographic description gives further evidence that non-abelian nature of quasiparticles can be determined by the low temperature behavior of the thermoelectric transport.

  2. Method of modifying a volume mesh using sheet extraction

    DOEpatents

    Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM

    2007-02-20

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.

  3. Hairy black holes and duality in an extended supergravity model

    NASA Astrophysics Data System (ADS)

    Anabalón, Andrés; Astefanesei, Dumitru; Gallerati, Antonio; Trigiante, Mario

    2018-04-01

    We consider a D = 4, N=2 gauged supergravity with an electromagnetic Fayet-Iliopoulos term. We restrict to the uncharged, single dilaton consistent truncation and point out that the bulk Lagrangian is self-dual under electromagnetic duality. Within this truncation, we construct two families of exact hairy black hole solutions, which are asymptotically AdS 4. When a duality transformation is applied on these solutions, they are mapped to two other inequivalent families of hairy black hole solutions. The mixed boundary conditions of the scalar field correspond to adding a triple-trace operator to the dual field theory action. We also show that this truncation contains all the consistent single dilaton truncations of gauged N=8 supergravity with a possible ω-deformation.

  4. Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown

    NASA Astrophysics Data System (ADS)

    Berti, Emanuele; Yagi, Kent; Yang, Huan; Yunes, Nicolás

    2018-05-01

    The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized "post-Kerr" ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.

  5. Massive Binary Black Holes in the Cosmic Landscape

    NASA Astrophysics Data System (ADS)

    Colpi, Monica; Dotti, Massimo

    2011-02-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view into the process of hierarchical clustering which is at the heart of the current paradigm of galaxy formation. They will also be exquisite probes for testing General Relativity, as the theory of gravity. The waveforms emitted during the inspiral, coalescence and ring-down phase carry in their shape the sign of a dynamically evolving space-time and the proof of the existence of an horizon.

  6. Titanium-tungsten nanocrystals embedded in a SiO(2)/Al(2)O(3) gate dielectric stack for low-voltage operation in non-volatile memory.

    PubMed

    Yang, Shiqian; Wang, Qin; Zhang, Manhong; Long, Shibing; Liu, Jing; Liu, Ming

    2010-06-18

    Titanium-tungsten nanocrystals (NCs) were fabricated by a self-assembly rapid thermal annealing (RTA) process. Well isolated Ti(0.46)W(0.54) NCs were embedded in the gate dielectric stack of SiO(2)/Al(2)O(3). A metal-oxide-semiconductor (MOS) capacitor was fabricated to investigate its application in a non-volatile memory (NVM) device. It demonstrated a large memory window of 6.2 V in terms of flat-band voltage (V(FB)) shift under a dual-directional sweeping gate voltage of - 10 to 10 V. A 1.1 V V(FB) shift under a low dual-directional sweeping gate voltage of - 4 to 4 V was also observed. The retention characteristic of this MOS capacitor was demonstrated by a 0.5 V memory window after 10(4) s of elapsed time at room temperature. The endurance characteristic was demonstrated by a program/erase cycling test.

  7. Enabling IPv6 at FZU - WLCG Tier2 in Prague

    NASA Astrophysics Data System (ADS)

    Kouba, Tomáš; Chudoba, Jiří; Eliáš, Marek

    2014-06-01

    The usage of the new IPv6 protocol in production is becoming reality in the HEP community and the Computing Centre of the Institute of Physics in Prague participates in many IPv6 related activities. Our contribution presents experience with monitoring in HEPiX distributed IPv6 testbed which includes 11 remote sites. We use Nagios to check availability of services and Smokeping for monitoring the network latency. Since it is not always trivial to setup DNS in a dual stack environment properly, we developed a Nagios plugin for checking whether a domain name is resolvable when using only IP protocol version 6 and only version 4. We will also present local area network monitoring and tuning related to IPv6 performance. One of the most important software for a grid site is a batch system for a job execution. We will present our experience with configuring and running Torque batch system in a dual stack environment. We also discuss the steps needed to run VO specific jobs in our IPv6 testbed.

  8. Coloration principles of nymphaline butterflies - thin films, melanin, ommochromes and wing scale stacking.

    PubMed

    Stavenga, Doekele G; Leertouwer, Hein L; Wilts, Bodo D

    2014-06-15

    The coloration of the common butterflies Aglais urticae (small tortoiseshell), Aglais io (peacock) and Vanessa atalanta (red admiral), belonging to the butterfly subfamily Nymphalinae, is due to the species-specific patterning of differently coloured scales on their wings. We investigated the scales' structural and pigmentary properties by applying scanning electron microscopy, (micro)spectrophotometry and imaging scatterometry. The anatomy of the wing scales appears to be basically identical, with an approximately flat lower lamina connected by trabeculae to a highly structured upper lamina, which consists of an array of longitudinal, parallel ridges and transversal crossribs. Isolated scales observed at the abwing (upper) side are blue, yellow, orange, red, brown or black, depending on their pigmentation. The yellow, orange and red scales contain various amounts of 3-OH-kynurenine and ommochrome pigment, black scales contain a high density of melanin, and blue scales have a minor amount of melanin pigment. Observing the scales from their adwing (lower) side always revealed a structural colour, which is blue in the case of blue, red and black scales, but orange for orange scales. The structural colours are created by the lower lamina, which acts as an optical thin film. Its reflectance spectrum, crucially determined by the lamina thickness, appears to be well tuned to the scales' pigmentary spectrum. The colours observed locally on the wing are also due to the degree of scale stacking. Thin films, tuned pigments and combinations of stacked scales together determine the wing coloration of nymphaline butterflies. © 2014. Published by The Company of Biologists Ltd.

  9. Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair

    NASA Astrophysics Data System (ADS)

    Čubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2011-10-01

    We provide evidence that the holographic dual to a strongly coupled charged Fermi liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at ω F , we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total spatially averaged probability density of the fermion field directly, we show that an AdS Reissner-Nordström black holein a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis support that the solution with non-zero AdS fermion-profile is the preferred ground state at low temperatures.

  10. On the universality of thermodynamics and η/s ratio for the charged Lovelock black branes

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Frassino, Antonia M.; Tuveri, Matteo

    2016-05-01

    We investigate general features of charged Lovelock black branes by giving a detailed description of geometrical, thermodynamic and holographic properties of charged Gauss-Bonnet (GB) black branes in five dimensions. We show that when expressed in terms of effective physical parameters, the thermodynamic behaviour of charged GB black branes is completely indistinguishable from that of charged Einstein black branes. Moreover, the extremal, near-horizon limit of the two classes of branes is exactly the same as they allow for the same AdS2 × R 3, near-horizon, exact solution. This implies that, although in the UV the associated dual QFTs are different, they flow in the IR to the same fixed point. The calculation of the shear viscosity to entropy ratio η/s confirms these results. Despite the GB dual plasma has in general a non-universal temperature-dependent η/s, it flows monotonically to the universal value 1 /4 π in the IR. For negative (positive) GB coupling constant, η/s is an increasing (decreasing) function of the temperature and the flow respects (violates) the KSS bound.

  11. Novel molecular targets for kRAS downregulation: promoter G-quadruplexes

    DTIC Science & Technology

    2016-11-01

    conditions, and described the structure as having mixed parallel/anti-parallel loops of lengths 2:8:10 in the 5’-3’ direction. Using selective small...and anti-parallel loop directionality of lengths 4:10:8 in the 5’–3’ direction, three tetrads stacked, and involving guanines in runs B, C, E, and F...a tri-stacked structure incorporating runs B, C, E and F with intervening loops of 2, 10, and 8 bases in the 5’–3’ direction. G = black circles, C

  12. A dual-band near-field focused reflectarray antenna for RFID applications at 0.9 and 2.4 GHz

    NASA Astrophysics Data System (ADS)

    Chou, Hsi-Tseng; Hsueh, Pai-Han; Hung, Tso-Ming; Kuo, Li-Ruei; Chou, Hsi-Hsir

    2011-12-01

    This paper presents a dual-band reflectarray antenna which operates at 0.915 and 2.4 GHz to radiate electromagnetic fields focused in the near-zone of array aperture. The design uses two stacked feed antennas operated at 0.915 and 2.4 GHz, respectively, so that the currently available RFID systems in the market can be simultaneously used in an independent fashion. Numerical investigations on the radiation characteristics of this reflectarray, as well as an experimental validation, are presented to demonstrate its feasibility.

  13. A wide-band dual-polarized VHF microstrip antenna for global sensing of sea ice thickness

    NASA Technical Reports Server (NTRS)

    Huang, John; Hussein, Ziad; Petros, Argy

    2005-01-01

    A VHF microstrip patch antenna was developed to achieve a bandwidth of 45 MHz (30%) from 127 MHz to 172 MHz with dual-linear-polarization capability. This microstrip antenna used foam substrates and dual stacked patches with capacitive probe feeds to achieve wide bandwidth. Four such capacitive feeds were used to achieve dual polarizations with less than -20 dB of cross-polarization level. Twenty-four shorting pins were used on the lower patch to achieve acceptable isolation between the four feed probes. This antenna has a measured gain of 8.5 dB at 137 MHz and 10 dB at 162 MHz. By using the Method of Moments technique, multipath scattering patterns were calculated when the antenna is mounted on the outside of a Twin Otter aircraft.

  14. Diffusion for holographic lattices

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.; Ziogas, Vaios

    2018-03-01

    We consider black hole spacetimes that are holographically dual to strongly coupled field theories in which spatial translations are broken explicitly. We discuss how the quasinormal modes associated with diffusion of heat and charge can be systematically constructed in a long wavelength perturbative expansion. We show that the dispersion relation for these modes is given in terms of the thermoelectric DC conductivity and static susceptibilities of the dual field theory and thus we derive a generalised Einstein relation from Einstein's equations. A corollary of our results is that thermodynamic instabilities imply specific types of dynamical instabilities of the associated black hole solutions.

  15. Gas Flows in Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mueller Sanchez, Francisco; Comerford, Julia M.; Davies, Richard; Treister, Ezequiel; Privon, George C.; Nevin, Becky

    2018-06-01

    Dual Active Galactic Nuclei (AGN) are the Rosetta stone to understand the role of galaxy mergers in triggering nuclear activity and regulating black hole (BH) and galaxy growth. But very little is known about the physical processes required to effectively trigger AGN activity and regulate the growth of the two BHs. The work I will present here characterizes for the first time the properties of the stars, gas (molecular, ionized, and highly-ionized) and dust in all the confirmed dual AGN at z < 0.05, using Keck/OSIRIS, VLT/SINFONI, SOFIA/FORCAST, and HST data. I will focus on the interplay between the several complex processes observed in dual AGN, using as an example the prototypical merger system NGC 6240: vigorous star formation, two AGNs, outflowing winds of ionized gas, rippling dust and gas lanes, and tidal tails. In this galaxy, we observe for the first time a dual outflow of different species of gas: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. This shows that stellar feedback and supermassive black hole feedback can work in tandem to regulate the stellar growth of a galaxy after a merger event. These results open a new door to studies of dual AGN and AGN pairs in general, and enable dual AGN to be used, for the first time, for studies of galaxy evolution.

  16. 40 CFR 63.1207 - What are the performance testing requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incinerators, cement kilns, and lightweight aggregate kilns, you must commence the initial comprehensive... performance test operating conditions, as provided by paragraph (g)(1)(iii) of this section; (xiii) For cement... preheater or preheater/precalciner cement kilns with dual stacks, if you elect to use the emissions...

  17. Physiology and silviculture of black walnut for combined timber and nut production

    Treesearch

    J. W. Van Sambeek; George Rink

    1981-01-01

    Research literature was reviewed for evidence supporting the management of black walnut plantations for combined timber and nut production. The silviculture of the species is discussed in relation to dual cropping. Stimulation and phenology of flowering and fruiting are reviewed.

  18. Diffusion constant of slowly rotating black three-brane

    NASA Astrophysics Data System (ADS)

    Amoozad, Z.; Sadeghi, J.

    2018-01-01

    In this paper, we take the slowly rotating black three-brane background and perturb it by introducing a vector gauge field. We find the components of the gauge field through Maxwell equations and Bianchi identities. Using currents and some ansatz we find Fick's first law at long wavelength regime. An interesting result for this non-trivial supergravity background is that the diffusion constant on the stretched horizon which emerges from Fick's first law is a complex constant. The pure imaginary part of the diffusion constant appears because the black three-brane has angular momentum. By taking the static limit of the corresponding black brane the well known diffusion constant will be recovered. On the other hand, from the point of view of the Fick's second law, we have the dispersion relation ω = - iDq2 and we found a damping of hydrodynamical flow in the holographically dual theory. Existence of imaginary term in the diffusion constant introduces an oscillating propagation of the gauge field in the dual field theory.

  19. Stacking of a stearoyl-ACP thioesterase with a dual-silenced palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase in transgenic soybean.

    PubMed

    Park, Hyunwoo; Graef, George; Xu, Yixiang; Tenopir, Patrick; Clemente, Tom E

    2014-10-01

    Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end-use applications. However, the hydrogenation process leads to the formation of trans-fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl-ACP thioesterase into soybean and the subsequent stacking with an event that is dual-silenced in palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase expression in a seed-specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl-ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%-19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%-40%, while the stearic level remained elevated. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Fluorine Scan of Inhibitors of the Cysteine Protease Human Cathepsin L: Dipolar and Quadrupolar Effects in the π-Stacking of Fluorinated Phenyl Rings on Peptide Amide Bonds.

    PubMed

    Giroud, Maude; Harder, Michael; Kuhn, Bernd; Haap, Wolfgang; Trapp, Nils; Schweizer, W Bernd; Schirmeister, Tanja; Diederich, François

    2016-05-19

    The π-stacking of fluorinated benzene rings on protein backbone amide groups was investigated, using a dual approach comprising enzyme-ligand binding studies complemented by high-level quantum chemical calculations. In the experimental study, the phenyl substituent of triazine nitrile inhibitors of human cathepsin L (hCatL), which stacks onto the peptide amide bond Gly67-Gly68 at the entrance of the S3 pocket, was systematically fluorinated, and differences in inhibitory potency were measured in a fluorimetric assay. Binding affinity is influenced by lipophilicity (clog P), the dipole and quadrupole moments of the fluorinated rings, but also by additional interactions of the introduced fluorine atoms with the local environment of the pocket. Generally, the higher the degree of fluorination, the better the binding affinities. Gas phase calculations strongly support the contributions of the molecular quadrupole moments of the fluorinated phenyl rings to the π-stacking interaction with the peptide bond. These findings provide useful guidelines for enhancing π-stacking on protein amide fragments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Gauge-gravity duality and the black hole interior.

    PubMed

    Marolf, Donald; Polchinski, Joseph

    2013-10-25

    We present a further argument that typical black holes with field theory duals have firewalls at the horizon. This argument makes no reference to entanglement between the black hole and any distant system, and so is not evaded by identifying degrees of freedom inside the black hole with those outside. We also address the Einstein-Rosen=Einstein-Podolsky-Rosen conjecture of Maldacena and Susskind, arguing that the correlations in generic highly entangled states cannot be geometrized as a smooth wormhole.

  2. 81. THREE ADDITIONAL BLACK AND WHITE VIDEO MONITORS LOCATED IMMEDIATELY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. THREE ADDITIONAL BLACK AND WHITE VIDEO MONITORS LOCATED IMMEDIATELY WEST OF THOSE IN CA-133-1-A-80. COMPLEX SAFETY WARNING LIGHTS FOR SLC-3E (PAD 2) AND BLDG. 763 (LOB) LOCATED ABOVE MONITOR 3; GREEN LIGHTS ON BOTTOM OF EACH STACK ILLUMINATED. LEFT TO RIGHT BELOW MONITORS: ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Thermodynamic Study of Multi Pressure HRSG in Gas/Steam Combined Cycle Power Plant

    NASA Astrophysics Data System (ADS)

    Sharma, Meeta; Singh, Onkar

    2018-01-01

    Combined cycle power plants have a combination of gas based topping cycle and steam based bottoming cycle through the use of Heat Recovery Steam Generator (HRSG). These HRSG may be either of single pressure (SP) or dual pressure (DP) or multiple pressure type. Here in this study thermodynamic analysis is carried out for optimal performance of HRSG using different types of HRSG layout for combined cycle efficiency improvement. Performance of single pressure HRSG and dual pressure HRSG, utilized in gas/steam combined cycle is analyzed and presented here. In comparison to single pressure, dual pressure HRSG offers 10 to 15% higher reduction in stack temperature due to greater heat recovery and thus improved plant efficiency.

  4. Holographic heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2014-10-01

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  5. A microscopic description of black hole evaporation via holography

    DOE PAGES

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    2016-07-19

    Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.

  6. A microscopic description of black hole evaporation via holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.

  7. van der Waals Heterostructures with High Accuracy Rotational Alignment.

    PubMed

    Kim, Kyounghwan; Yankowitz, Matthew; Fallahazad, Babak; Kang, Sangwoo; Movva, Hema C P; Huang, Shengqiang; Larentis, Stefano; Corbet, Chris M; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; LeRoy, Brian J; Tutuc, Emanuel

    2016-03-09

    We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.

  8. First-principles studies of electric field effects on the electronic structure of trilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping

    2016-10-01

    A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.

  9. A wavelet-based Bayesian framework for 3D object segmentation in microscopy

    NASA Astrophysics Data System (ADS)

    Pan, Kangyu; Corrigan, David; Hillebrand, Jens; Ramaswami, Mani; Kokaram, Anil

    2012-03-01

    In confocal microscopy, target objects are labeled with fluorescent markers in the living specimen, and usually appear with irregular brightness in the observed images. Also, due to the existence of out-of-focus objects in the image, the segmentation of 3-D objects in the stack of image slices captured at different depth levels of the specimen is still heavily relied on manual analysis. In this paper, a novel Bayesian model is proposed for segmenting 3-D synaptic objects from given image stack. In order to solve the irregular brightness and out-offocus problems, the segmentation model employs a likelihood using the luminance-invariant 'wavelet features' of image objects in the dual-tree complex wavelet domain as well as a likelihood based on the vertical intensity profile of the image stack in 3-D. Furthermore, a smoothness 'frame' prior based on the a priori knowledge of the connections of the synapses is introduced to the model for enhancing the connectivity of the synapses. As a result, our model can successfully segment the in-focus target synaptic object from a 3D image stack with irregular brightness.

  10. Internal electrolyte supply system for reliable transport throughout fuel cell stacks

    DOEpatents

    Wright, Maynard K.; Downs, Robert E.; King, Robert B.

    1988-01-01

    An improved internal electrolyte supply system in a fuel cell stack employs a variety of arrangements of grooves and passages in bipolar plates of the multiplicity of repeating fuel cells to route gravity-assisted flowing electrolyte throughout the stack. The grooves route electrolyte flow along series of first paths which extend horizontally through the cells between the plates thereof. The passages route electrolyte flow along series of second paths which extend vertically through the stack so as to supply electrolyte to the first paths in order to expose the electrolyte to the matrices of the cells. Five different embodiments of the supply system are disclosed. Some embodiments employ wicks in the grooves for facilitating transfer of the electrolyte to the matrices as well as providing support for the matrices. Additionally, the passages of some embodiments by-pass certain of the grooves and supply electrolyte directly to other of the grooves. Some embodiments employ single grooves and others have dual grooves. Finally, in some embodiments the passages are connected to the grooves by a step which produces a cascading electrolyte flow.

  11. Dual Use of Cigarettes and Smokeless Tobacco among South African Adolescents

    ERIC Educational Resources Information Center

    Rantao, Masego; Ayo-Yusuf, Olalekan A.

    2012-01-01

    Objectives: To determine factors associated with dual use of tobacco products in a population of black South African adolescents. Methods: Data were obtained from a self-administered questionnaire completed by a representative sample of grade 8 students from 21 randomly selected secondary state schools in the Limpopo Province, South Africa (n =…

  12. Holographic models with anisotropic scaling

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.

    2013-12-01

    We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.

  13. Racial Diversity in the Schools: A Necessary Evil?

    ERIC Educational Resources Information Center

    Markowitz, Linda; Puchner, Laurel

    2014-01-01

    White teachers see racial diversity in the schools as a "necessary evil." Common beliefs are that (1) Black students are saved by nurturing White teachers and well-behaved White children; and (2) White students learn from "disadvantaged" Black children the dual lesson of empathy and gratitude. A pilot project in the fall of…

  14. Dual control of low concentration CO poisoning by anode air bleeding of low temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim

    2016-12-01

    Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.

  15. {pi}-{pi} Interactions and magnetic properties in a series of hybrid inorganic-organic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, M.; Lemus-Santana, A.A.; Rodriguez-Hernandez, J.

    The series of hybrid inorganic-organic solids T(Im){sub 2}[Ni(CN){sub 4}] with T=Fe, Co, Ni and Im=imidazole were prepared by soft chemical routes from aqueous solutions of the involved building units: imidazole, T{sup 2+} metal and the [Ni(CN){sub 4}]{sup 2-} anionic block. The obtained samples were characterized from infrared and UV-vis spectroscopies, and thermogravimetric, X-ray diffraction and magnetic measurements. Anhydrous solids which crystallize with a monoclinic unit cell, in the I2/a space group with four formula units per cell (Z=4) were obtained. Their crystal structure was solved ab initio from the recorded X-ray powder patterns and then refined by the Rietveld method.more » The metal T is found with octahedral coordination to four N ends of CN groups and two imidazole molecules while the inner Ni atom preserves its planar coordination. The system of layers remains stacked in an ordered 3D structure through dipole-dipole and {pi}-{pi} interactions between imidazole rings from neighboring layers. In this way, a pillared structure is achieved without requiring the coordination of both nitrogen atoms from imidazole ring. The recorded magnetic data indicate the occurrence of a predominant ferromagnetic interaction at low temperature for Co and Ni but not for Fe. Such magnetic ordering is more favorable for Ni with transition temperature of 14.67 K, which was ascribed to the relatively high polarizing power for this metal. Within the considered T metals, to nickel the highest electron-withdrawing ability corresponds and this leads to an increase for the metal-ligand electron clouds overlapping and to a stronger {pi}-{pi} attractive interaction, two factors that result into a higher magnetic ordering temperature. - Graphical Abstract: Magnetic ordering through the {pi}-{pi} interaction between the imidazole rings. Highlights: Black-Right-Pointing-Pointer Hybrid inorganic-organic solids. Black-Right-Pointing-Pointer Hybrid inorganic-organic molecular based magnets. Black-Right-Pointing-Pointer Ferromagnetic interaction through {pi}-{pi} stacking of imidazole rings. Black-Right-Pointing-Pointer Organic pillars formed through {pi}-{pi} stacking.« less

  16. One-Loop Test of Quantum Black Holes in anti–de Sitter Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal

    Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.

  17. Scalar Dyon Production In Near Extremal Kerr-Newman Black Holes

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi

    2018-01-01

    The pair production of charged scalar dyons is analytically studied in near-extremal Kerr-Newman (KN) dyonic black holes. The pair production rate and its thermal interpretation are given. Moreover, the absorption cross section ratio has been compared with the two-point function of the conformal field theories (CFTs) holographically dual to the near horizon geometry, namely warped AdS3, of the near extremal Kerr-Newman black holes to verify the threefold dyonic KN/CFTs correspondence.

  18. One-Loop Test of Quantum Black Holes in anti–de Sitter Space

    DOE PAGES

    Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal; ...

    2018-06-01

    Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.

  19. One-Loop Test of Quantum Black Holes in anti-de Sitter Space

    NASA Astrophysics Data System (ADS)

    Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal; Zhao, Wenli

    2018-06-01

    Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.

  20. One-Loop Test of Quantum Black Holes in anti-de Sitter Space.

    PubMed

    Liu, James T; Pando Zayas, Leopoldo A; Rathee, Vimal; Zhao, Wenli

    2018-06-01

    Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS_{4} black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Stephanie; Geisz, John F.; Steiner, Myles A.

    Dual-junction solar cells consisting of rear-heterojunction GaInP top cells and back-junction, back-contacted crystalline Si bottom cells were fabricated and characterized. Our calculations show that theoretical efficiencies up to 38.9% can be achieved with Si-based tandem devices. In our experiments, the two subcells were fabricated separately and stacked with an index matching fluid. In contrast to conventional mechanically stacked solar cells, that contain two metal grids at the interface, our concept includes a fully back contacted bottom cell which reduces the shadow losses in the device. A 1-sun AM1.5g cumulative efficiency of (26.2 +/- 0.6)% has been achieved with this novelmore » GaInP/Si 4-terminal tandem solar cell.« less

  2. DC conductivities with momentum dissipation in Horndeski theories

    DOE PAGES

    Jiang, Wei-Jian; Liu, Hai-Shan; Lü, H.; ...

    2017-07-17

    In this paper, we consider two four-dimensional Horndeski-type gravity theories with scalar fields that give rise to solutions with momentum dissipation in the dual boundary theories. Firstly, we study Einstein-Maxwell theory with a Horndeski axion term and two additional free axions which are responsible for momentum dissipation. We construct static electrically charged AdS planar black hole solutions in this theory and calculate analytically the holographic DC conductivity of the dual field theory. We then generalize the results to include magnetic charge in the black hole solution. Secondly, we analyze Einstein-Maxwell theory with two Horndeski axions which are used for momentummore » dissipation. We obtain AdS planar black hole solutions in the theory and we calculate the holographic DC conductivity of the dual field theory. The theory has a critical point α+γΛ = 0, beyond which the kinetic terms of the Horndeski axions become ghost-like. The conductivity as a function of temperature behaves qualitatively like that of a conductor below the critical point, becoming semiconductor-like at the critical point. Beyond the critical point, the ghost-like nature of the Horndeski fields is associated with the onset of unphysical singular or negative conductivities. Some further generalisations of the above theories are considered also.« less

  3. DC conductivities with momentum dissipation in Horndeski theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wei-Jian; Liu, Hai-Shan; Lü, H.

    In this paper, we consider two four-dimensional Horndeski-type gravity theories with scalar fields that give rise to solutions with momentum dissipation in the dual boundary theories. Firstly, we study Einstein-Maxwell theory with a Horndeski axion term and two additional free axions which are responsible for momentum dissipation. We construct static electrically charged AdS planar black hole solutions in this theory and calculate analytically the holographic DC conductivity of the dual field theory. We then generalize the results to include magnetic charge in the black hole solution. Secondly, we analyze Einstein-Maxwell theory with two Horndeski axions which are used for momentummore » dissipation. We obtain AdS planar black hole solutions in the theory and we calculate the holographic DC conductivity of the dual field theory. The theory has a critical point α+γΛ = 0, beyond which the kinetic terms of the Horndeski axions become ghost-like. The conductivity as a function of temperature behaves qualitatively like that of a conductor below the critical point, becoming semiconductor-like at the critical point. Beyond the critical point, the ghost-like nature of the Horndeski fields is associated with the onset of unphysical singular or negative conductivities. Some further generalisations of the above theories are considered also.« less

  4. Comparing watershed black locust afforestation and natural revegetation impacts on soil nitrogen on the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Jin, Zhao; Li, Xiangru; Wang, Yunqiang; Wang, Yi; Wang, Kaibo; Cui, Buli

    2016-04-01

    This study examined a pair of neighbouring small watersheds with contrasting vegetations: artificial forestland and natural grassland. Since 1954, afforestation which mainly planted with black locust has been conducted in one of these watersheds and natural revegetation in the other. The differences in soil total N, nitrate, ammonium, foliar litterfall δ15N and dual stable isotopes of δ15N and δ18O in soil nitrate were investigated in the two ecosystems. Results showed that there was no significant difference in soil total N storage between the two ecosystems, but the black locust forestland presented higher soil nitrate than the grassland. Moreover, the foliar litterfall N content and δ15N of the forestland were significant higher than the grassland. These results indicate that 60 years of watershed black locust afforestation have increased soil N availability. The higher nitrate in the forestland was attributed to the biological N fixation of black locust and difference in ecosystem hydrology. The dual stable isotopes of δ15N and δ18O revealed that the two ecosystems had different sources of soil nitrate. The soil nitrate in the forestland was likely derived from soil N nitrification, while the soil nitrate in the grassland was probably derived from the legacy of NO3- fertiliser.

  5. From Mammy to Superwoman: Images that Hinder Black Women's Career Development

    ERIC Educational Resources Information Center

    Reynolds-Dobbs, Wendy; Thomas, Kecia M.; Harrison, Matthew S.

    2008-01-01

    Black women, like other women of color, find themselves at the intersection of both racism and sexism in the workplace. Due to their unique dual status as racial and gender minorities, they encounter unique and unexplored barriers that inhibit their career as well as leadership development. The goal of this article is to highlight the emerging…

  6. KSC-2011-1457

    NASA Image and Video Library

    2011-02-15

    VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at Vandenberg Air Force Base in California, Orbital Sciences workers prepare NASA's Glory upper stack for attachment to the Taurus XL rocket's Stage 0. The upper stack consists of Stages 1, 2 and 3 of the Taurus as well as the encapsulated Glory spacecraft. Workers put the non-flight environmental shield over the fairing prior to assembly. A portion of the umbilical tower is attached to the upper stack which falls away from the spacecraft during liftoff. The Orbital Sciences Taurus XL rocket will launch Glory into low Earth orbit. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Randy Beaudoin, VAFB

  7. Dual band sensitivity enhancements of a VO(x) microbolometer array using a patterned gold black absorber.

    PubMed

    Smith, Evan M; Panjwani, Deep; Ginn, James; Warren, Andrew P; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Nath, Janardan; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E; Shelton, David

    2016-03-10

    Infrared-absorbing gold black has been selectively patterned onto the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves much of gold black's high absorptance. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. For our fabricated devices, infrared responsivity is improved 22% in the long-wave IR and 70% in the mid-wave IR by the gold black coating, with no significant change in detector noise, using a 300°C blackbody and 80 Hz chopping rate. The increase in the time constant caused by the additional mass of gold black is ∼15%.

  8. Binary black hole in a double magnetic monopole field

    NASA Astrophysics Data System (ADS)

    Rodriguez, Maria J.

    2018-01-01

    Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows.

  9. Method of modifying a volume mesh using sheet insertion

    DOEpatents

    Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM

    2006-08-29

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may be followed to modify a volume mesh.

  10. Small black holes in global AdS spacetime

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi

    2016-04-01

    We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.

  11. Dual jets from binary black holes.

    PubMed

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  12. Dual-energy micro-CT with a dual-layer, dual-color, single-crystal scintillator.

    PubMed

    Maier, Daniel Simon; Schock, Jonathan; Pfeiffer, Franz

    2017-03-20

    A wide range of X-ray imaging applications demand micrometer spatial resolution. In material science and biology especially, there is a great interest in material determination and material separation methods. Here we present a new detector design that allows the recording of a low- and a high-energy radiography image simultaneously with micrometer spatial resolution. The detector system is composed of a layered scintillator stack, two CCDs and an optical system to image the scintillator responses onto the CCDs. We used the detector system with a standard laboratory microfocus X-ray tube to prove the working principle of the system and derive important design characteristics. With the recorded and registered dual-energy data set, the material separation and determination could be shown at an X-ray tube peak energy of up to 160 keV with a spatial resolution of 12 μm. The detector design shows a great potential for further development and a wide range of possible applications.

  13. PBF Cooling Tower. Camera facing southwest. Round piers will support ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Camera facing southwest. Round piers will support Tower's wood "fill" or "packing." Black-topped stack in far distance is at Idaho Chemical Processing Plant. Photographer: John Capek. Date: October 16, 1968. INEEL negative no. 68-4097 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. Solvent mediated hybrid 2D materials: black phosphorus - graphene heterostructured building blocks assembled for sodium ion batteries.

    PubMed

    Li, Mengya; Muralidharan, Nitin; Moyer, Kathleen; Pint, Cary L

    2018-06-07

    Here we demonstrate the broad capability to exploit interactions at different length scales in 2D materials to prepare macroscopic functional materials containing hybrid black phosphorus/graphene (BP/G) heterostructured building blocks. First, heterostructured 2D building blocks are self-assembled during co-exfoliation in the solution phase based on electrostatic attraction of different 2D materials. Second, electrophoretic deposition is used as a tool to assemble these building blocks into macroscopic films containing these self-assembled 2D heterostructures. Characterization of deposits formed using this technique elucidates the presence of stacked and sandwiched 2D heterostructures, and zeta potential measurements confirm the mechanistic interactions driving this assembly. Building on the exceptional sodium alloying capacity of BP, these materials were demonstrated as superior binder-free and additive-free anodes for sodium batteries with specific discharge capacity of 2365 mA h gP-1 and long stable cycling duration. This study demonstrates how controllable co-processing of 2D materials can enable material control for stacking and building block assembly relevant to broad future applications of 2D materials.

  15. Coordinated X-Y stage apparatus

    DOEpatents

    Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.

    2000-01-01

    An apparatus based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion.

  16. Analysis of cytokinin nucleotides in coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry after solid-phase extraction.

    PubMed

    Ge, Liya; Yong, Jean Wan Hong; Tan, Swee Ngin; Yang, Xin Hao; Ong, Eng Shi

    2006-11-10

    A method based on solid-phase extraction (SPE) and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) is described for the separation and determination of six cytokinin nucleotides in coconut water. The best CZE separation for the six cytokinin nucleotide standards was achieved using a 25 mM ammonium formate/formic acid buffer (pH 3.8) and 2% (v/v) methanol with an applied gradient separation voltage (25 kV for 32 min, and then a linear gradient to 30 kV in 5 min, finally 30 kV to the end of separation) in less than 60 min. MS/MS with multiple reaction monitoring (MRM) detection was carried out to obtain sufficient selectivity and sensitivity for the cytokinin nucleotides. The combined use of on-line sample stacking and CZE-MS/MS achieved limits of detection (LODs) in the range of 0.06-0.19 microM for the six cytokinin nucleotides at a signal-to-noise ratio of 3. Furthermore, a novel dual-step SPE procedure was developed for the pre-concentration and purification of cytokinin nucleotides using Oasis HLB and Oasis MAX cartridges. The recoveries of the cytokinin nucleotides after the dual-step SPE were in the range of 44-71%. The combination of off-line SPE, on-line sample stacking and CZE-MS/MS approach was successfully applied to screen for endogenous cytokinin nucleotides present in coconut water sample. trans-Zeatin riboside-5'-monophosphate (ZMP) was detected and quantified in coconut water by CZE-MS/MS after SPE and on-line sample stacking.

  17. Logarithmic black hole entropy corrections and holographic Rényi entropy

    NASA Astrophysics Data System (ADS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  18. Long-term memory-based control of attention in multi-step tasks requires working memory: evidence from domain-specific interference

    PubMed Central

    Foerster, Rebecca M.; Carbone, Elena; Schneider, Werner X.

    2014-01-01

    Evidence for long-term memory (LTM)-based control of attention has been found during the execution of highly practiced multi-step tasks. However, does LTM directly control for attention or are working memory (WM) processes involved? In the present study, this question was investigated with a dual-task paradigm. Participants executed either a highly practiced visuospatial sensorimotor task (speed stacking) or a verbal task (high-speed poem reciting), while maintaining visuospatial or verbal information in WM. Results revealed unidirectional and domain-specific interference. Neither speed stacking nor high-speed poem reciting was influenced by WM retention. Stacking disrupted the retention of visuospatial locations, but did not modify memory performance of verbal material (letters). Reciting reduced the retention of verbal material substantially whereas it affected the memory performance of visuospatial locations to a smaller degree. We suggest that the selection of task-relevant information from LTM for the execution of overlearned multi-step tasks recruits domain-specific WM. PMID:24847304

  19. Money or Diversity? An Implementation Analysis of the Voluntary Transfer Program in St. Louis, 1999-2009

    ERIC Educational Resources Information Center

    Grooms, Ain A.

    2016-01-01

    A dual transfer program was created in 1983 in the St. Louis metropolitan area following a 1972 lawsuit brought upon the city, charging it with withholding an equal educational opportunity for Black students. Through this program, Black students from St. Louis City are provided with free transportation to one of 15 suburban school districts, and…

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Ronggen; Cao Liming; Pang Dawei

    Recently Gibbons et al. in [G. W. Gibbons et al. Class. Quant. Grav. 22, 1503 (2005)] defined a set of conserved quantities for Kerr-AdS black holes with the maximal number of rotation parameters in arbitrary dimension. This set of conserved quantities is defined with respect to a frame which is nonrotating at infinity. On the other hand, there is another set of conserved quantities for Kerr-AdS black holes, defined by Hawking et al. in [Hawking et al. Phys. Rev. D 59, 064005 (1999)], which is measured relative to a frame rotating at infinity. Gibbons et al. explicitly showed that themore » quantities defined by them satisfy the first law of black hole thermodynamics, while those quantities defined by Hawking et al. do not obey the first law. In this paper we discuss thermodynamics of dual CFTs to the Kerr-AdS black holes by mapping the bulk thermodynamic quantities to the boundary of the AdS space. We find that thermodynamic quantities of dual CFTs satisfy the first law of thermodynamics and Cardy-Verlinde formula only when these thermodynamic quantities result from the set of bulk quantities given by Hawking et al.. We discuss the implication of our results.« less

  1. Critical flow rate of anode fuel exhaust in a PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua H.; Payne, Robert U.; Tatarchuk, Bruce J.

    A manual purge line was added into the exterior fuel exhaust stream of a Ballard PEM stack in a Nexa™ power module. With the addition of manual exhaust purge, high levels of inert gases were intentionally added to the anode feed without changing normal operational procedures. A new method of determining the critical minimum flow rate in the anode exhaust stream was given by an anode mass balance. This type of operation makes dual use of membranes in the MEAs as both gas purifiers and as solid electrolytes. The PEM stack was successfully operated with up to ca. 7% nitrogen or carbon dioxide in the absence of a palladium-based hydrogen separator at ca. 200 W power level. Nitrogen in the anode stream was concentrated from 7.5% to 91.6%. The system maintained a fuel efficiency of 99% at a manual purge rate of 2.22 ml s -1 and no auto purge. The fuel cell stack efficiency was 64% and the stack output efficiency was 75%. The overall system efficiency was 39%. After troublesome CO and H 2S poisons were removed, a hydrocarbon reformate containing high levels of CO 2 and H 2O was further used in the Nexa™ stack. The size and complexity of the fuel processing system may be reduced at a specified power level by using this operational method.

  2. Improved passivation effect in multicrystalline black silicon by chemical solution pre-treatment

    NASA Astrophysics Data System (ADS)

    Jiang, Ye; Shen, Honglie; Pu, Tian; Zheng, Chaofan

    2018-04-01

    Though black silicon has excellent anti-reflectance property, its passivation is one of the main technical bottlenecks due to its large specific surface area. In this paper, multicrystalline black silicon is fabricated by metal assisted chemical etching, and is rebuilt in low concentration alkali solution. Different solution pre-treatment is followed to make surface modification on black silicon before Al2O3 passivation by atomic layer deposition. HNO3 and H2SO4 + H2O2 solution pre-treatment makes the silicon surface become hydrophilic, with contact angle decrease from 117.28° to about 30°. It is demonstrated that when the pre-treatment solution is nitric acid, formed ultrathin SiO x layer between Al2O3 layer and black silicon is found to increase effective carrier lifetime to 72.64 µs, which is obviously higher than that of the unpassivated black silicon. The passivation stacks of SiO x /Al2O3 are proved to be effective double layers for nanoscaled multicrystalline silicon surface.

  3. Racial Differences in Hospice Use and In-Hospital Death among Medicare and Medicaid Dual-Eligible Nursing Home Residents

    ERIC Educational Resources Information Center

    Kwak, Jung; Haley, William E.; Chiriboga, David A.

    2008-01-01

    Purpose: We investigated the role of race in predicting the likelihood of using hospice and dying in a hospital among dual-eligible (Medicare and Medicaid) nursing home residents. Design and Methods: This follow-back cohort study examined factors associated with hospice use and in-hospital death among non-Hispanic Black and non-Hispanic White…

  4. Higher order corrections to holographic black hole chemistry

    NASA Astrophysics Data System (ADS)

    Sinamuli, Musema; Mann, Robert B.

    2017-10-01

    We investigate the holographic Smarr relation beyond the large N limit. By making use of the holographic dictionary, we find that the bulk correlates of subleading 1 /N corrections to this relation are related to the couplings in Lovelock gravity theories. We likewise obtain a holographic equation of state and check its validity for a variety of interesting and nontrivial black holes, including rotating planar black holes in Gauss-Bonnet-Born-Infeld gravity, and nonextremal rotating black holes in minimal five-dimensional gauged supergravity. We provide an explanation of the N -dependence of the holographic Smarr relation in terms of contributions due to planar and nonplanar diagrams in the dual theory.

  5. Local Operators in the Eternal Black Hole.

    PubMed

    Papadodimas, Kyriakos; Raju, Suvrat

    2015-11-20

    In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that probe the black hole interior in these states and constrain their properties using effective field theory. By adapting recent versions of the information paradox we show that these observables are necessarily described by state-dependent bulk-boundary maps, which we construct explicitly.

  6. African Americans in Urban Catholic Schools: Faith, Leadership and Persistence in Pursuit of Educational Opportunity

    ERIC Educational Resources Information Center

    Green, Paul

    2011-01-01

    A review of research on US Catholic education reveals that race is not treated as an important area of analysis like class and gender. Black Catholics are rarely studied in education let alone mainstream writings. This article examines the social and educational history of blacks in the US Catholic Church and the dual reality of inclusion and…

  7. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Yan, Shi-Li; Xie, Zhi-Jian; Chen, Jian-Hao; Taniguchi, Takashi; Watanabe, Kenji

    2017-03-01

    The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10V/nm to 0.83V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronics, thermoelectric power generation and thermal imaging.

  8. Smooth Horizonless Geometries Deep Inside the Black-Hole Regime.

    PubMed

    Bena, Iosif; Giusto, Stefano; Martinec, Emil J; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P

    2016-11-11

    We construct the first family of horizonless supergravity solutions that have the same mass, charges, and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically dual states in the N=(4,4) D1-D5 orbifold conformal field theory (CFT). Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.

  9. Stacked STN LCDs for true-color projection systems

    NASA Astrophysics Data System (ADS)

    Gulick, Paul E.; Conner, Arlie R.

    1991-08-01

    The demand for a true color LCD projection panel for use with standard overhead projectors has been around ever since the first monochrome OHP projection panel was introduced in 1986. The monochrome panels evolved along with the LCD technology from the first blue- and-yellow mode units to black-and-white with levels of gray, and to yellow-and-magenta panels with limited intermediate color shades known as pseudo-color. Finally, a novel solution has been implemented using a stack of custom designed STN panels, making possible true color LCD projection panels that are reasonably priced, available in high volume and quite acceptable in overall image quality. This stacked technology relies on the inherent birefringence colors of each layer to switch between white (passing all wavelengths) and a subtractive color primary (passing all wavelengths but red, green, or blue) so the full spectrum can be projected. Standard gray-scale techniques expand the displayable color palette to almost 5,000 colors and beyond. The same technology can also be applied to various self-contained projection architectures.

  10. Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy.

    PubMed

    Liu, Jintong; Du, Ping; Mao, Hui; Zhang, Lei; Ju, Huangxian; Lei, Jianping

    2018-07-01

    Nonspecific distribution of photosensitizer and the intrinsic hypoxic condition in the tumor microenvironment are two key factors limiting the efficacy of O 2 -dependent photodynamic therapy (PDT). Herein, a dual-triggered oxygen self-supported nanosystem using black phosphorus nanosheet (BPNS) as both photosensitizer and nanocarrier was developed to enhance PDT for tumors within hypoxic microenvironment. The BPNS platform was functionalized with folate and a blocker DNA duplex of 5'-Cy5-aptamer-heme/3'-heme labeled oligonucleotides. The resulting heme dimer could passivate its peroxidase activity. After specific recognition of aptamer-target, the quenched fluorescence is "turned" on by cellular adenosine triphosphate. The passivated nanosystem then activates the catalytic function towards excessive intracellular H 2 O 2 to generate O 2 essential to sustain BPNS-mediated PDT, leading to 8.7-fold and 7.5-fold increase of PDT efficacy in treating the hypoxic cell and tumor, respectively. Therefore, the dual-triggered oxygen self-supply nanosystem not only exerts tumor microenvironment-associated stimulus for enhanced PDT but also surmounts hypoxia-associated therapy resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Supersymmetric attractors, topological strings, and the M5-brane CFT

    NASA Astrophysics Data System (ADS)

    Guica, Monica M.

    One of the purposes of this thesis is to present the consistent and unifying picture that emerges in string and M-theory with eight supercharges. On one hand, this involves classifying and relating supersymmetric objects that occur in N = 2 compactifications of string and M-theory on a Calabi-Yau manifold. These come in a surprisingly wide variety of four and five-dimensional black holes, black rings and their sometimes very complicated bound states. On the other hand, the topological string also makes its appearance in theories with eight supercharges, and turns out to compute certain black hole degeneracies. We dedicate the introduction and the first chapter to summarizing and reviewing the beautiful relationships between black holes, black rings, their dual conformal field theory and the topological string, and we also outline the remaining puzzles and issues. Some of the black holes in question can be obtained by multiply-wrapping an M-theory M5-brane on a self-intersecting four-cycle in the Calabi-Yau manifold. Their dual microscopic description is known, and consists of a two-dimensional conformal field theory (CFT) which is the low-energy limit of the gauge theory that resides on the worldvolume of the M5 brane. We show that in a certain limit the M5-brane CFT is - perhaps surprisingly - able to reproduce the entropy of a completely different type of black holes, those obtained from wrapped M2-branes, whose microscopic description has not yet been understood. We also argue that certain black hole bound states should also be described by the same CFT, which suggests a unifying description of the various black objects in eight-supercharge supergravity theories. Finally, we describe and present a proof of the so-called OSV conjecture, which states that the mixed partition function of N = 2 four-dimensional BPS black holes equals the modulus square of the type A topological string partition function. We also attempt to use this relationship to better understand corrections to the entropy of supersymmetric black holes and rings in five dimensions.

  12. Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish

    PubMed Central

    Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui

    2015-01-01

    In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381

  13. Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline

    NASA Astrophysics Data System (ADS)

    Ho, Min-Hua; Hsu, Wei-Hong

    In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.

  14. Mass-deformed ABJM and black holes in AdS4

    NASA Astrophysics Data System (ADS)

    Bobev, Nikolay; Min, Vincent S.; Pilch, Krzysztof

    2018-03-01

    We find a class of new supersymmetric dyonic black holes in four-dimensional maximal gauged supergravity which are asymptotic to the SU(3) × U(1) invariant AdS4 Warner vacuum. These black holes can be embedded in eleven-dimensional supergravity where they describe the backreaction of M2-branes wrapped on a Riemann surface. The holographic dual description of these supergravity backgrounds is given by a partial topological twist on a Riemann surface of a three-dimensional N=2 SCFT that is obtained by a mass-deformation of the ABJM theory. We compute explicitly the topologically twisted index of this SCFT and show that it accounts for the entropy of the black holes.

  15. Stable and Selective Humidity Sensing Using Stacked Black Phosphorus Flakes.

    PubMed

    Yasaei, Poya; Behranginia, Amirhossein; Foroozan, Tara; Asadi, Mohammad; Kim, Kibum; Khalili-Araghi, Fatemeh; Salehi-Khojin, Amin

    2015-10-27

    Black phosphorus (BP) atomic layers are known to undergo chemical degradation in humid air. Yet in more robust configurations such as films, composites, and embedded structures, BP can potentially be utilized in a large number of practical applications. In this study, we explored the sensing characteristics of BP films and observed an ultrasensitive and selective response toward humid air with a trace-level detection capability and a very minor drift over time. Our experiments show that the drain current of the BP sensor increases by ∼4 orders of magnitude as the relative humidity (RH) varies from 10% to 85%, which ranks it among the highest ever reported values for humidity detection. The mechanistic studies indicate that the operation principle of the BP film sensors is based on the modulation in the leakage ionic current caused by autoionization of water molecules and ionic solvation of the phosphorus oxoacids produced on moist BP surfaces. Our stability tests reveal that the response of the BP film sensors remains nearly unchanged after prolonged exposures (up to 3 months) to ambient conditions. This study opens up the route for utilizing BP stacked films in many potential applications such as energy generation/storage systems, electrocatalysis, and chemical/biosensing.

  16. Thermodynamics of higher dimensional black holes with higher order thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Pourhassan, B.; Kokabi, K.; Rangyan, S.

    2017-12-01

    In this paper, we consider higher order corrections of the entropy, which coming from thermal fluctuations, and find their effect on the thermodynamics of higher dimensional charged black holes. Leading order thermal fluctuation is logarithmic term in the entropy while higher order correction is proportional to the inverse of original entropy. We calculate some thermodynamics quantities and obtain the effect of logarithmic and higher order corrections of entropy on them. Validity of the first law of thermodynamics investigated and Van der Waals equation of state of dual picture studied. We find that five-dimensional black hole behaves as Van der Waals, but higher dimensional case have not such behavior. We find that thermal fluctuations are important in stability of black hole hence affect unstable/stable black hole phase transition.

  17. Development of 3000 m Subsea Blowout Preventer Experimental Prototype

    NASA Astrophysics Data System (ADS)

    Cai, Baoping; Liu, Yonghong; Huang, Zhiqian; Ma, Yunpeng; Zhao, Yubin

    2017-12-01

    A subsea blowout preventer experimental prototype is developed to meet the requirement of training operators, and the prototype consists of hydraulic control system, electronic control system and small-sized blowout preventer stack. Both the hydraulic control system and the electronic system are dual-mode redundant systems. Each system works independently and is switchable when there are any malfunctions. And it significantly improves the operation reliability of the equipment.

  18. Dual-Stack Single-Radio Communication Architecture for UAV Acting As a Mobile Node to Collect Data in WSNs

    PubMed Central

    Sayyed, Ali; Medeiros de Araújo, Gustavo; Bodanese, João Paulo; Buss Becker, Leandro

    2015-01-01

    The use of mobile nodes to collect data in a Wireless Sensor Network (WSN) has gained special attention over the last years. Some researchers explore the use of Unmanned Aerial Vehicles (UAVs) as mobile node for such data-collection purposes. Analyzing these works, it is apparent that mobile nodes used in such scenarios are typically equipped with at least two different radio interfaces. The present work presents a Dual-Stack Single-Radio Communication Architecture (DSSRCA), which allows a UAV to communicate in a bidirectional manner with a WSN and a Sink node. The proposed architecture was specifically designed to support different network QoS requirements, such as best-effort and more reliable communications, attending both UAV-to-WSN and UAV-to-Sink communications needs. DSSRCA was implemented and tested on a real UAV, as detailed in this paper. This paper also includes a simulation analysis that addresses bandwidth consumption in an environmental monitoring application scenario. It includes an analysis of the data gathering rate that can be achieved considering different UAV flight speeds. Obtained results show the viability of using a single radio transmitter for collecting data from the WSN and forwarding such data to the Sink node. PMID:26389911

  19. Dual-Stack Single-Radio Communication Architecture for UAV Acting As a Mobile Node to Collect Data in WSNs.

    PubMed

    Sayyed, Ali; de Araújo, Gustavo Medeiros; Bodanese, João Paulo; Becker, Leandro Buss

    2015-09-16

    The use of mobile nodes to collect data in a Wireless Sensor Network (WSN) has gained special attention over the last years. Some researchers explore the use of Unmanned Aerial Vehicles (UAVs) as mobile node for such data-collection purposes. Analyzing these works, it is apparent that mobile nodes used in such scenarios are typically equipped with at least two different radio interfaces. The present work presents a Dual-Stack Single-Radio Communication Architecture (DSSRCA), which allows a UAV to communicate in a bidirectional manner with a WSN and a Sink node. The proposed architecture was specifically designed to support different network QoS requirements, such as best-effort and more reliable communications, attending both UAV-to-WSN and UAV-to-Sink communications needs. DSSRCA was implemented and tested on a real UAV, as detailed in this paper. This paper also includes a simulation analysis that addresses bandwidth consumption in an environmental monitoring application scenario. It includes an analysis of the data gathering rate that can be achieved considering different UAV flight speeds. Obtained results show the viability of using a single radio transmitter for collecting data from the WSN and forwarding such data to the Sink node.

  20. Hairy Lovelock black holes and Stueckelberg mechanism for Weyl symmetry

    NASA Astrophysics Data System (ADS)

    Chernicoff, Mariano; Giribet, Gaston; Oliva, Julio

    2016-10-01

    Lovelock theory of gravity -and, in particular, Einstein theory- admits black hole solutions that can be equipped with a hair by conformally coupling the theory to a real scalar field. This is a secondary hair, meaning that it does not endow the black hole with new quantum numbers. It rather consists of a non-trivial scalar field profile of fixed intensity which turns out to be regular everywhere outside and on the horizon and, provided the cosmological constant is negative, behaves at large distance in a way compatible with the Anti-de Sitter (AdS) asymptotic. In this paper, we review the main features of these hairy black hole solutions, such as their geometrical and thermodynamical properties. The conformal coupling to matter in dimension D > 4 in principle includes higher-curvature terms. These couplings are obtained from the Lovelock action through the Stueckelberg strategy. As a consequence, the resulting scalar-tensor theory exhibits a self-duality under field redefinition that resembles T-duality. Through this field redefinition, the matter content of the theory transforms into a Lovelock action for a dual geometry. Since the hairy black holes only exist for special relations between the dual Lovelock coupling constants, it is natural to compare those relations with the causality bounds coming from AdS/CFT. We observe that, while the lower causality bound is always obeyed, the upper causality bound is violated. The latter, however, is saturated in the large D limit.

  1. Thermodynamics of higher spin black holes in AdS3

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Jottar, Juan I.

    2014-01-01

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.

  2. Dual little strings and their partition functions

    NASA Astrophysics Data System (ADS)

    Bastian, Brice; Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2018-05-01

    We study the topological string partition function of a class of toric, double elliptically fibered Calabi-Yau threefolds XN ,M at a generic point in the Kähler moduli space. These manifolds engineer little string theories in five dimensions or lower and are dual to stacks of M5-branes probing a transverse orbifold singularity. Using the refined topological vertex formalism, we explicitly calculate a generic building block which allows us to compute the topological string partition function of XN ,M as a series expansion in different Kähler parameters. Using this result, we give further explicit proof for a duality found previously in the literature, which relates XN ,M˜XN',M' for N M =N'M' and gcd (N ,M )=gcd (N',M') .

  3. Revised Reference Curves for Bone Mineral Content and Areal Bone Mineral Density According to Age and Sex for Black and Non-Black Children: Results of the Bone Mineral Density in Childhood Study

    PubMed Central

    Kalkwarf, Heidi J.; Gilsanz, Vicente; Lappe, Joan M.; Oberfield, Sharon; Shepherd, John A.; Frederick, Margaret M.; Huang, Xiangke; Lu, Ming; Mahboubi, Soroosh; Hangartner, Thomas; Winer, Karen K.

    2011-01-01

    Context: Deficits in bone acquisition during growth may increase fracture risk. Assessment of bone health during childhood requires appropriate reference values relative to age, sex, and population ancestry to identify bone deficits. Objective: The objective of this study was to provide revised and extended reference curves for bone mineral content (BMC) and areal bone mineral density (aBMD) in children. Design: The Bone Mineral Density in Childhood Study was a multicenter longitudinal study with annual assessments for up to 7 yr. Setting: The study was conducted at five clinical centers in the United States. Participants: Two thousand fourteen healthy children (992 males, 22% African-Americans) aged 5–23 yr participated in the study. Intervention: There were no interventions. Main Outcome Measures: Reference percentiles for BMC and aBMD of the total body, lumbar spine, hip, and forearm were obtained using dual-energy x-ray absorptiometry for Black and non-Black children. Adjustment factors for height status were also calculated. Results: Extended reference curves for BMC and aBMD of the total body, total body less head, lumbar spine, total hip, femoral neck, and forearm for ages 5–20 yr were constructed relative to sex and age for Black and non-Black children. Curves are similar to those previously published for 7–17 year olds. BMC and aBMD values were greater for Black vs. non-Black children at all measurement sites. Conclusions: We provide here dual-energy x-ray absorptiometry reference data on a well-characterized cohort of 2012 children and adolescents. These reference curves provide the most robust reference values for the assessment and monitoring of bone health in children and adolescents in the literature to date. PMID:21917867

  4. Black phosphorus saturable absorber for ultrashort pulse generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M.

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation.more » The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.« less

  5. Black hole growth in the early Universe is self-regulated and largely hidden from view.

    PubMed

    Treister, Ezequiel; Schawinski, Kevin; Volonteri, Marta; Natarajan, Priyamvada; Gawiser, Eric

    2011-06-15

    The formation of the first massive objects in the infant Universe remains impossible to observe directly and yet it sets the stage for the subsequent evolution of galaxies. Although some black holes with masses more than 10(9) times that of the Sun have been detected in luminous quasars less than one billion years after the Big Bang, these individual extreme objects have limited utility in constraining the channels of formation of the earliest black holes; this is because the initial conditions of black hole seed properties are quickly erased during the growth process. Here we report a measurement of the amount of black hole growth in galaxies at redshift z = 6-8 (0.95-0.7 billion years after the Big Bang), based on optimally stacked, archival X-ray observations. Our results imply that black holes grow in tandem with their host galaxies throughout cosmic history, starting from the earliest times. We find that most copiously accreting black holes at these epochs are buried in significant amounts of gas and dust that absorb most radiation except for the highest-energy X-rays. This suggests that black holes grew significantly more during these early bursts than was previously thought, but because of the obscuration of their ultraviolet emission they did not contribute to the re-ionization of the Universe.

  6. Fermion dipole moment and holography

    NASA Astrophysics Data System (ADS)

    Kulaxizi, Manuela; Rahman, Rakibur

    2015-12-01

    In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.

  7. Criticality for charged black branes

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.

    2017-09-01

    We show that the inclusion of higher curvature terms in the gravitational action can lead to phase transitions and critical behaviour for charged black branes. The higher curvature terms considered here belong to the recently constructed generalized quasi-topological class [arXiv:1703.01631], which possess a number of interesting properties, such as being ghost-free on constant curvature backgrounds and non-trivial in four dimensions. We show that critical behaviour is a generic feature of the black branes in all dimensions d ≥ 4, and contextualize the results with a review of the properties of black branes in Lovelock and quasi-topological gravity, where critical behaviour is not possible. These results may have interesting implications for the CFTs dual to this class of theories.

  8. Dual Mission Scenarios for the Human Lunar Campaign - Performance, Cost and Risk Benefits

    NASA Technical Reports Server (NTRS)

    Saucillo, Rudolph J.; Reeves, David M.; Chrone, Jonathan D.; Stromgren, Chel; Reeves, John D.; North, David D.

    2008-01-01

    Scenarios for human lunar operations with capabilities significantly beyond Constellation Program baseline missions are potentially feasible based on the concept of dual, sequential missions utilizing a common crew and a single Ares I/CEV (Crew Exploration Vehicle). For example, scenarios possible within the scope of baseline technology planning include outpost-based sortie missions and dual sortie missions. Top level cost benefits of these dual sortie scenarios may be estimated by comparison to the Constellation Program reference two-mission-per-year lunar campaign. The primary cost benefit is the accomplishment of Mission B with a "single launch solution" since no Ares I launch is required. Cumulative risk to the crew is lowered since crew exposure to launch risks and Earth return risks are reduced versus comparable Constellation Program reference two-mission-per-year scenarios. Payload-to-the-lunar-surface capability is substantially increased in the Mission B sortie as a result of additional propellant available for Lunar Lander #2 descent. This additional propellant is a result of EDS #2 transferring a smaller stack through trans-lunar injection and using remaining propellant to perform a portion of the lunar orbit insertion (LOI) maneuver. This paper describes these dual mission concepts, including cost, risk and performance benefits per lunar sortie site, and provides an initial feasibility assessment.

  9. Black holes with halos

    NASA Astrophysics Data System (ADS)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  10. Charge carrier transfer in tungsten disulfide—black phosphorus heterostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Siqi; He, Dawei; Wang, Yongsheng; Zhang, Xinwu; He, Jiaqi

    2017-11-01

    Photocarrier dynamics in tungsten disulfide—black phosphorus (BP) heterostructures were studied by time-resolved differential reflection measurements. The heterostructures were fabricated by stacking together monolayer WS2 and BP flakes that are both fabricated by mechanical exfoliation. Efficient and ultrafast transfer of photocarriers from WS2 to BP flakes was observed. This confirms the type-I band alignment of WS2/BP heterostructures that was predicted by theory. Accompanied with the photocarrier interlayer transfer process from WS2 to BP flakes, the change of the absorption of WS2 persists for several nanoseconds. These results promote the consciousness about the carrier dynamics of interlayer transfer process in van der Waals heterostructures and its application in optoelectronic devices.

  11. Phosphorus oxide gate dielectric for black phosphorus field effect transistors

    NASA Astrophysics Data System (ADS)

    Dickerson, W.; Tayari, V.; Fakih, I.; Korinek, A.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M.; Heun, S.; Botton, G. A.; Szkopek, T.

    2018-04-01

    The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2 V-1 s-1 in ambient conditions, which we attribute to the low defect density of the bP/POx interface.

  12. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-areamore » alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.« less

  13. Exact microstate counting for dyonic black holes in AdS4

    NASA Astrophysics Data System (ADS)

    Benini, Francesco; Hristov, Kiril; Zaffaroni, Alberto

    2017-08-01

    We present a counting of microstates of a class of dyonic BPS black holes in AdS4 which precisely reproduces their Bekenstein-Hawking entropy. The counting is performed in the dual boundary description, that provides a non-perturbative definition of quantum gravity, in terms of a twisted and mass-deformed ABJM theory. We evaluate its twisted index and propose an extremization principle to extract the entropy, which reproduces the attractor mechanism in gauged supergravity.

  14. Combining joint models for biomedical event extraction

    PubMed Central

    2012-01-01

    Background We explore techniques for performing model combination between the UMass and Stanford biomedical event extraction systems. Both sub-components address event extraction as a structured prediction problem, and use dual decomposition (UMass) and parsing algorithms (Stanford) to find the best scoring event structure. Our primary focus is on stacking where the predictions from the Stanford system are used as features in the UMass system. For comparison, we look at simpler model combination techniques such as intersection and union which require only the outputs from each system and combine them directly. Results First, we find that stacking substantially improves performance while intersection and union provide no significant benefits. Second, we investigate the graph properties of event structures and their impact on the combination of our systems. Finally, we trace the origins of events proposed by the stacked model to determine the role each system plays in different components of the output. We learn that, while stacking can propose novel event structures not seen in either base model, these events have extremely low precision. Removing these novel events improves our already state-of-the-art F1 to 56.6% on the test set of Genia (Task 1). Overall, the combined system formed via stacking ("FAUST") performed well in the BioNLP 2011 shared task. The FAUST system obtained 1st place in three out of four tasks: 1st place in Genia Task 1 (56.0% F1) and Task 2 (53.9%), 2nd place in the Epigenetics and Post-translational Modifications track (35.0%), and 1st place in the Infectious Diseases track (55.6%). Conclusion We present a state-of-the-art event extraction system that relies on the strengths of structured prediction and model combination through stacking. Akin to results on other tasks, stacking outperforms intersection and union and leads to very strong results. The utility of model combination hinges on complementary views of the data, and we show that our sub-systems capture different graph properties of event structures. Finally, by removing low precision novel events, we show that performance from stacking can be further improved. PMID:22759463

  15. Statistical effects in large N supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Czech, Bartlomiej Stanislaw

    This thesis discusses statistical simplifications arising in supersymmetric gauge theories in the limit of large rank. Applications involve the physics of black holes and the problem of predicting the low energy effective theory from a landscape of string vacua. The first part of this work uses the AdS/CFT correspondence to explain properties of black holes. We establish that in the large charge sector of toric quiver gauge theories there exists a typical state whose structure is closely mimicked by almost all other states. Then, working in the settings of the half-BPS sector of N = 4 super-Yang-Mills theory, we show that in the dual gravity theory semiclassical observations cannot distinguish a pair of geometries corresponding to two generic heavy states. Finally, we argue on general grounds that these conclusions are exponentially enhanced in quantum cosmological settings. The results establish that one may consistently account for the entropy of a black hole with heavy states in the dual field theory and suggest that the usual properties of black holes arise as artifacts of imposing a semiclassical description on a quantum system. In the second half we develop new tools to determine the infrared behavior of quiver gauge theories in a certain class. We apply the dynamical results to a toy model of the landscape of effective field theories defined at some high energy scale, and derive firm statistical predictions for the low energy effective theory.

  16. Diverse Functionalities of Vertically Stacked Graphene/Single layer n-MoS2/SiO2/p-GaN Heterostructures.

    PubMed

    Perumal, Packiyaraj; Karuppiah, Chelladurai; Liao, Wei-Cheng; Liou, Yi-Rou; Liao, Yu-Ming; Chen, Yang-Fang

    2017-08-30

    Integrating different dimentional materials on vertically stacked p-n hetero-junctions have facinated a considerable scrunity and can open up excellent feasibility with various functionalities in opto-electronic devices. Here, we demonstrate that vertically stacked p-GaN/SiO 2 /n-MoS 2 /Graphene heterostructures enable to exhibit prominent dual opto-electronic characteristics, including efficient photo-detection and light emission, which represents the emergence of a new class of devices. The photoresponsivity was found to achieve as high as ~10.4 AW -1 and the detectivity and external quantum efficiency were estimated to be 1.1 × 10 10 Jones and ~30%, respectively. These values are superier than most reported hererojunction devices. In addition, this device exhibits as a self-powered photodetector, showing a high responsivity and fast response speed. Moreover, the device demonstrates the light emission with low turn-on voltage (~1.0 V) which can be realized by electron injection from graphene electrode and holes from GaN film into monolayer MoS 2 layer. These results indicate that with a suitable choice of band alignment, the vertical stacking of materials with different dimentionalities could be significant potential for integration of highly efficient heterostructures and open up feasible pathways towards integrated nanoscale multi-functional optoelectronic devices for a variety of applications.

  17. Racial influence on the polycystic ovary syndrome phenotype: a black and white case-control study.

    PubMed

    Ladson, Gwinnett; Dodson, William C; Sweet, Stephanie D; Archibong, Anthony E; Kunselman, Allen R; Demers, Laurence M; Williams, Nancy I; Coney, Ponjola; Legro, Richard S

    2011-07-01

    To estimate racial disparities in the polycystic ovary syndrome (PCOS) phenotype between white and black women with PCOS. Case-control study. Two academic medical centers. A total of 242 women not taking confounding medications in otherwise good health. Phenotyping during the follicular phase or anovulation after an overnight fast in women. Biometric, serum hormones, glycemic and metabolic parameters, and body composition by dual-energy x-ray absorptiometry. We studied 77 white and 43 black women with PCOS and 35 white and 87 black controls. Black women with PCOS were similar reproductively to white women with PCOS. Black women with PCOS had lower levels of serum transaminases, higher high-density lipoprotein cholesterol levels (mean difference [MD], 18.2 mg/dL; 95% confidence intervals [CI], 14.3, 22.1 mg/dL), lower triglyceride levels (MD, -43.2 mg/dL; 95% CI, -64.5, -21.9), and enhanced insulinogenic index on the oral glucose tolerance test compared with white women with PCOS. Black women with PCOS had higher bone mineral density (MD, 0.1 g/cm(2); 95% CI, 0.1, 0.2 g/cm(2)), lower percent body fat on dual-energy x-ray absorptiometry (MD, -2.8%; 95% CI, -5.1%, -0.5%), and overall a higher quality of life. Although most of these findings disappeared when the differences with racially matched controls were compared, black women with PCOS compared with black controls had lower estradiol levels than white women with PCOS compared with white controls (MD, -12.9 pg/mL; 95% CI, -24.9, -0.8 pg/mL), higher systolic blood pressure (MD, 9.1 mm Hg; 95% CI, 0.8, 17.4 mm Hg), and lower fasting glucose levels (MD, -12.0 mg/dL; 95% CI, -22.3, -1.7 mg/dL). Racial disparities in PCOS phenotype are minor and mixed. Future studies should explore if race impacts treatment effects. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Quasinormal modes of charged magnetic black branes & chiral magnetic transport

    NASA Astrophysics Data System (ADS)

    Ammon, Martin; Kaminski, Matthias; Koirala, Roshan; Leiber, Julian; Wu, Jackson

    2017-04-01

    We compute quasinormal modes (QNMs) of the metric and gauge field perturbations about black branes electrically and magnetically charged in the Einstein-Maxwell-Chern-Simons theory. By the gauge/gravity correspondence, this theory is dual to a particular class of field theories with a chiral anomaly, in a thermal charged plasma state subjected to a constant external magnetic field, B. The QNMs are dual to the poles of the two-point functions of the energy-momentum and axial current operators, and they encode information about the dissipation and transport of charges in the plasma. Complementary to the gravity calculation, we work out the hydrodynamic description of the dual field theory in the presence of a chiral anomaly, and a constant external B. We find good agreement with the weak field hydrodynamics, which can extend beyond the weak B regime into intermediate regimes. Furthermore, we provide results that can be tested against thermodynamics and hydrodynamics in the strong B regime. We find QNMs exhibiting Landau level behavior, which become long-lived at large B if the anomaly coefficient exceeds a critical magnitude. Chiral transport is analyzed beyond the hydrodynamic approximation for the five (formerly) hydrodynamic modes, including a chiral magnetic wave.

  19. Matrix models for the black hole information paradox

    NASA Astrophysics Data System (ADS)

    Iizuka, Norihiro; Okuda, Takuya; Polchinski, Joseph

    2010-02-01

    We study various matrix models with a charge-charge interaction as toy models of the gauge dual of the AdS black hole. These models show a continuous spectrum and power-law decay of correlators at late time and infinite N, implying information loss in this limit. At finite N, the spectrum is discrete and correlators have recurrences, so there is no information loss. We study these models by a variety of techniques, such as Feynman graph expansion, loop equations, and sum over Young tableaux, and we obtain explicitly the leading 1/ N 2 corrections for the spectrum and correlators. These techniques are suggestive of possible dual bulk descriptions. At fixed order in 1/ N 2 the spectrum remains continuous and no recurrence occurs, so information loss persists. However, the interchange of the long-time and large- N limits is subtle and requires further study.

  20. Large N phase transitions and the fate of small Schwarzschild-AdS black holes

    NASA Astrophysics Data System (ADS)

    Yaffe, Laurence G.

    2018-01-01

    Sufficiently small Schwarzschild-AdS black holes in asymptotically global AdS5×S5 spacetime are known to become dynamically unstable toward deformation of the internal S5 geometry. The resulting evolution of such an unstable black hole is related, via holography, to the dynamics of supercooled plasma which has reached the limit of metastability in maximally supersymmetric large-N Yang-Mills theory on R ×S3. Puzzles related to the resulting dynamical evolution are discussed, with a key issue involving differences between the large-N limit in the dual field theory and typical large volume thermodynamic limits.

  1. Persistent superconductor currents in holographic lattices.

    PubMed

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-07-04

    We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.

  2. A new length scale for quantum gravity: A resolution of the black hole information loss paradox

    NASA Astrophysics Data System (ADS)

    Singh, Tejinder P.

    We show why and how Compton wavelength and Schwarzschild radius should be combined into one single new length scale, which we call the Compton-Schwarzschild length. Doing so offers a resolution of the black hole information loss paradox, and suggests Planck mass remnant black holes as candidates for dark matter. It also compels us to introduce torsion, and identify the Dirac field with a complex torsion field. Dirac equation and Einstein equations, are shown to be mutually dual limiting cases of an underlying gravitation theory which involves the Compton-Schwarzschild length scale, and includes a complex torsion field.

  3. Precise orbit determination for the shuttle radar topography mission using a new generation of GPS receiver

    NASA Technical Reports Server (NTRS)

    Bertiger, W.; Bar-Sever, Y.; Desai, S.; Duncan, C.; Haines, B.; Kuang, D.; Lough, M.; Reichert, A.; Romans, L.; Srinivasan, J.; hide

    2000-01-01

    The BlackJack family of GPS receivers has been developed at JPL to satisfy NASA's requirements for high-accuracy, dual-frequency, Y-codeless GPS receivers for NASA's Earth science missions. In this paper we will present the challenges that were overcome to meet this accuracy requirement. We will discuss the various reduced dynamic strategies, Space Shuttle dynamic models, and our tests for accuracy that included a military Y-code dual-frequency receiver (MAGR).

  4. Studies on solid solutions based on layered honeycomb-ordered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berthelot, Romain; Schmidt, Whitney; Sleight, A.W.

    2012-12-15

    Three complete solid solutions between the layered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) have been prepared by conventional solid state method and investigated through X-ray diffraction, magnetism and optical measurements. All compositions are characterized by a M{sup 2+}/X{sup 6+} honeycomb ordering within the slabs and crystallize in a hexagonal unit cell. However, a structural transition based on a different stacking is observed as nickel (space group P6{sub 3}/mcm) is substituted by zinc or cobalt (space group P6{sub 3}22). All compositions exhibit a paramagnetic Curie-Weiss behavior at high temperatures; and the magnetic moment values confirm the presence of Ni{supmore » 2+} and/or Co{sup 2+} cations. The low-temperature antiferromagnetic order of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. The color of the obtained compositions varies from pink, to light green and white when M=Co, Ni, Zn, respectively. - Graphical abstract: The comparison between the structure of Na{sub 2}Ni{sub 2}TeO{sub 6} (left) and Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Zn) (right) evidences the stacking difference with distinct atom sequences along the hexagonal c-axis. Highlights: Black-Right-Pointing-Pointer Solid solutions between lamellar phases Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) are investigated. Black-Right-Pointing-Pointer A M{sup 2+}/X{sup 6+} honeycomb ordering characterized all the compositions. Black-Right-Pointing-Pointer A structural transition is shown when Ni is replaced by Co or Zn. Black-Right-Pointing-Pointer The low-temperature AFM ordering of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. Black-Right-Pointing-Pointer Color changes from pink to light green and white when M=Co, Ni, Zn, respectively.« less

  5. Habemus superstratum! A constructive proof of the existence of superstrata

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Giusto, Stefano; Russo, Rodolfo; Shigemori, Masaki; Warner, Nicholas P.

    2015-05-01

    We construct the first example of a superstratum: a class of smooth horizonless supergravity solutions that are parameterized by arbitrary continuous functions of (at least) two variables and have the same charges as the supersymmetric D1-D5-P black hole. We work in Type IIB string theory on T 4 or K3 and our solutions involve a subset of fields that can be described by a six-dimensional supergravity with two tensor multiplets. The solutions can thus be constructed using a linear structure, and we give an explicit recipe to start from a superposition of modes specified by an arbitrary function of two variables and impose regularity to obtain the full horizonless solutions in closed form. We also give the precise CFT description of these solutions and show that they are not dual to descendants of chiral primaries. They are thus much more general than all the known solutions whose CFT dual is precisely understood. Hence our construction represents a substantial step toward the ultimate goal of constructing the fully generic superstratum that can account for a finite fraction of the entropy of the three-charge black hole in the regime of parameters where the classical black hole solution exists.

  6. Entanglement entropy of ABJM theory and entropy of topological black hole

    NASA Astrophysics Data System (ADS)

    Nian, Jun; Zhang, Xinyu

    2017-07-01

    In this paper we discuss the supersymmetric localization of the 4D N = 2 offshell gauged supergravity on the background of the AdS4 neutral topological black hole, which is the gravity dual of the ABJM theory defined on the boundary {S}^1× H^2 . We compute the large- N expansion of the supergravity partition function. The result gives the black hole entropy with the logarithmic correction, which matches the previous result of the entanglement entropy of the ABJM theory up to some stringy effects. Our result is consistent with the previous on-shell one-loop computation of the logarithmic correction to black hole entropy. It provides an explicit example of the identification of the entanglement entropy of the boundary conformal field theory with the bulk black hole entropy beyond the leading order given by the classical Bekenstein-Hawking formula, which consequently tests the AdS/CFT correspondence at the subleading order.

  7. The misunderstood consequences of Shelley v. Kraemer.

    PubMed

    Kucheva, Yana; Sander, Richard

    2014-11-01

    Shelley v. Kraemer (1948) was a landmark civil rights ruling, in which the Supreme Court held that private racial covenants could not be enforced by the state to evict black buyers of "restricted" homes. Fair housing scholars have generally dismissed or downplayed the practical effects of Shelley, since other forms of housing discrimination remained very powerful. Using spatial lag models and detailed geographic data on the location of covenants and patterns of intra-urban black migration, we compare the role of Shelley with other forces shaping mid-century neighborhood change. We find that Shelley precipitated white-to-black neighborhood transitions after 1948 and changed the nature of the dual housing market in important ways. We also show that increased black mobility produced a sharp increase in intra-black economic segregation during the 1950s and 1960s. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Characterization of Thermal and Mechanical Properties of Polypropylene-Based Composites for Fuel Cell Bipolar Plates and Development of Educational Tools in Hydrogen and Fuel Cell Technologies

    ERIC Educational Resources Information Center

    Lopez Gaxiola, Daniel

    2011-01-01

    In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack,…

  9. Quantitative nondestructive in-service evaluation of stay cables of cable-stayed bridges: methods and practical experience

    NASA Astrophysics Data System (ADS)

    Weischedel, Herbert R.; Hoehle, Hans-Werner

    1995-05-01

    Stay cables of cable-stayed bridges have corrosion protection systems that can be elaborate. For example, such a system may simply consist of one or several coats of paint, or--more complex--of plastic pipes that are wrapped with tape and filled with grout. Frequently, these corrosion protection systems prevent visual inspections. Therefore, alternative nondestructive examination methods are called for. For example, modern dual-function electromagnetic (EM) instruments allow the simultaneous detection of external and internal localized flaws (such as external and internal broken wires and corrosion piting) and the measurement of loss of metallic cross-sectional area (typically caused by external or internal corrosion or wear). Initially developed for mining and skiing applications, these instruments have been successfully used for the inspection of stays of cable-stayed bridges, and for the inspection of guys of smoke stacks, flare stacks, broadcast towers, suspended roofs, etc. As a rule, guys and bridge cables are not subjected to wear and bending stresses. However, their safety can be compromised by corrosion caused by the failure of corrosion protection systems. Furthermore, live loads and wind forces create intermittent tensile stresses that can cause fatigue breaks of wires. This paper discusses the use of dual-function EM instruments for the detection and the nondestructive quantitative evaluation of cable deterioration. It explains the underlying principles. Experiences with this method together with field inspection results will be presented.

  10. Thermodynamic Volume in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Kiu; Ahn, Byoungjoon

    2018-01-01

    In this note, we study on extended thermodynamics of AdS black holes by varying cosmological constant. We found and discussed pressure and volume of both bulk and boundary physics through AdS/CFT correspondence. In particular, we derive the relation between thermodynamic volume and a chemical potential for M2 brane dual to four dimensional AdS space. In addition, we show that thermodynamic volume of hyperbolic black hole is related to `entanglement pressure' coming from a generalized first law of entanglement entropy.

  11. Holographic black hole chemistry

    DOE PAGES

    Karch, Andreas; Robinson, Brandon

    2015-12-14

    Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation. Here, we show that this relation can easily be understood from the point of view of the dual holographic field theory. It amounts to the simple statement that the extensive thermodynamic quantities of a large N gauge theory only depend on the number of colors, N, via an overall factor of N 2.

  12. Post-experimental analysis of a solid oxide fuel cell stack using hybrid seals

    NASA Astrophysics Data System (ADS)

    Thomann, O.; Rautanen, M.; Himanen, O.; Tallgren, J.; Kiviaho, J.

    2015-01-01

    A post-experimental analysis of a SOFC stack is presented. The stack was operated for 1800 h at 700 °C with air and hydrogen and contained hybrid glass-Thermiculite 866 seals. The goal of this work was to investigate the sealing microstructure and possible corrosion during mid-term operation. It was found that hybrid seals could effectively compensate for manufacturing tolerances of cells and other components due to the compliance of the glass layer. Additionally, different interfaces were investigated for corrosion. Corrosion was not observed at two-phase interfaces such as Crofer 22 APU/glass, glass/electrolyte and glass/Thermiculite 866. The three-phase interface between Crofer 22 APU/glass/hydrogen exhibited no corrosion. Some evidence of non-systematic corrosion was found at the Crofer 22 APU/glass/air interface. The possible reasons for the corrosion are discussed. Lastly, dual exposure to humid hydrogen and air of the 0.2 mm Crofer 22 APU interconnect had no detrimental effect on the corrosion compared to air exposure. Overall the hybrid seals used in combination with the thin interconnects were found to be a promising solution due to the low leak rate and limited material interactions.

  13. Compositional breast imaging using a dual-energy mammography protocol

    PubMed Central

    Laidevant, Aurelie D.; Malkov, Serghei; Flowers, Chris I.; Kerlikowske, Karla; Shepherd, John A.

    2010-01-01

    Purpose: Mammography has a low sensitivity in dense breasts due to low contrast between malignant and normal tissue confounded by the predominant water density of the breast. Water is found in both adipose and fibroglandular tissue and constitutes most of the mass of a breast. However, significant protein mass is mainly found in the fibroglandular tissue where most cancers originate. If the protein compartment in a mammogram could be imaged without the influence of water, the sensitivity and specificity of the mammogram may be improved. This article describes a novel approach to dual-energy mammography, full-field digital compositional mammography (FFDCM), which can independently image the three compositional components of breast tissue: water, lipid, and protein. Methods: Dual-energy attenuation and breast shape measures are used together to solve for the three compositional thicknesses. Dual-energy measurements were performed on breast-mimicking phantoms using a full-field digital mammography unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the compositional compartments. They were made of two main stacks of thicknesses around 2 and 4 cm. Twenty-six thickness and composition combinations were used to derive the compositional calibration using a least-squares fitting approach. Results: Very high accuracy was achieved with a simple cubic fitting function with root mean square errors of 0.023, 0.011, and 0.012 cm for the water, lipid, and protein thicknesses, respectively. The repeatability (percent coefficient of variation) of these measures was tested using sequential images and was found to be 0.5%, 0.5%, and 3.3% for water, lipid, and protein, respectively. However, swapping the location of the two stacks of the phantom on the imaging plate introduced further errors showing the need for more complete system uniformity corrections. Finally, a preliminary breast image is presented of each of the compositional compartments separately. Conclusions: FFDCM has been derived and exhibited good compositional thickness accuracy on phantoms. Preliminary breast images demonstrated the feasibility of creating individual compositional diagnostic images in a clinical environment. PMID:20175478

  14. KSC-2011-1459

    NASA Image and Video Library

    2011-02-15

    VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at Vandenberg Air Force Base in California, Orbital Sciences workers monitor NASA's Glory upper stack as a crane lifts it from a stationary rail for attachment to the Taurus XL rocket's Stage 0. The upper stack consists of Stages 1, 2 and 3 of the Taurus as well as the encapsulated Glory spacecraft. Workers put the non-flight environmental shield over the fairing prior to assembly. The Orbital Sciences Taurus XL rocket will launch Glory into low Earth orbit. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Randy Beaudoin, VAFB

  15. Porous Structures in Stacked, Crumpled and Pillared Graphene-Based 3D Materials.

    PubMed

    Guo, Fei; Creighton, Megan; Chen, Yantao; Hurt, Robert; Külaots, Indrek

    2014-01-01

    Graphene, an atomically thin material with the theoretical surface area of 2600 m 2 g -1 , has great potential in the fields of catalysis, separation, and gas storage if properly assembled into functional 3D materials at large scale. In ideal non-interacting ensembles of non-porous multilayer graphene plates, the surface area can be adequately estimated using the simple geometric law ~ 2600 m 2 g -1 /N, where N is the number of graphene sheets per plate. Some processing operations, however, lead to secondary plate-plate stacking, folding, crumpling or pillaring, which give rise to more complex structures. Here we show that bulk samples of multilayer graphene plates stack in an irregular fashion that preserves the 2600/N surface area and creates regular slot-like pores with sizes that are multiples of the unit plate thickness. In contrast, graphene oxide deposits into films with massive area loss (2600 to 40 m 2 g -1 ) due to nearly perfect alignment and stacking during the drying process. Pillaring graphene oxide sheets by co-deposition of colloidal-phase particle-based spacers has the potential to partially restore the large monolayer surface. Surface areas as high as 1000 m 2 g -1 are demonstrated here through colloidal-phase deposition of graphene oxide with water-dispersible aryl-sulfonated ultrafine carbon black as a pillaring agent.

  16. Mental Health and Educational Experiences Among Black Youth: A Latent Class Analysis.

    PubMed

    Rose, Theda; Lindsey, Michael A; Xiao, Yunyu; Finigan-Carr, Nadine M; Joe, Sean

    2017-11-01

    Disproportionately lower educational achievement, coupled with higher grade retention, suspensions, expulsions, and lower school bonding make educational success among Black adolescents a major public health concern. Mental health is a key developmental factor related to educational outcomes among adolescents; however, traditional models of mental health focus on absence of dysfunction as a way to conceptualize mental health. The dual-factor model of mental health incorporates indicators of both subjective wellbeing and psychopathology, supporting more recent research that both are needed to comprehensively assess mental health. This study applied the dual-factor model to measure mental health using the National Survey of American Life-Adolescent Supplement (NSAL-A), a representative cross-sectional survey. The sample included 1170 Black adolescents (52% female; mean age 15). Latent class analysis was conducted with positive indicators of subjective wellbeing (emotional, psychological, and social) as well as measures of psychopathology. Four mental health groups were identified, based on having high or low subjective wellbeing and high or low psychopathology. Accordingly, associations between mental health groups and educational outcomes were investigated. Significant associations were observed in school bonding, suspensions, and grade retention, with the positive mental health group (high subjective wellbeing, low psychopathology) experiencing more beneficial outcomes. The results support a strong association between school bonding and better mental health and have implications for a more comprehensive view of mental health in interventions targeting improved educational experiences and mental health among Black adolescents.

  17. Anti-diabetic and hypolipidemic effects of Sargassum yezoense in db/db mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Su-Nam, E-mail: snkim@kist.re.kr; Lee, Woojung; Bae, Gyu-Un

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Sargassum yezoense (SY) treatment improved glucose and lipid impairment in vivo. Black-Right-Pointing-Pointer This pharmacological action is associated with PPAR{alpha}/{gamma} dual activation. Black-Right-Pointing-Pointer It decreases the expression of G6Pase for gluconeogenesis in liver. Black-Right-Pointing-Pointer It increases the expression of UCP3 for lipid metabolism in adipose tissue. Black-Right-Pointing-Pointer There are no significant side effects such as body weight gain and hepatomegaly. -- Abstract: Peroxisome proliferator-activated receptors (PPARs) have been considered to be desirable targets for metabolic syndrome, even though their specific agonists have several side effects including body weight gain, edema and tissue failure. Previously, we have reported in vitromore » effects of Sargassum yezoense (SY) and its ingredients, sargaquinoic acid (SQA) and sargahydroquinoic acid (SHQA), on PPAR{alpha}/{gamma} dual transcriptional activation. In this study, we describe in vivo pharmacological property of SY on metabolic disorders. SY treatment significantly improved glucose and lipid impairment in db/db mice model. More importantly, there are no significant side effects such as body weight gain and hepatomegaly in SY-treated animals, indicating little side effects of SY in liver and lipid metabolism. In addition, SY led to a decrease in the expression of G6Pase for gluconeogenesis in liver responsible for lowering blood glucose level and an increase in the expression of UCP3 in adipose tissue for the reduction of total and LDL-cholesterol level. Altogether, our data suggest that SY would be a potential therapeutic agent against type 2 diabetes and related metabolic disorders by ameliorating the glucose and lipid metabolism.« less

  18. Milankovitch climate cyclicity and its effect on relative sea level changes and organic carbon storage, Late Cretaceous black shales of Colombia and Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villamil, T.; Kauffman, E.G.

    1993-02-01

    The Late Cretaceous Villeta Group and La Luna Formation shows remarkable depositional cyclicity attributable to Milankovitch climate cycles. Each 30-60 cm thick hemicycle is composed of a basal gray shale, a medial black, organic-rich shale, and an upper gray shale with a dense argillaceous limestone cap. Fourier time-series analysis revealed peak frequencies of 500, 100, and 31 ka (blending 21 and 42 ka data). ThiS cyclicity reflects possibly wet cooler (shale) to dry, possibly warm (limestone) climatic changes and their influence on relative sea level, sedimentation rates/patterns, productivity, water chemistry and stratification. Wet/cool hemicycles may produce slight lowering of sealevel,more » increased rates of clay sedimentation, diminished carbonate production, water stratification, increased productivity among noncalcareous marine plankton, and increased Corg production and storage. Dry/warm hemicycles may produce a slight rise in sealevel, and return to normal marine conditions with low Corg storage. Source rock quality may depend upon the predominance of wet over dry climatic phases. Differences between climate-forced cyclicity and random facies repetition, are shown by contrasting observed lithological patterns and geochemical signals with litho- and chemostratigraphy generated from random models. Accomodation space plots (Fischer plots) for cyclically interbedded black shale-pelagic limestone sequences, allowed prediction of facies behavior, shoreline architecture, and quantitative analysis of relative sea level. The synchroneity of Milankovitch cycles and changes in hemicycle stacking patterns, were tested against a new high-resolution event-chronostratigraphic and biostratigraphic framework for NW South America. Geochemical spikes and hemicycle stacking patterns occur consistently throughout the sections measured, supporting the correlation potential of cyclostratigraphy.« less

  19. Variability Selected Low-Luminosity Active Galactic Nuclei in the 4 Ms Chandra Deep Field-South

    NASA Technical Reports Server (NTRS)

    Young, M.; Brandt, W. N.; Xue, Y. Q.; Paolillo, D. M.; Alexander, F. E.; Bauer, F. E.; Lehmer, B. D.; Luo, B.; Shemmer, O.; Schneider, D. P.; hide

    2012-01-01

    The 4 Ms Chandra Deep Field-South (CDF-S) and other deep X-ray surveys have been highly effective at selecting active galactic nuclei (AGN). However, cosmologically distant low-luminosity AGN (LLAGN) have remained a challenge to identify due to significant contribution from the host galaxy. We identify long-term X ray variability (approx. month years, observed frame) in 20 of 92 CDF-S galaxies spanning redshifts approx equals 00.8 - 1.02 that do not meet other AGN selection criteria. We show that the observed variability cannot be explained by X-ray binary populations or ultraluminous X-ray sources, so the variability is most likely caused by accretion onto a supermassive black hole. The variable galaxies are not heavily obscured in general, with a stacked effective power-law photon index of Gamma(sub Stack) approx equals 1.93 +/- 0.13, and arc therefore likely LLAGN. The LLAGN tend to lie it factor of approx equal 6-89 below the extrapolated linear variability-luminosity relation measured for luminous AGN. This may he explained by their lower accretion rates. Variability-independent black-hole mass and accretion-rate estimates for variable galaxies show that they sample a significantly different black hole mass-accretion-rate space, with masses a factor of 2.4 lower and accretion rates a factor of 22.5 lower than variable luminous AGNs at the same redshift. We find that an empirical model based on a universal broken power-law power spectral density function, where the break frequency depends on SMBH mass and accretion rate, roughly reproduces the shape, but not the normalization, of the variability-luminosity trends measured for variable galaxies and more luminous AGNs.

  20. Declining Black Employment.

    ERIC Educational Resources Information Center

    Vedder, Richard; Gallaway, Lowell

    1993-01-01

    Explores income inequality during declining African-American employment, examines current welfare systems, and suggests ways to improve the economic disadvantages of minority groups. Letting markets work can improve the economic status of African Americans. The present dual African-American economy, a market economy and an entitlement economy, is…

  1. Latency-information theory and applications: Part III. On the discovery of the space dual of the laws of motion in physics

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2008-04-01

    In this third of a multi-paper series the discovery of a space dual for the laws of motion is reported and named the laws of retention. This space-time duality in physics is found to inherently surface from a latency-information theory (LIT) that is treated in the first two papers of this multi-paper series. A motion-coder and a retention-coder are fundamental elements of a LIT's recognition-communication system. While a LIT's motion-coder addresses motion-time issues of knowledge motion, a LIT's retention-coder addresses retention-space issues of knowledge retention. For the design of a motion-coder, such as a modulation-antenna system, the laws of motion in physics are used while for the design of a retention-coder, such as a write/read memory, the newly advanced laws of retention can be used. Furthermore, while the laws of motion reflect a configuration of space certainty, the laws of retention reflect a passing of time uncertainty. Since the retention duals of motion concepts are too many to cover in a single publication, the discussion will be centered on the retention duals for Newton's Principia and the gravitational law, Coulomb's electrical law, Maxwell's equations, Einstein's relativity theory, quantum mechanics, and the uncertainty principle. Furthermore the retention duals will be illustrated with an uncharged and non-rotating black hole (UNBH). A UNBH is the retention dual of a vacuum since the UNBH and vacuum offer, from a theoretical perspective, the least resistance to knowledge retention and motion, respectively. Using this space-time duality insight it will be shown that the speed of light in a vacuum of c M=2.9979 x 10 8 meters/sec has a retention dual, herein called the pace of dark in a UNBH of c R=6.1123 x 10 63 secs/m 3 where 'pace' refers to the expected retention-time per retention-space for the 'dark' knowledge residing in a black hole.

  2. Regenerative fuel cell study for satellites in GEO orbit

    NASA Technical Reports Server (NTRS)

    Levy, Alexander; Vandine, Leslie L.; Stedman, James K.

    1987-01-01

    Summarized are the results of a 12-month study to identify high performance regenerative hydrogen-oxygen fuel cell concepts for geosynchronous satellite application. Emphasis was placed on concepts with the potential for high energy density (W-hr/lb) and passive means for water and heat management to maximize system reliability. Both polymer membrane and alkaline electrolyte fuel cells were considered, with emphasis on the alkaline cell because of its high performance, advanced state of development, and proven ability to operate in a launch and space environment. Three alkaline system concepts were studied. The first, the integrated design, utilized a configuration in which the fuel cell and electrolysis cells are alternately stacked inside a pressure vessel. Product water is transferred by diffusion during electrolysis and waste heat is conducted through the pressure wall, thus using completely passive means for transfer and control. The second alkaline system, the dedicated design, uses a separate fuel cell and electrolysis stack so that each unit can be optimized in size and weight based on its orbital operating period. The third design was a dual function stack configuration, in which each cell can operate in both fuel cell and electrolysis mode, thus eliminating the need for two separate stacks and associated equipment. Results indicate that using near term technology energy densities between 46 and 52 W-hr/lb can be achieved at efficiencies of 55 percent. System densities of 115 W-hr/lb are contemplated.

  3. Black holes, anti de Sitter space, and topological strings

    NASA Astrophysics Data System (ADS)

    Yin, Xi

    This thesis is devoted to the study of black holes in string theory, their connection to two and three dimensional anti de-Sitter space, and topological strings. We start by proposing a relation between supersymmetric black holes in four and five dimensions, as well as connections between multi-centered black holes in four dimensions and black rings in five dimensions. This connection is then applied to counting supersymmetric dyonic black holes in four dimensional string compactifications with 16 and 32 supersymmetries, respectively. We then turn to the near horizon attractor geometry AdS 2 x S2 x CY 3, and study the classical supersymmetric D-branes in this background. We also find supersymmetric black hole solutions in supergravity in AdS2 x S2, although the solutions have regions of closed timelike curves. Finally we consider the M-theory attractor geometry AdS3 x S2 x CY3, and compute the elliptic genus of the dual (0, 4) CFT by counting wrapped M2-brane states in the bulk in a dilute gas approximation. This leads to a derivation of the conjectured relation between black hole partition function and topological string amplitudes.

  4. Confirming the Low-Mass, Sub-kpc Dual AGN Candidate in SDSS J0914+085

    NASA Astrophysics Data System (ADS)

    Gultekin, Kayhan

    2016-09-01

    The frequency of dual AGNs at low galaxy/black hole mass is poorly constrained. Thus we lack a full physical understanding of the connection between galaxy mergers and AGN activity and therefore merger-driven feedback. In particular, it is unknown whether or not LLAGN can be triggered by mergers instead of only by stochastic processes. We will address this with a 50 ksec observation to test for a dual AGN in SDSS J0914+0853, a low-mass (MBH 10^6.3), dual LLAGN candidate based on serendipitous, shallow Chandra imaging. The 15-ksec data showed two X-ray sources, but the nature of the secondary source is ambiguous because of 10% pile-up and potential PSF artifacts. With deeper, short-frame-rate Chandra observations at a new roll angle, we can unambiguously determine if the secondary is real.

  5. Two retrievals from a single cue: A bottleneck persists across episodic and semantic memory.

    PubMed

    Orscheschek, Franziska; Strobach, Tilo; Schubert, Torsten; Rickard, Timothy

    2018-05-01

    There is evidence in the literature that two retrievals from long-term memory cannot occur in parallel. To date, however, that work has explored only the case of two retrievals from newly acquired episodic memory. These studies demonstrated a retrieval bottleneck even after dual-retrieval practice. That retrieval bottleneck may be a global property of long-term memory retrieval, or it may apply only to the case of two retrievals from episodic memory. In the current experiments, we explored whether that apparent dual-retrieval bottleneck applies to the case of one retrieval from episodic memory and one retrieval from highly overlearned semantic memory. Across three experiments, subjects learned to retrieve a left or right keypress response form a set of 14 unique word cues (e.g., black-right keypress). In addition, they learned a verbal response which involved retrieving the antonym of the presented cue (e.g., black-"white"). In the dual-retrieval condition, subjects had to retrieve both the keypress response and the antonym word. The results suggest that the retrieval bottleneck is superordinate to specific long-term memory systems and holds across different memory components. In addition, the results support the assumption of a cue-level response chunking account of learned retrieval parallelism.

  6. Atomic and electronic structure of exfoliated black phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolutionmore » view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.« less

  7. The Kerr/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Guica, Monica; Hartman, Thomas; Song, Wei; Strominger, Andrew

    2009-12-01

    Quantum gravity in the region very near the horizon of an extreme Kerr black hole (whose angular momentum and mass are related by J=GM2) is considered. It is shown that consistent boundary conditions exist, for which the asymptotic symmetry generators form one copy of the Virasoro algebra with central charge cL=(12J)/(ℏ). This implies that the near-horizon quantum states can be identified with those of (a chiral half of) a two-dimensional conformal field theory (CFT). Moreover, in the extreme limit, the Frolov-Thorne vacuum state reduces to a thermal density matrix with dimensionless temperature TL=(1)/(2π) and conjugate energy given by the zero mode generator, L0, of the Virasoro algebra. Assuming unitarity, the Cardy formula then gives a microscopic entropy Smicro=(2πJ)/(ℏ) for the CFT, which reproduces the macroscopic Bekenstein-Hawking entropy Smacro=(Area)/(4ℏG). The results apply to any consistent unitary quantum theory of gravity with a Kerr solution. We accordingly conjecture that extreme Kerr black holes are holographically dual to a chiral two-dimensional conformal field theory with central charge cL=(12J)/(ℏ), and, in particular, that the near-extreme black hole GRS 1915+105 is approximately dual to a CFT with cL˜2×1079.

  8. Habemus superstratum! A constructive proof of the existence of superstrata

    DOE PAGES

    Bena, Iosif; Giusto, Stefano; Russo, Rodolfo; ...

    2015-05-21

    Here, we construct the first example of a superstratum: a class of smooth horizonless supergravity solutions that are parameterized by arbitrary continuous functions of (at least) two variables and have the same charges as the supersymmetric D1-D5-P black hole. We work in Type IIB string theory on T 4 or K 3 and our solutions involve a subset of fields that can be described by a six-dimensional supergravity with two tensor multiplets. The solutions can thus be constructed using a linear structure, and we give an explicit recipe to start from a superposition of modes specified by an arbitrary functionmore » of two variables and impose regularity to obtain the full horizonless solutions in closed form. We also give the precise CFT description of these solutions and show that they are not dual to descendants of chiral primaries. They are thus much more general than all the known solutions whose CFT dual is precisely understood. Hence our construction represents a substantial step toward the ultimate goal of constructing the fully generic superstratum that can account for a finite fraction of the entropy of the three-charge black hole in the regime of parameters where the classical black hole solution exists.« less

  9. Distinguishability of black hole microstates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Ning; Ooguri, Hirosi

    We use the Holevo information to estimate distinguishability of microstates of a black hole in anti-de Sitter space by measurements one can perform on a subregion of a Cauchy surface of the dual conformal field theory. We find that microstates are not distinguishable at all until the subregion reaches a certain size and that perfect distinguishability can be achieved before the subregion covers the entire Cauchy surface. We will then compare our results with expectations from the entanglement wedge reconstruction, tensor network models, and the bit threads interpretation of the Ryu-Takayanagi formula.

  10. Distinguishability of black hole microstates

    DOE PAGES

    Bao, Ning; Ooguri, Hirosi

    2017-09-01

    We use the Holevo information to estimate distinguishability of microstates of a black hole in anti-de Sitter space by measurements one can perform on a subregion of a Cauchy surface of the dual conformal field theory. We find that microstates are not distinguishable at all until the subregion reaches a certain size and that perfect distinguishability can be achieved before the subregion covers the entire Cauchy surface. We will then compare our results with expectations from the entanglement wedge reconstruction, tensor network models, and the bit threads interpretation of the Ryu-Takayanagi formula.

  11. Evaporation of large black holes in AdS: coupling to the evaporon

    NASA Astrophysics Data System (ADS)

    Rocha, Jorge V.

    2008-08-01

    Large black holes in an asymptotically AdS spacetime have a dual description in terms of approximately thermal states in the boundary CFT. The reflecting boundary conditions of AdS prevent such black holes from evaporating completely. On the other hand, the formulation of the information paradox becomes more stringent when a black hole is allowed to evaporate. In order to address the information loss problem from the AdS/CFT perspective we then need the boundary to become partially absorptive. We present a simple model that produces the necessary changes on the boundary by coupling a bulk scalar field to the evaporon, an external field propagating in one extra spatial dimension. The interaction is localized at the boundary of AdS and leads to partial transmission into the additional space. The transmission coefficient is computed in the planar limit and perturbatively in the coupling constant. Evaporation of the large black hole corresponds to cooling down the CFT by transferring energy to an external sector.

  12. Multiwavelength Studies of Dual AGN in the Swift/BAT Sample

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Privon, George; Sartori, Lia; Nagar, Neil; Bauer, Franz Erik; Schawinski, Kevin; Ricci, Claudio; U, Vivian; Comerford, Julie; Muller-Sanchez, Francisco; Evans, Aaron; Koss, Michael; Sanders, David B.; Urry, Meg; MODA Collaboration

    2018-01-01

    For the last 30 years there has been growing evidence for a strong connection between major galaxy mergers and simultaneous episodes ofstrong star formation and signicant central supermassive black hole (SMBH) growth. A natural consequence of this scenario is that dual Active Galactic Nuclei (AGN), i.e., systems in which the two nuclear SMBHs are growing simultaneously at separations <10 kpc should be relatively common. This particular stage in a major galaxy merger, albeit short at ~hundreds Myears, is very relevant for galaxy evolution.Here we present the first results from an ongoing survey aimed to study the multiwavelength properties of the dual AGN in the neary universe, z<0.1 selected from mostly-unbiased observations at hard X-rays, E>10 keV, obtained from the Swift-BAT extragalactic survey and complemented by NuSTAR observations. Our work focuses on the study of the physical properties of the ionized, atomic and molecular gas and the dust in confirmed dual AGN by combining observations with ALMA, VLT/MUSE and SINFONI and Keck/OSIRIS among others. In addition to providing general properties of this poulation, we will further focus on two remarkable systems, NGC6240 and Mrk 463. Both systems show evidence of large kpc-scale tidal features, complex gas dynamics and kinematical evidence for both inflows and outflows.These results clearly show the importance of performing high resolution multi wavelength studies covering kpc scales in order to understandthe complex connection between black hole growth and galaxy evolution in this critical phase.Support from this work has been provided by CONICYT FONDECYT 1160999 and PFB-06/2007.

  13. Baby de Sitter black holes and dS3/CFT2

    NASA Astrophysics Data System (ADS)

    de Buyl, Sophie; Detournay, Stéphane; Giribet, Gaston; Ng, Gim Seng

    2014-02-01

    Unlike three-dimensional Einstein gravity, three-dimensional massive gravity admits asymptotically de Sitter space (dS) black hole solutions. These black holes present interesting features and provide us with toy models to study the dS/CFT correspondence. A remarkable property of these black holes is that they are always in thermal equilibrium with the cosmological horizon of the space that hosts them. This invites us to study the thermodynamics of these solutions within the context of dS/CFT. We study the asymptotic symmetry group of the theory and find that it indeed coincides with the local two-dimensional conformal algebra. The charge algebra associated to the asymptotic Killing vectors consists of two copies of the Virasoro algebra with non-vanishing central extension. We compute the mass and angular momentum of the dS black holes and verify that a naive application of Cardy's formula exactly reproduces the entropy of both the black hole and the cosmological horizon. By adapting the holographic renormalization techniques to the case of dS space, we define the boundary stress tensor of the dual Euclidean conformal field theory.

  14. Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Goulding, A. D.; Matthaey, E.; Greene, J. E.; Hickox, R. C.; Alexander, D. M.; Forman, W. R.; Jones, C.; Lehmer, B. D.; Griffis, S.; Kanek, S.; Oulmakki, M.

    2017-07-01

    Galaxy-scale bars are expected to provide an effective means for driving material toward the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). Here we present a statistically complete study of the effect of bars on average BH accretion. From a well-selected sample of 50,794 spiral galaxies (with {M}* ˜ 0.2{--}30× {10}10 {M}⊙ ) extracted from the Sloan Digital Sky Survey Galaxy Zoo 2 project, we separate those sources considered to contain galaxy-scale bars from those that do not. Using archival data taken by the Chandra X-ray Observatory, we identify X-ray luminous ({L}{{X}}≳ {10}41 {erg} {{{s}}}-1) active galactic nuclei and perform an X-ray stacking analysis on the remaining X-ray undetected sources. Through X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star-formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars ({\\dot{M}}{acc}≈ 3× {10}-5 {M}⊙ yr-1). Hence, we robustly conclude that large-scale bars have little or no effect on the average growth of BHs in nearby (z< 0.15) galaxies over gigayear timescales.

  15. Simulation of Black Hole Collisions in Asymptotically anti-de Sitter Spacetimes

    NASA Astrophysics Data System (ADS)

    Bantilan, Hans; Romatschke, Paul

    2015-04-01

    The main purpose of this talk is to describe, in detail, the necessary ingredients for achieving stable Cauchy evolution of black hole collisions in asymptotically anti-de Sitter (AdS) spacetimes. I will begin by motivating this program in terms of the heavy-ion physics it is intended to clarify. I will then give an overview of asymptotically AdS spacetimes, the mapping to the dual conformal field theory on the AdS boundary, and the method we use to numerically solve the fully non-linear Einstein field equations with AdS boundary conditions. As a concrete example of these ideas, I will describe the first proof of principle simulation of stable AdS black hole mergers in 5 dimensions.

  16. Unrewarded Object Combinations in Captive Parrots

    PubMed Central

    Auersperg, Alice Marie Isabel; Oswald, Natalie; Domanegg, Markus; Gajdon, Gyula Koppany; Bugnyar, Thomas

    2015-01-01

    In primates, complex object combinations during play are often regarded as precursors of functional behavior. Here we investigate combinatory behaviors during unrewarded object manipulation in seven parrot species, including kea, African grey parrots and Goffin cockatoos, three species previously used as model species for technical problem solving. We further examine a habitually tool using species, the black palm cockatoo. Moreover, we incorporate three neotropical species, the yellow- and the black-billed Amazon and the burrowing parakeet. Paralleling previous studies on primates and corvids, free object-object combinations and complex object-substrate combinations such as inserting objects into tubes/holes or stacking rings onto poles prevailed in the species previously linked to advanced physical cognition and tool use. In addition, free object-object combinations were intrinsically structured in Goffin cockatoos and in kea. PMID:25984564

  17. On the on-shell: the action of AdS4 black holes

    NASA Astrophysics Data System (ADS)

    Halmagyi, Nick; Lal, Shailesh

    2018-03-01

    We compute the on-shell action of static, BPS black holes in AdS4 from N=2 gauged supergravity coupled to vector multiplets and show that for a certain class it is equal to minus the entropy of the black hole. Holographic renormalization is used to demonstrate that with Neumann boundary conditions on the scalar fields, the divergent and finite contributions from the asymptotic boundary vanish. The entropy arises from the extrinsic curvature on Σ g × S 1 evaluated at the horizon, where Σ g may have any genus g ≥ 0. This provides a clarification of the equivalence between the partition function of the twisted ABJM theory on Σ g × S 1 and the entropy of the dual black hole solutions. It also demonstrates that the complete entropy resides on the AdS2 × Σ g horizon geometry, implying the absence of hair for these gravity solutions.

  18. The Weak Gravity Conjecture and the axionic black hole paradox

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Soler, Pablo

    2017-09-01

    In theories with a perturbatively massless 2-form (dual to an axion), a paradox may arise in the process of black hole evaporation. Schwarzschild black holes can support a non-trivial Wilson-line-type field, the integral of the 2-form around their horizon. After such an `axionic black hole' evaporates, the Wilson line must be supported by the corresponding 3-form field strength in the region formerly occupied by the black hole. In the limit of small axion decay-constant f, the energy required for this field configuration is too large. Thus, energy cannot be conserved in the process of black hole evaporation. The natural resolution of this paradox is through the presence of light strings, which allow the black hole to "shed" its axionic hair sufficiently early. This gives rise to a new Weak-Gravity-type argument in the 2-form context: small coupling, in this case f , enforces the presence of light strings or a low cutoff. We also discuss how this argument may be modified in situations where the weak coupling regime is achieved in the low-energy effective theory through an appropriate gauging of a model with a vector field and two 2-forms.

  19. Black/immigrant competition re-assessed: new evidence from Los Angeles.

    PubMed

    Waldinger, R

    1997-01-01

    Findings are presented from a survey of employers conducted to assess the impact of immigration and employer practices upon the chances of Blacks finding employment in Los Angeles. The highest ranking person involved in the hiring process at each of 44 restaurants, 46 printers, 41 hotels, and 39 furniture manufacturers was interviewed. The hiring of new employees drawn from the network of current employees seems to have the dual function of bringing immigrant communities into the workplace, while detaching vacancies from the open market, thereby reducing the number of employment opportunities for Blacks. Employers also perceived immigrants to be far more desirable employees than Blacks, partly because they believe that immigrants will work more productively. Immigrants are also seen as the more tractable laborers. Any managerial propensity to favor immigrants over Blacks will probably be reinforced by the attitudes of the mainly Latino work force, for placing a Black worker in a mainly Latino work crew may frustrate productivity given the animosity between the two ethnic groups. Blacks also appear to opt out of the low-level labor market in response to rising expectations, on the one hand, and the anticipation of encountering employment difficulties on the other.

  20. Phase transitions in Yang-Mills theories and their gravity duals

    NASA Astrophysics Data System (ADS)

    Marsano, Joseph Daniel

    This thesis is a study of the thermal phase structure of systems that admit dual gauge theory and string theory descriptions. In a pair of examples, we explore the connection between perturbative Yang-Mills and gravitational thermodynamics which arises from the fact that these descriptions probe different corners of a single phase diagram. The structure that emerges from a detailed study of these isolated regions generally suggests a natural conjecture how they may be connected to one another within the full phase diagram. This permits the identification of interesting phenomena in the gauge and gravity regimes under a continuous change in parameters. We begin by studying the AdS5/CFT 4 system which, when the supergravity description is valid, exhibits a first order Hawking-Page phase transition as a function of temperature from a thermal gas of gravitons to a large black hole. In the perturbative Yang-Mills regime, we find that the free theory exhibits a weakly first order deconfinement transition whose precise nature at small nonzero coupling depends on the result of a nontrivial perturbative computation. It is conjectured that this deconfinement transition is continuously connected in the full phase diagram to the Hawking-Page transition at strong coupling, with the confined phase identified with the graviton gas and the deconfined phase identified with the black hole. We then turn to the study of Gregory-Laflamme (GL) black hole/black string transitions in supergravity and their realization in a setup that admits a dual description via the maximally supersymmetric Yang-Mills theory on T2. The thermodynamics of Yang-Mills theories on low dimensional tori is studied in detail revealing an intricate structure of which the GL transition at strong coupling is a small piece. We are led to conjecture that GL physics is continuously connected to deconfinement in maximally supersymmetric 0 + 1-dimensional gauged matrix quantum mechanics. This identification will then permit us to probe GL transitions from the gauge theory point of view and comment on some puzzles regarding their precise nature.

  1. Holographic studies of thermal gauge theories with flavour

    NASA Astrophysics Data System (ADS)

    Thomson, Rowan F. M.

    The AdS/CFT correspondence and its extensions to more general gauge/gravity dualities have provided a powerful framework for the study of strongly coupled gauge theories. This thesis explores properties of a large class of thermal strongly coupled gauge theories using the gravity dual. In order to bring the holographic framework closer to Quantum Chromodynamics (QCD), we study theories with matter in the fundamental representation. In particular, we focus on the holographic dual of SU ( N c ) supersymmetric Yang-Mills theory coupled to N f = N c flavours of fundamental matter at finite temperature, which is realised as N f Dq-brane probes in the near horizon (black hole) geometry of N c black Dp-branes. We explore many aspects of these Dp/Dq brane systems, often focussing on the D3/D7 brane system which is dual to a four dimensional gauge theory. We study the thermodynamics of the Dq-brane probes in the black hole geometry. At low temperature, the branes sit outside the black hole and the meson spectrum is discrete and possesses a mass gap. As the temperature increases, the branes approach a critical solution. Eventually, they fall into the horizon and a phase transition occurs. At large N c and large 't Hooft coupling, we show that this phase transition is always first order. We calculate the free energy, entropy and energy densities, as well as the speed of sound in these systems. We compute the meson spectrum for brane embeddings outside the horizon and find that tachyonic modes appear where this phase is expected to be unstable from thermodynamic considerations. We study the system at non-zero baryon density n b and find that there is a line of phase transitions for small n b , terminating at a critical point with finite n b . We demonstrate that, to leading order in N f / N c , the viscosity to entropy density ratio in these theories saturates the conjectured universal bound e/ S >= 1/4p. Finally, we compute spectral functions and diffusion constants for fundamental matter in the high temperature phase of the D3/D7 theory.

  2. Flat-on ambipolar triphenylamine/C60 nano-stacks formed from the self-organization of a pyramid-sphere-shaped amphiphile.

    PubMed

    Liang, Wei-Wei; Huang, Chi-Feng; Wu, Kuan-Yi; Wu, San-Lien; Chang, Shu-Ting; Cheng, Yen-Ju; Wang, Chien-Lung

    2016-04-21

    A giant amphiphile, which is constructed with an amorphous nano-pyramid (triphenylamine, TPA) and a crystalline nano-sphere (C 60 ), was synthesized. Structural characterization indicates that this pyramid-sphere-shaped amphiphile ( TPA-C 60 ) forms a solvent-induced ordered phase, in which the two constituent units self-assemble into alternating stacks of two-dimensional (2D) TPA and C 60 nano-sheets. Due to the complexity of the molecular structure and the amorphous nature of the nano-pyramid, phase formation was driven by intermolecular C 60 -C 60 interactions and the ordered phase could not be reformed from the TPA-C 60 melt. Oriented crystal arrays of TPA-C 60 , which contain flat-on TPA/C 60 nano-stacks, can be obtained via a PDMS-assisted crystallization (PAC) technique. The flat-on dual-channel supramolecular structure of TPA-C 60 delivered ambipolar and balanced charge-transport characteristics with an average μ e of 2.11 × 10 -4 cm 2 V -1 s -1 and μ h of 3.37 × 10 -4 cm 2 V -1 s -1 . The anisotropic charge-transport ability of the pyramid-sphere-shaped amphiphile was further understood based on the lattice structure and the lattice orientation of TPA-C 60 revealed from electron diffraction analyses.

  3. Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C

    DOE PAGES

    Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...

    2016-02-03

    Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less

  4. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure.

    PubMed

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling

    2017-01-25

    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas.

  5. Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling

    NASA Astrophysics Data System (ADS)

    Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2017-04-01

    Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.

  6. Progress towards a 30% efficient GaInP/Si tandem solar cells

    DOE PAGES

    Essig, Stephanie; Ward, Scott; Steiner, Myles A.; ...

    2015-08-28

    The performance of dual-junction solar cells with a Si bottom cell has been investigated both theoretically and experimentally. Simulations show that adding a top junction with an energy bandgap of 1.6 -1.9 eV to a standard silicon solar cell enables efficiencies over 38%. Currently, top junctions of GaInP (1.8 eV) are the most promising as they can achieve 1-sun efficiencies of 20.8% [1]. We fabricated mechanically stacked, four terminal GaInP/Si tandem solar cells using a transparent adhesive between the subcells. These tandem devices achieved an efficiency of 27% under AM1.5 g spectral conditions. Furthermore, higher efficiencies can be achieved bymore » using an improved Si-bottom cell and by optimizing the dual-junction device for long-wavelength light and luminescent coupling between the two junctions.« less

  7. Earning "Dual Degrees": Black Bookstores as Alternative Knowledge Spaces

    ERIC Educational Resources Information Center

    Fisher, Maisha T.

    2006-01-01

    This article examines the role of two African American-owned and -operated bookstores in the literacy practices and education of their participants. Part of a larger ethnographic study of Participatory Literacy Communities (PLCs), this study shows how featured authors and audience participants considered these bookstores as both alternative and…

  8. The Atlanta University Center: A Consortium-Based Dual Degree Engineering Program

    ERIC Educational Resources Information Center

    Jackson, Marilyn T.

    2007-01-01

    The Atlanta University Center (AUC) comprises five historically black colleges and a centralized library. All are separate institutions, each having its own board of directors, president, infrastructure, students, faculty, staff, and traditions. To encourage coordination of effort and resources, the AUC was formed and the first formal cooperative…

  9. Stress and Stress Management Strategies Among Botswana Women Lecturers.

    ERIC Educational Resources Information Center

    Loate, Irene M.; Marais, James L.

    1996-01-01

    A stress inventory administered to black women faculty at seven Botswana colleges and universities (n=201) found the greatest stressor to be student class boycotts, followed by uncertainties about their institution's future and dual roles. Almost two-thirds experienced fatigue. The most successful stress management technique was positive thinking.…

  10. A black hole quartet: New solutions and applications to string theory

    NASA Astrophysics Data System (ADS)

    Padi, Megha

    In this thesis, we study a zoo of black hole solutions which help us connect string theory to the universe we live in. The intuition for how to attack fundamental problems can often be found in a toy model. In Chapter 2, we show that three-dimensional topologically massive gravity with a negative cosmological constant -ℓ -2 and coupling constant has "warped AdS3" solutions with SL(2, R ) x U(1) isometry. For muℓ > 3, we show that certain discrete quotients of warped AdS3 lead to black holes. Their thermodynamics is consistent with the existence of a holographic dual CFT with central charges cR = 15mℓ 2+81Gmm ℓ2+27 and cL = 12mℓ 2Gmm ℓ2+27 . The entropy of many supersymmetric black holes have been accounted for, but more realistic non-supersymmetric black holes have been largely overlooked. In Chapter 3, we derive new single-centered and multi-centered non-BPS black hole solutions for several four dimensional models which, after Kaluza-Klein reduction, admit a description in terms of a sigma model with symmetric target space. In particular, we provide the exact solution with generic charges and asymptotic moduli in N=2 supergravity coupled to one vector multiplet. As it stands, the current formulation of string theory allows for an extremely large number of possible solutions (or vacua). We first analyze this landscape by looking for universal characteristics. In Chapter 4, we provide evidence for the conjecture that gravity is always the weakest force in any string compactification. We show that, in several examples arising in string theory, higher-derivative corrections always make extremal non-supersymmetric black holes lighter than the classical bound M/Q = 1. In Chapter 5, we construct novel black hole bound states, called orientiholes, that are T-dual to IIB orientifold compactifications. The gravitational entropy of such orientiholes provides an "experimental" estimate of the number of vacua in various sectors of the IIB landscape. Furthermore, basic physical properties of orientiholes map to (sometimes subtle) microscopic features, thus providing a useful alternative viewpoint on a number of issues arising in D-brane model building. We also suggest a relation to the topological string analogous to the OSV conjecture.

  11. PROCESS WATER BUILDING, TRA605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES REMAINED OPEN. CAMERA FACES EASTERLY. NOTE DUAL PIPES BETWEEN REACTOR BUILDING AND NORTH SIDE OF PROCESS WATER BUILDING. PIPING NEAR WORKING RESERVOIR HEADS FOR RETENTION RESERVOIR. PIPE FROM DEMINERALIZER ENTERS MTR FROM NORTH. SEE ALSO TRENCH FOR COOLANT AIR DUCT AT SOUTH SIDE OF MTR AND LEADING TO FAN HOUSE AND STACK. INL NEGATIVE NO. 2966-A. Unknown Photographer, 7/31/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Structural Engineering. Loads. Design Manual 2.2.

    DTIC Science & Technology

    1981-11-01

    cast, rolled 534 Locust 46 Bronze, 7.9 to 14% Sn 509 Maple, hard 43 Bronze, aluminum 481 Maple, white 33 Copper , cast, rolled 556 Oak, chestnut 54... Copper ore, pyrites 262 Oak, live 59 Gold, cast, hammered 1205 Oak, red, black 41 Gold, bars, stacked 1133 Oak, white 46 Gold, coin in bags 1084 Pine...Phosphate rock, apatite 200 Glass, crystal 184 Porphyry 172 Hay and straw - bales 20 Pumice, natural 40 Leather 59 Quartz, flint 165 Paper 58 Sandstone

  13. Holographic complexity and noncommutative gauge theory

    NASA Astrophysics Data System (ADS)

    Couch, Josiah; Eccles, Stefan; Fischler, Willy; Xiao, Ming-Lei

    2018-03-01

    We study the holographic complexity of noncommutative field theories. The four-dimensional N=4 noncommutative super Yang-Mills theory with Moyal algebra along two of the spatial directions has a well known holographic dual as a type IIB supergravity theory with a stack of D3 branes and non-trivial NS-NS B fields. We start from this example and find that the late time holographic complexity growth rate, based on the "complexity equals action" conjecture, experiences an enhancement when the non-commutativity is turned on. This enhancement saturates a new limit which is exactly 1/4 larger than the commutative value. We then attempt to give a quantum mechanics explanation of the enhancement. Finite time behavior of the complexity growth rate is also studied. Inspired by the non-trivial result, we move on to more general setup in string theory where we have a stack of D p branes and also turn on the B field. Multiple noncommutative directions are considered in higher p cases.

  14. Holographic dark energy from fluid/gravity duality constraint by cosmological observations

    NASA Astrophysics Data System (ADS)

    Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.

    2018-06-01

    In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.

  15. Pair production of scalar dyons in Kerr-Newman black holes

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi

    2018-06-01

    We study the spontaneous pair production of scalar dyons in the near extremal dyonic Kerr-Newman (KN) black hole, which contains a warped AdS3 structure in the near horizon region. The leading term contribution of the pair production rate and the absorption cross section ratio are also calculated using the Hamilton-Jacobi approach and the thermal interpretation is given. In addition, the holographic dual conformal field theories (CFTs) descriptions of the pair production rate and absorption cross section ratios are analyzed both in the J-, Q- and P-pictures respectively based on the threefold dyonic KN/CFTs dualities.

  16. Black holes as quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2018-03-01

    We model spherically symmetric black holes within the group field theory formalism for quantum gravity via generalized condensate states, involving sums over arbitrarily refined graphs (dual to three-dimensional triangulations). The construction relies heavily on both the combinatorial tools of random tensor models and the quantum geometric data of loop quantum gravity, both part of the group field theory formalism. Armed with the detailed microscopic structure, we compute the entropy associated with the black hole horizon, which turns out to be equivalently the Boltzmann entropy of its microscopic degrees of freedom and the entanglement entropy between the inside and outside regions. We recover the area law under very general conditions, as well as the Bekenstein-Hawking formula. The result is also shown to be generically independent of any specific value of the Immirzi parameter.

  17. Reversible hydration and aqueous exfoliation of the acetate-intercalated layered double hydroxide of Ni and Al: Observation of an ordered interstratified phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohara, G.V.; Vishnu Kamath, P., E-mail: vishnukamath8@hotmail.com; Milius, Wolfgang

    2012-12-15

    Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueousmore » exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 {mu}m. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration-dehydration of Ni/Al-CH{sub 3}COO LDH. Highlights: Black-Right-Pointing-Pointer Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. Black-Right-Pointing-Pointer Intercalated acetate ion shows reversible hydration with variation in humidity. Black-Right-Pointing-Pointer An ordered interstratified phase was observed during hydration/dehydration cycle. Black-Right-Pointing-Pointer A solution type equilibrium is observed between hydration-dehydration phases. Black-Right-Pointing-Pointer These LDHs undergo facile aqueous exfoliation.« less

  18. Characterizing substance use and mental health profiles of cigar, blunt, and non-blunt marijuana users from the National Survey of Drug Use and Health.

    PubMed

    Cohn, Amy; Johnson, Amanda; Ehlke, Sarah; Villanti, Andrea C

    2016-03-01

    Smoking marijuana in a cigar (blunt use) is gaining popularity in the U.S. Research suggests that blunt users differ from exclusive cigar or marijuana users on a variety of demographic and substance use factors. Misreporting of blunts and cigars is also common, particularly among young people, and may lead to inaccurate prevalence estimates. To determine subtype differences, this study investigated the prevalence and demographic, mental health, and substance use correlates of four mutually-exclusive groups of blunt, cigar, and marijuana past 30-day users (cigar-only, blunt-only, non-blunt marijuana, or dual cigar-blunt). Data were analyzed from the 2013 National Survey of Drug Use and Health. In weighted multinomial logistic regression models, respondents who were younger, Black, and who had used tobacco, alcohol, or other drugs in the past 30-days had the highest odds of reporting blunt-only or dual cigar-blunt use. Those reporting blunt-only and dual cigar-blunt use also endorsed a greater number of marijuana and alcohol use disorder symptoms compared to those reporting cigar-only and non-blunt marijuana use. Lower marijuana risk perceptions were associated with increased odds of marijuana use with or without blunts. Major depressive episode was uniquely associated with non-blunt marijuana use. With respect to misclassifiers, respondents who reported past 30-day blunt use but not past 30-day marijuana use were younger, Black, female, and had lower education and income. Those who report blunt-only and dual cigar-blunt use showed the most severe risk profiles. Communicating health consequences and risks of blunt use should be directed toward specific subgroups. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Black optic display

    DOEpatents

    Veligdan, James T.

    1997-01-01

    An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.

  20. Dual-Gated MoTe2/MoS2 van der Waals Heterojunction p-n Diode

    NASA Astrophysics Data System (ADS)

    Rai, Amritesh; Movva, Hema C. P.; Kang, Sangwoo; Larentis, Stefano; Roy, Anupam; Tutuc, Emanuel; Banerjee, Sanjay K.

    2D materials are promising for future electronic and optoelectronic applications. In this regard, it is important to realize p-n diodes, the most fundamental building block of all modern semiconductor devices, based on these 2D materials. While it is challenging to achieve homojunction diodes in 2D semiconductors due to lack of reliable selective doping techniques, it is relatively easier to achieve diode-like behavior in van der Waals (vdW) heterostructures comprising different 2D semiconductors. Here, we demonstrate dual-gated vdW heterojunction p-n diodes based on p-type MoTe2 and n-type MoS2, with hBN as the top and bottom gate dielectric. The heterostructure stack is assembled using a polymer-based `dry-transfer' technique. Pt contact is used for hole injection in MoTe2, whereas Ag is used for electron injection in MoS2. The dual-gates allow for independent electrostatic tuning of the carriers in MoTe2 and MoS2. Room temperature interlayer current-voltage characteristics reveal a strong gate-tunable rectification behavior. At low temperatures, the diode turn-on voltage increases, whereas the reverse saturation current decreases, in accordance with conventional p-n diode behavior. Dual-Gated MoTe2/MoS2 van der Waals Heterojunction p-n Diode.

  1. Nonlinear evolution dynamics of holographic superconductor model with scalar self-interaction

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zi, Tieguang; Zhang, Hongbao

    2018-04-01

    We investigate the holographic superconductor model that is described by the Einstein-Maxwell theory with the self-interaction term λ |Ψ |4 of complex scalar field in asymptotic anti-de Sitter (AdS) spacetime. Below critical temperature Tc, the planar Reissner-Nordström-AdS black hole is unstable due to the near-horizon scalar condensation instability. We study the full nonlinear development of this instability by numerically solving the gravitational dynamics in the asymptotic AdS spacetime, and observe a dynamical process from the perturbed Reissner-Nordström-AdS black hole to a hairy black hole when the initial black hole temperature T

  2. Black holes in higher spin supergravity

    NASA Astrophysics Data System (ADS)

    Datta, Shouvik; David, Justin R.

    2013-07-01

    We study black hole solutions in Chern-Simons higher spin supergravity based on the superalgebra sl(3|2). These black hole solutions have a U(1) gauge field and a spin 2 hair in addition to the spin 3 hair. These additional fields correspond to the R-symmetry charges of the supergroup sl(3|2). Using the relation between the bulk field equations and the Ward identities of a CFT with {N} = 2 super- {{{W}}_3} symmetry, we identify the bulk charges and chemical potentials with those of the boundary CFT. From these identifications we see that a suitable set of variables to study this black hole is in terms of the charges present in three decoupled bosonic sub-algebras of the {N} = 2 super- {{{W}}_3} algebra. The entropy and the partition function of these R-charged black holes are then evaluated in terms of the charges of the bulk theory as well as in terms of its chemical potentials. We then compute the partition function in the dual CFT and find exact agreement with the bulk partition function.

  3. White Ethnics, Racial Prejudice, and Labor Market Segmentation.

    ERIC Educational Resources Information Center

    Cummings, Scott

    The contemporary conflict between blacks and selected white ethnic groups (Catholic immigrants, Jews) is the product of competition for jobs in the secondary labor market. Radical economists have described the existence of a dual labor market within the American economy. The idea of this segmented labor market provides a useful way to integrate…

  4. Dual Deviants: The Balancing Act of Black Graduate Students

    ERIC Educational Resources Information Center

    Conyers, Addrain

    2009-01-01

    The study of deviant behavior was designed to focus on departure from a "group"'s normative expectations; however, the primary focus of deviance research has been the departure from the "dominant" group's norms. What happens when one is stigmatized by the dominant group and their minority group? Making use of interview data, this study…

  5. Pay Premiums for Economic Sector and Race: A Decomposition.

    ERIC Educational Resources Information Center

    Daymont, Thomas N.

    Using data from the older men's file of the National Longitudinal Surveys, two issues related to the labor market implications of dual economy theory were examined: variations in rates of pay among economic sectors (competitive, monopoly, and public) and variation in relative opportunities for blacks across sectors. The primary analytical problem…

  6. Factors leading African Americans and black Caribbeans to use social work services for treating mental and substance use disorders.

    PubMed

    Cheng, Tyrone C; Robinson, Michael A

    2013-05-01

    This secondary analysis of 5,000 African Americans and black Caribbeans explored how their use of social work services to address mental and substance use disorders was associated with the disorder involved as well as their perceived need for services, belief system, family resources, proximity to services, social-structural factors, and demographic characteristics. The sample was extracted from a national data set. Results of multinomial logistic regression showed that use of social work services was increased by dual diagnosis, substance use disorder alone, and mental disorder alone; by deteriorating mental health; by perceived stigma in treatment use; by welfare receipt and insurance coverage for mental health services; and by college graduation. Results also showed that use of services outside social work was promoted by dual diagnosis, substance use disorder alone, and mental disorder alone; by deteriorating mental health; by experience of racial discrimination; by insurance coverage for mental health services; by college education or graduation; and by female gender and increasing age. The findings' implications for social work intervention and education are discussed.

  7. Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction.

    PubMed

    Billo, Tadesse; Fu, Fang-Yu; Raghunath, Putikam; Shown, Indrajit; Chen, Wei-Fu; Lien, Hsiang-Ting; Shen, Tzu-Hsien; Lee, Jyh-Fu; Chan, Ting-Shan; Huang, Kuo-You; Wu, Chih-I; Lin, M C; Hwang, Jih-Shang; Lee, Chih-Hao; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-01

    One of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO 2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO 2 (Ni/TiO 2[Vo] ) with built-in dual active sites for selective photocatalytic CO 2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO 2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO 2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO 2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Analysis of the Fisher solution

    NASA Astrophysics Data System (ADS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2010-01-01

    We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the “scalar charge” Σ. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,Σ) maps the exterior region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its “big bang” and “big crunch.” The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are “dual to the horizon.”

  9. Analysis of the Fisher solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2010-01-15

    We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the 'scalar charge' {Sigma}. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,{Sigma}) maps the exteriormore » region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its 'big bang' and 'big crunch'. The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are 'dual to the horizon'.« less

  10. Dual-frequency transducer with a wideband PVDF receiver for contrast-enhanced, adjustable harmonic imaging

    NASA Astrophysics Data System (ADS)

    Kim, Jinwook; Lindsey, Brooks D.; Li, Sibo; Dayton, Paul A.; Jiang, Xiaoning

    2017-04-01

    Acoustic angiography is a contrast-enhanced, superharmonic microvascular imaging method. It has shown the capability of high-resolution and high-contrast-to-tissue-ratio (CTR) imaging for vascular structure near tumor. Dual-frequency ultrasound transducers and arrays are usually used for this new imaging technique. Stacked-type dual-frequency transducers have been developed for this vascular imaging method by exciting injected microbubble contrast agent (MCA) in the vessels with low-frequency (1-5 MHz), moderate power ultrasound burst waves and receiving the superharmonic responses from MCA by a high-frequency receiver (>10 MHz). The main challenge of the conventional dual-frequency transducers is a limited penetration depth (<25 mm) due to the insufficient receiving sensitivity for highfrequency harmonic signal detection. A receiver with a high receiving sensitivity spanning a wide superharmonic frequency range (3rd to 6th) enables selectable bubble harmonic detection considering the required penetration depth. Here, we develop a new dual-frequency transducer composed of a 2 MHz 1-3 composite transmitter and a polyvinylidene fluoride (PVDF) receiver with a receiving frequency range of 4-12 MHz for adjustable harmonic imaging. The developed transducer was tested for harmonic responses from a microbubble-injected vessel-mimicking tube positioned 45 mm away. Despite the long imaging distance (45 mm), the prototype transducer detected clear harmonic response with the contrast-to-noise ratio of 6-20 dB and the -6 dB axial resolution of 200-350 μm for imaging a 200 um-diameter cellulose tube filled with microbubbles.

  11. The Dual-Time Physics of the Universe

    NASA Astrophysics Data System (ADS)

    Suh, Paul

    2008-04-01

    Novel physics founded on a dual and commensurate space-time universe explicates the nature of dark matter and energy [see APS 2007 Spring Meeting]. Its governing principles also illuminate how the dark matter and energy become unobservable, why the dark energy still suffuses the universe while the observable energy had long faded into the cosmic microwave background, how the black hole singularity is circumvented, why the supernovae shone brighter eight billion years ago, what energy had powered the big-bang inflationary expansion, how the expansion of the universe began to accelerate about five billion years go, and other formidable cosmological puzzles. This paper is available on request to pksuh@msn.com.

  12. Charged Rényi entropies in CFTs with Einstein-Gauss-Bonnet holographic duals

    NASA Astrophysics Data System (ADS)

    Pastras, Georgios; Manolopoulos, Dimitrios

    2014-11-01

    We calculate the Rényi entropy S q ( μ, λ), for spherical entangling surfaces in CFT's with Einstein-Gauss-Bonnet-Maxwell holographic duals. Rényi entropies must obey some interesting inequalities by definition. However, for Gauss-Bonnet couplings λ, larger than specific value, but still allowed by causality, we observe a violation of the inequality , which is related to the existence of negative entropy black holes, providing interesting restrictions in the bulk theory. Moreover, we find an interesting distinction of the behaviour of the analytic continuation of S q ( μ, λ) for imaginary chemical potential, between negative and non-negative λ.

  13. Investigating Supermassive Black Hole Spin at Different Redshift

    NASA Astrophysics Data System (ADS)

    Sinanan-Singh, Jasmine

    2018-01-01

    Supermassive black hole (SMBH) spin encodes vital information about the history of SMBH growth. High spins indicate a history of growth through large mass accretion events, which spin-up the black hole; Intermediate spins indicate a history of galactic mergers, which don't tend to systemcatically spin-up or spin-down black holes; low spins are attributed to successive, small accretion events with random orientations. Examining spin over different redshifts will help us understand the relative growth of SMBHs by mergers or accretion over cosmic time, an important part of understanding how SMBHs and their host galaxies co-evolved over time. To study spin, we compute the Fe K alpha emission line from the X-ray spectra of AGN sources in the Chandra-COSMOS Legacy Survey. We stack rest frame AGN spectra to improve the signal-to-noise ratio since the photon counts are low for individual spectra, and then average the spectra using an unwieghted mean. Our method is derived from Corral et al. (2008). We test our method on the two brightest sources in the COSMOS Survey and compute the rest frame average Fe K alpha emission line for different redshift bins. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  14. Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Markham; Joseph Cosgrove; David Marran

    1999-05-31

    This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustionmore » flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.« less

  15. Axionic black branes in the k -essence sector of the Horndeski model

    NASA Astrophysics Data System (ADS)

    Cisterna, Adolfo; Hassaine, Mokhtar; Oliva, Julio; Rinaldi, Massimiliano

    2017-12-01

    We construct new black brane solutions in the context of Horndeski gravity, in particular, in its K-essence sector. These models are supported by axion scalar fields that depend only on the horizon coordinates. The dynamics of these fields is determined by a K-essence term that includes the standard kinetic term X and a correction of the form Xk. We find both neutral and charged exact and analytic solutions in D -dimensions, which are asymptotically anti-de Sitter. Then, we describe in detail the thermodynamical properties of the four-dimensional solutions and we compute the dual holographic DC conductivity.

  16. Mercury (Hg) emissions from domestic biomass combustion for space heating.

    PubMed

    Huang, Jiaoyan; Hopke, Philip K; Choi, Hyun-Deok; Laing, James R; Cui, Huailue; Zananski, Tiffany J; Chandrasekaran, Sriraam Ramanathan; Rattigan, Oliver V; Holsen, Thomas M

    2011-09-01

    Three mercury (Hg) species (gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and fine particulate-bound mercury (PBM(2.5))) were measured in the stack of a small scale wood combustion chamber at 400°C, in the stack of an advanced wood boiler, and in two areas influenced by wood combustion. The low temperature process (lab-scale) emitted mostly GEM (∼99% when burning wood pellets and ∼95% when burning unprocessed wood). The high temperature wood boiler emitted a greater proportion of oxidized Hg (approximately 65%) than the low temperature system. In field measurements, mean PBM(2.5) concentrations at the rural and urban sites in winter were statistically significantly higher than in warmer seasons and were well correlated with Delta-C concentrations, a wood combustion indictor measured by an aethalometer (UV-absorbable carbon minus black carbon). Overall the results suggest that wood combustion may be an important source of oxidized mercury (mostly in the particulate phase) in northern climates in winter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The gravity dual of Rényi entropy.

    PubMed

    Dong, Xi

    2016-08-12

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Rényi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometric prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Rényi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Rényi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity.

  18. The gravity dual of Rényi entropy

    PubMed Central

    Dong, Xi

    2016-01-01

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Rényi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometric prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Rényi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Rényi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity. PMID:27515122

  19. The Dialectics of African Education and Western Discourses: Counter-Hegemonic Perspectives. Black Studies and Critical Thinking. Volume 21

    ERIC Educational Resources Information Center

    Wright, Handel Kashope, Ed.; Abdi, Ali A., Ed.

    2012-01-01

    "The Dialectics of African Education and Western Discourses" addresses how continental Africans who have worked or are currently working in the Canadian academy address their dual legacy of African and Euro-American knowledge paradigms. Reflecting a range of approaches to hegemonic Euro-American paradigms that can be summarized as…

  20. Alaska High Altitude Photography Program

    NASA Technical Reports Server (NTRS)

    Petersen, Earl V.; Knutson, Martin A.; Ekstrand, Robert E.

    1986-01-01

    In 1978, the Alaska High Altitude Photography Program was initiated to obtain simultaneous black and white and color IR aerial photography of Alaska. Dual RC-10 and Zeiss camera systems were used for this program on NASA's U-2 and WB-57F, respectively. Data collection, handling, and distribution are discussed as well as general applications and the current status.

  1. Dual Optical Comb LWIR Source and Sensor

    DTIC Science & Technology

    2017-10-12

    Figure 39. Locking loop only controls one parameter, whereas there are two free- running parameters to control...optical frequency, along with a 12 point running average (black) equivalent to a 4 cm -1 resolution. .............................. 52 Figure 65...and processed on a single epitaxial substrate. Each OFC will be electrically driven and free- running (requiring no optical locking mechanisms). This

  2. Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery.

    PubMed

    Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin

    2017-09-01

    A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g -1 during the 200th cycle at current density of 100 mA g -1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A 20-15 ka high-resolution paleomagnetic secular variation record from Black Sea sediments - no evidence for the 'Hilina Pali excursion'?

    NASA Astrophysics Data System (ADS)

    Liu, Jiabo; Nowaczyk, Norbert R.; Frank, Ute; Arz, Helge W.

    2018-06-01

    A comprehensive magnetostratigraphic investigation on sixteen sediment cores from the southeastern Black Sea yielded a very detailed high-quality paleosecular variation (PSV) record spanning from 20 to 15 ka. The age models are based on radiocarbon dating, stratigraphic correlation, and tephrochronology. Further age constraints were obtained by correlating four meltwater events, described from the western Black Sea, ranging in age from about 17 to 15 ka, with maxima in K/Ti ratios, obtained from X-ray fluorescence (XRF) scanning, and minima in S-ratios, reflecting increased hematite content, in the studied cores. Since the sedimentation rates in the investigated time window are up to 50 cm ka-1, the obtained PSVs records enabled a stacking using 50-yr bins. A directional anomaly at 18.5 ka, associated with pronounced swings in inclination and declination, as well as a low in relative paleointensity (rPI), is probably contemporaneous with the Hilina Pali excursion, originally reported from Hawaiian lava flows. However, virtual geomagnetic poles (VGPs) calculated from Black Sea sediments are not located at latitudes lower than 60°N, which denotes normal, though pronounced secular variations. During the postulated Hilina Pali excursion, the VGPs calculated from Black Sea data migrated clockwise only along the coasts of the Arctic Ocean from NE Canada (20.0 ka), via Alaska (18.6 ka) and NE Siberia (18.0 ka) to Svalbard (17.0 ka), then looping clockwise through the Eastern Arctic Ocean.

  4. Self-organized, effective medium black silicon antireflection structures for silicon optics in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    Thanks to its high quality and low cost, silicon is the material of choice for optical devices operating in the mid-infrared (MIR; 2 μm to 6 μm wavelength). Unfortunately in this spectral region, the refractive index is comparably high (about 3.5) and leads to severe reflection losses of about 30% per interface. In this work, we demonstrate that self-organized, statistical Black Silicon structures, fabricated by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE), can be used to effectively suppress interface reflection. More importantly, it is shown that antireflection can be achieved in an image-preserving, non-scattering way. This enables Black Silicon antireflection structures (ARS) for imaging applications in the MIR. It is demonstrated that specular transmittances of 97% can be easily achieved on both flat and curved substrates, e.g. lenses. Moreover, by a combined optical and morphological analysis of a multitude of different Black Silicon ARS, an effective medium criterion for the examined structures is derived that can also be used as a design rule for maximizing sample transmittance in a desired wavelength range. In addition, we show that the mechanical durability of the structures can be greatly enhanced by coating with hard dielectric materials like diamond-like carbon (DLC), hence enabling practical applications. Finally, the distinct advantages of statistical Black Silicon ARS over conventional AR layer stacks are discussed: simple applicability to topological substrates, absence of thermal stress and cost-effectiveness.

  5. Generalised Spin Dynamics and Induced Bounds of Automorphic [A]nX, [AX]n NMR Systems via Dual Tensorial Sets: An Invariant Cardinality Role for CFP

    NASA Astrophysics Data System (ADS)

    Temme, Francis P.

    For uniform spins and their indistinguishable point sets of tensorial bases defining automorphic group-based Liouvillian NMR spin dynamics, the role of recursively-derived coefficients of fractional parentage (CFP) bijections and Schur duality-defined CFP(0)(n) ≡ ¦GI¦(n) group invariant cardinality is central both to understanding the impact of time-reversal invariance(TRI) spin physics, and to analysis as density-matrix formalisms over democratic recoupled (DR) dual tensorial sets, {T{ṽ}k(11.1)(SU2 × ln)}. Over abstract spin space, these tensorial sets are (ṽ) invariant-theoretic forms which lie beyond the Liouvillian graph recoupling and Racah-forms envisaged by Sanctuary [1]. This is a direct consequence of the dominance of the ln group. It leads to new views on the value of projective group actions as mappings over specialised Liouvillian carrier spaces, and on the need for the replacement of Racah-Wigner (R-W) orthogonality for distinct point sets, by criteria based on explicit properties of invariants [J. Phys.: Math. & Theor. A 41, 015210 (2008)] for multiple invariant systems. Ũ × P group actions over disjoint (L) carrier subspaces, leading to exclusively combinatorial views of the nature of quantal completeness for indistinguishable point-based tensorial sets. Such generalised invariant-theoretic approaches lie beyond the range of Lévi-Civitá generator views, or of Lévy-Leblond and Lévy-Nahas [9] with its additional cyclic-commutators defining mono-invariant DR forms. Comparison of the latter with generalised multiple-invariant techniques provides an answer to the question of precisely why [A]n≥4(X) and [AX]n≥4 NMR system spin dynamics are not ameniable to conventional R-W analysis of recoupled discrete-point tensorial systems. Our work augments earlier Hilbert space views, both of Louck and Biedenharn [21] on boson pattern projective mapping, and of Corio [19]. The roles of recent ln group action and (λ ⊢ n)-Schur combinatorial concepts, as well as of polyhedral-combinatorial modelling over invariance algebras, contribute significantly to our understanding of invariant-based techniques of Liouville dual tensorial sets for automorphic NMR spin physics.1

  6. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS2/WSe2 van der Waals Heterostructure.

    PubMed

    Khan, Muhammad Atif; Rathi, Servin; Lee, Changhee; Lim, Dongsuk; Kim, Yunseob; Yun, Sun Jin; Youn, Doo Hyeb; Kim, Gil-Ho

    2018-06-25

    Two-dimensional (2D) materials based heterostructures provide a unique platform where interaction between stacked 2D layers can enhance the electrical and opto-electrical properties as well as give rise to interesting new phenomena. Here, operation of a van der Waals heterostructure device comprising of vertically stacked bi-layer MoS 2 and few layered WSe 2 has been demonstrated in which atomically thin MoS 2 layer has been employed as a tunneling layer to the underlying WSe 2 layer. In this way, simultaneous contacts to both MoS 2 and WSe 2 2D layers have been established by forming direct MS (metal semiconductor) to MoS 2 and tunneling based MIS (metal insulator semiconductor) contacts to WSe 2 , respectively. The use of MoS 2 as a dielectric tunneling layer results in improved contact resistance (80 kΩ-µm) for WSe 2 contact, which is attributed to reduction in effective Schottky barrier height and is also confirmed from the temperature dependent measurement. Further, this unique contact engineering and type II band alignment between MoS 2 and WSe 2 enables a selective and independent carrier transport across the respective layers. This contact engineered dual channel heterostructure exhibits an excellent gate control and both channel current and carrier types can be modulated by the vertical electric field of the gate electrode, which is also reflected in on/off ratio of 10 4 for both electrons (MoS 2 ) and holes (WSe 2 ) channels. Moreover, the charge transfer at the heterointerface is studied quantitatively from the shift in the threshold voltage of the pristine MoS 2 and heterostructure device, which agrees with the carrier recombination induced optical quenching as observed in the Raman spectra of the pristine and heterostructure layers. This observation of dual channel ambipolar transport enabled by the hybrid tunneling contacts and strong interlayer coupling can be utilized for high performance opto-electrical devices and applications.

  7. Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency

    DOE PAGES

    Essig, Stephanie; Steiner, Myles A.; Allebe, Christophe; ...

    2016-04-27

    Combining a Si solar cell with a high-bandgap top cell reduces the thermalization losses in the short wavelength and enables theoretical 1-sun efficiencies far over 30%. We have investigated the fabrication and optimization of Si-based tandem solar cells with 1.8-eV rear-heterojunction GaInP top cells. The III-V and Si heterojunction subcells were fabricated separately and joined by mechanical stacking using electrically insulating optically transparent interlayers. Our GaInP/Si dual-junction solar cells have achieved a certified cumulative 1-sun efficiency of 29.8% ± 0.6% (AM1.5g) in four-terminal operation conditions, which exceeds the record 1-sun efficiencies achieved with both III-V and Si single-junction solar cells.more » Furthermore, the effect of luminescent coupling between the subcells has been investigated, and optical losses in the solar cell structure have been addressed.« less

  8. Higher groupoid bundles, higher spaces, and self-dual tensor field equations

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Sämann, Christian; Wolf, Martin

    2016-08-01

    We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of $(\\infty,1)$-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by Severa, that maps higher groupoids to $L_\\infty$-algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists.

  9. Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Stephanie; Steiner, Myles A.; Allebe, Christophe

    Combining a Si solar cell with a high-bandgap top cell reduces the thermalization losses in the short wavelength and enables theoretical 1-sun efficiencies far over 30%. We have investigated the fabrication and optimization of Si-based tandem solar cells with 1.8-eV rear-heterojunction GaInP top cells. The III-V and Si heterojunction subcells were fabricated separately and joined by mechanical stacking using electrically insulating optically transparent interlayers. Our GaInP/Si dual-junction solar cells have achieved a certified cumulative 1-sun efficiency of 29.8% ± 0.6% (AM1.5g) in four-terminal operation conditions, which exceeds the record 1-sun efficiencies achieved with both III-V and Si single-junction solar cells.more » Furthermore, the effect of luminescent coupling between the subcells has been investigated, and optical losses in the solar cell structure have been addressed.« less

  10. The Incidence of Buried Dual AGN in Advanced Mergers: New results from Chandra

    NASA Astrophysics Data System (ADS)

    Pfeifle, Ryan William; Satyapal, Shobita; Secrest, Nathan; Gliozzi, Mario; Ricci, Claudio; Ellison, Sara L.; Blecha, Laura; Rothberg, Barry; Constantin, Anca

    2018-01-01

    Since the vast majority of galaxies contain supermassive black holes (SMBHs) and galaxy interactions trigger nuclear gas accretion, a direct consequence of the hierarchical model of galaxy formation would be the existence of dual active galactic nuclei (AGN). The existence, frequency, and characteristics of such dual AGN have important astrophysical implications on the SMBH mass function, the interplay between SMBHs and the host galaxy, and the M-sigma relation. Despite decades of searching, and strong theoretical reasons for their existence, observationally confirmed cases of dual AGN are extremely rare, and most have been discovered serendipitously. Using the all-sky WISE survey, we identified a population of over one hundred strongly interacting galaxies that display extreme red mid-infrared colors thus far exclusively associated with extragalactic sources possessing powerful AGN. In a recent Chandra, XMM-Newton, and NuSTAR investigation of advanced mergers selected by WISE, we find dual AGN candidates in 8 out of 15 mergers, all of which show no evidence for AGN based on optical spectroscopy. Our results demonstrate that 1) optical studies miss a significant fraction of single and dual AGN in advanced mergers, and 2) mid-infrared pre-selection is extremely effective in identifying dual AGN candidates in late-stage mergers. Our multi-wavelength observations suggest that the buried AGN in these mergers are highly absorbed, with intrinsic column densities in excess of NH > 1024 cm-2, consistent with hydrodynamic simulations.

  11. Are There Differences in Treatment and Survival Between Poor, Older Black and White Women with Breast Cancer?

    PubMed

    Aggarwal, Himani; Callahan, Christopher M; Miller, Kathy D; Tu, Wanzhu; Loehrer, Patrick J

    2015-10-01

    To explore differences in treatment and survival outcome between poor, older black and white women with breast cancer. Retrospective cohort study. Public safety net hospital. Women aged 65 and older diagnosed with breast cancer from 1999 to 2008 (n = 1,000). Breast cancer treatments that black and white women sought were compared using the Pearson chi-square test. All-cause mortality of black and white women was compared using hazard ratios derived from a multivariate Cox proportional hazards model. There was no significant difference between older black and white women in surgical treatment, radiation therapy, chemotherapy, or hormone therapy over the study period. Race was not a significant predictor of survival in the Cox proportional hazards model that controlled for stage of cancer, age at diagnosis, dual-eligibility status, comorbid conditions, body mass index, smoking history, mammogram screening, and treatment for breast cancer. Race did not appear to affect treatment or mortality in a cohort of older women with low socioeconomic status. This may be associated with similar healthcare delivery and equivalent access to health care for the older black and white women in this study. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  12. Sexually Transmitted Infection Prevention With Long-Acting Reversible Contraception: Factors Associated With Dual Use.

    PubMed

    Thompson, Erika L; Vamos, Cheryl A; Griner, Stacey B; Logan, Rachel; Vázquez-Otero, Coralia; Daley, Ellen M

    2017-07-01

    Long-acting reversible contraception (LARC) is extremely effective in preventing pregnancy; however, it does not provide sexually transmitted infection (STI) prevention. Therefore, dual use is recommended for the prevention of STIs, in addition to pregnancy, by using LARC methods with condoms. This study assessed factors associated with LARC only use and dual-LARC and condom use among college women. The National College Health Assessment-II Fall 2012 to 2013 was used for this analysis. The analytic sample was restricted to women who used a LARC method (ie, intrauterine device or implant) (N = 1658). The main outcome was dual method use, LARC and condom, at last sex. An adjusted logistic regression model assessed sociodemographic factors (age, relationship, race), health care utilization (routine gynecological examination), and sexual behavior (number of partners) as factors associated with dual condom-LARC use at the last time of vaginal-sex. Prevalence ratios (PR) and 95% confidence intervals (CI) were estimated. Among women reporting LARC use, 24% used a condom. Dual users were less likely to have only 1 sexual partner (adjusted PR [aPR], 0.66; 95% CI, 0.54-0.81) and be in a relationship. Dual users were more likely than LARC-only users to be Hispanic (aPR, 1.34; 95% CI, 1.01-1.78), black (aPR, 1.40; 95% CI, 1.07-1.83), and biracial/multiracial (aPR, 1.38; 95% CI, 1.10-1.73). These findings illustrate differences between dual-condom LARC and LARC-only college users. It is likely that relationship status and number of partners influences perceived risk for STIs and decision making for dual use among this population.

  13. Holographic entanglement entropies for Schwarzschild and Reisner-Nordström black holes in asymptotically Minkowski spacetimes

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Zhao, Liu

    2017-04-01

    Holographic entanglement entropies (HEE) associated with four-dimensional Schwarzschild and Reisner-Nordström (RN) black holes in asymptotically Minkowski spacetimes are investigated. Unlike the cases of asymptotically AdS spacetimes for which the boundaries are always taken at (timelike) conformal infinities, we take the boundaries at either large but finite radial coordinates (far boundary) or very close to the black hole event horizons (near horizon boundary). The reason for such choices is that such boundaries are similar to the conformal infinity of AdS spacetime in that they are all timelike, so that there may be some hope to define dual systems with ordinary time evolution on such boundaries. Our results indicate that, in the case of far boundaries, the leading-order contribution to HEEs comes from the background Minkowski spacetime; however, the next-to-leading-order contribution which arises from the presence of the black holes is always proportional to the black hole mass, which constitutes a version of the first law of HEE for asymptotically flat spacetimes, and the higher-order contributions are always negligibly small. In the case of near horizon boundaries, the leading-order contribution to HEE is always proportional to the area of the black hole event horizon, and the case of extremal RN black holes is distinguished from the cases of nonextremal black holes in that the minimal surface defining HEE is completely immersed inside the boundary up to the second order in the perturbative expansion.

  14. Anti-de Sitter-space/conformal-field-theory Casimir energy for rotating black holes.

    PubMed

    Gibbons, G W; Perry, M J; Pope, C N

    2005-12-02

    We show that, if one chooses the Einstein static universe as the metric on the conformal boundary of Kerr-anti-de Sitter spacetime, then the Casimir energy of the boundary conformal field theory can easily be determined. The result is independent of the rotation parameters, and the total boundary energy then straightforwardly obeys the first law of thermodynamics. Other choices for the metric on the conformal boundary will give different, more complicated, results. As an application, we calculate the Casimir energy for free self-dual tensor multiplets in six dimensions and compare it with that of the seven-dimensional supergravity dual. They differ by a factor of 5/4.

  15. Synthesis of three-dimensionally ordered macro-/mesoporous Pt with high electrocatalytic activity by a dual-templating approach

    NASA Astrophysics Data System (ADS)

    Zhang, Chengwei; Yang, Hui; Sun, Tingting; Shan, Nannan; Chen, Jianfeng; Xu, Lianbin; Yan, Yushan

    2014-01-01

    Three dimensionally ordered macro-/mesoporous (3DOM/m) Pt catalysts are fabricated by chemical reduction employing a dual-templating synthesis approach combining both colloidal crystal (opal) templating (hard-templating) and lyotropic liquid crystal templating (soft-templating) techniques. The macropore walls of the prepared 3DOM/m Pt exhibit a uniform mesoporous structure composed of polycrystalline Pt nanoparticles. Both the size of the mesopores and Pt nanocrystallites are in the range of 3-5 nm. The 3DOM/m Pt catalyst shows a larger electrochemically active surface area (ECSA), and higher catalytic activity as well as better poisoning tolerance for methanol oxidation reaction (MOR) than the commercial Pt black catalyst.

  16. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    PubMed

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  17. Aspects of warped AdS3/CFT2 correspondence

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Zhang, Jia-Ju; Zhang, Jian-Dong; Zhong, De-Liang

    2013-04-01

    In this paper we apply the thermodynamics method to investigate the holographic pictures for the BTZ black hole, the spacelike and the null warped black holes in three-dimensional topologically massive gravity (TMG) and new massive gravity (NMG). Even though there are higher derivative terms in these theories, the thermodynamics method is still effective. It gives consistent results with the ones obtained by using asymptotical symmetry group (ASG) analysis. In doing the ASG analysis we develop a brute-force realization of the Barnich-Brandt-Compere formalism with Mathematica code, which also allows us to calculate the masses and the angular momenta of the black holes. In particular, we propose the warped AdS3/CFT2 correspondence in the new massive gravity, which states that quantum gravity in the warped spacetime could holographically dual to a two-dimensional CFT with {c_R}={c_L}=24 /{Gm{β^2√{{2( {21-4{β^2}} )}}}}.

  18. Black holes from large N singlet models

    NASA Astrophysics Data System (ADS)

    Amado, Irene; Sundborg, Bo; Thorlacius, Larus; Wintergerst, Nico

    2018-03-01

    The emergent nature of spacetime geometry and black holes can be directly probed in simple holographic duals of higher spin gravity and tensionless string theory. To this end, we study time dependent thermal correlation functions of gauge invariant observables in suitably chosen free large N gauge theories. At low temperature and on short time scales the correlation functions encode propagation through an approximate AdS spacetime while interesting departures emerge at high temperature and on longer time scales. This includes the existence of evanescent modes and the exponential decay of time dependent boundary correlations, both of which are well known indicators of bulk black holes in AdS/CFT. In addition, a new time scale emerges after which the correlation functions return to a bulk thermal AdS form up to an overall temperature dependent normalization. A corresponding length scale was seen in equal time correlation functions in the same models in our earlier work.

  19. Small black holes and near-extremal CFTs

    DOE PAGES

    Benjamin, Nathan; Dyer, Ethan; Fitzpatrick, A. Liam; ...

    2016-08-02

    Pure theories of AdS 3 quantum gravity are conjectured to be dual to CFTs with sparse spectra of light primary operators. The sparsest possible spectrum consistent with modular invariance includes only black hole states above the vacuum. Witten conjectured the existence of a family of extremal CFTs, which realize this spectrum for all admissible values of the central charge. We consider the quantum corrections to the classical spectrum, and propose a specific modification of Witten’s conjecture which takes into account the existence of “small” black hole states. These have zero classical horizon area, with a calculable entropy attributed solely tomore » loop effects. Lastly, our conjecture passes various consistency checks, especially when generalized to include theories with supersymmetry. In theories with N = 2 supersymmetry, this “near-extremal CFT” proposal precisely evades the no-go results of Gaberdiel et al.« less

  20. From hopping to ballistic transport in graphene-based electronic devices

    NASA Astrophysics Data System (ADS)

    Taychatanapat, Thiti

    This thesis describes electronic transport experiments in graphene from the hopping to the ballistic regime. The first experiment studies dual-gated bilayer graphene devices. By applying an electric field with these dual gates, we can open a band gap in bilayer graphene and observe an increase in resistance of over six orders of magnitude as well as a strongly non-linear behavior in the transport characteristics. A temperature-dependence study of resistance at large electric field at the charge neutrality point shows the change in the transport mechanism from a hopping dominated regime at low temperature to a diffusive regime at high temperature. The second experiment examines electronic properties of Bernal-stacked trilayer graphene. Due to the low mobility of trilayer graphene on SiO 2substrates, we employ hexagonal boron nitride as a local substrate to improve its mobility. This led us to observe a quantum Hall effect with multiple Landau level crossings, proving the coexistence of massless and massive Dirac fermions in Bernal-stacked trilayer graphene. From the position of these crossing points in magnetic field and electron density, we can deduce the band parameters used to model its band structure. At high magnetic field, we observe broken symmetry states via Landau level splittings as well as crossings among these broken-symmetry states. In the third experiment, we investigate transverse magnetic focusing (TMF) in mono-, bi-, and tri-layer graphene. The ability to tune density allows us to electronically modify focal points and investigate TMF continuously from hole to electron regimes. This also allows us to observe the change in band structure of trilayer graphene as a function of applied electric field. Finally, we also observe TMF at room temperature in monolayer graphene which unambiguously proves the existence of ballistic transport at room temperature.

  1. Projection decomposition algorithm for dual-energy computed tomography via deep neural network.

    PubMed

    Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei

    2018-03-15

    Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.

  2. Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS2 van der Waals Heterojunction Diode.

    PubMed

    Dastgeer, Ghulam; Khan, Muhammad Farooq; Nazir, Ghazanfar; Afzal, Amir Muhammad; Aftab, Sikandar; Naqvi, Bilal Abbas; Cha, Janghwan; Min, Kyung-Ah; Jamil, Yasir; Jung, Jongwan; Hong, Suklyun; Eom, Jonghwa

    2018-04-18

    Heterostructures comprising two-dimensional (2D) semiconductors fabricated by individual stacking exhibit interesting characteristics owing to their 2D nature and atomically sharp interface. As an emerging 2D material, black phosphorus (BP) nanosheets have drawn much attention because of their small band gap semiconductor characteristics along with high mobility. Stacking structures composed of p-type BP and n-type transition metal dichalcogenides can produce an atomically sharp interface with van der Waals interaction which leads to p-n diode functionality. In this study, for the first time, we fabricated a heterojunction p-n diode composed of BP and WS 2 . The rectification effects are examined for monolayer, bilayer, trilayer, and multilayer WS 2 flakes in our BP/WS 2 van der Waals heterojunction diodes and also verified by density function theory calculations. We report superior functionalities as compared to other van der Waals heterojunction, such as efficient gate-dependent static rectification of 2.6 × 10 4 , temperature dependence, thickness dependence of rectification, and ideality factor of the device. The temperature dependence of Zener breakdown voltage and avalanche breakdown voltage were analyzed in the same device. Additionally, superior optoelectronic characteristics such as photoresponsivity of 500 mA/W and external quantum efficiency of 103% are achieved in the BP/WS 2 van der Waals p-n diode, which is unprecedented for BP/transition metal dichalcogenides heterostructures. The BP/WS 2 van der Waals p-n diodes have a profound potential to fabricate rectifiers, solar cells, and photovoltaic diodes in 2D semiconductor electronics and optoelectronics.

  3. A magnetically induced quantum critical point in holography

    DOE PAGES

    Gnecchi, A.; Gursoy, U.; Papadoulaki, O.; ...

    2016-09-15

    Here, we investigate quantum critical points in a 2+1 dimensional gauge theory at finite chemical potential χ and magnetic field B. The gravity dual is based on 4D N = 2 Fayet-Iliopoulos gauged supergravity and the solutions we consider — that are constructed analytically — are extremal, dyonic, asymptotically AdS4 black-branes with a nontrivial radial profile for the scalar field. We discover a line of second order fixed points at B = B c(χ) between the dyonic black brane and an extremal “thermal gas” solution with a singularity of good-type, according to the acceptability criteria of Gubser. The dual fieldmore » theory is a strongly coupled nonconformal field theory at finite charge and magnetic field, related to the ABJM theory deformed by a triple trace operator Φ 3. This line of fixed points might be useful in studying the various strongly interacting quantum critical phenomena such as the ones proposed to underlie the cuprate superconductors. We also find curious similarities between the behaviour of the VeV under B and that of the quark condensate in 2+1 dimensional NJL models.« less

  4. Dual-Image Videoangiography During Intracranial Microvascular Surgery.

    PubMed

    Feletti, Alberto; Wang, Xiangdong; Tanaka, Riki; Yamada, Yasuhiro; Suyama, Daisuke; Kawase, Tsukasa; Sano, Hirotoshi; Kato, Yoko

    2017-03-01

    Indocyanine green videoangiography (ICG-VA) is a valuable tool to assess vessel and aneurysm patency during neurovascular surgical procedures. However, ICG-VA highlights vascular structures, which appear white over a black background. Anatomic relationships are sometimes difficult to understand at first glance. Dual-image videoangiography (DIVA) enables simultaneous visualization of light and near-infrared fluorescence images of ICG-VA. The DIVA system was mounted on an OPMI Pentero Flow 800 intraoperative microscope. DIVA was used during microsurgical procedures on 5 patients who were operated for aneurysm clipping and superficial temporal artery-middle cerebral artery bypass. DIVA provides real-time simultaneous visualization of aneurysm and vessels and surrounding structures including brain, nerves, and surgical clips. Although visual contrast between vessels and background is higher with standard black-and-white imaging, DIVA makes it easier to understand anatomic relationships between intracranial structures. DIVA also provides better vision of the depth of field. DIVA has the potential to become a widely used intraoperative tool to check patency of intracranial vessels. It should be considered as an adjunct to standard ICG-VA for better understanding of vascular anatomy in relation to surrounding structures and can have an impact on decision making during surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Delocalizing entanglement of anisotropic black branes

    NASA Astrophysics Data System (ADS)

    Jahnke, Viktor

    2018-01-01

    We study the mutual information between pairs of regions on the two asymptotic boundaries of maximally extended anisotropic black branes. This quantity characterizes the local pattern of entanglement of the thermofield double states which are dual to these geometries. We analyze the disruption of the mutual information in anisotropic shock wave geometries and show that the entanglement velocity plays an important role in this phenomenon. Moreover, we compute several chaos-related properties of this system, such as the entanglement velocity, the butterfly velocity, and the scrambling time. We find that the butterfly velocity and the entanglement velocity violate the upper bounds proposed in [1-3], but remain bounded by their corresponding values in the infrared effective theory.

  6. Time evolution of complexity in Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Iizuka, Norihiro; Sugishita, Sotaro

    2017-12-01

    Quantum complexity is conjectured to probe inside of black hole horizons (or wormholes) via gauge gravity correspondence. In order to have a better understanding of this correspondence, we study time evolutions of complexities for Abelian pure gauge theories. For this purpose, we discretize the U (1 ) gauge group as ZN and also the continuum spacetime as lattice spacetime, and this enables us to define a universal gate set for these gauge theories and to evaluate time evolutions of the complexities explicitly. We find that to achieve a large complexity ˜exp (entropy), which is one of the conjectured criteria necessary to have a dual black hole, the Abelian gauge theory needs to be maximally nonlocal.

  7. On holographic entanglement entropy with second order excitations

    NASA Astrophysics Data System (ADS)

    He, Song; Sun, Jia-Rui; Zhang, Hai-Qing

    2018-03-01

    We study the low-energy corrections to the holographic entanglement entropy (HEE) in the boundary CFT by perturbing the bulk geometry up to second order excitations. Focusing on the case that the boundary subsystem is a strip, we show that the area of the bulk minimal surface can be expanded in terms of the conserved charges, such as mass, angular momentum and electric charge of the AdS black brane. We also calculate the variation of the energy in the subsystem and verify the validity of the first law-like relation of thermodynamics at second order. Moreover, the HEE is naturally bounded at second order perturbations if the cosmic censorship conjecture for the dual black hole still holds.

  8. Identification of the Causal Agent of Shrimp Black Gill in the Coastal Southeast USA

    NASA Astrophysics Data System (ADS)

    Bassette, M. A.; Verdiyev, R.; Price, A. R.; Walters, T. L.; Landers, S. C.; Walker, A. N.; Geer, P. J.; Frischer, M. E.

    2016-02-01

    Penaeid shrimp including Litopenaeus setiferus (white shrimp), Farfantepenaeus aztecus (brown shrimp), and Farfantepenaeus duorarum (pink shrimp) support the most valuable commercial fisheries in the US Southeast Atlantic. However, since the mid 1990's the fishery has experienced a significant decline in reported harvest, due in part to declines in fishing effort (both fishing trips and licensed vessels). Another primary cause for this decline, particularly for the fall white shrimp, has been hypothesized to be due to severe outbreaks of a gill infection causing tissue melanization (Black Gill), but the agent of Black Gill has not been identified. Histological and molecular studies indicate the presence of a large ciliate with evidence of gill tissue necrosis and the formation of melanized nodules. Sequencing of nearly the complete 18S rRNA gene of the shrimp Black Gill (sBG) ciliate indicates that it is closely related to the apostomate ciliate Hyalophysa chattoni (99.6% nucleotide similarity). However, electron microscopy studies suggest that the sBG ciliate is not H. chattoni and may not even be an apostome ciliate because it lacks many of the definitive ultra-structural characteristics of this group of ciliates including well-stacked kinetodesmal fibers anchoring their basal bodies (kinetosomes), food plaquettes, trichocysts or an epiplasm. Investigations are continuing to identify definitively the sBG ciliate but these results point to the possible discovery of a new species of ciliate.

  9. Theoretical and Monte Carlo optimization of a stacked three-layer flat-panel x-ray imager for applications in multi-spectral diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Lopez Maurino, Sebastian; Badano, Aldo; Cunningham, Ian A.; Karim, Karim S.

    2016-03-01

    We propose a new design of a stacked three-layer flat-panel x-ray detector for dual-energy (DE) imaging. Each layer consists of its own scintillator of individual thickness and an underlying thin-film-transistor-based flat-panel. Three images are obtained simultaneously in the detector during the same x-ray exposure, thereby eliminating any motion artifacts. The detector operation is two-fold: a conventional radiography image can be obtained by combining all three layers' images, while a DE subtraction image can be obtained from the front and back layers' images, where the middle layer acts as a mid-filter that helps achieve spectral separation. We proceed to optimize the detector parameters for two sample imaging tasks that could particularly benefit from this new detector by obtaining the best possible signal to noise ratio per root entrance exposure using well-established theoretical models adapted to fit our new design. These results are compared to a conventional DE temporal subtraction detector and a single-shot DE subtraction detector with a copper mid-filter, both of which underwent the same theoretical optimization. The findings are then validated using advanced Monte Carlo simulations for all optimized detector setups. Given the performance expected from initial results and the recent decrease in price for digital x-ray detectors, the simplicity of the three-layer stacked imager approach appears promising to usher in a new generation of multi-spectral digital x-ray diagnostics.

  10. Warm p-soup and near extremal black holes

    NASA Astrophysics Data System (ADS)

    Morita, Takeshi; Shiba, Shotaro; Wiseman, Toby; Withers, Benjamin

    2014-04-01

    We consider a model of D-dimensional supergravity coupled to elementary p-branes. We use gravitational arguments to deduce the low energy effective theory of N nearly parallel branes. This is a (p + 1)-dimensional scalar field theory, where the scalars represent the positions of the branes in their transverse space. We propose that the same theory in a certain temperature regime describes a ‘soup’ of strongly interacting branes, giving a microscopic description of near extremal black p-branes. We use natural approximations to estimate the energy density of this soup as a function of the physical parameters; N, temperature, brane tension and gravitational coupling. We also characterize the horizon radius, measured in the metric natural to the branes, with the thermal vev of the scalars. For both quantities we find agreement with the corresponding supergravity black brane results. Surprisingly, beyond the physical parameters, we are naturally able to reproduce certain irrational factors such as πs. We comment on how these ideas may explain why black hole thermodynamics arises in gauge theories with holographic duals at finite temperature.

  11. Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability.

    PubMed

    Moreira, Bernardo G; You, Yong; Behlke, Mark A; Owczarzy, Richard

    2005-02-11

    Single and dual-labeled fluorescent oligodeoxynucleotides are used in many molecular biology applications. We investigated the effects of commonly used fluorescent dyes and quenchers on the thermodynamic stability of a model probe-target DNA duplex. We demonstrate that those effects can be significant. Fluorescent dyes and quenchers were attached to the probe ends. In certain combinations, these groups stabilized the duplex up to 1.8kcal/mol and increased T(m) up to 4.3 degrees C. None of the groups tested significantly destabilized the duplex. Rank order of potency was, starting with the most stabilizing group: Iowa Black RQ approximately Black Hole 2>Cy5 approximately Cy3>Black Hole 1>QSY7 approximately Iowa Black FQ>Texas Red approximately TAMRA>FAM approximately HEX approximately Dabcyl>TET. Longer linkers decreased stabilizing effects. Hybridizations to targets with various dangling ends were also studied and were found to have only minor effects on thermodynamic stability. Depending on the dye/quencher combination employed, it can be important to include thermodynamic contributions from fluorophore and quencher when designing oligonucleotide probe assays.

  12. Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole

    NASA Astrophysics Data System (ADS)

    Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric

    2017-07-01

    We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.

  13. Investigating the Evolution of the Dual AGN System ESO 509-IG066

    NASA Astrophysics Data System (ADS)

    Kosec, P.; Brightman, M.; Stern, D.; Müller-Sánchez, F.; Koss, M.; Oh, K.; Assef, R. J.; Gandhi, P.; Harrison, F. A.; Jun, H.; Masini, A.; Ricci, C.; Walton, D. J.; Treister, E.; Comerford, J.; Privon, G.

    2017-12-01

    We analyze the evolution of the dual active galactic nucleus (AGN) in ESO 509-IG066, a galaxy pair located at z = 0.034 whose nuclei are separated by 11 kpc. Previous observations with XMM-Newton on this dual AGN found evidence for two moderately obscured ({N}{{H}} ˜ 1022 cm-2) X-ray luminous ({L}{{X}} ˜ 1043 erg s-1) nuclear sources. We present an analysis of subsequent Chandra, NuSTAR, and Swift/XRT observations that show one source has dropped in flux by a factor of 10 between 2004 and 2011, which could be explained by either an increase in the absorbing column or an intrinsic fading of the central engine, possibly due to a decrease in mass accretion. Both of these scenarios are predicted by galaxy merger simulations. The source that has dropped in flux is not detected by NuSTAR, which argues against absorption, unless it is extreme. However, new Keck/LRIS optical spectroscopy reveals a previously unreported broad Hα line that is highly unlikely to be visible under the extreme absorption scenario. We therefore conclude that the black hole in this nucleus has undergone a dramatic drop in its accretion rate. From AO-assisted near-infrared integral-field spectroscopy of the other nucleus, we find evidence that the galaxy merger is having a direct effect on the kinematics of the gas close to the nucleus of the galaxy, providing a direct observational link between the galaxy merger and the mass accretion rate onto the black hole.

  14. Spacetime from unentanglement

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Rath, Pratik; Salzetta, Nico

    2018-05-01

    The past decade has seen a tremendous effort toward unraveling the relationship between entanglement and emergent spacetime. These investigations have revealed that entanglement between holographic degrees of freedom is crucial for the existence of bulk spacetime. We examine this connection from the other end of the entanglement spectrum and clarify the assertion that maximally entangled states have no reconstructable spacetime. To do so, we first define the conditions for bulk reconstructability. Under these terms, we scrutinize two cases of maximally entangled holographic states. One is the familiar example of AdS black holes; these are dual to thermal states of the boundary conformal field theory. Sending the temperature to the cutoff scale makes the state maximally entangled and the respective black hole consumes the spacetime. We then examine the de Sitter limit of Friedmann-Robertson-Walker (FRW) spacetimes. This limit is maximally entangled if one formulates the boundary theory on the holographic screen. Paralleling the anti-de Sitter (AdS) black hole, we find the resulting reconstructable region of spacetime vanishes. Motivated by these results, we prove a theorem showing that maximally entangled states have no reconstructable spacetime. Evidently, the emergence of spacetime is endemic to intermediate entanglement. By studying the manner in which intermediate entanglement is achieved, we uncover important properties about the boundary theory of FRW spacetimes. With this clarified understanding, our final discussion elucidates the natural way in which holographic Hilbert spaces may house states dual to different geometries. This paper provides a coherent picture clarifying the link between spacetime and entanglement and develops many promising avenues of further work.

  15. The effectiveness of the microbiological radiation decontamination process of agricultural products with the use of low energy electron beam

    NASA Astrophysics Data System (ADS)

    Gryczka, Urszula; Migdał, Wojciech; Bułka, Sylwester

    2018-02-01

    The effectiveness of the radiation decontamination process was tested for electron beam of energy 200 keV and 300 keV. The energy of electrons was controlled by the measurements of its penetration ability in stack of B3 dosimetric film. In the presented work, the reduction of total aerobic bacteria count was observed, depending on time of irradiation for samples of dried black pepper, onion flakes and bay leaves. The results were compared with the effect observed for the process where high energy electron beam was used.

  16. Radiative contribution to thermal conductance in animal furs and other woolly insulators.

    PubMed

    Simonis, Priscilla; Rattal, Mourad; Oualim, El Mostafa; Mouhse, Azeddine; Vigneron, Jean-Pol

    2014-01-27

    This paper deals with radiation's contribution to thermal insulation. The mechanism by which a stack of absorbers limits radiative heat transfer is examined in detail both for black-body shields and grey-body shields. It shows that radiation energy transfer rates should be much faster than conduction rates. It demonstrates that, for opaque screens, increased reflectivity will dramatically reduce the rate of heat transfer, improving thermal insulation. This simple model is thought to contribute to the understanding of how animal furs, human clothes, rockwool insulators, thermo-protective containers, and many other passive energy-saving devices operate.

  17. Gate induced monolayer behavior in twisted bilayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Sevik, Cem; Wallbank, John R.; Gülseren, Oğuz; Peeters, François M.; Çakır, Deniz

    2017-09-01

    Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90°. These calculations are complemented with a simple k\\centerdot p model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90° twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90° simply by changing the direction of the applied electric field. In particular, a + 0.4 (-0.4) V {{{\\mathringA}}-1} out-of-plane electric field results in a  ˜60% increase in the hole effective mass along the \\mathbf{y} (\\mathbf{x} ) axis and enhances the m\\mathbf{y}\\ast/m\\mathbf{x}\\ast (m\\mathbf{x}\\ast/m\\mathbf{y}\\ast ) ratio as much as by a factor of 40. Our DFT and k\\centerdot p simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.

  18. Typical event horizons in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Avery, Steven G.; Lowe, David A.

    2016-01-01

    We consider the construction of local bulk operators in a black hole background dual to a pure state in conformal field theory. The properties of these operators in a microcanonical ensemble are studied. It has been argued in the literature that typical states in such an ensemble contain firewalls, or otherwise singular horizons. We argue this conclusion can be avoided with a proper definition of the interior operators.

  19. Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2017-06-01

    In this paper we show that warped AdS3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U(1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS3 black hole solution of GMMG is a warped CFT.

  20. Log corrections to entropy of three dimensional black holes with soft hair

    NASA Astrophysics Data System (ADS)

    Grumiller, Daniel; Perez, Alfredo; Tempo, David; Troncoso, Ricardo

    2017-08-01

    We calculate log corrections to the entropy of three-dimensional black holes with "soft hairy" boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two different approaches. The first one exploits that the BTZ black hole belongs to the spectrum of Brown-Henneaux as well as soft hairy boundary conditions, so that the respective log corrections are related through a suitable change of the thermodynamic ensemble. In the second approach the analogue of modular invariance is considered for dual theories with anisotropic scaling of Lifshitz type with dynamical exponent z at the boundary. On the gravity side such scalings arise for KdV-type boundary conditions, which provide a specific 1-parameter family of multi-trace deformations of the usual AdS3/CFT2 setup, with Brown-Henneaux corresponding to z = 1 and soft hairy boundary conditions to the limiting case z → 0+. Both approaches agree in the case of BTZ black holes for any non-negative z. Finally, for soft hairy boundary conditions we show that not only the leading term, but also the log corrections to the entropy of black flowers endowed with affine û (1) soft hair charges exclusively depend on the zero modes and hence coincide with the ones for BTZ black holes.

  1. Note on the Noether charge and holographic transports

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying

    2018-03-01

    We clarify the relation between the Noether charge associated to an arbitrary vector field and the equations of motion by revisiting Wald formalism. For a timelike Killing vector, aspects of the Noether charge suggest that it is dual to the heat current in the boundary for general holographic theories. For a spacelike Killing vector, we interpret the Noether charge (at the transverse direction) as shear stress of the dual fluid so we can compute the ratio of shear viscosity to entropy density by simply using the infrared data on the black hole event horizon. We test the new method for Einstein gravity and Gauss-Bonnet gravity and find that it produces correct results for both cases even in the presence of additional matter fields.

  2. On the monogamy of holographic n -partite information

    NASA Astrophysics Data System (ADS)

    Mirabi, S.; Tanhayi, M. Reza; Vazirian, R.

    2016-05-01

    We investigate the monogamy of holographic n -partite information for a system consisting of n disjoint parallel strips with the same width and separation in AdS and AdS black brane geometries. More precisely, we study the sign of this quantity, e.g., for n =4 , 5, in various dimensions and for different parameters. Our results show that for quantum field theories with holographic duals, the holographic 4-partite information is always positive, and the sign of holographic 5-partite information is found to be negative in the dual strongly coupled 1 +1 dimensional conformal field theory. This latter result indicates that the holographic 4-partite information is monogamous. We also find the critical points corresponding to the possible phase transitions of these quantities.

  3. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot-Dip Galvanizing DP600 Steel

    NASA Astrophysics Data System (ADS)

    Hai-yan, Sun; Zhi-li, Liu; Yang, Xu; Jian-qiang, Shi; Lian-xuan, Wang

    Hot-dip galvanizing dual phase steel DP600 steel grade with low Si was produced by steel plant and experiments by simulating galvanizing thermal history. The microstructure was observed and analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different annealing temperatures on the microstructure and mechanical properties of dual-phase steel was also discussed. The experimental results show that the dual-phase steel possesses excellent strength and elongation that match EN10346 600MPa standards. The microstructure is ferrite and martensite. TEM micrograph shows that white ferrite with black martensite islands inlay with a diameter of around 1um and the content of 14 18%. The volume will expand and phase changing take the form of shear transformation when ferrite converted to martensite. So there are high density dislocations in ferrite crystalline grain near martensite. The martensite content growing will be obvious along with annealing temperature going up. But the tendency will be weak when temperature high.

  4. On holographic Rényi entropy in some modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Dey, Anshuman; Roy, Pratim; Sarkar, Tapobrata

    2018-04-01

    We perform a detailed analysis of holographic entanglement Rényi entropy in some modified theories of gravity with four dimensional conformal field theory duals. First, we construct perturbative black hole solutions in a recently proposed model of Einsteinian cubic gravity in five dimensions, and compute the Rényi entropy as well as the scaling dimension of the twist operators in the dual field theory. Consistency of these results are verified from the AdS/CFT correspondence, via a corresponding computation of the Weyl anomaly on the gravity side. Similar analyses are then carried out for three other examples of modified gravity in five dimensions that include a chemical potential, namely Born-Infeld gravity, charged quasi-topological gravity and a class of Weyl corrected gravity theories with a gauge field, with the last example being treated perturbatively. Some interesting bounds in the dual conformal field theory parameters in quasi-topological gravity are pointed out. We also provide arguments on the validity of our perturbative analysis, whenever applicable.

  5. The gravity dual of Rényi entropy

    DOE PAGES

    Dong, Xi

    2016-08-12

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Re´nyi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometricmore » prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Re´nyi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Re´nyi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity.« less

  6. Application of phase consistency to improve time efficiency and image quality in dual echo black-blood carotid angiography.

    PubMed

    Kholmovski, Eugene G; Parker, Dennis L

    2005-07-01

    There is a considerable similarity between proton density-weighted (PDw) and T2-weighted (T2w) images acquired by dual echo fast spin-echo (FSE) sequences. The similarity manifests itself not only in image space as correspondence between intensities of PDw and T2w images, but also in phase space as consistency between phases of PDw and T2w images. Methods for improving the imaging efficiency and image quality of dual echo FSE sequences based on this feature have been developed. The total scan time of dual echo FSE acquisition may be reduced by as much as 25% by incorporating an estimate of the image phase from a fully sampled PDw image when reconstructing partially sampled T2w images. The quality of T2w images acquired using phased array coils may be significantly improved by using the developed noise reduction reconstruction scheme, which is based on the correspondence between the PDw and T2w image intensities and the consistency between the PDw and T2w image phases. Studies of phantom and human subject MRI data were performed to evaluate the effectiveness of the techniques.

  7. RESEARCH PAPERS : Ionospheric signature of surface mine blasts from Global Positioning System measurements

    NASA Astrophysics Data System (ADS)

    Calais, Eric; Bernard Minster, J.; Hofton, Michelle; Hedlin, Michael

    1998-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes are known to produce infrasonic pressure waves in the atmosphere Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic and gravity waves induce variations of the ionospheric electron density. The Global Positioning System (GPS) provides a way of directly measuring the total electron content in the ionosphere and, therefore, of detecting such perturbations in the upper atmosphere. In July and August 1996, three large surface mine blasts (1.5 Kt each) were detonated at the Black Thunder coal mine in eastern Wyoming. As part of a seismic and acoustic monitoring experiment, we deployed five dual-frequency GPS receivers at distances ranging from 50 to 200 km from the mine and were able to detect the ionospheric perturbation caused by the blasts. The perturbation starts 10 to 15 min after the blast, lasts for about 30 min, and propagates with an apparent horizontal velocity of 1200 m s- 1. Its amplitude reaches 3 × 1014 el m- 2 in the 7-3 min period band, a value close to the ionospheric perturbation caused by the M=6.7 Northridge earthquake (Calais & Minster 1995). The small signal-to-noise ratio of the perturbation can be improved by slant-stacking the electron content time-series recorded by the different GPS receivers taking into account the horizontal propagation of the perturbation. The energy of the perturbation is concentrated in the 200 to 300 s period band, a result consistent with previous observations and numerical model predictions. The 300 s band probably corresponds to gravity modes and shorter periods to acoustic modes, respectively. Using a 1-D stratified velocity model of the atmosphere we show that linear acoustic ray tracing fits arrival times at all GPS receivers. We interpret the perturbation as a direct acoustic wave caused by the explosion itself. This study shows that even relatively small subsurface events can produce ionospheric perturbations that are above the detection threshold of the GPS technique. By sensing derivative signals, which can be detected over a relatively broad region, it appears that GPS might be particularly useful for source characterization within the first acoustic quiet zone where infrasound would probably be ineffective. This suggests that dual-frequency GPS monitoring could contribute to Comprehensive Nuclear Test Ban Treaty verification.

  8. Ionospheric Signature of Surface Mine Blasts from Global Positioning System Measurements

    NASA Technical Reports Server (NTRS)

    Calais, Eric; Minster, J. Bernard; Hofton, Michelle A.; Hedlin, Michael A. H.

    1998-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes are known to produce infrasonic pressure waves in the atmosphere. Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic and gravity waves induce variations of the ionospheric electron density. The Global Positioning System (GPS) provides a way of directly measuring the total electron content in the ionosphere and, therefore, of detecting such perturbations in the upper atmosphere. In July and August 1996, three large surface mine blasts (1.5 Kt each) were detonated at the Black Thunder coal mine in eastern Wyoming. As part of a seismic and acoustic monitoring- experiment, we deployed five dual-frequency GPS receivers at distances ranging from 50 to 200 km from the mine and were able to detect the ionospheric perturbation caused by the blasts. The perturbation starts 10 to 15 min after the blast, lasts for about 30 min, and propagates with an apparent horizontal velocity of 1200 meters per second. Its amplitude reaches 3 x 10 (exp 14) el per square meters in the 7-3 min period band, a value close to the ionospheric perturbation caused by the M = 6.7 Northridge earthquake. The small signal-to-noise ratio of the perturbation can be improved by slant-stacking the electron content time-series recorded by the different GPS receivers taking into account the horizontal propagation of the perturbation. The energy of the perturbation is concentrated in the 200 to 300 second period band, a result consistent with previous observations and numerical model predictions. The 300 second band probably corresponds to gravity modes and shorter periods to acoustic modes, respectively. Using a 1-D stratified velocity model of the atmosphere we show that linear acoustic ray tracing fits arrival times at all GPS receivers. We interpret the perturbation as a direct acoustic wave caused by the explosion itself. This study shows that even relatively small subsurface events can produce ionospheric perturbations that are above the detection threshold of the GPS technique. By sensing derivative signals, which can be detected over a relatively broad region, it appears that GPS might be particularly useful for source characterization within the first acoustic quiet zone where infrasound would probably be ineffective. This suggests that dual-frequency GPS monitoring could contribute to Comprehensive Nuclear Test Ban Treaty verification.

  9. How the states stack up: disparities in substance abuse outpatient treatment completion rates for minorities.

    PubMed

    Arndt, Stephan; Acion, Laura; White, Kristin

    2013-10-01

    This study was an exploratory investigation of state-level minority disparities in successfully completing outpatient treatment, a major objective for attending substance abuse treatment and a known process outcome measure. This was a retrospective analysis of state discharge and admission data from the 2006 to 2008 Treatment Episode Datasets-Discharge (TEDS-D). Data were included representing all discharges from outpatient substance abuse treatment centers across the United States. All first treatment episode clients with admission/discharge records meeting inclusion criteria who could be classified as White, Latino, or Black/African American were used (n=940,058). States demonstrated racial and ethnic disparities in their crude and adjusted completion rates, which also varied considerably among the states. Minorities typically showed a disadvantage. A few states showed significantly higher completion rates for Blacks or Latinos. Realistically, a variety of factors likely cause the state race/ethnic differences in successful completion rates. States should investigate their delivery systems to reduce completion disparities. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Stacking the Jury: Legal Professionals' Peremptory Challenges Reflect Jurors' Levels of Implicit Race Bias.

    PubMed

    Morrison, Mike; DeVaul-Fetters, Amanda; Gawronski, Bertram

    2016-08-01

    Most legal systems are based on the premise that defendants are treated as innocent until proven guilty and that decisions will be unbiased and solely based on the facts of the case. The validity of this assumption has been questioned for cases involving racial minority members, in that racial bias among jury members may influence jury decisions. The current research shows that legal professionals are adept at identifying jurors with levels of implicit race bias that are consistent with their legal interests. Using a simulated voir dire, professionals assigned to the role of defense lawyer for a Black defendant were more likely to exclude jurors with high levels of implicit race bias, whereas prosecutors of a Black defendant did the opposite. There was no relation between professionals' peremptory challenges and jurors' levels of explicit race bias. Implications for the role of racial bias in legal decision making are discussed. © 2016 by the Society for Personality and Social Psychology, Inc.

  11. Direct observation of a surface resonance state and surface band inversion control in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ehlen, N.; Sanna, A.; Senkovskiy, B. V.; Petaccia, L.; Fedorov, A. V.; Profeta, G.; Grüneis, A.

    2018-01-01

    We report a Cs-doping-induced band inversion and the direct observation of a surface resonance state with an elliptical Fermi surface in black phosphorus (BP) using angle-resolved photoemission spectroscopy. By selectively inducing a higher electron concentration (1.7 ×1014cm-2 ) in the topmost layer, the changes in the Coulomb potential are sufficiently large to cause surface band inversion between the parabolic valence band of BP and a parabolic surface state around the Γ point of the BP Brillouin zone. Tight-binding calculations reveal that band gap openings at the crossing points in the two high-symmetry directions of the Brillouin zone require out-of-plane hopping and breaking of the glide mirror symmetry. Ab initio calculations are in very good agreement with the experiment if a stacking fault on the BP surface is taken into account. The demonstrated level of control over the band structure suggests the potential application of few-layer phosphorene in topological field-effect transistors.

  12. Waste and racism: A stacked deck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullard, R.D.

    It has been difficult for many blacks to say, Not in My Backyard.' Many of them don't even have a backyard, according to the author in describing what he calls environmental racism.' He defines environmental racism as the systematic targeting of black communities for the siting of sewer treatment plants, landfills, incinerators, hazardous-waste disposal sites, lead smelters, and other risky technologies.' Historically, poor and minority communities have received a disproportionate share of such facilities. Few are located in the suburbs, where most middle-class whites live. Today, Latino neighborhoods and Indian reservations also are feeling the impact of discriminatory siting decisions.more » The author feels state governments have done a miserable job of protecting minority communities from the ravages of industrial pollution. After placidly accepting their fate for years, many of the communities are fighting back, challenging siting decisions on equity grounds in state and federal courts and organizing a national movement against environmental injustice.« less

  13. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    PubMed

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. "siRNA traffic lights": arabino-configured 2'-anchors for fluorescent dyes are key for dual color readout in cell imaging.

    PubMed

    Steinmeyer, Jeannine; Walter, Heidi-Kristin; Bichelberger, Mathilde A; Schneider, Violetta; Kubař, Tomáš; Rönicke, Franziska; Olshausen, Bettina; Nienhaus, Karin; Nienhaus, Gerd Ulrich; Schepers, Ute; Elstner, Marcus; Wagenknecht, Hans-Achim

    2018-05-23

    Two fluorescent dyes covalently attached in diagonal interstrand orientation to siRNA undergo energy transfer and thereby enable a dual color fluorescence readout (red/green) for hybridization. Three different structural variations were carried out and compared by their optical properties, including (i) the base surrogate approach with an acyclic linker as a substitute of the 2-deoxyriboside between the phosphodiester bridges, (ii) the 2'-modification of conventional ribofuranosides and (iii) the arabino-configured 2'-modification. The double stranded siRNA with the latter type of modification delivered the best energy transfer efficiency, which was explained by molecular dynamics simulations that showed that the two dyes are more flexible at the arabino-configured sugars compared to the completely stacked situation at the ribo-configured ones. Single molecule fluorescence lifetime measurements indicate their application in fluorescence cell imaging, which reveals a red/green fluorescence contrast in particular for the arabino-configured 2'-modification by the two dyes, which is key for tracking of siRNA transport into HeLa cells.

  15. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.

    PubMed

    Jiang, Zhi Hao; Yun, Seokho; Toor, Fatima; Werner, Douglas H; Mayer, Theresa S

    2011-06-28

    Metamaterials offer a new approach to create surface coatings with highly customizable electromagnetic absorption from the microwave to the optical regimes. Thus far, efficient metamaterial absorbers have been demonstrated at microwave frequencies, with recent efforts aimed at much shorter terahertz and infrared wavelengths. The present infrared absorbers have been constructed from arrays of nanoscale metal resonators with simple circular or cross-shaped geometries, which provide a single band response. In this paper, we demonstrate a conformal metamaterial absorber with a narrow band, polarization-independent absorptivity of >90% over a wide ±50° angular range centered at mid-infrared wavelengths of 3.3 and 3.9 μm. The highly efficient dual-band metamaterial was realized by using a genetic algorithm to identify an array of H-shaped nanoresonators with an effective electric and magnetic response that maximizes absorption in each wavelength band when patterned on a flexible Kapton and Au thin film substrate stack. This conformal metamaterial absorber maintains its absorption properties when integrated onto curved surfaces of arbitrary materials, making it attractive for advanced coatings that suppress the infrared reflection from the protected surface.

  16. Typical event horizons in AdS/CFT

    DOE PAGES

    Avery, Steven G.; Lowe, David A.

    2016-01-14

    We consider the construction of local bulk operators in a black hole background dual to a pure state in conformal field theory. The properties of these operators in a microcanonical ensemble are studied. It has been argued in the literature that typical states in such an ensemble contain firewalls, or otherwise singular horizons. Here, we argue this conclusion can be avoided with a proper definition of the interior operators.

  17. Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies

    PubMed Central

    Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565

  18. Mentoring urban Black Middle-School Male Students: Implications for Academic Achievement

    PubMed Central

    Gordon, Derrick M.; Iwamoto, Derek; Ward, Nadia; Potts, Randolph; Boyd, Elizabeth

    2010-01-01

    Researchers have called for innovative and culturally responsive intervention programs to enhance male, African American middle school students’ academic achievement. Mentoring has received considerable attention as a novel remedy. Although anecdotal evidence supports the positive role of mentoring on academic achievement, these results are not consistent. The Benjamin E. Mays Institute (BEMI) builds on the ideals of mentoring to counter the effects academic underachievement among adolescent Black males by building a model that is Afro-centric, uses pro-social modeling, and emphasizes cultural strengths and pride, and single-sex instruction in a dual-sex educational environment. Sixty-one middle-school Black males were enrolled (BEMI: n=29; Comparison: n=32) in this study. Results revealed that students in the BEMI program had significantly greater academic attachment scores and academic success than their non-mentored peers. Additionally, racial identity attitudes of immersion/emersion and internalization and identification with academics were also significantly associated with standardized achievement tests and GPA. Policy and practice implications are discussed. PMID:20379371

  19. Perturbation of Large Anti-deSitter Black Holes and AdS/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Ahmadzadegan, Aida

    As the main goal of this thesis, the canonical form of the perturbation metric of anti-de Sitter black holes in four dimensions is derived by choosing the Regge-Wheeler gauge in the standard Schwarzschild coordinates (t, r, theta, ϕ). By assuming the perturbations to be small, the differential equations governing the perturbations are obtained from the equations deltaRmunu(h ) = 0. Then, by taking the limit of m > > R where R is the radius of AdS space, the perturbation metric and field equations of large AdS black holes are found. Finally, under the shadow of AdS/CFT correspondence, these perturbations can be compared to their corresponding three-dimensional theory of fluid dynamics on the dual space, R x S2. Furthermore, by using the definitions of stress-energy tensor and its perturbation, we can find energy density, pressure and shear viscosity which are the quantities we need to describe the behavior of the fluid on the boundary of the AdS space.

  20. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    PubMed

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Determinants of change in body weight and body fat distribution over 5.5 years in a sample of free-living black South African women.

    PubMed

    Chantler, Sarah; Dickie, Kasha; Micklesfield, Lisa K; Goedecke, Julia H

    To identify socio-demographic and lifestyle determinants of weight gain in a sample of premenopasual black South African (SA) women. Changes in body composition (dual-energy X-ray absorptiometry, computerised tomography), socio-economic status (SES) and behavioural/lifestyle factors were measured in 64 black SA women at baseline (27 ± 8 years) and after 5.5 years. A lower body mass index (BMI) and nulliparity, together with access to sanitation, were significant determinants of weight gain and change in body fat distribution over 5.5 years. In addition, younger women increased their body weight more than their older counterparts, but this association was not independent of other determinants. Further research is required to examine the effect of changing SES, as well as the full impact of childbearing on weight gain over time in younger women with lower BMIs. This information will suggest areas for possible intervention to prevent long-term weight gain in these women.

  2. Mentoring urban Black Middle-School Male Students: Implications for Academic Achievement.

    PubMed

    Gordon, Derrick M; Iwamoto, Derek; Ward, Nadia; Potts, Randolph; Boyd, Elizabeth

    2009-07-01

    Researchers have called for innovative and culturally responsive intervention programs to enhance male, African American middle school students' academic achievement. Mentoring has received considerable attention as a novel remedy. Although anecdotal evidence supports the positive role of mentoring on academic achievement, these results are not consistent. The Benjamin E. Mays Institute (BEMI) builds on the ideals of mentoring to counter the effects academic underachievement among adolescent Black males by building a model that is Afro-centric, uses pro-social modeling, and emphasizes cultural strengths and pride, and single-sex instruction in a dual-sex educational environment. Sixty-one middle-school Black males were enrolled (BEMI: n=29; Comparison: n=32) in this study. Results revealed that students in the BEMI program had significantly greater academic attachment scores and academic success than their non-mentored peers. Additionally, racial identity attitudes of immersion/emersion and internalization and identification with academics were also significantly associated with standardized achievement tests and GPA. Policy and practice implications are discussed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dijkgraaf, Robbert; Gopakumar, Rajesh; Ooguri, Hirosi

    We argue that the holographic description of four-dimensional Bogomol'nyi-Prasad-Sommerfield black holes naturally includes multicenter solutions. This suggests that the holographic dual to the gauge theory is not a single AdS{sub 2}xS{sup 2} but a coherent ensemble of them. We verify this in a particular class of examples, where the two-dimensional Yang-Mills theory gives a holographic description of the black holes obtained by branes wrapping Calabi-Yau cycles. Using the free fermionic formulation, we show that O(e{sup -N}) nonperturbative effects entangle the two Fermi surfaces. In an Euclidean description, the wave function of the multicenter black holes gets mapped to the Hartle-Hawkingmore » wave function of baby universes. This provides a concrete realization, within string theory, of effects that can be interpreted as the creation of baby universes. We find that, at least in the case we study, the baby universes do not lead to a loss of quantum coherence, in accord with general arguments.« less

  4. Interpretation of TOF SIMS depth profiles from ultrashallow high-k dielectric stacks assisted by hybrid collisional computer simulation

    NASA Astrophysics Data System (ADS)

    Ignatova, V. A.; Möller, W.; Conard, T.; Vandervorst, W.; Gijbels, R.

    2005-06-01

    The TRIDYN collisional computer simulation has been modified to account for emission of ionic species and molecules during sputter depth profiling, by introducing a power law dependence of the ion yield as a function of the oxygen surface concentration and by modelling the sputtering of monoxide molecules. The results are compared to experimental data obtained with dual beam TOF SIMS depth profiling of ZrO2/SiO2/Si high-k dielectric stacks with thicknesses of the SiO2 interlayer of 0.5, 1, and 1.5 nm. Reasonable agreement between the experiment and the computer simulation is obtained for most of the experimental features, demonstrating the effects of ion-induced atomic relocation, i.e., atomic mixing and recoil implantation, and preferential sputtering. The depth scale of the obtained profiles is significantly distorted by recoil implantation and the depth-dependent ionization factor. A pronounced double-peak structure in the experimental profiles related to Zr is not explained by the computer simulation, and is attributed to ion-induced bond breaking and diffusion, followed by a decoration of the interfaces by either mobile Zr or O.

  5. Performance investigation of InAs based dual electrode tunnel FET on the analog/RF platform

    NASA Astrophysics Data System (ADS)

    Anand, Sunny; Sarin, R. K.

    2016-09-01

    In this paper for the first time, InAs based doping-less Tunnel FET is proposed and investigated. This paper also demonstrates and discusses the impact of gate stacking (SiO2 + HfO2) with equivalent oxide thickness EOT = 0.8 for analog/RF performance. The charge plasma technique is used to form source/drain region on an intrinsic InAs body by selecting proper work function of metal electrode. The paper compares different combinations of gate stacking (SiO2 and HfO2) on the basis of different analog and RF parameters such as transconductance (gm), transconductance to drive current ratio (gm/ID), output conductance (gd), intrinsic gain (AV), total gate capacitance (Cgg) and unity-gain cutoff frequency (fT). The proposed device produces an ON state current of ION ∼6 mA along with ION/IOFF ∼1012, point subthreshold slope (SS ∼ 1.9 mV/dec), average subthreshold slope (AV-SS ∼ 14.2 mV/dec) and cut-off frequency in Terahertz. The focus of this work is to eliminate the fabrication issues and providing the enhanced performance compared to doped device.

  6. Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

    PubMed Central

    Zimbone, Massimo; Boutinguiza, Mohamed; Privitera, Vittorio; Grimaldi, Maria Grazia

    2017-01-01

    Since 1970, TiO2 photocatalysis has been considered a possible alternative for sustainable water treatment. This is due to its material stability, abundance, nontoxicity and high activity. Unfortunately, its wide band gap (≈3.2 eV) in the UV portion of the spectrum makes it inefficient under solar illumination. Recently, so-called “black TiO2” has been proposed as a candidate to overcome this issue. However, typical synthesis routes require high hydrogen pressure and long annealing treatments. In this work, we present an industrially scalable synthesis of TiO2-based material based on laser irradiation. The resulting black TiOx shows a high activity and adsorbs visible radiation, overcoming the main concerns related to the use of TiO2 under solar irradiation. We employed a commercial high repetition rate green laser in order to synthesize a black TiOx layer and we demonstrate the scalability of the present methodology. The photocatalyst is composed of a nanostructured titanate film (TiOx) synthetized on a titanium foil, directly back-contacted to a layer of Pt nanoparticles (PtNps) deposited on the rear side of the same foil. The result is a monolithic photochemical diode with a stacked, layered structure (TiOx/Ti/PtNps). The resulting high photo-efficiency is ascribed to both the scavenging of electrons by Pt nanoparticles and the presence of trap surface states for holes in an amorphous hydrogenated TiOx layer. PMID:28243557

  7. Differing patterns of brain structural abnormalities between black and white patients with their first episode of psychosis.

    PubMed

    Morgan, K D; Dazzan, P; Morgan, C; Lappin, J; Hutchinson, G; Chitnis, X; Suckling, J; Fearon, P; Jones, P B; Leff, J; Murray, R M

    2010-07-01

    African-Caribbean and black African people living in the UK are reported to have a higher incidence of diagnosed psychosis compared with white British people. It has been argued that this may be a consequence of misdiagnosis. If this is true they might be less likely to show the patterns of structural brain abnormalities reported in white British patients. The aim of this study therefore was to investigate whether there are differences in the prevalence of structural brain abnormalities in white and black first-episode psychosis patients. We obtained dual-echo (proton density/T2-weighted) images from a sample of 75 first-episode psychosis patients and 68 healthy controls. We used high resolution magnetic resonance imaging and voxel-based methods of image analysis. Two separate analyses were conducted: (1) 34 white British patients were compared with 33 white British controls; (2) 41 African-Caribbean and black African patients were compared with 35 African-Caribbean and black African controls. White British patients and African-Caribbean/black African patients had ventricular enlargement and increased lenticular nucleus volume compared with their respective ethnic controls. The African-Caribbean/black African patients also showed reduced global grey matter and increased lingual gyrus grey-matter volume. The white British patients had no regional or global grey-matter loss compared with their normal ethnic counterparts but showed increased grey matter in the left superior temporal lobe and right parahippocampal gyrus. We found no evidence in support of our hypothesis. Indeed, the finding of reduced global grey-matter volume in the African-Caribbean/black African patients but not in the white British patients was contrary to our prediction.

  8. 'Black universe' epoch in string cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchel, Alex; Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2J 2W9; Kofman, Lev

    2008-10-15

    String theory compactification involves manifolds with multiple warp factors. For cosmological applications, we often introduce a short, high-energy inflationary throat, and a long, low-energy standard model (SM) throat. It is assumed that at the end of inflation, the excited Kaluza-Klein modes from the inflationary throat tunnel to the SM throat and reheat standard model degrees of freedom, which are attached to probe brane(s). However, the huge hierarchy of energy scales can result in a highly dynamic transition of the throat geometry. We point out that in such a cosmological scenario the standard model throat (together with SM brane) will bemore » cloaked by a Schwarzschild horizon, produced by the Kaluza-Klein modes tunneling from the short throat. The black brane formation is dual to the first order chiral phase transition of the cascading gauge theory. We calculate the critical energy density corresponding the formation of the black hole (BH) horizon in the long throat. We discuss the duality between 'black universe' cosmology and an expanding universe driven by the hot gauge theory radiation. We address the new problem of the hierarchical multiple-throat scenarios: SM brane disappearance after the decay of the BH horizon.« less

  9. A Supramolecular Nanocomposite as a Near-Infrared-Transmitting Optical Filter for Security and Forensic Applications.

    PubMed

    Ghosh, Samrat; Cherumukkil, Sandeep; Suresh, Cherumuttathu H; Ajayaghosh, Ayyappanpillai

    2017-12-01

    Visibly opaque but near-infrared (NIR)-transparent materials are an essential component for night-vision photography, security imaging, and forensic applications. Herein, the development of a novel supramolecular black dye from a diketopyrrolopyrrole (DPP)-based low-molecular-weight organogelator is described. In the solution state, the monomer of DPP-Amide exhibits a deep green color with a broad absorption in the visible region due to firm intramolecular charge transfer from the donor to the acceptor unit. Interestingly, due to the synergistic effect of H-bonding and π-stacking, DPP-Amide can form a black organogel in toluene with complete spectral coverage from 300 to 800 nm, and transmits beyond 850 nm. In the gel state, complete visible-spectrum coverage is achieved due to the simultaneous formation of both H- and J-type aggregates, which is confirmed via absorption studies. To create a free-standing NIR-transmitting elastomeric black filter, nanoscopic molecular aggregates of DPP-Amide (0.15 wt%) are embedded into a poly(dimethylsiloxane) matrix. This nanocomposite possesses high NIR transparency with good thermal and photostability for practical applications. Finally, the use of the developed material for NIR photography, security, and forensic-related applications is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction

    PubMed Central

    Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.

    2013-01-01

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  11. An Overview of the Effects of Alloying Elements on the Properties of Lightweight Fe-(15-35) Mn-(5-12) Al-(0.3-1.2) C Steel

    NASA Astrophysics Data System (ADS)

    Xing, Jia; Wei, Yinghui; Hou, Lifeng

    2018-06-01

    In this review, the influences of alloying elements on the phase constitution, density, and stacking fault energy of Fe-(15-35) Mn-(5-12) Al-(0.3-1.2) C lightweight steel are discussed. The mechanical properties of austenite single-phase and austenite-ferrite dual-phase Fe-Mn-Al-C steels processed by different procedures are also statistically analyzed. The austenite single-phase steel was found to possess superior strength and plasticity. Three reasonable explanations for the mechanism of plastic deformation are presented, namely, shear band-induced plasticity, microband-induced plasticity, and slip band refinement-induced plasticity.

  12. Applications of multi-spectral imaging: failsafe industrial flame detector

    NASA Astrophysics Data System (ADS)

    Wing Au, Kwong; Larsen, Christopher; Cole, Barry; Venkatesha, Sharath

    2016-05-01

    Industrial and petrochemical facilities present unique challenges for fire protection and safety. Typical scenarios include detection of an unintended fire in a scene, wherein the scene also includes a flare stack in the background. Maintaining a high level of process and plant safety is a critical concern. In this paper, we present a failsafe industrial flame detector which has significant performance benefits compared to current flame detectors. The design involves use of microbolometer in the MWIR and LWIR spectrum and a dual band filter. This novel flame detector can help industrial facilities to meet their plant safety and critical infrastructure protection requirements while ensuring operational and business readiness at project start-up.

  13. Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial

    NASA Astrophysics Data System (ADS)

    Yan, Zhendong; Qian, Lina; Zhan, Peng; Wang, Zhenlin

    2018-07-01

    We proposed the excitation of double Fano resonances by the destructive interference between the narrow electric symmetric/antisymmetric resonant modes formed by plasmon hybridization and a broad magnetic dipole resonance in a novel hybrid metamaterial composed of periodically patterned stacked graphene–ribbon pairs and gold split-ring resonators. The double Fano transparency windows in this hybrid metamaterial can be actively controlled by tuning the Fermi energy of graphene through the use of electric gating and its electronic mobility. Our designed dual Fano resonances exhibit a large group index associated with the resonance response in the transparency windows, suggesting promising applications in nanophotonics, such as a slow light device.

  14. Rocket Propulsion 21 Steering Committee Meeting (RP21) NASA In-Space Propulsion Update

    NASA Technical Reports Server (NTRS)

    Klem, Mark

    2015-01-01

    In-house Support of NEXT-C Contract Status Thruster NEXT Long Duration Test post-test destructive evaluation in progress Findings will be used to verify service life models identify potential design improvements Cathode heater fabrication initiated for cyclic life testing Thruster operating algorithm definition verification initiated to provide operating procedures for mission users High voltage propellant isolator life test voluntarily terminated after successfully operating 51,200 h Power processor unit (PPU) Replaced all problematic stacked multilayer ceramic dual inline pin capacitors within PPU Test bed Rebuilt installed discharge power supply primary power board Completed full functional performance characterization Final test report in progress Transferred PPU Testbed to contractor to support prototype design effort.

  15. An Overview of the Effects of Alloying Elements on the Properties of Lightweight Fe-(15-35) Mn-(5-12) Al-(0.3-1.2) C Steel

    NASA Astrophysics Data System (ADS)

    Xing, Jia; Wei, Yinghui; Hou, Lifeng

    2018-04-01

    In this review, the influences of alloying elements on the phase constitution, density, and stacking fault energy of Fe-(15-35) Mn-(5-12) Al-(0.3-1.2) C lightweight steel are discussed. The mechanical properties of austenite single-phase and austenite-ferrite dual-phase Fe-Mn-Al-C steels processed by different procedures are also statistically analyzed. The austenite single-phase steel was found to possess superior strength and plasticity. Three reasonable explanations for the mechanism of plastic deformation are presented, namely, shear band-induced plasticity, microband-induced plasticity, and slip band refinement-induced plasticity.

  16. Reduced disease in black abalone following mass mortality: phage therapy and natural selection

    PubMed Central

    Friedman, Carolyn S.; Wight, Nathan; Crosson, Lisa M.; VanBlaricom, Glenn R.; Lafferty, Kevin D.

    2014-01-01

    Black abalone, Haliotis cracherodii, populations along the NE Pacific ocean have declined due to the rickettsial disease withering syndrome (WS). Natural recovery on San Nicolas Island (SNI) of Southern California suggested the development of resistance in island populations. Experimental challenges in one treatment demonstrated that progeny of disease-selected black abalone from SNI survived better than did those from naïve black abalone from Carmel Point in mainland coastal central California. Unexpectedly, the presence of a newly observed bacteriophage infecting the WS rickettsia (WS-RLO) had strong effects on the survival of infected abalone. Specifically, presence of phage-infected RLO (RLOv) reduced the host response to infection, RLO infection loads, and associated mortality. These data suggest that the black abalone: WS-RLO relationship is evolving through dual host mechanisms of resistance to RLO infection in the digestive gland via tolerance to infection in the primary target tissue (the post-esophagus) coupled with reduced pathogenicity of the WS-RLO by phage infection, which effectively reduces the infection load in the primary target tissue by half. Sea surface temperature patterns off southern California, associated with a recent hiatus in global-scale ocean warming, do not appear to be a sufficient explanation for survival patterns in SNI black abalone. These data highlight the potential for natural recovery of abalone populations over time and that further understanding of mechanisms governing host–parasite relationships will better enable us to manage declining populations. PMID:24672512

  17. Reduced disease in black abalone following mass mortality: phage therapy and natural selection.

    PubMed

    Friedman, Carolyn S; Wight, Nathan; Crosson, Lisa M; Vanblaricom, Glenn R; Lafferty, Kevin D

    2014-01-01

    Black abalone, Haliotis cracherodii, populations along the NE Pacific ocean have declined due to the rickettsial disease withering syndrome (WS). Natural recovery on San Nicolas Island (SNI) of Southern California suggested the development of resistance in island populations. Experimental challenges in one treatment demonstrated that progeny of disease-selected black abalone from SNI survived better than did those from naïve black abalone from Carmel Point in mainland coastal central California. Unexpectedly, the presence of a newly observed bacteriophage infecting the WS rickettsia (WS-RLO) had strong effects on the survival of infected abalone. Specifically, presence of phage-infected RLO (RLOv) reduced the host response to infection, RLO infection loads, and associated mortality. These data suggest that the black abalone: WS-RLO relationship is evolving through dual host mechanisms of resistance to RLO infection in the digestive gland via tolerance to infection in the primary target tissue (the post-esophagus) coupled with reduced pathogenicity of the WS-RLO by phage infection, which effectively reduces the infection load in the primary target tissue by half. Sea surface temperature patterns off southern California, associated with a recent hiatus in global-scale ocean warming, do not appear to be a sufficient explanation for survival patterns in SNI black abalone. These data highlight the potential for natural recovery of abalone populations over time and that further understanding of mechanisms governing host-parasite relationships will better enable us to manage declining populations.

  18. Reduced disease in black abalone following mass mortality: Phage therapy and natural selection

    USGS Publications Warehouse

    VanBlaricom, Glenn R.

    2014-01-01

    Black abalone, Haliotis cracherodii, populations along the NE Pacific ocean have declined due to the rickettsial disease withering syndrome (WS). Natural recovery on San Nicolas Island (SNI) of Southern California suggested the development of resistance in island populations. Experimental challenges in one treatment demonstrated that progeny of disease-selected black abalone from SNI survived better than did those from naïve black abalone from Carmel Point in mainland coastal central California. Unexpectedly, the presence of a newly observed bacteriophage infecting the WS rickettsia (WS-RLO) had strong effects on the survival of infected abalone. Specifically, presence of phage-infected RLO (RLOv) reduced the host response to infection, RLO infection loads, and associated mortality. These data suggest that the black abalone: WS-RLO relationship is evolving through dual host mechanisms of resistance to RLO infection in the digestive gland via tolerance to infection in the primary target tissue (the post-esophagus) coupled with reduced pathogenicity of the WS-RLO by phage infection, which effectively reduces the infection load in the primary target tissue by half. Sea surface temperature patterns off southern California, associated with a recent hiatus in global-scale ocean warming, do not appear to be a sufficient explanation for survival patterns in SNI black abalone. These data highlight the potential for natural recovery of abalone populations over time and that further understanding of mechanisms governing host–parasite relationships will better enable us to manage declining populations.

  19. KSC-2011-1434

    NASA Image and Video Library

    2011-02-13

    VANDENBERG AIR FORCE BASE, Calif. -- At Space Launch Complex 576-E at Vandenberg Air Force Base in California, NASA's Glory spacecraft, already integrated with the upper stack of the Taurus rocket, awaits installation of the upper umbilical tower inside a processing tent near the pad. The Orbital Sciences Corp. Taurus XL rocket will launch Glory into low Earth orbit. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Randy Beaudoin, VAFB

  20. Improved cell for water-vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  1. Fluorescent "on-off-on" switching sensor based on CdTe quantum dots coupled with multiwalled carbon nanotubes@graphene oxide nanoribbons for simultaneous monitoring of dual foreign DNAs in transgenic soybean.

    PubMed

    Li, Yaqi; Sun, Li; Qian, Jing; Long, Lingliang; Li, Henan; Liu, Qian; Cai, Jianrong; Wang, Kun

    2017-06-15

    With the increasing concern of potential health and environmental risk, it is essential to develop reliable methods for transgenic soybean detection. Herein, a simple, sensitive and selective assay was constructed based on homogeneous fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) and multiwalled carbon nanotubes@graphene oxide nanoribbons (MWCNTs@GONRs) to form the fluorescent "on-off-on" switching for simultaneous monitoring dual target DNAs of promoter cauliflower mosaic virus 35s (P35s) and terminator nopaline synthase (TNOS) from transgenic soybean. The capture DNAs were immobilized with corresponding QDs to obtain strong fluorescent signals (turning on). The strong π-π stacking interaction between single-stranded DNA (ssDNA) probes and MWCNTs@GONRs led to minimal background fluorescence due to the FRET process (turning off). The targets of P35s and TNOS were recognized by dual fluorescent probes to form double-stranded DNA (dsDNA) through the specific hybridization between target DNAs and ssDNA probes. And the dsDNA were released from the surface of MWCNTs@GONRs, which leaded the dual fluorescent probes to generate the strong fluorescent emissions (turning on). Therefore, this proposed homogeneous assay can be achieved to detect P35s and TNOS simultaneously by monitoring the relevant fluorescent emissions. Moreover, this assay can distinguish complementary and mismatched nucleic acid sequences with high sensitivity. The constructed approach has the potential to be a tool for daily detection of genetically modified organism with the merits of feasibility and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Recognition and context memory for faces from own and other ethnic groups: a remember-know investigation.

    PubMed

    Horry, Ruth; Wright, Daniel B; Tredoux, Colin G

    2010-03-01

    People are more accurate at recognizing faces from their own ethnic group than at recognizing faces from other ethnic groups. This other-ethnicity effect (OEE) in recognition may be produced by a deficit in recollective memory for other-ethnicity faces. In a single study, White and Black participants saw White and Black faces presented within several different visual contexts. The participants were then given an old/new recognition task. Old responses were followed by remember-know-guess judgments and context judgments. Own-ethnicity faces were recognized more accurately, were given more remember responses, and produced more accurate context judgments than did other-ethnicity faces. These results are discussed in a dual-process framework, and implications for eyewitness memory are considered.

  3. Formation of Offset and Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Barrows, Scott; Comerford, Julia M.; Greene, Jenny E.

    2018-06-01

    Galaxy mergers are effective mechanisms for triggering accretion onto supermassive black holes (SMBHs) and thereby powering active galactic nuclei (AGN). In the merger scenario, when the SMBH from only one galaxy is accreting we observe a spatially offset AGN, and when the SMBHs from both galaxies are accreting we observe a dual AGN. Understanding the merger conditions that lead to the formation of offset AGN versus dual AGN is fundamental to informing models of hierarchical SMBH growth and the physics leading to the accretion of matter onto SMBHs. However, while the role of galaxy mergers for AGN triggering has been well-studied, the efficiency with which these events trigger offset AGN versus dual AGN is currently unclear. One reason for this gap in knowledge can be attributed to the observational difficulties in distinguishing between offset and dual AGN since doing so requires high spatial resolution, especially in the small separation regime where merger-driven AGN triggering is most likely to occur. To overcome this hurdle, we have utilized the spatial resolution of the Chandra X-ray Observatory to develop a unique sample of AGN hosted by late-stage galaxy mergers. Moreover, we have recently acquired Hubble Space Telescope imaging for a subset of these systems to examine the role that their merger morphologies play in SMBH growth and the formation of offset and dual AGN. We find that offset AGN are predominately found in minor mergers, whereas dual AGN are usually hosted by major mergers and galaxies with large morphological asymmetries. Furthermore, in both offset and dual AGN, the rate of SMBH growth increases toward more major mergers and larger morphological asymmetries. These results are in agreement with numerical simulations predicting that merger morphology is a relevant parameter governing SMBH merger-driven growth, and these results are the first to observationally confirm these trends at small pair separations.

  4. Electronic nicotine delivery system dual use and intention to quit smoking: Will the socioeconomic gap in smoking get greater?

    PubMed

    Nayak, Pratibha; Pechacek, Terry F; Weaver, Scott R; Eriksen, Michael P

    2016-10-01

    Electronic nicotine delivery systems (ENDS) are popular among cigarette smokers; however, it is not known whether the use of ENDS assists or delays quitting cigarettes, especially among certain priority populations. We examined predictors of intention to quit smoking and patterns of dual use of ENDS and traditional cigarettes among priority populations. This study used data from a 2014 survey of a national probability sample of 5717 USA adults. Descriptive statistics were used to examine differences in intention to quit cigarette use among current cigarette smokers (n=1014) and dual users of cigarettes and ENDS (n=248). Multivariable logistic regression analysis was conducted on the overall sample and the subsample of dual users to determine whether dual use (versus cigarette only use) and demographic characteristics predict self-reported intention to quit and having attempted to quit in the past year. Significance was set at p<0.05. Compared to cigarette smokers, dual users were slightly more educated (p<0.05), more likely to intend to quit smoking (adjusted odds ratio [AOR]=1.8, p=0.001), and more likely to have attempted to quit smoking in the past year (AOR=1.7, p=0.003). Blacks reported higher intention to quit than Whites (AOR=1.8, p=0.003). Compared with high school education or less, dual users with some college (AOR=1.5, p=0.007) or a college degree (AOR=2.5, p≤0.0001) had high intention to quit. Dual users of ENDS and traditional cigarettes are more likely to intend to quit smoking and have recently made quit attempts. If using ENDS contributes to increased smoking cessation among more educated individuals, disparity in smoking by level of education will increase. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Song, Wei; Anninos, Dionysios; Li, Wei; Padi, Megha; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -ell-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μell = 1. However we show herein that for every value of μell ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μell = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μell > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μell > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  6. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Li, Wei; Padi, Megha; Song, Wei; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  7. Validation of bioelectrical impedance analysis (BIA) for estimation of body composition in Black, White and Hispanic adolescent girls

    PubMed Central

    Going, S.; Nichols, J.; Loftin, M.; Stewart, D.; Lohman, T.; Tuuri, G.; Ring, K.; Pickrel, J.; Blew, R.; J.Stevens

    2007-01-01

    Aim Equations for estimating % fat mass (%BF) and fat-free mass (FFM) from bioelectrical impedance analysis (BIA) that work in adolescent girls from different racial/ethnic backgrounds are not available. We investigated whether race/ethnicity influences estimation of body composition in adolescent girls. Principal procedures Prediction equations were developed for estimating FFM and %BF from BIA in 166 girls, 10–15 years old, consisting of 51 Black (B), 45 non-Black Hispanic (H), 55 non-Hispanic White (W) and 15 mixed (M) race/ethnicity girls, using dual energy x-ray absorptiometry (DXA) as the criterion method. Findings Black girls had similar %BF compared to other groups, yet were heavier per unit of height according to body mass index (BMI: kg·m−2) due to significantly greater FFM. BIA resistance index, age, weight and race/ethnicity were all significant predictors of FFM (R2 = 0.92, SEE = 1.81 kg). Standardized regression coefficients showed resistance index (0.63) and weight (0.34) were the most important predictors of FFM. Errors in %BF (~2%) and FFM (~1.0 kg) were greater when race/ethnicity was not included in the equation, particularly in Black girls. We conclude the BIA-composition relationship in adolescent girls is influenced by race, and consequently have developed new BIA equations for adolescent girls for predicting FFM and %BF. PMID:17848976

  8. Delocalized SYZ mirrors and confronting top-down SU(3)-structure holographic meson masses at finite g and N_c with P(article) D(ata) G(roup) values

    NASA Astrophysics Data System (ADS)

    Yadav, Vikas; Misra, Aalok; Sil, Karunava

    2017-10-01

    Meson spectroscopy at finite gauge coupling - whereat any perturbative QCD computation would break down - and finite number of colors, from a top-down holographic string model, has thus far been entirely missing in the literature. This paper fills this gap. Using the delocalized type IIA SYZ mirror (with SU(3) structure) of the holographic type IIB dual of large- N thermal QCD of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) as constructed in Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at finite coupling and number of colors (N_c = number of D5(\\overline{D5})-branes wrapping a vanishing two-cycle in the top-down holographic construct of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) = O(1) in the IR in the MQGP limit of Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at the end of a Seiberg-duality cascade), we obtain analytical (not just numerical) expressions for the vector and scalar meson spectra and compare our results with previous calculations of Sakai and Sugimoto (Prog Theor Phys 113:843. doi: 10.1143/PTP.113.843 arXiv:hep-th/0412141, 2005) and Dasgupta et al. (JHEP 1507:122. doi: 10.1007/JHEP07(2015)122 arXiv:1409.0559 [hep-th], 2015), and we obtain a closer match with the Particle Data Group (PDG) results of Olive et al. (Particle Data Group) (Chin Phys C 38:090001, 2014). Through explicit computations, we verify that the vector and scalar meson spectra obtained by the gravity dual with a black hole for all temperatures (small and large) are nearly isospectral with the spectra obtained by a thermal gravity dual valid for only low temperatures; the isospectrality is much closer for vector mesons than scalar mesons. The black-hole gravity dual (with a horizon radius smaller than the deconfinement scale) also provides the expected large- N suppressed decrease in vector meson mass with increase of temperature.

  9. Segmentation and analysis of mouse pituitary cells with graphic user interface (GUI)

    NASA Astrophysics Data System (ADS)

    González, Erika; Medina, Lucía.; Hautefeuille, Mathieu; Fiordelisio, Tatiana

    2018-02-01

    In this work we present a method to perform pituitary cell segmentation in image stacks acquired by fluorescence microscopy from pituitary slice preparations. Although there exist many procedures developed to achieve cell segmentation tasks, they are generally based on the edge detection and require high resolution images. However in the biological preparations that we worked on, the cells are not well defined as experts identify their intracellular calcium activity due to fluorescence intensity changes in different regions over time. This intensity changes were associated with time series over regions, and because they present a particular behavior they were used into a classification procedure in order to perform cell segmentation. Two logistic regression classifiers were implemented for the time series classification task using as features the area under the curve and skewness in the first classifier and skewness and kurtosis in the second classifier. Once we have found both decision boundaries in two different feature spaces by training using 120 time series, the decision boundaries were tested over 12 image stacks through a python graphical user interface (GUI), generating binary images where white pixels correspond to cells and the black ones to background. Results show that area-skewness classifier reduces the time an expert dedicates in locating cells by up to 75% in some stacks versus a 92% for the kurtosis-skewness classifier, this evaluated on the number of regions the method found. Due to the promising results, we expect that this method will be improved adding more relevant features to the classifier.

  10. Influence of barrier absorption properties on laser patterning thin organic films

    NASA Astrophysics Data System (ADS)

    Naithani, Sanjeev; Mandamparambil, Rajesh; van Assche, Ferdie; Schaubroeck, David; Fledderus, Henri; Prenen, An; Van Steenberge, Geert; Vanfleteren, Jan

    2012-06-01

    This paper presents a study of selective ablation of thin organic films (LEP- Light Emitting Polymer, PEDOT:PSS- Poly 3,4-ethylenedioxythiophene: polystyrene sulfonate) by using 248 nm Excimer laser, on various kinds of multilayered SiN barrier foils for the development of Organic Light Emitting Diodes (OLED). Different Silicon Nitride (SiN) barrier foils with dedicated absorption spectra are taken into account for this purpose. The drive for looking into different types of SiN originates from the fact that the laser selective removal of a polymer without damage to the barrier layer underneath is challenging in the dynamic laser processing of thin films. The barrier is solely responsible for the proper encapsulation of the OLED stack. The main limitation of current OLED design is its shorter life span, which is directly related to the moisture or water permeation into the stack, leading to black spots. An optimization of laser parameters like fluence and number of shots has been carried out for the various types of SiN barrier foils. We are able to obtain a wider working process window for the selective removal of LEP and PEDOT:PSS from SiN barrier, by variation of the different types of SiN.

  11. Dual beam photoacoustic infrared spectroscopy of solids using an external cavity quantum cascade laser.

    PubMed

    Dehghany, M; Michaelian, K H

    2012-06-01

    Quantum cascade laser-based instrumentation for dual beam photoacoustic (PA) spectroscopy is described in this article. Experimental equipment includes a 4.55 μm (2141-2265 cm(-1)) continuous wave external cavity quantum cascade laser (EC-QCL), two gas-microphone PA cells, and two lock-in amplifiers. Correction for the time and wavenumber dependence of the laser output is effected through real-time division of the PA signals derived from the sample and reference channels. Source-compensated mid-infrared absorption spectra of carbon black powder and aromatic hydrocarbon solids were obtained to confirm the reliability of the method. Absorption maxima in the EC-QCL PA spectra of hydrocarbons are better defined than those in Fourier transform infrared spectra acquired under similar conditions, enabling the detection of several previously unknown bands.

  12. A dual-waveband dynamic IR scene projector based on DMD

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Zheng, Ya-wei; Gao, Jiao-bo; Sun, Ke-feng; Li, Jun-na; Zhang, Lei; Zhang, Fang

    2016-10-01

    Infrared scene simulation system can simulate multifold objects and backgrounds to perform dynamic test and evaluate EO detecting system in the hardware in-the-loop test. The basic structure of a dual-waveband dynamic IR scene projector was introduced in the paper. The system's core device is an IR Digital Micro-mirror Device (DMD) and the radiant source is a mini-type high temperature IR plane black-body. An IR collimation optical system which transmission range includes 3-5μm and 8-12μm is designed as the projection optical system. Scene simulation software was developed with Visual C++ and Vega soft tools and a software flow chart was presented. The parameters and testing results of the system were given, and this system was applied with satisfying performance in an IR imaging simulation testing.

  13. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    NASA Astrophysics Data System (ADS)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion galaxy or a companion galaxy hosting a second AGN, in order to understand the role molecular gas plays in feeding this unusual population of ultra-hard X-ray AGNs and to understand ultra-hard X-rays as a dual AGN selection method.

  14. Earth Observations taken by STS-127 Crew

    NASA Image and Video Library

    2009-07-30

    S127-E-012774 (30 July 2009) --- Backdropped by Earth?s horizon and the blackness of space, a Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) is photographed after its release from Space Shuttle Endeavour?s payload bay by STS-127 crew members. DRAGONSat will look at independent rendezvous of spacecraft in orbit using Global Positioning Satellite data. The two satellites were designed and built by students at the University of Texas, Austin, and Texas A&M University, College Station.

  15. Earth Observations taken by STS-127 Crew

    NASA Image and Video Library

    2009-07-30

    S127-E-012776 (30 July 2009) --- Backdropped by Earth?s horizon and the blackness of space, a Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) is photographed after its release from Space Shuttle Endeavour?s payload bay by STS-127 crew members. DRAGONSat will look at independent rendezvous of spacecraft in orbit using Global Positioning Satellite data. The two satellites were designed and built by students at the University of Texas, Austin, and Texas A&M University, College Station.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karch, Andreas; Robinson, Brandon

    Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation. Here, we show that this relation can easily be understood from the point of view of the dual holographic field theory. It amounts to the simple statement that the extensive thermodynamic quantities of a large N gauge theory only depend on the number of colors, N, via an overall factor of N 2.

  17. [Visual cues as a therapeutic tool in Parkinson's disease. A systematic review].

    PubMed

    Muñoz-Hellín, Elena; Cano-de-la-Cuerda, Roberto; Miangolarra-Page, Juan Carlos

    2013-01-01

    Sensory stimuli or sensory cues are being used as a therapeutic tool for improving gait disorders in Parkinson's disease patients, but most studies seem to focus on auditory stimuli. The aim of this study was to conduct a systematic review regarding the use of visual cues over gait disorders, dual tasks during gait, freezing and the incidence of falls in patients with Parkinson to obtain therapeutic implications. We conducted a systematic review in main databases such as Cochrane Database of Systematic Reviews, TripDataBase, PubMed, Ovid MEDLINE, Ovid EMBASE and Physiotherapy Evidence Database, during 2005 to 2012, according to the recommendations of the Consolidated Standards of Reporting Trials, evaluating the quality of the papers included with the Downs & Black Quality Index. 21 articles were finally included in this systematic review (with a total of 892 participants) with variable methodological quality, achieving an average of 17.27 points in the Downs and Black Quality Index (range: 11-21). Visual cues produce improvements over temporal-spatial parameters in gait, turning execution, reducing the appearance of freezing and falls in Parkinson's disease patients. Visual cues appear to benefit dual tasks during gait, reducing the interference of the second task. Further studies are needed to determine the preferred type of stimuli for each stage of the disease. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.

  18. Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters.

    PubMed

    Balea, Ana; Monte, M Concepción; de la Fuente, Elena; Negro, Carlos; Blanco, Ángeles

    2017-02-01

    Water-based or flexographic inks in paper and plastic industries are more environmentally favourable than organic solvent-based inks. However, their use also creates new challenges because they remain dissolved in water and alter the recycling process. Conventional deinking technologies such as flotation processes do not effectively remove them. Adsorption, coagulation/flocculation, biological and membrane processes are either expensive or have negative health impacts, making the development of alternative methods necessary. Cellulose nanofibers (CNF) are biodegradable, and their structural and mechanical properties are useful for wastewater treatment. TEMPO-oxidised CNF have been evaluated for the decolourisation of wastewaters that contained copper phthalocyanine blue, carbon black and diarlyide yellow pigments. CNF in combination with a cationic polyacrylamide (cPAM) has also been tested. Jar-test methodology was used to evaluate the efficiency of the different treatments and cationic/anionic demand, turbidity and ink concentration in waters were measured. Results show that dual-component system for ink removal has a high potential as an alternative bio-based adsorbent for the removal of water-based inks. In addition, experiments varying CNF and cPAM concentrations were performed to optimise the ink-removal process. Ink concentration reductions of 100%, 87.5% and 83.3% were achieved for copper phthalocyanine blue, carbon black and diarlyide yellow pigments, respectively. Flocculation studies carried out show the decolourisation mechanism during the dual-component treatment of wastewaters containing water-based inks.

  19. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.

    2016-08-01

    We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z ˜ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.

  20. An unsupervised machine learning method for delineating stratum corneum in reflectance confocal microscopy stacks of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Bozkurt, Alican; Kose, Kivanc; Fox, Christi A.; Dy, Jennifer; Brooks, Dana H.; Rajadhyaksha, Milind

    2016-02-01

    Study of the stratum corneum (SC) in human skin is important for research in barrier structure and function, drug delivery, and water permeability of skin. The optical sectioning and high resolution of reflectance confocal microscopy (RCM) allows visual examination of SC non-invasively. Here, we present an unsupervised segmentation algorithm that can automatically delineate thickness of the SC in RCM images of human skin in-vivo. We mimic clinicians visual process by applying complex wavelet transform over non-overlapping local regions of size 16 x 16 μm called tiles, and analyze the textural changes in between consecutive tiles in axial (depth) direction. We use dual-tree complex wavelet transform to represent textural structures in each tile. This transform is almost shift-invariant, and directionally selective, which makes it highly efficient in texture representation. Using DT-CWT, we decompose each tile into 6 directional sub-bands with orientations in +/-15, 45, and 75 degrees and a low-pass band, which is the decimated version of the input. We apply 3 scales of decomposition by recursively transforming the low-pass bands and obtain 18 bands of different directionality at different scales. We then calculate mean and variance of each band resulting in a feature vector of 36 entries. Feature vectors obtained for each stack of tiles in axial direction are then clustered using spectral clustering in order to detect the textural changes in depth direction. Testing on a set of 15 RCM stacks produced a mean error of 5.45+/-1.32 μm, compared to the "ground truth" segmentation provided by a clinical expert reader.

  1. PEG-coumarin nanoaggregates as π-π stacking derived small molecule lipophile containing self-assemblies for anti-tumour drug delivery.

    PubMed

    Behl, Gautam; Kumar, Parveen; Sikka, Manisha; Fitzhenry, Laurence; Chhikara, Aruna

    2018-03-01

    Polymeric self-assemblies formed by non-covalent interactions such as hydrophobic interactions, hydrogen bonding, π-π stacking, host-guest and electrostatic interactions have been utilised widely and exhibit controlled release of encapsulated drug. Beside carrier-carrier interactions, small molecule amphiphiles exhibiting carrier-drug interactions have recently been an area of interest for cancer drug delivery, as most of the hydrophobic anti-tumour drugs are aromatic and exhibit π-π conjugated structure. In the present study PEG-coumarin (PC) conjugates forming self-assembled nanoaggregates were synthesised with PEG (polyethylene glycol) as hydrophilic block and coumarin as small molecule lipophilic segment. Curcumin (CUR) as model conjugated aromatic drug was loaded in to the nanoaggregates via dual hydrophobic and π-π stacking interactions. The interactions between the conjugates and CUR, drug release profile and in vitro anti-tumour efficacy were investigated in detail. CUR-loaded nanoaggregate self-assembly was driven by π-π interactions and a maximum loading level of about 18 wt.% (~60 % encapsulation efficiency) was achieved. The average hydrodynamic diameter (D av ) was in the range of 120-160 nm and a spherical morphology was observed by transmission electron microscopy (TEM). A sustained release of CUR was observed for 90 h. Cytotoxicity evaluation of CUR-loaded nanoaggregates on pancreatic cancer cell lines indicated higher efficacy, IC 50 ~11 and ~15 μM as compared to free CUR, IC 50 ~14 and ~20 μM on human pancreatic carcinoma (MIA PaCa-2) and human pancreatic duct epithelioid carcinoma (PANC-1) cell lines respectively. PC conjugates provided a new strategy of fabricating nanoparticles for drug delivery and may form the basis for the development of advanced biomaterials in near future.

  2. The secular evolution of discrete quasi-Keplerian systems. II. Application to a multi-mass axisymmetric disc around a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Fouvry, J.-B.; Pichon, C.; Chavanis, P.-H.

    2018-01-01

    A discrete self-gravitating quasi-Keplerian razor-thin axisymmetric stellar disc orbiting a massive black hole sees its orbital structure diffuse on secular timescales as a result of a self-induced resonant relaxation. In the absence of collective effects, such a process is described by the recently derived inhomogeneous multi-mass degenerate Landau equation. Relying on Gauss' method, we computed the associated drift and diffusion coefficients to characterise the properties of the resonant relaxation of razor-thin discs. For a disc-like configuration in our Galactic centre, we showed how this secular diffusion induces an adiabatic distortion of orbits and estimate the typical timescale of resonant relaxation. When considering a disc composed of multiple masses similarly distributed, we have illustrated how the population of lighter stars will gain eccentricity, driving it closer to the central black hole, provided the distribution function increases with angular momentum. The kinetic equation recovers as well the quenching of the resonant diffusion of a test star in the vicinity of the black hole (the "Schwarzschild barrier") as a result of the divergence of the relativistic precessions. The dual stochastic Langevin formulation yields consistent results and offers a versatile framework in which to incorporate other stochastic processes.

  3. Black carbon inclusive multichemical modeling of PBDE and PCB biomagnification and -transformation in estuarine food webs.

    PubMed

    Di Paolo, Carolina; Gandhi, Nilima; Bhavsar, Satyendra P; Van den Heuvel-Greve, Martine; Koelmans, Albert A

    2010-10-01

    Bioavailability and bioaccumulation of polybrominated diphenylethers (PBDEs) are affected by adsorption on black carbon (BC) and metabolism in biota, respectively. Recent studies have addressed these two processes separately, illustrating their importance in assessing contaminant dynamics. In order to properly examine biomagnification of polychlorinated biphenyls (PCBs) and PBDEs in an estuarine food-web, here we set up a black carbon inclusive multichemical model. A dual domain sorption model, which accounted for sorption to organic matter (OM) and black carbon (BC), was used to estimate aqueous phase concentrations from the measured chemical concentrations in suspended solids. We adapted a previously published multichemical model that tracks the movement of a parent compound and its metabolites in each organism and within its food web. First, the model was calibrated for seven PCB congeners assuming negligible metabolism. Subsequently, PBDE biomagnification was modeled, including biotransformation and bioformation of PBDE congeners, keeping the other model parameters the same. The integrated model was capable of predicting trophic magnification factors (TMF) within error limits. PBDE metabolic half-lives ranged 21-415 days and agreed to literature data. The results showed importance of including BC as an adsorbing phase, and biotransformation and bioformation of PBDEs for a proper assessment of their dynamics in aquatic systems.

  4. AdS3 to dS3 transition in the near horizon of asymptotically de Sitter solutions

    NASA Astrophysics Data System (ADS)

    Sadeghian, S.; Vahidinia, M. H.

    2017-08-01

    We consider two solutions of Einstein-Λ theory which admit the extremal vanishing horizon (EVH) limit, odd-dimensional multispinning Kerr black hole (in the presence of cosmological constant) and cosmological soliton. We show that the near horizon EVH geometry of Kerr has a three-dimensional maximally symmetric subspace whose curvature depends on rotational parameters and the cosmological constant. In the Kerr-dS case, this subspace interpolates between AdS3 , three-dimensional flat and dS3 by varying rotational parameters, while the near horizon of the EVH cosmological soliton always has a dS3 . The feature of the EVH cosmological soliton is that it is regular everywhere on the horizon. In the near EVH case, these three-dimensional parts turn into the corresponding locally maximally symmetric spacetimes with a horizon: Kerr-dS3 , flat space cosmology or BTZ black hole. We show that their thermodynamics match with the thermodynamics of the original near EVH black holes. We also briefly discuss the holographic two-dimensional CFT dual to the near horizon of EVH solutions.

  5. Hairy black hole stability in AdS, quantum mechanics on the half-line and holography

    NASA Astrophysics Data System (ADS)

    Anabalón, Andrés; Astefanesei, Dumitru; Oliva, Julio

    2015-10-01

    We consider the linear stability of 4-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged N=8 supergravity in four dimensions, m 2 = -2 l -2. It is shown that the Schrödinger operator on the half-line, governing the S 2, H 2 or {{R}}^2 invariant mode around the hairy black hole, allows for non-trivial self-adjoint extensions and each of them corresponds to a class of mixed boundary conditions in the gravitational theory. Discarding the self-adjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schrödinger operator resembling the estimate of Simon for Schrödinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.

  6. Testing holography using lattice super-Yang-Mills theory on a 2-torus

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Jha, Raghav G.; Schaich, David; Wiseman, Toby

    2018-04-01

    We consider maximally supersymmetric SU (N ) Yang-Mills theory in Euclidean signature compactified on a flat two-dimensional torus with antiperiodic ("thermal") fermion boundary conditions imposed on one cycle. At large N , holography predicts that this theory describes certain black hole solutions in type IIA and IIB supergravity, and we use lattice gauge theory to test this. Unlike the one-dimensional quantum mechanics case where there is only the dimensionless temperature to vary, here we emphasize there are two more parameters which determine the shape of the flat torus. While a rectangular Euclidean torus yields a thermal interpretation, allowing for skewed tori modifies the holographic dual black hole predictions and results in another direction to test holography. Our lattice calculations are based on a supersymmetric formulation naturally adapted to a particular skewing. Using this we perform simulations up to N =16 with several lattice spacings for both skewed and rectangular tori. We observe the two expected black hole phases with their predicted behavior, with a transition between them that is consistent with the gravity prediction based on the Gregory-Laflamme transition.

  7. Observables and microscopic entropy of higher spin black holes

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Jottar, Juan I.; Song, Wei

    2013-11-01

    In the context of recently proposed holographic dualities between higher spin theories in AdS3 and (1 + 1)-dimensional CFTs with symmetry algebras, we revisit the definition of higher spin black hole thermodynamics and the dictionary between bulk fields and dual CFT operators. We build a canonical formalism based on three ingredients: a gauge-invariant definition of conserved charges and chemical potentials in the presence of higher spin black holes, a canonical definition of entropy in the bulk, and a bulk-to-boundary dictionary aligned with the asymptotic symmetry algebra. We show that our canonical formalism shares the same formal structure as the so-called holomorphic formalism, but differs in the definition of charges and chemical potentials and in the bulk-to-boundary dictionary. Most importantly, we show that it admits a consistent CFT interpretation. We discuss the spin-2 and spin-3 cases in detail and generalize our construction to theories based on the hs[ λ] algebra, and on the sl( N,[InlineMediaObject not available: see fulltext.]) algebra for any choice of sl(2 ,[InlineMediaObject not available: see fulltext.]) embedding.

  8. Confined phase in the real time formalism and the fate of the world behind the horizon

    NASA Astrophysics Data System (ADS)

    Furuuchi, Kazuyuki

    2006-02-01

    In the real time formulation of finite temperature field theories, one introduces an additional set of fields (type-2 fields) associated to each field in the original theory (type-1 field). In [J. M. Maldacena, J. High Energy Phys., JHEPFG, 1029-8479 04 (2003) 021., 10.1088/1126-6708/2003/04/021], in the context of the anti-de Sitter (AdS)-conformal field theories (CFT) correspondence, Maldacena interpreted type-2 fields as living on a boundary behind the black hole horizon. However, below the Hawking-Page transition temperature, the thermodynamically preferred configuration is the thermal AdS without a black hole, and hence there are no horizon and boundary behind it. This means that when the dual gauge theory is in confined phase, the type-2 fields cannot be associated with the degrees of freedom behind the black hole horizon. I argue that in this case the role of the type-2 fields is to make up bulk type-2 fields of classical closed string field theory on AdS at finite temperature in the real time formalism.

  9. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  10. Determinants of change in body weight and body fat distribution over 5.5 years in a sample of free-living black South African women

    PubMed Central

    Chantler, Sarah; Dickie, Kasha; Micklesfield, Lisa K; Goedecke, Julia H; Goedecke, Julia H; Micklesfield, Lisa K

    2016-01-01

    Summary Objective To identify socio-demographic and lifestyle determinants of weight gain in a sample of premenopasual black South African (SA) women. Methods Changes in body composition (dual-energy X-ray absorptiometry, computerised tomography), socio-economic status (SES) and behavioural/lifestyle factors were measured in 64 black SA women at baseline (27 ± 8 years) and after 5.5 years. Results A lower body mass index (BMI) and nulliparity, together with access to sanitation, were significant determinants of weight gain and change in body fat distribution over 5.5 years. In addition, younger women increased their body weight more than their older counterparts, but this association was not independent of other determinants. Conclusion Further research is required to examine the effect of changing SES, as well as the full impact of childbearing on weight gain over time in younger women with lower BMIs. This information will suggest areas for possible intervention to prevent long-term weight gain in these women. PMID:27224680

  11. Concepts for the evolution of the Space Station Program

    NASA Technical Reports Server (NTRS)

    Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.

    1986-01-01

    An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.

  12. Dual light field and polarization imaging using CMOS diffractive image sensors.

    PubMed

    Jayasuriya, Suren; Sivaramakrishnan, Sriram; Chuang, Ellen; Guruaribam, Debashree; Wang, Albert; Molnar, Alyosha

    2015-05-15

    In this Letter we present, to the best of our knowledge, the first integrated CMOS image sensor that can simultaneously perform light field and polarization imaging without the use of external filters or additional optical elements. Previous work has shown how photodetectors with two stacks of integrated metal gratings above them (called angle sensitive pixels) diffract light in a Talbot pattern to capture four-dimensional light fields. We show, in addition to diffractive imaging, that these gratings polarize incoming light and characterize the response of these sensors to polarization and incidence angle. Finally, we show two applications of polarization imaging: imaging stress-induced birefringence and identifying specular reflections in scenes to improve light field algorithms for these scenes.

  13. The impact of oil burning on kraft recovery furnace SO sub 2 emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Someshwar, A.V.; Pinkerton, J.E.; Caron, A.L.

    1991-04-01

    Auxiliary fossil fuel, either natural gas or fuel oil, is burned in kraft recovery furnaces during furnace startups and shutdowns, furnace upsets, and periods of substantially reduced rates of black liquor firing. The efficiency of sulfur capture and retention during normal operation of a kraft recovery furnace is inherently high. Consequently, not all the SO{sub 2} from occasional burning of sulfur-containing fuel oil in the furnace would be expected to end up in the stack gases. However, the extent to which such SO{sub 2} is captured by the alkali fume generation processes has not been well documented. In this paper,more » the authors examines the impact that burning oil in kraft recovery furnaces has on the SO{sub 2} emissions. The work included analyses of long-term SO{sub 2} data from a continuous emission monitoring system (CEMS) obtained for four furnaces that burned medium sulfur fuel oil as auxiliary fuel. It also included tests conducted on four furnaces in which varying amounts of oil were co-fired with black liquor.« less

  14. Solar thermoelectric generator

    DOEpatents

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  15. A nutrition-physical fitness intervention program for low-income black parents.

    PubMed

    Sullivan, J; Carter, J P

    1985-01-01

    An 8-week program taught nutrition and aerobic exercise to obese, low-income black mothers of children under 3 years. A reduction in risk factors for cardiovascular disease in the mothers was anticipated. Culturally adapted aerobic dancing was well-suited for exercise. It was assumed that children would ultimately adopt their parents' changed life style. The program demonstrated a significant reduction in heart rates at rest, but no significant change in heart rates with stress. A significant reduction in body-fat percentage was measured, whereas overall weight reduction was not significant. The consumption of vitamin C, protein, fat, and sodium was reduced. Intake of calcium, iron, carbohydrates, and vitamin A rose significantly. The results indicate the potential effectiveness of such dual intervention programs. Further study would be necessary for more conclusive results and recommendations.

  16. A Nutrition-Physical Fitness Intervention Program for Low-Income Black Parents

    PubMed Central

    Sullivan, Joan; Carter, James P.

    1985-01-01

    An 8-week program taught nutrition and aerobic exercise to obese, low-income black mothers of children under 3 years. A reduction in risk factors for cardiovascular disease in the mothers was anticipated. Culturally adapted aerobic dancing was well-suited for exercise. It was assumed that children would ultimately adopt their parents' changed life style. The program demonstrated a significant reduction in heart rates at rest, but no significant change in heart rates with stress. A significant reduction in body-fat percentage was measured, whereas overall weight reduction was not significant. The consumption of vitamin C, protein, fat, and sodium was reduced. Intake of calcium, iron, carbohydrates, and vitamin A rose significantly. The results indicate the potential effectiveness of such dual intervention programs. Further study would be necessary for more conclusive results and recommendations. PMID:3968714

  17. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging.

    PubMed

    Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W

    2014-10-20

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint.

  18. Conformational changes of the phenyl and naphthyl isocyanate-DNA adducts during DNA replication and by minor groove binding molecules

    PubMed Central

    Nakano, Shu-ichi; Uotani, Yuuki; Sato, Yuichi; Oka, Hirohito; Fujii, Masayuki; Sugimoto, Naoki

    2013-01-01

    DNA lesions produced by aromatic isocyanates have an extra bulky group on the nucleotide bases, with the capability of forming stacking interaction within a DNA helix. In this work, we investigated the conformation of the 2′-deoxyadenosine and 2′-deoxycytidine derivatives tethering a phenyl or naphthyl group, introduced in a DNA duplex. The chemical modification experiments using KMnO4 and 1-cyclohexyl-3 -(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate have shown that the 2′-deoxycytidine lesions form the base pair with guanine while the 2′-deoxyadenosine lesions have less ability of forming the base pair with thymine in solution. Nevertheless, the kinetic analysis shows that these DNA lesions are compatible with DNA ligase and DNA polymerase reactions, as much as natural DNA bases. We suggest that the adduct lesions have a capability of adopting dual conformations, depending on the difference in their interaction energies between stacking of the attached aromatic group and base pairing through hydrogen bonds. It is also presented that the attached aromatic groups change their orientation by interacting with the minor groove binding netropsin, distamycin and synthetic polyamide. The nucleotide derivatives would be useful for enhancing the phenotypic diversity of DNA molecules and for exploring new non-natural nucleotides. PMID:23873956

  19. Functional Multi-Nanolayer Coatings of Amorphous Carbon/Tungsten Carbide with Exceptional Mechanical Durability and Corrosion Resistance.

    PubMed

    Nemati, Narguess; Bozorg, Mansoor; Penkov, Oleksiy V; Shin, Dong-Gap; Sadighzadeh, Asghar; Kim, Dae-Eun

    2017-09-06

    A novel functional multilayer coating with periodically stacked nanolayers of amorphous carbon (a:C)/tungsten carbide (WC) and an adhesion layer of chromium (Cr) was deposited on 304 stainless steel using a dual magnetron sputtering technique. Through process optimization, highly densified coatings with high elasticity and shear modulus, excellent wear resistance, and minimal susceptibility to corrosive and caustic media could be acquired. The structural and mechanical properties of the optimized coatings were studied in detail using a variety of analytical techniques. Furthermore, finite element method simulations indicated that the stress generated due to contact against a steel ball was distributed well within the coating, which allowed the stresses to be lower than the yield threshold of the coating. Thus, an ultralow wear rate of ∼10 -12 mm 3 /N mm could be achieved in dry sliding conditions under relatively high Hertzian contact pressures of ∼0.4-0.9 GPa. The amorphous and pinhole-free structure of the individual layers, sufficient number of pairs, and the relatively dense stacked layers resulted in significant polarization resistance (Z″ = 5.5 × 10 6 Ω cm 2 ) and increased the corrosion resistance of the coating by 10-fold compared to that of recently reported corrosion-resistant coatings.

  20. Characterization of ceria electrolyte in solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Milliken, Christopher Edward

    The goal of this research effort is to characterize cation doped cerium dioxide for use as an electrolyte material in solid oxide fuel cell applications. A variety of analytical techniques including thermogravimetric analysis, controlled atmosphere dilatometry, and AC/DC electronic measurements on single cells and stacks have been coupled with thermodynamic calculations to evaluate the suitability of several doping schemes. The results of this analysis indicate that doping CeOsb2 with 20% SmOsb{1.5} or codoping with 19% GdOsb{1.5} + 1% PrOsb{1.83} provides the best combination of stability and performance. Under dual atmosphere fuel cell conditions, these dopants do not provide sufficient stabilization energy to prevent the reduction of ceria. A significant oxygen leakage current can be expected, particularly near open circuit conditions. Incorporation of 10% SrO provides similar short-term advantages to the lanthanide doped system but this electrolyte material undergoes an irreversible degradation mechanism that results in cell failure within 1500 hours of test. Under fuel cell conditions, the maximum efficiency of such systems in stacks will be below 40% at 200 mW/cmsp2 when operated on humidified hydrogen fuels. This compares to an expected efficiency of 45-50% at a similar power density for nonmixed conducting electrolyte (e.g., YSZ).

  1. Approaches to emergent spacetime in gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    Sully, James Kenneth

    2013-08-01

    In this thesis we explore approaches to emergent local spacetime in gauge/gravity duality. We first conjecture that every CFT with a large-N type limit and a parametrically large gap in the spectrum of single-trace operators has a local bulk dual. We defend this conjecture by counting consistent solutions to the four-point function in simple scalar models and matching to the number of local interaction terms in the bulk. Next, we proceed to explicitly construct local bulk operators using smearing functions. We argue that this construction allows one to probe inside black hole horizons for only short times. We then suggest that the failure to construct bulk operators inside a black hole at late times is indicative of a break-down of local effective field theory at the black hole horizon. We argue that the postulates of black hole complementarity are inconsistent and cannot be realized within gauge/gravity duality. We argue that the most conservative solution is a firewall at the black hole horizon and we critically explore alternative resolutions. We then examine the CGHS model of two-dimensional gravity to look for dynamical formation of firewalls. We find that the CGHS model does not exhibit firewalls, but rather contains long-lived remnants. We argue that, while this is consistent for the CGHS model, it cannot be so in higher-dimensional theories of gravity. Lastly, we turn to F-theory, and detail local and global obstructions to writing elliptic fibrations in Tate form. We determine more general possible forms.

  2. Rescuing complementarity with little drama

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Bouland, Adam; Chatwin-Davies, Aidan; Pollack, Jason; Yuen, Henry

    2016-12-01

    The AMPS paradox challenges black hole complementarity by apparently constructing a way for an observer to bring information from the outside of the black hole into its interior if there is no drama at its horizon, making manifest a violation of monogamy of entanglement. We propose a new resolution to the paradox: this violation cannot be explicitly checked by an infalling observer in the finite proper time they have to live after crossing the horizon. Our resolution depends on a weak relaxation of the no-drama condition (we call it "little-drama") which is the "complementarity dual" of scrambling of information on the stretched horizon. When translated to the description of the black hole interior, this implies that the fine-grained quantum information of infalling matter is rapidly diffused across the entire interior while classical observables and coarse-grained geometry remain unaffected. Under the assumption that information has diffused throughout the interior, we consider the difficulty of the information-theoretic task that an observer must perform after crossing the event horizon of a Schwarzschild black hole in order to verify a violation of monogamy of entanglement. We find that the time required to complete a necessary subroutine of this task, namely the decoding of Bell pairs from the interior and the late radiation, takes longer than the maximum amount of time that an observer can spend inside the black hole before hitting the singularity. Therefore, an infalling observer cannot observe monogamy violation before encountering the singularity.

  3. Black-hole/near-horizon-CFT duality and 4 dimensional classical spacetimes

    NASA Astrophysics Data System (ADS)

    Rodriguez, Leo L.

    2011-09-01

    In this thesis we accomplish two goals: We construct a two dimensional conformal field theory (CFT), in the form of a Liouville theory, in the near horizon limit for three and four dimensions black holes. The near horizon CFT assumes the two dimensional black hole solutions that were first introduced by Christensen and Fulling (1977 Phys. Rev. D 15 2088-104) and later expanded to a greater class of black holes via Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303). The two dimensions black holes admit a Diff( S1) or Witt subalgebra, which upon quantization in the horizon limit becomes Virasoro with calculable central charge. These charges and lowest Virasoro eigen-modes reproduce the correct Bekenstein-Hawking entropy of the four and three dimensions black holes via the Cardy formula (Blote et al 1986 Phys. Rev. Lett. 56 742; Cardy 1986 Nucl. Phys. B 270 186). Furthermore, the two dimensions CFT's energy momentum tensor is anomalous, i.e. its trace is nonzero. However, In the horizon limit the energy momentum tensor becomes holomorphic equaling the Hawking flux of the four and three dimensions black holes. This encoding of both entropy and temperature provides a uniformity in the calculation of black hole thermodynamics and statistical quantities for the non local effective action approach. We also show that the near horizon regime of a Kerr-Newman-AdS (KNAdS) black hole, given by its two dimensional analogue a la Robinson and Wilczek, is asymptotically AdS 2 and dual to a one dimensional quantum conformal field theory (CFT). The s-wave contribution of the resulting CFT's energy-momentum-tensor together with the asymptotic symmetries, generate a centrally extended Virasoro algebra, whose central charge reproduces the Bekenstein-Hawking entropy via Cardy's Formula. Our derived central charge also agrees with the near extremal Kerr/CFT Correspondence in the appropriate limits. We also compute the Hawking temperature of the KNAdS black hole by coupling its Robinson and Wilczek two dimensional analogue (RW2DA) to conformal matter.

  4. Using population-based data to examine preventive services by disability type among dually eligible (Medicare/Medicaid) adults.

    PubMed

    Reichard, Amanda; Fox, Michael H

    2013-04-01

    Individuals dually eligible for Medicaid and Medicare constitute a small percentage of these program's populations but account for a disproportionately large percent of their total costs. While much work has examined high expenditures, little is known about their health and details of their health care utilization. Utilize an important public health surveillance tool to better understand preventive service use among the dual eligible population. This study involved descriptive and regression analyses of dual eligibles in the Medical Expenditure Panel Survey data from pooled alternate years 2000-2008. We classified the sample into 4 mutually exclusive groups: cognitive limitations, physical disabilities, double diagnosis (cognitive limitations and physical disability), or neither cognitive limitations nor physical disability. For most groups, age was significantly associated with preventive services, though direction varies. Older age was linked to greater receipt of flu shots while younger age was associated with greater receipt of Pap tests, mammograms and dental services. Black women in all groups (except cognitive limitations) had an increased likelihood of receiving a Pap test and a mammogram. A subset of dual eligibles drives the majority of expenditures. People with physical disabilities, regardless of whether they also have a cognitive limitation, are among the highest costing and sickest of our non-institutionalized dual eligible population. Efforts to understand and address the challenges faced by women with physical disabilities in accessing Pap tests or mammograms may be helpful in improving the overall health status for this disability group, but also for all dual eligibles. Published by Elsevier Inc.

  5. Spatially Resolved Imaging and Spectroscopy of Candidate Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M.

    2015-09-01

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.

  6. Gravitational-wave bursts from the nuclei of distant galaxies and quasars: Proposal for detection using Doppler tracking of interplanetary spacecraft

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Braginsky, V. B.

    1974-01-01

    Supermassive black holes which exist in the nuclei of many quasars and galaxies are examined along with the collapse which forms these holes and subsequent collisions between them which produce strong, broad-band bursts of gravitational waves. Such bursts might arrive at earth as often as 50 times per year--or as rarely as once each 300 years. The detection of such bursts with dual-frequency Doppler tracking of interplanetary spacecraft is considered.

  7. Liquid-Phase Circulation and Mixing in Multicomponent Droplets Vaporizing in a Laminar Convective Environment

    DTIC Science & Technology

    1993-10-15

    included an f/2.8 dual port long-distance microscope coupled to a black d•rl white CCD video camera. A long-pass filter (with a cut-off at 530 nm) was...evaporation rates of multicomponent droplets is needed for the calibration of exciplex -based vapor/liquid visualization techniques that are employed today in...Publishing Co., Houston. Texas. Hanlon. T. R.. and Melton. L. A. (1992). Exciplex fluorescence thermometry of falling hexadecane droplets. Journal of Heat

  8. Fermionic localization of the schwarzian theory

    DOE PAGES

    Stanford, Douglas; Witten, Edward

    2017-10-02

    The SYK model is a quantum mechanical model that has been proposed to be holographically dual to a 1 + 1-dimensional model of a quantum black hole. An emergent “gravitational” mode of this model is governed by an unusual action that has been called the Schwarzian action. It governs a reparametrization of a circle. We show that the path integral of the Schwarzian theory is one-loop exact. Here, the argument uses a method of fermionic localization, even though the model itself is purely bosonic.

  9. Piezoelectric Composite Micromachined Multifrequency Transducers for High-Resolution, High-Contrast Ultrasound Imaging for Improved Prostate Cancer Assessment

    DTIC Science & Technology

    2016-10-01

    abstracts. We have provided basic details in the attached text . Extensive additional data, discussion, and conclusions are included in the attached...are listed in blue, and the following black text details progress towards these tasks. Aim 1) Develop a new type of dual-frequency PC-MUT co...Proceedings of the IEEE International Ultrasonics Symposium, Honolulu, HI, USA, 4–7 December 1990; Volume 2, pp. 799–803. 85. Saitoh, S.; Izumi, M.; Mine

  10. Noise Hazard Evaluation Sound Level Data on Noise Sources

    DTIC Science & Technology

    1975-01-01

    Saw, Root Woodworking 43-20-J 102 16. Construction Saw, DeWalt Industrial 2185A 96 17. Cross-Cut Sw, Automatic 1-H 94 18, Cross-Cut Saw, DeWalt 3561...Saw, GM Diehr 750 92 53. Rip Saw, Wabach Industrial 750 97 59. Rip Saw, Yates American B. 102 60. Router: Black & Decker 118 61. Ruuter, Rockwell 150B...13. Sander, Disk, National-Detroit Dual Action 100 14. Stapler , Senco Mll 94* 15. Stapling Gun, Bostich II 105* 16. Stapling Gun, Bostich III 104* 17

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argurio, Riccardo; Dehouck, Francois

    We study how gravitational duality acts on rotating solutions, using the Kerr-NUT black hole as an example. After properly reconsidering how to take into account both electric (i.e. masslike) and magnetic (i.e. NUT-like) sources in the equations of general relativity, we propose a set of definitions for the dual Lorentz charges. We then show that the Kerr-NUT solution has nontrivial such charges. Further, we clarify in which respect Kerr's source can be seen as a mass M with a dipole of NUT charges.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xi

    A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Re´nyi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometricmore » prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Re´nyi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Re´nyi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity.« less

  13. Quantum criticality and duality in the Sachdev-Ye-Kitaev/AdS2 chain

    NASA Astrophysics Data System (ADS)

    Jian, Shao-Kai; Xian, Zhuo-Yu; Yao, Hong

    2018-05-01

    We show that the quantum critical point (QCP) between a diffusive metal and ferromagnetic (or antiferromagnetic) phases in the SYK chain has a gravitational description corresponding to the double-trace deformation in an AdS2 chain. Specifically, by studying a double-trace deformation of a Z2 scalar in an AdS2 chain where the Z2 scalar is dual to the order parameter in the SYK chain, we find that the susceptibility and renormalization group equation describing the QCP in the SYK chain can be exactly reproduced in the holographic model. Our results suggest that the infrared geometry in the gravity theory dual to the diffusive metal of the SYK chain is also an AdS2 chain. We further show that the transition in SYK model captures universal information about double-trace deformation in generic black holes with near horizon AdS2 space-time.

  14. Covalent Organic Framework Functionalized with 8-Hydroxyquinoline as a Dual-Mode Fluorescent and Colorimetric pH Sensor.

    PubMed

    Chen, Long; He, Linwei; Ma, Fuyin; Liu, Wei; Wang, Yaxing; Silver, Mark A; Chen, Lanhua; Zhu, Lin; Gui, Daxiang; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2018-05-09

    Real-time and accurate detection of pH in aqueous solution is of great significance in chemical, environmental, and engineering-related fields. We report here the use of 8-hydroxyquinoline-functionalized covalent organic framework (COF-HQ) for dual-mode pH sensing. In the fluorescent mode, the emission intensity of COF-HQ weakened as the pH decreased, and also displayed a good linear relationship against pH in the range from 1 to 5. In addition, COF-HQ showed discernible color changes from yellow to black as the acidity increased and can be therefore used as a colorimetric pH sensor. All these changes are reversible and COF-HQ can be recycled for multiple detection runs owing to its high hydrolytical stability. It can be further assembled into a mixed matrix membrane for practical applications.

  15. Holographic P -wave superconductors in 1 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Alkac, Gokhan; Chakrabortty, Shankhadeep; Chaturvedi, Pankaj

    2017-10-01

    We study (1 +1 )-dimensional P -wave holographic superconductors described by three- dimensional Einstein-Maxwell gravity coupled to a massive complex vector field in the context of AdS3/CFT2 correspondence. In the probe limit, where the backreaction of matter fields is neglected, we show that there is a formation of a vector hair around the black hole below a certain critical temperature. In the dual strongly coupled (1 +1 )-dimensional boundary theory, this holographically corresponds to the formation of a charged vector condensate which breaks spontaneously both the U (1 ) and S O (1 ,1 ) symmetries. We numerically compute both the free energy and the ac conductivity for the superconducting phase of the boundary field theory. Our numerical computations clearly establish that the superconducting phase of the boundary theory is favorable to the normal phase, and the presence of a magnetic moment term in the dual bulk theory effects the conductivity in the boundary field theory.

  16. Effects of Demographics on the Antihypertensive Efficacy of Triple Therapy With Amlodipine, Valsartan, and Hydrochlorothiazide for Moderate to Severe Hypertension

    PubMed Central

    Calhoun, David A.; Lacourci00E8;re, Yves; Crikelair, Nora; Jia, Yan; Glazer, Robert D.

    2014-01-01

    Objective To compare the antihypertensive efficacy and safety of once-daily triple therapy with amlodipine (Aml) 10 mg, valsartan (Val) 320 mg, and hydrochlorothiazide (HCTZ) 25 mg versus dual-therapy combinations of these components in patients with moderate to severe hypertension. Research design Subgroup analysis of a multinational, randomized, double-blind, parallel-group, active-controlled trial. Methods After antihypertensive washout and a placebo run-in of up to 4 weeks, 2271 patients were randomly allocated in a 1:1:1:1 ratio to receive Aml/Val/HCTZ triple therapy or dual therapy with Val/HCTZ, Aml/Val, or Aml/HCTZ for 8 weeks. Forced titration to the full dose was done over the first 2 weeks of treatment. Efficacy and safety parameters were determined by age group (<65 vs. ≥65 years), gender, race (White vs. Black), ethnicity (Hispanic/Latino vs. non-Hispanic/Latino), and body mass index (BMI, <30 vs. ≥30 kg/m2). Main outcome measures Change from baseline to endpoint in mean sitting systolic blood pressure (MSSBP) and mean sitting diastolic blood pressure (MSDBP); blood pressure (BP) control rate <140/90 mmHg. Results Triple therapy was numerically superior and, for the majority of comparisons, statistically superior to each dual therapy in reducing MSSBP and MSDBP and in improving BP control rates in all subgroups. Across subgroups, triple therapy reduced MSSBP by 5.7–10.7 mmHg more than Val/HCTZ, 3.4–8.3 mmHg more than Aml/Val, and 4.4–9.4 mmHg more than Aml/HCTZ. Triple therapy was well tolerated across all subgroups. Limitations of our analysis included the lack of stratification of patients by subgroup at randomization and the small sample size of some subgroups (eg, Blacks, elderly). Conclusions Triple therapy with Aml/Val/HCTZ is effective and well tolerated in patients with moderate to severe hypertension regardless of age, gender, race, ethnicity, or BMI. PMID:23721363

  17. Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Yapeng; Sun Peng; Zhang Jianhui

    2011-06-15

    Using the AdS/CFT correspondence, we study the hydrodynamics with conserved current from the dual Maxwell-Gauss-Bonnet gravity. After constructing the perturbative solution to the first order based on the boosted black brane solution in the bulk Maxwell-Gauss-Bonnet gravity, we extract the stress tensor and conserved current of the dual conformal fluid on its boundary, and also find the effect of the Gauss-Bonnet term on the dual conformal fluid. Our results show that the Gauss-Bonnet term can affect the parameters such as the shear viscosity {eta}, entropy density s, thermal conductivity {kappa} and electrical conductivity {sigma}. However, it does not affect themore » so-called Wiedemann-Franz law which relates {kappa} to {sigma}, while it affects the ratio {eta}/s. In addition, another interesting result is that {eta}/s can also be affected by the bulk Maxwell field in our case, which is consistent with some previous results predicted through the Kubo formula. Moreover, the anomalous magnetic and vortical effects by adding the Chern-Simons term are also considered in our case in the Maxwell-Gauss-Bonnet gravity.« less

  18. Gravitational Waves From the Kerr/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Porfyriadis, Achilleas

    Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.

  19. Resting energy expenditure changes with weight loss: racial differences.

    PubMed

    Wang, Xuewen; You, Tongjian; Lenchik, Leon; Nicklas, Barbara J

    2010-01-01

    It is controversial whether weight loss reduces resting energy expenditure (REE) to a different magnitude in black and white women. This aim of this study was to determine whether changes in REE with weight loss were different between black and white postmenopausal women, and whether changes in body composition (including regional lean and fat mass) were associated with REE changes within each race. Black (n = 26) and white (n = 65) women (age = 58.2 +/- 5.4 years, 25 < BMI < 40 kg/m(2)) completed a 20-week weight-loss intervention. Body weight, lean and fat mass (total body, limb, and trunk) via dual-energy X-ray absorptiometry, and REE via indirect calorimetry were measured before and after the intervention. We found that baseline REE positively correlated with body weight, lean and fat mass (total, limb, and trunk) in white women only (P < 0.05 for all). The intervention decreased absolute REE in both races similarly (1,279 +/- 162 to 1,204 +/- 169 kcal/day in blacks; 1,315 +/- 200 to 1,209 +/- 185 kcal/day in whites). REE remained decreased after adjusting for changes in total or limb lean mass in black (1,302-1,182 kcal/day, P = 0.043; 1,298-1,144 kcal/day, P = 0.006, respectively), but not in white, women. Changes in REE correlated with changes in body weight (partial r = 0.277) and fat mass (partial r = 0.295, 0.275, and 0.254 for total, limb, and trunk, respectively; P < 0.05) independent of baseline REE in white women. Therefore, with weight loss, REE decreased in proportion to the amount of fat and lean mass lost in white, but not black, women.

  20. Holographic View of Non-relativistic Physics

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Koushik

    Motivated by the AdS/CFT correspondence for relativistic CFTs, it seems natural to generalize it to non-relativistic CFTs. Such a dual description could provide insight into strong coupling phenomena observed in condensed matter systems. Scale invariance can be realized in non-relativistic theories in many ways. One freedom is the relative scale dimension of time and space, called the dynamical exponent z. In this thesis, we will mainly focus on the case where z = 2, however gravity duals for other values of z have also been found. In the first part of the thesis, we study NRCFTs that are Galilean invariant. Discrete light cone quantization (DLCQ) of N = 4 super Yang-Mills theory is an example of such a system with z = 2 scaling symmetry. A more realistic example of a system with the same set of symmetries is a system of cold fermions at unitarity. These non-relativistic systems respect a symmetry algebra known as the Schrodinger algebra. We propose a gravity dual that realizes the symmetries of the Schrodinger algebra as isometries. An unusual feature of this duality is that the bulk geometry has two extra dimensions than the CFT, instead of the usual one. The additional direction is a compact direction and shift symmetry along this direction corresponds to the particle number transformation. This solution can be embedded into string theory by performing a set of operations (known as the Null-Melvin twist) on AdS 5 x S5 solution of type IIB supergravity. This method also provides a way of finding a black hole solution which has asymptotic Schrodinger symmetries. The field theory dual of these gravity solutions happens to be a modified version of DLCQ N = 4 super Yang-Mills theory. The thermodynamics of these theories is very different from that of cold atoms. This happens to be a consequence of realizing the entire Schrodinger group as isometries of the spacetime. We give an example of a holographic realization in which the particle number symmetry is realized as a bulk gauge symmetry. In this proposal, the Schrodinger algebra is realized in the bulk without the introduction of an additional compact direction. Using this proposal, we find a confining solution that describes a non-relativistic system at finite density. We use the holographic dictionary to compute the conductivity of this system and it is found to exhibit somewhat unusual behavior. In the second part of the thesis we study gravity duals of Lifshitz theories. These are non-relativistic scale invariant theories that are not boost invariant. These theories do not have a particle number symmetry unlike the boost invariant NRCFTs. We present solutions of 10D and 11D supergravity theories that are dual to Lifshitz theories. We present a black hole solution that is dual to a strongly interacting Lifshitz theory at finite temperature. We show that the finite temperature correlators in the interacting theories do not exhibit ultra-local behavior which was observed in free Lifshitz theories. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  1. Entanglement tsunami: universal scaling in holographic thermalization.

    PubMed

    Liu, Hong; Suh, S Josephine

    2014-01-10

    We consider the time evolution of entanglement entropy after a global quench in a strongly coupled holographic system, whose subsequent equilibration is described in the gravity dual by the gravitational collapse of a thin shell of matter resulting in a black hole. In the limit of large regions of entanglement, the evolution of entanglement entropy is controlled by the geometry around and inside the event horizon of the black hole, resulting in regimes of pre-local-equilibration quadratic growth (in time), post-local-equilibration linear growth, a late-time regime in which the evolution does not carry memory of the size and shape of the entangled region, and a saturation regime with critical behavior resembling those in continuous phase transitions. Collectively, these regimes suggest a picture of entanglement growth in which an "entanglement tsunami" carries entanglement inward from the boundary. We also make a conjecture on the maximal rate of entanglement growth in relativistic systems.

  2. Interaction of SO{sub x} and NO{sub x} with soot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chughtai, A.R.; Atteya, M.M.O.; Konowalchuk, B.K.

    1996-12-31

    As part of a continuing study of the heterogeneous reactions of black carbon with gas phase oxidant species, the adsorption of low concentrations (30 - 2000 ppm) of so, and NO{sub 2} individually, together, and in the presence of other adsorbates have been studied by spectroscopic and microgravimetric techniques. Previous work in this study has revealed a dual path mechanism for the reaction of NO{sub 2}/N{sub 2}O{sub 4} with n-hexane soot over concentration range 9 ppm - 200 torr. (This soot has been used throughout these investigations as a model for fossil fuel-produced black carbon). Interaction of SO{sub 2} andmore » carbon represent the most intensively studied of the heterogeneous systems containing carbon. An attempt to understand the molecular dynamics involved in the reactions of carbon in the presence of multiple reactants, such as SO{sub 2} and NO{sub 2}, underlies the present work.« less

  3. Precision lattice test of the gauge/gravity duality at large N

    DOE PAGES

    Berkowitz, Evan; Rinaldi, Enrico; Hanada, Masanori; ...

    2016-11-03

    We perform a systematic, large-scale lattice simulation of D0-brane quantum mechanics. The large-N and continuum limits of the gauge theory are taken for the first time at various temperatures 0.4≤T≤1.0. As a way to test the gauge/gravity duality conjecture we compute the internal energy of the black hole as a function of the temperature directly from the gauge theory. We obtain a leading behavior that is compatible with the supergravity result E/N 2=7.41T 14/5: the coefficient is estimated to be 7.4±0.5 when the exponent is fixed and stringy corrections are included. This is the first confirmation of the supergravity predictionmore » for the internal energy of a black hole at finite temperature coming directly from the dual gauge theory. As a result, we also constrain stringy corrections to the internal energy.« less

  4. Non-linear regime of the Generalized Minimal Massive Gravity in critical points

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2016-03-01

    The Generalized Minimal Massive Gravity (GMMG) theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. In the present paper we obtain exact solutions to the GMMG field equations in the non-linear regime of the model. GMMG model about AdS_3 space is conjectured to be dual to a 2-dimensional CFT. We study the theory in critical points corresponding to the central charges c_-=0 or c_+=0, in the non-linear regime. We show that AdS_3 wave solutions are present, and have logarithmic form in critical points. Then we study the AdS_3 non-linear deformation solution. Furthermore we obtain logarithmic deformation of extremal BTZ black hole. After that using Abbott-Deser-Tekin method we calculate the energy and angular momentum of these types of black hole solutions.

  5. Modulation of Quantum Tunneling via a Vertical Two-Dimensional Black Phosphorus and Molybdenum Disulfide p-n Junction.

    PubMed

    Liu, Xiaochi; Qu, Deshun; Li, Hua-Min; Moon, Inyong; Ahmed, Faisal; Kim, Changsik; Lee, Myeongjin; Choi, Yongsuk; Cho, Jeong Ho; Hone, James C; Yoo, Won Jong

    2017-09-26

    Diverse diode characteristics were observed in two-dimensional (2D) black phosphorus (BP) and molybdenum disulfide (MoS 2 ) heterojunctions. The characteristics of a backward rectifying diode, a Zener diode, and a forward rectifying diode were obtained from the heterojunction through thickness modulation of the BP flake or back gate modulation. Moreover, a tunnel diode with a precursor to negative differential resistance can be realized by applying dual gating with a solid polymer electrolyte layer as a top gate dielectric material. Interestingly, a steep subthreshold swing of 55 mV/dec was achieved in a top-gated 2D BP-MoS 2 junction. Our simple device architecture and chemical doping-free processing guaranteed the device quality. This work helps us understand the fundamentals of tunneling in 2D semiconductor heterostructures and shows great potential in future applications in integrated low-power circuits.

  6. Flat-space quantum gravity in the AdS / CFT correspondence

    DOE PAGES

    Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J.

    2016-03-22

    Motivated by the task of understanding microscopic dynamics of an evolving black hole, we present a scheme describing gauge-fixed continuous time evolution of quantum gravitational processes in asymptotically flat spacetime using the algebra of conformal field theory operators. This allows us to study the microscopic dynamics of the Hawking emission process, although obtaining a full S-matrix may require a modification of the minimal scheme. The role of the operator product expansion is to physically interpret the resulting time evolution by decomposing the Hilbert space of the states for the entire system into those for smaller subsystems. We translate the picturemore » of an evaporating black hole previously proposed by the authors into predictions for nonperturbative properties of the conformal field theories that have weakly coupled dual gravitational descriptions. Finally, we also discuss a possible relationship between the present scheme and a reference frame change in the bulk.« less

  7. Nonlinear mapping of the luminance in dual-layer high dynamic range displays

    NASA Astrophysics Data System (ADS)

    Guarnieri, Gabriele; Ramponi, Giovanni; Bonfiglio, Silvio; Albani, Luigi

    2009-02-01

    It has long been known that the human visual system (HVS) has a nonlinear response to luminance. This nonlinearity can be quantified using the concept of just noticeable difference (JND), which represents the minimum amplitude of a specified test pattern an average observer can discern from a uniform background. The JND depends on the background luminance following a threshold versus intensity (TVI) function. It is possible to define a curve which maps physical luminances into a perceptually linearized domain. This mapping can be used to optimize a digital encoding, by minimizing the visibility of quantization noise. It is also commonly used in medical applications to display images adapting to the characteristics of the display device. High dynamic range (HDR) displays, which are beginning to appear on the market, can display luminance levels outside the range in which most standard mapping curves are defined. In particular, dual-layer LCD displays are able to extend the gamut of luminance offered by conventional liquid crystals towards the black region; in such areas suitable and HVS-compliant luminance transformations need to be determined. In this paper we propose a method, which is primarily targeted to the extension of the DICOM curve used in medical imaging, but also has a more general application. The method can be modified in order to compensate for the ambient light, which can be significantly greater than the black level of an HDR display and consequently reduce the visibility of the details in dark areas.

  8. Quenching parameter in a holographic thermal QCD

    NASA Astrophysics Data System (ADS)

    Patra, Binoy Krishna; Arya, Bhaskar

    2017-01-01

    We have calculated the quenching parameter, q ˆ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover q ˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of q ˆ : q ˆ L- = 1 /L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause q ˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L- with an additional (1 /L-) correction term in the short-distance limit whereas in the long-distance limit, q ˆ depends only linearly on L- with no correction term. These observations agree with other holographic calculations directly or indirectly.

  9. Reactive Black 5 as electron donor and/or electron acceptor in dual chamber of solar photocatalytic fuel cell.

    PubMed

    Khalik, Wan Fadhilah; Ho, Li-Ngee; Ong, Soon-An; Voon, Chun-Hong; Wong, Yee-Shian; Yusuf, Sara Yasina; Yusoff, NikAthirah; Lee, Sin-Li

    2018-07-01

    The role of azo dye Reactive Black 5 (RB5) as an electron donor and/or electron acceptor could be distinguished in dual chamber of photocatalytic fuel cell (PFC). The introduction of RB5 in anode chamber increased the voltage generation in the system since degradation of RB5 might produce electrons which also would transfer through external circuit to the cathode chamber. The removal efficiency of RB5 with open and closed circuit was 8.5% and 13.6%, respectively and removal efficiency for open circuit was low due to the fact that recombination of electron-hole pairs might happen in anode chamber since without connection to the cathode, electron cannot be transferred. The degradation of RB5 in cathode chamber with absence of oxygen showed that electrons from anode chamber was accepted by dye molecules to break its azo bond. The presence of oxygen in cathode chamber would improve the oxygen reduction rate which occurred at Platinum-loaded carbon (Pt/C) cathode electrode. The V oc , J sc and P max for different condition of ultrapure water at cathode chamber also affected their fill factor. The transportation of protons to cathode chamber through Nafion membrane could decrease the pH of ultrapure water in cathode chamber and undergo hydrogen evolution reaction in the absence of oxygen which then increased degradation rate of RB5 as well as its electricity generation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Large area space qualified thermoelectrically (TE) cooled HgCdTe MW photovoltaic detectors for the Halogen Occultation Experiment (HALOE)

    NASA Technical Reports Server (NTRS)

    Norton, P. W.; Zimmermann, P. H.; Briggs, R. J.; Hartle, N. M.

    1986-01-01

    Large-area, HgCdTe MW photovoltaic detectors have been developed for the NASA-HALOE instrument scheduled for operation on the Upper Atmospheric Research Satellite. The photodiodes will be TE-cooled and were designed to operate in the 5.1-5.4 micron band at 185 K to measure nitric oxide concentrations in the atmosphere. The active area required 15 micron thick devices and a full backside common contact. Reflections from the backside contact doubled the effective thickness of the detectors. Optical interference from reflections was eliminated with a dual layer front surface A/R coating. Bakeout reliability was optimized by having Au metallization for both n and p interconnects. Detailed performance data and a model for the optical stack are presented.

  11. Converting environmental wastes into valuable resources

    NASA Technical Reports Server (NTRS)

    Duval, Leonard A.

    1993-01-01

    This concept employs a viable energy saving method that uses a solvent to separate oil from particle matter; it can be used in metal forming industries to deoil sludges, oxides, and particle matter that is presently committed to landfill. If oily particles are used in their oily state, severe consequences to environmental control systems such as explosions or filter blinding, occur in the air handling equipment. This is due to the presence of hydrocarbons in the stack gasses resulting from the oily particles. After deoiling, the particles can be recycled and the separated oil can be used as a fuel. The process does not produce a waste of it's own and does not harm air or water. It demonstrates the dual benefits of it being commercially viable and in the national interest of conserving resources.

  12. Converting environmental wastes into valuable resources

    NASA Astrophysics Data System (ADS)

    Duval, Leonard A.

    1993-02-01

    This concept employs a viable energy saving method that uses a solvent to separate oil from particle matter; it can be used in metal forming industries to deoil sludges, oxides, and particle matter that is presently committed to landfill. If oily particles are used in their oily state, severe consequences to environmental control systems such as explosions or filter blinding, occur in the air handling equipment. This is due to the presence of hydrocarbons in the stack gasses resulting from the oily particles. After deoiling, the particles can be recycled and the separated oil can be used as a fuel. The process does not produce a waste of it's own and does not harm air or water. It demonstrates the dual benefits of it being commercially viable and in the national interest of conserving resources.

  13. A π-conjugated system with flexibility and rigidity that shows environment-dependent RGB luminescence.

    PubMed

    Yuan, Chunxue; Saito, Shohei; Camacho, Cristopher; Irle, Stephan; Hisaki, Ichiro; Yamaguchi, Shigehiro

    2013-06-19

    We have designed and synthesized a π-conjugated system that consists of a flexible and nonplanar π joint and two emissive rigid and planar wings. This molecular system exhibits respectively red, green, and blue (RGB) emission from a single-component luminophore in different environments, namely in polymer matrix, in solution, and in crystals. The flexible unit gives rise to a dynamic conformational change in the excited state from a nonplanar V-shaped structure to a planar structure, leading to a dual fluorescence of blue and green colors. The rigid and planar moieties favor the formation of a two-fold π-stacked array of the V-shaped molecules in the crystalline state, which produces a red excimer-like emission. These RGB emissions are attained without changing the excitation energy.

  14. Dual functions of imidazole-based polymeric ionic liquid (PIL) on the anticorrosive performance of graphene-based waterborne epoxy coatings

    NASA Astrophysics Data System (ADS)

    Liu, Chengbao; Du, Peng; Nan, Feng; Zhao, Haichao; Wang, Liping

    2018-06-01

    Dispersion of graphene nanosheets in a water and polymer matrix has been rarely achieved due to graphene’s hydrophobicity, which thus impedes its potential anticorrosive application. In this study, stable graphene aqueous dispersion was obtained by using imidazole-based polymeric ionic liquid (PIL) as the dispersant with ultrasonic vibration. Stacked graphene sheets were exfoliated to a few layers via cation-π interaction between PIL and graphene nanosheets. Electrochemical impedance measurements were taken to investigate the anticorrosion performance of epoxy coatings with or without polymeric ionic liquid–graphene (PIL–G) hybrids. Results indicated that the PIL–G hybrid significantly enhanced the long-term protective performance of epoxy coatings, which was attributed to the synergistic effects of the corrosion-inhibitive PIL and impermeable graphene nanosheets.

  15. Five dimensional microstate geometries

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Wei

    In this thesis, we discuss the possibility of exploring the statistical mechanics description of a black hole from the point view of supergravity. Specifically, we study five dimensional microstate geometries of a black hole or black ring. At first, we review the method to find the general three-charge BPS supergravity solutions proposed by Bena and Warner. By applying this method, we show the classical merger of a black ring and black hole on [Special characters omitted.] base space in general are irreversible. On the other hand, we review the solutions on ambi-polar Gibbons-Hawking (GH) base which are bubbled geometries. There are many possible microstate geometries among the bubbled geometries. Particularly, we show that a generic blob of GH points that satisfy certain conditions can be either microstate geometry of a black hole or black ring without horizon. Furthermore, using the result of the entropy analysis in classical merger as a guide, we show that one can have a merger of a black-hole blob and a black-ring blob or two black-ring blobs that corresponds to a classical irreversible merger. From the irreversible mergers, we find the scaling solutions and deep microstates which are microstate geometries of a black hole/ring with macroscopic horizon. These solutions have the same AdS throats as classical black holes/rings but instead of having infinite throats, the throat is smoothly capped off at a very large depth with some local structure at the bottom. For solutions that produced from U (1) × U (1) invariant merger, the depth of the throat is limited by flux quantization. The mass gap is related with the depth of this throat and we show the mass gap of these solutions roughly match with the mass gap of the typical conformal-field-theory (CFT) states. Therefore, based on AdS/CFT correspondence, they can be dual geometries of the typical CFT states that contribute to the entropy of a black hole/ring. On the other hand, we show that for the solutions produced from more general merger (without U (1) × U (1) invariance), the throat can be arbitrarily deep. This presents a puzzle from the point view of AdS/CFT correspondence. We propose that this puzzle may be solved by some quantization of the angle or promoting the flux vectors to quantum spins. Finally, we suggest some future directions of further study including the puzzle of arbitrary long AdS throat and a general coarse-graining picture of microstate geometries.

  16. Microscopic entropy of the three-dimensional rotating black hole of Bergshoeff-Hohm-Townsend massive gravity

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Oliva, Julio; Tempo, David; Troncoso, Ricardo

    2009-12-01

    Asymptotically anti-de Sitter rotating black holes for the Bergshoeff-Hohm-Townsend massive gravity theory in three dimensions are considered. In the special case when the theory admits a unique maximally symmetric solution, apart from the mass and the angular momentum, the black hole is described by an independent “gravitational hair” parameter, which provides a negative lower bound for the mass. This bound is saturated at the extremal case, and since the temperature and the semiclassical entropy vanish, it is naturally regarded as the ground state. The absence of a global charge associated with the gravitational hair parameter reflects itself through the first law of thermodynamics in the fact that the variation of this parameter can be consistently reabsorbed by a shift of the global charges, giving further support to consider the extremal case as the ground state. The rotating black hole fits within relaxed asymptotic conditions as compared with the ones of Brown and Henneaux, such that they are invariant under the standard asymptotic symmetries spanned by two copies of the Virasoro generators, and the algebra of the conserved charges acquires a central extension. Then it is shown that Strominger’s holographic computation for general relativity can also be extended to the Bergshoeff-Hohm-Townsend theory; i.e., assuming that the quantum theory could be consistently described by a dual conformal field theory at the boundary, the black hole entropy can be microscopically computed from the asymptotic growth of the number of states according to Cardy’s formula, in exact agreement with the semiclassical result.

  17. Silicon Metasurfaces for Integrated Dual Polarized 1.9 THz Heterodyne Array Instruments

    NASA Astrophysics Data System (ADS)

    Alonso-delPino, Maria

    We propose the use of dielectric metasurfaces as the enabling technology to develop a dual polarized heterodyne receiver array with full mapping of the field of view at 1.9 THz. Current heterodyne and non-heterodyne arrays at 1.9 THz are restricted to have sparse mapping in the field of view due to the minimum physical inter-element spacing required between the pixels. Moreover, an integrated dual polarized heterodyne receiver is very difficult to achieve with current technologies at 1.9 THz. We propose the use of metasurfaces that will split the 1.9 THz radiation into two linear polarizations and focus them both on the same receiver plane. Additionally, by overlapping common regions of the metasurface we will have a full mapping of the field of view, i.e. the beams will be highly overlapped in the field of sky observation which is not the case with current generation of array instruments. The metasurface consists of a dielectric planar structure with subwavelength 3D features that controls the amplitude and phase of the electric field that goes through them. These structures are usually used in reflection in the microwave frequency range and has not been used at terahertz frequencies before. We propose the development of these metasurfaces in transmission and integrate them into a multi-pixel heterodyne receiver at 1.9 THz. The silicon micro-machining process developed at JPL allows the fabrication of high aspect ratio multi-depth features on silicon wafers and will allow the integration of both, receiver and metasurfaces, in the same wafer stack. It will lead to a more compact, low-mass, and low loss dual polarized multi-pixel receiver with efficient illumination at 1.9 THz. Even though this work will target the 1.8-2.1 THz band for the CII and OI lines, these designs can be easily scaled to at least 5 THz.

  18. High-Resolution Observations of a Binary Black Hole Candidate

    NASA Astrophysics Data System (ADS)

    Tsai, Chao-Wei; Phillips, Chris; Norris, Ray; Jarrett, Thomas; Emonts, Bjorn; Cluver, Michelle; Eisenhardt, Peter; Stern, Daniel; Assef, Roberto

    2012-10-01

    We propose a 12-hour 2.3 GHz continuum Long Baseline Array (LBA) observation of WISE J2332-5056, a newly discovered supermassive black hole (SMBH) merger candidate that is located in the nearby universe (z = 0.3447). Our recently acquired 9 GHz ATCA map shows unusual radio morphology: a one-sided, smaller (and likely younger) FR-I jet perpendicular to a larger, Doppler-boosted FR-II jet. Follow-up Gemini-S/GMOS spectroscopy of this WISE-selected radio galaxy reveals broad emission lines blue-shifted by > 3,500 km/s with respect to the narrow lines and host galaxy, hallmarks of a dual AGN system. Combined, the optical spectroscopy and radio morphology of this object are strongly suggestive of a black hole merger system. Even in the local universe these systems are extremely difficult to identify; yet the process of supermassive blackhole growth is vital toward understanding galaxy evolution from the early to the current universe. Moreover, nearby merging SMBHs may serve as outstanding targets for gravitational wave studies. The proposed high resolution LBA map, reaching 50 pc resolution at the source redshift will allow us to investigate the SMBH merger scenario hypothesis.

  19. Physical Activity Energy Expenditure and Sarcopenia in Black South African Urban Women.

    PubMed

    Kruger, Herculina S; Havemann-Nel, Lize; Ravyse, Chrisna; Moss, Sarah J; Tieland, Michael

    2016-03-01

    Black women are believed to be genetically less predisposed to age-related sarcopenia. The objective of this study was to investigate lifestyle factors associated with sarcopenia in black South African (SA) urban women. In a cross-sectional study, 247 women (mean age 57 y) were randomly selected. Anthropometric and sociodemographic variables, dietary intakes, and physical activity were measured. Activity was also measured by combined accelerometery/heart rate monitoring (ActiHeart), and HIV status was tested. Dual energy x-ray absorptiometry was used to measure appendicular skeletal mass (ASM). Sarcopenia was defined according to a recently derived SA cutpoint of ASM index (ASM/height squared) < 4.94 kg/m(2). In total, 8.9% of the women were sarcopenic, decreasing to 8.1% after exclusion of participants who were HIV positive. In multiple regressions with ASM index, grip strength, and gait speed, respectively, as dependent variables, only activity energy expenditure (β = .27) was significantly associated with ASM index. Age (β = -.50) and activity energy expenditure (β = .17) were significantly associated with gait speed. Age (β = -.11) and lean mass (β = .21) were significantly associated with handgrip strength. Sarcopenia was prevalent among these SA women and was associated with low physical activity energy expenditure.

  20. Panoramic images of white and black post-menopausal females evidencing carotid calcifications are at high risk of comorbid osteopenia of the femoral neck.

    PubMed

    Friedlander, A H; Chang, T I; Aghazadehsanai, N; Berenji, G R; Harada, N D; Garrett, N R

    2013-01-01

    Femoral neck fractures in older females resulting from decreased bone mineral density (BMD; osteopenia) are associated with increased morbidity and mortality. Bone mineralization inhibition is probably controlled by proteins which also foster vascular calcification. Therefore, we evaluated the relationship between calcified carotid artery plaque (CCAP) on panoramic images and BMD on dual energy X-ray absorptiometry (DXA) bone scans. Images and hospital records identified by dentists defined two study groups (20 white females and 24 black females) having CCAP and an incidentally obtained bone scan. Ethnically matched (age±7 years, body mass index ±3 units) control groups with panoramic images devoid of CCAP and accompanying DXA scan were likewise constituted. A physician determined the BMD on the DXA. Females with CCAP had significantly (p = 0.03) poorer BMD at the femoral neck than those without CCAP. Although mean femoral neck BMD was significantly lower (p = 0.009) for white than for black females, there was no significant interaction between race and CCAP (p = 0.80). We observed a significant inverse association between the CCAP on panoramic images and femoral neck BMD in post-menopausal white females.

  1. Can one hear the Riemann zeros in black hole ringing?

    NASA Astrophysics Data System (ADS)

    Aros, Rodrigo; Bugini, Fabrizzio; Diaz, Danilo E.

    2016-05-01

    We elaborate on an entry of the AdS/CFT dictionary relating functional determinants: the determinant of the one-loop contribution to the effective gravitational action by bulk scalars in an asymptotically locally AdS background X, and the determinant of the two-point function of the dual operator (a.k.a. scattering matrix) at the conformal boundary M. The formula originates from AdS/CFT heuristics that map a quantum contribution in the bulk gravitational partition function to a subleading large-N contribution in the boundary CFT partition function: The formula applies to quotients of AdS as well [1]. In the particular case of the BTZ black hole, a closed expression can be worked out in terms of an associated Patterson-Selberg zeta function ZBTZ (λ) [2]. The determinants can then be thought of as regularized products of either zeta zeros, scattering resonances or quasinormal frequencies [3]. In this sense, one could say that the zeros of ZBTZ (λ) can be heard in the spectrum of quasinormal modes of the BTZ black hole. The question we want to pose is whether a similar situation might exist for the celebrated zeros of the Riemann zeta function.

  2. A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Cai, Xia; Kan, Wenqing; Qiu, Shihua; Guo, Xiaohui; Liu, Caixia; Liu, Ping

    2017-08-01

    A flexible dual-mode proximity sensor has been designed and implemented, which is capable of combining capacitive-resistive detection in this paper. The capacitive type proximity sensor detecting is defined as mode-C, and the resistive type proximity sensor detecting is defined as mode-R. The characteristics of the proximity sensor are as follows: (1) the theoretical mode is developed which indicates that this proximity sensor can reflect proximity information accurately; (2) both sensing modes are vertically integrated into a sandwich-like chip with an 8 mm × 12 mm unit area. The thickness of a mode-R sensing material (graphene nanoplatelets) and mode-C dielectric (the mixture of carbon black and silicone rubber) is 1 mm and 2.5 mm, respectively; (3) for mode-R, the linearity of temperature-resistance curve can achieve 0.998 in the temperature range from 25°C to 65°C. And for mode-C, various materials can be successfully detected with fast response and high reversibility. Meanwhile, the study compensated the influence of object temperature to ensure mode-C properly works. A cooperative sensing test shows that R-C dual modes sense effectively which can enlarge the sensing distance compared with the single mode proximity sensor. The fabrication of this sensor is convenient, and the integrity of a flexible sandwich-like structure based on dual modes is beneficial to form arrays, which is suitable to be used in skin-like sensing applications.

  3. Nicotine and Carbon Monoxide Exposure from Inhalation of Cigarillo Smoke

    PubMed Central

    Koszowski, Bartosz; Rosenberry, Zachary R.; Kanu, Alieu; Viray, Lauren C.; Potts, Jennifer L.; Pickworth, Wallace B.

    2015-01-01

    Background There has been an increase in the use of cigarillos in the US. People who smoke cigarillos typically also regularly smoke cigarettes (dual users). Methods We compared puffing topography, biomarkers of acute exposure [exhaled carbon monoxide (COex) and plasma nicotine] and physiologic effects from usual brand cigarette and Black & Mild cigarillo smoking in dual users (N=23) in two laboratory sessions. Results Participants (21 men) smoked an average of 17.5 cigarettes/day. Cigarillo consumption varied widely from as few as 1/week to daily. Participants were highly nicotine dependent (average FTND score: 6.3). There were statistically significant differences in smoking behavior between cigarette and cigarillo smoking in time to smoke, number of puffs, and total puff volume (all P<0.001). Average puff duration, interpuff interval average puff volume, and puff velocity did not differ between cigarettes and cigarillos. Nicotine boost was similar after both cigarettes and cigarillos. COex boost was significantly greater after cigarillo smoking compared to cigarette smoking (P<0.001). Conclusions The smoking pattern and exposure profile indicate that dual users inhale cigarillo smoke just as they inhale cigarette smoke thereby exposing themselves to considerable amounts of nicotine and other components of tobacco smoke. COex exposure results imply that cigarillo smoking may be associated with higher exposure to smoke-delivered volatile components of mainstream cigarillo smoke including carcinogens when compared to cigarettes. Impact The findings that cigarillos and cigarettes are smoked similarly in dual users are relevant to health and regulatory considerations on cigar products. PMID:26459155

  4. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS ...

    EPA Pesticide Factsheets

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multiple waste types in a 7-day period at the Kilauea Military Camp in Hawai’i. The emissions characterized were chosen based on regulatory emissions limits as well as their ability to cause adverse health effects on humans: particulate matter (PM), mercury, heavy metals, volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Three military waste feedstock compositions reflecting the variety of wastes to be encountered in theatre were investigated: standard waste (SW), standard waste with increased plastic content (HP), standard waste without SW food components but added first strike ration (FSR) food and packaging material (termed FSR). A fourth waste was collected from the Kilauea dumpster that served the dining facility and room lodging (KMC). Limited scrubber water and solid ash residue samples were collected to obtain a preliminary characterization of these effluents/residues.Gasifying SW, HP, and KMC resulted in similar PCDD/PCDF stack concentrations, 0.26-0.27 ng TEQ/m3 at 7% O2, while FSR waste generated a notably higher stack concentration of 0.68 ng TEQ/m3 at 7% O2. The PM emission

  5. High-Si content BARC for dual-BARC systems such as trilayer patterning

    NASA Astrophysics Data System (ADS)

    Kennedy, Joseph; Xie, Song-Yuan; Wu, Ze-Yu; Katsanes, Ron; Flanigan, Kyle; Lee, Kevin; Slezak, Mark; Liu, Zhi; Lin, Shang-Ho

    2009-03-01

    This work discusses the requirements and performance of Honeywell's middle layer material, UVAS, for tri-layer patterning. UVAS is a high Si content polymer synthesized directly from Si containing starting monomer components. The monomers are selected to produce a film that meets the requirements as a middle layer for tri-layer patterning (TLP) and gives us a level of flexibility to adjust the properties of the film to meet the customer's specific photoresist and patterning requirements. Results of simulations of the substrate reflectance versus numerical aperture, UVAS thickness, and under layer film are presented. ArF photoresist line profiles and process latitude versus UVAS bake at temperatures as low as 150ºC are presented and discussed. Immersion lithographic patterning of ArF photoresist line space and contact hole features will be presented. A sequence of SEM images detailing the plasma etch transfer of line space photoresist features through the middle and under layer films comprising the TLP film stack will be presented. Excellent etch selectivity between the UVAS and the organic under layer film exists as no edge erosion or faceting is observed as a result of the etch process. A detailed study of the impact of a PGMEA solvent photoresist rework process on the lithographic process window of a TLP film stack was performed with the results indicating that no degradation to the UVAS film occurs.

  6. Dual-band QWIP MWIR/LWIR focal plane array test results

    NASA Astrophysics Data System (ADS)

    Goldberg, Arnold C.; Fischer, Theodore; Kennerly, Stephen; Wang, Samuel C.; Sundaram, Mani; Uppal, Parvez; Winn, Michael L.; Milne, Gregory L.; Stevens, Mark A.

    2000-07-01

    We report on the results of laboratory and field tests on a pixel-registered, 2-color MWIR/LWIR 256 X 256 QWIP FPA with simultaneous integrating capability. The FPA studied contained stacked QWIP structures with spectral peaks at 5.1 micrometer and 9.0 micrometer. Normally incident radiation was coupled into the devices using a diffraction grating designed to operate in both spectral bands. Each pixel is connected to the read-out integrated circuit by three bumps to permit the application of separate bias levels to each QWIP stack and allow simultaneous integration of the signal current in each band. We found the FPA to have high pixel operability, well balanced response, good imaging performance, high optical fill factor, and low spectral crosstalk. We present data on measurements of the noise-equivalent temperature difference of the FPA in both bands as functions of temperature and bias. The FPA data are compared to single-pixel data taken on devices from the same wafer. We also present data on the sensitivity of this FPA to polarized light. It is found that the LWIR portion of the device is very sensitive to the direction of polarization of the incident light. The MWIR part of the device is relatively insensitive to the polarization. In addition, imagery was taken with this FPA of military targets in the field. Image fusion techniques were applied to the resulting images.

  7. HerMES: Redshift Evolution of the Cosmic Infrared Background from Herschel/SPIRE

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin; HerMES

    2013-01-01

    We report on the redshift evolution of the cosmic infrared background (CIB) at wavelengths of 70-1100 microns. Using data from the Herschel Multi-tiered Extragalactic Survey (HerMES) of the GOODS-N field, we statistically correlate fluctuations in the CIB with external catalogs. We use a deep Spitzer-MIPS 24 micron flux-limited catalog complete with redshifts and stack on MIPS 70 and 160 micron, Herschel-SPIRE 250, 350, and 500 micron, and JCMT-AzTEC 1100 micron maps. We measure the co-moving infrared luminosity density at 0.14 and provides important constraints for models of galaxy formation and evolution.

  8. Bone mass, microarchitecture and strength are influenced by race/ethnicity in young adult men and women.

    PubMed

    Popp, Kristin L; Hughes, Julie M; Martinez-Betancourt, Adriana; Scott, Matthew; Turkington, Victoria; Caksa, Signe; Guerriere, Katelyn I; Ackerman, Kathryn E; Xu, Chun; Unnikrishnan, Ginu; Reifman, Jaques; Bouxsein, Mary L

    2017-10-01

    Lower rates of fracture in both Blacks compared to Whites, and men compared to women are not completely explained by differences in bone mineral density (BMD). Prior evidence suggests that more favorable cortical bone microarchitecture may contribute to reduced fracture rates in older Black compared to White women, however it is not known whether these differences are established in young adulthood or develop during aging. Moreover, prior studies using high-resolution pQCT (HR-pQCT) have reported outcomes from a fixed-scan location, which may confound sex- and race/ethnicity-related differences in bone structure. We determined differences in bone mass, microarchitecture and strength between young adult Black and White men and women. We enrolled 185 young adult (24.2±3.4yrs) women (n=51 Black, n=50 White) and men (n=34 Black, n=50 White) in this cross-sectional study. We used dual-energy X-ray absorptiometry (DXA) to determine areal BMD (aBMD) at the femoral neck (FN), total hip (TH) and lumbar spine (LS), as well as HR-pQCT to assess bone microarchitecture and failure load by micro-finite element analysis (μFEA) at the distal tibia (4% of tibial length). We used two-way ANOVA to compare bone outcomes, adjusted for age, height, weight and physical activity. The effect of race/ethnicity on bone outcomes did not differ by sex, and the effect of sex on bone outcomes did not differ by race/ethnicty. After adjusting for covariates, Blacks had significantly greater FN, TH and LS aBMD compared to Whites (p<0.05 for all). Blacks also had greater cortical area, vBMD, and thickness, and lower cortical porosity, with greater trabecular thickness and total vBMD compared to Whites. μFEA-estimated FL was significantly higher among Blacks compared to Whites. Men had significantly greater total vBMD, trabecular thickness and cortical area and thickness, but greater cortical porosity than women, the net effects being a higher failure load in men than women. These findings demonstrate that more favorable bone microarchitecture in Blacks compared to Whites and in men compared to women is established by young adulthood. Advantageous bone strength among Blacks and men likely contributes to their lower risk of fractures throughout life compared to their White and women counterparts. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. An alternative path to the boundary: The CFT as the Fourier space of AdS

    NASA Astrophysics Data System (ADS)

    Tolfree, Ian M.

    2009-12-01

    In this thesis we shed new light on the conjectured duality between an n + 1 dimensional theory of gravity in anti de Sitter space (AdS) and an n dimensional conformal field theory (CFT) by showing that the CFT can be interpreted as the Fourier space of AdS. We then make use of this to gain insight into the nature of black hole entropy. In the first part of this thesis, we give an introduction to the ideas of and review the basics of the AdS/CFT. In the next section we make use of well known integral geometry techniques to derive the Fourier transformation of a function on AdS and see it is a function with compact support on the boundary. Comparing this to the literature, we find that the Green's functions from the literature are actually the Fourier weights of the transformation and that the boundary values of fields appearing in the correspondence are the Fourier coefficients of the transformation. One is thus left to interpret the CFT as the quantized version of a classical theory in AdS and the dual operator as the Fourier coefficients. Group theoretic considerations are discussed in relation to the transformation and its potential use in constructing QCD like theories. In the last section, we then build upon this to study the BTZ black hole. Named after its authors, Banados, Teitelboim and Zanelli, the BTZ black hole is a three dimensional (two space plus one time dimension) black hole in anti de Sitter space. Following standard procedures for modifying Fourier Transformations to accommodate quotient spaces we arrive at a mapping in a black hole background consistent with known results that yields the exact micro-states of a scalar field in a black hole background. We find that the micro-states are the Fourier coefficients on the boundary, which transform under the principal series representation of SL(2, R). Using the knowledge of how to represent a bulk scalar field in the CFT, and knowing how a black hole interacts with a scalar field, we deduce the possible representations of a black hole in the CFT. We find that the black hole micro-states live on the boundary, not on the horizon, and correspond to the possible emission modes of the black hole.

  10. Other Types Of LCDs

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shunsuke; Mochizuki, Akihiro

    The following sections are included: * INTRODUCTION * TUNABLE BIREFRINGENCE LCDs * Nematic Device with Homogeneous Alignment * Nematic Device with Homeotropic Alignment * ELECTRICALLY CONTROLLED BIREFRINGENCE EFFECT LCDs WITH A COMPENSATING CELL OR POLYMER LAYERS * Super Homeotropic LCDs * Black and White STN LCDs * Optical mode interference * Guest-host mode * Double-layered STN * Retardation film compensated STN * DUAL FREQUENCY ADDRESSING LCDs * Application for DSM LCDs * Application for TN LCDs * PI-CELL * CHOLESTERIC-NEMATIC PHASE CHANGE LCDs * Storage Mode LCDs * Stabilized Hysteresis Mode LCDs * THERMALLY ADDRESSED LCDs (CHOLESTERIC) * BISTABLE LCD * WIDE VIEWING ANGLE TN LCDs USING RETARDATION SHEETS * Type 1 Cells * Type 2 Cells * REFERENCES

  11. Methodology of remote sensing data interpretation and geological applications. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.

    1982-01-01

    Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.

  12. Heating up the Baryonic Branch with U-duality: a unified picture of conifold black holes

    NASA Astrophysics Data System (ADS)

    Cáceres, Elena; Núñez, Carlos; Pando Zayas, Leopoldo A.

    2011-03-01

    We study different aspects of a U-duality recently presented by Maldacena and Martelli and apply it to non-extremal backgrounds. In particular, starting from new non-extremal wrapped D5 branes we generate new non-extremal generalizations of the Baryonic Branch of the Klebanov-Strassler solution. We also elaborate on different conceptual aspects of these U-dualities, like its action on (extremal and non-extremal) Dp branes, dual models for Yang-Mills-like theories, generic asymptotics and decoupling limit of the generated solutions.

  13. Holographic charged Rényi entropies

    NASA Astrophysics Data System (ADS)

    Belin, Alexandre; Hung, Ling-Yan; Maloney, Alexander; Matsuura, Shunji; Myers, Robert C.; Sierens, Todd

    2013-12-01

    We construct a new class of entanglement measures by extending the usual definition of Rényi entropy to include a chemical potential. These charged Rényi entropies measure the degree of entanglement in different charge sectors of the theory and are given by Euclidean path integrals with the insertion of a Wilson line encircling the entangling surface. We compute these entropies for a spherical entangling surface in CFT's with holographic duals, where they are related to entropies of charged black holes with hyperbolic horizons. We also compute charged Rényi entropies in free field theories.

  14. Gravitational wave spectroscopy of binary neutron star merger remnants with mode stacking

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Paschalidis, Vasileios; Yagi, Kent; Lehner, Luis; Pretorius, Frans; Yunes, Nicolás

    2018-01-01

    A binary neutron star coalescence event has recently been observed for the first time in gravitational waves, and many more detections are expected once current ground-based detectors begin operating at design sensitivity. As in the case of binary black holes, gravitational waves generated by binary neutron stars consist of inspiral, merger, and postmerger components. Detecting the latter is important because it encodes information about the nuclear equation of state in a regime that cannot be probed prior to merger. The postmerger signal, however, can only be expected to be measurable by current detectors for events closer than roughly ten megaparsecs, which given merger rate estimates implies a low probability of observation within the expected lifetime of these detectors. We carry out Monte Carlo simulations showing that the dominant postmerger signal (the ℓ=m =2 mode) from individual binary neutron star mergers may not have a good chance of observation even with the most sensitive future ground-based gravitational wave detectors proposed so far (the Einstein Telescope and Cosmic Explorer, for certain equations of state, assuming a full year of operation, the latest merger rates, and a detection threshold corresponding to a signal-to-noise ratio of 5). For this reason, we propose two methods that stack the postmerger signal from multiple binary neutron star observations to boost the postmerger detection probability. The first method follows a commonly used practice of multiplying the Bayes factors of individual events. The second method relies on an assumption that the mode phase can be determined from the inspiral waveform, so that coherent mode stacking of the data from different events becomes possible. We find that both methods significantly improve the chances of detecting the dominant postmerger signal, making a detection very likely after a year of observation with Cosmic Explorer for certain equations of state. We also show that in terms of detection, coherent stacking is more efficient in accumulating confidence for the presence of postmerger oscillations in a signal than the first method. Moreover, assuming the postmerger signal is detected with Cosmic Explorer via stacking, we estimate through a Fisher analysis that the peak frequency can be measured to a statistical error of ˜4 - 20 Hz for certain equations of state. Such an error corresponds to a neutron star radius measurement to within ˜15 - 56 m , a fractional relative error ˜4 %, suggesting that systematic errors from theoretical modeling (≳100 m ) may dominate the error budget.

  15. Open strings and electric fields in compact spaces

    NASA Astrophysics Data System (ADS)

    Condeescu, Cezar; Dudas, Emilian; Pradisi, Gianfranco

    2018-05-01

    We analyse open strings with background electric fields in the internal space, T-dual to branes moving with constant velocities in the internal space. We find that the direction of the electric fields inside a two torus, dual to the D-brane velocities, has to be quantised such that the corresponding direction is compact. This implies that D-brane motion in the internal torus is periodic, with a periodicity that can be parametrically large in terms of the internal radii. By S-duality, this is mapped into an internal magnetic field in a three torus, a quantum mechanical analysis of which yields a similar result, i.e. the parallel direction to the magnetic field has to be compact. Furthermore, for the magnetic case, we find the Landau level degeneracy as being given by the greatest common divisor of the flux numbers. We carry on the string quantisation and derive the relevant partition functions for these models. Our analysis includes also the case of oblique electric fields which can arise when several stacks of branes are present. Compact dimensions and/or oblique sectors influence the energy loss of the system through pair-creation and thus can be relevant for inflationary scenarios with branes. Finally, we show that the compact energy loss is always larger than the non-compact one.

  16. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution.

    PubMed

    Yokota, Takehiro; Nara, Yukinori; Kashima, Akiko; Matsubara, Keiko; Misawa, Satoru; Kato, Ryohei; Sugio, Shigetoshi

    2007-02-01

    Human JNK stimulatory phosphatase-1 (JSP-1) is a novel member of dual specificity phosphatases. A C-terminus truncated JSP-1 was expressed in Escherichia coli and was crystallized using the sitting-drop vapor diffusion method. Thin-plate crystals obtained at 278 K belong to a monoclinic space group, C2, with unit-cell parameters a = 84.0 A, b = 49.3 A, c = 47.3 A, and beta = 119.5 degrees , and diffract up to 1.5 A resolution at 100 K. The structure of JSP-1 has a single compact (alpha/beta) domain, which consists of six alpha-helices and five beta-strands, and shows a conserved structural scaffold in regard to both DSPs and PTPs. A cleft formed by a PTP-loop at the active site is very shallow, and is occupied by one sulfonate compound, MES, at the bottom. In the binary complex structure of JSP-1 with MES, the conformations of three important segments in regard to the catalytic mechanism are not similar to those in PTP1B. JSP-1 has no loop corresponding to the Lys120-loop of PTP1B, and tryptophan residue corresponding to the substrate-stacking in PTP1B is substituted by alanine residue in JSP-1. Copyright 2006 Wiley-Liss, Inc.

  17. A graphene quantum dot@Fe3O4@SiO2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells.

    PubMed

    Su, Xiaoqian; Chan, Chunyu; Shi, Jingyu; Tsang, Ming-Kiu; Pan, Yi; Cheng, Changming; Gerile, Oudeng; Yang, Mo

    2017-06-15

    A novel graphene quantum dot (GQD)@Fe 3 O 4 @SiO 2 based nanoprobe was reported for targeted drug delivery, sensing, dual-modal imaging and therapy. Carboxyl-terminated GQD (C-GQD) was firstly conjugated with Fe 3 O 4 @SiO 2 and then functionalized with cancer targeting molecule folic acid (FA). DOX drug molecules were then loaded on GQD surface of Fe 3 O 4 @SiO 2 @GQD-FA nanoprobe via pi-pi stacking, which resulted in Fe 3 O 4 @SiO 2 @GQD-FA/DOX conjugates based on a FRET mechanism with GQD as donor molecules and DOX as acceptor molecules. Meanwhile, we successfully performed in vitro MRI and fluorescence imaging of living Hela cells and monitored intracellular drug release process using this Fe 3 O 4 @SiO 2 @GQD-FA/DOX nanoprobe. Cell viability study demonstrated the low cytotoxicity of Fe 3 O 4 @SiO 2 @GQD-FA nanocarrier and the enhanced therapeutic efficacy of Fe 3 O 4 @SiO 2 @GQD-FA/DOX nanoprobe for cancer cells. This luminomagnetic nanoprobe will be a potential platform for cancer accurate diagnosis and therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Dual salt precipitation for the recovery of a recombinant protein from Escherichia coli.

    PubMed

    Balasundaram, Bangaru; Sachdeva, Soam; Bracewell, Daniel G

    2011-01-01

    When considering worldwide demand for biopharmaceuticals, it becomes necessary to consider alternative process strategies to improve the economics of manufacturing such molecules. To address this issue, the current study investigates precipitation to selectively isolate the product or remove contaminants and thus assist the initial purification of a intracellular protein. The hypothesis tested was that the combination of two or more precipitating agents will alter the solubility profile of the product through synergistic or antagonistic effects. This principle was investigated through several combinations of ammonium sulfate and sodium citrate at different ratios. A synergistic effect mediated by a known electrostatic interaction of citrate ions with Fab' in addition to the typical salting-out effects was observed. On the basis of the results of the solubility studies, a two step primary recovery route was investigated. In the first step termed conditioning, post-homogenization and before clarification, addition of 0.8 M ammonium sulfate extracted 30% additional product. Clarification performance measured using a scale-down disc stack centrifugation mimic determined a four-fold reduction in centrifuge size requirements. Dual salt precipitation in the second step resulted in >98% recovery of Fab' while removing 36% of the contaminant proteins simultaneously. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  19. A Dual-Intein Autoprocessing Domain that Directs Synchronized Protein Co-Expression in Both Prokaryotes and Eukaryotes

    PubMed Central

    Zhang, Bei; Rapolu, Madhusudhan; Liang, Zhibin; Han, Zhenlin; Williams, Philip G.; Su, Wei Wen

    2015-01-01

    Being able to coordinate co-expression of multiple proteins is necessary for a variety of important applications such as assembly of protein complexes, trait stacking, and metabolic engineering. Currently only few options are available for multiple recombinant protein co-expression, and most of them are not applicable to both prokaryotic and eukaryotic hosts. Here, we report a new polyprotein vector system that is based on a pair of self-excising mini-inteins fused in tandem, termed the dual-intein (DI) domain, to achieve synchronized co-expression of multiple proteins. The DI domain comprises an Ssp DnaE mini-intein N159A mutant and an Ssp DnaB mini-intein C1A mutant connected in tandem by a peptide linker to mediate efficient release of the flanking proteins via autocatalytic cleavage. Essentially complete release of constituent proteins, GFP and RFP (mCherry), from a polyprotein precursor, in bacterial, mammalian, and plant hosts was demonstrated. In addition, successful co-expression of GFP with chloramphenicol acetyltransferase, and thioredoxin with RFP, respectively, further substantiates the general applicability of the DI polyprotein system. Collectively, our results demonstrate the DI-based polyprotein technology as a highly valuable addition to the molecular toolbox for multi-protein co-expression which finds vast applications in biotechnology, biosciences, and biomedicine. PMID:25712612

  20. Gauge/Gravity correspondence and black hole attractors in various dimensions

    NASA Astrophysics Data System (ADS)

    Li, Wei

    This thesis investigates several topics on Gauge/Gravity correspondence and black hole attractors in various dimensions. The first chapter contains a brief review and summary of main results. Chapters 2 and 3 aim at a microscopic description of black objects in five dimensions. Chapter 2 studies higher-derivative corrections for 5D black rings and spinning black holes. It shows that certain R 2 terms found in Calabi-Yau compactifications of M-theory yield macroscopic corrections to the entropies that match the microscopic corrections. Chapter 3 constructs probe brane configurations that preserve half of the enhanced near-horizon supersymmetry of 5D spinning black holes, whose near-horizon geometry is squashed AdS2 x S 3. There are supersymmetric zero-brane probes stabilized by orbital angular momentum on S3 and one-brane probes with momentum and winding around a U(1)L x U(1)R torus in S3. Chapter 4 constructs and analyzes generic single-centered and multi-centered black hole attractor solutions in various four-dimensional models which, after Kaluza-Klein reduction, admit a description in terms of 3D gravity coupled to a sigma model whose target space is symmetric coset space. The solutions correspond to certain nilpotent generators of the coset algebra. The non-BPS black hole attractors are found to be drastically different from their BPS counterparts. Chapter 5 examines three-dimensional topologically massive gravity with negative cosmological constant in asymptotically AdS 3 spacetimes. It proves that the theory is unitary and stable only at a special value of Chern-Simons coupling, where the theory becomes chiral. This suggests the existence of a stable, consistent quantum gravity theory at the chiral point which is dual to a holomorphic boundary CFT 2. Finally, Chapter 6 studies the two-dimensional N = 1 critical string theory with a linear dilaton background. It constructs time-dependent boundary state solutions that correspond to D0-branes falling toward the Liouville wall. It also shows that there exist four types of stable, falling D0-branes (two branes and two anti-branes) in Type 0A projection and two unstable ones in Type 0B projection.

  1. Design and Implementation of an Operations Module for the ARGOS paperless Ship System

    DTIC Science & Technology

    1989-06-01

    A. OPERATIONS STACK SCRIPTS SCRIPTS FOR STACK: operations * BACKGROUND #1: Operations * on openStack hide message box show menuBar pass openStack end... openStack ** CARD #1, BUTTON #1: Up ***** on mouseUp visual effect zoom out go to card id 10931 of stack argos end mouseUp ** CARD #1, BUTTON #2...STACK SCRIPTS SCRIPTS FOR STACK: Reports ** BACKGROUND #1: Operations * on openStack hie message box show menuBar pass openStack end openStack ** CARD #1

  2. Dual-Wavelength InGaAsSb/AlGaAsSb Quantum-Well Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien Dai; Hwang, Jehwan; Kim, Yeongho; Kim, Eui-Tae; Kim, Jun Oh; Lee, Sang Jun

    2018-05-01

    We have investigated the structural characteristics and the device performance of three-stack InGaAsSb/AlGaAsSb quantum-well (QW) light-emitting diodes (LEDs) grown by using molecular beam epitaxy. The QW LED structure with an 8-nm well thickness had a single peak emission wavelength of 2.06 μm at an injection current of 0.3 A at room temperature. However, the QWLEDs with three different well thicknesses of 5-, 10-, and 15-nm had double peak emission wavelengths of 1.97 and 2.1 μm at an injection current of 1.1 A, which were associated with the radiative recombination in the QW with a 5-nm well thickness and the overlapped emission from the QWs with 10- and 15-nm well thicknesses, respectively.

  3. Momentum fractionation on superstrata

    DOE PAGES

    Bena, Iosif; Martinec, Emil; Turton, David; ...

    2016-05-11

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in highdegree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifoldmore » singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Lastly, our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.« less

  4. Floquet scalar dynamics in global AdS

    NASA Astrophysics Data System (ADS)

    Biasi, Anxo; Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre

    2018-04-01

    We study periodically driven scalar fields and the resulting geometries with global AdS asymptotics. These solutions describe the strongly coupled dynamics of dual finite-size quantum systems under a periodic driving which we interpret as Floquet condensates. They span a continuous two-parameter space that extends the linearized solutions on AdS. We map the regions of stability in the solution space. In a significant portion of the unstable subspace, two very different endpoints are reached depending upon the sign of the perturbation. Collapse into a black hole occurs for one sign. For the opposite sign instead one attains a regular solution with periodic modulation. We also construct quenches where the driving frequency and amplitude are continuously varied. Quasistatic quenches can interpolate between pure AdS and sourced solutions with time periodic vev. By suitably choosing the quasistatic path one can obtain boson stars dual to Floquet condensates at zero driving field. We characterize the adiabaticity of the quenching processes. Besides, we speculate on the possible connections of this framework with time crystals.

  5. Photoacoustic cystography using handheld dual modal clinical ultrasound photoacoustic imaging system

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Kathyayini; Periyasamy, Vijitha; Austria, Dienzo Rhonnie; Pramanik, Manojit

    2018-02-01

    Vesicoureteral reflux is the abnormal flow of urine from your bladder back up the tubes (ureters) that connect your kidneys to your bladder. Normally, urine flows only down from your kidneys to your bladder. Vesicoureteral reflux is usually diagnosed in infants and children. The disorder increases the risk of urinary tract infections, which, if left untreated, can lead to kidney damage. X-Ray cystography is used currently to diagnose this condition which uses ionising radiation, making it harmful for patients. In this work we demonstrate the feasibility of imaging the urinary bladder using a handheld clinical ultrasound and photoacoustic dual modal imaging system in small animals (rats). Additionally, we demonstrate imaging vesicoureteral reflux using bladder mimicking phantoms. Urinary bladder imaging is done with the help of contrast agents like black ink and gold nanoparticles which have high optical absorption at 1064 nm. Imaging up to 2 cm was demonstrated with this system. Imaging was done at a framerate of 5 frames per second.

  6. Association between menthol-flavoured cigarette smoking and flavoured little cigar and cigarillo use among African-American, Hispanic, and white young and middle-aged adult smokers.

    PubMed

    Sterling, K; Fryer, C; Pagano, I; Jones, D; Fagan, P

    2016-11-01

    Flavour additives in cigarettes and little cigars and cigarillos (LCCs), which influence smokers' risk perceptions, may reinforce dual flavoured tobacco use. We examined the association among mentholated cigarette use, risk perceptions for flavour additives in LCCs and flavoured LCC smoking behaviour. Data from a national probability sample of 964 young and middle-aged adult current cigarette smokers were analysed. Multinomial logistic regression models examined the relationship among mentholated cigarette smoking, risk perceptions and current flavoured LCC use for the analytic sample and gender and race/ethnicity. Daily menthol cigarette smokers, compared to occasional, non-menthol smokers, had increased odds of flavoured LCC smoking (OR=1.75, 95% CI 1.02 to 2.98). This relationship was found for males, blacks/African-Americans and Hispanics/Latinos (p<0.05). Positive perceptions of menthol-flavoured additives in LCCs was associated with increased odds of flavoured LCC use among the analytic sample, males and blacks/African-Americans (p<0.05). Positive perceptions for clove-flavoured, spice-flavoured and alcohol-flavoured additives were also associated with flavoured LCC use among the analytic sample (p<0.05). Use of menthol-flavoured cigarettes and positive perceptions about menthol-flavoured and other flavour additives in LCCs may contribute to dual use with flavoured LCCs among adult cigarette smokers, specifically those from vulnerable populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. On the emergence of classical gravity

    NASA Astrophysics Data System (ADS)

    Larjo, Klaus

    In this thesis I will discuss how certain black holes arise as an effective, thermodynamical description from non-singular microstates in string theory. This provides a possible solution to the information paradox, and strengthens the case for treating black holes as thermodynamical objects. I will characterize the data defining a microstate of a black hole in several settings, and demonstrate that most of the data is unmeasurable for a classical observer. I will further show that the data that is measurable is universal for nearly all microstates, making it impossible for a classical observer to distinguish between microstates, thus giving rise to an effective statistical description for the black hole. In the first half of the thesis I will work with two specific systems: the half-BPS sector of [Special characters omitted.] = 4 super Yang-Mills the and the conformal field theory corresponding to the D1/D5 system; in both cases the high degree of symmetry present provides great control over potentially intractable computations. For these systems, I will further specify the conditions a quantum mechanical microstate must satisfy in order to have a classical description in terms of a unique metric, and define a 'metric operator' whose eigenstates correspond to classical geometries. In the second half of the thesis I will consider a much broader setting, general [Special characters omitted.] = I superconformal quiver gauge the= ories and their dual gravity theories, and demonstrate that a similar effective description arises also in this setting.

  8. Evaluation of a UCMK/dCK fusion enzyme for gemcitabine-mediated cytotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Adam J.; Brown, Melissa N.; Black, Margaret E., E-mail: blackm@vetmed.wsu.edu

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Goal was to enhance dFdC cytotoxicity by the creation of a UCMK/dCK fusion enzyme. Black-Right-Pointing-Pointer The UCMK/dCK fusion enzyme possesses both native activities. Black-Right-Pointing-Pointer The fusion renders cells equally sensitive to dFdC relative to dCK expression alone. Black-Right-Pointing-Pointer Dual activities of fusion not sufficient to augment cell dFdC sensitivity in vitro. Black-Right-Pointing-Pointer Data may warrant the implementation of UCMK mutagenesis studies. -- Abstract: While gemcitabine (2 Prime -2 Prime -difluoro-2 Prime -deoxycytidine, dFdC) displays wide-ranging antineoplastic activity as a single agent, variable response rates and poor intracellular metabolism often limit its clinical efficacy. In an effort to enhancemore » dFdC cytotoxicity and help normalize response rates, we created a bifunctional fusion enzyme that combines the enzymatic activities of deoxycytidine kinase (dCK) and uridine/cytidine monophosphate kinase (UCMK) in a single polypeptide. Our goal was to evaluate whether the created fusion could induce beneficial, functional changes toward dFdC, expedite dFdC conversion to its active antimetabolites and consequently amplify cell dFdC sensitivity. While kinetic analyses revealed the UCMK/dCK fusion enzyme to possess both native activities, the fusion rendered cells sensitive to the cytotoxic effects of dFdC at the same level as dCK expression alone. These results suggest that increased wild-type UCMK expression does not provide a significant enhancement in dFdC-mediated cytotoxicity and may warrant the implementation of studies aimed at engineering UCMK variants with improved activity toward gemcitabine monophosphate.« less

  9. Trichoderma harzianum MTCC 5179 impacts the population and functional dynamics of microbial community in the rhizosphere of black pepper (Piper nigrum L.).

    PubMed

    Umadevi, Palaniyandi; Anandaraj, Muthuswamy; Srivastav, Vivek; Benjamin, Sailas

    2017-11-29

    Employing Illumina Hiseq whole genome metagenome sequencing approach, we studied the impact of Trichoderma harzianum on altering the microbial community and its functional dynamics in the rhizhosphere soil of black pepper (Piper nigrum L.). The metagenomic datasets from the rhizosphere with (treatment) and without (control) T. harzianum inoculation were annotated using dual approach, i.e., stand alone and MG-RAST. The probiotic application of T. harzianum in the rhizhosphere soil of black pepper impacted the population dynamics of rhizosphere bacteria, archae, eukaryote as reflected through the selective recruitment of bacteria [Acidobacteriaceae bacterium (p=1.24e-12), Candidatus koribacter versatilis (p=2.66e-10)] and fungi [(Fusarium oxysporum (p=0.013), Talaromyces stipitatus (p=0.219) and Pestalotiopsis fici (p=0.443)] in terms of abundance in population and bacterial chemotaxis (p=0.012), iron metabolism (p=2.97e-5) with the reduction in abundance for pathogenicity islands (p=7.30e-3), phages and prophages (p=7.30e-3) with regard to functional abundance. Interestingly, it was found that the enriched functional metagenomic signatures on phytoremediation such as benzoate transport and degradation (p=2.34e-4), and degradation of heterocyclic aromatic compounds (p=3.59e-13) in the treatment influenced the rhizosphere micro ecosystem favoring growth and health of pepper plant. The population dynamics and functional richness of rhizosphere ecosystem in black pepper influenced by the treatment with T. harzianum provides the ecological importance of T. harzianum in the cultivation of black pepper. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    NASA Astrophysics Data System (ADS)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  11. Measured backscatter and attenuation properties, including polarization effects, of various dispersions at 0.9 micron

    NASA Technical Reports Server (NTRS)

    Kohl, R. H.; Flaherty, M. I.; Partin, R. L.

    1977-01-01

    The optical properties of a wide variety of atmospheric dispersions were studied using a 0.9-micron lidar system which included a GaAs laser stack transmitter emitting a horizontally polarized beam of 4 milliradians vertical divergence and 1.5 milliradians horizontal divergence. A principal means for assessing optical properties was the polarization ratio, that is, the backscattered radiation power perpendicular to the transmitter beam divided by the backscattered radiation power parallel to the beam polarization. The ratio of the backscattered fraction to the attenuation coefficient was also determined. Data on the dispersion properties of black carbon smoke, road dust, fog, fair-weather cumulus clouds, snow and rain were obtained; the adverse effects of sunlight-induced background noise on the readings is also discussed.

  12. Nicotine and carbon monoxide exposure from inhalation of cigarillo smoke.

    PubMed

    Koszowski, Bartosz; Rosenberry, Zachary R; Kanu, Alieu; Viray, Lauren C; Potts, Jennifer L; Pickworth, Wallace B

    2015-12-01

    There has been an increase in the use of cigarillos in the US. People who smoke cigarillos typically also regularly smoke cigarettes (dual users). We compared puffing topography, biomarkers of acute exposure [exhaled carbon monoxide (COex) and plasma nicotine] and physiologic effects from usual brand cigarette and Black & Mild cigarillo smoking in dual users (N=23) in two laboratory sessions. Participants (21 men) smoked an average of 17.5cigarettes/day. Cigarillo consumption varied widely from as few as 1/week to daily. Participants were highly nicotine dependent (average FTND score: 6.3). There were statistically significant differences in smoking behavior between cigarette and cigarillo smoking in time to smoke, number of puffs, and total puff volume (all P<0.001). Average puff duration, interpuff interval average puff volume, and puff velocity did not differ between cigarettes and cigarillos. Nicotine boost was similar after both cigarettes and cigarillos. COex boost was significantly greater after cigarillo smoking compared to cigarette smoking (P<0.001). The smoking pattern and exposure profile indicate that dual users inhale cigarillo smoke just as they inhale cigarette smoke thereby exposing themselves to considerable amounts of nicotine and other components of tobacco smoke. COex exposure results imply that cigarillo smoking may be associated with higher exposure to smoke-delivered volatile components of mainstream cigarillo smoke including carcinogens when compared to cigarettes. The findings that cigarillos and cigarettes are smoked similarly in dual users are relevant to health and regulatory considerations on cigar products. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence formore » a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (∼0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.« less

  14. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (˜0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  15. Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics.

    PubMed

    Hanada, Masanori; Miwa, Akitsugu; Nishimura, Jun; Takeuchi, Shingo

    2009-05-08

    In the string-gauge duality it is important to understand how the space-time geometry is encoded in gauge theory observables. We address this issue in the case of the D0-brane system at finite temperature T. Based on the duality, the temporal Wilson loop W in gauge theory is expected to contain the information of the Schwarzschild radius RSch of the dual black hole geometry as log(W)=RSch/(2pialpha'T). This translates to the power-law behavior log(W)=1.89(T/lambda 1/3)-3/5, where lambda is the 't Hooft coupling constant. We calculate the Wilson loop on the gauge theory side in the strongly coupled regime by performing Monte Carlo simulations of supersymmetric matrix quantum mechanics with 16 supercharges. The results reproduce the expected power-law behavior up to a constant shift, which is explainable as alpha' corrections on the gravity side. Our conclusion also demonstrates manifestly the fuzzball picture of black holes.

  16. Bosonization of nonrelativistic fermions on a circle: Tomonaga's problem revisited

    NASA Astrophysics Data System (ADS)

    Dhar, Avinash; Mandal, Gautam

    2006-11-01

    We use the recently developed tools for an exact bosonization of a finite number N of nonrelativistic fermions to discuss the classic Tomonaga problem. In the case of noninteracting fermions, the bosonized Hamiltonian naturally splits into an O(N) piece and an O(1) piece. We show that in the large-N and low-energy limit, the O(N) piece in the Hamiltonian describes a massless relativistic boson, while the O(1) piece gives rise to cubic self-interactions of the boson. At finite N and high energies, the low-energy effective description breaks down and the exact bosonized Hamiltonian must be used. We also comment on the connection between the Tomonaga problem and pure Yang-Mills theory on a cylinder. In the dual context of baby universes and multiple black holes in string theory, we point out that the O(N) piece in our bosonized Hamiltonian provides a simple understanding of the origin of two different kinds of nonperturbative O(e-N) corrections to the black hole partition function.

  17. Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case

    NASA Astrophysics Data System (ADS)

    Fernández Tío, Julián M.; Dotti, Gustavo

    2017-06-01

    Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev. Lett. 112, 191101 (2014), 10.1103/PhysRevLett.112.191101], we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström anti-de Sitter black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F =δ (Fαβ *Fα β) and Q =δ (1/48 Cαβ γ δ *Cα β γ δ), where Cα β γ δ is the Weyl tensor, Fα β is the Maxwell field, a star denotes Hodge dual, and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q . For a non-negative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically anti-de Sitter case the dynamics depends on the boundary condition at the conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen.

  18. Panoramic images of white and black post-menopausal females evidencing carotid calcifications are at high risk of comorbid osteopenia of the femoral neck

    PubMed Central

    Friedlander, AH; Chang, TI; Aghazadehsanai, N; Berenji, GR; Harada, ND; Garrett, NR

    2013-01-01

    Objectives: Femoral neck fractures in older females resulting from decreased bone mineral density (BMD; osteopenia) are associated with increased morbidity and mortality. Bone mineralization inhibition is probably controlled by proteins which also foster vascular calcification. Therefore, we evaluated the relationship between calcified carotid artery plaque (CCAP) on panoramic images and BMD on dual energy X-ray absorptiometry (DXA) bone scans. Methods: Images and hospital records identified by dentists defined two study groups (20 white females and 24 black females) having CCAP and an incidentally obtained bone scan. Ethnically matched (age±7 years, body mass index ±3 units) control groups with panoramic images devoid of CCAP and accompanying DXA scan were likewise constituted. A physician determined the BMD on the DXA. Results: Females with CCAP had significantly (p = 0.03) poorer BMD at the femoral neck than those without CCAP. Although mean femoral neck BMD was significantly lower (p = 0.009) for white than for black females, there was no significant interaction between race and CCAP (p = 0.80). Conclusion: We observed a significant inverse association between the CCAP on panoramic images and femoral neck BMD in post-menopausal white females. PMID:23571481

  19. Novel EUV mask black border suppressing EUV and DUV OoB light reflection

    NASA Astrophysics Data System (ADS)

    Ito, Shin; Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Maruyama, Shingo; Watanabe, Genta; Yoshida, Itaru; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi

    2016-05-01

    EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. This is related to the fact that EUV absorber stack reflects 1-3% of actinic EUV light. To reduce this effect several types of image border with reduced EUV reflectance (<0.05%) have been proposed; such an image border is referred to as a black border. In particular, an etched multilayer type black border was developed; it was demonstrated that CD impact at the edge of a die is strongly reduced with this type of the black border (BB). However, wafer printing result still showed some CD change in the die influenced by the black border reflection. It was proven that the CD shift was caused by DUV Out of Band (OOB) light from the EUV light source. New types of a multilayer etched BB were evaluated and showed a good potential for DUV light suppression. In this study, a novel BB called `Hybrid Black Border' (HBB) has been developed to eliminate EUV and DUV OOB light reflection by applying optical design technique and special micro-fabrication technique. A new test mask with HBB is fabricated without any degradation of mask quality according to the result of CD performance in the main pattern, defectivity and cleaning durability. The imaging performance for N10 imaging structures is demonstrated on NXE:3300B in collaboration with ASML. This result is compared to the imaging results obtained for a mask with the earlier developed BB, and HBB has achieved ~3x improvement; less than 0.2 nm CD changes are observed in the corners of the die. A CD uniformity budget including impact of OOB light in the die edge area is evaluated which shows that the OOB impact from HBB becomes comparable with other CDU contributors in this area. Finally, we state that HBB is a promising technology allowing for CD control at die edges.

  20. RNAdualPF: software to compute the dual partition function with sample applications in molecular evolution theory.

    PubMed

    Garcia-Martin, Juan Antonio; Bayegan, Amir H; Dotu, Ivan; Clote, Peter

    2016-10-19

    RNA inverse folding is the problem of finding one or more sequences that fold into a user-specified target structure s 0 , i.e. whose minimum free energy secondary structure is identical to the target s 0 . Here we consider the ensemble of all RNA sequences that have low free energy with respect to a given target s 0 . We introduce the program RNAdualPF, which computes the dual partition function Z ∗ , defined as the sum of Boltzmann factors exp(-E(a,s 0 )/RT) of all RNA nucleotide sequences a compatible with target structure s 0 . Using RNAdualPF, we efficiently sample RNA sequences that approximately fold into s 0 , where additionally the user can specify IUPAC sequence constraints at certain positions, and whether to include dangles (energy terms for stacked, single-stranded nucleotides). Moreover, since we also compute the dual partition function Z ∗ (k) over all sequences having GC-content k, the user can require that all sampled sequences have a precise, specified GC-content. Using Z ∗ , we compute the dual expected energy 〈E ∗ 〉, and use it to show that natural RNAs from the Rfam 12.0 database have higher minimum free energy than expected, thus suggesting that functional RNAs are under evolutionary pressure to be only marginally thermodynamically stable. We show that C. elegans precursor microRNA (pre-miRNA) is significantly non-robust with respect to mutations, by comparing the robustness of each wild type pre-miRNA sequence with 2000 [resp. 500] sequences of the same GC-content generated by RNAdualPF, which approximately [resp. exactly] fold into the wild type target structure. We confirm and strengthen earlier findings that precursor microRNAs and bacterial small noncoding RNAs display plasticity, a measure of structural diversity. We describe RNAdualPF, which rapidly computes the dual partition function Z ∗ and samples sequences having low energy with respect to a target structure, allowing sequence constraints and specified GC-content. Using different inverse folding software, another group had earlier shown that pre-miRNA is mutationally robust, even controlling for compositional bias. Our opposite conclusion suggests a cautionary note that computationally based insights into molecular evolution may heavily depend on the software used. C/C++-software for RNAdualPF is available at http://bioinformatics.bc.edu/clotelab/RNAdualPF .

  1. Deformed D1D5 CFT: A Holographic Probe of Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Jardine, Ian Theodore

    One of the big unsolved questions in gravity research is the black hole information problem. This problem, which pits the unitarity of quantum field theory against smooth classical spacetime, must have a solution in a complete theory of quantum gravity. This thesis will explore aspects of one approach to this problem in the context of string theory. The approach imagines black hole microstates as string theoretic objects. We look at a prototype system, the D1D5 system, and exploit holography to examine the dual conformal field theory (CFT). Specifically, we examine the CFT deformed from the free orbifold point, dual to a very stringy bulk, using a twisted operator that will take us towards the point with the supergravity description. The effects of twisted operators in the CFT are key to understanding physical processes such as emission and thermalization in black hole microstates. We will propose a component twist method for examining the effects of bare twist operators for higher twists in the continuum limit. Our method builds higher twists from simple 2-cycle twists, whose effects are known. We will find that, in this limit, the coefficients describing general states will follow a conjectured general functional form. We then explore the deformed CFT directly by examining operator mixing for untwisted operators. We will exploit the operator product expansion on the covering space, where twist operators of the orbifold are resolved. We use this to examine the mixing of a general supergravity operator, specifically examine the dilaton, and finish with the mixing of a non-supersymmetric candidate operator. We conjecture that this method could be extended to include twisted operators. We will also examine the mixing of the non-supersymmetric candidate operator by examining three point functions. To automate the lengthy and repetitive computations, we wrote a Mathematica package to compute correlation functions and OPEs in the D1D5 CFT. We will explain some of the main functions of this package and how it can be applied to computations. Finally, we will end with a short discussion on future directions.

  2. Radiation Tolerance Characterization of Dual Band InAs/GaSb Type-II Strain-Layer Superlattice pBp Detectors Using 63 MeV Protons

    DTIC Science & Technology

    2012-01-01

    detectors . Using g and JD to also estimate the detec- tor sensitivity, expressed here in this letter by shot- noise - limited D*, is then done to...observed. To approximate the expected reduction in sensitivity with increasing UP, the shot- noise limited D* for the 45 lm detector was then calculated... noise limited D* (black squares) for 45 lm mesa detector with UP ranging from 0 to 3.75 1012 cm2 and post-anneal and with g (red circles) and JD

  3. TESTING FOR CPT VIOLATION IN B0s SEMILEPTONIC DECAYS

    NASA Astrophysics Data System (ADS)

    Kooten, R. Van

    2014-01-01

    A DØ analysis measuring the charge asymmetry Absl of like-sign dimuon events due to semileptonic b-hadron decays at the Fermilab Tevatron Collider has shown indications of possible anomalous CP violation in the mixing of neutral B mesons. This result has been used to extract the first senstivity to CPT violation in the B0s system. An analysis to explore further this anomaly by specifically measuring the semileptonic charge asymmetry, assl, in B0s decays is described, as well as how a variant of this analysis can be used to explore a larger set of CPT-violating parameters in the B0s system for the first time.

  4. Comparison Between Elemental Carbon Measured Using Thermal-Optical Analysis and Black Carbon Measurements Using A Novel Cellphone-Based System

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Khan, B.; Leong, I.; Lukac, M.

    2011-12-01

    Black carbon (BC) is produced through the incomplete combustion of fossil and solid fuels. Current BC emissions inventories have large uncertainties of factors of 2 or more due to sparse measurements and because BC is often emitted by local sources that vary over time and space (Bond et al, 2004). Those uncertainties are major sources of error in air pollution models. Emissions from a variety of improved cookstove/fuel/combustion conditions were collected on pre-conditioned 47 mm quartz-fiber filters and analyzed for organic carbon (OC) and elemental carbon (EC) using thermal-optical analysis (TOA). The samples were then analyzed for BC concentration by using cellphone-based instrumentation developed by Ramanathan et al., 2011. The cellphone-based monitoring system (CBMS) is a wireless, low-cost, low-power system that monitors BC emissions. The CBMS is comprised of an aerosol filter sampler containing a battery-powered air pump and a 25mm filter holder that draws air in through a quartz-fiber filter. As black carbon deposits increase, the filter darkens--the darkest color representing the highest loading. A cellphone photograph of the filter with the black carbon deposit is taken and relayed to an analytics unit for comparison to a reference scale to estimate airborne BC concentration. The BC concentration can then be compared to the thermally derived EC concentration. TOA was conducted on a Sunset Laboratory Dual Optics Carbon Analyzer using a modified version of the Birch and Cary (1996) NIOSH 5040 protocol. The dual-optical instrument permitted simultaneous monitoring of the transmission (TOT) and reflectance (TOR). 619 samples were collected; EC was obtained using NIOSH TOT and NIOSH TOR methods, and BC was obtained using the CBMS analytics unit. The mean BC value reported by the CBMS agrees within 20% of the reference values for EC, confirming the findings in Ramanathan et al. (2011) based on samples from India. Given this accuracy, we conclude that the CBMS provides an affordable real-time method for gathering BC data on a mass scale. The CBMS' scalability should enable dense deployments near emissions sources and reduce uncertainty in emissions inventories due to undersampling. Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann (2007), Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840. Birch, M. E. and R.A. Cary (1996), Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol., 25, 221-241. NIOSH (1996). Elemental carbon (diesel particulate) method 5040. NIOSH Manual of Analytical Methods, 4th ed. National Institute for Occupational Safety and Health, Cincinnati, Ohio (1st Suppl.). Ramanathan, N., M. Lukac, T. Ahmed, A. Kar, P.S. Praveen, T. Honles, I. Leong, I.H. Rehman, J.J. Schauer, V. Ramanathan (2011), A cellphone based system for large-scale monitoring of black carbon, Atmos. Environ., 45 (26), 4481-4487.

  5. Theoretical investigation of the design and performance of a dual energy (kV and MV) radiotherapy imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Langechuan; Antonuk, Larry E., E-mail: antonuk@umich.edu; El-Mohri, Youcef

    Purpose: In modern radiotherapy treatment rooms, megavoltage (MV) portal imaging and kilovoltage (kV) cone-beam CT (CBCT) imaging are performed using various active matrix flat-panel imager (AMFPI) designs. To expand the clinical utility of MV and kV imaging, MV AMFPIs incorporating thick, segmented scintillators and, separately, kV imaging using a beam’s eye view geometry have been investigated by a number of groups. Motivated by these previous studies, it is of interest to explore to what extent it is possible to preserve the benefits of kV and MV imaging using a single AMFPI design, given the considerably different x ray energy spectramore » used for kV and MV imaging. In this paper, considerations for the design of such a dual energy imager are explored through examination of the performance of a variety of hypothetical AMFPIs based on x ray converters employing segmented scintillators. Methods: Contrast, noise, and contrast-to-noise ratio performances were characterized through simulation modeling of CBCT imaging, while modulation transfer function, Swank factor, and signal performance were characterized through simulation modeling of planar imaging. The simulations were based on a previously reported hybrid modeling technique (accounting for both radiation and optical effects), augmented through modeling of electronic additive noise. All designs employed BGO scintillator material with thicknesses ranging from 0.25 to 4 cm and element-to-element pitches ranging from 0.508 to 1.016 mm. A series of studies were performed under both kV and MV imaging conditions to determine the most advantageous imager configuration (involving front or rear x ray illumination and use of a mirror or black reflector), converter design (pitch and thickness), and operating mode (pitch-binning combination). Results: Under the assumptions of the present study, the most advantageous imager design was found to employ rear illumination of the converter in combination with a black reflector, incorporate a BGO converter with a 0.508 mm pitch and a 2 cm thickness, and operate at full resolution for kV imaging and 2 × 2 binning mode for MV imaging. Such a dual energy imager design should provide soft tissue visualization at low, clinically practical doses under MV conditions, while helping to preserve the high spatial resolution and high contrast offered by kV imaging. Conclusions: The authors’ theoretical investigation suggests that a dual energy imager capable of largely preserving the desirable characteristics of both kV and MV imaging is feasible. Such an imager, when coupled to a dual energy radiation source, could facilitate simplification of current treatment room imaging systems (as well as their associated quality assurance), and facilitate more precise integration of kV and MV imaging information by virtue of reduced geometric uncertainties.« less

  6. Fuel cell stack arrangements

    DOEpatents

    Kothmann, Richard E.; Somers, Edward V.

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  7. Dynamic molecular structure of plant biomass-derived black carbon (biochar)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiluweit, M.; Nico, P.S.; Johnson, M.G.

    2009-11-15

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ('biochar'). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. BET-N{sub 2} surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous, but quantitatively different physical-chemical transitions as charring temperature increases frommore » 100 to 700 C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by disordered graphitic crystallites. The molecular variations among the different char categories translate into differences in their ability to persist in the environment and function as environmental sorbents.« less

  8. Mixed-signal 0.18μm CMOS and SiGe BiCMOS foundry technologies for ROIC applications

    NASA Astrophysics Data System (ADS)

    Kar-Roy, Arjun; Howard, David; Racanelli, Marco; Scott, Mike; Hurwitz, Paul; Zwingman, Robert; Chaudhry, Samir; Jordan, Scott

    2010-10-01

    Today's readout integrated-circuits (ROICs) require a high level of integration of high performance analog and low power digital logic. TowerJazz offers a commercial 0.18μm CMOS technology platform for mixed-signal, RF, and high performance analog applications which can be used for ROIC applications. The commercial CA18HD dual gate oxide 1.8V/3.3V and CA18HA dual gate oxide 1.8V/5V RF/mixed signal processes, consisting of six layers of metallization, have high density stacked linear MIM capacitors, high-value resistors, triple-well isolation and thick top aluminum metal. The CA18HA process also has scalable drain extended LDMOS devices, up to 40V Vds, for high-voltage sensor applications, and high-performance bipolars for low noise requirements in ROICs. Also discussed are the available features of the commercial SBC18 SiGe BiCMOS platform with SiGe NPNs operating up to 200/200GHz (fT/fMAX frequencies in manufacturing and demonstrated to 270 GHz fT, for reduced noise and integrated RF capabilities which could be used in ROICs. Implementation of these technologies in a thick film SOI process for integrated RF switch and power management and the availability of high fT vertical PNPs to enable complementary BiCMOS (CBiCMOS), for RF enabled ROICs, are also described in this paper.

  9. Improved 3D seismic attribute mapping by CRS stacking instead of NMO stacking: Application to a geothermal reservoir in the Polish Basin

    NASA Astrophysics Data System (ADS)

    Pussak, Marcin; Bauer, Klaus; Stiller, Manfred; Bujakowski, Wieslaw

    2014-04-01

    Within a seismic reflection processing work flow, the common-reflection-surface (CRS) stack can be applied as an alternative for the conventional normal moveout (NMO) or the dip moveout (DMO) stack. The advantages of the CRS stack include (1) data-driven automatic determination of stacking operator parameters, (2) imaging of arbitrarily curved geological boundaries, and (3) significant increase in signal-to-noise (S/N) ratio by stacking far more traces than used in a conventional stack. In this paper we applied both NMO and CRS stackings to process a sparse 3D seismic data set acquired within a geothermal exploration study in the Polish Basin. The stacked images show clear enhancements in quality achieved by the CRS stack in comparison with the conventional stack. While this was expected from previous studies, we also found remarkable improvements in the quality of seismic attributes when the CRS stack was applied instead of the conventional stack. For the major geothermal target reservoir (Lower Jurassic horizon Ja1), we present a comparison between both stacking methods for a number of common attributes, including root-mean-square (RMS) amplitudes, instantaneous frequencies, coherency, and spectral decomposition attributes derived from the continuous wavelet transform. The attribute maps appear noisy and highly fluctuating after the conventional stack, and are clearly structured after the CRS stack. A seismic facies analysis was finally carried out for the Ja1 horizon using the attributes derived from the CRS stack by using self-organizing map clustering techniques. A corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and decreased instantaneous frequencies. In our interpretation, this region represents a fractured, fluid-bearing compartment within the sandstone reservoir, which indicates favorable conditions for geothermal exploitation.

  10. Strong electronic interaction and multiple quantum Hall ferromagnetic phases in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Datta, Biswajit; Dey, Santanu; Samanta, Abhisek; Borah, Abhinandan; Agarwal, Hitesh; Watanabe, Kenji; Taniguchi, Takashi; Sensarma, Rajdeep; Deshmukh, Mandar

    There is an increasing interest in the electronic properties of few layer graphene as it offers a platform to study electronic interactions because the dispersion of bands can be tuned with number and stacking of layers in combination with electric field. Here, we report evidence of strong electronic interactions and quantum Hall ferromagnetism (QHF) seen in a dual gated ABA trilayer graphene sample. Due to high mobility (500,000 cm2V-1s-1) in our device compared to previous studies, we find all symmetry broken states including ν = 0 filling factor at relatively low magnetic field (6T). Activation measurements show that Landau Level (LL) gaps are enhanced by interactions. Moreover, we observe hysteresis as a function of filling factor and spikes in the longitudinal resistance which, together, signal the formation of QHF states at low magnetic field.

  11. Pathway diversity leads to 2D-nanostructure in photo-triggered supramolecular assembly.

    PubMed

    Ghosh, Suhrit; Pal, Deep Sankar

    2018-03-31

    This communication reports photo-triggered supramolecular assembly of a naphthalene-diimide (NDI) derivative, appended with a photo-labile ortho-nitrobenzyl (ONB)-ester protected carboxylic acid. Photo-irradiation produces the free COOH group which facilitates H-bonding driven face-to-face stacking of the NDI chromophores producing an ultra-thin (height < 2.0 nm) two-dimensional (2D) nano-sheet. In contrast, spontaneous supramolecular assembly of the same active monomer exhibits entirely different features such as uncontrolled growth, J-aggregation and fibrillar morphology. A completely different pathway for photo-triggered assembly is attributed to the dual function of the photo-caged pro-monomer in (i) producing the carboxylic acid in controlled manner and (ii) simultaneously inhibiting the spontaneous J-aggregation of the photo-generated monomers by ester-carboxylic acid H-bonding and in turn directing a distinct growth mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrically tunable infrared filter based on a cascaded liquid-crystal Fabry-Perot for spectral imaging detection.

    PubMed

    Lin, Jiuning; Tong, Qing; Lei, Yu; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2017-03-01

    An electrically tunable infrared (IR) filter based on a key cascaded liquid-crystal Fabry-Perot (C-LC-FP) working in the wavelength range of 3-5 μm is presented. The C-LC-FP is constructed by closely stacking two FP microcavities with different depths of 12 and 15 μm and fully filled by nematic LC materials. Through continuous wavelength selection of both microcavities, radiation with a high transmittance and narrow bandwidth can pass through the filter. According to the electrically controlled birefringence characteristics of nematic LC molecules, the transmission spectrum can be shifted through applying a dual voltage signal over the C-LC-FP. Compared with common LC-FPs with a single microcavity, the C-LC-FP demonstrates better transmittance peak morphology and spectral selection performance. To be more specific, the number and the shifted scope of the IR transmission peak can be decreased and widened, respectively.

  13. Lead zirconate titanate nanoscale patterning by ultraviolet-based lithography lift-off technique for nano-electromechanical system applications.

    PubMed

    Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Costecalde, Jean; Rèmiens, Denis; Soyer, Caroline; Nicu, Liviu

    2012-09-01

    The advantage of using lead zirconate titanate (PbZr(0.54)Ti(0.46)O(3)) ceramics as an active material in nanoelectromechanical systems (NEMS) comes from its relatively high piezoelectric coefficients. However, its integration within a technological process is limited by the difficulty of structuring this material with submicrometer resolution at the wafer scale. In this work, we develop a specific patterning method based on optical lithography coupled with a dual-layer resist process. The main objective is to obtain sub-micrometer features by lifting off a 100-nm-thick PZT layer while preserving the material's piezoelectric properties. A subsequent result of the developed method is the ability to stack several layers with a lateral resolution of few tens of nanometers, which is mandatory for the fabrication of NEMS with integrated actuation and read-out capabilities.

  14. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion

    PubMed Central

    Wu, Wenqian; Song, Min; Ni, Song; Wang, Jingshi; Liu, Yong; Liu, Bin; Liao, Xiaozhou

    2017-01-01

    An equiatomic FeCoCrNi high-entropy alloy with a face-centered cubic structure was fabricated by a powder metallurgy route, and then processed by high-pressure torsion. Detailed microscopy investigations revealed that grain refinement from coarse grains to nanocrystalline grains occurred mainly via concurrent nanoband (NB) subdivision and deformation twinning. NB–NB, twin–NB and twin–twin interactions contributed to the deformation process. The twin–twin interactions resulted in severe lattice distortion and accumulation of high densities of dislocations in the interaction areas. With increasing strain, NB subdivision and interactions between primary twins and inclined secondary stacking faults (SFs)/nanotwins occurred. Secondary nanotwins divided the primary twins into many equiaxed parts, leading to further grain refinement. The interactions between secondary SFs/nanotwins associated with the presence of Shockley partials and primary twins also transformed the primary twin boundaries into incoherent high-angle grain boundaries. PMID:28429759

  15. Fracture Tests of Etched Components Using a Focused Ion Beam Machine

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan, L.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Many optical MEMS device designs involve large arrays of thin (0.5 to 1 micron components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture test configurations for 0.5 micron thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe. and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.

  16. High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Xiao, Xiaofei; Chang, Linzi; Wang, Congyun; Zhao, Deping

    2017-07-01

    In this work, a high-efficiency and tunable dual-frequency reflective polarization converter composed of graphene metasurface with twisting double L-shaped unit is firstly realized. Numerical results demonstrate that the device can convert a linearly polarized wave to its cross-polarized wave, and meantime it can also convert to a circularly polarized wave. Subsequently, one thickness of 500 nm SiO2 layer sandwiched by two graphene metasurfaces with similar pattern is stacked on the top of the two-layered structure, a four-frequency efficient reflective polarization converters is realized. Above all, those working frequencies can also be dynamically tuned within a large frequency range by adjusting the Fermi energy of the graphene, without reoptimizing and refabricating the nanostructures, which paves a novel way toward developing a controllable polarization converter for mid-infrared applications.

  17. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    NASA Technical Reports Server (NTRS)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  18. High Efficiency Stacked Organic Light-Emitting Diodes Employing Li2O as a Connecting Layer

    NASA Astrophysics Data System (ADS)

    Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Ishida, Hiroki; Takahashi, Hisakazu; Shibata, Kenichi; Mameno, Kazunobu

    2006-12-01

    We demonstrate the high-efficiency stacked organic light-emitting diodes (OLEDs) introducing new connecting layers. In the green stacked OLEDs, the external efficiencies increase proportionally to the number of the stacked units without suffering the decrease in power efficiency. The current, power and external efficiencies at 0.5 mA/cm2 of the stacked OLED with six stacked units (6-stacked OLED) have reached 235 cd/A, 46.6 lm/W, and 65.8%, respectively. Furthermore, we have applied the connecting layers to a white stacked OLED and fabricated an active-matrix full-color display with a low temperature polysilicon thin film transistor backplane. In the device, the current efficiency of the white 2-stacked OLED is enhanced by a factor of 2.2. The initial luminance drop is significantly suppressed for the white 2-stacked OLED compared to 1-stacked OLED. The proposed white stacked OLED technology can be applied to a full-color display for a practical use.

  19. Guanine base stacking in G-quadruplex nucleic acids

    PubMed Central

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  20. We favor formal models of heuristics rather than lists of loose dichotomies: a reply to Evans and Over

    PubMed Central

    Gigerenzer, Gerd

    2009-01-01

    In their comment on Marewski et al. (good judgments do not require complex cognition, 2009) Evans and Over (heuristic thinking and human intelligence: a commentary on Marewski, Gaissmaier and Gigerenzer, 2009) conjectured that heuristics can often lead to biases and are not error free. This is a most surprising critique. The computational models of heuristics we have tested allow for quantitative predictions of how many errors a given heuristic will make, and we and others have measured the amount of error by analysis, computer simulation, and experiment. This is clear progress over simply giving heuristics labels, such as availability, that do not allow for quantitative comparisons of errors. Evans and Over argue that the reason people rely on heuristics is the accuracy-effort trade-off. However, the comparison between heuristics and more effortful strategies, such as multiple regression, has shown that there are many situations in which a heuristic is more accurate with less effort. Finally, we do not see how the fast and frugal heuristics program could benefit from a dual-process framework unless the dual-process framework is made more precise. Instead, the dual-process framework could benefit if its two “black boxes” (Type 1 and Type 2 processes) were substituted by computational models of both heuristics and other processes. PMID:19784854

  1. The Direct FuelCell™ stack engineering

    NASA Astrophysics Data System (ADS)

    Doyon, J.; Farooque, M.; Maru, H.

    FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.

  2. Lean body mass may explain apparent racial differences in carotid intima-media thickness in obese children.

    PubMed

    Chowdhury, Shahryar M; Henshaw, Melissa H; Friedman, Brad; Saul, J Philip; Shirali, Girish S; Carter, Janet; Levitan, Bryana M; Hulsey, Tom

    2014-05-01

    Racial differences in carotid intima-media thickness (cIMT) have been suggested to be associated with the disproportionally high prevalence of cardiovascular disease in black adults. The objective of this study was to evaluate the effects of cardiovascular risk factors on the racial differences seen in cIMT in obese children. Obese subjects aged 4 to 21 years were recruited prospectively. Height, weight, blood pressure, fasting insulin, glucose, lipid panel, high-sensitivity C-reactive protein, and body composition by dual-energy x-ray absorptiometry were obtained. B-mode carotid imaging was analyzed by a single blinded physician. A total of 120 subjects (46 white, 74 black) were enrolled. Black subjects exhibited greater cIMT (0.45 ± 0.03 vs 0.43 ± 0.02 cm, P < .01) and higher lean body mass index (19.3 ± 3.4 vs 17.3 ± 3.2 kg/m², P = .02) than white subjects. Simple linear regression revealed modest associations between mean cIMT and race (R = 0.52, P < .01), systolic blood pressure (R = 0.47, P < .01), and lean body mass (R = 0.51, P < .01). On multivariate regression analysis, lean body mass remained the only measure to maintain a statistically significant relationship with mean cIMT (P < .01). Black subjects demonstrated greater cIMT than white subjects. The relationship between race and cIMT disappeared when lean body mass was accounted for. Future studies assessing the association of cardiovascular disease risk factors to cIMT in obese children should include lean body mass in the analysis. Published by Mosby, Inc.

  3. Racial/Ethnic Differences in Electronic Cigarette Use and Reasons for Use among Current and Former Smokers: Findings from a Community-Based Sample

    PubMed Central

    Webb Hooper, Monica; Kolar, Stephanie K.

    2016-01-01

    The prevalence of e-cigarette use is increasing, yet few studies have focused on its use in racial/ethnic minority populations. We examined associations between race/ethnicity and e-cigarette use, plans to continue using e-cigarettes, and reasons for use among current/former smokers. Participants (285 in total; 29% non-Hispanic White, 42% African American/Black, and 29% Hispanic) were recruited between June and November 2014. Telephone-administered surveys assessed demographics, cigarette smoking, e-cigarette use, plans to continue using, and reasons for use. Analyses of covariance (ANCOVAs) and multivariable logistic regressions were conducted. African Americans/Blacks were significantly less likely to report ever-use compared to Whites and Hispanics (50% vs. 71% and 71%, respectively; p < 0.001). However, African American/Black ever users were more likely to report plans to continue using e-cigarettes compared to Whites and Hispanics (72% vs. 53% and 47%, respectively, p = 0.01). African American/Black participants were more likely to use e-cigarettes as a cessation aid compared to both Whites (p = 0.03) and Hispanics (p = 0.48). White participants were more likely to use e-cigarettes to save money compared to Hispanics (p = 0.02). In conclusion, racial/ethnic differences in e-cigarette use, intentions, and reasons for use emerged in our study. African American ever users may be particularly vulnerable to maintaining their use, particularly to try to quit smoking. These findings have implications for cigarette smoking and e-cigarette dual use, continued e-cigarette use, and potentially for smoking-related disparities. PMID:27754449

  4. Racial/Ethnic Differences in Electronic Cigarette Use and Reasons for Use among Current and Former Smokers: Findings from a Community-Based Sample.

    PubMed

    Webb Hooper, Monica; Kolar, Stephanie K

    2016-10-14

    The prevalence of e-cigarette use is increasing, yet few studies have focused on its use in racial/ethnic minority populations. We examined associations between race/ethnicity and e-cigarette use, plans to continue using e-cigarettes, and reasons for use among current/former smokers. Participants (285 in total; 29% non-Hispanic White, 42% African American/Black, and 29% Hispanic) were recruited between June and November 2014. Telephone-administered surveys assessed demographics, cigarette smoking, e-cigarette use, plans to continue using, and reasons for use. Analyses of covariance (ANCOVAs) and multivariable logistic regressions were conducted. African Americans/Blacks were significantly less likely to report ever-use compared to Whites and Hispanics (50% vs. 71% and 71%, respectively; p < 0.001). However, African American/Black ever users were more likely to report plans to continue using e-cigarettes compared to Whites and Hispanics (72% vs. 53% and 47%, respectively, p = 0.01). African American/Black participants were more likely to use e-cigarettes as a cessation aid compared to both Whites ( p = 0.03) and Hispanics ( p = 0.48). White participants were more likely to use e-cigarettes to save money compared to Hispanics ( p = 0.02). In conclusion, racial/ethnic differences in e-cigarette use, intentions, and reasons for use emerged in our study. African American ever users may be particularly vulnerable to maintaining their use, particularly to try to quit smoking. These findings have implications for cigarette smoking and e-cigarette dual use, continued e-cigarette use, and potentially for smoking-related disparities.

  5. Predictors of stroke recurrence in patients with recent lacunar stroke and response to interventions according to risk status: Secondary Prevention of Small Subcortical Strokes (SPS3) trial

    PubMed Central

    Hart, Robert G.; Pearce, Lesly A.; Bakheet, Majid F.; Benavente, Oscar; Conwit, Robin A.; McClure, Leslie A.; Talbert, Robert L.; Anderson, David C.

    2013-01-01

    Background Among participants in the Secondary Prevention of Small Subcortical Strokes randomized trial, we sought to identify patients with high vs. low rates of recurrent ischemic stroke and to assess effects of aggressive blood pressure control and dual antiplatelet therapy according to risk status. Methods Multivariable analyses of 3020 participants with recent MRI-defined lacunar strokes followed for a mean of 3.7 years with 243 recurrent ischemic strokes. Results: Prior symptomatic lacunar stroke or TIA (HR 2.2, 95%CI 1.6,2.9), diabetes (HR 2.0, 95%CI 1.5,2.5), Black race (HR 1.7, 95%CI 1.3,2.3) and male sex (HR 1.5, 95%CI 1.1,1.9) were each independently predictive of recurrent ischemic stroke. Recurrent ischemic stroke occurred at a rate of 4.3%/yr (95% CI 3.3, 5.5) in patients with prior symptomatic lacunar stroke or TIA (15% of the cohort), 3.1%/yr (95%CI 2.6, 3.9) in those with >1 of the other 3 risk factors (27% of the cohort), and 1.3%/yr (95%CI 1.0,1.7) in those with 0 to 1 risk factors (58% of the cohort). There were no significant interactions between treatment effects and stroke risk status. Conclusions In this large, carefully followed cohort of patients with recent lacunar stroke and aggressive blood pressure management, prior symptomatic lacunar ischemia, diabetes, Black race and male sex independently predicted ischemic stroke recurrence. The effects of blood pressure targets and dual antiplatelet therapy were similar across the spectrum of independent risk factors and recurrence risk. PMID:23800503

  6. Predictors of stroke recurrence in patients with recent lacunar stroke and response to interventions according to risk status: secondary prevention of small subcortical strokes trial.

    PubMed

    Hart, Robert G; Pearce, Lesly A; Bakheet, Majid F; Benavente, Oscar R; Conwit, Robin A; McClure, Leslie A; Talbert, Robert L; Anderson, David C

    2014-04-01

    Among participants in the Secondary Prevention of Small Subcortical Strokes randomized trial, we sought to identify patients with high versus low rates of recurrent ischemic stroke and to assess effects of aggressive blood pressure control and dual antiplatelet therapy according to risk status. Multivariable analyses of 3020 participants with recent magnetic resonance imaging-defined lacunar strokes followed for a mean of 3.7 years with 243 recurrent ischemic strokes. Prior symptomatic lacunar stroke or transient ischemic attack (TIA) (hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.6, 2.9), diabetes (HR 2.0, 95% CI 1.5, 2.5), black race (HR 1.7, 95% CI 1.3, 2.3), and male sex (HR 1.5, 95% CI 1.1, 1.9) were each independently predictive of recurrent ischemic stroke. Recurrent ischemic stroke occurred at a rate of 4.3% per year (95% CI 3.4, 5.5) in patients with prior symptomatic lacunar stroke or TIA (15% of the cohort), 3.1% per year (95% CI 2.6, 3.9) in those with more than 1 of the other 3 risk factors (27% of the cohort), and 1.3% per year (95% CI 1.0, 1.7) in those with 0-1 risk factors (58% of the cohort). There were no significant interactions between treatment effects and stroke risk status. In this large, carefully followed cohort of patients with recent lacunar stroke and aggressive blood pressure management, prior symptomatic lacunar ischemia, diabetes, black race, and male sex independently predicted ischemic stroke recurrence. The effects of blood pressure targets and dual antiplatelet therapy were similar across the spectrum of independent risk factors and recurrence risk. Copyright © 2014 National Stroke Association. All rights reserved.

  7. Changes in Body Fat Distribution on Dual-Energy X-Ray Absorptiometry in Black South Africans Starting First-Line Antiretroviral Therapy.

    PubMed

    Abrahams, Zulfa; Levitt, Naomi; Lesosky, Maia; Maartens, Gary; Dave, Joel

    2016-10-01

    Long-term use of antiretroviral therapy (ART) increases the risk of developing lipodystrophy. Few studies from Africa have used longitudinal data to assess the development of lipoatrophy and lipohypertrophy. We use clinical anthropometry and dual-energy X-ray absorptiometry (DEXA) to describe changes in body fat distribution over a 24-month period in individuals initiated on ART. A convenience sample of black South Africans (55 men and 132 women) were recruited and followed for 24 months after commencing ART. Body fat distribution was assessed using anthropometric measurements and DEXA scans at baseline and then at 3, 6, 12, 18, and 24 months after commencing ART. DEXA was also used to estimate abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Women gained more overall weight and more regional fat in all areas analyzed on DEXA scans. Women, not men, experienced a significant increasing trend in trunk fat and a significant decreasing trend in limb fat, when expressed as a percentage of total body fat. In men, the risk of developing lipoatrophy was more than two times greater than that of women, after adjusting for age, baseline body mass index, and ART regimen. Lipohypertrophy occurred similarly in men and women. VAT and SAT increased significantly in men and women, with women gaining considerably more than men. These findings are of great concern as an increased waist circumference is associated with increased mortality in HIV-infected populations. Further investigation is required to understand the mechanisms underlying the sex differences in changes in body fat distribution and its effects on cardiovascular risk.

  8. Minimizing excess air could be wasting energy in process heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, N.P.

    1988-02-01

    Operating a process heater simply to achieve a minimum excess oxygen target in the flue gas may be wasting energy in some process heaters. That's because the real minimum excess oxygen percentage is that required to reach the point of absolute combustion in the furnace. The oxygen target required to achieve absolute combustion may be 1%, or it may be 6%, depending on the operating characteristics of the furnace. Where natural gas is burned, incomplete combustion can occur, wasting fuel dollars. Energy can be wasted because of some misconceptions regarding excess air control. These are: 2-3% excess oxygen in themore » flue gas is a universally good target, too little excess oxygen will always cause the evolution of black smoke in the stack, and excess air requirements are unaffected by commissioning an air preheater.« less

  9. Electron microscopy of carbonaceous matter in Allende acid residues

    NASA Technical Reports Server (NTRS)

    Lumpkin, G. R.

    1982-01-01

    On the basis of characteristic diffuse ring diffraction patterns, much of the carbonaceous matter in a large suite of Allende acid residues has been identified as a variety of turbostratic carbon. Crystallites of this phase contain randomly stacked sp(2) hybridized carbon layers and diffraction patterns resemble those from carbon black and glassy carbon. Carbynes are probably absent, and are certainly restricted to less than 0.5% of these acid residues. The work of Ott et al. (1981) provides a basis for the possibility that turbostratic carbon is a carrier of noble gases, but an additional component - amorphous carbon - may be necessary to explain the high release temperatures of noble gases as well as the glassy character of many of the carbonaceous particles. Carbynes are considered to be questionable as important carriers of noble gases in the Allende acid residues.

  10. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2017-02-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  11. Fuel cell manifold sealing system

    DOEpatents

    Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.

    1980-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  12. Method for producing a fuel cell manifold seal

    DOEpatents

    Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.

    1982-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  13. Studies on complex π-π and T-stacking features of imidazole and phenyl/p-halophenyl units in series of 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides and their carbonitrile derivatives: Role of halogens in tuning of conformation

    NASA Astrophysics Data System (ADS)

    Das, Aniruddha

    2017-11-01

    5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides (N-phenyl AICA) (2a-e) and 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carbonitriles (N-phenyl AICN) (3a-e) had been synthesized. X-ray crystallographic studies of 2a-e and 3a-e had been performed to identify any distinct change in stacking patterns in their crystal lattice. Single crystal X-ray diffraction studies of 2a-e revealed π-π stack formations with both imidazole and phenyl/p-halophenyl units in anti and syn parallel-displaced (PD)-type dispositions. No π-π stacking of imidazole occurred when the halogen substituent is bromo or iodo; π-π stacking in these cases occurred involving phenyl rings only. The presence of an additional T-stacking had been observed in crystal lattices of 3a-e. Vertical π-π stacking distances in anti-parallel PD-type arrangements as well as T-stacking distances had shown stacking distances short enough to impart stabilization whereas syn-parallel stacking arrangements had got much larger π-π stacking distances to belie any syn-parallel stacking stabilization. DFT studies had been pursued for quantifying the π-π stacking and T-stacking stabilization. The plotted curves for anti-parallel and T-stacked moieties had similarities to the 'Morse potential energy curve for diatomic molecule'. The minima of the curves corresponded to the most stable stacking distances and related energy values indicated stacking stabilization. Similar DFT studies on syn-parallel systems of 2b corresponded to no π-π stacking stabilization at all. Halogen-halogen interactions had also been observed to stabilize the compounds 2d, 2e and 3d. Nano-structural behaviour of the series of compounds 2a-e and 3a-e were thoroughly investigated.

  14. Transient analysis of a solid oxide fuel cell stack with crossflow configuration

    NASA Astrophysics Data System (ADS)

    Yuan, P.; Liu, S. F.

    2018-05-01

    This study investigates the transient response of the cell temperature and current density of a solid oxide fuel cell having 6 stacks with crossflow configuration. A commercial software repeatedly solves the governing equations of each stack, and get the convergent results of the whole SOFC stack. The preliminary results indicate that the average current density of each stack is similar to others, so the power output between different stacks are uniform. Moreover, the average cell temperature among stacks is different, and the central stacks have higher temperature due to its harder heat dissipation. For the operating control, the cell temperature difference among stacks is worth to concern because the temperature difference will be over 10 °C in the analysis case. The increasing of the inlet flow rate of the fuel and air will short the transient state, increase the average current density, and drop the cell temperature difference among the stacks. Therefore, the inlet flow rate is an important factor for transient performance of a SOFC stack.

  15. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire spectral frequency band while exhibiting superb VSWR (voltage standing wave ratio) values. Element size and spacing requirements were addressed for a direct replacement of the thicker, lower-performance, stack ed patch antenna array currently employed for the HIRAD application. Several variants to the multiband arrays were developed that exhibited four, equally spaced, high efficiency, "sweet spot" frequency bands, as well as the option for a high-performance wideband array. The 0.25-in. (˜6.4- mm) thickness of the antenna stack-up itself was achieved through the application of specialized antenna techniques and meta-materials to accomplish all design objectives.

  16. Investigation of the characteristics of a stacked direct borohydride fuel cell for portable applications

    NASA Astrophysics Data System (ADS)

    Kim, Cheolhwan; Kim, Kyu-Jung; Ha, Man Yeong

    To investigate the possibility of the portable application of a direct borohydride fuel cell (DBFC), weight reduction of the stack and high stacking of the cells are investigated for practical running conditions. For weight reduction, carbon graphite is adopted as the bipolar plate material even though it has disadvantages in tight stacking, which results in stacking loss from insufficient material strength. For high stacking, it is essential to have a uniform fuel distribution among cells and channels to maintain equal electric load on each cell. In particular, the design of the anode channel is important because active hydrogen generation causes non-uniformity in the fuel flow-field of the cells and channels. To reduce the disadvantages of stacking force margin and fuel maldistribution, an O-ring type-sealing system with an internal manifold and a parallel anode channel design is adopted, and the characteristics of a single and a five-cell fuel cell stack are analyzed. By adopting carbon graphite, the stack weight can be reduced by 4.2 times with 12% of performance degradation from the insufficient stacking force. When cells are stacked, the performance exceeds the single-cell performance because of the stack temperature increase from the reduction of the radiation area from the narrow stacking of cells.

  17. Pressurized electrolysis stack with thermal expansion capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgeois, Richard Scott

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, themore » electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.« less

  18. Dual-functional Pt-on-Pd supported on reduced graphene oxide hybrids: peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic.

    PubMed

    Zhang, Xiahong; Wu, Genghuang; Cai, Zhixiong; Chen, Xi

    2015-03-01

    In this study, a facile hydrothermal method was developed to synthesize Pt-on-Pd supported on reduced graphene oxide (Pt-on-Pd/RGO) hybrids. Because of the synergistic effect between Pt-on-Pd and RGO, the obtained Pt-on-Pd/RGO had superior peroxidase-mimic activities in H2O2 reduction and TMB oxidation. The reaction medium was optimized and a sensing approach for H2O2 was developed with a linear range from 0.98 to 130.7 μM of H2O2. In addition, the characteristic of electrocatalytic oxidation of methanol was investigated. The peak current density value, j(f), for the Pt-on-Pd/RGO hybrid (328 mA mg(Pt)(-1)) was about 1.85 fold higher than that of commercial Pt black (177 mA mg(Pt)(-1)) and, also, more durable electrocatalytic activity could be obtained. For the first time, the dual-functional Pt-on-Pd/RGO with peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic was reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Symmetries, holography, and quantum phase transition in two-dimensional dilaton AdS gravity

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Ciulu, Matteo; Tuveri, Matteo

    2018-05-01

    We revisit the Almheiri-Polchinski dilaton gravity model from a two-dimensional (2D) bulk perspective. We describe a peculiar feature of the model, namely the pattern of conformal symmetry breaking using bulk Killing vectors, a covariant definition of mass and the flow between different vacua of the theory. We show that the effect of the symmetry breaking is both the generation of an infrared scale (a mass gap) and to make local the Goldstone modes associated with the asymptotic symmetries of the 2D spacetime. In this way a nonvanishing central charge is generated in the dual conformal theory, which accounts for the microscopic entropy of the 2D black hole. The use of covariant mass allows to compare energetically the two different vacua of the theory and to show that at zero temperature the vacuum with a constant dilaton is energetically preferred. We also translate in the bulk language several features of the dual CFT discussed by Maldacena et al. The uplifting of the 2D model to (d +2 )-dimensional theories exhibiting hyperscaling violation is briefly discussed.

  20. Lightweight Stacks of Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  1. Decoupled black hole accretion and quenching: the relationship between BHAR, SFR and quenching in Milky Way- and Andromeda-mass progenitors since z = 2.5

    NASA Astrophysics Data System (ADS)

    Cowley, M. J.; Spitler, L. R.; Quadri, R. F.; Goulding, A. D.; Papovich, C.; Tran, K. V. H.; Labbé, I.; Alcorn, L.; Allen, R. J.; Forrest, B.; Glazebrook, K.; Kacprzak, G. G.; Morrison, G.; Nanayakkara, T.; Straatman, C. M. S.; Tomczak, A. R.

    2018-01-01

    We investigate the relationship between the black hole accretion rate (BHAR) and star formation rate (SFR) for Milky Way (MW) and Andromeda (M31)-mass progenitors from z = 0.2 to 2.5. We source galaxies from the Ks-band-selected ZFOURGE survey, which includes multiwavelength data spanning 0.3-160 μm. We use decomposition software to split the observed spectral energy distributions (SEDs) of our galaxies into their active galactic nuclei (AGNs) and star-forming components, which allows us to estimate BHARs and SFRs from the infrared (IR). We perform tests to check the robustness of these estimates, including a comparison with BHARs and SFRs derived from X-ray stacking and far-IR analysis, respectively. We find that, as the progenitors evolve their relative black hole-galaxy growth (i.e. their BHAR/SFR ratio) increases from low to high redshift. The MW-mass progenitors exhibit a log-log slope of 0.64 ± 0.11, while the M31-mass progenitors are 0.39 ± 0.08. This result contrasts with previous studies that find an almost flat slope when adopting X-ray-/AGN-selected or mass-limited samples and is likely due to their use of a broad mixture of galaxies with different evolutionary histories. Our use of progenitor-matched samples highlights the potential importance of carefully selecting progenitors when searching for evolutionary relationships between BHAR/SFRs. Additionally, our finding that BHAR/SFR ratios do not track the rate at which progenitors quench casts doubts over the idea that the suppression of star formation is predominantly driven by luminous AGN feedback (i.e. high BHARs).

  2. Anode reactive bleed and injector shift control strategy

    DOEpatents

    Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY

    2012-01-03

    A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.

  3. Plated lamination structures for integrated magnetic devices

    DOEpatents

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  4. Racial/ethnic differences in electronic cigarette knowledge, social norms, and risk perceptions among current and former smokers.

    PubMed

    Webb Hooper, Monica; Kolar, Stephanie K

    2017-04-01

    Psychosocial factors that may affect electronic cigarette (e-cigarette) initiation or maintenance among racial/ethnic minorities are not well-understood. This study examined racial/ethnic differences in e-cigarette knowledge, risk perceptions, and social norms among current and former smokers. Individuals with a tobacco smoking history and an awareness of e-cigarettes (N=285) were recruited from the community from June to August 2014. Telephone-administered surveys assessed demographics, smoking status, and e-cigarette knowledge, risk perceptions, and normative beliefs. Analyses of covariance and multinomial logistic regression tested associations by race/ethnicity. Controlling for sociodemographics and smoking status, White participants scored significantly higher on e-cigarette knowledge, compared to both Hispanics and African Americans/Blacks. Knowledge was lower among African Americans/Blacks compared to Hispanics. Compared to both Whites and Hispanics, African American/Black participants held lower perceptions regarding e-cigarette health risks and were less likely to view e-cigarettes as addictive. Normative beliefs did not differ by race/ethnicity. In conclusion, e-cigarette knowledge, health risk perceptions, and perceived addictiveness differed by race/ethnicity. The variation in e-cigarette knowledge and beliefs among smokers and former smokers has implications for use, and potentially, dual use. Understanding these relationships in unrepresented populations can inform future research and practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Butterfly effect in 3D gravity

    NASA Astrophysics Data System (ADS)

    Qaemmaqami, Mohammad M.

    2017-11-01

    We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.

  6. Universality in chaos: Lyapunov spectrum and random matrix theory.

    PubMed

    Hanada, Masanori; Shimada, Hidehiko; Tezuka, Masaki

    2018-02-01

    We propose the existence of a new universality in classical chaotic systems when the number of degrees of freedom is large: the statistical property of the Lyapunov spectrum is described by random matrix theory. We demonstrate it by studying the finite-time Lyapunov exponents of the matrix model of a stringy black hole and the mass-deformed models. The massless limit, which has a dual string theory interpretation, is special in that the universal behavior can be seen already at t=0, while in other cases it sets in at late time. The same pattern is demonstrated also in the product of random matrices.

  7. Universality in chaos: Lyapunov spectrum and random matrix theory

    NASA Astrophysics Data System (ADS)

    Hanada, Masanori; Shimada, Hidehiko; Tezuka, Masaki

    2018-02-01

    We propose the existence of a new universality in classical chaotic systems when the number of degrees of freedom is large: the statistical property of the Lyapunov spectrum is described by random matrix theory. We demonstrate it by studying the finite-time Lyapunov exponents of the matrix model of a stringy black hole and the mass-deformed models. The massless limit, which has a dual string theory interpretation, is special in that the universal behavior can be seen already at t =0 , while in other cases it sets in at late time. The same pattern is demonstrated also in the product of random matrices.

  8. Analysis and Implementation of Particle-to-Particle (P2P) Graphics Processor Unit (GPU) Kernel for Black-Box Adaptive Fast Multipole Method

    DTIC Science & Technology

    2015-06-01

    5110P and 16 dx360M4 nodes each with one NVIDIA Kepler K20M/K40M GPU. Each node contained dual Intel Xeon E5-2670 (Sandy Bridge) central processing...kernel and as such does not employ multiple processors. This work makes use of a single processing core and a single NVIDIA Kepler K40 GK110...bandwidth (2 × 16 slot), 7.877 GFloat/s; Kepler K40 peak, 4,290 × 1 billion floating-point operations (GFLOPs), and 288 GB/s Kepler K40 memory

  9. Dual Chemodrug-Loaded Single-Walled Carbon Nanohorns for Multimodal Imaging-Guided Chemo-Photothermal Therapy of Tumors and Lung Metastases

    PubMed Central

    Yang, Jingxing; Su, Huilan; Sun, Wenshe; Cai, Jiali; Liu, Shiyuan; Chai, Yimin; Zhang, Chunfu

    2018-01-01

    Tumor combination therapy using nano formulations with multimodal synergistic therapeutic effects shows great potential for complete ablation of tumors. However, targeting tumor metastases with nano structures is a major obstacle for therapy. Therefore, developing a combination therapy system able to target both primary tumors and their metastases at distant sites with synergistic therapy is desirable for the complete eradication of tumors. To this end, a dual chemodrug-loaded theranostic system based on single walled carbon nanohorns (SWNHs) is developed for targeting both primary breast tumors and their lung metastases. Methods: SWNHs were first modified simultaneously with poly (maleic anhydride-alt-1-octadecene) (C18PMH) and methoxypolyethyleneglycol-b-poly-D, L-lactide (mPEG-PLA) via hydrophobic-hydrophobic interactions and π-π stacking. Then cisplatin and doxorubicin (DOX) (2.9:1 molar ratio) were sequentially loaded onto the modified nanohorns in a noninterfering way. After careful examinations of the release profiles of the loaded drugs and the photothermal performance of the dual chemodrug-loaded SWNHs, termed SWNHs/C18PMH/mPEG-PLA-DOX-Pt, the dual drug chemotherapeutic and chemo-photothermal synergetic therapeutic effects on tumor cells were evaluated. Subsequently, the in vivo behavior and tumor accumulation of the drug-loaded SWNHs were studied by photoacoustic imaging (PAI). For chemo-photothermal therapy of tumors, 4T1 tumor bearing mice were intravenously injected with SWNHs/C18PMH/mPEG-PLA-DOX-Pt at a dose of 10 mg/kg b.w. (in SWNHs) and tumors were illuminated by an 808 nm laser (1W/cm2 for 5 min) 24 h post-injection. Results: DOX and cisplatin were loaded onto the modified SWNHs with high efficiency (44 wt% and 66 wt%, respectively) and released in a pH-sensitive, tandem and sustainable manner. The SWNHs/C18PMH/mPEG-PLA-DOX-Pt had a hydrodynamic diameter of 182 ± 3.2 nm, were highly stable in physiological environment, and had both dual drug chemotherapeutic (CI = 0.439) and chemo-photothermal synergistic antitumor effects (CI = 0.396) in vitro. Moreover, the dual drug-loaded SWNHs had a long blood half-life (10.9 h) and could address both the primary breast tumors and their lung metastases after intravenous administration. Consequently, chemo-photothermal combination therapy ablated the primary tumors and simultaneously eradicated the metastatic lung nodules. Conclusion: Our study demonstrates that SWNHs/C18PMH/mPEG-PLA-DOX-Pt is highly potent for chemo-photothermal combination therapy of primary tumors and cocktail chemotherapy of their metastases at a distant site. PMID:29556368

  10. An Analysis of the Macroscopic Tensile Behavior of a Nonlinear Nylon Reinforced Elastomeric Composite System Using MAC/GMC

    NASA Technical Reports Server (NTRS)

    Assaad, Mahmoud; Arnold, Steven M.

    1999-01-01

    A special class of composite laminates composed of soft rubbery matrices and stiff reinforcements made of steel wires or synthetic fibers is examined, where each constituent behaves in a nonlinear fashion even in the small strain domain. Composite laminates made of piles stacked at alternating small orientation angles with respect to the applied axial strain are primarily dominated by the nonlinear behavior of the reinforcing fibers. However; composites with large ply orientations or those perpendicular to the loading axis, will approximate the behavior of the matrix phase and respond in even a more complex fashion for arbitrarily stacked piles. The geometric nonlinearity due to small cord rotations during loading was deemed here to have a second order effect and consequently dropped from any consideration. The user subroutine USRMAT within the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC), was utilized to introduce the constituent material nonlinear behavior. Stress-strain behavior at the macro level was experimentally generated for single and multi ply composites comprised of continuous Nylon-66 reinforcements embedded in a carbon black loaded rubbery matrix. Comparisons between the predicted macro composite behavior and experimental results are excellent when material nonlinearity is included in the analysis. In this paper, a brief review of GMC is provided, along with a description of the nonlinear behavior of the constituents and associated constituent constitutive relations, and the improved macro (or composite) behavior predictions are documented and illustrated.

  11. Determination of Algorithm Parallelism in NP Complete Problems for Distributed Architectures

    DTIC Science & Technology

    1990-03-05

    12 structure STACK declare OpenStack (S-.NODE **TopPtr) -+TopPtrI FlushStack(S.-NODE **TopPtr) -*TopPtr PushOnStack(S-.NODE **TopPtr, ITEM *NewltemPtr...OfCoveringSets, CoveringSets, L, Best CoverTime, Vertex, Set3end SCND ADT B.26 structure STACKI declare OpenStack (S-NODE **TopPtr) -+TopPtr FlushStack(S

  12. Studies on the π-π stacking features of imidazole units present in a series of 5-amino-1-alkylimidazole-4-carboxamides

    NASA Astrophysics Data System (ADS)

    Ray, Sibdas; Das, Aniruddha

    2015-06-01

    Reaction of 2-ethoxymethyleneamino-2-cyanoacetamide with primary alkyl amines in acetonitrile solvent affords 1-substituted-5-aminoimidazole-4-carboxamides. Single crystal X-ray diffraction studies of these imidazole compounds show that there are both anti-parallel and syn-parallel π-π stackings between two imidazole units in parallel-displaced (PD) conformations and the distance between two π-π stacked imidazole units depends mainly on the anti/ syn-parallel nature and to some extent on the alkyl group attached to N-1 of imidazole; molecules with anti-parallel PD-stacking arrangements of the imidazole units have got vertical π-π stacking distance short enough to impart stabilization whereas the imidazole unit having syn-parallel stacking arrangement have got much larger π-π stacking distances. DFT studies on a pair of anti-parallel imidazole units of such an AICA lead to curves for 'π-π stacking stabilization energy vs. π-π stacking distance' which have got similarity with the 'Morse potential energy diagram for a diatomic molecule' and this affords to find out a minimum π-π stacking distance corresponding to the maximum stacking stabilization energy between the pair of imidazole units. On the other hand, a DFT calculation based curve for 'π-π stacking stabilization energy vs. π-π stacking distance' of a pair of syn-parallel imidazole units is shown to have an exponential nature.

  13. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin [Danbury, CT; Urko, Willam [West Granby, CT

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  14. When Supermassive Black Holes Wander

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    Are supermassive black holes found only at the centers of galaxies? Definitely not, according to a new study in fact, galaxies like the Milky Way may harbor several such monsters wandering through their midst.Collecting Black Holes Through MergersIts generally believed that galaxies are built up hierarchically, growing in size through repeated mergers over time. Each galaxy in a major merger likely hosts a supermassive black hole a black hole of millions to billions of times the mass of the Sun at its center. When a pair of galaxies merges, their supermassive black holes will often sink to the center of the merger via a process known as dynamical friction. There the supermassive black holes themselves will eventually merge in a burst of gravitational waves.Spatial distribution and velocities of wandering supermassive black holes in three of the authors simulated galaxies, shown in edge-on (left) and face-on (right) views of the galaxy disks. Click for a closer look. [Tremmel et al. 2018]But if a galaxy the size of the Milky Way was built through a history of many major galactic mergers, are we sure that all its accumulated supermassive black holes eventually merged at the galactic center? A new study suggests that some of these giants might have escaped such a fate and they now wander unseen on wide orbits through their galaxies.Black Holes in an Evolving UniverseLed by Michael Tremmel (Yale Center for Astronomy Astrophysics), a team of scientists has used data from a large-scale cosmological simulation, Romulus25, to explore the possibility of wandering supermassive black holes. The Romulus simulations are uniquely suited to track the formation and subsequent orbital motion of supermassive black holes as galactic halos are built up through mergers over the history of the universe.From these simulations, Tremmel and collaborators find an end total of 316 supermassive black holes residing within the bounds of 26 Milky-Way-mass halos. Of these, roughly a third are wanderers within 10 kpc of the halo center (roughly the size of the Milky Ways disk).These wandering supermassive black holes were kicked onto wide orbits during the merger of their host galaxy with the main halo; Tremmel and collaborators find that their orbits are often tilted, lying outside of the galactic disk. Because these black holes travel through relatively deserted regions, they accumulate little mass and are rarely perturbed in their journeys, wandering for billions of years.Finding MonstersCumulative fraction of simulated Milky-Way-mass halos as a function of the number of supermassive black holes they host. All of the halos host at least one SMBH within 10 kpc from halo center, but the majority host more than that. [Tremmel et al. 2018]Tremmel and collaborators simulations suggest that, regardless of its merger history, a Milky-Way-mass halo will end up with an average of 5 supermassive black holes within 10 kpc of the galaxy center, and an average of 12 within its larger virial radius! This means there could be a number of supermassive black holes just like the enormous Sgr A* at our galaxys core wandering the Milky Way unseen.So how can we find these invisible monsters? We already have some observational evidence in the form of offset and dual active galactic nuclei of non-central supermassive black holes in distant galaxies. As for nearby, our best bet is to look for tidal disruption events, the burps of emission that occur when an otherwise invisible black hole encounters a star or a cloud of gas.CitationMichael Tremmel et al 2018 ApJL 857 L22. doi:10.3847/2041-8213/aabc0a

  15. Method for disclosing invisible physical properties in metal-ferroelectric-insulator-semiconductor gate stacks

    NASA Astrophysics Data System (ADS)

    Sakai, Shigeki; Zhang, Wei; Takahashi, Mitsue

    2017-04-01

    In metal-ferroelectric-insulator-semiconductor gate stacks of ferroelectric-gate field effect transistors (FeFETs), it is impossible to directly obtain curves of polarization versus electric field (P f-E f) in the ferroelectric layer. The P f-E f behavior is not simple, i.e. the P f-E f curves are hysteretic and nonlinear, and the hysteresis curve width depends on the electric field scan amplitude. Unless the P f-E f relation is known, the field E f strength cannot be solved when the voltage is applied between the gate meal and the semiconductor substrate, and thus P f-E f cannot be obtained after all. In this paper, the method for disclosing the relationships among the polarization peak-to-peak amplitude (2P mm_av), the electric field peak-to-peak amplitude (2E mm_av), and the memory window (E w) in units of the electric field is presented. To get P mm_av versus E mm_av, FeFETs with different ferroelectric-layer thicknesses should be prepared. Knowing such essential physical parameters is helpful and in many cases enough to quantitatively understand the behavior of FeFETs. The method is applied to three groups. The first one consists of SrBi2Ta2O9-based FeFETs. The second and third ones consist of Ca x Sr1-x Bi2Ta2O9-based FeFETs made by two kinds of annealing. The method can clearly differentiate the characters of the three groups. By applying the method, ferroelectric relationships among P mm_av, E mm_av, and E w are well classified in the three groups according to the difference of the material kinds and the annealing conditions. The method also evaluates equivalent oxide thickness (EOT) of a dual layer of a deposited high-k insulator and a thermally-grown SiO2-like interfacial layer (IL). The IL thickness calculated by the method is consistent with cross-sectional image of the FeFETs observed by a transmission electron microscope. The method successfully discloses individual characteristics of the ferroelectric and the insulator layers hidden in the gate stack of a FeFET.

  16. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a nIR telescope in spece, will enable GRBs to be used as probes of the formation of the first stars and structure in the Universe. HREXI on its own, with broad bandwidth and high spectral and spatial resolution, will extend both Galactic surveys for obscured young supernova remnants (44Ti sources) and for transients, black holes and flaring AGN and TDEs well at greatly increased sensitivity and spatial/spectral resolution than has been done with Swift or INTEGRAL. If the HREXI-1 technology is developed in the first year of this proposed effort, it could be used on the upcoming Brazil-US MIRAX telescope on the Lattes satellite, scheduled for a 2018 launch with imaging detector planes to be provided (under contract) by our group. Finally, the 3D stacking technology development proposed here for imaging detector arrays has broad application to Wide Field soft X-ray imaging, to CMB polarization mode (B mode) imaging detectors with very high detector-pixel count, and to Homeland Security.

  17. Kinematic space and wormholes

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-dong; Chen, Bin

    2017-01-01

    The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincaré disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincaré disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the SL(2,R) leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore, we discuss the fundamental regions in the kinematic space for the BTZ blackhole and multi-boundary wormholes.

  18. HD-SP2 Measurements of Black Carbon Containing Aerosols in South Korea during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Lamb, K. D.; Perring, A. E.; Ahn, J.; Schwarz, J. P.

    2016-12-01

    Black carbon (BC) is a light-absorbing aerosol with strong anthropogenic sources that has important climatic and health impacts, both regionally and globally. Materials internally mixed with BC, including water, affect its optical properties and lifetime in the atmosphere, and thus are critical to determining BC's ultimate impacts. The NASA KORUS-AQ campaign during the spring/summer of 2016 was a multi-platform research campaign focused on air quality over South Korea, in a region with particularly high BC emissions and loadings. The NOAA Humidified-Dual Single Particle Soot Photometer (HD-SP2) was deployed on the NASA DC-8 aircraft to measure the optical size and refractory BC content of individual particles under dry and humidified conditions as well as the BC mass mixing ratio. We focus on evaluating BC MMR in the free troposphere up to 400 hPa in the context of previous measurements; assessing the optical impacts of observed internal mixtures with BC at different times of day; and evaluating the contribution of water uptake on BC absorption and atmospheric lifetime over Korea in ambient conditions.

  19. Mechanism of and relation between the sorption and desorption of nonylphenol on black carbon-inclusive sediment.

    PubMed

    Liping, Lou; Guanghuan, Cheng; Jingyou, Deng; Mingyang, Sun; Huanyu, Chen; Qiang, Yang; Xinhua, Xu

    2014-07-01

    Correlation between the sorption and desorption of nonylphenol (NP) and binary linear regression were conducted to reveal the underlying mechanism of and relation between sorption domains and desorption sites in black carbon (BC)-amended sediment. The sorption and desorption data could be fitted well using dual-mode (R(2) = 0.971-0.996) and modified two-domain model (R(2) = 0.986-0.995), respectively, and there were good correlations between these two parts of parameters (R(2) = 0.884-0.939, P < 0.01). The NP percentage in desorbable fraction was almost equal to that of the partition fraction, suggesting the desorbed NP came from linear partition domain, whereas the resistant desorption NP was segregated in nonlinear adsorption sites, which were dominated by pores in BC-amended sediment. Our investigation refined theory about the relation between sorption domains and desorption sites in sediment and could be used to predict the release risk of NP using sorption data when BC is used for NP pollution control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Quasilocal energy for three-dimensional massive gravity solutions with chiral deformations of AdS{sub 3} boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbarz, Alan, E-mail: alan-at@df.uba.ar; Giribet, Gaston, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar; Goya, Andrés, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar

    2015-03-26

    We consider critical gravity in three dimensions; that is, the New Massive Gravity theory formulated about Anti-de Sitter (AdS) space with the specific value of the graviton mass for which it results dual to a two-dimensional conformai field theory with vanishing central charge. As it happens with Kerr black holes in four-dimensional critical gravity, in three-dimensional critical gravity the Bañados-Teitelboim-Zanelli black holes have vanishing mass and vanishing angular momentum. However, provided suitable asymptotic conditions are chosen, the theory may also admit solutions carrying non-vanishing charges. Here, we give simple examples of exact solutions that exhibit falling-off conditions that are evenmore » weaker than those of the so-called Log-gravity. For such solutions, we define the quasilocal stress-tensor and use it to compute conserved charges. Despite the drastic deformation of AdS{sub 3} asymptotic, these solutions have finite mass and angular momentum, which are shown to be non-zero.« less

Top