Science.gov

Sample records for dual-channel superconducting cable-in-conduit

  1. Superconducting cable-in-conduit low resistance splice

    DOEpatents

    Artman, Thomas A.

    2003-06-24

    A low resistance splice connects two cable-in-conduit superconductors to each other. Dividing collars for arranging sub-cable units from each conduit are provided, along with clamping collars for mating each sub-cable wire assembly to form mated assemblies. The mated assemblies ideally can be accomplished by way of splicing collar. The mated assemblies are cooled by way of a flow of coolant, preferably helium. A method for implementing such a splicing is also described.

  2. Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables

    NASA Astrophysics Data System (ADS)

    Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.

    2015-12-01

    This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.

  3. Theory and modelling of quench in cable-in-conduit superconducting magnets

    SciTech Connect

    Shajii, A.

    1994-04-01

    A new simple, self consistent theoretical model is presented that describes the phenomena of quench propagation in Cable-In-Conduit superconducting magnets. The model (Quencher) circumvents many of the difficulties associated with obtaining numerical solutions in more general existing models. Specifically, a factor of 30-50 is gained in CPU time over the general, explicit time dependent codes used to study typical quench events. The corresponding numerical implementation of the new model is described and the numerical results are shown to agree very well with those of the more general models, as well as with experimental data. Further, well justified approximations lead to the MacQuench model that is shown to be very accurate and considerably more efficient than the Quencher model. The MacQuench code is suitable for performing quench studies on a personal computer, requiring only several minutes of CPU time. In order to perform parametric studies on new conductor designs it is required to utilize a model such as MacQuench because of the high computational efficiency of this model. Finally, a set of analytic solutions for the problem of quench propagation in Cable-In-Conduit Conductors is presented. These analytic solutions represent the first such results that remain valid for the long time scales of interest during a quench process. The assumptions and the resulting simplifications that lead to the analytic solutions are discussed, and the regimes of validity of the various approximations are specified. The predictions of the analytic results are shown to be in very good agreement with numerical as well as experimental results. Important analytic scaling relations are verified by such comparisons, and the consequences of some of these scalings on currently designed superconducting magnets are discussed.

  4. Maglev cooling options for Nb{sub 3}Sn cables in conduit superconducting magnets

    SciTech Connect

    Longsworth, R.C.

    1994-12-31

    This paper reports on studies of cooling Nb{sub 3}Sn superconducting magnets in magnetically-levitated trains. Each car is designed to have six bogies with two cryostats per bogie and multiple coils in each cryostat which have gas-cooled cables in conduit windings that can have exit temperatures as high as 8 K. Refrigeration systems that are considered include the use of liquid helium (LHe) and liquid nitrogen (LN{sub 2}), supplied from central stations on a daily basis, on-board refrigerators that receive power from the guide way, and hybrid systems that use LN{sub 2} and LHe from central stations to reduce the power input and weight of an on-board refrigeration system. It is assumed that LN{sub 2} which is supplied from a central station, can be vented but that He would be recovered. The system for recovering and storing He on board the train for 24 hours of operation adds appreciable weight to the system and requires a significant amount of power for the recovery compressor. An on-board refrigerator that uses LN{sub 2} for 77 K refrigeration is lighter and uses less power than a refrigeration system that uses no cryogens. The system that is lightest and requires very little power input is one that uses LHe in a sealed system for refrigeration between 4.2 K and 8 K and LN{sub 2} for 77 K refrigeration.

  5. Characterization of Alloys with Potential for Application in Cable-in-Conduit Conductors for High-Field Superconducting Magnets

    NASA Astrophysics Data System (ADS)

    Walsh, R. P.; Miller, J. R.; Toplosky, V. J.

    2004-06-01

    Since the introduction of the cable-in-conduit conductor (CICC) concept, a variety of alloys have been proposed for fabricating the jacket. The jacket provides primary containment of the supercritical helium coolant and is typically also the primary structural component for the magnet. These functions create requirements for strength, toughness, weldability, and fabricability in tubular form. When the CICC uses Nb3Sn, there are additional requirements to accommodate the manufacturing and heat-treatment processes for the superconductor as well as its strain-sensitive performance during operation. Both of the present favorite jacket alloys, Incoloy 908 and modified (ultra-low carbon) 316LN, have both demonstrated acceptable functionality as well as a few undesirable features. In this paper, we present data from cryogenic mechanical tests on a group of heat-resistant, high-strength superalloys that appear to offer equal or better mechanical performance (e.g. strength, toughness, and modulus) while mitigating the undesirable aspects (e.g. SAGBO in the case of I908 and thermal-expansion mismatch with Nb3Sn in the case of 316LN). Data are presented for each alloy in the as-received and aged conditions. These alloys are presently being considered as candidates for use in the next-generation hybrid magnet for the NHMFL but may also be of interest to the fusion and energy storage communities.

  6. Current distribution in Cable-In-Conduit Conductors

    SciTech Connect

    Ferri, M.A.

    1994-05-01

    A numerical study of the current distribution in Cable-In-Conduit Conductors (CICC`s) experiencing linearly ramping transport currents and transverse magnetic fields was conducted for both infinitely long, periodic cables and finite length cables terminated in low resistance joints. The goal of the study was to gain insight into the phenomenon known as Ramp Rate Limitation, an as yet unexplained correspondence between maximum attainable current and the ramp time taken to reach that current in CICC superconducting magnets. A discrete geometric model of a 27 strand multiply twisted CICC was developed to effectively represent the flux linkages, mutual inductances, and resistive contact points between the strands of an experimentally tested cable. The results of the numerical study showed that for fully periodic cables, the current imbalances due to ramping magnetic fields and ramping transport currents are negligible in the range of experimentally explored operating conditions. For finite length, joint terminated cables, however, significant imbalances can exist. Unfortunately, quantitative results are limited by a lack of knowledge of the transverse resistance between strands in the joints. Nonetheless, general results are presented showing the dependency of the imbalance on cable length, ramp time, and joint resistance for both ramping transverse magnet fields and ramping transport currents. At the conclusion of the study, it is suggested that calculated current imbalances in a finite length cable could cause certain strands to prematurely ``quench`` -- become non-superconducting --thus leading to an instability for the entire cable. This numerically predicted ``current imbalance instability`` is compared to the experimentally observed Ramp Rate Limitation for the 27 strand CICC sample.

  7. Application of cable-in-conduit conductor (CICC) to maglev magnet systems. Final report

    SciTech Connect

    Thome, R.J.; Montgomery, D.B.; Minervini, J.V.; Titus, P.H.; Pisera, J.

    1992-07-31

    The report summarizes the evaluation of Cable-in-Conduit Conductor (CICC) as an option for MAGLEV levitation coils. Superconducting magnets are cooled by: (1) immersion in a liquid helium bath at near saturation conditions; (2) conduction cooling of an epoxy-impregnated coil; or (3) use of CICC in which single-phase supercritical helium cooling becomes an intrinsic part of the conductor design with helium contained in the conductor sheath. Major problems with options 1 and 2 are mitigated by use of option 3. Many levitation coil geometries were reviewed and the racetrack coil shape selected for the levitation coil system design task.

  8. Program CICC flow and heat transfer in cable-in-conduit conductors

    SciTech Connect

    Wong, R.L. )

    1989-11-20

    Computer program CICC has been written for use in the thermo-fluids design of superconducting magnets for tokamak reactors, which use forced-flow, helium-cooled, cable-in-conduit conductors (CICC). In addition to background heat loads that vary with space and time, these superconductors can develop normal zones that generate electrical resistance heat. Program CICC models the transient thermodynamic and fluid-dynamic system response to background heating and normal-zone propagation in the superconductor. The computational algorithm described in this paper couples a one-dimensional, compressible pipe-flow model (including flow choking) with two-dimensional, axisymmetric heat-conduction models of the superconductor cable, the conduit, and the epoxy-conduit insulation. National Institute of Standards and Technology helium properties are used. The model is verified by comparison with measured temperature and pressure profiles from thermal expulsion experiments. 10 refs., 9 figs.

  9. Detection of the normal zone with cowound sensors in cable-in conduit conductors

    SciTech Connect

    Martovetsky, N.N.; Chaplin, M.R.

    1996-07-30

    Tokamaks in the future will use superconducting cable-in-conduit- conductors (CICC) in all poloidal field (PF) and toroidal field (TF) magnets. Conventional quench detection, the measurement of small resistive normal zone voltages ({lt}1 V) in the magnets will be complicated by the presence of large inductive voltages ({gt}4 kV). In the quench detection design for TPX, we have considered several different locations for internal co-wound voltage sensors in the cable cross-section as the primary mechanism to cancel this inductive noise. The Noise Rejection Experiment (NRE) at LLNL has been designed to evaluate which internal locations will produce the best inductive- noise cancellation, and provide us with experimental data for comparison with previously developed theory. The details of the experiments and resulting data are presented and analyzed.

  10. Tension layer winding of cable-in-conduit conductor

    SciTech Connect

    Devernoe, A.; Ciancetta, G.; King, M.; Parizh, M.; Painter, T.; Miller, J.

    1996-07-01

    A 710 mm i.d. by 440 mm long, 6 layer Cable-in-Conduit (CIC) coil was precision tension layer wound with Incoloy 908 jacketed conductor to model winding technology that will be used for the Nb{sub 3}Sn outsert coils of the 45 Tesla Hybrid Magnet Project at the US National High Magnetic Field Laboratory. This paper reports on the set up of a new winding facility with unique capabilities for insulating and winding long length CIC conductor and on special procedures which were developed to wind and support layer to layer transitions and to safely form conductor into and out of the winding. Analytical methods used to predict conduit keystoning, springback and back tensioning requirements before winding are reported in comparison to results obtained during winding and actual winding build-up dimensions on a layer by layer basis in comparison to design requirements.

  11. Helium flow and temperatures in a heated sample of a final ITER TF cable-in-conduit conductor

    NASA Astrophysics Data System (ADS)

    Herzog, Robert; Lewandowska, Monika; Calvi, Marco; Bessette, Denis

    2010-06-01

    The quest for a detailed understanding of the thermo-hydraulic behaviour of the helium flow in the dual-channel cable-in-conduit conductor (CICC) for the ITER toroidal-field coils led to a series of experiments in the SULTAN test facility on a dedicated sample made according to the final conductor design. With helium flowing through the conductor as expected during ITER operation, the sample was heated by eddy-current losses induced in the strands by an applied AC magnetic field as well as by foil heaters mounted on the outside of the conductor jacket. Temperature sensors mounted on the jacket surface, in the central channel and at different radii in the sub-cable region showed the longitudinal as well as radial temperature distribution at different mass flow rates and heat loads. Spot heaters in the bundle and the central channel created small heated helium regions, which were detected downstream by a series of temperature sensors. With a time-of-flight method the helium velocity could thus be determined independently of any flow model. The temperature and velocity distributions in bundle and central channel under different mass-flow and heat load conditions thus led to a detailed picture of the helium flow in the final ITER TF CICCs.

  12. Thermal hydraulic characteristics study of prototype NET and CEA cable-in-conduit conductors (CICCs)

    SciTech Connect

    Maekawa, Ryuji

    1995-10-31

    The thermal hydraulic characteristics of low temperature helium in a Cable-in-Conduit Conductor (CICC) significantly affects the overall design and performance of the associated large scale superconducting magnet system. It is essential to understand the transient and steady state behavior of the helium in the conductor. Throughout the development of CICCs, the reduction of flow impedance has been one of the key factors to improving the overall pressure drop. The newly developed CICC for the ITER project has a hybrid cooling scheme: a central channel that is surrounded by bundles, for which the thermal hydraulic characteristics are not well understood. This thesis describes an experimental and analytical investigation of thermal hydraulic characteristics of low temperature helium in conventional and hybrid CICCS. Pressure drop measurements for both NET and CEA conductors have been conducted, using low temperature helium and liquid nitrogen to obtain a range of Reynolds numbers. The results are correlated with classical friction factor and Reynolds number analysis. The flow impedance reduction of the CEA conductor is described by measures of a developed flow model. Thermally induced flow in the CEA conductor has been studied with an inductive heating method. The induced velocity in the central channel is measured by a Pitot tube with steady state Reynolds number up to {approximately}7000. The transient pressure wave propagation has been recorded with pressure transducers placed equally along the conductor. The supercritical helium temperature in the central channel has been measured with the thermometer probe. However, the reduction of the central channel area significantly affects the overall thermal hydraulic characteristics of the conductor. The results suggest the importance of the central channel. A transient heat transfer experiment studied the.transverse heat transfer mechanism in the CEA conductor. The temperatures in the central channel and bundle region

  13. Dependence of the ac loss on the aspect ratio in a cable in conduit conductor

    NASA Astrophysics Data System (ADS)

    Cau, F.; Bruzzone, P.

    2010-04-01

    The coupling current loss in rectangular superconducting cables is strictly dependent on their aspect ratio, which has an impact on the area linked by the field variation and consequently on the currents induced between strands. The relation between the ac loss and aspect ratio is studied with reference to the testing of three short cable in conduit conductor (CICC) samples at the SULTAN test facility. The first conductor is a 25 kA NbTi cable for the JT60-SA tokamak; the second is a 20 kA Nb3Sn cable for the HZB hybrid magnet. The last CICC is a 68 kA Nb3Sn cable with layout similar to that of the ITER toroidal field (TF) conductor (called the 'European toroidal field (EUTF) alternate'). All the samples are assembled with two conductor sections differing only in their orientation with respect to the external variable field. In the first and third samples, the cable of one leg is rotated by 90°, while in the HZB sample it is rotated by 45° with respect to the other leg. The ac loss is measured at the SULTAN test facility using a gas flow calorimetric method. A sample length of 39 cm is exposed to a sinusoidal field with an amplitude of ± 0.3 or ± 0.2 T (depending on the superconductor) and frequency variable in the range 0.1-0.8 Hz. A background field of 2 T perpendicular both to the sinusoidal field and to the sample axis is also applied. The ac loss is assessed by measuring the variation of the He enthalpy, assuming the metal enthalpy to be negligible. The loss curve for both legs is discussed in terms of the respective aspect ratios and the results, including data from former test campaigns, are compared with the aim of finding an analytical relation between the loss and the conductor dimensions.

  14. The quench experiment on long length cable-in-conduit conductor (QUELL) in SULTAN

    SciTech Connect

    Anghel, A.

    1995-03-01

    A description of the QUELL experiment at the SULTAN facility, its objectives and plan is given. After reviewing the quench properties of the Cable in Conduit Conductors and a short review of the theoretical background foreseen for the interpretation of the experimental results, information are given concerning the QUELL sample layout, quench sensors, cryogenic system, power supplies, current bus, current leads and data acquisition system. A detailed test plan and information on the experiment time schedule are also presented.

  15. Cable-in-conduit conductors: lessons from the recent past for future developments with low and high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Muzzi, L.; De Marzi, G.; Di Zenobio, A.; della Corte, A.

    2015-05-01

    We review progress in the design of high field superconducting cable-in-conduit conductors (CICCs) for fusion applications, with special attention to the results of recent key experiments, leading to the state-of-the-art CICC technology: the ITER Toroidal Field and Central Solenoid programs, the EFDA Dipole conductor development program, the NHFML Hybrid Magnet project, the EU-TF Alt conductor demonstration, and the CRPP React & Wind flat cable test. For these projects, the main CICC design driver was the mitigation of Nb3Sn conductor performance degradation with electro-magnetic loading cycles. This was achieved by proper choice of cable layout and of conductor geometry, depending on the specific operating conditions and project requirements. In all cases, the necessity to limit cable movements inside the conductor jacket was identified to be of crucial importance. The main aspects of CICC manufacture are also discussed here, at least for what is the experience gained by the authors in both CICC jacketing and cabling processes. Finally, the state of the art of high-temperature superconducting (HTS) cables is discussed: at present, this technology is still in its infancy, but it is highly likely that major technological improvements could eventually lead to a widespread use of HTS CICCs.

  16. Evaluation of a NbTi cable-in-conduit prototype superconductor for the Wendelstein 7-X magnetic system

    SciTech Connect

    Blau, B.; Jakob, B.; Pasztor, G.; Vecsey, G.; Cerri, A.; Marti, H.P.

    1996-07-01

    Swissmetal recently completed a contract to manufacture 200 m of NbTi cable-in-conduit prototype conductor to be used in the Wendelstein 7-X superconducting magnet system. The conductor consists of a 192 strand, four stage NbTi cable in an aluminium alloy jacket cooled by forced flow helium. It will operate at 16 kA, 3.8K and 6.2 T. To qualify this conductor electrical tests were performed on a 3.6 m long full-size specimen in the SULTAN test facility at CRPP. In preparation for these tests two conductor terminations and one electrical joint were manufactured in a relatively simple and, therefore, time and cost saving way. This paper presents the test results of critical current measurements performed on the conductor as well as of extracted strands in background fields of up to 8 T. The joint will be described and its resistance will be reported. In addition the results of pressure drop measurements at room temperature are presented.

  17. Measurements of the transverse resistance and eddy current losses in a cable-in-conduit conductor

    NASA Astrophysics Data System (ADS)

    Keilin, V. E.; Kovalev, I. A.; Kruglov, S. L.; Lelekhov, S. A.; Il'in, A. A.; Naumov, A. V.; Shcherbakov, V. I.; Shutov, K. A.

    2015-11-01

    In the case of plasma current interruption in tokamaks, the conductor of toroidial field (TF) coils experiences the action of a pulsed decreasing magnetic field (PDMF) parallel to the conductor's axis. To estimate the stability of a cable-in-conduit conductor against the PDMF, a new experimental method to study different types of losses is applied. This method exploits a high sensitivity of temperature and gas pressure to input energy in a closed volume. It allows one to measure hysteresis losses with a rather high accuracy (provided that the rate of change of the PDMF is low) and a sum of hysteresis losses and eddy current losses (when the rate of change of the PDMF is high). An experimental setup to measure the transverse (circumferential) resistance and losses has been developed at the National Research Centre Kurchatov Institute. A Russianmade Nb3Sn conductor intended for the TF coils of the International Thermonuclear Experimental Reactor is subjected to a PDMF with different amplitudes and characteristic times. The electromagnetic time constant and the transverse resistivity of the conductor are experimentally determined. The maximum temperature of strands under the action of the PDMF is calculated.

  18. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    NASA Astrophysics Data System (ADS)

    Sanabria, Carlos; Lee, Peter J.; Starch, William; Blum, Timothy; Devred, Arnaud; Jewell, Matthew C.; Pong, Ian; Martovetsky, Nicolai; Larbalestier, David C.

    2015-08-01

    Cables made with Nb3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER central solenoid (CS) coils and they must survive up to 60 000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post-mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force on the strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after the SULTAN test was lower for the CICC without Cu strands. The post-mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. It was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.

  19. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    DOE PAGES

    Sanabria, Carlos; Lee, Peter J.; Starch, William; Blum, Timothy; Devred, Arnaud; Jewell, Matthew C.; Pong, Ian; Martovetsky, Nicolai; Larbalestier, David C.

    2015-06-22

    Cables made with Nb3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER Central Solenoid (CS) coils and they must survive up to 60,000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force on themore » strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after SULTAN test was lower for the CICC without Cu strands. The post mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. Furthermore, it was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.« less

  20. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    SciTech Connect

    Sanabria, Carlos; Lee, Peter J.; Starch, William; Blum, Timothy; Devred, Arnaud; Jewell, Matthew C.; Pong, Ian; Martovetsky, Nicolai; Larbalestier, David C.

    2015-06-22

    Cables made with Nb3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER Central Solenoid (CS) coils and they must survive up to 60,000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force on the strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after SULTAN test was lower for the CICC without Cu strands. The post mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. Furthermore, it was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.

  1. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    PubMed

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range.

  2. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: III. The importance of strand surface roughness in long twist pitch conductors

    DOE PAGES

    Sanabria, Charlie; Lee, Peter J.; Starch, William; Devred, Arnaud; Larbalestier, David C.

    2016-05-31

    As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, Tcs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that Tcs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some Tcs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvar Institute of Inorganicmore » Materials (VNIINM) avoided Tcs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of Tcs degradation but rather an increase of the compressive strain in the Nb3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less

  3. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: III. The importance of strand surface roughness in long twist pitch conductors

    NASA Astrophysics Data System (ADS)

    Sanabria, Charlie; Lee, Peter J.; Starch, William; Devred, Arnaud; Larbalestier, David C.

    2016-07-01

    As part of the ITER conductor qualification process, 3 m long cable-in-conduit conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current-sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the toroidal field (TF) and the central solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvar Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but T cs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). It appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.

  4. Transverse heat transfer coefficient in the dual channel ITER TF CICCs. Part I: Analysis of steady state temperature profiles resulting from annular heating

    NASA Astrophysics Data System (ADS)

    Lewandowska, Monika; Herzog, Robert

    2011-10-01

    Two ITER TF dual channel Cable-in-Conduit Conductors (CICCs) have been tested in the SULTAN test facility. The samples were heated either by foil heaters mounted on the outside of the conductor jacket or by induced AC losses. The steady-state temperature response of several thermometers installed on the jacket surface as well as inside the cable were analyzed using the two-channel analytical model proposed by Renard et al. to obtain the equivalent transverse heat transfer coefficient between the bundle and central channel as a function of the mass flow rate. In addition, on the basis of the measured pressure drop and helium flow velocities, the friction factors for helium flow in the bundle and in the central channel were determined. The obtained results may serve as a reference for these cables.

  5. Successful performances of the EU-AltTF sample, a large size Nb3Sn cable-in-conduit conductor with rectangular geometry

    NASA Astrophysics Data System (ADS)

    della Corte, A.; Corato, V.; Di Zenobio, A.; Fiamozzi Zignani, C.; Muzzi, L.; Polli, G. M.; Reccia, L.; Turtù, S.; Bruzzone, P.; Salpietro, E.; Vostner, A.

    2010-04-01

    One of the design features which yet offers interesting margins for performance optimization of cable-in-conduit conductors (CICCs), is their geometry. For relatively small size Nb3Sn CICCs, operating at high electromagnetic pressure, such as those for the EDIPO project, it has been experimentally shown that a design based on a rectangular layout with higher aspect ratio leads to the best performance, especially in terms of degradation with electromagnetic loads. To extend this analysis to larger size Nb3Sn CICCs, we manufactured and tested, in the SULTAN facility, an ITER toroidal field (TF) cable, inserted into a thick stainless steel tube and then compacted to a high aspect ratio rectangular shape. Besides establishing a new record in Nb3Sn CICC performances for ITER TF type cables, the very good test results confirmed that the conductor properties improve not only by lowering the void fraction and raising the cable twist pitch, as already shown during the ITER TFPRO and the EDIPO test campaigns, but also by the proper optimization of the conductor shape with respect to the electromagnetic force distribution. The sample manufacturing steps, along with the main test results, are presented here.

  6. Assessment of a magnet system combining the advantages of cable-in-conduit forced-flow and pool-boiling magnets

    SciTech Connect

    Slack, D.; Hassenzahl, W.; Felker, B.; Chaplin, M.

    1993-10-06

    This paper presents an idea for a magnet system that could be used to advantage in tokamaks and other fusion engineering devices. Higher performance designs, specifically newer tokamaks such as those for the international Tokamak Engineering Reactor (ITER) and Tokamak Physics Experiment (TPX) use Cable in Conduit Conductor (CICC) forced flow coils to advantage to meet field and current density requirements. Pool boiling magnets lack structural integrity to resist high magnetic forces since helium cooling areas must surround each conductor. A second problem is that any leak can threaten the voltage standoff integrity of the magnet system. This is because a leak can result in low-pressure helium gas becoming trapped by limited conductance in the magnet bundle and low-pressure helium has poor dielectric strength. The system proposed here is basically a CICC system, with it`s inherent advantages, but bathed in higher pressure supercritical helium to eliminate the leak and voltage break-down problems. Schemes to simplify helium coolant plumbing with the proposed system are discussed. A brief historical review of related magnet systems is included. The advantages and disadvantages of using higher pressure, supercritical helium in combination with solid electrical insulation in a CICC system are discussed. Related electrical data from some previous works are compiled and discussed.

  7. Coupled mechanical electromagnetic thermal hydraulic effects in Nb3Sn cable-in-conduit conductors for ITER

    NASA Astrophysics Data System (ADS)

    Zanino, R.; Ciazynski, D.; Mitchell, N.; Savoldi Richard, L.

    2005-12-01

    The crucial multi-physics problem of how to extrapolate from the performance of an isolated Nb3Sn strand measured in the laboratory to the performance of a superconducting coil using multi-strand twisted cables is addressed here. We consider the particular case of the path going from the LMI strand to the international thermonuclear experimental reactor (ITER) toroidal field model coil (TFMC), through its associated Full Size Joint Sample, the TFMC-FSJS. Mechanical, electromagnetic and thermal-hydraulic conditions are simulated using the ANSYS, ENSIC and Mithrandir/M&M codes, respectively. At least in this case, the DC performance of the short sample turns out to be relatively close to (considering error bars) but not fully representative of that of the coil, showing higher (less compressive) effective thermal strain but also higher sensitivity to the electromechanical load.

  8. Minimum quench power dissipation and current non-uniformity in international thermonuclear experimental reactor type NbTi cable-in-conduit conductor samples under direct current conditions

    NASA Astrophysics Data System (ADS)

    Rolando, G.; van Lanen, E. P. A.; Nijhuis, A.

    2012-05-01

    The level of current non-uniformity in NbTi cable-in-conduit conductors (CICCs) sections near the joints in combination with the magnetic field profile needs attention in view of proper joint design. The strand joule power and current distribution at quench under DC conditions of two samples of ITER poloidal field coil conductors, as tested in the SULTAN facility, and of the so called PFCI model coil insert, have been analyzed with the numerical cable model JackPot. The precise trajectories of all individual strands, joint design, cabling configuration, spatial distribution of the magnetic field, sample geometry, and experimentally determined interstrand resistance distributions have been taken into account. Although unable to predict the quench point due to the lack of a thermal-hydraulic routine, the model allows to assess the instantaneous strand power at quench and its local distribution in the cable once the quench conditions in terms of current and temperature are experimentally known. The analysis points out the relation of the above mentioned factors with the DC quench stability of both short samples and coils. The possible small scale and local electrical-thermal interactions were ignored in order to examine the relevance of such effects in the overall prediction of the CICC performance. The electromagnetic code shows an excellent quantitative predictive potential for CICC transport properties, excluding any freedom for matching the results. The influence of the local thermal effects in the modeling is identified as being marginal and far less than the generally accepted temperature margin for safe operation.

  9. Superconducting magnet system for the TPX Tokamak

    SciTech Connect

    Hassenzahl, W.V.; Chaplin, M.R.; Heim, J.R.

    1993-09-15

    The Tokamak Physics Experiment (TPX) will be the first Tokamak using superconducting magnets for both the poloidal and toroidal field. It is designed for advanced Tokamak physics experiments in steady-state and long-pulse operation. The TPX superconducting magnets use an advanced cable-in-conduit conductor (CICC) design similar to that developed in support of the International Thermonuclear Experimental Reactor (ITER). The toroidal field magnets provide 4.0 T at 2.25 m with a stored energy of 1.05 GJ. The poloidal field magnets provide 18.0 V-s to ohmically start and control long burns of a 2.0 MA plasma.

  10. Dual-Channel Multi-Purpose Telescope

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Content, David

    2009-01-01

    A dual-channel telescope allows for a wide-field telescope design wit h a good, narrow field channel of fewer surfaces for shorter-wavelen gth or planet-finding applications. The design starts with a Korsch three-mirror-anastigmat (TMA) telescope that meets the mission criter ia for image quality over a wide field of view. The internal image a t the Cassegrain focus is typically blurry due to the aberration bala ncing among the three mirrors. The Cassegrain focus is then re-optim ized on the axis of the system where the narrow field channel instru ment is picked off by bending the primary mirror.

  11. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: II. Significant reduction of strand movement and strand damage in short twist pitch CICCs

    SciTech Connect

    Sanabria, Charlos; Lee, Peter J.; Starch, William; Devred, Arnaud; Larbalestier, David C.

    2015-10-14

    Prototype cable in conduit conductors (CICCs) destined for use in the Toroidal Field (TF) and Central Solenoid (CS) coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3 7% void fraction increase on the Low Pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb3Sn filament fractures observed in the longer twist pitch conductors. We report here a detailed strand to cable analysis of short and longer “baseline” twist pitch CICCs. It was found that the use of Internal Tin strands in the longer “baseline” twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of Bronze Process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the Internal Tin strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Furthermore, the short twist pitch CICC made from Bronze Process strands preserved diffusion barrier integrity.

  12. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: II. Significant reduction of strand movement and strand damage in short twist pitch CICCs

    DOE PAGES

    Sanabria, Charlos; Lee, Peter J.; Starch, William; Devred, Arnaud; Larbalestier, David C.

    2015-10-14

    Prototype cable in conduit conductors (CICCs) destined for use in the Toroidal Field (TF) and Central Solenoid (CS) coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3 7% void fraction increase on the Low Pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb3Sn filamentmore » fractures observed in the longer twist pitch conductors. We report here a detailed strand to cable analysis of short and longer “baseline” twist pitch CICCs. It was found that the use of Internal Tin strands in the longer “baseline” twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of Bronze Process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the Internal Tin strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Furthermore, the short twist pitch CICC made from Bronze Process strands preserved diffusion barrier integrity.« less

  13. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: II. Significant reduction of strand movement and strand damage in short twist pitch CICCs

    NASA Astrophysics Data System (ADS)

    Sanabria, Carlos; Lee, Peter J.; Starch, William; Devred, Arnaud; Larbalestier, David C.

    2015-12-01

    Prototype cable-in-conduit-conductors (CICCs) destined for use in the toroidal field and central solenoid coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3%-7% void fraction increase on the low pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb3Sn filament fractures observed in the longer twist pitch conductors. We report here a detailed strand-to-cable analysis of short and longer ‘baseline’ twist pitch CICCs. It was found that the use of internal tin (IT) strands in the longer ‘baseline’ twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of bronze process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the IT strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Conversely, the short twist pitch CICC made from bronze process strands preserved diffusion barrier integrity.

  14. Dual channel airborne hygrometer for climate research

    NASA Astrophysics Data System (ADS)

    Tatrai, David; Gulyas, Gabor; Bozoki, Zoltan; Szabo, Gabor

    2015-04-01

    pressure and humidity ranges possible in in-service aircraft operation (150-950 mbar and 1-15000 ppmV). Furthermore, the system was tested and compared to other instruments in three flight campaigns based on a research aircraft (Learjet 36A). The test results both in the laboratory and both in the field shows that the developed system is a promising tool for further airborne environment research. The developments were funded by EUFAR contract no. 227159, Hungarian Research and Technology Innovation Fund (OTKA), project no. NN109679 andby the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312311. [1] Szakáll, M.; Huszár, H.; Bozóki, Z.; Szabó, G. On the pressure dependent sensitivity of a photoacoustic water vapor detector using active laser modulation control. Infrared Physics & Technology. 2006. 48, (3) 192-201 [2] Szakáll, M.; Csikós, J.; Bozóki, Z.; Szabó, G. On the temperature dependent characteristics of a photoacoustic water vapor detector for airborne application. Infrared Physics & Technology, 2007. 51, (2) 113-121 [3] Tátrai, D.; Bozóki, Z.; Smit, H.; Rolf, C.; Spelten, N.; Krämer, M; Filges, A.; Gerbig, C.; Gulyás, G.; and Szabó. G. Dual-channel photoacoustic hygrometer for airborne measurements: background, calibration, laboratory and in-flight intercomparison tests Atmos. Meas. Tech., 8, 33-42, 2015

  15. Dual channel RESOLFT nanoscopy by using fluorescent state kinetics.

    PubMed

    Testa, Ilaria; D'Este, Elisa; Urban, Nicolai T; Balzarotti, Francisco; Hell, Stefan W

    2015-01-14

    We show that RESOLFT fluorescence nanoscopy, a low light level scanning superresolution technique employing reversibly switchable fluorescent proteins (rsFPs), is capable of dual-channel live-cell imaging that is virtually free of chromatic errors and temporal offsets. This is accomplished using rsEGFP and Dronpa, two rsFPs having similar spectra but different kinetics of switching and fluorescence emission. Our approach is demonstrated by imaging protein distributions and dynamics in living neurons and neuronal tissues.

  16. The superconducting magnet system for the Tokamak Physics Experiment

    SciTech Connect

    Lang, D.D.; Bulmer, R.J.; Chaplin, M.R.

    1994-06-18

    The superconducting magnet system for the Tokamak Physics experiment (TPX) will be the first all superconducting magnet system for a Tokamak, where the poloidal field coils, in addition to the toroidal field coils are superconducting. The magnet system is designed to operate in a steady state mode, and to initiate the plasma discharge ohmically. The toroidal field system provides a peak field of 4.0 Tesla on the plasma axis at a plasma major radius of 2.25 m. The peak field on the niobium 3-tin, cable-in-conduit (CIC) conductor is 8.4 Tesla for the 16 toroidal field coils. The toroidal field coils must absorb approximately 5 kW due to nuclear heating, eddy currents, and other sources. The poloidal field system provides a total of 18 volt seconds to initiate the plasma and drive a plasma current up to 2 MA. The poloidal field system consists of 14 individual coils which are arranged symmetrically above and below the horizontal mid plane. Four pairs of coils make up the central solenoid, and three paris of poloidal ring coils complete the system. The poloidal field coils all use a cable-in-conduit conductor, using either niobium 3-tin (NB{sub 3}Sn) or niobium titanium (NbTi) superconducting strands depending on the operating conditions for that coil. All of the coils are cooled by flowing supercritical helium, with inlet and outlet connections made on each double pancake. The superconducting magnet system has gone through a conceptual design review, and is in preliminary design started by the LLNL/MIT/PPPL collaboration. A number of changes have been made in the design since the conceptual design review, and are described in this paper.

  17. Dual-channel heterodyne measurements of atmospheric phase fluctuations.

    PubMed

    Ridley, Kevin D; Jakeman, Eric; Bryce, David; Watson, Stephen M

    2003-07-20

    A dual-channel fiber-coupled laser heterodyne system operating at a 1.55-microm wavelength is used to investigate phase fluctuations induced on a laser beam by propagation through turbulent air. Two receivers are used to characterize spatial and temporal variations produced by a turbulent layer of air in the laboratory. The system is also used for measurements through extended turbulence along an 80-m outdoor atmospheric path. Phase structure functions, power spectral densities, and cross correlations are presented. PMID:12921273

  18. Light weight, high field, stable, superconducting magnets for advanced transportation systems

    SciTech Connect

    Lubell, M.S.; Dresner, L.; Kenney, W.J.; Lue, J.W.; Luton, J.N.; Schwenterly, S.W.

    1991-01-01

    Although the Guideway may be the most expensive component of a MAGLEV system, the importance of a suitable magnet system should not be underestimated. The reliability of operation of MAGLEV depends on the superconducting magnets performing to their specifications in a reliable manner (i.e., without training or quenching). Besides reliability the magnets should produce high field, be sufficiently stable to withstand reasonable perturbations, be light weight, be protected in the event of a quench, and be economical (although performance should outweigh cost). We propose to develop superconducting magnets that have these features. Our magnet designs are based on internally cooled, cable-in-conduit superconductor with Polymer Matrix Composites (PMC) as the structural reinforcement. Although the initial work is with metallic superconductors such as NbTi, the processes being developed will be applicable to the High Temperature Ceramic Superconductors when they become suitable for magnet applications.

  19. Novel aqueous dual-channel aluminum-hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarization losses of 0.9 mV cm(exp 2) mA(exp -1), and power densities of 1 W/cm(exp 2). Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H2O2 + 2OH(-) yields 2AlO2(-) + 4H2O E = 2.3 V. The search for electrical propulsion sources which fit the requirements for electrically powered vehicles has blurred the standard characteristics associated with electrochemical storage systems. Presently, electrochemical systems comprised of mechanically rechargeable primary batteries, secondary batteries, and fuel cells are candidates for electrochemical propulsion sources. While important advances in energy and power density continue for nonaqueous and molten electrolytes, aqueous electrolyte batteries often have an advantage in simplicity, conductivity, cost effectiveness, and environmental impact. Systems coupling aluminum anodes and aqueous electrolytes have been investigated. These systems include: aluminum/silver oxide, aluminum/manganese dioxide, aluminum air, aluminum/hydrogen peroxide aqueous batteries, and the recently introduced aluminum/ferricyanide and aluminum sulfur aqueous batteries. Conventional aqueous systems such as the nickel cadmium and lead-acid batteries are characterized by their relatively low energy densities and adverse environmental impact. Other systems have substantially higher theoretical energy capacities. While aluminum-silver oxide has demonstrated the highest steady-state power density, its high cost is an impediment for widespread utilization for electric propulsion.

  20. Sample Analysis Code System for the Dual Channel Counter.

    1994-09-14

    Version 00 RADCOMPT automates gross alpha and gross beta sample analysis calculations and, in many cases, warns the technologist when a hazard level is being approached or when it has been exceeded. The RADCOMPT program is unique in that it corrects for crosstalk between channels, and in this way provides increased accuracy and efficiency. Even though it is designed explicitly for the analyses of air samples and wipe samples, it can also be used formore » other sample types. It is designed to be used with a dual channel counter (in which one channel is used for alpha detection and the other for beta detection), but may be used with two single channel counters employed for the same purpose. In addition, it provides an automated means for the execution of the following radiological sample analyses protocol: A. Calibration of the counting system B. Calculation of sample activity or air activity concentrations (with the activities of air activity concentrations at the top and bottom of the two-sided 95 percent confidence interval also specified). C. Determination of minimum sample counting times required for detection and/or quantification of specified alpha and beta activities or air activity concentrations. In addition, alternate counting times are determined for alternate activities such that the specified alpha and beta activities are at the top of the 95% confidence interval, increasing the confidence that the activities measured are below the specified limits. D. Calculation of the minimum detectable activities or air activity concentrations. E. Determination of air sample volumes required for detection and/or quantification of specified alpha and beta air activity concentrations. F. Calculation of long-lived activities or air activity concentrations based on radon daughter and thoron daughter decay. G. Calculation of employees DAC-Hours and estimated Committed Effective Dose Equivalent. H. Varying calibration constants (to coincide with possible adjustments to

  1. Miniaturized Ka-Band Dual-Channel Radar

    NASA Technical Reports Server (NTRS)

    Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian

    2011-01-01

    Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) radar interferometer were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the radar s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two radar receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) radar transmitter and dual-channel receiver were developed for spaceborne radar interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.

  2. Present Status of the KSTAR Superconducting Magnet System Development

    NASA Astrophysics Data System (ADS)

    Kim, Keeman; H, K. Park; K, R. Park; B, S. Lim; S, I. Lee; M, K. Kim; Y, Chu; W, H. Chung; S, H. Baek; J Y, Choi; H, Yonekawa; A, Chertovskikh; Y, B. Chang; J, S. Kim; C, S. Kim; D, J. Kim; N, H. Song; K, P. Kim; Y, J. Song; I, S. Woo; W, S. Han; D, K. Lee; Y, K. Oh; K, W. Cho; J, S. Park; G, S. Lee; H, J. Lee; T, K. Ko; S, J. Lee

    2004-10-01

    The mission of Korea Superconducting Tokamak Advanced Research (KSTAR) project is to develop an advanced steady-state superconducting tokamak for establishing a scientific and technological basis for an attractive fusion reactor. Because one of the KSTAR mission is to achieve a steady-state operation, the use of superconducting coils is an obvious choice for the magnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and 14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into use in both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasma center and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement in KSTAR magnet-system development includes the development of CICC, the development of a full-size TF model coil, the development of a coil system for background magnetic-field generation, the construction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are in the stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.

  3. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  4. Dual-channel near-field control by polarizations using isotropic and inhomogeneous metasurface

    PubMed Central

    Wan, Xiang; Cai, Ben Geng; Li, Yun Bo; Cui, Tie Jun

    2015-01-01

    We propose a method for dual-channel near-field manipulations by designing isotropic but inhomogeneous metasurfaces. As example, we present a dual-channel near-field focusing metasurface device. When the device is driven by surface waves from different channels on the metasurface, the near fields will be focused at the same spatial point with different polarizations. Conversely, if a linearly polarized source is radiated at the spatial focal point, different channels will be evoked on the metasurface controlled by polarization. We fabricated and measured the metasurface device in the microwave frequency. Well agreements between the simulation and measurement results are observed. The proposed method exhibits great flexibility in controlling the surface waves and spatial waves simultaneously. It is expected that the proposed method and dual-channel device will facilitate the manipulation of near electromagnetic or optical waves in different frequency regimes. PMID:26527420

  5. Observations from the Analysis of Thermohydraulic Behavior of the Series-Connected Hybrid Magnets Superconducting Outserts

    NASA Astrophysics Data System (ADS)

    Gavrilin, Andrew V.; Bai, Hongyu; Bird, Mark D.; Dixon, Iain R.

    2010-04-01

    The National High Magnetic Field Laboratory (NHMFL) has finalized the design of two Series-Connected Hybrid Magnet Systems (SCH). Such systems have been developed at the NHMFL over last few years. Each of these magnet systems consists of a resistive insert (a group of concentric nested Florida-Bitter magnets) and a superconducting outsert wound with a graded cable-in-conduit-conductor (CICC) with Nb3Sn/Cu strands forced-flow-cooled with supercritical helium at about 4.7 K and 3.4 bar (at the inlet) delivered by a helium refrigerator. The thermohydraulic behavior of the outsert is analyzed for cyclic operational scenarios; regular thermohydraulic regimes are observed. The effects of friction factor and boundary conditions on the thermohydraulic processes are discussed.

  6. Quantum interference of stored dual-channel spin-wave excitations in a single tripod system

    SciTech Connect

    Wang Hai; Li Shujing; Xu Zhongxiao; Zhao Xingbo; Zhang Lijun; Li Jiahua; Wu Yuelong; Xie Changde; Peng Kunchi; Xiao Min

    2011-04-15

    We present an experimental demonstration of dual-channel memory in a single tripod atomic system. The total readout signal exhibits either constructive or destructive interference when the dual-channel spin-wave excitations (SWEs) are retrieved by two reading beams with a controllable relative phase. When the two reading beams have opposite phases, the SWEs will remain in the medium, which can be retrieved later with two in-phase reading beams. Such a phase-sensitive storage and retrieval scheme can be used to measure and control the relative phase between the two SWEs in the memory medium, which may find applications in quantum-information processing.

  7. Time constants of flat superconducting cables

    SciTech Connect

    Takacs, S.; Yamamoto, J.

    1997-06-01

    The frequency dependence of coupling losses is calculated for flat superconducting cables, including the electromagnetic coupling between different current loops on the cable. It is shown that there are two characteristic time constants for both parallel and transverse coupling losses. The values of these time constants {tau}{sub 0} and {tau}{sub 1} are calculated by introducing effective inductances for the current loops. In both cases, {tau}{sub 1} is considerably smaller than {tau}{sub 0}. As the most important methods of determining {tau}{sub 0} from AC losses - namely, the limiting slope of loss/cycle at zero frequency and the position of the maximum loss/cycle vs. frequency - estimate {tau}{sub 0} and {tau}{sub 1}, respectively, the results are important for practical measurements and evaluation of time constants from AC losses. At larger frequencies, the losses are more likely to those in normal conductors (skin effect). The calculation schemes can be applied to cables with closely wound strands (like the cable-in-conduit conductors), too. However, several other effects should be considered being different and/or more important with respect to other cable types (demagnetization factor of strands and cables, larger regions near the cable edges, smaller number of strands and subcables, etc.).

  8. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    SciTech Connect

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-03

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  9. The effects of dual-channel coupling on the transition from amplitude death to oscillation death

    NASA Astrophysics Data System (ADS)

    Chen, Jiangnan; Liu, Weiqing; Zhu, Yun; Xiao, Jinghua

    2016-07-01

    Oscillation quenching including amplitude death (AD) and oscillation death (OD) in addition to the transition processes between them have been hot topics in aspect of chaos control, physical and biological applications. The effects of dual-channel coupling on the AD and OD dynamics regimes, and their transition processes in coupled nonidentical oscillators are explored numerically and theoretically. Our results indicate that an additional repulsive coupling tends to shrink the AD domain while it enlarges the OD domain, however, an additional attractive coupling acts inversely. As a result, the transitions from AD to OD are replaced by transitions from oscillation state (OS) to AD or from OS to OD in the dual-channel coupled oscillators with different frequency mismatches. Our results are helpful to better understand the control of AD and OD and their transition processes.

  10. Channel characteristics and coordination in three-echelon dual-channel supply chain

    NASA Astrophysics Data System (ADS)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  11. Interface For Dual-Channel MIL-STD-1553 Data Bus

    NASA Technical Reports Server (NTRS)

    Davies, Bryan L.; Heaps, Timothy L.

    1992-01-01

    Digital electronic subsystem made of commercially available programmable logic arrays and discrete logic devices serves as interface between microprocessor and dual-channel MIL-STD-1553 data bus. Subsystem consumes only 800 mW of power. Provides flexibility in that it is controllable via firmware. Includes only two reading-and-writing ports: one for status and control signals, other for transmission and reception of data.

  12. Recording spatially incoherent Fourier hologram using dual channel rotational shearing interferometer.

    PubMed

    Watanabe, Kaho; Nomura, Takanori

    2015-01-01

    The method to record an incoherent Fourier hologram is proposed. The interference patterns in the dual channel rotational shearing interferometer are obtained as the figure of the cosine and the sine transformation in the vertical and the horizontal polarization, respectively. The proposed optical system is simple without spatial light modulators or mechanical phase shifting devices. The experiment, in which the letter "A" displayed on a liquid crystal display with a blue LED backlight was used as an object, confirms the proposed method to obtain an incoherent Fourier hologram.

  13. Note: A novel dual-channel time-of-flight mass spectrometer for photoelectron imaging spectroscopy

    SciTech Connect

    Qin Zhengbo; Wu Xia; Tang Zichao

    2013-06-15

    A novel dual-channel time-of-flight mass spectrometer (D-TOFMS) has been designed to select anions in the photoelectron imaging measurements. In this instrument, the radiation laser can be triggered precisely to overlap with the selected ion cloud at the first-order space focusing plane. Compared with that of the conventional single channel TOFMS, the in situ mass selection performance of D-TOFMS is significantly improved. Preliminary experiment results are presented for the mass-selected photodetachment spectrum of F{sup -} to demonstrate the capability of the instrument.

  14. Dual channel dual focus optical coherence tomography for imaging accommodation of the eye

    PubMed Central

    Zhou, Chuanqing; Wang, Jianhua; Jiao, Shuliang

    2009-01-01

    A dual channel dual focus spectral-domain optical coherence tomography was developed for imaging the accommodation of the eye in real time. The system can provide simultaneous cross-sectional imaging of all the surfaces of the anterior segment of the eye including the cornea, anterior chamber, anterior and posterior surfaces of the crystalline lens. Thus, the modification of the curvatures of the anterior and posterior surfaces of the crystalline lens and the dimensions of the anterior segment of the eye with accommodation can be calculated. The system was successfully tested in imaging accommodation. The preliminary results demonstrated the feasibility of this novel approach. PMID:19466144

  15. FLASH(+) —A Dual-Channel Wide-Band Spectrometer for APEX

    NASA Astrophysics Data System (ADS)

    Klein, Thomas; Ciechanowicz, Miroslaw; Leinz, Christian; Heyminck, Stefan; Gusten, Rolf; Kasemann, Christoph; Wunsch, Joachim; Maier, Doris; Sekimoto, Yutaro

    2014-09-01

    We report on the design and on-site performance of the recently upgraded FLASH+ instrument operated at the APEX telescope in the Chilean Atacama desert in 5100 m altitude. The dual-channel receiver allows parallel observations in the atmospheric submillimeter windows between 268 and 516 GHz. A signal of in total 16 GHz is processed simultaneously. Equipped with state-of-the-art sideband separating mixers (spin-off developments from the ALMA bands 7 and 8), its outstanding on-sky performance makes FLASH+ a most efficient spectral line mapping machine. Operation is fully automated and allows flexible remote observations from the APEX base in San Pedro de Atacama.

  16. Dual-channel microcantilever heaters for volatile organic compound detection and mixture analysis.

    PubMed

    Jahangir, Ifat; Koley, Goutam

    2016-01-01

    We report on novel microcantilever heater sensors with separate AlGaN/GaN heterostructure based heater and sensor channels to perform advanced volatile organic compound (VOC) detection and mixture analysis. Operating without any surface functionalization or treatment, these microcantilevers utilize the strong surface polarization of AlGaN, as well as the unique heater and sensor channel geometries, to perform selective detection of analytes based on their latent heat of evaporation and molecular dipole moment over a wide concentration range with sub-ppm detection limit. The dual-channel microcantilevers have demonstrated much superior sensing behavior compared to the single-channel ones, with the capability to not only identify individual VOCs with much higher specificity, but also uniquely detect them in a generic multi-component mixture of VOCs. In addition, utilizing two different dual channel configurations and sensing modalities, we have been able to quantitatively determine individual analyte concentration in a VOC mixture. An algorithm for complete mixture analysis, with unique identification of components and accurate determination of their concentration, has been presented based on simultaneous operation of an array of these microcantilever heaters in multiple sensing modalities. PMID:27381318

  17. Dual-channel microcantilever heaters for volatile organic compound detection and mixture analysis

    PubMed Central

    Jahangir, Ifat; Koley, Goutam

    2016-01-01

    We report on novel microcantilever heater sensors with separate AlGaN/GaN heterostructure based heater and sensor channels to perform advanced volatile organic compound (VOC) detection and mixture analysis. Operating without any surface functionalization or treatment, these microcantilevers utilize the strong surface polarization of AlGaN, as well as the unique heater and sensor channel geometries, to perform selective detection of analytes based on their latent heat of evaporation and molecular dipole moment over a wide concentration range with sub-ppm detection limit. The dual-channel microcantilevers have demonstrated much superior sensing behavior compared to the single-channel ones, with the capability to not only identify individual VOCs with much higher specificity, but also uniquely detect them in a generic multi-component mixture of VOCs. In addition, utilizing two different dual channel configurations and sensing modalities, we have been able to quantitatively determine individual analyte concentration in a VOC mixture. An algorithm for complete mixture analysis, with unique identification of components and accurate determination of their concentration, has been presented based on simultaneous operation of an array of these microcantilever heaters in multiple sensing modalities. PMID:27381318

  18. Dual-channel microcantilever heaters for volatile organic compound detection and mixture analysis

    NASA Astrophysics Data System (ADS)

    Jahangir, Ifat; Koley, Goutam

    2016-07-01

    We report on novel microcantilever heater sensors with separate AlGaN/GaN heterostructure based heater and sensor channels to perform advanced volatile organic compound (VOC) detection and mixture analysis. Operating without any surface functionalization or treatment, these microcantilevers utilize the strong surface polarization of AlGaN, as well as the unique heater and sensor channel geometries, to perform selective detection of analytes based on their latent heat of evaporation and molecular dipole moment over a wide concentration range with sub-ppm detection limit. The dual-channel microcantilevers have demonstrated much superior sensing behavior compared to the single-channel ones, with the capability to not only identify individual VOCs with much higher specificity, but also uniquely detect them in a generic multi-component mixture of VOCs. In addition, utilizing two different dual channel configurations and sensing modalities, we have been able to quantitatively determine individual analyte concentration in a VOC mixture. An algorithm for complete mixture analysis, with unique identification of components and accurate determination of their concentration, has been presented based on simultaneous operation of an array of these microcantilever heaters in multiple sensing modalities.

  19. Cat-eye target imaging system research and dual-channel DSP implementation

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Zhang, Haiyang; Shi, Guang; Han, Lei; Zhao, Changming

    2013-09-01

    In modern warfare, well-equipped and trained snipers have become a mortal malady for the combat troops. How to accurately, timely and quickly find and destroy snipers becomes a research focus of national military experts. In order to effectively detect faint echo signal of cat-eye target and get the snipers' position information in the detection area, a small size of dual-channel active laser detection system with monochrome and color Charge-couple Devices(CCD) is designed, which is based on the laser imaging principle of cat-eye effect, associated tests are also conducted. The dual-channel video capture can obtain more information of target area, while taking advantage of the high sensitivity of monochrome CCD will also provide more accurate grayscale information for the video image processing. In order to achieve the miniaturization of system, we choose a video processing board whose size is only 54mm*90mm as hardware platform to complete the algorithm. For verifying the feasibility and accuracy of algorithm, we ultimately build a full set of experimental detection system. The test results show that the system can accurately detect and mark typical cat-eye target from background under different distances, which verifies the rationality and validity of the proposed system and has certain practicality and promotion in the active laser detection system research areas.

  20. First Operational Results with the SST-1 Superconducting Magnet & its Cryogenics

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Tanna, V.; Sharma, A.; Khan, Z.; Prasad, U.; Doshi, K.; Khristi, Y.; Parghi, B.; Banoudha, M.; Mahesuria, G.; Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Sonara, D.; Sharma, D.; Vora, M.; Varadarajulu, A.

    The Steady State Superconducting Tokamak (SST-1) at the Institute for Plasma Research was commissioned in 2013 with the successful experimental validations of its magnets and cryogenic systems. Subsequently, the first plasma in SST-1 has been obtained on June 20, 2013. Since then, the cryo-magnetic systems of SST-1 have been operating reliably, in successive plasma campaigns. Unlike other contemporary cable-in-conduit-conductor (CICC) based superconducting Tokamak magnets, SST-1 CICC in Toroidal Field (TF) winding packs are cooled with two phase helium from a dedicated 1.3 kW helium refrigerator liquefier plant. The TF magnets in SST-1 together with other magnets have been supporting creditable plasma operational scenarios since then, with the TF magnets being charged up to a maximum of 2.0 T on the plasma major radius so far. The vapour cooled current leads of SST-1 are also uniquely operated with cooled helium vapour all along, instead of liquid helium being stored in the lower superconducting sections. The operational experiences with SST-1 TF magnets, PF magnets, and the supporting 5 K and 80 K cryogenic systems contributing towards successful operations of SST-1 plasma experiments are elaborated in this paper.

  1. Integration of Different Scanning Modalities for Real-Time Dual-Channel Ultrasonic Inspection of Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Komsky, Igor; Krishnaswamy, Sridhar; Lasser, Bob

    2008-02-01

    A dual-channel ultrasonic inspection system has been developed for real-time three-dimensional evaluation of large area aircraft structures. High resolution imaging channel with an ultrasonic CCD camera presents large real-time planar (X-Y plane) images of the structures while another acquisition channel analyzes in-depth (Z-axis) ultrasonic scans presenting data in an A-scan format. The dual-channel imaging system provides "on demand" refocusing of the imaging plane to achieve the highest possible resolution and quality of the ultrasonic images at or close to the focal plane of the imaging device.

  2. A nanoscale dual-channel trench (DCT) MOSFET for analog/RF applications

    NASA Astrophysics Data System (ADS)

    Adhikari, Manoj Singh; Singh, Yashvir

    2015-12-01

    In this paper, we propose a dual-channel trench MOSFET (DCT-MOSFET) on SOI for high-frequency small signal analog applications. The gate of device is placed in a trench which creates two n-channels in p-base carrying drain current in parallel. Simultaneous conduction of two-channels provides substantial improvement in performance parameters. Based on two-dimensional simulations, a 60 nm DCT-MOSFET is demonstrated to achieve 92% higher drain current, twofold increase in peak transconductance, 67% rise in transconductance-to-drain current ratio, 47% higher intrinsic voltage gain, 90% improvement in cut-off frequency and 2.1 times higher maximum oscillation frequency as compared to the conventional MOSFET.

  3. Complexity analysis of dual-channel game model with different managers' business objectives

    NASA Astrophysics Data System (ADS)

    Li, Ting; Ma, Junhai

    2015-01-01

    This paper considers dual-channel game model with bounded rationality, using the theory of bifurcations of dynamical system. The business objectives of retailers are assumed to be different, which is closer to reality than previous studies. We study the local stable region of Nash equilibrium point and find that business objectives can expand the stable region and play an important role in price strategy. One interesting finding is that a fiercer competition tends to stabilize the Nash equilibrium. Simulation shows the complex behavior of two dimensional dynamic system, we find period doubling bifurcation and chaos phenomenon. We measure performances of the model in different period by using the index of average profit. The results show that unstable behavior in economic system is often an unfavorable outcome. So this paper discusses the application of adaptive adjustment mechanism when the model exhibits chaotic behavior and then allows the retailers to eliminate the negative effects.

  4. Suppression of saturation artifacts in swept source optical coherence tomography using dual channel detection

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Liang, Shanshan; Zhang, Jun

    2016-03-01

    A technique to suppress saturation artifacts in swept source optical coherence tomography (SSOCT) system was presented. The detected signal was split into two channels of a high speed data acquisition card with two levels by a power divider. The signal in one channel with higher level was used to reconstruct OCT images and the signal in the other channel with lower level was used to compensate the saturated signal in the first channel by calibrating the splitting ratio between the two channels. Based on dual channel detection, this technique can enhance the dynamic range of SSOCT system and remove saturation artifacts in OCT imaging with simple and cost effective design. Imaging of human finger with the system demonstrated that this method can achieve high dynamic range without saturation artifacts in SSOCT.

  5. A Dual Channel X-ray Spectrometer for Fast Ignition Research

    SciTech Connect

    Akli, K U; Patel, P K; Van Maren, R; Stephens, R B; Key, M H; Higginson, D P; Westover, B; Chen, C D; Mackinnon, A J; Bartal, T; Beg, F N; Chawla, S; Fedosejevs, R; Freeman, R R; Hey, D S; Kemp, G E; LePape, S; Link, A; Ma, T; MacPhee, A G; McLean, H S; Ping, Y; Tsui, Y Y; Van Woerkom, L D; Wei, M S; Yabuuchi, T

    2010-04-19

    A new Dual Channel Highly Ordered Pyrolytic Graphite (DC-HOPG) x-ray spectrometer was developed to study laser-generated electron beam transport. The instrument uses a pair of graphite crystals and has the advantage of simultaneously detecting self emission from low-Z materials in first diffraction order and high-Z materials in second order. The emissions from the target are detected using a pair of parallel imaging plates positioned in a such way that the noise from background is minimized and the mosaic focusing is achieved. Initial tests of the diagnostic on Titan laser (I {approx} 10{sup 20} W/cm{sup 2}, {tau} = 0.7 ps) show excellent signal-to-noise ratio (SNR) > 1000 for the low energy channel and SNR > 400 for the high energy channel.

  6. An improved dual channel PERCA instrument for atmospheric measurements of peroxy radicals.

    PubMed

    Green, Timothy J; Reeves, Claire E; Fleming, Zoe L; Brough, Neil; Rickard, Andrew R; Bandy, Brian J; Monks, Paul S; Penkett, Stuart A

    2006-05-01

    This paper describes a new dual-channel PEroxy RadiCal Amplification (PERCA) instrument, which has been designed to improve the time resolution and signal to noise and to reduce the interference caused by variations in ambient ozone concentrations. The instrument was run at the Weybourne Atmospheric Observatory (WAO), North Norfolk, during WAOWEX (Weybourne Atmospheric Observatory Winter Experiment) in January/February 2002 and INSPECTRO (Influence of clouds on the spectral actinic flux in the lower troposphere) in September 2002. The performance of the instrument is assessed and compared to that of a single channel instrument. In particular, it is shown how the precision is greatly improved in fluctuating background ozone conditions. In addition the improved time response of the instrument allows changes in peroxy radical concentrations to be related to rapid changes in nitric oxide concentrations and the ozone photolysis frequency, j(O(1)D).

  7. A novel aqueous dual-channel aluminum-hydrogen peroxide battery

    SciTech Connect

    Marsh, C. . Electric Propulsion); Licht, S. . Dept. of Chemistry)

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarized losses of 0.9 mV cm[sup 2]/mA, and power densities of 1 W/cm[sup 2]. Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H[sub 2]O[sub 2] + 2 OH[sup [minus

  8. Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Jun-Jian; Wei, Wei; Qi, Xiao-Liang; Xu, Xiao; Liu, Yu-Cheng; Lin, Qiu-Han; Dong, Wei

    2016-01-01

    A new dual-channel sensor for the detection of cyanide was developed based on the conjugated of naphthalene and malononitrile. Upon the addition of CN-, the sensor displayed very large blue-shift in both fluorescence (80 nm) and absorption (120 nm) spectra. The sensor of cyanide was performed via the nucleophilic attack of cyanide anion to vinylic groups of the sensor with a 1:1 binding stoichiometry and the color changed of the sensor is mainly due to the intramolecular charge transfer process improvement. The intramolecular charge transfer progress was blocked with color changed and fluorescence blue-shift. The mechanism of sensor reaction with CN- ion was studied using 1H NMR and mass spectrometry.

  9. Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution.

    PubMed

    Li, Jun-Jian; Wei, Wei; Qi, Xiao-Liang; Xu, Xiao; Liu, Yu-Cheng; Lin, Qiu-Han; Dong, Wei

    2016-01-01

    A new dual-channel sensor for the detection of cyanide was developed based on the conjugated of naphthalene and malononitrile. Upon the addition of CN(-), the sensor displayed very large blue-shift in both fluorescence (80nm) and absorption (120nm) spectra. The sensor of cyanide was performed via the nucleophilic attack of cyanide anion to vinylic groups of the sensor with a 1:1 binding stoichiometry and the color changed of the sensor is mainly due to the intramolecular charge transfer process improvement. The intramolecular charge transfer progress was blocked with color changed and fluorescence blue-shift. The mechanism of sensor reaction with CN(-) ion was studied using (1)H NMR and mass spectrometry.

  10. Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints.

    PubMed

    Gabai, Haniel; Shaked, Natan T

    2012-11-19

    We introduce an off-axis, wide-field, low-coherence and dual-channel interferometric imaging system, which is based on a simple-to-align, common-path interferometer. The system requires no optical-path-difference matching between the interferometric arms in order to obtain interference with low-coherence light source, and is capable of achieving two channels of off-axis interference with high spatial frequency. The two 180°-phase-shifted interferograms are acquired simultaneously using a single digital camera, and processed into a single, noise-reduced and DC-suppressed interferogram. We demonstrate using the proposed system for phase imaging of fingerprint templates. Due to the fact that conventional phase unwrapping algorithms cannot handle the complex and deep surface topography imposed by fingerprint templates, we experimentally implemented two-wavelength phase unwrapping using a supercontinuum laser coupled to acousto-optical tunable filter, together functioning as a low-coherence tunable light source. From the unwrapped phase map, we produced high quality depth profiles of fingerprint templates.

  11. A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui

    2012-04-01

    The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.

  12. High speed, high performance, portable, dual-channel, optical fiber Bragg grating (FBG) demodulator

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Yang, Shangming; Cui, Hong-Liang

    2009-10-01

    A high speed, high performance, portable, dual-channel, optical Fiber Bragg Grating demodulator based on fiber Fabry- Pérot tunable filter (FFP-FT) is reported in this paper. The high speed demodulation can be achieved to detect the dynamical loads of vehicles with speed of 15 mph. However, the drifts of piezoelectric transducer (PZT) in the cavity of FFP-FT dramatically degrade the stability of system. Two schemes are implemented to improve the stability of system. Firstly, a temperature control system is installed to effectively remove the thermal drifts of PZT. Secondly, a scheme of changing the bias voltage of FFP-FT to restrain non-thermal drifts has been realized at lab and will be further developed to an automatic control system based on microcontroller. Although this demodulator is originally used in Weight-In- Motion (WIM) sensing system, it can be extended into other aspects and the schemes presented in this paper will be useful in many applications.

  13. Applying Convolution-Based Processing Methods To A Dual-Channel, Large Array Artificial Olfactory Mucosa

    NASA Astrophysics Data System (ADS)

    Taylor, J. E.; Che Harun, F. K.; Covington, J. A.; Gardner, J. W.

    2009-05-01

    Our understanding of the human olfactory system, particularly with respect to the phenomenon of nasal chromatography, has led us to develop a new generation of novel odour-sensitive instruments (or electronic noses). This novel instrument is in need of new approaches to data processing so that the information rich signals can be fully exploited; here, we apply a novel time-series based technique for processing such data. The dual-channel, large array artificial olfactory mucosa consists of 3 arrays of 300 sensors each. The sensors are divided into 24 groups, with each group made from a particular type of polymer. The first array is connected to the other two arrays by a pair of retentive columns. One channel is coated with Carbowax 20 M, and the other with OV-1. This configuration partly mimics the nasal chromatography effect, and partly augments it by utilizing not only polar (mucus layer) but also non-polar (artificial) coatings. Such a device presents several challenges to multi-variate data processing: a large, redundant dataset, spatio-temporal output, and small sample space. By applying a novel convolution approach to this problem, it has been demonstrated that these problems can be overcome. The artificial mucosa signals have been classified using a probabilistic neural network and gave an accuracy of 85%. Even better results should be possible through the selection of other sensors with lower correlation.

  14. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  15. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of a Baseline System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.

  16. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of an Enhanced System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.

  17. Thermal Performance of a Dual-Channel, Helium-Cooled, Tungsten Heat Exchanger

    SciTech Connect

    YOUCHISON,DENNIS L.; NORTH,MART T.

    2000-11-22

    Helium-cooled, refractory heat exchangers are now under consideration for first wall and divertor applications. These refractory devices take advantage of high temperature operation with large delta-Ts to effectively handle high heat fluxes. The high temperature helium can then be used in a gas turbine for high-efficiency power conversion. Over the last five years, heat removal with helium was shown to increase dramatically by using porous metal to provide a very large effective surface area for heat transfer in a small volume. Last year, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up was evaluated on the 30 kW Electron Beam Test System at Sandia National Laboratories. The module survived a maximum absorbed heat flux of 34.6 MW/m{sup 2} and reached a maximum surface temperature of 593 C for uniform power loading of 3 kW absorbed on a 2-cm{sup 2} area. An impressive 10 kW of power was absorbed on an area of 24 cm{sup 2}. Recently, a similar dual-module, helium-cooled heat exchanger made almost entirely of tungsten was designed and fabricated by Thermacore, Inc. and tested at Sandia. A complete flow test of each channel was performed to determine the actual pressure drop characteristics. Each channel was equipped with delta-P transducers and platinum RTDs for independent calorimetry. One mass flow meter monitored the total flow to the heat exchanger, while a second monitored flow in only one of the channels. The thermal response of each tungsten module was obtained for heat fluxes in excess of 5 MW/m{sup 2} using 50 C helium at 4 MPa. Fatigue cycles were also performed to assess the fracture toughness of the tungsten modules. A description of the module design and new results on flow instabilities are also presented.

  18. Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility

    NASA Astrophysics Data System (ADS)

    Corato, V.; Affinito, L.; Anemona, A.; Besi Vetrella, U.; Di Zenobio, A.; Fiamozzi Zignani, C.; Freda, R.; Messina, G.; Muzzi, L.; Perrella, M.; Reccia, L.; Tomassetti, G.; Turtù, S.; della Corte, A.

    2015-03-01

    The ‘NAFASSY’ (NAtional FAcility for Superconducting SYstems) facility is designed to test wound conductor samples under high-field conditions at variable temperatures. Due to its unique features, it is reasonable to assume that in the near future NAFASSY will have a preeminent role at the international level in the qualification of long coiled cables in operative conditions. The magnetic system consists of a large warm bore background solenoid, made up of three series-connected grading sections obtained by winding three different Nb3Sn Cable-in-Conduit Conductors. Thanks to the financial support of the Italian Ministry for University and Research the low-field coil is currently under production. The design has been properly modified to allow the system to operate also as a stand-alone facility, with an inner bore diameter of 1144 mm. This magnet is able to provide about 7 T on its axis and about 8 T close to the insert inner radius, giving the possibility of performing a test relevant for large-sized NbTi or medium-field Nb3Sn conductors. The detailed design of the 8 T magnet, including the electro-magnetic, structural and thermo-hydraulic analysis, is here reported, as well as the production status.

  19. Technical aspects of the development of a dual channel airborne hygrometer

    NASA Astrophysics Data System (ADS)

    Tatrai, David; Gulyas, Gabor; Jasz, Ervin; Bors, Noemi; Bozoki, Zoltan; Szabo, Gabor

    2015-04-01

    Application oriented photoacoustic (PA) spectroscopy related research and measuring system development was started at the University of Szeged at the middle of the 1990's. Since that time, numerous measurement systems have been developed and commercialized by Hilase Ltd, the spin-off company of the University of Szeged. These analyzers include great variety of natural gas analyzers, aerosol monitoring systems and airborne hygrometers [1]. This latter types of systems already have been used in various measurement campaigns (DENCHAR-IFCC, AIRTOSS I-II), but the most important is the fact that a dual channel airborne hygrometer is a basic instrument applied within the CARICIC project, where it measures water vapor concentration and cloud water content simultaneously. Though the measurement system has the most important capabilities for airborne applications its size, weight should be reduced and the long term reliability should be improved to be able to be used more widely, like in the IAGOS project. The most recent developments will be introduced. A new data acquisition and control system has been developed to be the core of the system. This one gives the possibility for measurements in a wider dynamic range, while in size and weight approximately 15 % of the previously used controlling electronics. A new constant pressure operation mode has been developed which brings more robust performance with much simpler calibration and data evaluation process. Beside our standard stainless steel cell, aluminium and PTFE cells were investigated, even on elevated temperatures to decrease the effect of H2O absorption and desorption on the walls of the cell. Reference response time measurement were made using CH4, which does not have similar absorption effect the walls. Response time was determined as time required for 67% change between two different concentration changes, input change was always step change. Results show that aluminium cells can be used without restrictions

  20. An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity

    NASA Astrophysics Data System (ADS)

    Liu, Pengbo; Huang, Hui; Cao, Tun; Liu, Xueyu; Qi, Zhenbin; Tang, Zhenan; Zhang, Jinnan

    2013-04-01

    A silicon-on-insulator based optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity is proposed for optical differential detection. A detection limit of 5.5 × 10-8 refractive index unit is experimentally demonstrated, owing to the high quality factor of the cavity and the differential detection, which can extract the small signal for efficient amplification and greatly reduce the system noise. Moreover, the measurement system features low cost compared with that of surface-plasmon-resonance sensor and ring-resonator sensor.

  1. Testing of ITER prototype cable-in-conduit conductors in the FENIX facility

    SciTech Connect

    Shen, S.S.; Chaplin, M.R.; Felker, B.; Hassenzahl, W.V.; Kishiyama, K.I.; Parker, J.M.

    1993-09-15

    The Fusion Engineering International experiment (FENIX) Test Facility has been operational since 1991 at the Lawrence Livermore National Laboratory for testing the International Thermonuclear Experimental Reactor (ITER) prototype conductors. These conductors are designed to operate stably with transport current of more than 40 kA at a magnetic field of 13 T. The FENIX facility consists of four magnet sets that are configured to allow easy access to the 40-cm high-field region with a test cross-section area of 10 * 15 cm{sup 2}. FENIX provides test conditions that closely simulate the ITER magnet operation mode. Performed experiments Include measurements of critical current, current-sharing temperature, forced-flow properties, stability, joint performance and cyclic fatigue effects. This paper describes the design and performance of these experiments.

  2. Dual-channel laser scanning microscopy for the identification and quantification of proliferating skeletal muscle satellite cells following synergist ablation.

    PubMed Central

    Brotchie, D; Davies, I; Ireland, G; Mahon, M

    1995-01-01

    Proliferating skeletal muscle satellite cells are the source of additional myonuclei which allow skeletal muscle to grow and regenerate. Previously, proliferating satellite cells were identified in situ by techniques which were limited either by tissue processing time or inability to observe complete muscle sections, or by errors made in separating these cells from proliferating nonmyogenic cells. To overcome these problems a new method has been devised for the identification and quantification of proliferating satellite cells in situ by light microscopy. The technique involves dual-channel laser scanning imaging of whole muscle sections for the localisation of both the muscle fibre basal lamina and the cell division marker bromodeoxyuridine. Using this technique satellite cell proliferation was quantified in mouse limb muscle following synergist ablation. Dual-channel laser scanning microscopy allowed precise localisation of proliferating satellite cells in the experimental model and, after 4 d, synergist ablation was shown to have produced significant satellite cell proliferation when compared with contralateral and sham-operated controls. Images Fig. 1 PMID:7649821

  3. A dual-channel, focusing x-ray spectrograph with uniform dispersion for Z pinch plasmas measurement

    SciTech Connect

    Yang Qingguo; Li Zeren; Chen Guanhua; Ye Yan; Huang Xianbin; Cai Hongchun; Li Jing; Xiao Shali

    2012-01-15

    A dual-channel, focusing x-ray spectrograph with uniform dispersion (i.e., the linear dispersion of this spectrograph is a constant) is described for measuring the x-ray spectra emission from the hot, dense Al Z pinch plasmas. The spectrograph uses double uniform-dispersed crystals (e.g., a Quartz 1010 crystal and a Mica 002 crystal) as dispersion elements and a double-film box as detector to achieve the simultaneous recording of the time integrated spectrum covering a wide spectral range of {approx}5-9 A. Since this spectrograph disperse the x-rays on the detector plane with uniform spacing for every wavelength, it needs not the calibration of the wavelength with spatial coordinate, thereby own the advantages of easiness and veracity for spectra identification. The design of this spectrograph and the example of experiment on the ''Yang'' accelerator are presented.

  4. An easy prepared dual-channel chemosensor for selective and instant detection of fluoride based on double Schiff-base

    NASA Astrophysics Data System (ADS)

    Leng, Yan-Li; Zhang, Jian-Hui; Li, Qiao; Zhang, You-Ming; Lin, Qi; Yao, Hong; Wei, Tai-Bao

    2016-10-01

    A colorimetric and fluorescent dual-channel fluoride chemosensor N,N‧-bis (4-diethylaminosalicylidene) hydrazine (sensor S) bearing two imine groups has been designed and synthesized. This structurally simple probe displays rapid response and high selectivity for fluoride over other common anions (Cl-, Br-, I-, AcO-, H2PO4-, HSO4-, ClO4-, CN- and SCN-) in a highly polar aqueous DMSO solution. Mechanism studies suggested that the sensor firstly combined with F- through hydrogen bonds and then experienced the deprotonation process at higher concentrations of F- anion to the two Ar-OH groups. The detection limit was 5.78 × 10- 7 M of F-, which points to the high detection sensitivity. Test strips based on sensor S were fabricated, which could act as a convenient and efficient F- test kit to detect F- for "in-the-field" measurement.

  5. An easy prepared dual-channel chemosensor for selective and instant detection of fluoride based on double Schiff-base.

    PubMed

    Leng, Yan-Li; Zhang, Jian-Hui; Li, Qiao; Zhang, You-Ming; Lin, Qi; Yao, Hong; Wei, Tai-Bao

    2016-10-01

    A colorimetric and fluorescent dual-channel fluoride chemosensor N,N'-bis (4-diethylaminosalicylidene) hydrazine (sensor S) bearing two imine groups has been designed and synthesized. This structurally simple probe displays rapid response and high selectivity for fluoride over other common anions (Cl(-), Br(-), I(-), AcO(-), H2PO4(-), HSO4(-), ClO4(-), CN(-) and SCN(-)) in a highly polar aqueous DMSO solution. Mechanism studies suggested that the sensor firstly combined with F(-) through hydrogen bonds and then experienced the deprotonation process at higher concentrations of F(-) anion to the two Ar-OH groups. The detection limit was 5.78×10(-7)M of F(-), which points to the high detection sensitivity. Test strips based on sensor S were fabricated, which could act as a convenient and efficient F(-) test kit to detect F(-) for "in-the-field" measurement. PMID:27262660

  6. A new dual-channel optical signal probe for Cu2+ detection based on morin and boric acid.

    PubMed

    Wang, Peng; Yuan, Bin Fang; Li, Nian Bing; Luo, Hong Qun

    2014-01-01

    In this work we utilized the common analytical reagent morin to develop a new a dual-channel, cost-effective, and sensitive method for determination of Cu(2+). It is found that morin is only weakly fluorescent by itself, but forms highly fluorescent complexes with boric acid. Moreover, the fluorescence of complexes of morin with boric acid is quenched linearly by Cu(2+) in a certain concentration range. Under optimum conditions, the fluorescence quenching efficiency was linearly proportional to the concentration of cupric ions in the range of 0.5-25 μM with high sensitivity, and the detection limit for Cu(2+) was 0.38 μM. The linear range was 1-25 μM determined by spectrophotometry, and the detection limit for cupric ions was 0.8 μM. Furthermore, the mechanism of sensitive fluorescence quenching response of morin to Cu(2+) is discussed. PMID:25199115

  7. A new dual-channel optical signal probe for Cu2+ detection based on morin and boric acid.

    PubMed

    Wang, Peng; Yuan, Bin Fang; Li, Nian Bing; Luo, Hong Qun

    2014-01-01

    In this work we utilized the common analytical reagent morin to develop a new a dual-channel, cost-effective, and sensitive method for determination of Cu(2+). It is found that morin is only weakly fluorescent by itself, but forms highly fluorescent complexes with boric acid. Moreover, the fluorescence of complexes of morin with boric acid is quenched linearly by Cu(2+) in a certain concentration range. Under optimum conditions, the fluorescence quenching efficiency was linearly proportional to the concentration of cupric ions in the range of 0.5-25 μM with high sensitivity, and the detection limit for Cu(2+) was 0.38 μM. The linear range was 1-25 μM determined by spectrophotometry, and the detection limit for cupric ions was 0.8 μM. Furthermore, the mechanism of sensitive fluorescence quenching response of morin to Cu(2+) is discussed.

  8. Visual measurement of the evaporation process of a sessile droplet by dual-channel simultaneous phase-shifting interferometry.

    PubMed

    Sun, Peng; Zhong, Liyun; Luo, Chunshu; Niu, Wenhu; Lu, Xiaoxu

    2015-01-01

    To perform the visual measurement of the evaporation process of a sessile droplet, a dual-channel simultaneous phase-shifting interferometry (DCSPSI) method is proposed. Based on polarization components to simultaneously generate a pair of orthogonal interferograms with the phase shifts of π/2, the real-time phase of a dynamic process can be retrieved with two-step phase-shifting algorithm. Using this proposed DCSPSI system, the transient mass (TM) of the evaporation process of a sessile droplet with different initial mass were presented through measuring the real-time 3D shape of a droplet. Moreover, the mass flux density (MFD) of the evaporating droplet and its regional distribution were also calculated and analyzed. The experimental results show that the proposed DCSPSI will supply a visual, accurate, noncontact, nondestructive, global tool for the real-time multi-parameter measurement of the droplet evaporation. PMID:26178451

  9. 4C code analysis of thermal-hydraulic transients in the KSTAR PF1 superconducting coil

    NASA Astrophysics Data System (ADS)

    Savoldi Richard, L.; Bonifetto, R.; Chu, Y.; Kholia, A.; Park, S. H.; Lee, H. J.; Zanino, R.

    2013-01-01

    The KSTAR tokamak, in operation since 2008 at the National Fusion Research Institute in Korea, is equipped with a full superconducting magnet system including the central solenoid (CS), which is made of four symmetric pairs of coils PF1L/U-PF4L/U. Each of the CS coils is pancake wound using Nb3Sn cable-in-conduit conductors with a square Incoloy jacket. The coils are cooled with supercritical He in forced circulation at nominal 4.5 K and 5.5 bar inlet conditions. During different test campaigns the measured temperature increase due to AC losses turned out to be higher than expected, which motivates the present study. The 4C code, already validated against and applied to different types of thermal-hydraulic transients in different superconducting coils, is applied here to the thermal-hydraulic analysis of a full set of trapezoidal current pulses in the PF1 coils, with different ramp rates. We find the value of the coupling time constant nτ that best fits, at each current ramp rate, the temperature increase up to the end of the heating at the coil outlet. The agreement between computed results and the whole set of measured data, including temperatures, pressures and mass flow rates, is then shown to be very good both at the inlet and at the outlet of the coil. The nτ values needed to explain the experimental results decrease at increasing current ramp rates, consistently with the results found in the literature.

  10. Is Single or Dual Channel with Different English Proficiencies Better for English Listening Comprehension, Cognitive Load and Attitude in Ubiquitous Learning Environment?

    ERIC Educational Resources Information Center

    Chang, Chi-Cheng; Tseng, Kuo-Hung; Tseng, Ju-Shih

    2011-01-01

    The purpose of the present study was to examine the effects of English proficiency (low vs. high) and material presentation mode (single channel vs. dual channel) on English listening comprehension, cognitive load and learning attitude in a ubiquitous learning environment. An experimental learning activity was implemented using PDA as a learning…

  11. A dual-channel FM transmitter for acquisition of flight muscle activities from the freely flying hawkmoth, Agrius convolvuli.

    PubMed

    Ando, N; Shimoyama, I; Kanzaki, R

    2002-04-15

    Moths can perform various flight maneuvers by the contraction of some direct and indirect flight muscles. Multi-channel recording from these flight muscles and analysis of their interaction is very important for understanding insect flight motor system. In this study, we developed a dual-channel FM transmitter for acquisition of muscle potentials, with which a male hawkmoth (Agrius convolvuli) could fly freely and perform pheromone triggered zigzag flight in a wind tunnel. The transmitter weighs only 0.25 g including single battery, has a 5 m receivable range and works for more than 30 min. Doubling channels was achieved by providing two oscillators (the carrier frequencies were 82 and 85 MHz), and interference between them was overcome by buffer amplifiers and independent reference electrodes for each channel. With this transmitter, we could acquire muscle potentials from some direct and indirect muscles during free flight. Combined with simultaneous high-speed video analysis, we observed distinct changes of motor patterns during takeoff. Our radio-telemetric system allows acquisition of actual information from freely flying moths; such information will lead to further progress in the study of insect flight.

  12. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry

    SciTech Connect

    McCloy, J. S.; Sundaram, S. K.; Matyas, J.; Woskov, P. P.

    2011-01-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. Finally, these results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  13. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry.

    PubMed

    McCloy, J S; Sundaram, S K; Matyas, J; Woskov, P P

    2011-05-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  14. A high-efficiency, low-noise power solution for a dual-channel GNSS RF receiver

    NASA Astrophysics Data System (ADS)

    Jian, Shi; Taishan, Mo; Jianlian, Le; Yebing, Gan; Chengyan, Ma; Tianchun, Ye

    2012-08-01

    A high-efficiency low-noise power solution for a dual-channel GNSS RF receiver is presented. The power solution involves a DC—DC buck converter and a followed low-dropout regulator (LDO). The pulse-width-modulation (PWM) control method is adopted for better noise performance. An improved low-power high-frequency PWM control circuit is proposed, which halves the average quiescent current of the buck converter to 80 μA by periodically shutting down the OTA. The size of the output stage has also been optimized to achieve high efficiency under a light load condition. In addition, a novel soft-start circuit based on a current limiter has been implemented to avoid inrush current. Fabricated with commercial 180-nm CMOS technology, the DC—DC converter achieves a peak efficiency of 93.1% under a 2 MHz working frequency. The whole receiver consumes only 20.2 mA from a 3.3 V power supply and has a noise figure of 2.5 dB.

  15. Dual-channel in-situ optical imaging system for quantifying lipid uptake and lymphatic pump function

    NASA Astrophysics Data System (ADS)

    Kassis, Timothy; Kohan, Alison B.; Weiler, Michael J.; Nipper, Matthew E.; Cornelius, Rachel; Tso, Patrick; Brandon Dixon, J.

    2012-08-01

    Nearly all dietary lipids are transported from the intestine to venous circulation through the lymphatic system, yet the mechanisms that regulate this process remain unclear. Elucidating the mechanisms involved in the functional response of lymphatics to changes in lipid load would provide valuable insight into recent implications of lymphatic dysfunction in lipid related diseases. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. The imaging platform provides the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. Utilizing post-acquisition image processing algorithms, we can quantify correlations between vessel pump function, lymph flow, and lipid concentration of mesenteric lymphatic vessels in situ. All image analysis is automated with customized LabVIEW virtual instruments; local flow is measured through lymphocyte velocity tracking, vessel contraction through measurements of the vessel wall displacement, and lipid uptake through fluorescence intensity tracking of an orally administered fluorescently labelled fatty acid analogue, BODIPY FL C16. This system will prove to be an invaluable tool for scientists studying intestinal lymphatic function in health and disease, and those investigating strategies for targeting the lymphatics with orally delivered drugs to avoid first pass metabolism.

  16. Screening determination of pharmaceutical pollutants in different water matrices using dual-channel capillary electrophoresis coupled with contactless conductivity detection.

    PubMed

    Le, Minh Duc; Duong, Hong Anh; Nguyen, Manh Huy; Sáiz, Jorge; Pham, Hung Viet; Mai, Thanh Duc

    2016-11-01

    In this study, the employment of purpose-made dual-channel compact capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) as a simple and inexpensive solution for screening determination of various pharmaceutical pollutants frequently occurring in surface water and hospital wastewater in Hanoi, Vietnam is reported. Five negatively charged pharmaceutically active compounds, namely ibuprofen, diclofenac, bezafibrate, ketoprofen and mefenamic acid were determined using the first channel whereas three positively charged ones, namely diphenhydramine, metoprolol and atenolol were determined with the second channel of the CE-C(4)D instrument. Two different background electrolytes (BGEs) were used in these two CE channels independently. The best detection limits achieved were in the range of 0.2-0.8mg/L without sample pre-concentration. Enrichment factors up to 200 were obtainable with the inclusion of a solid phase extraction step. Good agreement between results obtained from CE-C(4)D and those with the standard confirmation method (HPLC-DAD) was achieved, with correlation coefficients higher than 0.98. PMID:27591645

  17. [Design of airborne dual channel ultraviolet-visible imaging spectrometer with large field of view, wide spectrum, and high resolution].

    PubMed

    Hao, Ai-Hua; Hu, Bing-Liang; Bai, Jia-Guang; Li, Li-Bo; Yu, Tao; Li, Si-Yuan

    2013-12-01

    The ultraviolet-visible (UV-Vis 200-500 nm) imaging spectrometer is an important part of space remote sensing. Based on special requirements and practical application of the airborne UV-VIS spectrometer, a kind of scanning imaging spectrometer using area array CCD is proposed, which can meet the application requirements of large field of view, wide spectrum and high resolution. It overcomes low spatial resolution of traditional line array CCD scanning imaging spectrometer, and limited field of view of the pushbroom imaging spectrometer. In addition, dual channel was designed to reduce stray light. 400-500 nm band includes two order spectrum for 200-250 nm band, and variation of radiance from earth between the shorter wavelength (<290 nm) and the longer wavelength (>310 nm) is above three orders of magnitude. In the structure design of the system, the imaging spectrometer is composed of a two-mirror concentric telescope and two Czerny-Turner plane grating imaging spectrometers. The whole system doesn't use any additional optical elements in addition to spherical mirrors. The whole system has the advantage of simple structure, excellent performance, and very good feasibility. The modulation transfer function value of full spectrum and full field of view is above 0.6.

  18. Dual-channel photoacoustic hygrometer for airborne measurements: background, calibration, laboratory and in-flight intercomparison tests

    NASA Astrophysics Data System (ADS)

    Tátrai, D.; Bozóki, Z.; Smit, H.; Rolf, C.; Spelten, N.; Krämer, M.; Filges, A.; Gerbig, C.; Gulyás, G.; Szabó, G.

    2015-01-01

    This paper describes a tunable diode laser-based dual-channel photoacoustic (PA) humidity measuring system primarily designed for aircraft-based environment research. It is calibrated for total pressure and water vapor (WV) volume mixing ratios (VMRs) possible during airborne applications. WV VMR is calculated by using pressure-dependent calibration curves and a cubic spline interpolation method. Coverage of the entire atmospheric humidity concentration range that might be encountered during airborne measurements is facilitated by applying an automated sensitivity mode switching algorithm. The calibrated PA system was validated through laboratory and airborne intercomparisons, which proved that the repeatability, the estimated accuracy and the response time of the system are 0.5 ppmV or 0.5% of the actual reading (whichever value is the greater), 5% of the actual reading within the VMR range of 1-12 000 ppmV and 2 s, respectively. The upper detection limit of the system is theoretically about 85 000 ppmV, limited only by condensation of water vapor on the walls of the 318 K heated PA cells and inlet lines, and was experimentally verified up to 20 000 ppmV. The unique advantage of the presented system is its applicability for simultaneous water vapor and total water volume mixing ratio measurements.

  19. Hair enhancement in dermoscopic images using dual-channel quaternion tubularness filters and MRF-based multilabel optimization.

    PubMed

    Mirzaalian, Hengameh; Lee, Tim K; Hamarneh, Ghassan

    2014-12-01

    Hair occlusion is one of the main challenges facing automatic lesion segmentation and feature extraction for skin cancer applications. We propose a novel method for simultaneously enhancing both light and dark hairs with variable widths, from dermoscopic images, without the prior knowledge of the hair color. We measure hair tubularness using a quaternion color curvature filter. We extract optimal hair features (tubularness, scale, and orientation) using Markov random field theory and multilabel optimization. We also develop a novel dual-channel matched filter to enhance hair pixels in the dermoscopic images while suppressing irrelevant skin pixels. We evaluate the hair enhancement capabilities of our method on hair-occluded images generated via our new hair simulation algorithm. Since hair enhancement is an intermediate step in a computer-aided diagnosis system for analyzing dermoscopic images, we validate our method and compare it to other methods by studying its effect on: 1) hair segmentation accuracy; 2) image inpainting quality; and 3) image classification accuracy. The validation results on 40 real clinical dermoscopic images and 94 synthetic data demonstrate that our approach outperforms competing hair enhancement methods. PMID:25312927

  20. Dual-channel in-situ optical imaging system for quantifying lipid uptake and lymphatic pump function

    PubMed Central

    Kassis, Timothy; Kohan, Alison B.; Weiler, Michael J.; Nipper, Matthew E.; Cornelius, Rachel; Tso, Patrick

    2012-01-01

    Abstract. Nearly all dietary lipids are transported from the intestine to venous circulation through the lymphatic system, yet the mechanisms that regulate this process remain unclear. Elucidating the mechanisms involved in the functional response of lymphatics to changes in lipid load would provide valuable insight into recent implications of lymphatic dysfunction in lipid related diseases. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. The imaging platform provides the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. Utilizing post-acquisition image processing algorithms, we can quantify correlations between vessel pump function, lymph flow, and lipid concentration of mesenteric lymphatic vessels in situ. All image analysis is automated with customized LabVIEW virtual instruments; local flow is measured through lymphocyte velocity tracking, vessel contraction through measurements of the vessel wall displacement, and lipid uptake through fluorescence intensity tracking of an orally administered fluorescently labelled fatty acid analogue, BODIPY FL C16. This system will prove to be an invaluable tool for scientists studying intestinal lymphatic function in health and disease, and those investigating strategies for targeting the lymphatics with orally delivered drugs to avoid first pass metabolism. PMID:23224192

  1. Transverse heat transfer coefficient in the dual channel ITER TF CICCs Part II. Analysis of transient temperature responses observed during a heat slug propagation experiment

    NASA Astrophysics Data System (ADS)

    Lewandowska, Monika; Herzog, Robert; Malinowski, Leszek

    2015-01-01

    A heat slug propagation experiment in the final design dual channel ITER TF CICC was performed in the SULTAN test facility at EPFL-CRPP in Villigen PSI. We analyzed the data resulting from this experiment to determine the equivalent transverse heat transfer coefficient hBC between the bundle and the central channel of this cable. In the data analysis we used methods based on the analytical solutions of a problem of transient heat transfer in a dual-channel cable, similar to Renard et al. (2006) and Bottura et al. (2006). The observed experimental and other limits related to these methods are identified and possible modifications proposed. One result from our analysis is that the hBC values obtained with different methods differ by up to a factor of 2. We have also observed that the uncertainties of hBC in both methods considered are much larger than those reported earlier.

  2. Tunable sensitivity phase detection of transmitted-type dual-channel guided-mode resonance sensor based on phase-shift interferometry.

    PubMed

    Kuo, Wen-Kai; Syu, Siang-He; Lin, Peng-Zhi; Yu, Hsin Her

    2016-02-01

    This paper reports on a transmitted-type dual-channel guided-mode resonance (GMR) sensor system that uses phase-shifting interferometry (PSI) to achieve tunable phase detection sensitivity. Five interference images are captured for the PSI phase calculation within ∼15  s by using a liquid crystal retarder and a USB web camera. The GMR sensor structure is formed by a nanoimprinting process, and the dual-channel sensor device structure for molding is fabricated using a 3D printer. By changing the rotation angle of the analyzer in front of the camera in the PSI system, the sensor detection sensitivity can be tuned. The proposed system may achieve high throughput as well as high sensitivity. The experimental results show that an optimal detection sensitivity of 6.82×10(-4)  RIU can be achieved. PMID:26836099

  3. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    NASA Astrophysics Data System (ADS)

    Deen, David A.; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J.

    2016-08-01

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics ft/fmax of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with ft/fmax of 48/60 GHz.

  4. Evaluation of in-channel amperometric detection using a dual-channel microchip electrophoresis device and a two-electrode potentiostat for reverse polarity separations

    PubMed Central

    Meneses, Diogenes; Gunasekara, Dulan B.; Pichetsurnthorn, Pann; da Silva, José A. F.; de Abreu, Fabiane C.; Lunte, Susan M.

    2015-01-01

    In-channel amperometric detection combined with dual-channel microchip electrophoresis is evaluated using a two-electrode isolated potentiostat for reverse polarity separations. The device consists of two separate channels with the working and reference electrodes placed at identical positions relative to the end of the channel, enabling noise subtraction. In previous reports of this configuration, normal polarity and a three-electrode detection system were used. In the two-electrode detection system described here, the electrode in the reference channel acts as both the counter and reference. The effect of electrode placement in the channels on noise and detector response was investigated using nitrite, tyrosine, and hydrogen peroxide as model compounds. The effects of electrode material and size and type of reference electrode on noise and the potential shift of hydrodynamic voltammograms for the model compounds were determined. In addition, the performance of two- and three-electrode configurations using Pt and Ag/AgCl reference electrodes was compared. Although the signal was attenuated with the Pt reference, the noise was also significantly reduced. It was found that lower LOD were obtained for all three compounds with the dual-channel configuration compared to single-channel, in-channel detection. The dual-channel method was then used for the detection of nitrite in a dermal microdialysis sample obtained from a sheep following nitroglycerin administration. PMID:25256669

  5. Measuring inorganic nitrate species with short time resolution from an aircraft platform by dual-channel ozone chemiluminescence

    NASA Astrophysics Data System (ADS)

    Tanner, Roger L.; Valente, Ralph J.; Meagher, James F.

    1998-09-01

    A measurement technique for determining nitrate (the sum of nitric acid and particulate nitrate) with a few seconds time resolution in plumes is needed to resolve within-plume features. A technique using dual ozone-chemiluminescent NO detectors with a selective nitrate scrubber in one sampling train is promising if used with an appropriate sampling inlet, and if nitrate is the desired analyte. We report the design of, and preliminary results from a dual channel ozone-chemiluminescent system, each channel containing a gold-CO catalyzed converter which reduces all odd nitrogen species (NOy) quantitatively to NO; one channel also contains a nylon filter to remove nitrate from the air stream prior to the converter (this signal is termed NOy*). This system was deployed successfully in a Bell 205 helicopter during the 1995 Southern Oxidants Study Nashville Ozone Study. The converters were mounted forward near the air intake, and zero air and calibration gases admitted simultaneously to both channels during flight operations. The difference signal between the two channels (NOy-NOy*) indicated apparent nitrate levels in the sampled air with a time resolution of <5 s and a limit of detection of about 1 ppbv. Nitrate levels observed with this system in plumes and background air during the Nashville Ozone Study were highly correlated with ozone and varied from below detection limits to ≈20 ppbv. Nitrate levels were also highly correlated with the calculated difference between NOy and the sum of NO and NO2 (NOz). Higher nitrate levels as a fraction of NOz were found in power plant plumes (≥60%) compared with urban plumes (≈50%) and background air, consistent with apparently lower ozone production efficiencies in power plant plumes vis-à-vis urban plumes.

  6. Treatment of the distal fracture in radioulna based on the volar wrist dual channel approach and postoperative X-ray diagnosis.

    PubMed

    Li, Zheng; Zhang, Zhenwei; Yu, Shaoxiao; Bai, Yinwei; Lin, Huixin; Zeng, Jinhao; Ye, Xuelang; Xu, Dachuan

    2015-12-01

    The fracture of the distal ulna and radius is a kind of fracture that results in high morbidity and occurrence rate and contributes to about one-sixth of the entire body's fracture. In this study, we implemented the improved palmar wrist surgery by a volar wrist dual channel approach. Between 2011 and 2014, we have treated 67 distal radius fracture patients. We divided them into two parts randomly, and treat them by the Carpometacarpal direct approach solution and dual wrist palmar surgical approach solution respectively. After the surgery, the differences in the incidence of median nerve irritation are significant (P < 0.01). With reference to the exposure time of fracture, the operation time and the pronator quadratus muscle repair rate, we find that the exposure time of fracture and the operation time in the dual wrist palmar surgical approach solution are much less than that as compared to the Carpometacarpal direct approach solution (P < 0.01). The improved dual wrist palmar surgical approach can lead to a successful treatment of the distal radius fractures volar distal radial ulnar by reducing the blind exposure problem. As such, the surgeon can complete treatment of fractures of the region under direct vision during operation. Furthermore, reducing the median nerve in the carpal tunnel and the structure of the stretch can decrease the incidence of postoperative complications. Postoperative X-ray diagnosis is then performed to examine the patients' recovery and assist in clinical follow-up. Our study proves that the volar wrist dual channel approach can be successfully achieved by a surface incision surgical implementation of the dual channel, and gives rise to a minimally invasive operation.

  7. Treatment of the distal fracture in radioulna based on the volar wrist dual channel approach and postoperative X-ray diagnosis.

    PubMed

    Li, Zheng; Zhang, Zhenwei; Yu, Shaoxiao; Bai, Yinwei; Lin, Huixin; Zeng, Jinhao; Ye, Xuelang; Xu, Dachuan

    2015-12-01

    The fracture of the distal ulna and radius is a kind of fracture that results in high morbidity and occurrence rate and contributes to about one-sixth of the entire body's fracture. In this study, we implemented the improved palmar wrist surgery by a volar wrist dual channel approach. Between 2011 and 2014, we have treated 67 distal radius fracture patients. We divided them into two parts randomly, and treat them by the Carpometacarpal direct approach solution and dual wrist palmar surgical approach solution respectively. After the surgery, the differences in the incidence of median nerve irritation are significant (P < 0.01). With reference to the exposure time of fracture, the operation time and the pronator quadratus muscle repair rate, we find that the exposure time of fracture and the operation time in the dual wrist palmar surgical approach solution are much less than that as compared to the Carpometacarpal direct approach solution (P < 0.01). The improved dual wrist palmar surgical approach can lead to a successful treatment of the distal radius fractures volar distal radial ulnar by reducing the blind exposure problem. As such, the surgeon can complete treatment of fractures of the region under direct vision during operation. Furthermore, reducing the median nerve in the carpal tunnel and the structure of the stretch can decrease the incidence of postoperative complications. Postoperative X-ray diagnosis is then performed to examine the patients' recovery and assist in clinical follow-up. Our study proves that the volar wrist dual channel approach can be successfully achieved by a surface incision surgical implementation of the dual channel, and gives rise to a minimally invasive operation. PMID:26206398

  8. Superconducting magnets for fusion applications

    SciTech Connect

    Henning, C.D.

    1987-07-02

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10/sup 19/ neutrons/cm/sup 2/ in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size.

  9. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  10. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  11. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  12. A novel strategy for dual-channel detection of metallothioneins and mercury based on the conformational switching of functional chimera aptamer.

    PubMed

    Tang, Xian; Wang, Yong-Sheng; Xue, Jin-Hua; Zhou, Bin; Cao, Jin-Xiu; Chen, Si-Han; Li, Ming-Hui; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin

    2015-03-25

    A novel strategy for dual-channel detection of metallothioneins (MTs) and Hg(2+) has been proposed. In the absence of Hg(2+), the functional chimera aptamer (FCA) designed can form an intact G-quadruplex with flexibility, which was demonstrated to have peroxidase-like activities upon hemin binding. In the presence of Hg(2+), the formation of T-Hg(2+)-T complex results in the conformational switching of FCA, which lost the peroxidase-like activities and cannot catalyze the oxidation of ABTS by H2O2. Upon addition of MTs in this solution, MTs could interact with Hg(2+) to form a MTs-Hg(2+) complex, leading to the recovery of the G-quadruplex DNAzyme. The color and absorbance of the sensing system were also changed accordingly. In the optimizing condition, ΔA was directly proportional to the concentration ranging from 8.84 nM to 1.0 μM for Hg(2+), and 7.82 nM to 0.462 μM for MTs with the detection limits of 2.65 nM and 2.34 nM, respectively. The proposed dual-channel method avoids the label steps in common methods, and allows direct analysis of the samples without costly instruments, and is reliable, inexpensive and sensitive.

  13. Elimination of the gate and drain bias stresses in I-V characteristics of WSe2 FETs by using dual channel pulse measurement

    NASA Astrophysics Data System (ADS)

    Park, Jun-Mo; Cho, In-Tak; Kang, Won-Mook; Park, Byung-Gook; Lee, Jong-Ho

    2016-08-01

    Intrinsic transfer and output characteristics of WSe2 field effect transistors are obtained by adopting the dual channel pulsed I-V measurement. Due to the DC gate bias stress during the measurement, a large hysteresis is observed and increased with increasing the sweeping range of the gate bias in the transfer curves. In addition, as a drain bias increases, the drain bias stress during the measurement induces the threshold voltage shift. The output curves measured by a DC method are significantly affected by the drain bias sweeping direction and the previous measurement, which leads to a large error in the analysis. By using the dual channel pulsed I-V measurement with a short turn-on time (10-4 s), a long turn-off time (1 s), and a base voltage (gate and drain bias during turn-off time) of 0 V, hysteretic behaviors caused by the gate bias stress and threshold voltage shift due to the drain bias stress in transfer curves are eliminated. The effect of the drain bias sweeping direction and the previous measurement in output curves are also eliminated, and the output curves show a typical field effect behavior. The intrinsic characteristics of WSe2 field effect transistors show negligible hysteresis and remarkably enhanced mobility (˜200 cm2/V s), and higher current drive capability compared to those of DC measurements.

  14. Dual-channel detection of metallothioneins and mercury based on a mercury-mediated aptamer beacon using thymidine-mercury-thymidine complex as a quencher.

    PubMed

    Chen, Si-Han; Wang, Yong-Sheng; Chen, Yun-Sheng; Tang, Xian; Cao, Jin-Xiu; Li, Ming-Hui; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin

    2015-01-01

    A novel dual-channel strategy for the detection of metallothioneins (MTs) and Hg(2+) has been developed based on a mercury-mediated aptamer beacon (MAB) using thymidine-mercury-thymidine complex as a quencher for the first time. In the presence of Hg(2+), the T-rich oligonucleotide with a 6-carboxyfluorescein (TRO-FAM) can form an aptamer beacon via the formation of T-Hg(2+)-T base pairs, which results in a fluorescence quenching of the sensing system owing to the fluorescence resonance energy transfer (FRET) from the fluorophore of FAM to the terminated T-Hg(2+)-T base pair. The addition of MTs into this solution leads to the disruption of the T-Hg(2+)-T complex, resulting in an increase of the fluorescent signal of the system. In the optimizing condition, ΔF was directly proportional to the concentrations ranging from 5.63 nM to 0.275 μM for MTs, and 14.2 nM to 0.30 μM for Hg(2+) with the detection limits of 1.69 nM and 4.28 nM, respectively. The proposed dual-channel method avoids the label steps of a quencher in common molecular beacon strategies, without tedious procedure or the requirement of sophisticated equipment, and is rapid, inexpensive and sensitive.

  15. Study and Simulation on Dynamics of a Risk-Averse Supply Chain Pricing Model with Dual-Channel and Incomplete Information

    NASA Astrophysics Data System (ADS)

    Sun, Lijian; Ma, Junhai

    Under the industrial background of dual-channel, volatility in demand of consumers, we use the theory of bifurcations and numerical simulation tools to investigate the dynamic pricing game in a dual-channel supply chain with risk-averse behavior and incomplete information. Due to volatility of demand of consumers, we consider all the players in the supply chain are risk-averse. We assume there exist Bertrand game and Manufacturers’ Stackelberg in the chain which are closer to reality. The main objective of the paper is to investigate the complex influence of the decision parameters such as wholesale price adjustment speed, risk preference and service value on stability of the risk-averse supply chain and average utilities of all the players. We lay emphasis on the influence of chaos on average utilities of all the players which did not appear in previous studies. The dynamic phenomena, such as the bifurcation, chaos and sensitivity to initial values are analyzed by 2D bifurcation phase portraits, Double Largest Lyapunov exponent, basins of attraction and so on. The study shows that the manufacturers should slow down their wholesale price adjustment speed to get more utilities, if the manufacturers are willing to take on more risk, they will get more profits, but they must keep their wholesale prices in a certain range in order to maintain the market stability.

  16. Performance Evaluation of K-DEMO Cable-in-conduit Conductors Using the Florida Electro-Mechanical Cable Model

    SciTech Connect

    Zhai, Yuhu

    2013-07-16

    The United States ITER Project Office (USIPO) is responsible for design of the Toroidal Field (TF) insert coil, which will allow validation of the performance of significant lengths of the conductors to be used in the full scale TF coils in relevant conditions of field, current density and mechanical strain. The Japan Atomic Energy Agency (JAEA) will build the TF insert which will be tested at the Central Solenoid Model Coil (CSMC) Test facility at JAEA, Naka, Japan. Three dimensional mathematical model of TF Insert was created based on the initial design geometry data, and included the following features: orthotropic material properties of superconductor material and insulation; external magnetic field from CSMC, temperature dependent properties of the materials; pre-compression and plastic deformation in lap joint. Major geometrical characteristics of the design were preserved including cable jacket and insulation shape, mandrel outline, and support clamps and spacers. The model is capable of performing coupled structural, thermal, and electromagnetic analysis using ANSYS. Numerical simulations were performed for room temperature conditions; cool down to 4K, and the operating regime with 68kA current at 11.8 Tesla background field. Numerical simulations led to the final design of the coil producing the required strain levels on the cable, while simultaneously satisfying the ITER magnet structural design criteria.

  17. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  18. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  19. 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect

    NASA Astrophysics Data System (ADS)

    Wang, Shun; Lu, Ping; Zhao, Shui; Liu, Deming; Yang, Wei; Zhang, Jiangshan

    2014-06-01

    We demonstrated a 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect. Few-mode fiber-embedded Sagnac ring configuration and a Mach-Zehnder interferometer are cascaded to form a multiwavelength filter for our previous 2-μm fiber laser. By adopting suitable fiber length and adjusting the polarization controller, we obtained a 2-μm dual-wavelength fiber laser with switchable wavelength interval. Experimental results revealed that the proposed laser shows higher quality and better stability compared with our previous work and it has potential applications in the fields of atmospheric propagation and microwave photonics.

  20. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  1. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  2. Normal-zone detection in tokamak superconducting magnets with Co- wound voltage sensors

    SciTech Connect

    Martovetsky, N.N.; Chaplin, M.R.

    1995-06-08

    This paper discusses advantages and disadvantages of different locations of co-wound voltage sensors for quench detection in tokamak magnets with a cable-in-conduit conductor. The voltage sensor locations are analyzed and estimates of the anticipated noise vs. dB/dt are derived for transverse, parallel, and self fields. The LLNL Noise Rejection Experiment, also described here, is designed to verify theoretical expectations on a copper cable exposed to these fields that will simulate the tokamak field environment.

  3. Bipolaronic superconductivity

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Ranninger, J.

    1981-08-01

    Superconducting properties of narrow-band electrons are examined in the strong-coupling limit. It is shown that bipolarons (localized spatially nonoverlapping Cooper pairs) formed by strong electron-phonon interaction have under certain conditions superconducting properties which are characteristic of superfluid charged Bose systems. They represent an example of the "molecular" superconductivity proposed by Schafroth, Butler, and Blatt

    [Helv. Phys. Acta 30 93 (1957)]
    . The Meissner effect and the penetration depth of bipolaronic superconductors are examined. The relationship between Bardeen-Cooper-Schrieffer superconductors and bipolaronic ones is discussed.

  4. Bipolaronic superconductivity

    SciTech Connect

    Alexandrov, A.; Ranninger, J.

    1981-08-01

    Superconducting properties of narrow-band electrons are examined in the strong-coupling limit. It is shown that bipolarons (localized spatially nonoverlapping Cooper pairs) formed by strong electron-phonon interaction have under certain conditions superconducting properties which are characteristic of superfluid charged Bose system. They represent an example of the ''molecular'' superconductivity proposed by Schafroth, Butler, and Blatt. The Meissner effect and the penetration depth of bipolaronic superconductor are examined. The relationship between Bardeen-Cooper-Schrieffer superconductors and bipolaronic ones is discussed.

  5. A novel design of dual-channel optical system of star-tracker based on non-blind area PAL system

    NASA Astrophysics Data System (ADS)

    Luo, Yujie; Bai, Jian

    2016-07-01

    Star-tracker plays an important role in satellite navigation. Considering the satellites on near-Earth orbit, the system usually has two optical systems: one for observing the profile of Earth and the other for capturing the positions of stars. In this paper, we demonstrate a novel kind of dual-channel optical observation system of star-tracker with non-blind area PAL imaging system based on dichroic filter, which can combine both different observation channels into an integrated structure and realize the feature of miniaturization. According to the practical usage of star-tracker and the features of dichroic filter, we set the ultraviolet band as the PAL channel to observe the Earth with the FOV ranging from 40°-60°, and set the visible band as the front imaging channel to capture the stars far away from this system with the FOV ranging from 0°-20°. Consequently, the rays of both channels are converged on the same image plane, improving the efficiency of pixels of detector and reducing the weight and size of whole star-tracker system.

  6. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  7. The simultaneous detection of free and total prostate antigen in serum samples with high sensitivity and specificity by using the dual-channel surface plasmon resonance.

    PubMed

    Jiang, Zhongxiu; Qin, Yun; Peng, Zhen; Chen, Shenghua; Chen, Shu; Deng, Chunyan; Xiang, Juan

    2014-12-15

    Free/total prostate antigen (f/t-PSA) ratio in serum as a promising parameter has been used to improve the differentiation of benign and malignant prostate disease. In order to obtain the accurate and reliable f/t-PSA ratio, the simultaneous detection of f-PSA and t-PSA with high sensitivity and specificity is required. In this work, the dual-channel surface plasmon resonance (SPR) has been employed to meet the requirement. In one channel, t-PSA was directly measured with a linear range from 1.0 to 20.0 ng/mL. In another channel, due to the low concentration of f-PSA in serum, the asynchronous competitive inhibition immunoassay with f-PSA@Au nanoparticles (AuNPs) was developed. As expected, the detection sensitivity of f-PSA was greatly enhanced, and a linear correlation with wider linear range from 0.010 to 0.40 ng/mL was also achieved. On the other hand, a simple method was explored for significantly reducing the non-specific adsorption of co-existing proteins. On basis of this, the f/t-PSA ratios in serum samples from prostate cancer (PCa) or benign prostatic hyperplasia (BPH) patients were measured. And it was found that there was significant difference between the distributions of f/t-PSA ratio in BPH patients (16.44±1.77%) and those in PCa patients (24.53±4.97%). This present work provides an effective method for distinguishing PCa from BPH, which lays a potential foundation for the early diagnosis of PCa.

  8. Superconducting materials

    SciTech Connect

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La{sub 2-x}Sr{sub x}CuO{sub 4}; source of high transition temperatures; and prospects for new superconductors.

  9. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  10. Superconducting magnets

    SciTech Connect

    Not Available

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-{Tc} superconductor at low temperature.

  11. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  12. SUPERCONDUCTING PHOTOCATHODES.

    SciTech Connect

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  13. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  14. Biological Particle Emissions From a South-East Asian Tropical Rainforest Using a Real- Time Dual Channel UV Fluorescence Bio-Aerosol Spectrometer

    NASA Astrophysics Data System (ADS)

    Gabey, A.; Coe, H.; Gallagher, M.; McFiggans, G.; Kaye, P.; Stanley, W.; Foot, V.

    2008-12-01

    and net emission for all fungal spores is ~1 μ g m-3 and ~50 Tg yr-1. These calculations demonstrate the potential importance of PBA, and in particular fungal spores, for global budgets of organic aerosols, particularly in tropical regions, however uncertainties are extremely large, ranging from 50 - 1000 Tg yr- 1. In this study we use the WIBS-3: a low-cost portable single-particle dual-channel UV fluorescence spectrometer (Kaye et al., 2008) to investigate the dynamics of PBA in real-time within and above a tropical forest of 50 m height in Borneo, Malaysia, to estimate net PBA emissions. Different circadian cycles were observed for bio and non-bio aerosol sources and the factors controlling bioaerosol emissions will be discussed in detail.

  15. CFD model of ITER CICC. Part VI: Heat and mass transfer between cable region and central channel

    NASA Astrophysics Data System (ADS)

    Zanino, R.; Giors, S.; Richard, L. Savoldi

    2010-03-01

    Dual-channel cable-in-conduit conductors (CICC) are used in the superconducting magnets for the International Thermonuclear Experimental Reactor (ITER). As the CICC axial/transverse size ratio is typically ˜1000, 1D axial models are customarily used for the CICC, but they require constitutive relations for the transverse fluxes. A novel approach, based on Computational Fluid Dynamics (CFD), was recently proposed by these authors to understand the complex transverse thermal-hydraulic processes in an ITER CICC from first principles. Multidimensional (2D, 3D) Reynolds-Averaged Navier-Stokes models implemented in the commercial CFD code FLUENT were validated against compact heat exchanger and ITER-relevant experimental data, and applied to compute the friction factor and the heat transfer coefficient in fully turbulent spiral rib-roughened pipes, mimicking the central channel of an ITER CICC. That analysis is extended here to the problem of heat and mass transfer through the perforated spiral separating the central channel from the cable bundle region, by combining the previously developed central channel model with a porous medium model for the cable region. The resulting 2D model is used to analyze several key features of the transport processes occurring between the two regions including the relation between transverse mass transfer and transverse pressure drop, the influence of transverse mass transfer on axial pressure drop, and the heat transfer coefficient between central channel and annular cable bundle region.

  16. Characterising coarse PBA dynamics in real-time above and below a tropical rainforest canopy using a dual channel UV fluorescence aerosol spectrometer.

    NASA Astrophysics Data System (ADS)

    Gabey, A.; Gallagher, M. W.; Burgess, R.; Coe, H.; McFiggans, G.,; Kaye, P. H.; Stanley, W. R.; Davies, F.; Foot, V. E.

    2009-04-01

    single-particle dual channel UV fluorescence spectrometer (Kaye et al., 2008) capable of detecting PBA by inducing fluorescence in two so-called biofluorophores - one present during metabolism and the other an amino acid - in the particle size range 1 m < Dp < 20 m. Real-time PBA measurements were performed above and below the canopy of a tropical rainforest in Borneo, Malaysia as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects. PBA were found to dominate the coarse loading at Dp > 2 m. In qualitative agreement with measurements of culturable airborne material in a tropical forest's understory (Gilbert, 2005) a diurnal cycle of PBA number concentration is present, reaching a maximum of ~4000 l-1 at local midnight and falling to ~100 l-1 around midday. The role of the planetary boundary layer's collapse and re-establishment in dictating this variation in is also investigated using LIDAR data. Transient PBA concentration spikes lasting several minutes are superposed on the smooth underlying diurnal variation and occur at similar times each day. Nucleopore filter samples were also taken in-situ and analysed under an Environmental scanning electron microscope (ESEM) in Manchester. The images obtained showed the PBA fraction to be dominated by fungal spores of diameter 2-5 m, from various species including ABM. Since such species tend to release spores in bursts at regular times this appears to account for the PBA concentration spikes.

  17. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  18. Superconducting cable

    SciTech Connect

    Benz, H.

    1983-03-22

    A superconducting cable containing a plurality of individual wires which are stranded or plaited to wire bundles and ropes, wherein in order to avoid relative movement and/or deformation between the wire bundles and/or ropes as, for example, may otherwise be caused by high current loading, the individual wire bundles and the ropes are materially joined together at their points of contact, preferably by soldering, to form a mechanically rigid structure, in which the parts between the soldered areas can as well as possible deform elastically, thereby avoiding all disadvantages associated with freely movable wire bundles. In a preferred embodiment, the ropes are made from wire bundles arranged in a lattice.

  19. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  20. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  1. Superconductivity: Squash and sandwiches

    NASA Astrophysics Data System (ADS)

    Tosatti, Erio

    2008-12-01

    Externally applied pressure induces superconductivity in the layer compound 1T-TaS2. Similarities to, and differences from, other superconducting systems promise exciting future experiments on this old, but suddenly rejuvenated, compound.

  2. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  3. Superconductivity fact vs. fancy

    SciTech Connect

    Fitzgerald, K.

    1988-05-01

    The author says great advances have been made in superconductivity. However, the rush to secure recognition combined with public confusion over superconductivity has tainted the field with misconceptions. Some people are saying little progress towards practical use of the ceramics has been made over the last year and many researchers have left what they were doing to study superconductivity. All the hype surrounding the new found ceramic superconductors could give way to a period of disillusionment and frustration. This article discusses recent work in the field of superconductivity. IEEE Spectrum has adopted an attitude of ''just the facts'' in reporting superconductivity news.

  4. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  5. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  6. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  7. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  8. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  9. Superconducting levitating bearing

    NASA Technical Reports Server (NTRS)

    Moon, Francis C. (Inventor)

    1996-01-01

    A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.

  10. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  11. Superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  12. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  13. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  14. Superconducting imaging surface magnetometer

    SciTech Connect

    Overton, W.C. Jr.; van Hulsteyn, D.B.; Flynn, E.R.

    1991-04-16

    This patent describes an improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. Another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  15. Superconductivity in bad metals

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is argued that many synthetic metals, including high temperature superconductors are ``bad metals`` with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described.

  16. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element.

  17. Graphene: Carbon's superconducting footprint

    NASA Astrophysics Data System (ADS)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  18. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element. PMID:17750320

  19. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  20. Superconductivity of magnesium diboride

    DOE PAGES

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  1. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  2. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  3. Superconductivity: Finding a direction

    NASA Astrophysics Data System (ADS)

    Fu, Liang

    2016-09-01

    The experimental observation of superconductivity that breaks spin-rotation symmetry in copper-doped Bi2Se3 provides a qualitatively distinct kind of unconventional superconducting behaviour -- one that brings the importance of the spin-orbit interaction to the fore.

  4. Superconductivity in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  5. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  6. Superconductivity in Opal-based superconducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Charnaya, E. V.; Chang, L. J.; Kumzerov, Yu. A.; Lin, M. F.

    2015-03-01

    In this study, we investigate superconducting nanocomposites (SCNCs) to elucidate superconductivity in nanostructured type I superconductor. In, Sn and Hg are loaded into opal matrices by high pressure up to 10kbar, in which introducing superconducting metals into templates preserves their own 3D nanostructures. The opal matrices is adopted because it is a well-developed nanoconfinement and widely used in the studies of photonic crystal due to its periodically-superlatticed nanoporous structure. The SCNCs are then measured by Quantum Design MPMS 3 under different external magnetic fields reveal the field dependences of Tc and irreversibility temperature (Tirr). Next, AC susceptibility measurements of SCNCs determine grain coupling, vortex dynamics and field dependence of activation barrier (Ua) as well as Tc. Additionally, the phase diagrams of these SCNCs are analyzed to study superconductivity for a system with similar nanogeometry. Exotic phase diagrams in the opal SCNC studies reveal an enhanced upper critical field (Hc2 (0)) and curvature crossover of upper critical field line. Additionally, according to the field dependence of Ua(H), curvature crossover of the upper critical field line can occur, owing to vortex phase transition.

  7. Ferromagnetic/Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Bader, S. D.

    1998-03-01

    Although it is well known that magnetism influences superconductivity, the converse issue has been less well explored. Recent theoretical predictions for ferromagnetic/ superconducting/ ferromagnetic trilayers exhibiting interlayer magnetic coupling in the normal state indicate that the coupling should be suppressed below the superconducting transition temperature.(C.A. R. Sá de Melo, Phys. Rev. Lett. 79), 1933 (1997); O. Sipr, B.L. Györffy, J. Phys. Cond. Matt. 7, 5239 (1995). To realize such a situation, a requirement (when the magnetic layers are thick) is that the superconducting layer thickness must simultaneously be less than the range over which the magnetic interlayer coupling decays, but greater than the superconducting coherence length. This introduces serious materials constraints. The present work describes initial explorations of three sputtered multilayer systems in an attempt to observe coupling of the ferromagnetic layers across a superconducting spacer:((a) J.E. Mattson, R.M. Osgood III, C.D. Potter, C.H. Sowers, and S.D. Bader, J. Vac. Sci. Technol. A 15), 1774 (1997); (b) J.E. Mattson, C.D. Potter, M.J. Conover, C.H. Sowers, and S.D. Bader, Phys. Rev. B 55, 70 (1997), and (c) R.M. Osgood III, J.E. Pearson, C.H. Sowers, and S.D. Bader, submitted (1997). (a) Ni/Nb, (b) Fe_4N/NbN, and (c) GdN/NbN. In these systems we have retained thinner superconducting layers than had been achieved previously, but interlayer magnetic coupling is not observed even in the normal state. For Ni/Nb the interfacial Ni loses its moment, which also reduces the superconducting pair-breaking. GdN is an insulating ferromagnet, so itinerancy is sacrificed, and, probably as a result of this, no coupling is observed. Each system gives rise to interesting and anisotropic superconducting properties. Thus, although the goal remains elusive, our search highlights the challenges and opportunities.

  8. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  9. Superconductivity in doped insulators

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  10. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  11. Tunneling in superconducting structures

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  12. Numerical simulations of the QUELL experiment in SULTAN

    SciTech Connect

    Marinucci, C.

    1995-03-01

    The QUench Experiment on Long Length (QUELL) in the SULTAN Facility is planned to investigate the quench propagation and detection of a conductor with ITER relevant geometry and scaled performance. The objective of this study is to show the ability of QUELL to provide quench conditions relevant for ITER and to simulate the system performance, dealing in particular with the design aspects of the power supply, cryogenic system and heaters. The numerical analysis was performed with GANDALF - a 1-D code to analyze Dual Channel Cable-in-Conduit Conductors. A numerical convergence test and a comparison with another code and with analytical results have confirmed the validity of the simulations.

  13. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  14. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  15. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  16. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  17. Superconductivity and its devices

    NASA Astrophysics Data System (ADS)

    Forbes, D. S.

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles.

  18. Photoinduced superconductivity in semiconductors

    NASA Astrophysics Data System (ADS)

    Goldstein, Garry; Aron, Camille; Chamon, Claudio

    2015-02-01

    We show that optically pumped semiconductors can exhibit superconductivity. We illustrate this phenomenon in the case of a two-band semiconductor tunnel-coupled to broad-band reservoirs and driven by a continuous wave laser. More realistically, we also show that superconductivity can be induced in a two-band semiconductor interacting with a broad-spectrum light source. We furthermore discuss the case of a three-band model in which the middle band replaces the broad-band reservoirs as the source of dissipation. In all three cases, we derive the simple conditions on the band structure, electron-electron interaction, and hybridization to the reservoirs that enable superconductivity. We compute the finite superconducting pairing and argue that the mechanism can be induced through both attractive and repulsive interactions and is robust to high temperatures.

  19. Stacked magnet superconducting bearing

    SciTech Connect

    Rigney, T.K. II; Saville, M.P.

    1993-06-15

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines.

  20. Photoemission, Correlation and Superconductivity:

    NASA Astrophysics Data System (ADS)

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  1. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  2. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  3. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  4. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  5. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  6. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  7. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  8. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  9. Superconducting mirror for laser gyroscope

    SciTech Connect

    Wang, X.

    1991-05-14

    This paper describes an apparatus for reflecting a light beam. It comprises: a mirror assembly comprising a substrate and a superconductive mirror formed on such substrate, wherein: the substrate is optically transparent to the light beam and has a thickness of from about 0.5 to about 1.0 millimeter, and the superconductive mirror has a thickness of from about 0.5 to about 1.0 microns; means for cooling the superconductive mirror; means for measuring the temperature of the superconductive mirror; means for determining the reflectivity of the superconductive mirror; and means for varying the reflectivity of the superconductive mirror.

  10. Superconducting wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.

    2010-03-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  11. Superconducting nanostructured materials.

    SciTech Connect

    Metlushko, V.

    1998-07-13

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines.

  12. Versatile Dual-Channel Waveform Generator

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen; Ching, Michael; Budinger, James M.

    1994-01-01

    Programmable waveform generator synthesizes two independent waveforms simultaneously at frequencies up to 250 MHz. Can be in phase or out of phase with each other. Use of commercial integrated circuits helps keep cost low. Operation governed by BASIC source code enabling any user equipped with suitable personal computer to specify waveforms. User can modify source code to satisfy special needs. Other applications include simulation of Doppler waveforms for radar, and of video signals for testing color displays and computer monitors. With eventual substitution of gallium arsenide integrated circuits for its present silicon integrated circuits, instrument able to generate waveforms with 14-bit precision and sample rates as high as 2 GHz.

  13. Dual-channel solid block optical correlator

    NASA Astrophysics Data System (ADS)

    Kirsch, James C.; Bagley, Harold R.; Sloan, Jeffrey A.

    1993-11-01

    A new solid block correlator has been built for the U.S. Army Missile Command by OCA Applied Optics. This Advanced Solid Block Correlator (ASBC) is based on the same design approach useful for the original solid block correlator. The ASBC provides both improved performance and a vehicle for evaluating the recently available Liquid Crystal Televisions as spatial light modulators (SLMs). Performance is significantly enhanced by: (1) real-time programmable filter capability, (2) improved SLM speed, and (3) improved SLM uniformity. Furthermore, the ASBC also has the advantage of two separate filter channels to increase filter throughput or allow simultaneous monitoring of the response to two different filters. This paper will present the results obtained from initial tests performed with the ASBC.

  14. Dual-channel spectrally encoded endoscopic probe

    PubMed Central

    Engel, Guy; Genish, Hadar; Rosenbluh, Michael; Yelin, Dvir

    2012-01-01

    High quality imaging through sub-millimeter endoscopic probes provides clinicians with valuable diagnostics capabilities in hard to reach locations within the body. Spectrally encoded endoscopy (SEE) has been shown promising for such task; however, challenging probe fabrication and high speckle noise had prevented its testing in in vivo studies. Here we demonstrate a novel miniature SEE probe which incorporates some of the recent progress in spectrally encoded technology into a compact and robust endoscopic system. A high-quality miniature diffraction grating was fabricated using automated femtosecond laser cutting from a large bulk grating. Using one spectrally encoded channel for imaging and a separate channel for incoherent illumination, the new system has large depth of field, negligible back reflections and well controlled speckle noise which depends on the core diameter of the illumination fiber. Moreover, by using a larger imaging channel, higher groove density grating, shorter wavelength and broader spectrum, the new endoscopic system now allow significant improvements in almost all imaging parameter compared to previous systems, through an ultra-miniature endoscopic probe. PMID:22876349

  15. Dual channel self-oscillating optical magnetometer

    SciTech Connect

    Belfi, J.; Bevilacqua, G.; Biancalana, V.; Dancheva, Y.; Khanbekyan, K.; Moi, L.; Cartaleva, S.

    2009-05-15

    We report on a two-channel magnetometer based on nonlinear magneto-optical rotation in a Cs glass cell with buffer gas. The Cs atoms are optically pumped and probed by free running diode lasers tuned to the D{sub 2} line. A wide frequency modulation of the pump laser is used to produce both synchronous Zeeman optical pumping and hyperfine repumping. The magnetometer works in an unshielded environment, and a spurious signal from distant magnetic sources is rejected by means of differential measurement. In this regime the magnetometer simultaneously gives the magnetic field modulus and the field difference. Rejection of the common-mode noise allows for high-resolution magnetometry with a sensitivity of 2 pT/{radical}(Hz). This sensitivity, in conjunction with long-term stability and a large bandwidth, makes it possible to detect water proton magnetization and its free induction decay in a measurement volume of 5 cm{sup 3}.

  16. Surface Induced Anomalous Superconductivity

    NASA Astrophysics Data System (ADS)

    Fink, Herman J.; Haley, Stephen B.

    The Ginzburg Landau (GL) theory is recast using a Hamiltonian involving the complete kinetic energy density which requires that the surface energy must contain a term ∇∣ψ∣2 to support superconducting (SC) states. The GL equations contain two temperature t dependent parameters α(t) and β(t), which are respectively the coefficients of the SC pair density ∝∣ψ∣2, and the pair interaction term ∝∣ψ∣4 in the free energy density. The sign of these parameters, which defines distinct solution classes, and the ratio s(t)=√ {|α |/|β |} are governed by the characteristics of the surface energy density. In addition to the conventional bulk superconducting states with (α < 0, β > 0), anomalous superconducting states exist for all other sign combinations, including cases with β < 0 which may exist only when surface pair interactions are significant. All possible solutions of our generalized nonlinear, one-dimensional GL equations are found analytically and applied to a thin superconducting slab which manifests the possibility of states exhibiting enhanced, diminished, and pre-wetting superconductivity. Critical currents are determined as functions of s(t) and surface parameters. The results are applied to critical current experiments on SNS systems.

  17. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  18. Superconducting active impedance converter

    SciTech Connect

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1992-12-31

    This invention is comprised of a transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10--80 K temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  19. Nonlinear terahertz superconducting plasmonics

    SciTech Connect

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing E-mail: tonouchi@ile.osaka-u.ac.jp Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng E-mail: tonouchi@ile.osaka-u.ac.jp; Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi E-mail: tonouchi@ile.osaka-u.ac.jp; Wang, Huabing

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  20. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  1. Technology of RF superconductivity

    SciTech Connect

    1995-08-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams.

  2. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  3. Resource Letter Scy-3: Superconductivity

    NASA Astrophysics Data System (ADS)

    Butch, N. P.; de Andrade, M. C.; Maple, M. B.

    2008-02-01

    This Resource Letter provides a guide to the literature on superconductivity. Since the last Resource Letter on superconductivity, Scy-2, was published in 1970, there have been dramatic advances in our basic understanding of superconductivity, discovery of new superconducting materials, and improved technological exploitation of superconductors. We review basic phenomenology, followed by concise descriptions of several main classes of superconductors recognized today. Journal articles and books are cited for the following topics: Conventional superconductors, paramagnetic impurities in superconductors, magnetically ordered superconductors, heavy fermion superconductors, high Tc superconductors, organic superconductors, applications of superconductivity, and laboratory demonstrations of superconductivity. Owing to the large volume of available literature on superconductivity, the journal articles and books we discuss constitute good starting points for further exploration of particular topics.

  4. Review of new energy. Superconductivity

    NASA Astrophysics Data System (ADS)

    1989-03-01

    An summary is given of the research and development on high temperature superconductivity. It begins with a description of superconducting state and enumerates chemical elements, in particular oxides, associated with high temperature superconductivity. A brief account is next given on the progress of research and development on the present subject. Some of well known topics associated with superconductivity are described shortly, namely Meissner effect, quenching (transition to normal conducting state from superconducting one), Perovskite structure, positive hole earrier, Josephson effect, SQUID (superconducting quantum interference device) and so on. Various devices or technology are enumerated, to which superconductivity, in particular high temperature one, is proposed to apply, namely electromagnet, MRI (magnetic resonance imaging), particle accelerator, linear motor car, electric power storage and so on. The summary is finished with a future outlook.

  5. Nonequilibrium superconducting detectors

    NASA Astrophysics Data System (ADS)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  6. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  7. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  8. Applications of Superconductivity

    ERIC Educational Resources Information Center

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  9. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  10. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  11. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  12. New research in Superconductivity

    NASA Astrophysics Data System (ADS)

    Khorrami, Mona

    2013-03-01

    Superconductors are materials that have no resistance to electricity's flow; they are one of the last great frontiers of scientific discovery. The theories that explain superconductor behavior seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. In 1933 German researchers Walther Meissner and Robert Ochsenfeld discovered that a superconducting material will repel a magnetic field. A magnet moving by a conductor induces currents in the conductor, but, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the ``Meissner effect'' (an eponym). Later on the theory developed by American physicists John Bardeen, Leon Cooper, and John Schrieffer together with extensions and refinements of the theory, which followed in the years after 1957, succeeded in explaining in considerable detail the properties of superconductors.

  13. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  14. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  15. Superconducting magnets 1992

    SciTech Connect

    Not Available

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T{sub c} at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design.

  16. Superconducting thermometer for cryogenics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1977-01-01

    Digital electronic device uses superconducting filaments as sensors. Simple solid-state circuitry combined with filaments comprise highly-reliable temperature monitor. Device has ability to track very fast thermal transients and "on/off" output is adaptable to remote sensing and telemetry.

  17. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  18. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  19. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  20. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  1. Superconductivity in graphite intercalation compounds

    DOE PAGES

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  2. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  3. Superconducting magnet wire

    DOEpatents

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  4. Helical superconducting black holes.

    PubMed

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  5. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  6. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  7. Topological confinement and superconductivity

    SciTech Connect

    Al-hassanieh, Dhaled A; Batista, Cristian D

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  8. Navy superconductivity efforts

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  9. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  10. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  11. Silicon superconducting quantum interference device

    SciTech Connect

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  12. Superconducting tape characterization under flexion

    NASA Astrophysics Data System (ADS)

    Álvarez, A.; Suárez, P.; Cáceres, D.; Pérez, B.; Cordero, E.; Castaño, A.

    2002-08-01

    Electrotechnical applications of high temperature superconducting materials are limited by the difficulty of constructing classical windings with ceramic materials. While Bi-2223 tape may be a solution, it cannot be bent to radii less than a certain value since its superconducting capacity disappears. We describe an automated measurement system of the characteristics of this tape under flexion. It consists of a device that coils the tape over cylinders with different radii. At the same time, the parameters of its superconducting behaviour (e.g. resistance) are taken and processed. This system was developed at the “Benito Mahedero Laboratory of Superconducting Electrical Applications” in the University of Extremadura.

  13. Topological Superconductivity in Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Kobayashi, Shingo

    Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd3As2.

  14. Superconducting magnet development in Japan

    SciTech Connect

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  15. Cosmic sparks from superconducting strings.

    PubMed

    Vachaspati, Tanmay

    2008-10-01

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents approximately 10{5} GeV. The superconducting string model predicts an event rate that falls off only as S{-1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model. PMID:18851517

  16. Cosmic Sparks from Superconducting Strings

    SciTech Connect

    Vachaspati, Tanmay

    2008-10-03

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents {approx}10{sup 5} GeV. The superconducting string model predicts an event rate that falls off only as S{sup -1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model.

  17. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  18. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  19. Concerning superconducting inertial guidance gyroscopes inside superconducting magnetic shields

    SciTech Connect

    Satterthwaite, J.C.; Gawlinski, E.T.

    1997-12-01

    Superconductors can in theory be used to detect rotation by Josephson interference or by detection of the London field, a magnetic induction that fills the interior of any rotating bulk superconductor. One might hope to use these properties of superconductors to build a practical inertial guidance gyroscope. A problem arises from the necessity of surrounding the device with superconducting magnetic shielding: the London field generated by a co-rotating shield eliminates the response of the superconducting device within the shield. The present article demonstrates this point more rigorously than has been done before, discussing solutions of Ampere`s law for rotating and nonrotating superconductors and paying careful attention to boundary conditions. Beginning with a supercurrent density derivable from either the Ginzburg-Landau or the London theory of superconductivity, the article shows: (1) that a superconducting device cannot distinguish between rotation and an applied magnetic field; (2) that a superconducting device surrounded by a co-rotating superconducting shield cannot detect rotation. The term `superconducting gyroscope` in this article refers only to a device whose working principle is the response of the superconductor itself to rotation, not to any device in which superconducting electronic components are used to detect some other effect. {copyright} {ital 1997 American Institute of Physics.}

  20. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  1. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  2. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  3. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  4. A superconducting magnetic gear

    NASA Astrophysics Data System (ADS)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  5. Superconducting Magnets for RIA

    NASA Astrophysics Data System (ADS)

    Zeller, A. F.

    2004-06-01

    The highest priority for new construction for the nuclear physics community is the Rare Isotope Accelerator. This project's goal is to produce up to 400 kW of beams from protons to uranium. Beam transport at the high-energy end has to deal with high radiation fields and high beam rigidities. Superconducting magnets are being designed to fulfill both these requirements. The quadrupoles in the fragment separator will use superferric design with pole tip fields of up to 2.5 T to produce the required gradients in the large apertures. Several techniques are presented that deal with making the magnets radiation resistant.

  6. Superconducting magnet cooling system

    DOEpatents

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  7. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  8. Superconducting magnets for MRI

    SciTech Connect

    Williams, J.E.

    1984-08-01

    Three types of magnets are currently used to provide the background field required for magnet resonance imaging (MRI). (i) Permanent magnets produce fields of up to 0.3 T in volumes sufficient for imaging the head or up to 0.15 T for whole body imaging. Cost and simplicity of operation are advantages, but relatively low field, weight (up to 100 tonnes) and, to a small extent, instability are limitations. (ii) Water-cooled magnets provide fields of up to 0.25 T in volumes suitable for whole body imaging, but at the expense of power (up to 150 kW for 0.25 T) and water-cooling. Thermal stability of the field requires the maintenance of constant temperature through periods both of use and of quiescence. (iii) Because of the limitations imposed by permanent and resistive magnets, particularly on field strength, the superconducting magnet is now most widely used to provide background fields of up to 2 T for whole body MRI. It requires very low operating power and that only for refrigeration. Because of the constant low temperature, 4.2 K, at which its stressed structure operates, its field is stable. The following review deals principally with superconducting magnets for MRI. However, the sections on field analysis apply to all types of magnet and the description of the source terms of circular coils and of the principals of design of solenoids apply equally to resistive solenoidal magnets.

  9. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  10. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  11. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  12. Role of superconductivity in superconducting transmission line resonator

    NASA Astrophysics Data System (ADS)

    Qin, Xiao-Ke

    2016-06-01

    In order to understand the role of superconductivity in superconducting transmission line resonator, we derive the mode equations using the macroscopic wavefunction of the Cooper pairs. We make an appropriate scaling to obtain the dimensionless form of equations and establish the validity of good conductor approximation under most circumstances. Quantization of superconducting transmission line resonator is realized by the black-box principle. We also briefly discuss that the deviation from good conductor behavior would result in the observable effects, such as the considerable decrease of phase velocity and the soliton.

  13. Spin-orbit-coupled superconductivity.

    PubMed

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < T(c), the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  14. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  15. Operational Merits of Maritime Superconductivity

    NASA Astrophysics Data System (ADS)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  16. Protection circuits for superconducting magnets

    SciTech Connect

    Parsons, W.M.; Wood, R.J.

    1980-01-01

    As the technology of controlled nuclear fusion progresses, plans for new experimental reactors include much longer duty cycles than those of earlier experiments. Many of the magnet systems for these reactors must be superconducting due to the prolonged or continuous high current levels required. The large initial investment of a superconducting magnet system justifies a protective dump circuit. This circuit must operate if the magnet goes normal or in the event of failure of some of the critical auxiliary equipment. This paper examines two applications of superconducting magnet protection for fusion experiments. A novel dc interrupter being developed especially for this purpose is also discussed.

  17. Nozzle for superconducting fiber production

    DOEpatents

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  18. Spinning superconducting electrovacuum soliton

    NASA Astrophysics Data System (ADS)

    Dymnikova, Irina

    2006-08-01

    In nonlinear electrodynamics coupled to general relativity and satisfying the weak energy condition, a spherically symmetric electrically charged electrovacuum soliton has obligatory de Sitter center in which the electric field vanishes while the energy density of electromagnetic vacuum achieves its maximal value. De Sitter vacuum supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry from the de Sitter group in the origin. By the Gürses-Gürsey algorithm based on the Newman-Trautman technique it is transformed into a spinning electrovacuum soliton asymptotically Kerr-Newman for a distant observer. De Sitter center becomes de Sitter equatorial disk which has both perfect conductor and ideal diamagnetic properties. The interior de Sitter vacuum disk displays superconducting behavior within a single spinning soliton. All this concerns both black hole and particle-like structures.

  19. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  20. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  1. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  2. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  3. Negative refraction and superconductivity

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Forcella, Davide; Mariotti, Alberto; Siani, Massimo

    2011-10-01

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations.

  4. Mixed-mu superconducting bearings

    SciTech Connect

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  5. Mixed-mu superconducting bearings

    SciTech Connect

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  6. Superconductivity from Emerging Magnetic Moments.

    PubMed

    Hoshino, Shintaro; Werner, Philipp

    2015-12-11

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds. PMID:26705649

  7. Superconductivity from Emerging Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Hoshino, Shintaro; Werner, Philipp

    2015-12-01

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.

  8. Search for Superconductivity in Micrometeorites

    PubMed Central

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-01-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10−12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures. PMID:25476841

  9. Superconductivity: A celebration of pairs

    NASA Astrophysics Data System (ADS)

    Norman, Michael R.

    2007-12-01

    It is fifty years since John Bardeen, Leon Cooper and Bob Schrieffer presented the microscopic theory of superconductivity. At a wonderful conference in Urbana the 'good old days' were remembered, and the challenges ahead surveyed.

  10. Entanglement witnessing in superconducting beamsplitters

    NASA Astrophysics Data System (ADS)

    Soller, H.; Hofstetter, L.; Reeb, D.

    2013-06-01

    We analyse a large class of superconducting beamsplitters for which the Bell parameter (CHSH violation) is a simple function of the spin detector efficiency. For these superconducting beamsplitters all necessary information to compute the Bell parameter can be obtained in Y-junction setups for the beamsplitter. Using the Bell parameter as an entanglement witness, we propose an experiment which allows to verify the presence of entanglement in Cooper pair splitters.

  11. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  12. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  13. Electrodynamics of superconducting pnictide superlattices

    SciTech Connect

    Perucchi, A.; Pietro, P. Di; Capitani, F.; Lupi, S.; Lee, S.; Kang, J. H.; Eom, C. B.; Jiang, J.; Weiss, J. D.; Hellstrom, E. E.; Dore, P.

    2014-06-02

    It was recently shown that superlattices where layers of the 8% Co-doped BaFe{sub 2}As{sub 2} superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO{sub 3} or of oxygen-rich BaFe{sub 2}As{sub 2}, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here, we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multigap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.

  14. Fractal superconductivity near localization threshold

    SciTech Connect

    Feigel'man, M.V.; Ioffe, L.B.; Kravtsov, V.E.; Cuevas, E.

    2010-07-15

    We develop a semi-quantitative theory of electron pairing and resulting superconductivity in bulk 'poor conductors' in which Fermi energy E{sub F} is located in the region of localized states not so far from the Anderson mobility edge E{sub c}. We assume attractive interaction between electrons near the Fermi surface. We review the existing theories and experimental data and argue that a large class of disordered films is described by this model. Our theoretical analysis is based on analytical treatment of pairing correlations, described in the basis of the exact single-particle eigenstates of the 3D Anderson model, which we combine with numerical data on eigenfunction correlations. Fractal nature of critical wavefunction's correlations is shown to be crucial for the physics of these systems. We identify three distinct phases: 'critical' superconductive state formed at E{sub F} = E{sub c}, superconducting state with a strong pseudo-gap, realized due to pairing of weakly localized electrons and insulating state realized at E{sub F} still deeper inside a localized band. The 'critical' superconducting phase is characterized by the enhancement of the transition temperature with respect to BCS result, by the inhomogeneous spatial distribution of superconductive order parameter and local density of states. The major new feature of the pseudo-gapped state is the presence of two independent energy scales: superconducting gap {Delta}, that is due to many-body correlations and a new 'pseudo-gap' energy scale {Delta}{sub P} which characterizes typical binding energy of localized electron pairs and leads to the insulating behavior of the resistivity as a function of temperature above superconductive T{sub c}. Two gap nature of the pseudo-gapped superconductor is shown to lead to specific features seen in scanning tunneling spectroscopy and point-contact Andreev spectroscopy. We predict that pseudo-gapped superconducting state demonstrates anomalous behavior of the optical

  15. The road to superconducting spintronics

    NASA Astrophysics Data System (ADS)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  16. Superconductivity in doped fullerenes

    SciTech Connect

    Hebard, A.F. )

    1992-11-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C[sub 60], further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I[sub h], its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C[sub 60] (and the higher fullerenes, such as C[sub 70] and C[sub 84]) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs.

  17. Improved superconducting magnet wire

    DOEpatents

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  18. Demons and superconductivity

    SciTech Connect

    Ihm, J.; Cohen, M.L.; Tuan, S.F.

    1981-04-01

    Model calculations are used to explore the role of demons (acoustic plasmons involving light and heavy mass carriers) in superconductivity. Heavy d electrons and light s and p electrons in a transition metal are used for discussion, but the calculation presented is more general, and the results can be applied to other systems. The analysis is based on the dielectric-function approach and the Bardeen-Cooper-Schrieffer theory. The dielectric function includes intraband and interband s-d scattering, and a tight-binding model is used to examine the role of s-d hybridization. The demon contribution generally reduces the Coulomb interaction between the electrons. Under suitable conditions, the model calculations indicate that the electron-electron interaction via demons can be attractive, but the results also suggest that this mechanism is probably not dominant in transition metals and transition-metal compounds. An attractive interband contribution is found, and it is proposed that this effect may lead to pairing in suitable systems.

  19. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  20. Superconducting energy storage magnet

    NASA Technical Reports Server (NTRS)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  1. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  2. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  3. Fast superconducting magnetic field switch

    SciTech Connect

    Goren, Y.; Mahale, N.K.

    1995-12-31

    The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.

  4. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  5. The Superconducting Bird: A Didactical Toy.

    ERIC Educational Resources Information Center

    Guarner, E.; Sanchez, A. M.

    1992-01-01

    Describes the design of the superconducting bird, a device to demonstrate the phenomenon of superconductivity. Discusses the utilization of the device as an example of a motor and compares it to the toy called the drinking bird. (MDH)

  6. Superconducting PM undiffused machines with stationary superconducting coils

    DOEpatents

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  7. Magnetism and Superconductivity in Iron Pnictides

    SciTech Connect

    Singh, David J

    2012-01-01

    The discovery of high temperature superconductivity in iron pnictides and chalcogenides has resulted in surprising new insights into high temperature superconductivity and its relationship with magnetism. Here we provide an overview of some of what is known about these materials and in particular about the interplay of magnetism and superconductivity in them. Similarities and contrasts with cuprate superconductors are emphasized and the superconducting pairing is discussed within the framework of spin fluctuation induced pairing.

  8. Space applications of superconductivity - Digital electronics

    NASA Technical Reports Server (NTRS)

    Harris, R. E.

    1980-01-01

    Superconducting electronics offers a variety of remarkable properties including high speed and low dissipation. The paper discusses fundamental considerations which appear to suggest that superconducting (cryogenic) technology will offer significant advantages for future digital devices. It shows how the active element in superconducting electronics, the Josephson junction, works and discusses the technology for fabricating the devices. The characteristics of published circuits are briefly reviewed, and the capabilities of future superconducting computers and instruments are projected.

  9. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  10. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, Douglas K.; Miller, Theodore A.; Ostenson, Jerome E.; Schwartzkopf, Louis A.; Sanders, Steven C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  11. Sensing with Superconducting Point Contacts

    PubMed Central

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  12. Superconductivity in magnetic multipole states

    NASA Astrophysics Data System (ADS)

    Sumita, Shuntaro; Yanase, Youichi

    2016-06-01

    Stimulated by recent studies of superconductivity and magnetism with local and global broken inversion symmetry, we investigate the superconductivity in magnetic multipole states in locally noncentrosymmetric metals. We consider a one-dimensional zigzag chain with sublattice-dependent antisymmetric spin-orbit coupling and suppose three magnetic multipole orders: monopole order, dipole order, and quadrupole order. It is demonstrated that the Bardeen-Cooper-Schrieffer state, the pair-density wave (PDW) state, and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state are stabilized by these multipole orders, respectively. We show that the PDW state is a topological superconducting state specified by the nontrivial Z2 number and winding number. The origin of the FFLO state without macroscopic magnetic moment is attributed to the asymmetric band structure induced by the magnetic quadrupole order and spin-orbit coupling.

  13. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  14. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

  15. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  16. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, T.; Klamut, C.J.; Suenaga, M.; Welch, D.

    1979-12-19

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  17. Searching for Superconductivity in Micrometeorites

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.; Guenon, S.; Ramirez, J. G.; Basaran, A. C.; Taylor, S.; Schuller, I.

    2014-12-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening natural materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10-12 cm3of a superconductor embedded in a non-superconducting matrix. We applied our technique to search for superconductivity in micrometeorites, small extraterrestrial (ET) particles that add most of the ET mass to the present day Earth. We measured approximately 65 micrometeorites and compared their spectra with those of eight reference materials.Micrometeorites (MMs) are ideal samples with which to test our highly sensitive superconductivity probe, as individual MMs weigh 10-5 g and the large number of micrometeorites arriving on Earth, suggests some contain minerals formed under conditions that cannot be replicated in the laboratory. Minerals in meteorites formed during planetary processes associated with accretion/condensation, planetary differentiation, and segregation. Other components such as pre-solar grains, SiC, diamonds, graphite, Si3N4, and deuterium enriched organics formed under some of the most intense physical-chemical environments in the Universe, including supernovae and stellar outflows. It is during such severe processes that exotic superconducting species may have been created.The research presented here established the methodology and proved the ultrahigh sensitivity of the technique by detecting the presence of the Verwey-transition of the magnetite present in these micrometeorites. The investigated micrometeorites contained no superconducting phases. This work was supported by an AFOSR MURI grant no. F49550-09-1-0577.

  18. Superconductivity in CVD Diamond Films

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2005-03-01

    The recent news of superconductivity 2.3K in heavily boron-doped diamond synthesized by high pressure sintering was received with considerable surprise (1). Opening up new possibilities for diamond-based electrical devices, a systematic investigation of these phenomena clearly needs to be achieved. Application of diamond to actual devices requires it to be made into the form of wafers or thin films. We show unambiguous evidence for superconductivity in a heavily boron-doped diamond thin film deposited by the microwave plasma assisted chemical vapor deposition (MPCVD) method (2). An advantage of the MPCVD deposited diamond is that it can control boron concentration in its wider range, particularly in (111) oriented films. The temperature dependence of resistivity for (111) and (100) homoepitaxial thin films were measured under several magnetic fields. Superconducting transition temperatures of (111) homoepitaxial film are determined to be 11.4K for Tc onset and 7.2K for zero resistivity. And the upper critical field is estimated to be about 8T. These values are 2-3 times higher than these ever reported (1,3). On other hand, for (100) homoepitaxial film, Tc onset and Tc zero resistivity were estimated to be 6.3 and 3.2K respectively. The superconductivity in (100) film was strongly suppressed even at the same boron concentration. These differences of superconductivity in film orientation will be discussed. These findings established the superconductivity as a universal property of boron-doped diamond, demonstrating that device application is indeed a feasible challenge. 1. E. A. Ekimov et al. Nature, 428, 542 (2004). 2. Y. Takano et al., Appl. Phys. Lett. 85, 2851 (2004). 3. E. Bustarret et al., ond-mat 0408517.

  19. Freely oriented portable superconducting magnet

    SciTech Connect

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  20. Four-junction superconducting circuit

    PubMed Central

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  1. Four-junction superconducting circuit.

    PubMed

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J Q

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  2. Four-junction superconducting circuit.

    PubMed

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J Q

    2016-06-30

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  3. Superconducting Resonators: Protecting Schrodinger's Cat

    NASA Astrophysics Data System (ADS)

    Chavez, Jose; Mauskopf, Philip

    2015-03-01

    Over the past decade, superconducting resonators have played a fundamental role in various novel astronomical detectors and quantum information processors. One example is the microwave kinetic inductance detector that is able to resolve photon energies by measuring shifts in its resonant frequency. Similar resonators have been integrated with superconducting qubits, specifically the transmon, to substantially improve quantum coherence times. The purpose of this investigation is to survey various resonant structures within the requirements of circuit quantum electrodynamics giving special attention to quality factors, TLS noise, and quasi-particle generation. Specifically, planar and three dimensional cavities with varying geometries and materials are characterized - primarily focusing on NbTiN and Nb.

  4. Superconducting augmented rail gun (SARG)

    SciTech Connect

    Homan, C.G.; Cummings, C.E.; Fowler, C.M.

    1986-11-01

    Superconducting augmentation consists of a superconducting coil operating in the persistent mode closely coupled magnetically with a normally conducting rail gun. A theoretical investigation of the effect of this system on a rail gun has shown that two benefits occur. Projectile velocities and launch efficiencies increase significantly depending on the magnetic coupling between the rail and augmentation circuits. Previous work evaluated an idealized system by neglecting energy dissipation effects. In this paper, the authors extend the analysis to include the neglected terms and show improved actual launch efficiencies for the SARG configuration. In this paper, the authors discuss details of projectile design in depth and present preliminary results of rail gun performance.

  5. Free-standing oxide superconducting articles

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-12-14

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.

  6. Status of superconducting power transformer development

    SciTech Connect

    Johnson, R.C.; McConnell, B.W.; Mehta, S.P.

    1996-03-01

    Development of the superconducting transformer is arguably the most difficult of the ac power applications of superconductivity - this is because of the need for very low ac losses, adequate fault and surge performance, and the rigors of the application environment. This paper briefly summarizes the history of superconducting transformer projects, reviews the key issues for superconducting transformers, and examines the status of HTS transformer development. Both 630-kVA, three-phase and 1-MVA single phase demonstration units are expected to operate in late 1996. Both efforts will further progress toward the development of economical and performance competitive superconducting transformers.

  7. Cosmic String Global Superconducting Dirac Born Infeld

    NASA Astrophysics Data System (ADS)

    Ikrima, Ika; Ramadhan, Handhika S.; Mart, Terry

    2016-08-01

    Superconducting cosmic string possibly plays an important role in the formation of the universe structure. The physics of this phenomenon has been explored by studying the field theory in the string interior. Numerical solutions of superconducting strings with all relevant fields are presented in this paper. The field is constructed from a generalization of the usual field theory of superconducting global string, but the kinetic term consists of the Dirac Born Infeld (DBI). Some changes in the characteristic of the superconducting string DBI from the usual superconducting string case have been observed. The observation includes physical mechanism of all related fields.

  8. Superconductivity in highly disordered dense carbon disulfide.

    PubMed

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  9. Unconventional superconductivity in heavy-fermion compounds

    SciTech Connect

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  10. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGES

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  11. Nonlinear diffusion and superconducting hysteresis

    SciTech Connect

    Mayergoyz, I.D.

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  12. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  13. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  14. Hitachi develops ceramic superconducting device

    NASA Astrophysics Data System (ADS)

    1987-09-01

    A ceramic superconducting quantum interference device (squid) made into the form of a fine film by applying its semiconductor fine process technology was tested. The squid, which reached its superconducting temperature through cooling with a cheap liquid nitrogen at minus 196 C, can detect faint magnetic fields with a strength only a millionth that of the Earth's magnetic field. This means that the squid can be incorporated into medical diagnostic equipment intended for diagnosing brain and heart disorders by catching changes in the extremely weak magnetic fields these organs generate. Hitachi's squid is made using a high frequency sputtering process to form a thin film of yttrium-barium-copper oxide onto a substrate of magnesium oxide, which is then heat treated in an oxygen environment. The resulting superconducting film is one to two microns thick and superconducts at minus 187 C, at which temperature it has a maximum current density in excess of 6,000 amperes per square centimeter. Optical exposure and chemical etching process are then used to make a hole in the middle of the film, after which two Josephson junctions are connected to both of the holes to form a squid.

  15. Demonstration of superconducting micromachined cavities

    SciTech Connect

    Brecht, T. Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  16. Demonstration of superconducting micromachined cavities

    NASA Astrophysics Data System (ADS)

    Brecht, T.; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-01

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  17. Superconductivity: The persistence of pairs

    SciTech Connect

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  18. Space applications of superconductivity - Low frequency superconducting sensors

    NASA Technical Reports Server (NTRS)

    Zimmerman, J. E.

    1980-01-01

    Although this paper deals with several low-frequency instruments and devices, most of the discussion relates to SQUID (Superconducting QUantum Interference Device) magnetometers and gradiometers, since these are perceived as the instruments with the greatest potential for space applications. The discussion covers SQUID for magnetic field measurements; present state of the art of SQUID technology; ultimate potential performance; applications to magnetic measurements in space; SQUID galvanometers, voltage and current sensors, and wide-band amplifiers; magnetic shielding, and superconducting dc transformer. SQUIDS are superior to all other magnetic sensors in sensitivity, frequency response, range, and linearity. It is suggested that SQUID instruments, both magnetometers and gradiometers, would be valuable in studies of the dynamics of interplanetary and planetary fields. SQUID gradiometers are useful for detection and mapping of magnetic anomalies at short to moderate ranges.

  19. Surface superconductivity and twinning-plane superconductivity in aluminum

    SciTech Connect

    Khlyustikov, I. N.

    2006-02-15

    The critical supercooling field H{sub sc} is measured in aluminum single crystals and twinned bicrystals in a temperature range slightly below T{sub c0} (T{sub c0} - 0.055 K < T < T{sub c0}), where T{sub c0} is the critical superconducting transition temperature. It is found that, even in this small temperature range, the H{sub sc}(H{sub c}) dependence, which is considered to be identical to the H{sub c3}(H{sub c}) dependence for single crystals, is substantially nonlinear. The H{sub sc}(H{sub c}) dependences of the twinned bicrystals and single crystals are shown to be significantly different. The qualitative features of the phase diagram of the twinned aluminum bicrystals coincide with those of the phase diagram of twinning-plane superconductivity obtained earlier. These findings allow the conclusion that the phenomenon of twinning-plane superconductivity also exists in face-centered cubic crystal lattices.

  20. Superconducting heavy ion injector linac

    SciTech Connect

    Shepard, K.W.

    1985-01-01

    A conceptual design for a very low velocity (.007 < v/c < .07) superconducting heavy-ion linac is reviewed. This type of linac may have significant cost and performance advantages over room-temperature linacs, at least for applications requiring modest beam currents. Some general features of the design of very-low velocity superconducting accelerating structures are discussed and a design for a 48.5 MHz, v/c = .009 structure, together with the status of a niobium prototype, is discussed in detail. Preliminary results of a beam dynamics study indicate that the low velocity linac may be able to produce heavy-ion beams with time-energy spreads of a few keV-nsec. 11 refs, 4 figs.

  1. Characterizing Ensembles of Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Sears, Adam; Birenbaum, Jeff; Hover, David; Rosenberg, Danna; Weber, Steven; Yoder, Jonilyn L.; Kerman, Jamie; Gustavsson, Simon; Kamal, Archana; Yan, Fei; Oliver, William

    We investigate ensembles of up to 48 superconducting qubits embedded within a superconducting cavity. Such arrays of qubits have been proposed for the experimental study of Ising Hamiltonians, and efficient methods to characterize and calibrate these types of systems are still under development. Here we leverage high qubit coherence (> 70 μs) to characterize individual devices as well as qubit-qubit interactions, utilizing the common resonator mode for a joint readout. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  2. Superconducting magnet technology for accelerators

    SciTech Connect

    Palmer, R.; Tollestrup, A.V.

    1984-03-01

    A review article on superconducting magnets for accelerators should first answer the question, why superconductivity. The answer revolves around two pivotal facts: (1) fields in the range of 2 T to 10 T can be achieved; and (2) the operating cost can be less than conventional magnets. The relative importance of these two factors depends on the accelerator. In the case where an upgrade of an accelerator at an existing facility is planned, the ability to obtain fields higher than conventional magnets leads directly to an increase in machine energy for the given tunnel. In the case of a new facility, both factors must be balanced for the most economical machine. Ways to achieve this are discussed.

  3. Perturbative nature of color superconductivity

    SciTech Connect

    Brown, William E.; Liu, James T.; Ren, Hai-cang

    2000-06-01

    Color superconductivity is a possible phase of high density QCD. We present a systematic derivation of the transition temperature T{sub C} from the QCD Lagrangian through study of the di-quark proper vertex. With this approach, we confirm the dependence of T{sub C} on the coupling g, namely T{sub C}{approx}{mu}g{sup -5}e{sup -{kappa}}{sup /g}, previously obtained from the one-gluon exchange approximation in the superconducting phase. The diagrammatic approach we employ allows us to examine the perturbative expansion of the vertex and the propagators. We find an additional O(1) contribution to the prefactor of the exponential from the one-loop quark self energy and that the other one-loop radiative contributions and the two gluon exchange vertex contribution are subleading. (c) 2000 The American Physical Society.

  4. Superconductivity in the Tungsten Bronzes

    NASA Astrophysics Data System (ADS)

    Wu, Phillip; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, Robert H.; Tokiwa, Kazuyasu; Geballe, Theodore H.; Beasley, Malcolm R.

    2015-03-01

    Via pulsed laser deposition and post-annealing, high quality K-doped WO3-y films with reproducible transport properties are obtained. A home built two-coil mutual inductance setup is used to probe the behavior of the films in the superconducting and normal state. The inverse penetration depths and dissipation peaks are measured as a function of temperature and field. Separately, via thin film deposition techniques, we report for the first time stable crystalline hexagonal WO3 on substrates. In order to tune the physical properties of the undoped material, we utilized an ionic liquid gating technique. We observe an insulator-to-metal transition, showing the ionic liquid gate to be a viable technique to alter the electrical transport properties of this material. By comparing the alkali and ionic liquid gated WO3, we conclude with some remarks regarding how superconductivity arises in this system.

  5. Surface superconductivity in thin cylindrical Bi nanowire.

    PubMed

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress.

  6. Tunable high-q superconducting notch filter

    DOEpatents

    Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.

    1979-11-29

    A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.

  7. Superconducting Cable Having A Felexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-15

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  8. Superconducting Cable Having A Flexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-08-30

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  9. Surface superconductivity in thin cylindrical Bi nanowire.

    PubMed

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress. PMID:25658139

  10. The Signature of Inhomogeneous Superconductivity

    NASA Astrophysics Data System (ADS)

    Agosta, Charles C.; Bishop-Van Horn, Logan; Newman, Max

    2016-11-01

    Superconductivity can be inhomogeneous, having a periodically modulated order parameter, in materials that have long electronic mean free paths and where the effects of vortices are suppressed. One class of materials that has these properties is crystalline organic superconductors. They are stoichiometric compounds and highly anisotropic crystals such that the vortices that form can hide in the least conducting layers. We analyze recent data to look for complexity in the inhomogeneous states, such as changes in the order parameter nodal structure.

  11. The Signature of Inhomogeneous Superconductivity

    NASA Astrophysics Data System (ADS)

    Agosta, Charles C.; Bishop-Van Horn, Logan; Newman, Max

    2016-09-01

    Superconductivity can be inhomogeneous, having a periodically modulated order parameter, in materials that have long electronic mean free paths and where the effects of vortices are suppressed. One class of materials that has these properties is crystalline organic superconductors. They are stoichiometric compounds and highly anisotropic crystals such that the vortices that form can hide in the least conducting layers. We analyze recent data to look for complexity in the inhomogeneous states, such as changes in the order parameter nodal structure.

  12. Medium Beta Superconducting Accelerating Structures

    SciTech Connect

    Jean Delayen

    2001-09-01

    While, originally, the development of superconducting structures was cleanly divided between low-beta resonators for heavy ions and beta=1 resonators for electrons, recent interest in protons accelerators (high and low current, pulsed and cw) has necessitated the development of structures that bridge the gap between the two. These activities have resulted both in new geometries and in the adaptation of well-known geometries optimized to this intermediate velocity range. Their characteristics and properties are reviewed.

  13. Stimulated Superconductivity at Strong Coupling

    SciTech Connect

    Bao, Ning; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

  14. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-02-02

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  15. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-01-01

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  16. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  17. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  18. Coupled Array of Superconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Ursache, Andrei

    2005-03-01

    We present experiments that investigate the collective behavior of arrays of superconducting lead nanowires with diameters smaller than the coherence length. The ultrathin (˜15nm) nanowires are grown by pulse electrodeposition into porous self-assembled P(S-b-MMA) diblock copolymer templates. The closely packed (˜24 nm spacing) 1-D superconducting nanowires stand vertically upon a thin normal (Au or Pt) film in a brush-like geometry. Thereby, they are coupled to each other by Andreev reflection at the S-N (Pb-Au) point contact interfaces. Magnetization measurements reveal that the ZFC/FC magnetic response of the coupled array system can be irreversible or reversible, depending on the orientation, perpendicular or parallel, of the applied magnetic field with respect to the coupling plane. As found by electric transport measurements, the coupled array system undergoes an in plane superconducting resistive transition at a temperature smaller than the Tc of an individual nanowire. Current-voltage characteristics throughout the transition region are also discussed. This work was supported by NSF grant DMI-0103024 and DMR-0213695.

  19. Superconducting electron and hole lenses

    NASA Astrophysics Data System (ADS)

    Cheraghchi, H.; Esmailzadeh, H.; Moghaddam, A. G.

    2016-06-01

    We show how a superconducting region (S), sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so-called crossed Andreev reflection (CAR). The CAR process, which is equivalent to Cooper pair splitting into two N electrodes, provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here are fundamentally different from the electron focusing in other systems, such as graphene p-n junctions. In particular, due to the electron-hole symmetry of the superconducting state, the focusing of electrons and holes is robust against thermal excitations. Furthermore, the effects of the superconducting layer width, the injection point position, and barrier strength are investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barrier strength, one can separately control the density of electrons or holes at the focuses.

  20. Superconducting thin films on potassium tantalate substrates

    DOEpatents

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  1. Superconducting magnet for the Maglev transport system

    NASA Astrophysics Data System (ADS)

    Nakashima, Hiroshi

    1994-07-01

    Magnetically levitated vehicles (Maglev) using superconducting magnets have been under development in Japan for the past 23 years. The superconducting magnets for the Maglev system are used in a special environment compared to other applications. They have to work stably subject to both mechanical and electromagnetic disturbances. The brief history of the Maglev development in Japan, the planning of new test line, the superconducting magnet's stability and the on-board refrigeration system will be presented.

  2. Superconductivity in the palladium-hydrogen system

    NASA Technical Reports Server (NTRS)

    Papaconstantopoulos, D. A.; Klein, B. M.

    1975-01-01

    Band theory and phonon measurements are used to calculate the electron-phonon coupling constant wavelength for Pd and PdD. The results indicate that superconductivity is absent in Pd metal because of the large value of the Coulomb pseudopotential, and that superconductivity occurs in PdD primarily because of coupling with the optic phonons. These results are consistent with superconducting transition-temperature measurements for these systems.

  3. Quantum fluctuations of the superconducting cosmic string

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng

    1987-01-01

    Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.

  4. Superconducting fault current limiter for railway transport

    NASA Astrophysics Data System (ADS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  5. Superconducting fault current limiter for railway transport

    SciTech Connect

    Fisher, L. M. Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  6. New Advance in SuperConducting Materials

    SciTech Connect

    2009-03-02

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  7. EU contribution to the test and analysis of the ITER poloidal field conductor insert and the central solenoid model coil

    NASA Astrophysics Data System (ADS)

    Zanino, R.; Bagnasco, M.; Ciazynski, D.; Lacroix, B.; van Lanen, E. P. A.; Nicollet, S.; Nijhuis, A.; Savoldi Richard, L.; Sborchia, C.; Torre, A.; Vostner, A.; Zani, L.

    2009-08-01

    The PFCI is a single-layer solenoid wound from a 45 m long ITER-type NbTi dual-channel cable-in-conduit conductor, designed to be representative of the one currently proposed for the ITER PF1&6 coils. The PFCI, installed in the bore of the ITER central solenoid model coil (CSMC) at JAEA Naka, Japan, and well instrumented from both the thermal hydraulic and the electromagnetic points of view, has been successfully tested in June-August 2008. The test concentrated on DC performance (current sharing temperature and critical current measurements) and AC loss measurements. The results of the analysis of those measurements are reported in the paper, with particular attention to the comparison with the PFCI short sample, which was previously tested in the SULTAN facility. The evolution of the DC performance of the CSMC is also discussed.

  8. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  9. Improved thermal isolation for superconducting magnet systems

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R.

    1974-01-01

    Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.

  10. Superconducting Materials, Magnets and Electric Power Applications

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2011-03-01

    The surprising discovery of superconductivity a century ago launched a chain of convention-shattering innovations and discoveries in superconducting materials and applications that continues to this day. The range of large-scale applications grows with new materials discoveries - low temperature NbTi and Nb3 Sn for liquid helium cooled superconducting magnets, intermediate temperature MgB2 for inexpensive cryocooled applications including MRI magnets, and high temperature YBCO and BSSCO for high current applications cooled with inexpensive liquid nitrogen. Applications based on YBCO address critical emerging challenges for the electricity grid, including high capacity superconducting cables to distribute power in urban areas; transmission of renewable electricity over long distances from source to load; high capacity DC interconnections among the three US grids; fast, self-healing fault current limiters to increase reliability; low-weight, high capacity generators enabling off-shore wind turbines; and superconducting magnetic energy storage for smoothing the variability of renewable sources. In addition to these grid applications, coated conductors based on YBCO deposited on strong Hastelloy substrates enable a new generation of all superconducting high field magnets capable of producing fields above 30 T, approximately 50% higher than the existing all superconducting limit based on Nb3 Sn . The high fields, low power cost and the quiet electromagnetic and mechanical operation of such magnets could change the character of high field basic research on materials, enable a new generation of high-energy colliding beam experiments and extend the reach of high density superconducting magnetic energy storage.

  11. Developing of superconducting niobium cavities for accelerators

    NASA Astrophysics Data System (ADS)

    Pobol, I. L.; Yurevich, S. V.

    2015-11-01

    The results of a study of structure and mechanical properties of welding joints, superconducting characteristics of the material after joining of welded components of superconducting radio frequency cavities are presented. The paper also describes the results of testing of the RF 1.3 GHz single-cell niobium cavity manufactured in the PTI NAS Belarus.

  12. Quantum logic gates for superconducting resonator qudits

    SciTech Connect

    Strauch, Frederick W.

    2011-11-15

    We study quantum information processing using superpositions of Fock states in superconducting resonators as quantum d-level systems (qudits). A universal set of single and coupled logic gates is theoretically proposed for resonators coupled by superconducting circuits of Josephson junctions. These gates use experimentally demonstrated interactions and provide an attractive route to quantum information processing using harmonic oscillator modes.

  13. Superconducting magnets. Citations from NTIS data base

    NASA Astrophysics Data System (ADS)

    Reimherr, G. W.

    1980-10-01

    The cited reports discuss research on materials studies, theory, design and applications of superconducting magnets. Examples of applications include particle accelerators, MHD power generation, superconducting generators, nuclear fusion research devices, energy storage systems, and magnetic levitation. This updated bibliography contains 218 citations, 88 of which are new entries to the previous edition.

  14. Use of high-temperature superconducting films in superconducting bearings.

    SciTech Connect

    Cansiz, A.

    1999-07-14

    We have investigated the effect of high-temperature superconductor (HTS) films deposited on substrates that are placed above bulk HTSs in an attempt to reduce rotational drag in superconducting bearings composed of a permanent magnet levitated above the film/bulk HTS combination. According to the critical state model, hysteresis energy loss is inversely proportional to critical current density, J{sub c}, and because HTS films typically have much higher J{sub c} than that of bulk HTS, the film/bulk combination was expected to reduce rotational losses by at least one order of magnitude in the coefficient of fiction, which in turn is a measure of the hysteresis losses. We measured rotational losses of a superconducting bearing in a vacuum chamber and compared the losses with and without a film present. The experimental results showed that contrary to expectation, the rotational losses are increased by the film. These results are discussed in terms of flux drag through the film, as well as of the critical state model.

  15. Microelectronic superconducting crossover and coil

    DOEpatents

    Wellstood, F.C.; Kingston, J.J.; Clarke, J.

    1994-03-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3]; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions. 13 figures.

  16. The interminable adolescence of superconductivity

    SciTech Connect

    Kolm, H.H.

    1988-12-01

    The author contends that superconductivity has failed to mature into a practical technology seventy-seven years after its discovery because Americans have lacked the curiosity to understand it, the imagination to appreciate it, and the spirit of enterprise to develop it, and that America is about to miss its last chance to regain technical leadership and economic security if it continues to pretend that higher transition temperature materials alone will change the situation. He goes on to discuss a range of applications, including high-gradient magnetic separation and filtration magnetically levitated transportation and makes recommendations for future materials and application research.

  17. High specific heat superconducting composite

    DOEpatents

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  18. Artificial nets from superconducting nanogranules

    SciTech Connect

    Ovchinnikov, Yu. N.; Kresin, V. Z.

    2012-06-15

    We show that a large transport current can flow through superconducting nets composed of nano-clusters. Although thermal and quantum fluctuations lead to a finite value of dissipation, this value can be very small in one- and two-dimensional systems for realistic parameters of the nanoclusters and distances between them. The value of the action for vortex tunneling at zero temperature can be made sufficiently large to make the dissipation negligibly small. We estimate the temperature T{sub 0} of the transition from the thermal activation to quantum tunneling.

  19. Toward a superconducting quantum computer

    PubMed Central

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers. PMID:20431256

  20. Exotic Superconductivity in Correlated Electron Systems

    SciTech Connect

    Mu, Gang; Sandu, Viorel; Li, Wei; Shen, Bing

    2015-05-25

    Over the past decades, the search for high-Tc superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high-c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge, spin, orbital, and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.

  1. Free-standing oxide superconducting articles

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  2. STRIPES AND SUPERCONDUCTIVITY IN CUPRATE SUPERCONDUCTORS

    SciTech Connect

    TRANQUADA, J.M.

    2005-08-22

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

  3. Superconducting Radio Frequency Technology: An Overview

    SciTech Connect

    Peter Kneisel

    2003-06-01

    Superconducting RF cavities are becoming more often the choice for larger scale particle accelerator projects such as linear colliders, energy recovery linacs, free electron lasers or storage rings. Among the many advantages compared to normal conducting copper structures, the superconducting devices dissipate less rf power, permit higher accelerating gradients in CW operation and provide better quality particle beams. In most cases these accelerating cavities are fabricated from high purity bulk niobium, which has superior superconducting properties such as critical temperature and critical magnetic field when compared to other superconducting materials. Research during the last decade has shown, that the metallurgical properties--purity, grain structure, mechanical properties and oxidation behavior--have significant influence on the performance of these accelerating devices. This contribution attempts to give a short overview of the superconducting RF technology with emphasis on the importance of the material properties of the high purity niobium.

  4. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  5. Superconducting magnet needs for the ILC

    SciTech Connect

    Tompkins, J.C.; Kashikhin, Vl.; Parker, B.; Palmer, M.A. /; Clarke, J.A.; /Daresbury

    2007-06-01

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the ILC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  6. Exotic Superconductivity in Correlated Electron Systems

    DOE PAGES

    Mu, Gang; Sandu, Viorel; Li, Wei; Shen, Bing

    2015-05-25

    Over the past decades, the search for high-Tc superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high-c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge, spin, orbital,more » and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.« less

  7. Molybdenum-rhenium superconducting suspended nanostructures

    SciTech Connect

    Aziz, Mohsin; Christopher Hudson, David; Russo, Saverio

    2014-06-09

    Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO{sub 2} sacrificial layer. Suspended superconducting channels as narrow as 50 nm and length 3 μm have a critical temperature of ≈6.5 K, which can increase by 0.5 K upon annealing at 400 °C. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

  8. Recent Progress in the Superconductivity Research Field

    NASA Astrophysics Data System (ADS)

    Ichinose, Ataru

    Major developments in the research field of superconductivity have been achieved in 2008. Since the discovery of high-Tc superconductors, their practical application has been studied by many researchers. Coated conductors consisting of an YBa2Cu3Oy superconducting layer deposited on metal tapes buffered oxide layers were developed in the NEDO project between FY2003 and FY2007. These technologies for coated conductors are expected to be applicable to electrical power equipment. A new NEDO project that started in FY2008 is focusing on the development of superconducting electric power equipment such as power cables, superconducting magnetic energy storage devices (SMES) and transformers. Furthermore, a new family of high-Tc superconductors, Fe-As-O-based superconductors, has been discovered. The highest reported critical temperature, Tc, has rapidly increased owing to the considerable effort of many researchers. A new social environment based on superconductivity technology might indeed be realized in the near future.

  9. Focus on superconducting properties of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2012-10-01

    Since the discovery of iron-based superconductors, much attention has been given to the exploration of new superconducting compounds. Numerous superconducting iron compounds have been found and categorized into five groups: LnFeAsO (Ln = lanthanide), BaFe2As2, KFeAs, FeSe and FeAs with perovskite blocking layers. Among them, FeSe has the simplest crystal structure. Since the crystal structure is composed of only superconducting Fe layers, the FeSe family must be the best material to investigate the mechanism of iron-based superconductivity. FeSe shows very strong pressure effects. The superconducting transition temperature (Tc) of FeSe is approximately 8 K at ambient pressure. However Tc dramatically increases up to 37 K under applied pressure of 4-6 GPa. This is the third highest Tc value among binary superconductors, surpassed only by CsC60 under pressure (Tc = 38 K) and MgB2 (Tc = 39 K). On the other hand, despite FeTe having a crystal structure analogous to that of FeSe, FeTe shows antiferromagnetic properties without superconductivity. Doping of small ions, either Se or S, however, can induce superconductivity in FeTe1-xSex or FeTe1-xSx . The superconductivity is very weak for small x values, and annealing under certain conditions is required to obtain strong superconductivity, for instance annealing in oxygen or alcoholic beverages such as red wine. The following selection of papers describe many important experimental and theoretical studies on iron chalcogenide superconductors including preparation of single crystals, bulk samples and thin films; NMR measurements; photoemission spectroscopy; high-pressure studies; annealing effects and research on new BiS2-based superconductors. I hope this focus issue will help researchers understand the frontiers of iron chalcogenide superconductors and assist in the discovery of new phenomena related to iron-based superconductivity.

  10. Thermostatted dual-channel portable capillary electrophoresis instrument.

    PubMed

    Koenka, Israel Joel; Küng, Nina; Kubáň, Pavel; Chwalek, Thomas; Furrer, Gerhard; Wehrli, Bernhard; Müller, Beat; Hauser, Peter C

    2016-09-01

    A new portable CE instrument is presented. The instrument features the concurrent separation of anions and cations in parallel channels. Each channel has a separate buffer container to allow independent optimization of separation conditions. The microfluidics circuit is based on off-the-shelf parts, and can be easily replicated; only four valves are present in the design. The system employs a miniature automated syringe pump, which can apply both positive and negative pressures (-100 to 800 kPa). The application of negative pressure allows a semi-automatic mode of operation for introducing volume-limited samples. The separations are performed in a thermostatted compartment for improved reproducibility in field conditions. The instrument has a compact design, with all components, save for batteries and power supplies, arranged in a briefcase with dimensions of 52 × 34 × 18 cm and a weight of less than 15 kg. The system runs automatically and is controlled by a purpose-made graphical user interface on a connected computer. For demonstration, the system was successfully employed for the concurrent separation and analysis of inorganic cations and anions in sediment porewater samples from Lake Baldegg in Switzerland and of metal ions in a sample from the tailing pond of an abandoned mine in Argentina. PMID:27296618

  11. Real Time Dual-Channel Multiplex SERS Ultradetection.

    PubMed

    Abalde-Cela, Sara; Abell, Chris; Alvarez-Puebla, Ramón A; Liz-Marzán, Luis M

    2014-01-01

    Surface-enhanced Raman scattering (SERS) can be combined with microfluidics for rapid multiplex analyte screening. Through combination of the high intensity and complex signals provided by SERS with the flow characteristics of microfluidic channels, we engineered a microdevice that is capable of monitoring various analytes from different sources in real time. Detection limits down to the nM range may allow the generation of a new family of devices for remote, real time monitoring of environmental samples such as natural or waste waters and application to the high-throughput screening of multiple samples in healthcare diagnostics. PMID:26276183

  12. DC superconducting fault current limiter

    NASA Astrophysics Data System (ADS)

    Tixador, P.; Villard, C.; Cointe, Y.

    2006-03-01

    There is a lack of satisfying solutions for fault currents using conventional technologies, especially in DC networks, where a superconducting fault current limiter could play a very important part. DC networks bring a lot of advantages when compared to traditional AC ones, in particular within the context of the liberalization of the electric market. Under normal operation in a DC network, the losses in the superconducting element are nearly zero and only a small, i.e. a low cost, refrigeration system is then required. The absence of zero crossing of a DC fault current favourably accelerates the normal zone propagation. The very high current slope at the time of the short circuit in a DC grid is another favourable parameter. The material used for the experiments is YBCO deposited on Al2O3 as well as YBCO coated conductors. The DC limitation experiments are compared to AC ones at different frequencies (50-2000 Hz). Careful attention is paid to the quench homogenization, which is one of the key issues for an SC FCL. The University of Geneva has proposed constrictions. We have investigated an operating temperature higher than 77 K. As for YBCO bulk, an operation closer to the critical temperature brings a highly improved homogeneity in the electric field development. The material can then absorb large energies without degradation. We present tests at various temperatures. These promising results are to be confirmed over long lengths.

  13. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  14. The Hardest Superconducting Metal Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-01

    Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  15. Piezoelectric tunable microwave superconducting cavity

    NASA Astrophysics Data System (ADS)

    Carvalho, N. C.; Fan, Y.; Tobar, M. E.

    2016-09-01

    In the context of engineered quantum systems, there is a demand for superconducting tunable devices, able to operate with high-quality factors at power levels equivalent to only a few photons. In this work, we developed a 3D microwave re-entrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which controls the resonator dominant mode frequency by changing the cavity narrow gap by very small displacements. Experiments were conducted at room and dilution refrigerator temperatures showing a large dynamic range up to 4 GHz and 1 GHz, respectively, and were compared to a finite element method model simulated data. At elevated microwave power input, nonlinear thermal effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the re-entrant cavity.

  16. The Hardest Superconducting Metal Nitride

    SciTech Connect

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  17. Recent developments in superconducting receivers

    SciTech Connect

    Richards, P.L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high {Tc} superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high {Tc} bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  18. The Hardest Superconducting Metal Nitride

    PubMed Central

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-01-01

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements. PMID:26333418

  19. The Hardest Superconducting Metal Nitride

    DOE PAGES

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  20. Superconducting coil and method of stress management in a superconducting coil

    DOEpatents

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  1. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, J.T.; Hargrove, R.S.

    1989-12-12

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  2. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, James T.; Hargrove, R. Steven

    1989-01-01

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40.degree. K. and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  3. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  4. Superconductivity in Ca-doped graphene laminates.

    PubMed

    Chapman, J; Su, Y; Howard, C A; Kundys, D; Grigorenko, A N; Guinea, F; Geim, A K; Grigorieva, I V; Nair, R R

    2016-03-16

    Despite graphene's long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc's strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  5. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  6. Superconductivity in the ferromagnetic semiconductor samarium nitride

    NASA Astrophysics Data System (ADS)

    Anton, E.-M.; Granville, S.; Engel, A.; Chong, S. V.; Governale, M.; Zülicke, U.; Moghaddam, A. G.; Trodahl, H. J.; Natali, F.; Vézian, S.; Ruck, B. J.

    2016-07-01

    Conventional wisdom expects that making semiconductors ferromagnetic requires doping with magnetic ions and that superconductivity cannot coexist with magnetism. However, recent concerted efforts exploring new classes of materials have established that intrinsic ferromagnetic semiconductors exist and that certain types of strongly correlated metals can be ferromagnetic and superconducting at the same time. Here we show that the trifecta of semiconducting behavior, ferromagnetism, and superconductivity can be achieved in a single material. Samarium nitride (SmN) is a well-characterized intrinsic ferromagnetic semiconductor, hosting strongly spin-ordered 4 f electrons below a Curie temperature of 27 K. We have now observed that it also hosts a superconducting phase below 4 K when doped to electron concentrations above 1021cm-3 . The large exchange splitting of the conduction band in SmN favors equal-spin triplet pairing with p -wave symmetry. Significantly, superconductivity is enhanced in superlattices of gadolinium nitride (GdN) and SmN. An analysis of the robustness of such a superconducting phase against disorder leads to the conclusion that the 4 f bands are crucial for superconductivity, making SmN a heavy-fermion-type superconductor.

  7. Superconductivity in Ca-doped graphene laminates

    PubMed Central

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-01-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564

  8. Superconductivity in Ca-doped graphene laminates

    NASA Astrophysics Data System (ADS)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-03-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  9. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    SciTech Connect

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  10. DC CICC retrofit magnet preliminary design, protection analysis, and software development. Final report

    SciTech Connect

    Marston, P.G.

    1994-04-28

    The MIT Plasma Fusion Center magnet technology development effort, in support of the DOE/PETC MHD program, has culminated in two recent innovations which, when combined, will not only improve the reliability of commercial scale MHD magnets but will also reduce their cost by a factor of two. The first of these is a new form of Cable In Conduit Conductor (CICC) designed specifically for large scale DC superconducting magnets and the second is a highly efficient, quasi-momentless force containment which is made possible by the new conductor.

  11. Superconductivity Engineering and Its Application for Fusion 3.Superconducting Technology as a Gateway to Future Technology

    NASA Astrophysics Data System (ADS)

    Asano, Katsuhiko

    Hopes for achieving a new source of energy through nuclear fusion rest on the development of superconducting technology that is needed to make future equipments more energy efficient as well as increase their performance. Superconducting technology has made progress in a wide variety of fields, such as energy, life science, electronics, industrial use and environmental improvement. It enables the actualization of equipment that was unachievable with conventional technology, and will sustain future “IT-Based Quality Life Style”, “Sustainable Environmental” and “Advanced Healthcare” society. Besides coil technology with high magnetic field performance, superconducting electoronics or device technology, such as SQUID and SFQ-circuit, high temperature superconducting material and advanced cryogenics technology might be great significance in the history of nuclear fusion which requires so many wide, high and ultra technology. Superconducting technology seems to be the catalyst for a changing future society with nuclear fusion. As society changes, so will superconducting technology.

  12. MagRad: A code to optimize the operation of superconducting magnets in a radiation environment

    SciTech Connect

    Yeaw, C.T.

    1995-12-31

    A powerful computational tool, called MagRad, has been developed which optimizes magnet design for operation in radiation fields. Specifically, MagRad has been used for the analysis and design modification of the cable-in-conduit conductors of the TF magnet systems in fusion reactor designs. Since the TF magnets must operate in a radiation environment which damages the material components of the conductor and degrades their performance, the optimization of conductor design must account not only for start-up magnet performance, but also shut-down performance. The degradation in performance consists primarily of three effects: reduced stability margin of the conductor; a transition out of the well-cooled operating regime; and an increased maximum quench temperature attained in the conductor. Full analysis of the magnet performance over the lifetime of the reactor includes: radiation damage to the conductor, stability, protection, steady state heat removal, shielding effectiveness, optimal annealing schedules, and finally costing of the magnet and reactor. Free variables include primary and secondary conductor geometric and compositional parameters, as well as fusion reactor parameters. A means of dealing with the radiation damage to the conductor, namely high temperature superconductor anneals, is proposed, examined, and demonstrated to be both technically feasible and cost effective. Additionally, two relevant reactor designs (ITER CDA and ARIES-II/IV) have been analyzed. Upon addition of pure copper strands to the cable, the ITER CDA TF magnet design was found to be marginally acceptable, although much room for both performance improvement and cost reduction exists. A cost reduction of 10-15% of the capital cost of the reactor can be achieved by adopting a suitable superconductor annealing schedule. In both of these reactor analyses, the performance predictive capability of MagRad and its associated costing techniques have been demonstrated.

  13. Tensor network characterization of superconducting circuits

    NASA Astrophysics Data System (ADS)

    Duclos-Cianci, Guillaume; Poulin, David; Najafi-Yazdi, Alireza

    Superconducting circuits are promising candidates in the development of reliable quantum computing devices. In principle, one can obtain the Hamiltonian of a generic superconducting circuit and solve for its eigenvalues to obtain its energy spectrum. In practice, however, the computational cost of calculating eigenvalues of a complex device with many degrees of freedom can become prohibitively expensive. In the present work, we investigate the application of tensor network algorithms to enable efficient and accurate characterization of superconducting circuits comprised of many components. Suitable validation test cases are performed to study the accuracy, computational efficiency and limitations of the proposed approach.

  14. Nanoelectromechanics of superconducting weak links (Review Article)

    NASA Astrophysics Data System (ADS)

    Parafilo, A. V.; Krive, I. V.; Shekhter, R. I.; Jonson, M.

    2012-04-01

    Nanoelectromechanical effects in superconducting weak links are considered. Three different superconducting devices are studied: (i) a single-Cooper-pair transistor, (ii) a transparent SNS junction, and (iii) a single-level quantum dot coupled to superconducting electrodes. The electromechanical coupling is due to electrostatic or magnetomotive forces acting on a movable part of the device. It is demonstrated that depending on the frequency of mechanical vibrations the electromechanical coupling could either suppress or enhance the Josephson current. Nonequilibrium effects associated with cooling of the vibrational subsystem or pumping energy into it at low bias voltages are discussed.

  15. Dimensionality of high temperature superconductivity in oxides

    NASA Technical Reports Server (NTRS)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  16. Superconductivity in Pd, Ir, and Pt chalcogenide

    NASA Astrophysics Data System (ADS)

    Oh, Yoon Seok; Yang, Junjie; Choi, Y. J.; Hogan, A.; Horibe, Y.; Cheong, S.-W.

    2012-02-01

    Large spin-orbit coupling in materials with heavy chalcogens can result in unique quantum states or functional properties such as topological insulator, giant thermoelectric power, and superconductivity. When materials contain heavy cations in addition to heavy chalcogens, spin-orbit coupling can be further enhanced. For these reasons, we have studied the superconductivity of Pd, Ir, and Pt tellurides and selenides. In the exploration of these chalcogenides, we have focused on the competition between superconductivity and charge density wave that is associated with superlattice reflections.

  17. Nb-Pb Superconducting RF Gun

    SciTech Connect

    Sekutowicz, J.; Iversen, J.; Kreps, G.; Moller, W.D.; Singer, W.; Singer, X.; Ben-Zvi, I.; Burrill, A.; Smedley, J.; Rao, T.; Ferrario, M.; Kneisel, P.; Langner, J.; Strzyzewski, P.; Lefferts, R.; Lipski, A.; Szalowski, K.; Ko, K.; Xiao, L.; /SLAC

    2006-03-29

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  18. Nb-Pb superconducting RF gun

    SciTech Connect

    J. Sekutowicz; J. Iversen; G. Kreps; W.D. Moller; W. Singer; X. Singer; I. Ben-Zvi; A. Burrill; J. Smedley; T. Rao; M. Ferrario; P. Kneisel; J. Langner; P. Strzyzewski; R. Lefferts; A. Lipski; K. Szalowski; K. Ko; L. Xiao

    2006-04-14

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  19. Superconducting-wire fabrication. Final report

    SciTech Connect

    Glad, W.E.; Chase, G.G.

    1990-05-01

    Experiments were done leading to the fabrication of high-temperature superconducting composite wire. Bulk superconductor was characterized by using optical microscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. The chemical compatibility of superconducting materials with a number of metal sheathing candidates was tested, with silver offering the best compatibility. Wire was fabricated by drawing 0.250-inch-diameter silver tubing packed with superconducting powder. Single core wires were drawn to 0.037-inch diameter. The best critical current performance (660 A/cm2) for leaded bismuth 2-2-2-3 material was achieved by flattening single-core wire before heat treatment.

  20. Superconductivity: will its potential be realized

    SciTech Connect

    Lerner, E.J.

    1980-04-01

    The article surveys possible applications of superconductivity and the question of how rapidly or whether this potential will be realized. Attention is given to applications such as magnetic levitation trains, Josephson junction computers, new means of cancer detection, and water purification. Also discussed are the use of superconducting magnets to produce the high fields needed for nuclear fusion plants and for magnetohydrodynamic generators. Further, experiments under way on superconducting power lines for virtually lossless transmission of electric power are examined. It is concluded that the main obstacle to implementation of such applications is the reluctance of American business and government to invest in further research.

  1. Superconductivity in transuranium elements and compounds

    NASA Astrophysics Data System (ADS)

    Griveau, Jean-Christophe; Colineau, Éric

    2014-08-01

    We present here an overview of the properties of transuranium superconductors, but also of the (non-superconducting) transuranium analogues of uranium superconductors. We briefly review superconductivity in actinide elements and uranium compounds and focus in particular on the PuTX5 (T=Co,Rh; X=Ga,In) series, the largest superconducting system in actinides and NpPd5Al2, the so far unique neptunium superconductor. The effects of chemical substitution, ageing and pressure on the properties of transuranium superconductors are also discussed. xml:lang="fr"

  2. Introduction to high-temperature superconductivity

    SciTech Connect

    Sheahen, T.P.

    1994-12-31

    The Electric Power Research Institute, as part of its program to develop high-temperature superconductivity applications for the power industry, has endevoured to educate utility engineers and executives on superconductivity. This book is a series of tutorials prepared by the Argonne National Laboratory. Part one is at an introductory level, asking and answering the question `What is superconductivity?` Part 2 is an exposition of the basic properties of the new materials - structure, phase equilibria, effects of doping, etc. with consideration of theoretical issues. Part 3 covers potential practical uses of high temperature superconductors.

  3. Accelerator magnet designs using superconducting magnetic shields

    SciTech Connect

    Brown, B.C.

    1990-10-01

    Superconducting dipoles and quadrupoles for existing accelerators have a coil surrounded by an iron shield. The shield limits the fringe field of the magnet while having minimal effect on the field shape and providing a small enhancement of the field strength. Shields using superconducting materials can be thinner and lighter and will not experience the potential of a large de-centering force. Boundary conditions for these materials, material properties, mechanical force considerations, cryostat considerations and some possible geometrical configurations for superconducting shields will be described. 7 refs., 3 figs., 3 tabs.

  4. Downsized superconducting magnetic energy storage systems

    NASA Astrophysics Data System (ADS)

    Palmer, David N.

    Scaled-down superconductive magnetic energy storage systems (DSMES) and superconductive magnetic energy power sources (SMEPS) are proposed for residential, commercial/retail, industrial off-peak and critical services, telephone and other communication systems, computer operations, power back-up/energy storages, power sources for space stations, and in-field military logistics/communication systems. Recent advances in high-Tc superconducting materials technology are analyzed. DSMES/SMEPS concepts are presented, and design, materials, and systems requirements are discussed. Problems ar identified, and possible solutions are offered. Comparisons are made with mechanical and primary and secondary energy storage and conversion systems.

  5. Superconducting materials for the SSC

    SciTech Connect

    Scanlan, R.; Royet, J.; Taylor, C.E.

    1985-08-01

    The proposed Superconducting Supercollider presents several new challenges with regard to materials for dipole magnets. One design requires a NbTi superconductor with J/sub c/ (5T) greater than 2400 A/mm/sup 2/, whereas the Tevatron recently completed at Fermilab required a J/sub c/ (5T) greater than or equal to 1800 A/mm/sup 2/. In addition, the high field design requires a conductor with a filament diameter of about 2.5 ..mu..m, if correction coils are to be eliminated. Finally, the high field design utilizes a 30-strand cable which again is a significant increase from the 23-strand cable used in the Tevatron. This paper describes the results of recent R and D programs aimed at meeting the stringent material requirements for the SSC.

  6. Coherent controlization using superconducting qubits.

    PubMed

    Friis, Nicolai; Melnikov, Alexey A; Kirchmair, Gerhard; Briegel, Hans J

    2015-01-01

    Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect.

  7. Subranging technique using superconducting technology

    DOEpatents

    Gupta, Deepnarayan

    2003-01-01

    Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.

  8. Quantum trajectories of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Weber, Steven J.; Murch, Kater W.; Kimchi-Schwartz, Mollie E.; Roch, Nicolas; Siddiqi, Irfan

    2016-08-01

    In this review, we discuss recent experiments that investigate how the quantum sate of a superconducting qubit evolves during measurement. We provide a pedagogical overview of the measurement process, when the qubit is dispersively coupled to a microwave frequency cavity, and the qubit state is encoded in the phase of a microwave tone that probes the cavity. A continuous measurement record is used to reconstruct the individual quantum trajectories of the qubit state, and quantum state tomography is performed to verify that the state has been tracked accurately. Furthermore, we discuss ensembles of trajectories, time-symmetric evolution, two-qubit trajectories, and potential applications in measurement-based quantum error correction. xml:lang="fr"

  9. An experimental superconducting helical undulator

    SciTech Connect

    Caspi, S.; Taylor, C.

    1995-12-31

    Improvements in the technology of superconducting magnets for high energy physics and recent advancements in SC materials with the artificial pinning centers (APC){sup 2}, have made a bifilar helical SC device an attractive candidate for a single-pass free electron laser (FEL){sup 3}. Initial studies have suggested that a 6.5 mm inner diameter helical device, with a 27 mm period, can generate a central field of 2-2.5 Tesla. Additional studies have also suggested that with a stored energy of 300 J/m, such a device can be made self-protecting in the event of a quench. However, since the most critical area associated with high current density SC magnets is connected with quenching and training, a short experimental device will have to be built and tested. In this paper we discuss technical issues relevant to the construction of such a device, including a conceptual design, fields, and forces.

  10. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  11. Advanced Manufacturing of Superconducting Magnets

    NASA Technical Reports Server (NTRS)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  12. Superconducting magnet and fabrication method

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1994-01-01

    A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.

  13. Coherent controlization using superconducting qubits

    PubMed Central

    Friis, Nicolai; Melnikov, Alexey A.; Kirchmair, Gerhard; Briegel, Hans J.

    2015-01-01

    Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect. PMID:26667893

  14. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  15. Operational experience with superconducting synchrotron magnets

    SciTech Connect

    Martin, P.S.

    1987-03-01

    The operational experience with the Fermilab Tevatron is presented, with emphasis on reliability and failure modes. Comprisons are made between the operating efficiencies for the superconducting machine and for he conventional Main Ring.

  16. Superconducting inductive displacement detection of a microcantilever

    SciTech Connect

    Vinante, A.

    2014-07-21

    We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100 μT, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2 K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

  17. New Advances in SuperConducting Materials

    ScienceCinema

    None

    2016-07-12

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laboratory, new materials science concepts are bringing this essential technology closer to widespread industrial use.

  18. New Advance in SuperConducting Materials

    ScienceCinema

    None

    2016-07-12

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  19. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  20. All-metal superconducting planar microwave resonator

    NASA Astrophysics Data System (ADS)

    Horsley, Matt; Pereverzev, Sergey; Dubois, Jonathon; Friedrich, Stephan; Qu, Dongxia; Libby, Steve; Lordi, Vincenzo; Carosi, Gianpaolo; Stoeffl, Wolfgang; Chapline, George; Drury, Owen; Quantum Noise in Superconducting Devices Team

    There is common agreement that noise and resonance frequency jitter in superconducting microwave planar resonators are caused by presence of two-level systems, or fluctuators, in resonator materials- in dielectric substrate, in superconducting and dielectric layers and on the boundaries and interfaces. Scaling of noise with device dimensions indicate that fluctuators are likely concentrated around boundaries; physical nature of those fluctuators remains unclear. The presence of dielectrics is not necessary for the superconducting device functionality, and one can ask question about properties of all-metal device, where dielectric substrate and oxide films on metal are absent. Resonator made from of thin conducting layer with cuts in it is usually called slot line resonator. We report on the design, fabrication and initial testing of multiple split rings slot line resonator made out of thin molybdenum plate. This work is being funded as part of a three year strategic initiative (LDRD 16-SI-004) to better understand noise in superconducting devices.

  1. Alternating current losses in superconducting coils

    NASA Technical Reports Server (NTRS)

    Wipf, S. L.; Guderjahn, C. A.

    1972-01-01

    Report examines relationship between coil loss and frequency and heat loss in coil as a function of the magnetic field H. Information is of value to manufacturers of superconducting magnets, motors and generators.

  2. Cooling arrangement for a superconducting coil

    DOEpatents

    Herd, K.G.; Laskaris, E.T.

    1998-06-30

    A superconducting device is disclosed, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet. 3 figs.

  3. Cooling arrangement for a superconducting coil

    DOEpatents

    Herd, Kenneth Gordon; Laskaris, Evangelos Trifon

    1998-06-30

    A superconducting device, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet.

  4. Techniques for Connecting Superconducting Thin Films

    NASA Technical Reports Server (NTRS)

    Mester, John; Gwo, Dz-Hung

    2006-01-01

    Several improved techniques for connecting superconducting thin films on substrates have been developed. The techniques afford some versatility for tailoring the electronic and mechanical characteristics of junctions between superconductors in experimental electronic devices. The techniques are particularly useful for making superconducting or alternatively normally conductive junctions (e.g., Josephson junctions) between patterned superconducting thin films in order to exploit electron quantum-tunneling effects. The techniques are applicable to both low-Tc and high-Tc superconductors (where Tc represents the superconducting- transition temperature of a given material), offering different advantages for each. Most low-Tc superconductors are metallic, and heretofore, connections among them have been made by spot welding. Most high-Tc superconductors are nonmetallic and cannot be spot welded. These techniques offer alternatives to spot welding of most low-Tc superconductors and additional solutions to problems of connecting most high-Tc superconductors.

  5. High-temperature superconductivity: A conventional conundrum

    DOE PAGES

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  6. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  7. Quartz crystal and superconductive resonators and oscillators

    NASA Technical Reports Server (NTRS)

    Besson, R. S.

    1978-01-01

    A general overview of piezoelectric resonators is given with emphasis on evolution of the resonator design. Superconducting cavities and crystals at low temperature and the use of resonant frequencies are also discussed.

  8. Quantum anomalies in superconducting Weyl metals

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Hao, Lei; Wang, Baigeng; Ting, C. S.

    2016-05-01

    We theoretically study the quantum anomalies in the superconducting Weyl metals based on the topological field theory. It is demonstrated that the Fermi arc and the surface Andreev bound state, characteristic of the superconducting Weyl metals, are the manifestations of two underlying phenomena, namely, the chiral anomaly and the paritylike anomaly, respectively. The first anomaly is inherited from the Berry curvature around the original Weyl points, while the second is the result of the superconductivity. We show that all the fascinating topological behavior of the superconducting Weyl metals, either the intranode Fulde-Ferrell-Larkin-Ovchinnikov or the internode Bardeen-Cooper-Schrieffer pairing state, can be satisfactorily described and predicted by our topological field theory.

  9. Emergent phenomena: Light-induced superconductivity

    NASA Astrophysics Data System (ADS)

    Demsar, Jure

    2016-03-01

    Intense light pulses irradiating a sample of K3C60 result in dramatic changes of its high-frequency (terahertz) conductivity. Could these be signatures of fleeting superconductivity at 100 K and beyond?

  10. Superconductive microstrip exhibiting negative differential resistivity

    DOEpatents

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  11. Passive energy dump for superconducting coil protection

    DOEpatents

    Luton, J.N. Jr.

    1973-01-16

    The patent describes a passive resistance type energy dump for the protection of the coils of a superconducting magnet. Insertion heaters are immersed in a rigid container filled with a fusible alloy. The energy dump is connected across the coils of the superconducting magnet wherein individual heater elements are connected singly to the windings or otherwise according to the energy dumping requirements upon transition of the magnet to a normal state.

  12. VLSI Superconducting Particle Detectors (With 7 Figures)

    NASA Astrophysics Data System (ADS)

    Liengme, O.

    The purpose of this paper is to present the hotspot model and define its validity range. This concept leads to a class of superconducting detectors. Predictions on particle-induced switching of Josephson junctions and superconducting strips or wires are obtained from this hotspot model. These results agree well with experimental data from the literature. Finally, the propagating hotspot is suggested as a method for very high resolution particle position detection and imaging.

  13. Dissipative hydride precipitates in superconducting niobium cavities

    SciTech Connect

    Romanenko, A.; Cooley, L.D.; Ciovati, G.; Wu, G.; /Argonne

    2011-10-01

    We report the first direct observation of the microstructural features exhibiting RF losses at high surface magnetic fields of above 100 mT in field emission free superconducting niobium cavities. The lossy areas were identified by advanced thermometry. Surface investigations using different techniques were carried out on cutout samples from lossy areas and showed the presence of dendritic niobium hydrides. This finding has possible implications to the mechanisms of RF losses in superconducting niobium at all field levels.

  14. Heterogeneous Superconducting Low-Noise Sensing Coils

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Penanen, Konstantin I.; Ho Eom, Byeong

    2008-01-01

    A heterogeneous material construction has been devised for sensing coils of superconducting quantum interference device (SQUID) magnetometers that are subject to a combination of requirements peculiar to some advanced applications, notably including low-field magnetic resonance imaging for medical diagnosis. The requirements in question are the following: The sensing coils must be large enough (in some cases having dimensions of as much as tens of centimeters) to afford adequate sensitivity; The sensing coils must be made electrically superconductive to eliminate Johnson noise (thermally induced noise proportional to electrical resistance); and Although the sensing coils must be cooled to below their superconducting- transition temperatures with sufficient cooling power to overcome moderate ambient radiative heat leakage, they must not be immersed in cryogenic liquid baths. For a given superconducting sensing coil, this combination of requirements can be satisfied by providing a sufficiently thermally conductive link between the coil and a cold source. However, the superconducting coil material is not suitable as such a link because electrically superconductive materials are typically poor thermal conductors. The heterogeneous material construction makes it possible to solve both the electrical- and thermal-conductivity problems. The basic idea is to construct the coil as a skeleton made of a highly thermally conductive material (typically, annealed copper), then coat the skeleton with an electrically superconductive alloy (typically, a lead-tin solder) [see figure]. In operation, the copper skeleton provides the required thermally conductive connection to the cold source, while the electrically superconductive coating material shields against Johnson noise that originates in the copper skeleton.

  15. A high temperature superconductivity communications flight experiment

    NASA Technical Reports Server (NTRS)

    Ngo, P.; Krishen, K.; Arndt, D.; Raffoul, G.; Karasack, V.; Bhasin, K.; Leonard, R.

    1992-01-01

    The proposed high temperature superconductivity (HTSC) millimeter-wave communications flight experiment from the payload bay of the Space Shuttle Orbiter to the Advanced Communications Technology Satellite (ACTS) in geosynchronous orbit is described. The experiment will use a Ka-band HTSC phased array antenna and front-end electronics to receive a downlink communications signal from the ACTS. The discussion covers the system configuration, a description of the ground equipment, the spacecraft receiver, link performance, thermal loading, and the superconducting antenna array.

  16. Experimenting with a Superconducting Levitation Train

    ERIC Educational Resources Information Center

    Miryala, Santosh; Koblischka, M. R.

    2014-01-01

    The construction and operation of a prototype high-"Tc" superconducting train model is presented. The train is levitated by a melt-processed GdBa[subscript 2]Cu[subscript 3]O[subscript x] (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron…

  17. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  18. Architecture for high critical current superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  19. ZGS roots of superconductivity: People and devices

    SciTech Connect

    Pewitt, E.G.

    1994-12-31

    The ZGS community made basic contributions to the applications of superconducting magnets to high energy physics as well as to other technological areas. ZGS personnel pioneered many significant applications until the time the ZGS was shutdown in 1979. After the shutdown, former ZGS personnel developed magnets for new applications in high energy physics, fusion, and industrial uses. The list of superconducting magnet accomplishments of ZGS personnel is impressive.

  20. Three-Axis Superconducting Gravity Gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1987-01-01

    Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.

  1. Controlling superconductivity by tunable quantum critical points.

    PubMed

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  2. Controlling superconductivity by tunable quantum critical points.

    PubMed

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-01-01

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5. PMID:25737108

  3. A current limiter with superconducting coil for magnetic field shielding

    NASA Astrophysics Data System (ADS)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  4. Armored spring-core superconducting cable and method of construction

    DOEpatents

    McIntyre, Peter M.; Soika, Rainer H.

    2002-01-01

    An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

  5. Phase transformations in superconducting and non-superconducting perovskites

    SciTech Connect

    Mitchell, T.E.

    1992-01-01

    Most of the high {Tc} superconductors and other perovskite-related cuprates exhibit some kind of structural instability. For example, tetragonal-to-orthorhombic phase transformations occur in the Y-Ba-Cu-O and La-Sr-Cu-O systems while crystal structures in the Bi-Ca-Sr-Cu-O and Tl-Ba-Ca-Cu-O systems have incommensurate periodicities associated with displacements of the heavy cations. In YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, the transformation is due to the ordering of oxygen vacancies while in La{sub 2-x}Sr{sub x}CuO{sub 4} the transformation is accompanied by tilting of the (CuO{sub 6}) octahedra. Such tilting and distortion of the co-ordination octahedra commonly occur in perovskite-related compounds and transformations between the structures are frequently martensitic. Phase transformations in the superconducting cuprates have been investigated by transmission electron microscopy but none of them appear to be martensitic. The phase transformations are accompanied by twinning and the resulting configurations are used to calculate twin boundary energies.

  6. Phase transformations in superconducting and non-superconducting perovskites

    SciTech Connect

    Mitchell, T.E.

    1992-07-01

    Most of the high {Tc} superconductors and other perovskite-related cuprates exhibit some kind of structural instability. For example, tetragonal-to-orthorhombic phase transformations occur in the Y-Ba-Cu-O and La-Sr-Cu-O systems while crystal structures in the Bi-Ca-Sr-Cu-O and Tl-Ba-Ca-Cu-O systems have incommensurate periodicities associated with displacements of the heavy cations. In YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, the transformation is due to the ordering of oxygen vacancies while in La{sub 2-x}Sr{sub x}CuO{sub 4} the transformation is accompanied by tilting of the [CuO{sub 6}] octahedra. Such tilting and distortion of the co-ordination octahedra commonly occur in perovskite-related compounds and transformations between the structures are frequently martensitic. Phase transformations in the superconducting cuprates have been investigated by transmission electron microscopy but none of them appear to be martensitic. The phase transformations are accompanied by twinning and the resulting configurations are used to calculate twin boundary energies.

  7. ASC 84: applied superconductivity conference. Final program and abstracts

    SciTech Connect

    Not Available

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  8. Review of superconducting booster linacs

    NASA Astrophysics Data System (ADS)

    Storm, D. W.

    1993-04-01

    Several superconducting boosters have been built and more are planned or under construction. These all use a number of independently phased resonators to permit acceleration of a wide variety of ion masses. For heavy ions, vhf frequencies are involved, and operation of the superconductors at 4.3 K, the normal boiling point of He, is practical. (Because fundamental losses in superconductors depend on frequency, some electron accelerators using much higher frequencies require colder resonators.) For boosters the resonator technology has evolved toward the use of quarter wave resonators with straight loading arms. The superconducting material is either niobium or lead. The latter is deposited as a film on copper, while the former may be sheet metal, may be bonded to copper, or may be (in principle) applied as a film on copper. The trade-offs involved and the successes of the various techniques are discussed. The rf must be controlled accurately both with regard to amplitude and phase. Because of the high unloaded Q of the resonators, additional loading is provided at some temperature well above that of the superconductor, in order to increase the bandwidth to a manageable point. Most boosters provide active control of phase by shifting the driving phase, although at least one system uses a frequency switching technique. Cross talk between independent resonator control systems must be avoided. The cryogenic systems have evolved toward a system based on a large helium refrigerator using turbine expansion and providing gas cooling to heat shields. Conservative design provides excess capacity beyond the expected requirements of the accelerator. Cryogenic distribution must be done carefully to avoid losses, and the system should be designed with capacity to match that of anticipated upgrades of the refrigerator. Most boosters use an approximately periodic focusing system with radial phase advance near 90° per unit cell. At Legnaro, however, waist to waist focusing is

  9. Electrotechnical prospects for superconducting applications

    NASA Astrophysics Data System (ADS)

    Brunet, Y.; Renard, M.

    After a review of the classical limitations, due to iron and copper losses, we give the necessary superconducting properties, needed to achieve significant progresses, either in the size, or in the efficiency of electrotechnical plants. The successive achievement in SC will be explained, in relation with the physics of usual SC, and the needed properties for technology. The problems encountered in electrotechnics by decreasing interest are : networks losses and stability, storage of energy production, transformation and protection. In each case, SC solutions may be found or at least imagined. We shall review the limitations estimated in each case, generally by extrapolation of small scale experiments, with 4 K SC, and try to see what are the modifications which may be obtained by the use of high Tc SC. Special attention will be paid to energy storage and electrical machinery and the interest of completely superconducting plants will be shown. Une fois précisées les limitations actuelles des matériels électriques imposées essentiellement par l'utilisation de matériaux comme le fer ou le cuivre, nous détaillons les caractéristiques des supraconducteurs susceptibles d'améliorer les performances des installations électrotechniques. Les progrès successifs des conducteurs supraconducteurs sont expliqués en tenant compte de leur impact technologique. Les problèmes rencontrés en électrotechnique sont : les pertes et la stabilité des réseaux, le stockage et la production de l'énergie. Dans chaque cas des solutions supraconductrices existent ou peuvent être imaginées. Nous examinons notamment pour les machines électriques et le stockage de l'énergie, les solutions qui existent ou sont en cours de développement avec des supraconducteurs à basse température (˜ 4 K) et quelles sont les modifications apportées par l'utilisation de supraconducteurs à haut Tc.

  10. On new possibilities in microwave superconductivity

    NASA Astrophysics Data System (ADS)

    Canabal, Alberto

    Superconductivity is a phenomenon that has been fascinating scientists, engineers, and the general public since its discovery in 1911. Many people associate the properties of superconductors with the astonishing demonstration of a levitating magnet over a superconductor when it is cooled down below its transition temperature. We now know that superconductivity is a very common phenomenon present in many metals in the periodic table. It was not until 1986 that superconductivity above about 30 K was discovered, giving birth to the era of high temperature superconductors. Today many applications take advantage of this property, ranging from medical instrumentation, transportation, high energy particle accelerators, to digital and analog electronics. Most of the applications fall within two well differentiated uses of superconductors, for which different properties are being exploited. One example is the use of superconductors to generate very large static magnetic fields, which usually employ newly discovered high temperature superconductors, taking advantage of their very large upper critical magnetic field. Alternatively, applications involving high-power microwaves usually rely on superconductors with high lower critical magnetic field, for which niobium is commonly the material of choice. Almost a century after the discovery of superconductivity, this dissertation explores potential new possibilities for high power microwave superconducting applications. First, we study and model a new method of determining the magnetic critical field of superconducting materials at microwave frequencies. Subsequently, we numerically study the theoretical performance of multilayer structures composed of alternating superconducting and dielectric materials. These structures theoretically allow us to sustain higher magnetic fields than niobium at microwave frequencies.

  11. Freely Oriented, Portable Superconducting Magnet

    NASA Astrophysics Data System (ADS)

    Schmierer, E. N.; Charles, B.; Efferson, R.; Hill, D.; Jankowski, T.; Laughon, G.; Prenger, C.

    2008-03-01

    A high-field low-temperature superconducting solenoidal magnet was developed that is portable and can be operated in any orientation relative to gravity. The design consists of several features that make this feasible; 1) bulk liquid cryogen storage occurs in a separate Dewar rather than as part of the magnet assembly, which allows single-person transport due to each component of the system having low relative weight, 2) vapor generated pressurization that circulates cryogenic fluid to and from the magnet with flexible transfer lines allowing operation in any orientation, and 3) composite, low-conducting structural members are used to suspend the magnet and shield layers within the vacuum vessel that provide a robust low heat loss design. Cooling is provided to the magnet through fluid channels that are in thermal contact with the magnet. The overall design of this magnet system, some of the analyses performed that address unique behavior of this system (pressure rise during a magnet quench and transient cooldown), and test results are presented.

  12. Low noise multiwasher superconducting interferometer

    SciTech Connect

    Carelli, P.; Castellano, M.G.; Torrioli, G.; Leoni, R.

    1998-01-01

    The dc-superconducting quantum interference device (SQUID) is a low-noise converter from magnetic flux to voltage which can have, in principle, an energy sensitivity near the quantum limit of {h_bar}/2. A critical parameter for the ideal performance is the device inductance, which must be kept as small as possible. Minimizing the SQUID inductance, however, is a major concern for a practical device; this requirement implies a small SQUID ring and hence magnetic coupling with an external signal is more difficult to achieve. Here we present an original scheme (called multiwasher) to circumvent this problem, and its implementation in an all-refractory thin-film device. Our scheme not only provides good magnetic coupling with a large input coil (0.5 {mu}H) and very low SQUID inductance, but also shielding from outside uniform fields, such as those generated by ambient disturbances. The measured coupled spectral energy sensitivity in the white region at about 1 kHz is 28{h_bar} at 4.2 K and 5.5{h_bar} in a pumped helium bath at 0.9 K. The flux noise spectral density at 0.1 Hz and 0.9 K is {Phi}{sub n}=1{times}10{sup {minus}6}{Phi}{sub 0}/{radical} (Hz) . {copyright} {ital 1998 American Institute of Physics.}

  13. BNL Direct Wind Superconducting Magnets

    SciTech Connect

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  14. Design of Tunable Superconducting Metamaterials

    NASA Astrophysics Data System (ADS)

    Trepanier, Melissa; Zhang, Daimeng; Anlage, Steven

    2013-03-01

    Our goal is to create a superconducting metamaterial utilizing deep sub-wavelength meta-atoms with a quickly-tunable index of refraction. To accomplish this we will combine two different materials: an array of rf SQUIDs (with tunable effective permeability) and an array of thin wires interrupted by Josephson junctions (with tunable effective permittivity). These materials have been designed to maximize tunablility in the range easily measured via X-band, Ku-band, and K-band waveguides. Various sizes of rf SQUIDs were designed to be non-hysteretic, be sufficiently insensitive to noise, and to have resonant frequencies ranging from 6.5 - 22 GHz. The wire array was designed so that the inductance of the Josephson junctions can completely cancel the geometric and kinetic inductance of the wires, giving rise to strong tunability. We will present the design considerations and simulation results for this new class of metamaterials. This work is supported by the NSF-GOALI program through grant # ECCS-1158644, and CNAM.

  15. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  16. Superconductivity at Dawn of the Iron Age

    ScienceCinema

    Tesanovic, Zlatko [Johns Hopkins University, Baltimore, Maryland, United States

    2016-07-12

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  17. Superconductivity at Dawn of the Iron Age

    SciTech Connect

    Tesanovic, Zlatko

    2010-03-03

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  18. Overview of Superconductivity and Challenges in Applications

    NASA Astrophysics Data System (ADS)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  19. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  20. Superconductivity of Iron Selenide Thin Films

    NASA Astrophysics Data System (ADS)

    Nie, Yuefeng; Brahimi, Erind; Budnick, Joseph; Hines, William; Jain, Menka; Wells, Barrett

    2009-03-01

    Near stoichiometry FeSe films were successfully grown on MgO, SrTiO3, and LaAlO3 single crystal substrates using pulsed laser deposition (PLD). X-ray diffraction analysis showed that the FeSe films have a tetragonal structure on SrTiO3 and LaAlO3 substrates. A mixture of tetragonal and hexagonal structures was observed on MgO substrates due to the larger lattice constant misfit. The superconductivity of films exhibited a strong dependence on epitaxial strain and thickness. Thicker films (˜ 100 nm and ˜ 200 nm) are fully relaxed and have a clear superconducting transition near that of the bulk FeSe. Thinner films (˜ 50 nm) are strained. Films on nearly lattice-matched LaAlO3 are superconducting, while films under tension on SrTiO3 or MgO are metallic but not superconducting down to 5K. The onset temperature for superconductivity have a near linear magnetic field dependence with dH/dT = - 2.8 T/K for fields up to 9T.

  1. Routes to heavy-fermion superconductivity

    NASA Astrophysics Data System (ADS)

    Steglich, F.; Stockert, O.; Wirth, S.; Geibel, C.; Yuan, H. Q.; Kirchner, S.; Si, Q.

    2013-07-01

    Superconductivity in lanthanide- and actinide-based heavy-fermion (HF) metals can have different microscopic origins. Among others, Cooper pair formation based on fluctuations of the valence, of the quadrupole moment or of the spin of the localized 4f/5f shell have been proposed. Spin-fluctuation mediated superconductivity in CeCu2Si2 was demonstrated by inelastic neutron scattering to exist in the vicinity of a spin-density-wave (SDW) quantum critical point (QCP). The isostructural HF compound YbRh2Si2 which is prototypical for a Kondo-breakdown QCP has so far not shown any sign of superconductivity down to T ≈ 10 mK. In contrast, results of de-Haas-van-Alphen experiments by Shishido et al. (J. Phys. Soc. Jpn. 74, 1103 (2005)) suggest superconductivity in CeRhIn5 close to an antiferromagnetic QCP beyond the SDW type, at which the Kondo effect breaks down. For the related compound CeCoIn5 however, a field-induced QCP of SDW type is extrapolated to exist inside the superconducting phase.

  2. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  3. Superconducting circuitry for quantum electromechanical systems

    NASA Astrophysics Data System (ADS)

    LaHaye, Matthew D.; Rouxinol, Francisco; Hao, Yu; Shim, Seung-Bo; Irish, Elinor K.

    2015-05-01

    Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and e orts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.

  4. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  5. Fabrication and Characterization of Superconducting Resonators.

    PubMed

    Cataldo, Giuseppe; Barrentine, Emily M; Brown, Ari D; Moseley, Samuel H; U-Yen, Kongpop; Wollack, Edward J

    2016-01-01

    Superconducting microwave resonators are of interest for a wide range of applications, including for their use as microwave kinetic inductance detectors (MKIDs) for the detection of faint astrophysical signatures, as well as for quantum computing applications and materials characterization. In this paper, procedures are presented for the fabrication and characterization of thin-film superconducting microwave resonators. The fabrication methodology allows for the realization of superconducting transmission-line resonators with features on both sides of an atomically smooth single-crystal silicon dielectric. This work describes the procedure for the installation of resonator devices into a cryogenic microwave testbed and for cool-down below the superconducting transition temperature. The set-up of the cryogenic microwave testbed allows one to do careful measurements of the complex microwave transmission of these resonator devices, enabling the extraction of the properties of the superconducting lines and dielectric substrate (e.g., internal quality factors, loss and kinetic inductance fractions), which are important for device design and performance. PMID:27284966

  6. A Simple Demonstration of High Tc Superconductive Powder.

    ERIC Educational Resources Information Center

    Baker, Roger; Thompson, James C.

    1987-01-01

    Described is a simple demonstration that provides a way to determine if a given sample contains even a small fraction of superconducting material. The repulsion of the powder from a magnetic field is indicative of superconductivity. (RH)

  7. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  8. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  9. Method and means for separating and classifying superconductive particles

    DOEpatents

    Park, Jin Y.; Kearney, Robert J.

    1991-01-01

    The specification and drawings describe a series of devices and methods for classifying and separating superconductive particles. The superconductive particles may be separated from non-superconductive particles, and the superconductive particles may be separated by degrees of susceptibility to the Meissner effect force. The particles may also be simultaneously separated by size or volume and mass to obtain substantially homogeneous groups of particles. The separation techniques include levitation, preferential sedimentation and preferential concentration. Multiple separation vector forces are disclosed.

  10. Superconductivity in carrier-doped silicon carbide

    NASA Astrophysics Data System (ADS)

    Muranaka, Takahiro; Kikuchi, Yoshitake; Yoshizawa, Taku; Shirakawa, Naoki; Akimitsu, Jun

    2008-12-01

    We report growth and characterization of heavily boron-doped 3C-SiC and 6H-SiC and Al-doped 3C-SiC. Both 3C-SiC:B and 6H-SiC:B reveal type-I superconductivity with a critical temperature Tc=1.5 K. On the other hand, Al-doped 3C-SiC (3C-SiC:Al) shows type-II superconductivity with Tc=1.4 K. Both SiC:Al and SiC:B exhibit zero resistivity and diamagnetic susceptibility below Tc with effective hole-carrier concentration n higher than 1020 cm-3. We interpret the different superconducting behavior in carrier-doped p-type semiconductors SiC:Al, SiC:B, Si:B and C:B in terms of the different ionization energies of their acceptors.

  11. A superconducting large-angle magnetic suspension

    NASA Astrophysics Data System (ADS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  12. Databases for analysis of superconducting cable manufacturing

    SciTech Connect

    Bardos, V.A.; Coleman, E.S.; Erdmann, M.J.; Jones, B.A.; Kozman, K.S.; Little, D.J.; Seuntjens, J.M.

    1993-04-01

    Starting in September 1991, eight cable vendors began fabricating approximately 10,000 kg each of Inner or Outer superconducting cable for the Superconducting Super Collider`s (SSC) cable Vendor Qualification Program (VQP). This program, designed to identify vendor`s for competition for the supplying of superconducting cable for the manufacture of SSC magnet systems, will conclude in June, 1993. The conductor database was developed as an integral part of the VQP in order to analyze the origins of variation within the conductor fabrication processes, and develop and implement control procedures to minimize such variations. In addition, the database development effort will provide a direct link to the MAGCOM database system being implemented by the Test and Data Management Department of the Magnet Systems Division of the SSCL.

  13. Databases for analysis of superconducting cable manufacturing

    SciTech Connect

    Bardos, V.A.; Coleman, E.S.; Erdmann, M.J.; Jones, B.A.; Kozman, K.S.; Little, D.J.; Seuntjens, J.M.

    1993-04-01

    Starting in September 1991, eight cable vendors began fabricating approximately 10,000 kg each of Inner or Outer superconducting cable for the Superconducting Super Collider's (SSC) cable Vendor Qualification Program (VQP). This program, designed to identify vendor's for competition for the supplying of superconducting cable for the manufacture of SSC magnet systems, will conclude in June, 1993. The conductor database was developed as an integral part of the VQP in order to analyze the origins of variation within the conductor fabrication processes, and develop and implement control procedures to minimize such variations. In addition, the database development effort will provide a direct link to the MAGCOM database system being implemented by the Test and Data Management Department of the Magnet Systems Division of the SSCL.

  14. A passive bearing system using superconducting magnets

    NASA Technical Reports Server (NTRS)

    Huang, X.; Eyssa, Y. M.

    1990-01-01

    A passive radial bearing concept is presented using superconducting magnets which can generate a bearing pressure as high as 360 N/sq cm, comparable to a conventional active bearing system. The system consists of a number of solenoidal superconducting coils of alternating current direction. These coils are stacked axially over the bearing length and connected in series. The currents in stator and rotor coils are in the opposite directions, generating repulsive forces. This system, in comparison with an active system, has the advantage of much smaller power dissipation in the coils since the coil currents are mostly dc currents. The cooling for the superconducting coils is therefore simpler, and the coils are more stable. An optimization study seeking the maximum bearing pressure was conducted. Details of the design, pressure calculations, and results are presented.

  15. Hole superconductivity in arsenic iron compounds

    NASA Astrophysics Data System (ADS)

    Marsiglio, F.; Hirsch, J. E.

    2008-07-01

    Superconductivity above 25 K, and possibly above 40 K, has recently been discovered in LaO1-xFxFeAs and related compounds. We propose that this is another example of the mechanism of hole superconductivity at play. This requires the existence of hole carriers at the Fermi energy, which appears to contradict current observations. We propose that two-band conduction is taking place in these materials, that the negative ion As-3 plays a key role, and that superconductivity is non-phononic and driven by pairing and undressing of heavily dressed hole carriers to lower their kinetic energy. We make several predictions of future observations based on our theory.

  16. Formation and superconductivity of hydrides under pressure

    NASA Astrophysics Data System (ADS)

    Kim, Duck Young; Scheicher, Ralph H.; Pickard, Chris J.; Needs, Richard J.; Ahuja, Rajeev

    2011-03-01

    Hydrogen is the lightest and smallest element in the periodic table. Despite its simplest electronic structure, enormous complexity can arise when hydrogen participates in the formation of solids. Pressure as a controllable parameter can provide an excellent platform to investigate novel physics of hydrides because it can induce structural transformation and even changes in stoichiometry accompanied with phenomena such as metallization and superconductivity. In this presentation, we will briefly overview contemporary high-pressure research on hydrides and show our most recent results on predicting crystal structures of metal hydrides under pressure using ab initio random structure searching. Our findings allow for a better understanding of pressure-induced metallization/superconductivity in hydrides which can help to shed light on recent observations of pressure-induced metallization and superconductivity in hydrogen-rich materials. Wenner-Gren Foundations and VR in Sweden, The Royal Society in UK.

  17. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, John R.; Clem, John R.

    1983-01-01

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  18. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  19. Transient simulation of superconducting synchronous machines

    NASA Astrophysics Data System (ADS)

    Koronides, A. G.

    1980-11-01

    A computer model is developed to study the electromechanical interactions between superconducting generators and power systems during various fault conditions. A large set of equivalent circuits is used to represent the eddy currents on the finite length electromagnetic cylindrical shields which surround the superconducting field winding. The armature and field windings are represented by coupled circuits as in conventional generator models. The rotor turbine shaft dynamics are introduced in the model by a set of lumped masses representing the various stages of the turbine and the rotor, connected by springs representing the shaft. The electrical and mechanical equations of the machine are related by the air gap torque equation in a large system of simultaneous, nonlinear differential equations. The developed computer algorithms used to study the transient behavior of a 300 MCA superconducting generator and the results are reported.

  20. Advantages and Challenges of Superconducting Accelerators

    NASA Astrophysics Data System (ADS)

    Krischel, Detlef

    After a short review of the history toward high-energy superconducting (SC) accelerators for ion beam therapy (IBT), an overview is given on material properties and technical developments enabling to use SC components in a medical accelerator for full body cancer treatment. The design concept and the assembly of a commercially available SC cyclotron for proton therapy (PT) are described and the potential advantages for applying superconductivity are assessed. The discussion includes the first years of operation experience with regard to cryogenic and magnetic performance, automated beam control, and maintenance aspects. An outlook is given on alternative machine concepts for protons-only or for heavier ions. Finally, it is discussed whether the application of superconductivity might be expanded in the future to a broader range of subsystems of clinical IBT accelerators such as SC magnets for transfer beam lines or gantries.

  1. The advantages and challenges of superconducting magnets in particle therapy

    NASA Astrophysics Data System (ADS)

    Gerbershagen, Alexander; Calzolaio, Ciro; Meer, David; Sanfilippo, Stéphane; Schippers, Marco

    2016-08-01

    This paper provides an overview of the current developments in superconducting magnets for applications in proton and ion therapy. It summarizes the benefits and challenges regarding the utilization of these magnets in accelerating systems (e.g. superconducting cyclotrons) and gantries. The paper also provides examples of currently used superconducting particle therapy systems and proposed designs.

  2. Proposed experimental test of the theory of hole superconductivity

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2016-06-01

    The theory of hole superconductivity predicts that in the reversible transition between normal and superconducting phases in the presence of a magnetic field there is charge flow in direction perpendicular to the normal-superconductor phase boundary. In contrast, the conventional BCS-London theory of superconductivity predicts no such charge flow. Here we discuss an experiment to test these predictions.

  3. Energy spectrum and wavefunction of electrons in hybrid superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Kruchinin, S. P.

    2016-03-01

    Recent experiments have fabricated structured arrays. We study hybrid nanowires, in which normal and superconducting regions are in close proximity, by using the Bogoliubov-de Gennes equations for superconductivity in a cylindrical nanowire. We succeed to obtain the quantum energy levels and wavefunctions of a superconducting nanowire. The obtained spectra of electrons remind Hofstadter’s butterfly.

  4. Sr2IrO4: Gateway to cuprate superconductivity?

    DOE PAGES

    Mitchell, J. F.

    2015-06-05

    High temperature superconductivity in cuprates remains a defining challenge in condensed matter physics. Recently, a new set of related compounds based on Ir rather than Cu has been discovered that may be on the verge of superconductivity themselves or be able to shed new light on the underlying interactions responsible for superconductivity in the cuprates.

  5. Superconducting magnets and devices for space vehicles and experiments

    NASA Technical Reports Server (NTRS)

    Urban, E. W.

    1971-01-01

    Superconductivity research has been oriented toward those problems that tend to restrict the greater application of superconducting devices in space research and technology. These include magnetic problems of high field magnets, increasing operating temperatures, and development of useful competitive superconducting instruments.

  6. Improved Superconducting Wire for Wind Generators: Superconducting Wires for Direct-Drive Wind Generators

    SciTech Connect

    2012-01-01

    REACT Project: Brookhaven National Laboratory will develop a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. Brookhaven National Laboratory will develop a high-performance superconducting wire that can handle significantly more electrical current, and will demonstrate an advanced manufacturing process that has the potential to yield a several-fold reduction in wire costs while using a using negligible amount of rare earth material. This design has the potential to make a wind turbine generator lighter, more powerful, and more efficient, particularly for offshore applications.

  7. Midwest Superconductivity Consortium: 1994 Progress report

    SciTech Connect

    Not Available

    1995-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high {Tc} superconductivity. During the past year, 27 projects produced over 123 talks and 139 publications. Group activities and interactions involved 2 MISCON group meetings (held in August and January); with the second MISCON Workshop held in August; 13 external speakers; 79 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 48 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temperature superconductors.

  8. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  9. Demonstrating superconductivity at liquid nitrogen temperatures

    NASA Astrophysics Data System (ADS)

    Early, E. A.; Seaman, C. L.; Yang, K. N.; Maple, M. B.

    1988-07-01

    This article describes two demonstrations of superconductivity at the boiling temperature of liquid nitrogen (77 K) using the 90 K superconductor YBa2Cu3O7-δ(δ≊0.2). Both demonstrations involve the repulsion of a permanent magnet by a superconductor due to the expulsion of the magnetic field from the interior of the latter. In the first demonstration, the repulsion is manifested in the separation of a permanent magnet and a superconductor that are suspended from separate threads, while in the second it results in the levitation of a permanent magnet above a flat superconducting disk.

  10. Preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W.; Poeppel, Roger B.

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities.

  11. The high temperature superconductivity space experiment

    NASA Technical Reports Server (NTRS)

    Webb, Denis C.; Nisenoff, M.

    1991-01-01

    The history and the current status of the high temperature superconductivity space experiment (HTSSE) initiated in 1988 are briefly reviewed. The goal of the HTSSE program is to demonstrate the feasibility of incorporating high temperature superconductivity (HTS) technology into space systems. The anticipated payoffs include the development of high temperature superconductor devices for space systems; preparation and space qualification of a cryogenically cooled experimental package containing HTS devices and components; and acquisition of data for future space experiments using more complex HTS devices and subsystems. The principal HTSSE systems and devices are described.

  12. Superconducting Detectors for Superlight Dark Matter.

    PubMed

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-01

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  13. Superconducting nanowire single photon detector on diamond

    SciTech Connect

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lončar, Marko; Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A.

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310 nm and 632 nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300 pm Root Mean Square surface roughness are obtained.

  14. 1 mm ultrafast superconducting stripline molecule detector

    NASA Astrophysics Data System (ADS)

    Zen, N.; Casaburi, A.; Shiki, S.; Suzuki, K.; Ejrnaes, M.; Cristiano, R.; Ohkubo, M.

    2009-10-01

    Superconducting stripline detectors (SSLDs) are promising for detecting keV molecules at nanosecond response times and with mass-independent detection efficiency. However, a fast response time is incompatible with practical centimeter detector size. A parallel configuration of striplines provides a means to address this problem. Experimental results and simulation for promisingly large 1-mm-square parallel niobium SSLDs show that nanosecond pulses are produced by superconducting-normal transition within only one of the parallel striplines instead of cascade switching of all the parallel striplines. Successful detection of a series of multimers of immunoglobulin G up to 584 kDa supports the mass-independent efficiency for mass spectrometry.

  15. Apparatus for characterizing conductivity of superconducting materials

    DOEpatents

    Doss, J.D.

    1993-12-07

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.

  16. Apparatus for characterizing conductivity of superconducting materials

    DOEpatents

    Doss, James D.

    1993-01-01

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples.

  17. Realization of a Superconducting Atom Chip

    SciTech Connect

    Nirrengarten, T.; Qarry, A.; Roux, C.; Emmert, A.; Nogues, G.; Brune, M.; Raimond, J.-M.; Haroche, S.

    2006-11-17

    We have trapped rubidium atoms in the magnetic field produced by a superconducting atom chip operated at liquid helium temperatures. Up to 8.2x10{sup 5} atoms are held in a Ioffe-Pritchard trap at a distance of 440 {mu}m from the chip surface, with a temperature of 40 {mu}K. The trap lifetime reaches 115 s at low atomic densities. These results open the way to the exploration of atom-surface interactions and coherent atomic transport in a superconducting environment, whose properties are radically different from normal metals at room temperature.

  18. Quantum Magnetomechanics with Levitating Superconducting Microspheres

    NASA Astrophysics Data System (ADS)

    Romero-Isart, O.; Clemente, L.; Navau, C.; Sanchez, A.; Cirac, J. I.

    2012-10-01

    We show that by magnetically trapping a superconducting microsphere close to a quantum circuit, it is possible to perform ground-state cooling and prepare quantum superpositions of the center-of-mass motion of the microsphere. Due to the absence of clamping losses and time-dependent electromagnetic fields, the mechanical motion of micrometer-sized metallic spheres in the Meissner state is predicted to be very well isolated from the environment. Hence, we propose to combine the technology of magnetic microtraps and superconducting qubits to bring relatively large objects to the quantum regime.

  19. Higgs instability in gapless superfluidity/superconductivity

    SciTech Connect

    Giannakis, Ioannis; Hou Defu; Huang Mei; Ren Haicang

    2007-01-01

    In this letter we explore the Higgs instability in the gapless superfluid/superconducting phase. This is in addition to the (chromo)magnetic instability that is related to the fluctuations of the Nambu-Goldstone bosonic fields. While the latter may induce a single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrel state, the Higgs instability favors spatial inhomogeneity. In the case of the 2-flavor color superconductivity state the Higgs instability can only be partially removed by the electric Coulomb energy. But this does not exclude the possibility that it can be completely removed in other exotic states such as the gapless color-flavor locked state.

  20. Superconductivity as a tool for solid mechanics

    NASA Astrophysics Data System (ADS)

    Antonevici, Anca; Villaume, Alain; Villard, Catherine

    2007-11-01

    The critical current, a key parameter characterizing the performances of coated conductors (CCs), can be used to probe the plasticity behavior of their metallic substrates. More generally, transport measurements in the superconducting state improve the usual electrical methods employed in solid mechanics to monitor cracks growth and velocity toward higher precisions without any calibration step. The particular case of the development of Lüder bands in a CC Hastelloy substrate is studied via the damaging of the fragile DyBCO superconducting layer deposited on the top of it. Magneto-optics completes the macroscopic data obtained from transport measurements by local morphological observations.