Science.gov

Sample records for dual-source ct initial

  1. Initial Experience of the Application of Automated Tube Potential Selection Technique in High-pitch Dual-source CT Angiography of Whole Aorta Using Third-generation Dual-source CT Scanner.

    PubMed

    Kong, Lingyan; Liang, Jixiang; Xue, Huadan; Wang, Yining; Wang, Yun; Jin, Zhengyu; Zhang, Daming; Chen, Jin

    2017-02-20

    Objective To evaluate the application of automated tube potential selection technique in high-pitch dual-source CT aortic angiography on a third-generation dual-source CT scanner. Methods Whole aorta angiography were indiated in 59 patients,who were divided into 2 groups using a simple random method:in group 1 there were 31 patients who underwent the examination with automated tube potential selection using a vascular setting with a preferred image quality of 288 mA/100 kV;in group 2 there were 28 patients who underwent the examination with a tube voltage of 100 kV and automated tube current modulation using a reference tube current of 288 mA. Both groups were scanned on a third generation dual-source CT device operated in dual-source high-pitch ECG-gating mode with a pitch of 3.0,collimation of 2×192×0.6 mm,and a rotation time of 0.25 s. Iterative reconstruction algorithm was used. For group 1,the volume and flow of contrast medium and chasing saline were adapted to the tube voltage. For group 2,a contrast material bolus of 45 ml with a flow of 4.5 ml/s followed by a 50 ml saline chaser at 5 ml/s was used. CTA scan was automatically started using a bolus tracking technique at the level of the original part of aorta after a trigger threshold of 100 HU was reached. The start delay was set to 6 s in both groups. Effective dose (ED),signal to noise ratio (SNR),contrast to noise ratio (CNR),and subjective diagnostic quality of both groups were evaluated. Results The mean ED were 21.3% lower (t=-3.099,P=0.000) in group 1 [(2.48±0.80) mSv] than in group 2 [(3.15±0.86) mSv]. Two groups showed no significant difference in attenuation,SD,SNR,or CNR at all evaluational parts of aorta (ascending aorta,aortic arch,diaphragmatic aorta,or iliac bifurcation)(all P>0.05). There was no significant difference in subjective diagnostic quality values of two groups [(1.41±0.50) scores vs. (1.39±0.50) scores;W=828.5,P=0.837]. Conclusion Compared with automated tube current

  2. Dual-source CT for chest pain assessment

    PubMed Central

    Nikolaou, Konstantin; Becker, Alexander; Leber, Alexander W.; Rist, Carsten; Wintersperger, Bernd J.; Reiser, Maximilian F.; Becker, Christoph R.

    2007-01-01

    Comprehensive CT angiography protocols offering a simultaneous evaluation of pulmonary embolism, coronary stenoses and aortic disease are gaining attractiveness with recent CT technology. The aim of this study was to assess the diagnostic accuracy of a specific dual-source CT protocol for chest pain assessment. One hundred nine patients suffering from acute chest pain were examined on a dual-source CT scanner with ECG gating at a temporal resolution of 83 ms using a body-weight-adapted contrast material injection regimen. The images were evaluated for the cause of chest pain, and the coronary findings were correlated to invasive coronary angiography in 29 patients (27%). The files of patients with negative CT examinations were reviewed for further diagnoses. Technical limitations were insufficient contrast opacification in six and artifacts from respiration in three patients. The most frequent diagnoses were coronary stenoses, valvular and myocardial disease, pulmonary embolism, aortic aneurysm and dissection. Overall sensitivity for the identification of the cause of chest pain was 98%. Correlation to invasive coronary angiography showed 100% sensitivity and negative predictive value for coronary stenoses. Dual-source CT offers a comprehensive, robust and fast chest pain assessment. PMID:18034246

  3. Left Ventricular Diastolic Dysfunction Assessment with Dual-Source CT

    PubMed Central

    Wen, Zhaoying; Ma, Heng; Zhao, Ying; Fan, Zhanming; Zhang, Zhaoqi; Choi, Sang Il; Choe, Yeon Hyeon; Liu, Jiayi

    2015-01-01

    Purpose To assess the impact of left ventricular (LV) diastolic dysfunction on left atrial (LA) phasic volume and function using dual-source CT (DSCT) and to find a viable alternative prognostic parameter of CT for LV diastolic dysfunction through quantitative evaluation of LA phasic volume and function in patients with LV diastolic dysfunction. Materials and Methods Seventy-seven patients were examined using DSCT and Doppler echocardiography on the same day. Reservoir, conduit, and contractile function of LA were evaluated by measuring LA volume (LAV) during different cardiac phases and all parameters were normalized to body surface area (BSA). Patients were divided into four groups (normal, impaired relaxation, pseudonormal, and restrictive LV diastolic filling) according to echocardiographic findings. The LA phasic volume and function in different stages of LV diastolic function was compared using one-way ANOVA analysis. The correlations between indexed volume of LA (LAVi) and diastolic function in different stages of LV were evaluated using Spearman correlation analysis. Results LA ejection fraction (LAEF), LA contraction, reservoir, and conduit function in patients in impaired relaxation group were not different from those in the normal group, but they were lower in patients in the pseudonormal and restrictive LV diastolic dysfunction groups (P < 0.05). For LA conduit function, there were no significant differences between the patients in the pseudonormal group and restrictive filling group (P = 0.195). There was a strong correlation between the indexed maximal left atrial volume (LAVmax, r = 0.85, P < 0.001), minimal left atrial volume (LAVmin, r = 0.91, P < 0.001), left atrial volume at the onset of P wave (LAVp, r = 0.84, P < 0.001), and different stages of LV diastolic function. The LAVi increased as the severity of LV diastolic dysfunction increased. Conclusions LA remodeling takes place in patients with LV diastolic dysfunction. At the same time, LA

  4. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT

    SciTech Connect

    Schoendube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-15

    Purpose: The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. Methods: To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. Results: While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same

  5. Dual-Source Multi-Energy CT with Triple or Quadruple X-ray Beams.

    PubMed

    Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H

    2016-02-01

    Energy-resolved photon-counting CT (PCCT) is promising for material decomposition with multi-contrast agents. However, corrections for non-idealities of PCCT detectors are required, which are still active research areas. In addition, PCCT is associated with very high cost due to lack of mass production. In this work, we proposed an alternative approach to performing multi-energy CT, which was achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a "Twin Beam" design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the accuracy of material decomposition for multi-contrast mixtures using a tri-beam configuration. The proposed strategy can be readily implemented on a dual-source scanner, which may allow material decomposition of multi-contrast agents to be performed on clinical CT scanners with energy-integrating detector.

  6. Dual-Source Multi-Energy CT with Triple or Quadruple X-ray Beams

    PubMed Central

    Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H.

    2016-01-01

    Energy-resolved photon-counting CT (PCCT) is promising for material decomposition with multi-contrast agents. However, corrections for non-idealities of PCCT detectors are required, which are still active research areas. In addition, PCCT is associated with very high cost due to lack of mass production. In this work, we proposed an alternative approach to performing multi-energy CT, which was achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a “Twin Beam” design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the accuracy of material decomposition for multi-contrast mixtures using a tri-beam configuration. The proposed strategy can be readily implemented on a dual-source scanner, which may allow material decomposition of multi-contrast agents to be performed on clinical CT scanners with energy-integrating detector. PMID:27330237

  7. Correction of cross-scatter in next generation dual source CT (DSCT) scanners

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Stierstorfer, K.; Petersilka, M.; Wiegand, C.; Suess, C.; Flohr, T.

    2008-03-01

    In dual source CT (DSCT) with two X-ray sources and two data measurement systems mounted on a CT gantry with a mechanical offset of 90 deg, cross scatter radiation, (essentially 90 deg Compton scatter) is added to the detector signals. In current DSCT scanners the cross scatter correction is model based: the idea is to describe the scattering surface in terms of its tangents. The positions of these tangent lines are used to characterize the shape of the scattering object. For future DSCT scanners with larger axial X-ray beams, the model based correction will not perfectly remove the scatter signal in certain clinical situations: for obese patients scatter artifacts in cardiac dual source scan modes might occur. These shortcomings can be circumvented by utilizing the non-diagnostic time windows in cardiac scan modes to detect cross scatter online. The X-ray generators of both systems have to be switched on and off alternating. If one X-ray source is switched off, cross scatter deposited in the respective other detector can be recorded and processed, to be used for efficient cross scatter correction. The procedure will be demonstrated for cardiac step&shoot as well as for spiral acquisitions. Full rotation reconstructions are less sensitive to cross scatter radiation; hence in non-cardiac case the model-based approach is sufficient. Based on measurements of physical and anthropomorphic phantoms we present image data for DSCT systems with various collimator openings demonstrating the efficacy of the proposed method. In addition, a thorough analysis of contrast-to-noise ratio (CNR) shows, that even for a X-ray beam corresponding to a 64x0.6 mm collimation, the maximum loss of CNR due to cross scatter is only about 7% in case of obese patients.

  8. Dual source CT (DSCT) imaging of obese patients: evaluation of CT number accuracy, uniformity, and noise

    NASA Astrophysics Data System (ADS)

    Walz-Flannigan, A.; Schmidt, B.,; Apel, A.; Eusemann, C.; Yu, L.; McCollough, C. H.

    2009-02-01

    Obese patients present challenges in obtaining sufficient x-ray exposure over reasonable time periods for acceptable CT image quality. To overcome this limitation, the exposure can be divided between two x-ray sources using a dualsource (DS) CT system. However, cross-scatter issues in DS CT may also compromise image quality. We evaluated a DS CT system optimized for imaging obese patients, comparing the CT number accuracy and uniformity to the same images obtained with a single-source (SS) acquisition. The imaging modes were compared using both solid cylindrical PMMA phantoms and a semi-anthropomorphic thorax phantom fitted with extension rings to simulate different size patients. Clinical protocols were used and CTDIvol and kVp were held constant between SS and DS modes. Results demonstrated good agreement in CT number between SS and DS modes in CT number, with the DS mode showing better axial uniformity for the largest phantoms.

  9. Dual energy CT with photon counting and dual source systems: comparative evaluation

    NASA Astrophysics Data System (ADS)

    Atak, Haluk; Shikhaliev, Polad M.

    2015-12-01

    Recently, new dual energy (DE) computed tomography (CT) systems—dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2  ×  256 pixel configuration and 1  ×  1 mm2 pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal

  10. Quantitative imaging of chemical composition using dual-energy, dual-source CT

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Primak, Andrew N.; Yu, Lifeng; McCollough, Cynthia H.; Morin, Richard L.

    2008-03-01

    Dual-energy x-ray material decomposition has been proposed as a noninvasive quantitative imaging technique for more than 20 years. In this paper, we summarize previously developed dual-energy material decomposition methods and propose a simple yet accurate method for quantitatively measuring chemical composition in vivo. In order to take advantage of the newly developed dual-source CT, the proposed method is based upon post reconstruction (image space) data. Different from other post reconstruction methods, this method is designed to directly measure element composition (mass fraction) in a tissue by a simple table lookup procedure. The method has been tested in phantom studies and also applied to a clinical case. The results showed that this method is capable of accurately measuring elemental concentrations, such as iron in tissue, under low noise imaging conditions. The advantage of this method lies in its simplicity and fast processing times. We believe that this method can be applied clinically to measure the mass fraction of any chemical element in a two-material object, such as to quantify the iron overload in the liver (hemochromatosis). Further investigations on de-noising techniques, as well as clinical validation, are merited.

  11. Intensity distribution and impact of scatter for dual-source CT

    NASA Astrophysics Data System (ADS)

    Kyriakou, Yiannis; Kalender, Willi A.

    2007-12-01

    Apart from forward scatter, which is given for all CT scanners, dual-source CT (DSCT) is also affected by cross-scatter photons from the second tube-detector system arranged at 90°. We investigated the magnitude and distribution of scatter for DSCT and its impact on image quality. Simulations and measurements of homogeneous and anthropomorphic phantoms were conducted for a DSCT scanner (SOMATOM Definition, Siemens Medical Solutions, Forchheim, Germany) at tube voltages of 80 and 120 kV. The simulations of forward scatter were carried out using combined analytical and Monte Carlo simulation methods for a collimation of 19.2 mm for both tube-detector systems. Measurements of cross scatter were performed by switching one tube off, still reading out the corresponding detector. The relative scatter fractions and the distribution of cross scatter were registered for various imaging conditions. Additionally, a detailed noise analysis with respect to the correction of cross-scatter artifacts is provided to evaluate the performance of correction algorithms. The forward-scatter fraction increased with increasing phantom diameter from 0.02 up to 0.11 for PMMA phantoms of 80 to 400 mm diameter. For cross scatter, the mean intensity was equivalent to forward scatter for small phantoms but was larger for increased phantom size and resulted in severe artifacts in the reconstructed images. The outer dimensions and shape of the object are decisive for the cross-scatter intensity distribution whereas the influence of the degree of inhomogeneity of the respective phantom appears to be negligible. Scatter correction suppressed cross-scatter artifacts but increased noise as a function of the cross-scatter fraction. The magnitude of scatter is not negligible for DSCT systems and dedicated corrections are necessary for the assurance of unimpaired image quality.

  12. Image reconstruction and image quality evaluation for a dual source CT scanner

    PubMed Central

    Flohr, T. G.; Bruder, H.; Stierstorfer, K.; Petersilka, M.; Schmidt, B.; McCollough, C. H.

    2008-01-01

    The authors present and evaluate concepts for image reconstruction in dual source CT (DSCT). They describe both standard spiral (helical) DSCT image reconstruction and electrocardiogram (ECG)-synchronized image reconstruction. For a compact mechanical design of the DSCT, one detector (A) can cover the full scan field of view, while the other detector (B) has to be restricted to a smaller, central field of view. The authors develop an algorithm for scan data completion, extrapolating truncated data of detector (B) by using data of detector (A). They propose a unified framework for convolution and simultaneous 3D backprojection of both (A) and (B) data, with similar treatment of standard spiral, ECG-gated spiral, and sequential (axial) scan data. In ECG-synchronized image reconstruction, a flexible scan data range per measurement system can be used to trade off temporal resolution for reduced image noise. Both data extrapolation and image reconstruction are evaluated by means of computer simulated data of anthropomorphic phantoms, by phantom measurements and patient studies. The authors show that a consistent filter direction along the spiral tangent on both detectors is essential to reduce cone-beam artifacts, requiring truncation of the extrapolated (B) data after convolution in standard spiral scans. Reconstructions of an anthropomorphic thorax phantom demonstrate good image quality and dose accumulation as theoretically expected for simultaneous 3D backprojection of the filtered (A) data and the truncated filtered (B) data into the same 3D image volume. In ECG-gated spiral modes, spiral slice sensitivity profiles (SSPs) show only minor dependence on the patient’s heart rate if the spiral pitch is properly adapted. Measurements with a thin gold plate phantom result in effective slice widths (full width at half maximum of the SSP) of 0.63–0.69mm for the nominal 0.6mm slice and 0.82–0.87mm for the nominal 0.75mm slice. The visually determined through-plane (z

  13. Dual energy with dual source CT and kVp switching with single source CT: a comparison of dual energy performance

    NASA Astrophysics Data System (ADS)

    Grasruck, M.; Kappler, S.; Reinwand, M.; Stierstorfer, K.

    2009-02-01

    Stimulated by the introduction of clinical dual source CT, the interest in dual energy methods has been increasing in the past years. Whereas the potential of material decomposition by dual energy methods is known since the early 1980ies, the realization of dual energy methods is a wide field of today's research. Energy separation can be achieved with energy selective detectors or by varying X-ray source spectra. This paper focuses on dual energy techniques with varying X-ray spectra. These can be provided by dual source CT devices, operated with different kVp settings on each tube. Excellent spectral separation is the key property for use in clinical routine. The drawback of higher cost for two tubes and two detectors leads to an alternative realization, where a single source CT yields different spectra by fast kVp switching from reading to reading. This provides access to dual-energy methods in single source CT. However, this technique comes with some intrinsic limitations. The maximum X-ray flux is reduced in comparison to the dual source system. The kVp rise and fall time between each reading reduces the spectral separation. In comparison to dual source CT, for a constant number of projections per energy spectrum the temporal resolution is reduced; a reasonable trade of between reduced numbers of projection and limited temporal resolution has to be found. The overall dual energy performance is the guiding line for our investigations. We present simulations and measurements which benchmark both solutions in terms of spectral behavior, especially of spectral separation.

  14. Automatic selection of an optimal systolic and diastolic reconstruction windows for dual-source CT coronary angiography

    NASA Astrophysics Data System (ADS)

    Seifarth, H.; Puesken, M.; Wienbeck, S.; Maintz, D.; Heindel, W.; Juergens, K.-U.

    2008-03-01

    Purpose: To assess the performance of a motion map algorithm to automatically determine the optimal systolic and diastolic reconstruction window for coronary CT Angiography using Dual Source CT. Materials and Methods: Dual Source coronary CT angiography data sets (Somatom Definition, Siemens Medical Solutions) from 50 consecutive patients were included in the analysis. Optimal systolic and diastolic reconstruction windows were determined using a motion map algorithm (BestPhase, Siemens Medical Solutions). Additionally data sets were reconstructed in 5% steps throughout the RR-interval. For each major vessel (RCA, LAD and LCX) an optimal systolic and diastolic reconstruction window was manually determined by two independent readers using volume rendering displays. Image quality was rated using a five-point scale (1 = no motion artifacts, 5 = severe motion artifacts over entire length of the vessel). Results: The mean heart rate during the scan was 72.4bpm (+/-15.8bpm). Median systolic and diastolic reconstruction windows using the BestPhase algorithm were at 37% and 73% RR. The median manually selected systolic reconstruction window was 35 %, 30% and 35% for RCA, LAD, and LCX. For all vessels the median observer selected diastolic reconstruction window was 75%. Mean image quality using the BestPhase algorithm was 2.4 +/-0.9 for systolic reconstructions and 1.9 +/-1.1 for diastolic reconstructions. Using the manual approach, the mean image quality was 1.9 +/-0.5 and 1.7 +/-0.8 respectively. There was a significant difference in image quality between automatically and manually determined systolic reconstructions (p<0.01) but there was no significant difference in image quality in diastolic reconstructions. Conclusion: Automatic determination of the optimal reconstruction interval using the BestPhase algorithm is feasible and yields reconstruction windows similar to observer selected reconstruction windows. In diastolic reconstructions overall image quality is similar

  15. Ultra-high-resolution dual-source CT for forensic dental visualization-discrimination of ceramic and composite fillings.

    PubMed

    Jackowski, C; Wyss, M; Persson, A; Classens, M; Thali, M J; Lussi, A

    2008-07-01

    Dental identification is the most valuable method to identify human remains in single cases with major postmortem alterations as well as in mass casualties because of its practicability and demanding reliability. Computed tomography (CT) has been investigated as a supportive tool for forensic identification and has proven to be valuable. It can also scan the dentition of a deceased within minutes. In the present study, we investigated currently used restorative materials using ultra-high-resolution dual-source CT and the extended CT scale for the purpose of a color-encoded, in scale, and artifact-free visualization in 3D volume rendering. In 122 human molars, 220 cavities with 2-, 3-, 4- and 5-mm diameter were prepared. With presently used filling materials (different composites, temporary filling materials, ceramic, and liner), these cavities were restored in six teeth for each material and cavity size (exception amalgam n = 1). The teeth were CT scanned and images reconstructed using an extended CT scale. Filling materials were analyzed in terms of resulting Hounsfield units (HU) and filling size representation within the images. Varying restorative materials showed distinctively differing radiopacities allowing for CT-data-based discrimination. Particularly, ceramic and composite fillings could be differentiated. The HU values were used to generate an updated volume-rendering preset for postmortem extended CT scale data of the dentition to easily visualize the position of restorations, the shape (in scale), and the material used which is color encoded in 3D. The results provide the scientific background for the application of 3D volume rendering to visualize the human dentition for forensic identification purposes.

  16. Effectiveness of Using Dual-source CT and the Upshot it creates on Both Heart Rate and Image Quality

    PubMed Central

    Selçuk, Tuba; Otçu, Hafize; Yüceler, Zeyneb; Bilgili, Çiğdem; Bulakçı, Mesut; Savaş, Yıldıray; Çelik, Ömer

    2016-01-01

    Background: Early detection of coronary artery disease (CAD) is important because of the high morbidity and mortality rates. As invasive coronary angiography (ICA) is an invasive procedure, an alternative diagnostic method; coronary computed tomography angiography (CTA), has become more widely used by the improvements in detector technology. Aims: In this study, we aimed to examine the accuracy and image quality of high-pitch 128-slice dual-source CTA taking the ICA as reference technique. We also aimed to compare the accuracy and image quality between different heart rate groups of >70 beates per minute (bpm) and ≤70 bpm. Study Design: Retrospective cross-sectional study. Methods: Among 450 patients who underwent coronary CTA with the FLASH spiral technique, performed with a second generation dual-source computed tomography device with a pitch value of 3.2, 102 patients without stent and/or bypass surgery history and clinically suspected coronary artery disease who underwent ICA within 15 days were enrolled. Image quality was assessed by two independent radiologists using a 4-point scale (1=absence of any artifacts- 4=non-evaluable). A stenosis >50% was considered significant on a per-segment, per-vessel, and per-patient basis and ICA was considered the reference method. Radiation doses were determined using dose length product (DLP) values detected by the computed tomography (CT) device. In addition, patients were classified into two groups according to their heart rates as ≤70 bpm (73 patients) and >70 bpm (29 patients). The relation between the diagnostic accuracy and heart rate groups were evaluated. Results: Overall, 1495 (98%) coronary segments were diagnostic in 102 patients (32 male, 70 female, mean heart rate: 65 bpm). There was a significant correlation between image quality and mean heart rate in the right coronary artery (RCA) segments. The effective radiation dose was 0.98±0.09 mili Sievert (mSv). On a per-patient basis, sensitivity, specificity

  17. Image Quality and Radiation Dose for Prospectively Triggered Coronary CT Angiography: 128-Slice Single-Source CT versus First-Generation 64-Slice Dual-Source CT

    NASA Astrophysics Data System (ADS)

    Gu, Jin; Shi, He-Shui; Han, Ping; Yu, Jie; Ma, Gui-Na; Wu, Sheng

    2016-10-01

    This study sought to compare the image quality and radiation dose of coronary computed tomography angiography (CCTA) from prospectively triggered 128-slice CT (128-MSCT) versus dual-source 64-slice CT (DSCT). The study was approved by the Medical Ethics Committee at Tongji Medical College of Huazhong University of Science and Technology. Eighty consecutive patients with stable heart rates lower than 70 bpm were enrolled. Forty patients were scanned with 128-MSCT, and the other 40 patients were scanned with DSCT. Two radiologists independently assessed the image quality in segments (diameter >1 mm) according to a three-point scale (1: excellent; 2: moderate; 3: insufficient). The CCTA radiation dose was calculated. Eighty patients with 526 segments in the 128-MSCT group and 544 segments in the DSCT group were evaluated. The image quality 1, 2 and 3 scores were 91.6%, 6.9% and 1.5%, respectively, for the 128-MSCT group and 97.6%, 1.7% and 0.7%, respectively, for the DSCT group, and there was a statistically significant inter-group difference (P ≤ 0.001). The effective doses were 3.0 mSv in the 128-MSCT group and 4.5 mSv in the DSCT group (P ≤ 0.001). Compared with DSCT, CCTA with prospectively triggered 128-MSCT had adequate image quality and a 33.3% lower radiation dose.

  18. The superior aspect of the perirenal space: could it be depicted by dual-source CT in vivo in adults

    PubMed Central

    Qi, R; Zhou, X P; Li, Z L

    2015-01-01

    Objective: This study aims to observe whether the renal fascias could be effectively shown by dual-source CT (DSCT) and to explore the superior communication of the perirenal space (PS) in vivo in adults. Methods: 275 cases were included in the normal group and 124 cases in the acute pancreatitis group in this study; all images obtained by DSCT were observed; the superior adherence of the renal fascias and the pattern of superior communication of the PS were judged; and the consistency between the two groups was compared. Results: The superior adherence of the renal fascias was reliably displayed in 57.8% of the normal group and 69.4% of the acute pancreatitis group, the anterior renal fascia (ARF) did not fuse with the posterior renal fascia superiorly. The left ARF fused with the posterior parietal peritoneum in 57.9% of the normal group and 45.3% of the pancreatitis group, where the left PS communicated with the subdiaphragmatic retroperitoneal space (SDRS). The left ARF fused with the peritoneum laterally and simultaneously with the inferior phrenic fascia medially in 42.1% and 54.7% of each group, respectively, where the left PS was open towards the SDRS laterally but sealed off from the SDRS medially. The right ARF fused with the peritoneum in all cases; and the right PS was open towards the bare area of the liver. Conclusion: To some extent, DSCT can display renal fascia and its superior adherence and reflect the superior communication of the PS. Advances in knowledge: This study was conducted in vivo in adults by high-resolution DSCT, and more samples could be provided. PMID:25411900

  19. Contrast material injection protocol with the flow rate adjusted to the heart rate for dual source CT coronary angiography.

    PubMed

    Zhu, Xiaomei; Chen, Wenping; Li, Mei; Xu, Yi; Xu, Hai; Zhu, Yinsu; Wang, Dehang; Tang, Lijun

    2012-08-01

    To investigate the effect on coronary arterial attenuations of contrast material flow rate adjusted to a patient's heart rate during dual source CT coronary angiography (DSCT-CCTA). A total of 296 consecutive patients (mean age: 58.7 years) undergoing DSCT-CCTA without previous coronary stent placement, bypass surgery, congenital or valvular heart disease were included. The image acquisition protocol was standardized (120 kV, 380 mAs) and retrospective electrocardiograph (ECG) gating was used. Patients were randomly assigned to one of three groups [flow rate: G1: dosage/16, G2: dosage/(scan time +8), G3: fixed flow rate]. The groups were compared with respect to the attenuations of the ascending aorta (AA) above coronary ostia, the left main coronary artery (LM), the proximal right coronary artery (RCA), the left anterior descending artery (LAD), the left circumflex artery (LCX), and the contrast to noise ratio of the LM (LM(CNR)) and the proximal RCA (RCA(CNR)). Correlations between heart rate and attenuation of the coronary arteries were evaluated in three groups with linear regression. There was no significant difference in the three groups among the mean attenuations of AA (P = 0.141), LM (P = 0.068), RCA (P = 0.284), LM(CNR) (P = 0.598) and RCA(CNR) (P = 0.546). The attenuations of the LAD and the LCX in group 1 were slightly higher than those in group 2 and 3 (P < 0.05). In group 1, the attenuations of the AA (P < 0.01), LM (P < 0.01), RCA (P < 0.01), LAD (P = 0.02) and LCX (P < 0.01) decreased, respectively, with an increasing heart rate. A similar finding was detected in group 3 (AA: P < 0.01, LM: P < 0.01, RCA: P < 0.01, LAD: P < 0.01 and LCX: P < 0.01). In contrast, the attenuations of the AA (P = 0.55), LM (P = 0.27), RCA (P = 0.77), LAD (P = 0.22) and LCX (P = 0.74) had no significant correlation with heart rate in group 2. In all three groups, LM(CNR) (P = 0.77, 0.69 and 0.73 respectively) and RCA(CNR) (P = 0.75, 0.39 and 0.61 respectively) had no

  20. Screening for coronary artery disease in respiratory patients: comparison of single- and dual-source CT in patients with a heart rate above 70 bpm.

    PubMed

    Pansini, Vittorio; Remy-Jardin, Martine; Tacelli, Nunzia; Faivre, Jean-Baptiste; Flohr, Thomas; Deken, Valérie; Duhamel, Alain; Remy, Jacques

    2008-10-01

    To evaluate the assessibility of coronary arteries in respiratory patients with high heart rates. This study was based on the comparative analysis of two paired populations of 54 patients with a heart rate >70 bpm evaluated with dual-source (group 1) and single-source (group 2) CT. The mean heart rate was 89.1 bpm in group 1 and 86.7 bpm in group 2 (P=0.26). The mean number of assessable segments per patient was significantly higher in group 1 compared to group 2 (P CT angiograms of the chest. The improvement in coronary imaging with dual-source CT suggests that high heart rates should no longer be considered as contraindications for ECG-gated CT angiograms of the chest whenever clinically relevant.

  1. Update on multidetector coronary CT angiography of coronary stents: in vitro evaluation of 29 different stent types with dual-source CT.

    PubMed

    Maintz, David; Burg, Matthias C; Seifarth, Harald; Bunck, Alexander C; Ozgün, Murat; Fischbach, Roman; Jürgens, Kai Uwe; Heindel, Walter

    2009-01-01

    The aim of this study was to test a large sample of the latest coronary artery stents using four image reconstruction approaches with respect to lumen visualization, lumen attenuation, and image noise in dual-source multidetector row CT (DSCT) in vitro and to provide a CT catalogue of currently used coronary artery stents. Twenty-nine different coronary artery stents (19 steel, 6 cobalt-chromium, 2 tantalum, 1 iron, 1 magnesium) were examined in a coronary artery phantom (vessel diameter 3 mm, intravascular attenuation 250 HU, extravascular density -70 HU). Stents were imaged in axial orientation with standard parameters: 32 x 0.6 collimation, pitch 0.24, 400 mAs, 120 kV, rotation time 0.33 s. Image reconstructions were obtained with four different convolution kernels (soft, medium-soft, standard high-resolution, stent-dedicated). To evaluate visualization characteristics of the stent, the lumen diameter, intraluminal density, and noise were measured. The stent-dedicated kernel offered best average lumen visualization (54 +/- 8.3%) and most realistic lumen attenuation (222 +/- 44 HU) at the expense of increased noise (23.9 +/- 1.9 HU) compared with standard CTA protocols (p < 0.001 for all). The magnesium stent showed the least artifacts with a lumen visibility of 90%. The majority of stents (79%) exhibited a lumen visibility of 50-59%. Less than half of the stent lumen was visible in only six stents. Stent lumen visibility largely varies depending on the stent type. Magnesium is by far more favorable a stent material with regard to CT imaging when compared with the more common materials steel, cobalt-chromium, or tantalum. The magnesium stent exhibits a lumen visibility of 90%, whereas the majority of the other stents exhibit a lumen visibility of 50-59%.

  2. An Aneurysmal Left Circumflex Artery-to-Right Atrium Fistula in a Patient with Ischemic Symptoms: Accurate Diagnosis with Dual-Source CT Angiography

    SciTech Connect

    Oncel, Dilek Oncel, Guray

    2008-07-15

    In this report, we present a 55-year-old female patient with a left circumflex artery-to-right atrial fistula associated with a huge saccular aneurysm. She had undergone conventional angiography due to ischemic symptoms. In conventional angiography, a very dilated and tortuous vessel originating from the circumflex artery and continuous with a huge saccular aneurysm was visualized but the drainage site could not be demonstrated. With dual-source CT coronary angiography, the exact anatomy of this fistula was demonstrated and surgery was planned.

  3. Accuracy of dual-source CT to identify significant coronary artery disease in patients with uncontrolled hypertension presenting with chest pain: comparison with coronary angiography.

    PubMed

    Marwan, Mohamed; Pflederer, Tobias; Schepis, Tiziano; Seltmann, Martin; Klinghammer, Lutz; Muschiol, Gerd; Ropers, Dieter; Daniel, Werner G; Achenbach, Stephan

    2012-06-01

    It has been previously reported that the sensitivity and specificity of multislice CT for detecting significant CAD (coronary artery disease) is high. Chest pain is a common presentation in patients with uncontrolled hypertension. We investigated the sensitivity and specificity of dual-source CT to detect and rule out significant CAD in patients presenting with uncontrolled hypertension accompanied by chest pain. 260 consecutive patients presenting with acute chest pain in the context of stage 2 hypertension (systolic pressure ≥160 and/or diastolic pressure ≥100) were enrolled in the study. After admission, control of blood pressure and risk stratification, 82 patients were excluded due to renal insufficiency, prior coronary revascularisation or refused participation in the study. 90 further patients with low pre-test probability of CAD were also excluded. 88 remaining patients were subjected to CT coronary angiography using dual-source CT (Definition, Siemens Medical Solutions, Forchheim, Germany) within 24 h before invasive coronary angiography. A contrast-enhanced volume dataset was acquired (120 kV, 400 mAs/rot, collimation 2 × 64 × 0.6 mm, retrospective ECG gating). Data sets were evaluated concerning the presence or absence of significant coronary stenoses and validated against invasive coronary angiography. A significant stenosis was assumed if the diameter reduction was ≥50%. 88 patients (mean age 66 ± 11 years, mean heart rate 61 ± 9 bpm) were evaluated regarding the presence or absence of significant CAD (at least one stenosis ≥50% diameter reduction). Mean systolic blood pressure on presentation was 203 ± 20 mmHg and mean diastolic blood pressure was 103 ± 13 mmHg. On a per patient basis, the sensitivity and specificity for dual-source CT to detect significant CAD in vessels >1.5 mm diameter was 100% (36/36, 95% CI 90-100) and 90% (47/52, 95% CI 79-97), respectively with a negative predictive value (NPV) of 100% (47/47, 95% CI 92-100) and a

  4. Application of the Low-dose One-stop-shop Cardiac CT Protocol with Third-generation Dual-source CT.

    PubMed

    Lin, Lu; Wang, Yining; Yi, Yan; Cao, Jian; Kong, Lingyan; Qian, Hao; Zhang, Hongzhi; Wu, Wei; Wang, Yun; Jin, Zhengyu

    2017-02-20

    Objective To evaluate the feasibility of a low-dose one-stop-shop cardiac CT imaging protocol with third-generation dual-source CT (DSCT). Methods Totally 23 coronary artery disease (CAD) patients were prospectively enrolled between March to September in 2016. All patients underwent an ATP stress dynamic myocardial perfusion imaging (MPI) (data acquired prospectively ECG-triggered during end systole by table shuttle mode in 32 seconds) at 70 kV combined with prospectively ECG-triggered high-pitch coronary artery angiography (CCTA) on a third-generation DSCT system. Myocardial blood flow (MBF) was quantified and compared between perfusion normal and abnormal myocardial segments based on AHA-17-segment model. CCTA images were evaluated qualitatively based on SCCT-18-segment model and the effective dose(ED) was calculated. In patients with subsequent catheter coronary angiography (CCA) as reference,the diagnosis performance of MPI (for per-vessel ≥50% and ≥70% stenosis) and CCTA (for≥50% stenosis) were assessed. Results Of 23 patients who had completed the examination of ATP stress MPI plus CCTA,12 patients received follow-up CCA. At ATP stress MPI,77 segments (19.7%) in 13 patients (56.5%) had perfusion abnormalities. The MBF values of hypo-perfused myocardial segments decreased significantly compared with normal segments [(93±22)ml/(100 ml·min) vs. (147±27)ml/(100 ml·min);t=15.978,P=0.000]. At CCTA,93.9% (308/328) of the coronary segments had diagnostic image quality. With CCA as the reference standard,the per-vessel and per-segment sensitivity,specificity,and accuracy of CCTA for stenosis≥50% were 94.1%,93.5%,and 93.7% and 90.9%,97.8%,and 96.8%,and the per-vessel sensitivity,specificity and accuracy of ATP stress MPI for stenosis≥50% and ≥70% were 68.7%,100%,and 89.5% and 91.7%,100%,and 97.9%. The total ED of MPI and CCTA was (3.9±1.3) mSv [MPI:(3.5±1.2) mSv,CCTA:(0.3±0.1) mSv]. Conclusion The third-generation DSCT stress dynamic MPI at 70 k

  5. Performance of dual-source CT with high pitch spiral mode for coronary stent patency compared with invasive coronary angiography

    PubMed Central

    Yang, Xia; Yu, Qiang; Dong, Wei; Fu, Zhen-Hong; Yang, Jun-Jue; Guo, Jun; Chen, Yun-Dai

    2016-01-01

    Objective To investigate the performance of dual-source computed tomography (DSCT) using high-pitch spiral (HPS) mode for coronary stents patency. Methods We conducted a prospective study on 120 patients with 260 previous stents implanted due to recurred suspicious symptoms of angina scheduled for invasive coronary angiography (ICA), while DSCT were conducted using HPS mode. Results There was no significant impact of age, body mass index or heat rate (HR) on image quality (P > 0.05), while HR variability had a slight impact on that (P < 0.05). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) of DSCT in detection of in-stent restenosis (ISR) based per-patient were 92.3%, 96.7%, 88.9%, and 97.8%, respectively. And those based per-stent were 87%, 96.8%, 83.3%, and 97.7% with un-assessment stents, 97.4%, 99.5%, 97.4%, and 99.5% without un-assessment stents. There was significant difference on sensitivity, specificity, PPV and NPV between diameter ≥ 3.0 mm group (93.3%, 97.9%, 87.5%, and 98.9%) and diameter < 3.0 mm group (80%, 93.3%, 80.0%, and 93.3%) (P < 0.05), and that between stent number ≥ 3 group (82.3%, 77.8%, 66.7%, and 60%) with < 3 group (97.3%, 80%, 96.5%, and 75%). The effective dose of DSCT (1.4 ± 0.5 mSv) is significantly less than that by invasive coronary angiography [4.0 ± 0.8 mSv (P < 0.01)]. Conclusion DSCT using HPS mode provides good diagnostic performance on stent patency with lower effective dose in patients with HR < 65 beats/min. PMID:27928222

  6. 3T MRI and 128-slice dual-source CT cisternography images of the cranial nerves a brief pictorial review for clinicians.

    PubMed

    Roldan-Valadez, Ernesto; Martinez-Anda, Jaime J; Corona-Cedillo, Roberto

    2014-01-01

    There is a broad community of health sciences professionals interested in the anatomy of the cranial nerves (CNs): specialists in neurology, neurosurgery, radiology, otolaryngology, ophthalmology, maxillofacial surgery, radiation oncology, and emergency medicine, as well as other related fields. Advances in neuroimaging using high-resolution images from computed tomography (CT) and magnetic resonance (MR) have made highly-detailed visualization of brain structures possible, allowing normal findings to be routinely assessed and nervous system pathology to be detected. In this article we present an integrated perspective of the normal anatomy of the CNs established by radiologists and neurosurgeons in order to provide a practical imaging review, which combines 128-slice dual-source multiplanar images from CT cisternography and 3T MR curved reconstructed images. The information about the CNs includes their origin, course (with emphasis on the cisternal segments and location of the orifices at the skull base transmitting them), function, and a brief listing of the most common pathologies affecting them. The scope of the article is clinical anatomy; readers will find specialized texts presenting detailed information about particular topics. Our aim in this article is to provide a helpful reference for understanding the complex anatomy of the cranial nerves.

  7. Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in-vivo

    PubMed Central

    Primak, Andrew N.; Giraldo, Juan Carlos Ramirez; Eusemann, Christian D.; Schmidt, Bernhard; Kantor, B.; Fletcher, Joel G.; McCollough, Cynthia H.

    2010-01-01

    Purpose To investigate the effect on radiation dose and image quality of the use of additional spectral filtration for dual-energy CT (DECT) imaging using dual-source CT (DSCT). Materials and Methods A commercial DSCT scanner was modified by adding tin filtration to the high-kV tube, and radiation output and noise measured in water phantoms. Dose values for equivalent image noise were compared among DE-modes with and without tin filtration and single-energy (SE) mode. To evaluate DECT material discrimination, the material-specific DEratio for calcium and iodine were determined using images of anthropomorphic phantoms. Data were additionally acquired in 38 and 87 kg pigs, and noise for the linearly mixed and virtual non-contrast (VNC) images compared between DE-modes. Finally, abdominal DECT images from two patients of similar sizes undergoing clinically-indicated CT were compared. Results Adding tin filtration to the high-kV tube improved the DE contrast between iodine and calcium as much as 290%. Pig data showed that the tin filtration had no effect on noise in the DECT mixed images, but decreased noise by as much as 30% in the VNC images. Patient VNC-images acquired using 100/140 kV with added tin filtration had improved image quality compared to those generated with 80/140 kV without tin filtration. Conclusion Tin filtration of the high-kV tube of a DSCT scanner increases the ability of DECT to discriminate between calcium and iodine, without increasing dose relative to SECT. Furthermore, use of 100/140 kV tube potentials allows improved DECT imaging of large patients. PMID:20966323

  8. A multireader diagnostic performance study of low-contrast detectability on a third-generation dual-source CT scanner: filtered back projection versus advanced modeled iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Mileto, Achille; Ramirez-Giraldo, Juan Carlos; Samei, Ehsan

    2015-03-01

    The purpose of this work was to compare CT low-contrast detectability between two reconstruction algorithms, filtered back-projection (FBP) and advanced modeled iterative reconstruction (ADMIRE). A phantom was designed with a range of low-contrast circular inserts representing 5 contrast levels and 3 sizes. The phantom was imaged on a third-generation dual-source CT scanner (SOMATOM Definition Force, Siemens Healthcare) under various dose levels (0.74 - 5.8 mGy CTDIVol). Images were reconstructed using different settings of slice thickness (0.6 - 5 mm) and reconstruction algorithms (FBP and ADMIRE with strength of 3-5) and were assessed by eleven blinded and independent readers using a two alternative forced choice (2AFC) detection experiment. A second observer experiment was further performed in which observers scored the images based on the total number of visible object groups. Detection performance increased with increasing contrast, size, dose, with accuracy ranging from 50% (i.e., guessing) to 87% with an average inter-observer variability of ±7%. The use of ADMIRE-3 increased performance by 5.2% resulting in an estimated dose reduction potential of 56-60%. The results from the second experiment also showed increased number of visible object groups for increasing dose, slice thickness, and ADMIRE strength. The score difference between FBP and ADMIRE was 0.9, 1.3, and 2.1 for ADMIRE strengths of 3, 4, and 5, respectively, resulting in estimated dose reduction potentials between 4-80%. Overall, the data indicated potential to image at reduced doses while maintaining comparable image quality when using ADMIRE compared to FBP.

  9. Quantification of left coronary bifurcation angles and plaques by coronary computed tomography angiography for prediction of significant coronary stenosis: A preliminary study with dual-source CT

    PubMed Central

    Cui, Yue; Zeng, Wenjuan; Yu, Jie; Lu, Jing; Hu, Yuannan; Diao, Nan; Liang, Bo; Han, Ping; Shi, Heshui

    2017-01-01

    Purpose To evaluate the diagnostic performance of left coronary bifurcation angles and plaque characteristics for prediction of coronary stenosis by dual-source CT. Methods 106 patients suspected of coronary artery disease undergoing both coronary computed tomography angiography (CCTA) and invasive coronary angiography (CAG) within three months were included. Left coronary bifurcation angles including the angles between the left anterior descending artery and left circumflex artery (LAD-LCx), left main coronary artery and left anterior descending artery (LM-LAD), left main coronary artery and left circumflex artery (LM-LCx) were measured on CT images. CCTA plaque parameters were calculated by plaque analysis software. Coronary stenosis ≥ 50% by CAG was defined as significant. Results 106 patients with 318 left coronary bifurcation angles and 126 vessels were analyzed. The bifurcation angle of LAD-LCx was significantly larger in left coronary stenosis ≥ 50% than stenosis < 50%, and significantly wider in the non-calcified plaque group than calcified. Multivariable analyses showed the bifurcation angle of LAD-LCx was an independent predictor for significant left coronary stenosis (OR = 1.423, P = 0.002). In ROC curve analysis, LAD-LCx predicted significant left coronary stenosis with a sensitivity of 66.7%, specificity of 78.4%, positive predictive value of 85.2% and negative predictive value of 55.8%. The lipid plaque volume improved the diagnostic performance of CCTA diameter stenosis (AUC: 0.854 vs. 0.900, P = 0.045) in significant coronary stenosis. Conclusions The bifurcation angle of LAD-LCx could predict significant left coronary stenosis. Wider LAD-LCx is related to non-calcified lesions. Lipid plaque volume could improve the diagnostic performance of CCTA for coronary stenosis prediction. PMID:28346530

  10. Detection of ischaemic myocardial lesions with coronary CT angiography and adenosine-stress dynamic perfusion imaging using a 128-slice dual-source CT: diagnostic performance in comparison with cardiac MRI

    PubMed Central

    Kim, S M; Choi, J-H; Chang, S-A

    2013-01-01

    Objective: We assessed the diagnostic performance of adenosine-stress dynamic CT perfusion (ASDCTP) imaging and coronary CT angiography (CCTA) for the detection of ischaemic myocardial lesions using 128-slice dual-source CT compared with that of 1.5 T cardiac MRI. Methods: This prospective study included 33 patients (61±8 years, 82% male) with suspected coronary artery diseases who underwent ASDCTP imaging and adenosine-stress cardiac MRI. Two investigators independently evaluated ASDCTP images in correlation with significant coronary stenosis on CCTA using two different thresholds of 50% and 70% diameter stenosis. Hypoattenuated myocardial lesions on ASDCTP associated with significant coronary stenoses on CCTA were regarded as true perfusion defects. All estimates of diagnostic performance were calculated and compared with those of cardiac MRI. Results: With use of a threshold of 50% diameter stenosis on CCTA, the diagnostic estimates per-myocardial segment were as follows: sensitivity, 81% [95% confidence interval (CI): 70–92%]; specificity, 94% (95% CI: 92–96%); and accuracy 93% (95% CI: 91–95%). With use of a threshold of 70%, the diagnostic estimates were as follows: sensitivity, 48% (95% CI: 34–62%); specificity, 99% (95% CI: 98–100%); and accuracy, 94% (95% CI: 92–96%). Conclusion: Dynamic CTP using 128-slice dual-source CT enables the assessment of the physiological significance of coronary artery lesions with high diagnostic accuracy in patients with clinically suspected coronary artery disease. Advances in knowledge: Combined CCTA and ASDCTP yielded high accuracy in the detection of perfusion defects regardless of the threshold of significant coronary stenosis. PMID:24096592

  11. High-pitch dual-source CT coronary angiography: analysis of the impact on image quality of altered electrocardiography waves during data acquisition.

    PubMed

    Wang, Xiaoling; Fang, Jiliang; Tong, Haibin; Zhao, Qing; Song, Qingqiao; Luo, Ping; Xue, Chao; Zhang, Min; Yang, Shuhua; Wang, Qun; Wang, Ping; Shi, Fengxiang; Xu, Lei; Rong, Peijing

    2012-06-01

    Electrocardiography (ECG) "altered waves" sometimes occur during data acquisition when computed tomography coronary angiography (CTCA) is performed with the prospectively ECG-triggered high-pitch (Flash spiral) mode using a second-generation dual-source CT. The aim of this study was to assess the effect of the ECG altered waves on image quality. Seventy-three consecutive patients with stable sinus rhythm ≤ 65 beats per minute were retrospectively enrolled in this study. CTCA was performed using the Flash spiral mode in which the data acquisition was prospectively triggered at 60 % of the R-R interval and completed within one cardiac cycle. The ECG waves before and during data acquisition were analyzed for grouping purposes. Image quality was evaluated using a four-point scale (1 = best, 4 = unevaluatable). Thirty patients (group 1) were found to have ECG altered waves during data acquisition, while 43 patients (group 2) had ECG "stable waves." The altered waves were seen as the baseline drifting; the broad, erected, or inverted P wave or QRS complexes; and a new wave. However, the length of the R-R interval did not change during the data acquisition. There were no significant differences in image quality scores between the two groups on the per-patient (2 ± 0.87 vs. 2.2 ± 0.74, P = 0.273) or per-segment (1.27 ± 0.54 vs. 1.32 ± 0.55, P = 0.577) basis. There were no significant differences in coronary evaluatability as well (per-patient; 93.3 vs. 95.3 %, P = 0.352; per-segment; 99.4 vs. 99.6 %, P = 1.0). CTCA image quality is not affected by ECG altered waves during data acquisition using the Flash spiral mode in low and stable heart rate patients. Thus, the ECG altered waves are considered artifacts.

  12. Image quality and radiation dose of 128-slice dual-source CT venography using low kilovoltage combined with high-pitch scanning and automatic tube current modulation.

    PubMed

    Park, Chan Kue; Choo, Ki Seok; Jeon, Ung Bae; Baik, Seung Kug; Kim, Yong Woo; Kim, Tae Un; Kim, Chang Won; Jeong, Yeon Ju; Jeong, Dong Wook; Lim, Soo Jin

    2013-06-01

    To compare vascular enhancement, image quality, and radiation dose of 128-slice dual-source CT venography (CTV) between an imaging setting of 120 kVp with low pitch, and a setting of 100 kVp combined with high pitch and automatic tube current modulation. A total of 100 patients with suspected deep vein thrombosis and varicose veins were divided into two groups: Group 1 [50 patients, 120 kVp, low pitch (0.6), and fixed 120 mA) and Group 2 (50 patients, 100 kVp, high pitch (3.0), and automatic tube current modulation]. Two radiologists, who were blinded to the image protocol, assessed vascular enhancement and image noise in the inferior vena cava (IVC), femoral vein, and popliteal vein. They also assigned an image quality score independently using a 5-point visual scale. Effective dose was estimated using the dose-length product (DLP). Group demographics, radiation dose, vascular enhancement, image noise, and image quality in the two groups were analyzed. Mean vascular enhancement of the IVC, femoral vein, and popliteal vein was significantly higher in group 2 than in group 1, and images in group 2 had significantly higher image noise. However, there were no significant differences in subjective image quality score of the IVC, femoral vein, and popliteal vein. The mean DLP in group 2 (402.10 ± 94.29 mGy cm) was significantly lower than that in group 1 (973.36 ± 63.20 mGy cm) (P < 0.001). Lower extremity CTV using 100 kVp, high pitch (3.0), and automatic tube current modulation improved vascular enhancement with acceptable image quality and low radiation dose.

  13. TH-C-18A-12: Evaluation of the Impact of Body Size and Tube Output Limits in the Optimization of Fast Scanning with High-Pitch Dual Source CT

    SciTech Connect

    Ramirez Giraldo, J; Mileto, A.; Hurwitz, L.; Marin, D.

    2014-06-15

    Purpose: To evaluate the impact of body size and tube power limits in the optimization of fast scanning with high-pitch dual source CT (DSCT). Methods: A previously validated MERCURY phantom, made of polyethylene, with circular cross-section of diameters 16, 23, 30 and 37cm, and connected through tapered sections, was scanned using a second generation DSCT system. The DSCT operates with two independently controlled x-ray tube generators offering up to 200 kW power reserve (100 kW per tube). The entire length of the phantom (42cm) was scanned with two protocols using: A)Standard single-source CT (SSCT) protocol with pitch of 0.8, and B) DSCT protocol with high-pitch values ranging from 1.6 to 3.2 (0.2 steps). All scans used 120 kVp with 150 quality reference mAs using automatic exposure control. Scanner radiation output (CTDIvol) and effective mAs values were extracted retrospectively from DICOM files for each slice. Image noise was recorded. All variables were assessed relative to phantom diameter. Results: With standard-pitch SSCT, the scanner radiation output (and tube-current) were progressively adapted with increasing size, from 6 mGy (120 mAs) up to 15 mGy (270 mAs) from the thinnest (16cm) to the thickest diameter (37 cm), respectively. By comparison, using high-pitch (3.2), the scanner output was bounded at about 8 mGy (140 mAs), independent of phantom diameter. Although relative to standard-pitch, the high-pitch led to lower radiation output for the same scan, the image noise was higher, particularly for larger diameters. To match the radiation output adaptation of standard-pitch, a high-pitch mode of 1.6 was needed, with the advantage of scanning twice as fast. Conclusion: To maximize the benefits of fast scanning with high-pitch DSCT, the body size and tube power limits of the system need to be considered such that a good balance between speed of acquisition and image quality are warranted. JCRG is an employee of Siemens Medical Solutions USA Inc.

  14. Truncus arteriosus: Diagnosis with dual-source computed tomography angiography and low radiation dose

    PubMed Central

    Koplay, Mustafa; Cimen, Derya; Sivri, Mesut; Güvenc, Osman; Arslan, Derya; Nayman, Alaaddin; Oran, Bulent

    2014-01-01

    Truncus arteriosus is an uncommon congenital cardiac abnormality which is characterized by a single arterial trunk origin from the heart that supplies both the systemic, pulmonary and coronary circulation. We present a preterm newborn female patient with type 2 truncusarteriosus, left superior vena cava and aberrant subclavian artery diagnosed with low dose dual-source cardiac computed tomography (CT). We discuss that low dose dual-source cardiac CT has more advantages than other imaging methods and it is an important modality for assessment of patients with conotruncal anomalies such as truncusarteriosus. PMID:25431644

  15. The HelCat dual-source plasma device.

    PubMed

    Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue

    2009-10-01

    The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.

  16. Diagnostic Value of Dual-Source Computerized Tomography Combined with Perfusion Imaging for Peripheral Pulmonary Embolism

    PubMed Central

    Mao, Xijin; Wang, Shanshan; Jiang, Xingyue; Zhang, Lin; Xu, Wenjian

    2016-01-01

    Background Pulmonary embolism has become the third most common cardiovascular disease, which can seriously harm human health. Objectives To investigate the diagnostic value of dual-source computerized tomography (CT) and perfusion imaging for peripheral pulmonary embolism. Patients and Methods Thirty-two patients with suspected pulmonary embolism underwent dual-source CT exams. To compare the ability of pulmonary embolism detection software (PED) with CT pulmonary angiography (CTPA) in determining the presence, numbers, and locations of pulmonary emboli, the subsequent images were reviewed by two radiologists using both imaging modalities. Also, the diagnostic consistency between PED and CTPA images and dual-energy pulmonary perfusion imaging (DEPI) for segmental pulmonary embolism was compared. Results CTPA images revealed 50 (7.81%) segmental and 56 (4.38%) sub-segmental pulmonary embolisms, while the PED images showed 68 (10.63%) segmental and 94 (7.34%) sub-segmental pulmonary embolisms. Thus, the detection rate on PED images for peripheral pulmonary embolism was significantly higher than that of the CTPA images (P < 0.05). There was good consistency for diagnosing segmental pulmonary embolism between PED and CTPA and DEPI (kappa = 0.85). The sensitivity and specificity of DEPI images for the diagnosis of pulmonary embolism were 91.7% and 97.5%, respectively. Conclusion PED software of dual-source CT combined with perfusion imaging can significantly improve the detection rate of peripheral pulmonary embolism. PMID:27703656

  17. Initial results with a multisource inverse-geometry CT system

    NASA Astrophysics Data System (ADS)

    Baek, Jongduk; Pelc, Norbert J.; Deman, Bruno; Uribe, Jorge; Harrison, Daniel; Reynolds, Joseph; Neculaes, Bogdan; Inzinna, Louis; Caiafa, Antonio

    2012-03-01

    The multi-source inverse-geometry CT(MS-IGCT) system is composed of multiple sources and a small 2D detector array. An experimental MS-IGCT system was built and we report initial results with 2×4 x-ray sources, a 75 mm inplane field-of-view (FOV) and 160 mm z-coverage in a single gantry rotation. To evaluate the system performance, experimental data were acquired from several phantoms and a post-mortem rat. Before image reconstruction, geometric calibration, data normalization, beam hardening correction and detector spectral calibration were performed. For reconstruction, the projection data were rebinned into two full cone beam data sets, and the FDK algorithm was used. The reconstructed volumes from the upper and lower source rows shared an overlap volume which was combined in image space. The reconstructed images of the uniform cylinder phantom showed good uniformity of the reconstructed values without any artifacts. The rat data were also reconstructed reliably. The initial experimental results from this rotating-gantry MS-IGCT system demonstrated its ability to image a complex anatomical object without any significant image artifacts and to ultimately achieve large volumetric coverage in a single gantry rotation.

  18. Feasibility Study of Computational Fluid Dynamics Simulation of Coronary Computed Tomography Angiography Based on Dual-Source Computed Tomography

    PubMed Central

    Lu, Jing; Yu, Jie; Shi, Heshui

    2017-01-01

    Background Adding functional features to morphological features offers a new method for non-invasive assessment of myocardial perfusion. This study aimed to explore technical routes of assessing the left coronary artery pressure gradient, wall shear stress distribution and blood flow velocity distribution, combining three-dimensional coronary model which was based on high resolution dual-source computed tomography (CT) with computational fluid dynamics (CFD) simulation. Methods Three cases of no obvious stenosis, mild stenosis and severe stenosis in left anterior descending (LAD) were enrolled. Images acquired on dual-source CT were input into software Mimics, ICEMCFD and FLUENT to simulate pressure gradient, wall shear stress distribution and blood flow velocity distribution. Measuring coronary enhancement ratio of coronary artery was to compare with pressure gradient. Results Results conformed to theoretical values and showed difference between normal and abnormal samples. Conclusions The study verified essential parameters and basic techniques in blood flow numerical simulation preliminarily. It was proved feasible. PMID:27924174

  19. Coronary fly-through or virtual angioscopy using dual-source MDCT data.

    PubMed

    van Ooijen, Peter M A; de Jonge, Gonda; Oudkerk, Matthijs

    2007-11-01

    Coronary fly-through or virtual angioscopy (VA) has been studied ever since its invention in 2000. However, application was limited because it requires an optimal computed tomography (CT) scan and time-consuming post-processing. Recent advances in post-processing software facilitate easy construction of VA, but until now image quality was insufficient in most patients. The introduction of dual-source multidetector CT (MDCT) could enable VA in all patients. Twenty patients were scanned using a dual-source MDCT (Definition, Siemens, Forchheim, Germany) using a standard coronary artery protocol. Post-processing was performed on an Aquarius Workstation (TeraRecon, San Mateo, Calif.). Length travelled per major branch was recorded in millimetres, together with the time required in minutes. VA could be performed in every patient for each of the major coronary arteries. The mean (range) length of the automated fly-through was 80 (32-107) mm for the left anterior descending (LAD), 75 (21-116) mm for the left circumflex artery (LCx), and 109 (21-190) mm for the right coronary artery (RCA). Calcifications and stenoses were visualised, as well as most side branches. The mean time required was 3 min for LAD, 2.5 min for LCx, and 2 min for the RCA. Dual-source MDCT allows for high quality visualisation of the coronary arteries in every patient because scanning with this machine is independent of the heart rate. This is clearly shown by the successful VA in all patients. Potential clinical value of VA should be determined in the near future.

  20. CT guided percutaneous needle biopsy of the chest: initial experience

    PubMed Central

    Lazguet, Younes; Maarouf, Rachid; Karrou, Marouan; Skiker, Imane; Alloubi, Ihsan

    2016-01-01

    The objective of this article is to report our first experience of CT guided percutaneous thoracic biopsy and to demonstrate the accuracy and safety of this procedure. This was a retrospective study of 28 CT-Guided Percutaneous Needle Biopsies of the Chest performed on 24 patients between November 2014 and April 2015. Diagnosis was achieved in 18 patients (75%), negative results were found in 3 patients (12,5%). Biopsy was repeated in these cases with two positive results. Complications were seen in 7 patients (29%), Hemoptysis in 5 patients (20%), Pneumothorax in 1 patient (4,1%) and vaso-vagal shock in 1 patient (4,1%). CT Guided Percutaneous Needle Biopsy of the Chest is a safe, minimally invasive procedure with high sensitivity, specificity and accuracy for diagnosis of lung lesions. PMID:27347300

  1. Puzzling initial conditions in the R_h=ct model

    NASA Astrophysics Data System (ADS)

    Bengochea, Gabriel R.; León, Gabriel

    2016-11-01

    In recent years, some studies have drawn attention to the lack of large-angle correlations in the observed cosmic microwave background (CMB) temperature anisotropies with respect to that predicted within the standard Λ CDM model. Lately, it has been argued that such a lack of correlations could be explained in the framework of the so-called R_h=ct model without inflation. The aim of this work is to study whether there is a mechanism to generate, through a quantum field theory, the primordial power spectrum presented by these authors. Specifically, we consider two different scenarios: first, we assume a scalar field dominating the early Universe in the R_h=ct cosmological model, and second, we deal with the possibility of adding an early inflationary phase to the mentioned model. During the analysis of the consistency between the predicted and observed amplitudes of the CMB temperature anisotropies in both scenarios, we run into deep issues which indicate that it is not clear how to characterize the primordial quantum perturbations within the R_h=ct model.

  2. Impact on Image Quality and Radiation Dose of Third-Generation Dual-Source Computed Tomography of the Coronary Arteries.

    PubMed

    Apfaltrer, Georg; Szolar, Dieter H; Wurzinger, Eric; Takx, Richard A P; Nance, John W; Dutschke, Anja; Tschauner, Sebastian; Loewe, Christian; Ringl, Helmut; Sorantin, Erich; Apfaltrer, Paul

    2017-04-15

    The aim of this study was to assess the image quality (IQ) and radiation dose of third-generation dual-source computed tomography (CT) coronary angiography (cCTA) in comparison with 64-slice single-source CT. This retrospective study included 140 patients (73 men, mean age 62 ± 11 years) with low-to-intermediate probability of coronary artery disease who underwent either third-generation dual-source cCTA using prospectively electrocardiography-triggered high-pitch spiral acquisition (n = 70) (group 1) or retrospective electrocardiography-gated cCTA on a 64-slice CT system (n = 70) (group 2). Contrast-to-noise and signal-to-noise ratios were measured within the aorta and coronary arteries. Subjective IQ was assessed using a 5-point Likert scale. Effective dose was estimated using specific conversion factors. The contrast-to-noise ratio of group 1 was significantly higher than group 2 at all levels (all p <0.001). Signal-to-noise ratio of group 1 was also significantly higher than group 2 (p <0.05), except for the distal left circumflex artery. Subjective IQ for group 1 was rated significantly better than for group 2 (median score [25th to 75th percentile]: 1 [1 to 2] vs 2 [2 to 3]; p <0.001). The median effective dose was 1.55 mSv (1.09 to 1.88) in group 1 versus 12.29 mSv (11.63 to 14.36) in group 2 (p <0.001) which corresponds to a mean radiation dose reduction of 87.4%. In conclusion, implementation of third-generation dual-source CT system for cCTA leads to improved IQ with significant radiation dose savings.

  3. Quantitative assessment of scatter correction techniques incorporated in next generation dual-source computed tomography

    NASA Astrophysics Data System (ADS)

    Mobberley, Sean David

    Accurate, cross-scanner assessment of in-vivo air density used to quantitatively assess amount and distribution of emphysema in COPD subjects has remained elusive. Hounsfield units (HU) within tracheal air can be considerably more positive than -1000 HU. With the advent of new dual-source scanners which employ dedicated scatter correction techniques, it is of interest to evaluate how the quantitative measures of lung density compare between dual-source and single-source scan modes. This study has sought to characterize in-vivo and phantom-based air metrics using dual-energy computed tomography technology where the nature of the technology has required adjustments to scatter correction. Anesthetized ovine (N=6), swine (N=13: more human-like rib cage shape), lung phantom and a thoracic phantom were studied using a dual-source MDCT scanner (Siemens Definition Flash. Multiple dual-source dual-energy (DSDE) and single-source (SS) scans taken at different energy levels and scan settings were acquired for direct quantitative comparison. Density histograms were evaluated for the lung, tracheal, water and blood segments. Image data were obtained at 80, 100, 120, and 140 kVp in the SS mode (B35f kernel) and at 80, 100, 140, and 140-Sn (tin filtered) kVp in the DSDE mode (B35f and D30f kernels), in addition to variations in dose, rotation time, and pitch. To minimize the effect of cross-scatter, the phantom scans in the DSDE mode was obtained by reducing the tube current of one of the tubes to its minimum (near zero) value. When using image data obtained in the DSDE mode, the median HU values in the tracheal regions of all animals and the phantom were consistently closer to -1000 HU regardless of reconstruction kernel (chapters 3 and 4). Similarly, HU values of water and blood were consistently closer to their nominal values of 0 HU and 55 HU respectively. When using image data obtained in the SS mode the air CT numbers demonstrated a consistent positive shift of up to 35 HU

  4. Initial experience of Fag-PET/CT guided Imr of head-and-neck carcinoma

    SciTech Connect

    Wang Dian . E-mail: dwang@radonc.mcw.edu; Schultz, Christopher J.; Jursinic, Paul A.; Bialkowski, Mirek; Zhu, X. Ronald; Brown, W. Douglas; Rand, Scott D.; Michel, Michelle A.; Campbell, Bruce H.; Wong, Stuart; Li, X. Allen; Wilson, J. Frank

    2006-05-01

    Purpose: The purpose of this study is to evaluate the impact of {sup 18}F-fluorodeoxyglucose positron emission tomography (Fag-PET) fused with planning computed tomography (CT) on tumor localization, which guided intensity-modulated radiotherapy (Imr) of patients with head-and-neck carcinoma. Methods and Materials: From October 2002 through April 2005, we performed Fag-PET/CT guided Imr for 28 patients with head-and-neck carcinoma. Patients were immobilized with face masks that were attached with five fiducial markers. Fag-PET and planning CT scans were performed on the same flattop table in one session and were then fused. Target volumes and critical organs were contoured, and Imr plans were generated based on the fused images. Results: All 28 patients had abnormal increased uptake in Fag-PET/CT scans. PET/CT resulted in CT-based staging changes in 16 of 28 (57%) patients. PET/CT fusions were successfully performed and were found to be accurate with the use of the two commercial planning systems. Volume analysis revealed that the PET/CT-based gross target volumes (GTVs) were significantly different from those contoured from the CT scans alone in 14 of 16 patients. In addition, 16 of 28 patients who were followed for more than 6 months did not have any evidence of locoregional recurrence in the median time of 17 months. Conclusion: Fused images were found to be useful to delineate GTV required in IMRT planning. PET/CT should be considered for both initial staging and treatment planning in patients with head-and-neck carcinoma.

  5. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    PubMed

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-07

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  6. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  7. Low-Dose PET/CT and Full-Dose Contrast-Enhanced CT at the Initial Staging of Localized Diffuse Large B-Cell Lymphomas

    PubMed Central

    Sabaté-Llobera, Aida; Cortés-Romera, Montserrat; Mercadal, Santiago; Hernández-Gañán, Javier; Pomares, Helena; González-Barca, Eva; Gámez-Cenzano, Cristina

    2016-01-01

    Computed tomography (CT) has been used as the reference imaging technique for the initial staging of diffuse large B-cell lymphoma until recent days, when the introduction of positron emission tomography (PET)/CT imaging as a hybrid technique has become of routine use. However, the performance of both examinations is still common. The aim of this work was to compare the findings between low-dose 2-deoxy-2-(18F)fluoro-d-glucose (18F-FDG) PET/CT and full-dose contrast-enhanced CT (ceCT) in 28 patients with localized diffuse large B-cell lymphoma according to PET/CT findings, in order to avoid the performance of ceCT. For each technique, a comparison in the number of nodal and extranodal involved regions was performed. PET/CT showed more lesions than ceCT in both nodal (41 vs. 36) and extranodal localizations (16 vs. 15). Disease staging according to both techniques was concordant in 22 patients (79%) and discordant in 6 patients (21%), changing treatment management in 3 patients (11%). PET/CT determined a better staging and therapeutic approach, making the performance of an additional ceCT unnecessary. PMID:27559300

  8. Vertical-dual-source tunnel FETs with steeper subthreshold swing

    NASA Astrophysics Data System (ADS)

    Zhi, Jiang; Yiqi, Zhuang; Cong, Li; Ping, Wang; Yuqi, Liu

    2016-09-01

    In order to improve the drive current and subthreshold swing (SS), a novel vertical-dual-source tunneling field-effect transistor (VDSTFET) device is proposed in this paper. The influence of source height, channel length and channel thickness on the device are investigated through two-dimensional numerical simulations. Si-VDSTFET have greater tunneling area and thinner channel, showing an on-current as high as 1.24 μA at gate voltage of 0.8 V and drain voltage of 0.5 V, off-current of less than 0.1 fA, an improved average subthreshold swing of 14 mV/dec, and a minimum point slope of 4 mV/dec. Project supported by the National Natural Science Foundation of China (Nos. 61204092, 61574109).

  9. Initial Characterization of a Dedicated Breast PET/CT Scanner During Human Imaging

    PubMed Central

    Bowen, Spencer L.; Wu, Yibao; Chaudhari, Abhijit J.; Fu, Lin; Packard, Nathan J.; Burkett, George W.; Yang, Kai; Lindfors, Karen K.; Shelton, David K.; Hagge, Rosalie; Borowsky, Alexander D.; Martinez, Steve R.; Qi, Jinyi; Boone, John M.; Cherry, Simon R.; Badawi, Ramsey D.

    2010-01-01

    We have constructed a dedicated breast PET/CT scanner capable of high-resolution functional and anatomic imaging. Here, we present an initial characterization of scanner performance during patient imaging. Methods The system consisted of a lutetium oxyorthosilicate–based dual–planar head PET camera (crystal size, 3 × 3 × 20 mm) and 768-slice cone-beam CT. The position of the PET heads (separation and height) could be adjusted for varying breast dimensions. For scanning, the patient lay prone on a specialized bed and inserted a single pendent breast through an aperture in the table top. Compression of the breast as used in mammography is not required. PET and CT systems rotate in the coronal plane underneath the patient sequentially to collect fully tomographic datasets. PET images were reconstructed with the fully 3-dimensional maximum a posteriori method, and CT images were reconstructed with the Feldkamp algorithm, then spatially registered and fused for display. Phantom scans were obtained to assess the registration accuracy between PET and CT images and the influence of PET electronics and activity on CT image quality. We imaged 4 women with mammographic findings highly suggestive of breast cancer (breast imaging reporting and data system, category 5) in an ongoing clinical trial. Patients were injected with 18F-FDG and imaged for 12.5 min per breast. From patient data, noise-equivalent counting rates and the singles-to-trues ratio (a surrogate for the randoms fraction) were calculated. Results The average registration error between PET and CT images was 0.18 mm. PET electronics and activity did not significantly affect CT image quality. For the patient trial, biopsy-confirmed cancers were visualized on dedicated breast PET/CT on all patient scans, including the detection of ductal carcinoma in situ in 1 case. The singles-to-trues ratio was found to be inversely correlated with breast volume in the field of view, suggesting that larger breasts trend

  10. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: An anthropomorphic phantom study of radiotherapy treatment planning

    SciTech Connect

    Tsukihara, Masayoshi; Noto, Yoshiyuki; Sasamoto, Ryuta; Hayakawa, Takahide; Saito, Masatoshi

    2015-03-15

    Purpose: To achieve accurate tissue inhomogeneity corrections in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide range of ρ{sub e}. The purpose of this study is to present an initial implementation of the ΔHU–ρ{sub e} conversion method for a treatment planning system (TPS). In this paper, two example radiotherapy plans are used to evaluate the reliability of dose calculations in the ΔHU–ρ{sub e} conversion method. Methods: CT images were acquired using a clinical dual-source CT (DSCT) scanner operated in the dual-energy mode with two tube potential pairs and an additional tin (Sn) filter for the high-kV tube (80–140 kV/Sn and 100–140 kV/Sn). Single-energy CT using the same DSCT scanner was also performed at 120 kV to compare the ΔHU–ρ{sub e} conversion method with a conventional conversion from a CT number to ρ{sub e} (Hounsfield units, HU–ρ{sub e} conversion). Lookup tables for ρ{sub e} calibration were obtained from the CT image acquisitions for tissue substitutes in an electron density phantom (EDP). To investigate the beam-hardening effect on dosimetric uncertainties, two EDPs with different sizes (a body EDP and a head EDP) were used for the ρ{sub e} calibration. Each acquired lookup table was applied to two radiotherapy plans designed using the XiO TPS with the superposition algorithm for an anthropomorphic phantom. The first radiotherapy plan was for an oral cavity tumor and the second was for a lung tumor. Results: In both treatment plans, the performance of the ΔHU–ρ{sub e} conversion was superior to that of the conventional HU–ρ{sub e} conversion in terms of the reliability of dose calculations. Especially, for the oral tumor plan, which dealt with dentition and bony structures, treatment

  11. Optimization of energy level for coronary angiography with dual-energy and dual-source computed tomography.

    PubMed

    Okayama, Satoshi; Seno, Ayako; Soeda, Tsunenari; Takami, Yasuhiro; Kawakami, Rika; Somekawa, Satoshi; Ishigami, Ken-Ichi; Takeda, Yukiji; Kawata, Hiroyuki; Horii, Manabu; Uemura, Shiro; Saito, Yoshihiko

    2012-04-01

    Dual-energy computed tomography (DE-CT) uses polyenergetic X-rays at 100- and 140-kVp tube energy, and generates 120-kVp composite images that are referred to as polyenergetic images (PEIs). Moreover, DE-CT can produce monoenergetic images (MEIs) at any effective energy level. We evaluated whether the image quality of coronary angiography is improved by optimizing the energy levels of DE-CT. We retrospectively evaluated data sets obtained from 24 consecutive patients using cardiac DE-CT at 100- and 140-kVp tube energy with a dual-source scanner. Signal-to-noise ratios (SNRs) were evaluated in the left ascending coronary artery in PEIs, and in MEIs reconstructed at 40, 50, 60, 70, 80, 90, 100, 130, 160 and 190 keV. Energy levels of 100, 120 and 140 kVp generated the highest SNRs in PEIs from 10, 12 and 2 patients, respectively, at 60, 70 and 80 keV in MEIs from 2, 10 and 10 patients, respectively, and at 90 and 100 keV in those from one patient each. Optimization of the energy level for each patient increased the SNR by 16.6% in PEIs (P < 0.0001) and by 18.2% in MEIs (P < 0.05), compared with 120-kVp composite images. The image quality of coronary angiography using DE-CT can be improved by optimizing the energy level for individual patients.

  12. CT-Guided Fiducial Placement for CyberKnife Stereotactic Radiosurgery: An Initial Experience

    SciTech Connect

    Sotiropoulou, Evangelia; Stathochristopoulou, Irene; Stathopoulos, Konstantinos; Verigos, Kosmas; Salvaras, Nikolaos; Thanos, Loukas

    2010-06-15

    CyberKnife frameless image-guided radiosurgery has become a widely used system for parenchymal extracranial lesions. Gold fiducials are required for the planning and aiming of CyberKnife therapy. We report our initial experience and describe the technique of positioning tumor markers, under CT guidance. We conducted a retrospective review of 105 patients who were referred for CyberKnife stereotactic radiosurgery at Iatropolis CyberKnife Center in Athens. All patients underwent percutaneous fiducial placement via CT guidance. At the desired location, the 18-G needle was advanced into or near the tumor. Data collected included number and locations of fiducials placed and complications experienced to date. One hundred five patients underwent fiducial placement under CT guidance and a total number of 319 gold seeds were implanted. We experienced one episode of pneumothorax that required drainage, one mild pneumothorax, and three episodes of perifocal pulmonary hemorrhage. In conclusion, fiducial implantation under CT guidance appears to be a safe and efficient procedure, as long as it is performed by an experienced interventional radiologist.

  13. Cardiac amyloidosis imaged by dual-source computed tomography.

    PubMed

    Marwan, Mohamed; Pflederer, Tobias; Ropers, Dieter; Schmid, Michael; Wasmeier, Gerald; Söder, Stephan; Daniel, Werner G; Achenbach, Stephan

    2008-11-01

    The ability of contrast-enhanced CT to detect "late enhancement" in a fashion similar to magnetic resonance imaging has been reported previously. Typical myocardial distribution patterns of "late enhancement" have been described for MRI. The same patterns can be observed in CT imaging, albeit at a lower signal to noise ratio. We report a case of cardiac amyloidosis with a typical pattern of subendocardial, circumferential late enhancement in all four cardiac chambers.

  14. Initial investigation into lower-cost CT for resource limited regions of the world

    NASA Astrophysics Data System (ADS)

    Dobbins, James T., III; Wells, Jered R.; Segars, W. Paul; Li, Christina M.; Kigongo, Christopher J. N.

    2010-04-01

    This paper describes an initial investigation into means for producing lower-cost CT scanners for resource limited regions of the world. In regions such as sub-Saharan Africa, intermediate level medical facilities serving millions have no CT machines, and lack the imaging resources necessary to determine whether certain patients would benefit from being transferred to a hospital in a larger city for further diagnostic workup or treatment. Low-cost CT scanners would potentially be of immense help to the healthcare system in such regions. Such scanners would not produce state-of-theart image quality, but rather would be intended primarily for triaging purposes to determine the patients who would benefit from transfer to larger hospitals. The lower-cost scanner investigated here consists of a fixed digital radiography system and a rotating patient stage. This paper describes initial experiments to determine if such a configuration is feasible. Experiments were conducted using (1) x-ray image acquisition, a physical anthropomorphic chest phantom, and a flat-panel detector system, and (2) a computer-simulated XCAT chest phantom. Both the physical phantom and simulated phantom produced excellent image quality reconstructions when the phantom was perfectly aligned during acquisition, but artifacts were noted when the phantom was displaced to simulate patient motion. An algorithm was developed to correct for motion of the phantom and demonstrated success in correcting for 5-mm motion during 360-degree acquisition of images. These experiments demonstrated feasibility for this approach, but additional work is required to determine the exact limitations produced by patient motion.

  15. Evaluation of Prostate Cancer with 11C- and 18F-Choline PET/CT: Diagnosis and Initial Staging.

    PubMed

    Nitsch, Sascha; Hakenberg, Oliver W; Heuschkel, Martin; Dräger, Desiree; Hildebrandt, Guido; Krause, Bernd J; Schwarzenböck, Sarah M

    2016-10-01

    Early diagnosis and adequate staging are crucial for the choice of adequate treatment in prostate cancer (PC). Morphologic and functional imaging modalities, such as CT and MRI, have had limited accuracy in the diagnosis and nodal staging of PC. Molecular PET/CT imaging with (11)C- or (18)F-choline-labeled derivatives is increasingly being used, but its role in the diagnosis and initial staging of PC is controversial because of limitations in sensitivity and specificity for the detection of primary PC. For T staging, functional MRI is superior to (11)C- or (18)F-choline PET/CT. For N staging, (11)C- or (18)F-choline PET/CT can provide potentially useful information that may influence treatment planning. For the detection of bone metastases, (11)C- or (18)F-choline PET/CT has had promising results; however, in terms of cost-effectiveness, the routine use of (11)C- or (18)F-choline PET/CT is still debatable. (11)C- or (18)F-choline PET/CT might be used in high-risk PC before radiation treatment planning, potentially affecting this planning (e.g., regarding dose escalation). This review provides an overview of the diagnostic accuracy and limitations of (11)C- or (18)F-choline PET/CT in the diagnosis and staging of PC.

  16. Evaluation of an initiative to reduce radiation exposure from CT to children in a non-pediatric-focused facility.

    PubMed

    Blumfield, Einat; Zember, Jonathan; Guelfguat, Mark; Blumfield, Amit; Goldman, Harold

    2015-12-01

    We would like to share our experience of reducing pediatric radiation exposure. Much of the recent literature regarding successes of reducing radiation exposure has come from dedicated children's hospitals. Nonetheless, over the past two decades, there has been a considerable increase in CT imaging of children in the USA, predominantly in non-pediatric-focused facilities where the majority of children are treated. In our institution, two general hospitals with limited pediatric services, a dedicated initiative intended to reduce children's exposure to CT radiation was started by pediatric radiologists in 2005. The initiative addressed multiple issues including eliminating multiphase studies, decreasing inappropriate scans, educating referring providers, training residents and technologists, replacing CT with ultrasound or MRI, and ensuring availability of pediatric radiologists for consultation. During the study period, the total number of CT scans decreased by 24 %. When accounting for the number of scans per visit to the emergency department (ED), the numbers of abdominal and head CT scans decreased by 37.2 and 35.2 %, respectively. For abdominal scans, the average number of phases per scan decreased from 1.70 to 1.04. Upon surveying the pediatric ED staff, it was revealed that the most influential factors on ordering of scans were daily communication with pediatric radiologists, followed by journal articles and lectures by pediatric radiologists. We concluded that a non-pediatric-focused facility can achieve dramatic reduction in CT radiation exposure to children; however, this is most effectively achieved through a dedicated, multidisciplinary process led by pediatric radiologists.

  17. Analysis of Pulmonary Vein Antrums Motion with Cardiac Contraction Using Dual-Source Computed Tomography

    PubMed Central

    de Guise, Jacques; Vu, Toni; Chartrand-Lefebvre, Carl; Blais, Danis; Lebeau, Martin; Nguyen, Nhu-Tram; Roberge, David

    2016-01-01

    Purpose: The purpose of the study was to determine the extent of displacement of the pulmonary vein antrums resulting from the intrinsic motion of the heart using 4D cardiac dual-source computed tomography (DSCT). Methods: Ten consecutive female patients were enrolled in this prospective planning study. In breath-hold, a contrast-injected cardiac 4-dimensional (4D) computed tomography (CT) synchronized to the electrocardiogram was obtained using a prospective sequential acquisition method including the extreme phases of systole and diastole. Right and left atrial fibrillation target volumes (CTVR and CTVL) were defined, with each target volume containing the antral regions of the superior and inferior pulmonary veins. Four points of interest were used as surrogates for the right superior and inferior pulmonary vein antrum (RSPVA and RIPVA) and the left superior and inferior pulmonary vein antrum (LSPVA and LIPVA). On our 4D post-processing workstation (MIM Maestro™, MIM Software Inc.), maximum displacement of each point of interest from diastole to systole was measured in the mediolateral (ML), anteroposterior (AP), and superoinferior (SI) directions. Results: Median age of the enrolled patients was 60 years (range, 56-71 years). Within the CTVR, the mean displacements of the superior and inferior surrogates were 3 mm vs. 1 mm (p=0.002), 2 mm vs. 0 mm (p= 0.001), and 3 mm vs. 0 mm (p=0.00001), in the ML, AP, and SI directions, respectively. On the left, mean absolute displacements of the LSPVA vs. LIPVA were similar at 4 mm vs. 1 mm (p=0.0008), 2 mm vs. 0 mm (p= 0.001), and 3 mm vs. 1 mm (p=0.00001) in the ML, AP, and SI directions. Conclusion: When isolated from breathing, cardiac contraction is associated with minimal inferior pulmonary veins motion and modest (1-6 mm) motion of the superior veins. Target deformation was thus of a magnitude similar or greater than target motion, limiting the potential gains of cardiac tracking. Optimal strategies for cardiac

  18. Conditional Reasoning in Context: A Dual-Source Model of Probabilistic Inference

    ERIC Educational Resources Information Center

    Klauer, Karl Christoph; Beller, Sieghard; Hutter, Mandy

    2010-01-01

    A dual-source model of probabilistic conditional inference is proposed. According to the model, inferences are based on 2 sources of evidence: logical form and prior knowledge. Logical form is a decontextualized source of evidence, whereas prior knowledge is activated by the contents of the conditional rule. In Experiments 1 to 3, manipulations of…

  19. Preliminary results on the role of PET/CT in initial staging, restaging, and management of lung cancer

    NASA Astrophysics Data System (ADS)

    Malamitsi, J.; Valotassiou, B.; Iliadis, K.; Kosmidis, P.; Laspas, F.; Vasilaki, M.; Pipini, E.; Petounis, A.; Gogou, L.; Pagou, M.; Dalianis, K.; Efthimiadou, R.; Andreou, J.

    2006-12-01

    AimTo determine true-positive and true-negative rates of PET/CT studies in the staging of lung cancer as compared with conventional imaging (CT and bone scan and occasionally MRI) and the impact of PET/CT on the treatment strategy in patients with lung cancer. Materials and methodTwenty patients (21 studies) with known or suspected lung cancer (14 patients with non-small-cell lung cancer (NSCLC), three patients with small-cell lung cancer (SCLC), three patients with solitary pulmonary nodule underwent initial staging (seven studies) or restaging (14 studies) with combined FDG PET and CT scans on a PET/CT tomograph. PET/CT images were evaluated separately by two nuclear medicine physicians and two radiologists specialized on PET, CT, and MRI. Histology results and a more than 6 months follow-up served as the reference standards. ResultsAccurate diagnosis was achieved on 16 studies. Site-by-site analysis gave the following results: 16 true-positive sites (seven on histology, nine on >6 months follow-up), six true-negative sites (two on histology, four on >6 months follow-up). On PET/CT, six patients were correctly down-staged, three patients were correctly upstaged and seven patients were diagnosed correctly as being on the same stage (2/7 with increase of extent of disease, 5/7 with the same extent of disease). One patient was falsely upstaged and three patients were falsely down-staged. On the basis of PET/CT results, change of management was induced in six patients, while in 14 patients there was no change induced. In five cases PET/CT was partially accurate: on site-by-site analysis, four sites proved true positive (on histology), one site false positive (on histology), and four sites false negative (one on histology, three on >6 months follow-up). ConclusionIn our early experience, PET/CT contributed significantly to correct staging and management of patients with lung cancer.

  20. Usefulness of low dose chest CT for initial evaluation of blunt chest trauma

    PubMed Central

    Kim, Sung Jung; Bista, Anjali Basnyat; Min, Young Gi; Kim, Eun Young; Park, Kyung Joo; Kang, Doo Kyoung; Sun, Joo Sung

    2017-01-01

    Abstract We aimed to compare the diagnostic performance and inter-observer consistency between low dose chest CT (LDCT) and standard dose chest CT (SDCT) in the patients with blunt chest trauma. A total of 69 patients who met criteria indicative of blunt chest trauma (77% of male; age range, 16–85) were enrolled. All patients underwent LDCT without intravenous (IV) contrast and SDCT with IV contrast using parameters as following: LDCT, 40 mAs with automatic tube current modulation (ATCM) and 100 kVp (BMI <25, n = 51) or 120 kVp (BMI>25, n = 18); SDCT, 180 mAs with ATCM and 120 kVp. Transverse, coronal, sagittal images were reconstructed with 3-mm slice thickness without gap and provided for evaluation of 3 observers. Reference standard images (transverse, coronal, sagittal) were reconstructed using SDCT data with 1-mm slice thickness without gap. Reference standard was established by 2 experienced thoracic radiologists by consensus. Three observers independently evaluated each data set of LDCT and SDCT. Multiple-reader receiver operating characteristic analysis for comparing areas under the ROC curves demonstrated that there was no significant difference of diagnostic performance between LDCT and SDCT for the diagnosis of pulmonary injury, skeletal trauma, mediastinal injury, and chest wall injury (P > 0.05). The intraclass correlation coefficient was measured for inter-observer consistency and revealed that there was good inter-observer consistency in each examination of LDCT and SDCT for evaluation of blunt chest injury (0.8601–1.000). Aortic and upper abdominal injury could not be appropriately compared as LDCT was performed without using contrast materials and this was limitation of this study. The effective radiation dose of LDCT (average DLP = 1.52 mSv⋅mGy−1 cm−1) was significantly lower than those of SDCT (7.21 mSv mGy−1 cm−1). There is a great potential benefit to use of LDCT for initial evaluation of blunt chest trauma

  1. Scenes from the past: initial investigation of early jurassic vertebrate fossils with multidetector CT.

    PubMed

    Bolliger, Stephan A; Ross, Steffen; Thali, Michael J; Hostettler, Bernhard; Menkveld-Gfeller, Ursula

    2012-01-01

    The study of fossils permits the reconstruction of past life on our planet and enhances our understanding of evolutionary processes. However, many fossils are difficult to recognize, being encased in a lithified matrix whose tedious removal is required before examination is possible. The authors describe the use of multidetector computed tomography (CT) in locating, identifying, and examining fossil remains of crocodilians (Mesosuchia) embedded in hard shale, all without removing the matrix. In addition, they describe how three-dimensional (3D) reformatted CT images provided details that were helpful for extraction and preparation. Multidetector CT can help experienced paleontologists localize and characterize fossils in the matrix of a promising rock specimen in a nondestructive manner. Moreover, with its capacity to generate highly accurate 3D images, multidetector CT can help determine whether the fossils warrant extraction and can assist in planning the extraction process. Thus, multidetector CT may well become an invaluable tool in the field of paleoradiology.

  2. Perfusion measurements by micro-CT using prior image constrained compressed sensing (PICCS): initial phantom results.

    PubMed

    Nett, Brian E; Brauweiler, Robert; Kalender, Willi; Rowley, Howard; Chen, Guang-Hong

    2010-04-21

    Micro-CT scanning has become an accepted standard for anatomical imaging in small animal disease and genome mutation models. Concurrently, perfusion imaging via tracking contrast dynamics after injection of an iodinated contrast agent is a well-established tool for clinical CT scanners. However, perfusion imaging is not yet commercially available on the micro-CT platform due to limitations in both radiation dose and temporal resolution. Recent hardware developments in micro-CT scanners enable continuous imaging of a given volume through the use of a slip-ring gantry. Now that dynamic CT imaging is feasible, data may be acquired to measure tissue perfusion using a micro-CT scanner (CT Imaging, Erlangen, Germany). However, rapid imaging using micro-CT scanners leads to high image noise in individual time frames. Using the standard filtered backprojection (FBP) image reconstruction, images are prohibitively noisy for calculation of voxel-by-voxel perfusion maps. In this study, we apply prior image constrained compressed sensing (PICCS) to reconstruct images with significantly lower noise variance. In perfusion phantom experiments performed on a micro-CT scanner, the PICCS reconstruction enabled a reduction to 1/16 of the noise variance of standard FBP reconstruction, without compromising the spatial or temporal resolution. This enables a significant increase in dose efficiency, and thus, significantly less exposure time is needed to acquire images amenable to perfusion processing. This reduction in required irradiation time enables voxel-by-voxel perfusion maps to be generated on micro-CT scanners. Sample perfusion maps using a deconvolution-based perfusion analysis are included to demonstrate the improvement in image quality using the PICCS algorithm.

  3. Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics

    NASA Astrophysics Data System (ADS)

    Yang, Yuting; Long, Di; Guan, Huade; Liang, Wei; Simmons, Craig; Batelaan, Okke

    2015-05-01

    Various remote sensing-based terrestrial evapotranspiration (ET) models have been developed during the past four decades. These models vary in conceptual and mathematical representations of the physics, consequently leading to different performances. Examination of uncertainties associated with limitations in model physics will be useful for model selection and improvement. Here, three dual-source remote sensing ET models (i.e., the Hybrid dual-source scheme and Trapezoid framework-based ET Model (HTEM), the Two-Source Energy Balance (TSEB) model, and the MOD16 ET algorithm) using ASTER images were compared during the MUSOEXE-12 campaign in the Heihe River Basin in Northwest China, aiming to better understand the differences in model physics that potentially lead to differences in model performance. Model results were first compared against observations from a dense network of eddy covariance towers and isotope-based evaporation (E) and transpiration (T) partitioning. Results show that HTEM outperformed the other two models in simulating ET and its partitioning, whereas MOD16 performed worst (i.e., ET root-mean-square errors are 42.3 W/m2 (HTEM), 49.8 W/m2 (TSEB), and 95.3 W/m2 (MOD16)). On to model limitations, HTEM tends to underestimate ET under high advection due mostly to the underestimation of temperatures for the wet edge in its trapezoidal space. For TSEB, large uncertainties occur in determining the initial Priestley-Taylor coefficient and the iteration procedure for ET partitioning, leading to overestimation/underestimation of T/E in most cases, particularly over sparse vegetation. Primary use of meteorological data for MOD16 does not effectively capture the soil moisture restriction on ET, and therefore results in unreasonable spatial ET patterns.

  4. Feasibility of Flat Panel Detector CT in Perfusion Assessment of Brain Arteriovenous Malformations: Initial Clinical Experience.

    PubMed

    Garcia, M; Okell, T W; Gloor, M; Chappell, M A; Jezzard, P; Bieri, O; Byrne, J V

    2017-02-16

    The different results from flat panel detector CT in various pathologies have provoked some discussion. Our aim was to assess the role of flat panel detector CT in brain arteriovenous malformations, which has not yet been assessed. Five patients with brain arteriovenous malformations were studied with flat panel detector CT, DSC-MR imaging, and vessel-encoded pseudocontinuous arterial spin-labeling. In glomerular brain arteriovenous malformations, perfusion was highest next to the brain arteriovenous malformation with decreasing values with increasing distance from the lesion. An inverse tendency was observed in the proliferative brain arteriovenous malformation. Flat panel detector CT, originally thought to measure blood volume, correlated more closely with arterial spin-labeling-CBF and DSC-CBF than with DSC-CBV. We conclude that flat panel detector CT perfusion depends on the time point chosen for data collection, which is triggered too early in these patients (ie, when contrast agent appears in the superior sagittal sinus after rapid shunting through the brain arteriovenous malformation). This finding, in combination with high data variability, makes flat panel detector CT inappropriate for perfusion assessment in brain arteriovenous malformations.

  5. Patient doses in CT examinations in 18 countries: initial results from International Atomic Energy Agency projects.

    PubMed

    Muhogora, W E; Ahmed, N A; Beganovic, A; Benider, A; Ciraj-Bjelac, O; Gershan, V; Gershkevitsh, E; Grupetta, E; Kharita, M H; Manatrakul, N; Milakovic, M; Ohno, K; Ben Omrane, L; Ptacek, J; Schandorf, C; Shabaan, M S; Stoyanov, D; Toutaoui, N; Wambani, J S; Rehani, M M

    2009-09-01

    The purpose of this prospective study at 73 facilities in 18 countries in Africa, Asia and Eastern Europe was to investigate if the CT doses to adult patients in developing countries are higher than international standards. The dose assessment was performed in terms of weighted computed tomography dose index (CTDIw) and dose length product (DLP) for chest, chest (high resolution), lumbar spine, abdomen and pelvis CT examinations using standard methods. Except in one case, the mean CTDIw values were below diagnostic reference level (DRL) while for DLP, 17 % of situations were above DRLs. The resulting CT images were of adequate quality for diagnosis. The CTDIw and DLP data presented herein are largely similar to those from two recent national surveys. The study has shown a stronger need to create awareness and training of radiology personnel as well as monitoring of radiation doses in many developing countries so as to conform to the ALARA principle.

  6. An Initial Investigation into the Processes of Change in ACT, CT, and ERP for OCD

    ERIC Educational Resources Information Center

    Twohig, Michael P.; Whittal, Maureen L.; Cox, Jared M.; Gunter, Raymond

    2010-01-01

    Six adults diagnosed with obsessive compulsive disorder (OCD) were treated with either acceptance and commitment therapy (ACT), cognitive therapy (CT), or exposure with ritual prevention (ERP) in a preliminary attempt to clarify the similarities or differences between the purported mechanisms of change that underlie these treatments. A new process…

  7. CT-Guided Interventions Using a Free-Hand, Optical Tracking System: Initial Clinical Experience

    SciTech Connect

    Schubert, Tilman Jacob, Augustinus L.; Pansini, Michele; Liu, David; Gutzeit, Andreas; Kos, Sebastian

    2013-08-01

    PurposeThe present study was designed to evaluate the geometrical accuracy and clinical applicability of a new, free-hand, CT-guided, optical navigation system.MethodsFifteen procedures in 14 consecutive patients were retrospectively analyzed. The navigation system was applied for interventional procedures on small target lesions, in cases with long needle paths, narrow access windows, or when an out-of-plane access was expected. Mean lesion volume was 27.9 ml, and mean distance to target measured was 107.5 mm. Eleven of 15 needle trajectories were planned as out-of-plane approaches regarding the axial CT plane.ResultsNinety-one percent of the biopsies were diagnostic. All therapeutic interventions were technically successful. Targeting precision was high with a mean distance of the needle tip from planned target of 1.98 mm. Mean intervention time was 1:12 h. A statistically significant correlation between angular needle deviation and intervention time (p = 0.007), respiratory movement of the target (p = 0.008), and body mass index (p = 0.02) was detected. None of the evaluated parameters correlated significantly with the distance from the needle tip to the planned target.ConclusionsThe application of a navigation system for complex CT-guided procedures provided safe and effective targeting within a reasonable intervention time in our series.

  8. Empirical beam hardening correction (EBHC) for CT

    SciTech Connect

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern

  9. Probabilistic conditional reasoning: Disentangling form and content with the dual-source model.

    PubMed

    Singmann, Henrik; Klauer, Karl Christoph; Beller, Sieghard

    2016-08-01

    The present research examines descriptive models of probabilistic conditional reasoning, that is of reasoning from uncertain conditionals with contents about which reasoners have rich background knowledge. According to our dual-source model, two types of information shape such reasoning: knowledge-based information elicited by the contents of the material and content-independent information derived from the form of inferences. Two experiments implemented manipulations that selectively influenced the model parameters for the knowledge-based information, the relative weight given to form-based versus knowledge-based information, and the parameters for the form-based information, validating the psychological interpretation of these parameters. We apply the model to classical suppression effects dissecting them into effects on background knowledge and effects on form-based processes (Exp. 3) and we use it to reanalyse previous studies manipulating reasoning instructions. In a model-comparison exercise, based on data of seven studies, the dual-source model outperformed three Bayesian competitor models. Overall, our results support the view that people make use of background knowledge in line with current Bayesian models, but they also suggest that the form of the conditional argument, irrespective of its content, plays a substantive, yet smaller, role.

  10. A dual cone-beam CT system for image guided radiotherapy: Initial performance characterization

    SciTech Connect

    Li Hao; Bowsher, James; Yin Fangfang; Giles, William

    2013-02-15

    Purpose: The purpose of this study is to evaluate the performance of a recently developed benchtop dual cone-beam computed tomography (CBCT) system with two orthogonally placed tube/detector sets. Methods: The benchtop dual CBCT system consists of two orthogonally placed 40 Multiplication-Sign 30 cm flat-panel detectors and two conventional x-ray tubes with two individual high-voltage generators sharing the same rotational axis. The x-ray source to detector distance is 150 cm and x-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200 Degree-Sign of rotation. The dual CBCT system utilized 110 Degree-Sign of projection data from one detector and 90 Degree-Sign from the other while the two individual single CBCTs utilized 200 Degree-Sign data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum, and CT number linearity. The uniformities, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems. Results: Compared to single CBCT, the dual CBCT presented: (1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125, and 150 kVp); (2) comparable or slightly better contrast (0{approx}25 HU) for low-contrast objects and comparable contrast for high-contrast objects; (3) comparable spatial resolution; (4) comparable CT number linearity with R{sup 2}{>=} 0.99 for all four tested energies; (5) lower noise power spectrum in magnitude. Dual CBCT images of the skull phantom and the

  11. Robust Initialization of Active Shape Models for Lung Segmentation in CT Scans: A Feature-Based Atlas Approach

    PubMed Central

    Beichel, Reinhard R.

    2014-01-01

    Model-based segmentation methods have the advantage of incorporating a priori shape information into the segmentation process but suffer from the drawback that the model must be initialized sufficiently close to the target. We propose a novel approach for initializing an active shape model (ASM) and apply it to 3D lung segmentation in CT scans. Our method constructs an atlas consisting of a set of representative lung features and an average lung shape. The ASM pose parameters are found by transforming the average lung shape based on an affine transform computed from matching features between the new image and representative lung features. Our evaluation on a diverse set of 190 images showed an average dice coefficient of 0.746 ± 0.068 for initialization and 0.974 ± 0.017 for subsequent segmentation, based on an independent reference standard. The mean absolute surface distance error was 0.948 ± 1.537 mm. The initialization as well as segmentation results showed a statistically significant improvement compared to four other approaches. The proposed initialization method can be generalized to other applications employing ASM-based segmentation. PMID:25400660

  12. Initial use of fast switched dual energy CT for coronary artery disease

    NASA Astrophysics Data System (ADS)

    Pavlicek, William; Panse, Prasad; Hara, Amy; Boltz, Thomas; Paden, Robert; Yamak, Didem; Licato, Paul; Chandra, Naveen; Okerlund, Darin; Dutta, Sandeep; Bhotika, Rahul; Langan, David

    2010-04-01

    Coronary CT Angiography (CTA) is limited in patients with calcified plaque and stents. CTA is unable to confidently differentiate fibrous from lipid plaque. Fast switched dual energy CTA offers certain advantages. Dual energy CTA removes calcium thereby improving visualization of the lumen and potentially providing a more accurate measure of stenosis. Dual energy CTA directly measures calcium burden (calcium hydroxyapatite) thereby eliminating a separate non-contrast series for Agatston Scoring. Using material basis pairs, the differentiation of fibrous and lipid plaques is also possible. Patency of a previously stented coronary artery is difficult to visualize with CTA due to resolution constraints and localized beam hardening artifacts. Monochromatic 70 keV or Iodine images coupled with Virtual Non-stent images lessen beam hardening artifact and blooming. Virtual removal of stainless steel stents improves assessment of in-stent re-stenosis. A beating heart phantom with 'cholesterol' and 'fibrous' phantom coronary plaques were imaged with dual energy CTA. Statistical classification methods (SVM, kNN, and LDA) distinguished 'cholesterol' from 'fibrous' phantom plaque tissue. Applying this classification method to 16 human soft plaques, a lipid 'burden' may be useful for characterizing risk of coronary disease. We also found that dual energy CTA is more sensitive to iodine contrast than conventional CTA which could improve the differentiation of myocardial infarct and ischemia on delayed acquisitions. These phantom and patient acquisitions show advantages with using fast switched dual energy CTA for coronary imaging and potentially extends the use of CT for addressing problem areas of non-invasive evaluation of coronary artery disease.

  13. SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes

    SciTech Connect

    Nakamura, M; Ishihara, Y; Matsuo, Y; Ueki, N; Iizuka, Y; Mizowaki, T; Hiraoka, M

    2015-06-15

    Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infrared marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy.

  14. Integrated assessment of coronary anatomy and myocardial perfusion using a retractable SPECT camera combined with 64-slice CT: initial experience.

    PubMed

    Thilo, Christian; Schoepf, U Joseph; Gordon, Leonie; Chiaramida, Salvatore; Serguson, Jill; Costello, Philip

    2009-04-01

    We evaluated a prototype SPECT system integrated with multidetector row CT (MDCT) for obtaining complementary information on coronary anatomy and hemodynamic lesion significance. Twenty-five consecutive patients with known or suspected coronary artery disease (CAD) underwent routine SPECT myocardial perfusion imaging (MPI). All patients also underwent repeat MPI with a mobile SPECT unit which could be attached to a 64-slice MDCT system. Coronary CT angiography (cCTA) was performed without repositioning the patient. Investigational MPI was compared with routine MPI for detection of myocardial perfusion defects (PD). Two observers diagnosed presence or absence of CAD based on MPI alone, cCTA alone, and based on combined MPI and cCTA with fused image display. In 22/24 patients investigative MPI corresponded with routine MPI (r = 0.80). Stenosis >or= 50% at cCTA was detected in 6/24 patients. Six out of 24 patients had PD at regular MPI. Three of these six patients had no significant stenosis at cCTA. Three out of 19 patients with normal MPI studies had significant stenosis at cCTA. Our initial experience indicates that the integration of SPECT MPI with cCTA is technically feasible and enables the comprehensive evaluation of coronary artery anatomy and myocardial perfusion with a single instrumental setup.

  15. A stochastic inventory management model for a dual sourcing supply chain with disruptions

    NASA Astrophysics Data System (ADS)

    Iakovou, Eleftherios; Vlachos, Dimitrios; Xanthopoulos, Anastasios

    2010-03-01

    As companies continue to globalise their operations and outsource significant portion of their value chain activities, they often end up relying heavily on order replenishments from distant suppliers. The explosion in long-distance sourcing is exposing supply chains and shareholder value at ever increasing operational and disruption risks. It is well established, both in academia and in real-world business environments, that resource flexibility is an effective method for hedging against supply chain disruption risks. In this contextual framework, we propose a single period stochastic inventory decision-making model that could be employed for capturing the trade-off between inventory policies and disruption risks for an unreliable dual sourcing supply network for both the capacitated and uncapacitated cases. Through the developed model, we obtain some important managerial insights and evaluate the merit of contingency strategies in managing uncertain supply chains.

  16. New normative standards of conditional reasoning and the dual-source model.

    PubMed

    Singmann, Henrik; Klauer, Karl Christoph; Over, David

    2014-01-01

    There has been a major shift in research on human reasoning toward Bayesian and probabilistic approaches, which has been called a new paradigm. The new paradigm sees most everyday and scientific reasoning as taking place in a context of uncertainty, and inference is from uncertain beliefs and not from arbitrary assumptions. In this manuscript we present an empirical test of normative standards in the new paradigm using a novel probabilized conditional reasoning task. Our results indicated that for everyday conditional with at least a weak causal connection between antecedent and consequent only the conditional probability of the consequent given antecedent contributes unique variance to predicting the probability of conditional, but not the probability of the conjunction, nor the probability of the material conditional. Regarding normative accounts of reasoning, we found significant evidence that participants' responses were confidence preserving (i.e., p-valid in the sense of Adams, 1998) for MP inferences, but not for MT inferences. Additionally, only for MP inferences and to a lesser degree for DA inferences did the rate of responses inside the coherence intervals defined by mental probability logic (Pfeifer and Kleiter, 2005, 2010) exceed chance levels. In contrast to the normative accounts, the dual-source model (Klauer et al., 2010) is a descriptive model. It posits that participants integrate their background knowledge (i.e., the type of information primary to the normative approaches) and their subjective probability that a conclusion is seen as warranted based on its logical form. Model fits showed that the dual-source model, which employed participants' responses to a deductive task with abstract contents to estimate the form-based component, provided as good an account of the data as a model that solely used data from the probabilized conditional reasoning task.

  17. A dedicated cone-beam CT system for musculoskeletal extremities imaging: Design, optimization, and initial performance characterization

    SciTech Connect

    Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H.

    2011-08-15

    Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a {approx}55 cm source-to-detector distance; 1.3 magnification; a

  18. Myocardial Scar Detection by Standard CT Coronary Angiography

    PubMed Central

    Jeevarethinam, Anand; Venuraju, Shreenidhi; Mehta, Vishal Shahil; Atwal, Satvir; Raval, Usha; Rakhit, Roby; Davar, Joseph; Lahiri, Avijit

    2014-01-01

    We have described a myocardial infarct scar identified by a standard dual source CT coronary angiography (CTCA). We were able to detect the scar during the routine coronary assessment without contrast late enhancement and without additional radiation exposure. It is therefore feasible to assess chronic scar using a standard CTCA technique.

  19. Automatic localization of landmark sets in head CT images with regression forests for image registration initialization

    NASA Astrophysics Data System (ADS)

    Zhang, Dongqing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.

    2016-03-01

    Cochlear Implants (CIs) are electrode arrays that are surgically inserted into the cochlea. Individual contacts stimulate frequency-mapped nerve endings thus replacing the natural electro-mechanical transduction mechanism. CIs are programmed post-operatively by audiologists but this is currently done using behavioral tests without imaging information that permits relating electrode position to inner ear anatomy. We have recently developed a series of image processing steps that permit the segmentation of the inner ear anatomy and the localization of individual contacts. We have proposed a new programming strategy that uses this information and we have shown in a study with 68 participants that 78% of long term recipients preferred the programming parameters determined with this new strategy. A limiting factor to the large scale evaluation and deployment of our technique is the amount of user interaction still required in some of the steps used in our sequence of image processing algorithms. One such step is the rough registration of an atlas to target volumes prior to the use of automated intensity-based algorithms when the target volumes have very different fields of view and orientations. In this paper we propose a solution to this problem. It relies on a random forest-based approach to automatically localize a series of landmarks. Our results obtained from 83 images with 132 registration tasks show that automatic initialization of an intensity-based algorithm proves to be a reliable technique to replace the manual step.

  20. Virtual monochromatic imaging in dual-source and dual-energy CT for visualization of acute ischemic stroke

    NASA Astrophysics Data System (ADS)

    Hara, Hidetake; Muraishi, Hiroshi; Matsuzawa, Hiroki; Inoue, Toshiyuki; Nakajima, Yasuo; Satoh, Hitoshi; Abe, Shinji

    2015-07-01

    We have recently developed a phantom that simulates acute ischemic stroke. We attempted to visualize an acute-stage cerebral infarction by using dual-energy Computed tomography (DECT) to obtain virtual monochromatic images of this phantom. Virtual monochromatic images were created by using DECT voltages from 40 to 100 keV in steps of 10 keV and from 60 to 80 keV in steps of 1 keV, under three conditions of the tube voltage with thin (Sn) filters. Calculation of the CNR values allowed us to evaluate the visualization of acute-stage cerebral infarction. The CNR value of a virtual monochromatic image was the highest at 68 keV under 80 kV / Sn 140 kV, at 72 keV under 100 kV / Sn 140 kV, and at 67 keV under 140 kV / 80 kV. The CNR values of virtual monochromatic images at voltages between 65 and 75 keV were significantly higher than those obtained for all other created images. Therefore, the optimal conditions for visualizing acute ischemic stroke were achievable.

  1. Dual-Source Precursor Approach for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells.

    PubMed

    Luo, Deying; Zhao, Lichen; Wu, Jiang; Hu, Qin; Zhang, Yifei; Xu, Zhaojian; Liu, Yi; Liu, Tanghao; Chen, Ke; Yang, Wenqiang; Zhang, Wei; Zhu, Rui; Gong, Qihuang

    2017-03-15

    The highest efficiencies reported for perovskite solar cells so far have been obtained mainly with methylammonium and formamidinium mixed cations. Currently, high-quality mixed-cation perovskite thin films are normally made by use of antisolvent protocols. However, the widely used "antisolvent"-assisted fabrication route suffers from challenges such as poor device reproducibility, toxic and hazardous organic solvent, and incompatibility with scalable fabrication process. Here, a simple dual-source precursor approach is developed to fabricate high-quality and mirror-like mixed-cation perovskite thin films without involving additional antisolvent process. By integrating the perovskite films into the planar heterojunction solar cells, a power conversion efficiency of 20.15% is achieved with negligible current density-voltage hysteresis. A stabilized power output approaching 20% is obtained at the maximum power point. These results shed light on fabricating highly efficient perovskite solar cells via a simple process, and pave the way for solar cell fabrication via scalable methods in the near future.

  2. Dual-source dual-power electrospinning and characteristics of multifunctional scaffolds for bone tissue engineering.

    PubMed

    Wang, Chong; Wang, Min

    2012-10-01

    Electrospun tissue engineering scaffolds are attractive due to their distinctive advantages over other types of scaffolds. As both osteoinductivity and osteoconductivity play crucial roles in bone tissue engineering, scaffolds possessing both properties are desirable. In this investigation, novel bicomponent scaffolds were constructed via dual-source dual-power electrospinning (DSDPES). One scaffold component was emulsion electrospun poly(D,L-lactic acid) (PDLLA) nanofibers containing recombinant human bone morphogenetic protein (rhBMP-2), and the other scaffold component was electrospun calcium phosphate (Ca-P) particle/poly(lactic-co-glycolic acid) (PLGA) nanocomposite fibers. The mass ratio of rhBMP-2/PDLLA fibers to Ca-P/PLGA fibers in bicomponent scaffolds could be controlled in the DSDPES process by adjusting the number of syringes used to supply solutions for electrospinning. Through process optimization, both types of fibers could be evenly distributed in bicomponent scaffolds. The structure and properties of each type of fibers in the scaffolds were studied. The morphological and structural properties and wettability of scaffolds were assessed. The effects of emulsion composition for rhBMP-2/PDLLA fibers and mass ratio of fibrous components in bicomponent scaffolds on in vitro release of rhBMP-2 from scaffolds were investigated. In vitro degradation of scaffolds was also studied by monitoring their morphological changes, weight losses and decreases in average molecular weight of fiber matrix polymers.

  3. A Multi-Source Inverse-Geometry CT system: Initial results with an 8 spot x-ray source array

    PubMed Central

    Baek, Jongduk; De Man, Bruno; Uribe, Jorge; Longtin, Randy; Harrison, Daniel; Reynolds, Joseph; Neculaes, Bogdan; Frutschy, Kristopher; Inzinna, Louis; Caiafa, Antonio; Senzig, Robert; Pelc, Norbert J.

    2014-01-01

    We present initial experimental results of a rotating-gantry multi-source inverse-geometry CT (MS-IGCT) system. The MS-IGCT system was built with a single module of 2×4 x-ray sources and a 2D detector array. It produced a 75 mm in-plane field-of-view (FOV) with 160 mm axial coverage in a single gantry rotation. To evaluate system performance, a 2.5 inch diameter uniform PMMA cylinder phantom, a 200 μm diameter tungsten wire, and a euthanized rat were scanned. Each scan acquired 125 views per source and the gantry rotation time was 1 second per revolution. Geometric calibration was performed using a bead phantom. The scanning parameters were 80 kVp, 125 mA, and 5.4 us pulse per source location per view. A data normalization technique was applied to the acquired projection data, and beam hardening and spectral nonlinearities of each detector channel were corrected. For image reconstruction, the projection data of each source row were rebinned into a full cone beam data set, and the FDK algorithm was used. The reconstructed volumes from upper and lower source rows shared an overlap volume which was combined in image space. The images of the uniform PMMA cylinder phantom showed good uniformity and no apparent artefacts. The measured in-plane MTF showed 13 lp/cm at 10% cutoff, in good agreement with expectations. The rat data were also reconstructed reliably. The initial experimental results from this rotating-gantry MS-IGCT system demonstrated its ability to image a complex anatomical object without any significant image artefacts and to achieve high image resolution and large axial coverage in a single gantry rotation. PMID:24556567

  4. A multi-source inverse-geometry CT system: initial results with an 8 spot x-ray source array

    NASA Astrophysics Data System (ADS)

    Baek, Jongduk; De Man, Bruno; Uribe, Jorge; Longtin, Randy; Harrison, Daniel; Reynolds, Joseph; Neculaes, Bogdan; Frutschy, Kristopher; Inzinna, Louis; Caiafa, Antonio; Senzig, Robert; Pelc, Norbert J.

    2014-03-01

    We present initial experimental results of a rotating-gantry multi-source inverse-geometry CT (MS-IGCT) system. The MS-IGCT system was built with a single module of 2 × 4 x-ray sources and a 2D detector array. It produced a 75 mm in-plane field-of-view (FOV) with 160 mm axial coverage in a single gantry rotation. To evaluate system performance, a 2.5 inch diameter uniform PMMA cylinder phantom, a 200 µm diameter tungsten wire, and a euthanized rat were scanned. Each scan acquired 125 views per source and the gantry rotation time was 1 s per revolution. Geometric calibration was performed using a bead phantom. The scanning parameters were 80 kVp, 125 mA, and 5.4 µs pulse per source location per view. A data normalization technique was applied to the acquired projection data, and beam hardening and spectral nonlinearities of each detector channel were corrected. For image reconstruction, the projection data of each source row were rebinned into a full cone beam data set, and the FDK algorithm was used. The reconstructed volumes from upper and lower source rows shared an overlap volume which was combined in image space. The images of the uniform PMMA cylinder phantom showed good uniformity and no apparent artifacts. The measured in-plane MTF showed 13 lp cm-1 at 10% cutoff, in good agreement with expectations. The rat data were also reconstructed reliably. The initial experimental results from this rotating-gantry MS-IGCT system demonstrated its ability to image a complex anatomical object without any significant image artifacts and to achieve high image resolution and large axial coverage in a single gantry rotation.

  5. 18F-FDG PET-CT Findings Before and After Laparoscopic Cryoablation of Small Renal Mass: An Initial Report

    PubMed Central

    Sivro, Ferida; van der Zee, Johan A.; Baars, Phillippe C.

    2015-01-01

    The aim of this study was to describe the characteristics of positron emission tomography (PET) molecular imaging combined with low-dose computed tomography (CT) in small renal mass (SRM) treated with cryoablation (CA). Currently, treatment success is defined by the absence of contrast enhancement at CT. However, the use of contrast is relatively contraindicated in patients with renal function impairment, mandating alternative follow-up strategies. Several reasons were identified as criteria for performing PET-CT before and/or after SRM-CA in 9 patients, and the results were retrospectively studied. The histology revealed renal cell carcinoma in 7 patients and oncocytoma in 2 patients. In 6 patients, a PET-CT was performed before and after CA. In one patient, the PET-CT was performed only before CA and in 2 patients only after CA. Before CA, clearly there was metabolic uptake of fluorine-18 fluorodeoxyglucose (18F-FDG) in the SRM in all patients. Following CA, the absence of 18F-FDG uptakes in the SRM could clearly be noticed. However, the tracer cannot always be distinguished from focal recurrence or reactive inflammatory tissue. In one patient, asymptomatic metastatic bone lesions were noticed when performing PET-CT at follow-up. This pilot study with 18F-FDG PET-CT for the follow-up of SRM cryosurgery showed that 18F-FDG PET-CT imaging could be used to characterize cryoablative tissue injury at different times after CA. PMID:28326272

  6. Desired lifetime and end-of-life desires across adulthood from 20 to 90: a dual-source information model.

    PubMed

    Lang, Frieder R; Baltes, Paul B; Wagner, Gert G

    2007-09-01

    How long do people want to live, and how does scientific research on aging affect such desires? A dual-source information model proposes that aging expectations and desires are informed differently by two sources: personal experiences on the one hand, and scientific and societal influences on the other. Two studies with independent German national samples explored desires regarding length of life and end of life among adults between the ages of 20 and 90. FINDINGS ARE: First, desired lifetime is consistent at around 85 years with few age differences. Second, experimental induction of good or bad news from research on aging has little effect in Study 1. Third, interest in science has moderating effects on desired lifetime in Study 2. Fourth, there is a high prevalence of a strong desire to control the "when and how" of one's death, although only 11% of the individuals completed a living will. Findings are consistent with the dual-source information model.

  7. Corticosteroid Responsive Sarcoidosis with Multisystemic Involvement Years after Initial Diagnosis: A Lymphoma Mimicker on 18-FDG PET/CT

    PubMed Central

    Acar, Turker; Savas, Recep; Kocacelebi, Kenan; Ucan, Eyup Sabri

    2015-01-01

    Sarcoidosis is a chronic multisystemic inflammatory disease characterized by noncaseating epithelioid cell granulomas. 18-Fluorodeoxyglucose positron-emission tomography/computer tomography (FDG-PET/CT) is increasingly used in routine clinical practice to assess active sarcoidosis because it can detect active inflammatory granulomatous disease. However, active sarcoidosis lesions are observed to be hypermetabolic on FDG-PET/CT much like malignancies, which may lead to misinterpretation on imaging. In this case report, we present a rare case of sarcoidosis with multisystem involvement including lung, lymph nodes, bone, pleura, and soft tissue that mimicked lymphoma on FDG-PET/CT and responded to corticosteroid treatment. PMID:26312138

  8. The segmentation of the CT image based on k clustering and graph-cut

    NASA Astrophysics Data System (ADS)

    Chen, Yuke; Wu, Xiaoming; Yang, Rongqian; Ou, Shanxin; Cai, Ken; Chen, Hai

    2011-11-01

    Computed tomography angiography (CTA) is widely used to assess heart disease, like coronary artery disease. In order to complete the auto-segmentation of cardiac image of dual-source CT (DSCT) and extract the structure of heart accurately, this paper proposes a hybrid segmentation method based on k clustering and Graph-Cuts (GC). It identifies the initial label of pixels by this method. Based on this, it creates the energy function of the label with the knowledge of anatomic construction of heart and constructs the network diagram. Finally, it minimizes the energy function by the method of max-flow/min-cut theorem and picks up region of interest. The experiment results indicate that the robust, accurate segmentation of the cardiac DSCT image can be realized by combining Graph-Cut and k clustering algorithm.

  9. Initial Fludeoxyglucose (18F) Positron Emission Tomography-Computed Tomography (FDG-PET/CT) Imaging of Breast Cancer – Correlations with the Primary Tumour and Locoregional Metastases

    PubMed Central

    Ayaz, Sevin; Gültekin, Salih Sinan; Ayaz, Ümit Yaşar; Dilli, Alper

    2017-01-01

    Summary Backround We aimed to evaluate initial PET/CT features of primary tumour and locoregional metastatic lymph nodes (LNs) in breast cancer and to look for potential relationships between several parameters from PET/CT. Material/Methods Twenty-three women (mean age; 48.66±12.23 years) with a diagnosis of primary invasive ductal carcinoma were included. They underwent PET/CT imaging for the initial tumour staging and had no evidence of distant metastates. Patients were divided into two groups. The LABC (locally advanced breast cancer) group included 17 patients with ipsilateral axillary lymph node (LN) metastases. The Non-LABC group consisted of six patients without LN metastases. PET/CT parameters including tumour size, axillary LN size, SUVmax of ipsilateral axillary LNs (SUVmax-LN), SUVmax of primary tumour (SUVmax-T) and NT ratios (SUVmax-LN/SUVmax-T) were compared between the groups. Correlations between the above-mentioned PET/CT parameters in the LABC group as well as the correlation between tumour size and SUVmax-T within each group were evaluated statistically. Results The mean values of the initial PET/CT parameters in the LABC group were significantly higher than those of the non-LABC group (p<0.05). The correlation between tumour size and SUVmax-T value within both LABC and non-LABC groups was statistically significant (p<0.05). In the LABC group, the correlations between the size and SUVmax-LN values of metastatic axillary LNs, between tumour size and metastatic axillary LN size, between SUVmax-T values and metastatic axillary LN size, between SUVmax-T and SUVmax-LN values, and between tumour size and SUVmax-LN values were all significant (p<0.05). Conclusions We found significant correlations between PET/CT parameters of the primary tumour and those of metastatic axillary LNs. Patients with LN metastases had relatively larger primary tumours and higher SUVmax values. PMID:28105247

  10. Somatostatin receptor based PET/CT in patients with the suspicion of cardiac sarcoidosis: an initial comparison to cardiac MRI.

    PubMed

    Lapa, Constantin; Reiter, Theresa; Kircher, Malte; Schirbel, Andreas; Werner, Rudolf A; Pelzer, Theo; Pizarro, Carmen; Skowasch, Dirk; Thomas, Lena; Schlesinger-Irsch, Ulrike; Thomas, Daniel; Bundschuh, Ralph A; Bauer, Wolfgang R; Gärtner, Florian C

    2016-11-22

    Diagnosis of cardiac sarcoidosis is often challenging. Whereas cardiac magnetic resonance imaging (CMR) and positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (FDG) are most commonly used to evaluate patients, PET/CT using radiolabeled somatostatin receptor (SSTR) ligands for visualization of inflammation might represent a more specific alternative. This study aimed to investigate the feasibility of SSTR-PET/CT for detecting cardiac sarcoidosis in comparison to CMR.15 patients (6 males, 9 females) with sarcoidosis and suspicion on cardiac involvement underwent SSTR-PET/CT imaging and CMR. Images were visually scored. The AHA 17-segment model of the left myocardium was used for localization and comparison of inflamed myocardium for both imaging modalities. In semi-quantitative analysis, mean (SUVmean) and maximum standardized uptake values (SUVmax) of affected myocardium were calculated and compared with both remote myocardium and left ventricular (LV) cavity.SSTR-PET was positive in 7/15, CMR in 10/15 patients. Of the 3 CMR+/PET- subjects, one patient with minor involvement (<25% of wall thickness in CMR) was missed by PET. The remaining two CMR+/PET- patients displayed no adverse cardiac events during follow-up.In the 17-segment model, PET/CT yielded 27 and CMR 29 positive segments. Overall concordance of the 2 modalities was 96.1% (245/255 segments analyzed). SUVmean and SUVmax in inflamed areas were 2.0±1.2 and 2.6±1.2, respectively. The lesion-to-remote myocardium and lesion-to-LV cavity ratios were 1.8±0.2 and 1.9±0.2 for SUVmean and 2.0±0.3 and 1.7±0.3 for SUVmax, respectively.Detection of cardiac sarcoidosis by SSTR-PET/CT is feasible. Our data warrant further analysis in larger prospective series.

  11. Somatostatin receptor based PET/CT in patients with the suspicion of cardiac sarcoidosis: an initial comparison to cardiac MRI

    PubMed Central

    Kircher, Malte; Schirbel, Andreas; Werner, Rudolf A.; Pelzer, Theo; Pizarro, Carmen; Skowasch, Dirk; Thomas, Lena; Schlesinger-Irsch, Ulrike; Thomas, Daniel; Bundschuh, Ralph A.

    2016-01-01

    Diagnosis of cardiac sarcoidosis is often challenging. Whereas cardiac magnetic resonance imaging (CMR) and positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (FDG) are most commonly used to evaluate patients, PET/CT using radiolabeled somatostatin receptor (SSTR) ligands for visualization of inflammation might represent a more specific alternative. This study aimed to investigate the feasibility of SSTR–PET/CT for detecting cardiac sarcoidosis in comparison to CMR. 15 patients (6 males, 9 females) with sarcoidosis and suspicion on cardiac involvement underwent SSTR-PET/CT imaging and CMR. Images were visually scored. The AHA 17-segment model of the left myocardium was used for localization and comparison of inflamed myocardium for both imaging modalities. In semi-quantitative analysis, mean (SUVmean) and maximum standardized uptake values (SUVmax) of affected myocardium were calculated and compared with both remote myocardium and left ventricular (LV) cavity. SSTR-PET was positive in 7/15, CMR in 10/15 patients. Of the 3 CMR+/PET− subjects, one patient with minor involvement (<25% of wall thickness in CMR) was missed by PET. The remaining two CMR+/PET− patients displayed no adverse cardiac events during follow-up. In the 17-segment model, PET/CT yielded 27 and CMR 29 positive segments. Overall concordance of the 2 modalities was 96.1% (245/255 segments analyzed). SUVmean and SUVmax in inflamed areas were 2.0±1.2 and 2.6±1.2, respectively. The lesion-to-remote myocardium and lesion-to-LV cavity ratios were 1.8±0.2 and 1.9±0.2 for SUVmean and 2.0±0.3 and 1.7±0.3 for SUVmax, respectively. Detection of cardiac sarcoidosis by SSTR-PET/CT is feasible. Our data warrant further analysis in larger prospective series. PMID:27780922

  12. Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes

    NASA Astrophysics Data System (ADS)

    Kanmani, B.; Vasu, R. M.

    2007-03-01

    An iterative reconstruction procedure is used to invert intensity data from both single- and phase-correlated dual-source illuminations for absorption inhomogeneities. The Jacobian for the dual source is constructed by an algebraic addition of the Jacobians estimated for the two sources separately. By numerical simulations, it is shown that the dual-source scheme performs superior to the single-source system in regard to (i) noise tolerance in data and (ii) ability to reconstruct smaller and lower contrast objects. The quality of reconstructions from single-source data, as indicated by mean-square error at convergence, is markedly poorer compared to their dual-source counterpart, when noise in data was in excess of 2%. With fixed contrast and decreasing inhomogeneity diameter, our simulations showed that, for diameters below 7 mm, the dual-source scheme has a higher percentage contrast recovery compared to the single-source scheme. Similarly, the dual-source scheme reconstructs to a higher percentage contrast recovery from lower contrast inhomogeneity, in comparison to the single-source scheme.

  13. Prolonged Cerebral Circulation Time Is the Best Parameter for Predicting Vasospasm during Initial CT Perfusion in Subarachnoid Hemorrhagic Patients

    PubMed Central

    Lin, Chun Fu; Hsu, Sanford P. C.; Lin, Chung Jung; Guo, Wan Yuo; Liao, Chih Hsiang; Chu, Wei Fa; Hung, Sheng Che; Shih, Yang Shin; Lin, Yen Tzu

    2016-01-01

    Purpose We sought to imitate angiographic cerebral circulation time (CCT) and create a similar index from baseline CT perfusion (CTP) to better predict vasospasm in patients with subarachnoid hemorrhage (SAH). Methods Forty-one SAH patients with available DSA and CTP were retrospectively included. The vasospasm group was comprised of patients with deterioration in conscious functioning and newly developed luminal narrowing; remaining cases were classified as the control group. The angiography CCT (XA-CCT) was defined as the difference in TTP (time to peak) between the selected arterial ROIs and the superior sagittal sinus (SSS). Four arterial ROIs were selected to generate four corresponding XA-CCTs: the right and left anterior cerebral arteries (XA-CCTRA2 and XA-CCTLA2) and right- and left-middle cerebral arteries (XA-CCTRM2 and XA-CCTLM2). The CCTs from CTP (CT-CCT) were defined as the differences in TTP from the corresponding arterial ROIs and the SSS. Correlations of the different CCTs were calculated and diagnostic accuracy in predicting vasospasm was evaluated. Results Intra-class correlations ranged from 0.96 to 0.98. The correlations of XA-CCTRA2, XA-CCTRM2, XA-CCTLA2, and XA-CCTLM2 with the corresponding CT-CCTs were 0.64, 0.65, 0.53, and 0.68, respectively. All CCTs were significantly prolonged in the vasospasm group (5.8–6.4 s) except for XA-CCTLA2. CT-CCTA2 of 5.62 was the optimal cut-off value for detecting vasospasm with a sensitivity of 84.2% and specificity 82.4% Conclusion CT-CCTs can be used to interpret cerebral flow without deconvolution algorithms, and outperform both MTT and TTP in predicting vasospasm risk. This finding may help facilitate management of patients with SAH. PMID:26986626

  14. Deep-inspiration breath-hold kilovoltage cone-beam CT for setup of stereotactic body radiation therapy for lung tumors: initial experience.

    PubMed

    Duggan, Dennis M; Ding, George X; Coffey, Charles W; Kirby, Wyndee; Hallahan, Dennis E; Malcolm, Arnold; Lu, Bo

    2007-04-01

    We report our initial experience with deep-inspiration breath-hold (DIBH) cone-beam CT (CBCT) on the treatment table, using the kilovoltage imager integrated into our linear accelerator, for setting up patients for DIBH stereotactic body radiation therapy (SBRT) for lung tumors. Nine patients with non-small cell lung cancer (seven stage I), were given 60Gy in three fractions. All nine patients could perform a DIBH for 35s. For each patient we used a diagnostic reference CT volume image acquired during a DIBH to design an SBRT plan consisting of 7-10 noncoplanar conformal beams. Four patients were setup by registering DIBH kilovoltage projection radiographs or megavoltage portal images on the treatment table to digitally reconstructed radiographs from the reference CT. Each of the last 14 fractions out of a total of 27 was setup by acquiring a CBCT volume image on the treatment table in three breath-holds. The CBCT and reference CT volume images were directly registered and the shift was calculated from the registration. The CBCT volume images contained excellent detail on soft tissue and bony anatomy for matching to the reference CT. Most importantly, the tumor was always clearly visible in the CBCT images, even when it was difficult or impossible to see in the radiographs or portal images. The accuracy of the CBCT method was confirmed by DIBH megavoltage portal imaging and each treatment beam was delivered during a DIBH. CBCT acquisition typically required five more minutes than radiograph acquisition but the overall setup time was often shorter using CBCT because repeat imaging was minimized. We conclude that for setting up SBRT treatments of lung tumors, DIBH CBCT is feasible, fast and may result in less variation among observers than using bony anatomy in orthogonal radiographs.

  15. Spontaneous left main coronary artery dissection complicated by pseudoaneurysm formation in pregnancy: role of CT coronary angiography.

    PubMed

    Rahman, Shahid; Abdul-Waheed, Mohammed; Helmy, Tarek; Huffman, Lynn C; Koshal, Vipin; Guitron, Julian; Merrill, Walter H; Lewis, David F; Dunlap, Stephanie; Shizukuda, Yukitaka; Weintraub, Neal L; Meyer, Christopher; Cilingiroglu, Mehmet

    2009-04-01

    We report a case of a 26-year-old female, who presented at 34 weeks of an uncomplicated pregnancy with an acute ST elevation anterior wall myocardial infarction. Cardiac catheterization suggested a left main coronary artery dissection with pseudoaneurysm formation. The patient's course was complicated by congestive heart failure. She was initially managed conservatively by a multidisciplinary team including heart failure specialists, obstetricians, and cardiovascular surgeons. 4 days after admission, her LMC was imaged by dual-source 64 slice Cardiac computed tomography, coronary dissection was identified extending to the lumen, and the presence of pseudoaneurysm was confirmed. She underwent subsequently a staged procedure, which included placement of an intra-aortic balloon pump, cesarean section, and coronary artery bypass grafting. This case illustrates the utility of coronary artery CT imaging to assess the complexity and stability of coronary artery dissections, thereby helping to determine the need for, and timing of revascularization procedures.

  16. SU-E-I-33: Initial Evaluation of Model-Based Iterative CT Reconstruction Using Standard Image Quality Phantoms

    SciTech Connect

    Gingold, E; Dave, J

    2014-06-01

    Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurements included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.

  17. Automated continuous quantitative measurement of proximal airways on dynamic ventilation CT: initial experience using an ex vivo porcine lung phantom

    PubMed Central

    Yamashiro, Tsuneo; Tsubakimoto, Maho; Nagatani, Yukihiro; Moriya, Hiroshi; Sakuma, Kotaro; Tsukagoshi, Shinsuke; Inokawa, Hiroyasu; Kimoto, Tatsuya; Teramoto, Ryuichi; Murayama, Sadayuki

    2015-01-01

    Background The purpose of this study was to evaluate the feasibility of continuous quantitative measurement of the proximal airways, using dynamic ventilation computed tomography (CT) and our research software. Methods A porcine lung that was removed during meat processing was ventilated inside a chest phantom by a negative pressure cylinder (eight times per minute). This chest phantom with imitated respiratory movement was scanned by a 320-row area-detector CT scanner for approximately 9 seconds as dynamic ventilatory scanning. Obtained volume data were reconstructed every 0.35 seconds (total 8.4 seconds with 24 frames) as three-dimensional images and stored in our research software. The software automatically traced a designated airway point in all frames and measured the cross-sectional luminal area and wall area percent (WA%). The cross-sectional luminal area and WA% of the trachea and right main bronchus (RMB) were measured for this study. Two radiologists evaluated the traceability of all measurable airway points of the trachea and RMB using a three-point scale. Results It was judged that the software satisfactorily traced airway points throughout the dynamic ventilation CT (mean score, 2.64 at the trachea and 2.84 at the RMB). From the maximum inspiratory frame to the maximum expiratory frame, the cross-sectional luminal area of the trachea decreased 17.7% and that of the RMB 29.0%, whereas the WA% of the trachea increased 6.6% and that of the RMB 11.1%. Conclusion It is feasible to measure airway dimensions automatically at designated points on dynamic ventilation CT using research software. This technique can be applied to various airway and obstructive diseases. PMID:26445535

  18. CT-Guided Percutaneous Drainage of Infected Collections Due to Gastric Leak After Sleeve Gastrectomy for Morbid Obesity: Initial Experience

    SciTech Connect

    Kelogrigoris, M. Sotiropoulou, E.; Stathopoulos, K.; Georgiadou, V.; Philippousis, P.; Thanos, L.

    2011-06-15

    This study was designed to evaluate the efficacy and safety of computed tomography (CT)-guided drainage in treating infected collections due to gastric leak after laparoscopic sleeve gastrectomy for morbid obesity. From January 2007 to June 2009, 21 patients (9 men and 12 women; mean age, 39.2 (range, 26-52) years) with infected collections due to gastric leak after laparoscopic sleeve gastrectomy for morbid obesity underwent image-guided percutaneous drainage. All procedures were performed using CT guidance and 8- to 12-Fr pigtail drainage catheters. Immediate technical success was achieved in all 21 infected collections. In 18 of 21 collections, we obtained progressive shrinkage of the collection with consequent clinical success (success rate 86%). In three cases, the abdominal fluid collection was not resolved, and the patients were reoperated. Among the 18 patients who avoided surgery, 2 needed replacement of the catheter due to obstruction. No major complications occurred during the procedure. The results of our study support that CT-guided percutaneous drainage is an effective and safe method to treat infected abdominal fluid collections due to gastric leak in patients who had previously underwent laparoscopic sleeve gastrectomy for morbid obesity. It may be considered both as a preparatory step for surgery and a valuable alternative to open surgery. Failure of the procedure does not, however, preclude a subsequent surgical operation.

  19. TU-EF-204-12: Quantitative Evaluation of Spectral Detector CT Using Virtual Monochromatic Images: Initial Results

    SciTech Connect

    Duan, X; Guild, J; Arbique, G; Anderson, J; Dhanantwari, A; Yagil, Y

    2015-06-15

    Purpose To evaluate the image quality and spectral information of a spectral detector CT (SDCT) scanner using virtual monochromatic (VM) energy images. Methods The SDCT scanner (Philips Healthcare) was equipped with a dual-layer detector and spectral iterative reconstruction (IR), which generates conventional 80–140 kV polychromatic energy (PE) CT images using both detector layers, PE images from the low-energy (upper) and high-energy (lower) detector layers and VM images. A solid water phantom with iodine (2.0–20.0 mg I/ml) and calcium (50.0–600.0 mg Ca/ml) rod inserts was used to evaluate effective energy estimate (EEE) and iodine contrast to noise ratio (CNR). The EEE corresponding to an insert CT number in a PE image was calculated from a CT number fit to the VM image set. Since PE image is prone to beam-hardening artifact EEE may underestimate the actual energy separation from two layers of the detector. A 30-cm-diameter water phantom was used to evaluate noise power spectrum (NPS). The phantoms were scanned at 120 and 140 kV with the same CTDIvol. Results The CT number difference for contrast inserts in VM images (50–150 keV) was 1.3±6% between 120 and 140 kV scans. The difference of EEE calculated from low- and high-energy detector images was 11.5 and 16.7 keV for 120 and 140 kV scans, respectively. The differences calculated from 140 and 100 kV conventional PE images were 12.8, and 20.1 keV from 140 and 80 kV conventional PE images. The iodine CNR increased monotonically with decreased keV. Compared to conventional PE images, the peak of NPS curves from VM images were shifted to lower frequency. Conclusion The EEE results indicates that SDCT at 120 and 140 kV may have energy separation comparable to 100/140 kV and 80/140 kV dual-kV imaging. The effects of IR on CNR and NPS require further investigation for SDCT. Author YY and AD are Philips Healthcare employees.

  20. Prognosis estimation under the light of metabolic tumor parameters on initial FDG-PET/CT in patients with primary extranodal lymphoma

    PubMed Central

    Okuyucu, Kursat; Ozaydın, Sukru; Alagoz, Engin; Ozgur, Gokhan; Oysul, Fahrettin Guven; Ozmen, Ozlem; Tuncel, Murat; Ozturk, Mustafa; Arslan, Nuri

    2016-01-01

    Abstract Background Non-Hodgkin’s lymphomas arising from the tissues other than primary lymphatic organs are named primary extranodal lymphoma. Most of the studies evaluated metabolic tumor parameters in different organs and histopathologic variants of this disease generally for treatment response. We aimed to evaluate the prognostic value of metabolic tumor parameters derived from initial FDG-PET/CT in patients with a medley of primary extranodal lymphoma in this study. Patients and methods There were 67 patients with primary extranodal lymphoma for whom FDG-PET/CT was requested for primary staging. Quantitative PET/CT parameters: maximum standardized uptake value (SUVmax), average standardized uptake value (SUVmean), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were used to estimate disease-free survival and overall survival. Results SUVmean, MTV and TLG were found statistically significant after multivariate analysis. SUVmean remained significant after ROC curve analysis. Sensitivity and specificity were calculated as 88% and 64%, respectively, when the cut-off value of SUVmean was chosen as 5.15. After the investigation of primary presentation sites and histo-pathological variants according to recurrence, there is no difference amongst the variants. Primary site of extranodal lymphomas however, is statistically important (p = 0.014). Testis and central nervous system lymphomas have higher recurrence rate (62.5%, 73%, respectively). Conclusions High SUVmean, MTV and TLG values obtained from primary staging FDG-PET/CT are potential risk factors for both disease-free survival and overall survival in primary extranodal lymphoma. SUVmean is the most significant one amongst them for estimating recurrence/metastasis. PMID:27904443

  1. Pulmonary Masses: Initial Results of Cone-beam CT Guidance with Needle Planning Software for Percutaneous Lung Biopsy

    SciTech Connect

    Braak, Sicco J.; Herder, Gerarda J. M.; Heesewijk, Johannes P. M. van Strijen, Marco J. L. van

    2012-12-15

    Purpose: To evaluate the outcome of percutaneous lung biopsy (PLB) findings using cone-beam computed tomographic (CT) guidance (CBCT guidance) and compared to conventional biopsy guidance techniques. Methods: CBCT guidance is a stereotactic technique for needle interventions, combining 3D soft-tissue cone-beam CT, needle planning software, and real-time fluoroscopy. Between March 2007 and August 2010, we performed 84 Tru-Cut PLBs, where bronchoscopy did not provide histopathologic diagnosis. Mean patient age was 64.6 (range 24-85) years; 57 patients were men, and 25 were women. Records were prospectively collected for calculating sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. We also registered fluoroscopy time, room time, interventional time, dose-area product (DAP), and complications. Procedures were divided into subgroups (e.g., location, size, operator). Results: Mean lesion diameter was 32.5 (range 3.0-93.0) mm, and the mean number of samples per biopsy procedure was 3.2 (range 1-7). Mean fluoroscopy time was 161 (range 104-551) s, room time was 34 (range 15-79) min, mean DAP value was 25.9 (range 3.9-80.5) Gy{center_dot}cm{sup -2}, and interventional time was 18 (range 5-65) min. Of 84 lesions, 70 were malignant (83.3%) and 14 were benign (16.7%). Seven (8.3%) of the biopsy samples were nondiagnostic. All nondiagnostic biopsied lesions proved to be malignant during surgical resection. The outcome for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy was 90% (95% confidence interval [CI] 86-96), 100% (95% CI 82-100), 100% (95% CI 96-100), 66.7% (95% CI 55-83), and 91.7% (95% CI 86-96), respectively. Sixteen patients (19%) had minor and 2 (2.4%) had major complications. Conclusion: CBCT guidance is an effective method for PLB, with results comparable to CT/CT fluoroscopy guidance.

  2. Computer-Aided Diagnosis of Splenic Enlargement Using Wave Pattern of Spleen in Abdominal CT Images: Initial Observations

    NASA Astrophysics Data System (ADS)

    Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong-Won

    In general, the spleen accompanied by abnormal abdomen is hypertrophied. However, if the spleen size is originally small, it is hard to detect the splenic enlargement due to abnormal abdomen by simply measure the size. On the contrary, the spleen size of a person having a normal abdomen may be large by nature. Therefore, measuring the size of spleen is not a reliable diagnostic measure of its enlargement or the abdomen abnormality. This paper proposes an automatic method to diagnose the splenic enlargement due to abnormality, by examining the boundary pattern of spleen in abdominal CT images.

  3. Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study

    SciTech Connect

    Faby, Sebastian Kuchenbecker, Stefan; Sawall, Stefan; Kachelrieß, Marc; Simons, David; Schlemmer, Heinz-Peter; Lell, Michael

    2015-07-15

    Purpose: To study the performance of different dual energy computed tomography (DECT) techniques, which are available today, and future multi energy CT (MECT) employing novel photon counting detectors in an image-based material decomposition task. Methods: The material decomposition performance of different energy-resolved CT acquisition techniques is assessed and compared in a simulation study of virtual non-contrast imaging and iodine quantification. The material-specific images are obtained via a statistically optimal image-based material decomposition. A projection-based maximum likelihood approach was used for comparison with the authors’ image-based method. The different dedicated dual energy CT techniques are simulated employing realistic noise models and x-ray spectra. The authors compare dual source DECT with fast kV switching DECT and the dual layer sandwich detector DECT approach. Subsequent scanning and a subtraction method are studied as well. Further, the authors benchmark future MECT with novel photon counting detectors in a dedicated DECT application against the performance of today’s DECT using a realistic model. Additionally, possible dual source concepts employing photon counting detectors are studied. Results: The DECT comparison study shows that dual source DECT has the best performance, followed by the fast kV switching technique and the sandwich detector approach. Comparing DECT with future MECT, the authors found noticeable material image quality improvements for an ideal photon counting detector; however, a realistic detector model with multiple energy bins predicts a performance on the level of dual source DECT at 100 kV/Sn 140 kV. Employing photon counting detectors in dual source concepts can improve the performance again above the level of a single realistic photon counting detector and also above the level of dual source DECT. Conclusions: Substantial differences in the performance of today’s DECT approaches were found for the

  4. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    SciTech Connect

    2011-02-15

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule{>=}3 mm,''''nodule<3 mm,'' and ''non-nodule{>=}3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked ''nodule{>=}3 mm'' by at least one radiologist, of which 928 (34.7%) received such marks from

  5. Dual-source RF transmission in cardiac SSFP imaging at 3 T: systematic spatial evaluation of image quality improvement compared to conventional RF transmission.

    PubMed

    Rasper, Michael; Gramer, Bettina M; Settles, Marcus; Laugwitz, Karl-Ludwig; Ibrahim, Tareq; Rummeny, Ernst J; Huber, Armin

    2015-01-01

    The purpose of this investigation was to systematically evaluate the spatial distribution of image quality improvement with dual-source radiofrequency (RF) transmission in cardiac steady-state free precession sequences at 3.0 T. Imaging with and without dual-source RF transmission was performed in 30 patients. Contrast-to-noise ratio for the left ventricular myocardium was significantly higher using dual-source RF transmission, but improvement was not uniformly distributed. The posterior myocardium showed significantly less contrast-to-noise ratio gain than all other cardiac regions. Signal-to-noise ratio increase was higher in the right than in the left ventricle. Subjective image quality was significantly enhanced by parallel RF transmission.

  6. CT Enterography

    MedlinePlus

    ... obstructions and Crohn’s disease. CT scanning is fast, painless, noninvasive and accurate. CT enterography is better able ... the benefits vs. risks? Benefits CT scanning is painless, noninvasive and accurate. A major advantage of CT ...

  7. Primary squamous cell carcinoma of the thyroid. Initial assessment and follow-up using (18)F-FDG PET/CT.

    PubMed

    Caballero Gullón, L; Carmona González, E; Martínez Estévez, A; Gómez Camarero, M P; Corral, J J; Borrego Dorado, I

    2017-02-16

    Squamous cell carcinoma of thyroid is an uncommon, very aggressive neoplasm, having a poor prognosis and poor response to chemotherapy and radiotherapy. Surgery is the initial treatment of choice, although it often presents as a widespread disease at the time of diagnosis, usually with cervical swelling that causes most of the symptoms due to local infiltration or metastasis. Local infiltration from adjacent tumour and metastatic disease needs to be excluded from other primary epidermoid carcinomas, in order to make a correct diagnosis. This also requires the typical cytokeratin pattern seen in histological studies. The case is presented of a 53 year-old man with a medical history of hepatocarcinoma, with a cervical hypermetabolic lesion detected in an (18)F-FDG PET/CT performed to exclude widespread disease. The follow-up of this lesion with this technique and its usefulness is also described.

  8. Physicochemical controls on initiation and evolution of desiccation cracks in sand-bentonite mixtures: X-ray CT imaging and stochastic modeling

    NASA Astrophysics Data System (ADS)

    Gebrenegus, Thomas; Ghezzehei, Teamrat A.; Tuller, Markus

    2011-09-01

    The shrink-swell behavior of active clays in response to changes in physicochemical conditions creates great challenges for construction of geotechnical barriers for hazardous waste isolation, and is of significant importance for management of agricultural and natural resources. Initiation and evolution of desiccation cracks in active clays are strongly dependent on physicochemical initial and boundary conditions. To investigate effects of bentonite content (20, 40, 60%), pore fluid chemistry (0.05 and 0.5 M NaCl) and drying rates (40 and 60 °C) on cracking behavior, well-controlled dehydration experiments were conducted and X-ray Computed Tomography (CT) was applied to visualize and quantify geometrical features of evolving crack networks. A stochastic model based on the Fokker-Plank equation was adopted to describe the evolution of crack aperture distributions (CAD) and to assess the impact of physicochemical factors on cracking behavior. Analyses of crack porosity and crack specific surface area showed that both clay content and temperature had larger impact on cracking than pore fluid concentration. More cracks formed at high bentonite contents (40 and 60%) and at high drying rate (60 °C). The drift, diffusion and source terms derived from stochastic analysis indicated that evaporative demand had greater influence on the dynamics of the CAD than solution chemistry.

  9. Physicochemical controls on initiation and evolution of desiccation cracks in sand-bentonite mixtures: X-ray CT imaging and stochastic modeling.

    PubMed

    Gebrenegus, Thomas; Ghezzehei, Teamrat A; Tuller, Markus

    2011-09-25

    The shrink-swell behavior of active clays in response to changes in physicochemical conditions creates great challenges for construction of geotechnical barriers for hazardous waste isolation, and is of significant importance for management of agricultural and natural resources. Initiation and evolution of desiccation cracks in active clays are strongly dependent on physicochemical initial and boundary conditions. To investigate effects of bentonite content (20, 40, 60%), pore fluid chemistry (0.05 and 0.5M NaCl) and drying rates (40 and 60°C) on cracking behavior, well-controlled dehydration experiments were conducted and X-ray Computed Tomography (CT) was applied to visualize and quantify geometrical features of evolving crack networks. A stochastic model based on the Fokker-Plank equation was adopted to describe the evolution of crack aperture distributions (CAD) and to assess the impact of physicochemical factors on cracking behavior. Analyses of crack porosity and crack specific surface area showed that both clay content and temperature had larger impact on cracking than pore fluid concentration. More cracks formed at high bentonite contents (40 and 60%) and at high drying rate (60°C). The drift, diffusion and source terms derived from stochastic analysis indicated that evaporative demand had greater influence on the dynamics of the CAD than solution chemistry.

  10. Wet-chemical synthesis of different bismuth telluride nanoparticles using metal organic precursors - single source vs. dual source approach.

    PubMed

    Bendt, Georg; Weber, Anna; Heimann, Stefan; Assenmacher, Wilfried; Prymak, Oleg; Schulz, Stephan

    2015-08-28

    Thermolysis of the single source precursor (Et2Bi)2Te in DIPB at 80 °C yielded phase-pure Bi4Te3 nanoparticles, while mixtures of Bi4Te3 and elemental Bi were formed at higher temperatures. In contrast, cubic Bi2Te particles were obtained by thermal decomposition of Et2BiTeEt in DIPB. Moreover, a dual source approach (hot injection method) using the reaction of Te(SiEt3)2 and Bi(NMe2)3 was applied for the synthesis of different pure Bi-Te phases including Bi2Te, Bi4Te3 and Bi2Te3, which were characterized by PXRD, REM, TEM and EDX. The influence of reaction temperature, precursor molar ratio and thermolysis conditions on the resulting material phase was verified. Moreover, reactions of alternate bismuth precursors such as Bi(NEt2)3, Bi(NMeEt)3 and BiCl3 with Te(SiEt3)2 were investigated.

  11. Tetralogy of Fallot Cardiac Function Evaluation and Intelligent Diagnosis Based on Dual-Source Computed Tomography Cardiac Images.

    PubMed

    Cai, Ken; Rongqian, Yang; Li, Lihua; Xie, Zi; Ou, Shanxing; Chen, Yuke; Dou, Jianhong

    2016-05-01

    Tetralogy of Fallot (TOF) is the most common complex congenital heart disease (CHD) of the cyanotic type. Studies on ventricular functions have received an increasing amount of attention as the development of diagnosis and treatment technology for CHD continues to advance. Reasonable options for imaging examination and accurate assessment of preoperative and postoperative left ventricular functions of TOF patients are important in improving the cure rate of TOF radical operation, therapeutic evaluation, and judgment prognosis. Therefore, with the aid of dual-source computed tomography (DSCT), cardiac images with high temporal resolution and high definition, we measured the left ventricular time-volume curve using image data and calculating the left ventricular function parameters to conduct the preliminary evaluation on TOF patients. To comprehensively evaluate the cardiac function, the segmental ventricular wall function parameters were measured, and the measurement results were mapped to a bull's eye diagram to realize the standardization of segmental ventricular wall function evaluation. Finally, we introduced a new clustering method based on auto-regression model parameters and combined this method with Euclidean distance measurements to establish an intelligent diagnosis of TOF. The results of this experiment show that the TOF evaluation and the intelligent diagnostic methods proposed in this article are feasible.

  12. Utilization of dual-source X-ray tomography for reduction of scanning time of wooden samples

    NASA Astrophysics Data System (ADS)

    Fíla, T.; Kumpová, I.; Jandejsek, I.; Kloiber, M.; Tureček, D.; Vavřík, D.

    2015-05-01

    We present a novel dual-source/dual energy (DSCT/DECT) micro-tomography system including results of high-resolution DSCT reconstruction. The DSCT micro-tomography setup was designed as a multi-purpose X-ray imaging device equipped with two pairs of X-ray tubes and detectors in orthogonal arrangement with independent control of beam parameters. Both pairs (tube-detector) are mounted on a computer numerical control positioning system and can be independently set up to different geometries (e.g. with different magnification of each pair). In this work the simultaneous scanning of the object by two tube-detector pairs was used for approximately half reduction of tomography scanning time. The developed imaging procedure was applied for scanning of a wooden sample locally damaged during a semi-destructive test for assessment of wood quality. Prior to the tomography measurements the setup geometry was precisely adjusted in terms of magnification, horizontal and vertical tube-specimen-detector alignment of both pairs. DSCT measurements were carried out in sequence (2 × 90° for each tube) with identical 100μm image resolution. It was proven that the presented experimental setup combined with appropriate control technique significantly reduces tomography scanning time of materials with complex micro-structure.

  13. Utility of [18F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in the Initial Staging and Response Assessment of Locally Advanced Breast Cancer Patients Receiving Neoadjuvant Chemotherapy.

    PubMed

    Hulikal, Narendra; Gajjala, Sivanath Reddy; Kalawat, Teck Chand; Kottu, Radhika; Amancharla Yadagiri, Lakshmi

    2015-12-01

    In India up to 50 % of breast cancer patients still present as locally advanced breast cancer (LABC). The conventional methods of metastatic work up include physical examination, bone scan, chest & abdominal imaging, and biochemical tests. It is likely that the conventional staging underestimates the extent of initial spread and there is a need for more sophisticated staging procedure. The PET/CT can detect extra-axillary and occult distant metastases and also aid in predicting response to chemotherapy at an early point in time. To evaluate the utility of FDG PET/CT in initial staging and response assessment of patients with LABC receiving NACT. A prospective study of all biopsy confirmed female patients diagnosed with LABC receiving NACT from April 2013 to May 2014. The conventional work up included serum chemistry, CECT chest and abdomen and bone scan. A baseline whole body PET/CT was done in all patients. A repeat staging evaluation and a whole body PET/CT was done after 2/3rd cycle of NACT in non-responders and after 3/4 cycles in clinical responders. The histopathology report of the operative specimen was used to document the pathological response. The FDG PET/CT reported distant metastases in 11 of 38 patients, where as conventional imaging revealed metastases in only 6. Almost all the distant lesions detected by conventional imaging were detected with PET/CT, which showed additional sites of metastasis in 3 patients. In 2 patients, PET/CT detected osteolytic bone metastasis which were not detected by bone scan. In 5 patients PET CT detected N3 disease which were missed on conventional imaging. A total of 14 patients had second PET/CT done to assess the response to NACT and 11 patients underwent surgery. Two patients had complete pathological response. Of these 1 patient had complete metabolic and morphologic response and other had complete metabolic and partial morphologic response on second PET/CT scan. The 18 FDG PET/CT can detect more number of

  14. Porcine Ex Vivo Liver Phantom for Dynamic Contrast-Enhanced Computed Tomography: Development and Initial Results

    PubMed Central

    Thompson, Scott M.; Giraldo, Juan C. Ramirez; Knudsen, Bruce; Grande, Joseph P.; Christner, Jodie A.; Xu, Man; Woodrum, David A.; McCollough, Cynthia H.; Callstrom, Matthew R.

    2011-01-01

    Objectives To demonstrate the feasibility of developing a fixed, dual-input, biological liver phantom for dynamic contrast-enhanced computed tomography (CT) imaging and to report initial results of use of the phantom for quantitative CT perfusion imaging. Materials and Methods Porcine livers were obtained from completed surgical studies and perfused with saline and fixative. The phantom was placed in a body-shaped, CT-compatible acrylic container and connected to a perfusion circuit fitted with a contrast injection port. Flow-controlled contrast-enhanced imaging experiments were performed using a 128-slice and 64 slice, dual-source multidetector CT scanners. CT angiography protocols were employed to obtain portal venous and hepatic arterial vascular enhancement, reproduced over a period of four to six months. CT perfusion protocols were employed at different input flow rates to correlate input flow with calculated tissue perfusion, to test reproducibility and demonstrate the feasibility of simultaneous dual input liver perfusion. Histologic analysis of the liver phantom was also performed. Results CT angiogram 3D reconstructions demonstrated homogenous tertiary and quaternary branching of the portal venous system out to the periphery of all lobes of the liver as well as enhancement of the hepatic arterial system to all lobes of the liver and gallbladder throughout the study period. For perfusion CT, the correlation between the calculated mean tissue perfusion in a volume of interest and input pump flow rate was excellent (R2 = 0.996) and color blood flow maps demonstrated variations in regional perfusion in a narrow range. Repeat perfusion CT experiments demonstrated reproducible time-attenuation curves and dual-input perfusion CT experiments demonstrated that simultaneous dual input liver perfusion is feasible. Histologic analysis demonstrated that the hepatic microvasculature and architecture appeared intact and well preserved at the completion of four to six

  15. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  16. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema.

    PubMed

    Reddy, T; McLaughlin, P D; Mallinson, P I; Reagan, A C; Munk, P L; Nicolaou, S; Ouellette, H A

    2015-02-01

    The purpose of this study is to describe our initial clinical experience with dual-energy computed tomography (DECT) virtual non-calcium (VNC) images for the detection of bone marrow (BM) edema in patients with suspected hip fracture following trauma. Twenty-five patients presented to the emergency department at a level 1 trauma center between January 1, 2011 and January 1, 2013 with clinical suspicion of hip fracture and normal radiographs were included. All CT scans were performed on a dual-source, dual-energy CT system. VNC images were generated using prototype software and were compared to regular bone reconstructions by two musculoskeletal radiologists in consensus. Radiological and/or clinical diagnosis of fracture at 30-day follow-up was used as the reference standard. Twenty-one patients were found to have DECT-VNC signs of bone marrow edema. Eighteen of these 21 patients were true positive and three were false positive. A concordant fracture was clearly seen on bone reconstruction images in 15 of the 18 true positive cases. In three cases, DECT-VNC was positive for bone marrow edema where bone reconstruction CT images were negative. Four patients demonstrated no DECT-VNC signs of bone marrow edema: two cases were true negative, two cases were false negative. When compared with the gold standard of hip fracture determined at retrospective follow-up, the sensitivity of DECT-VNC images of the hip was 90 %, specificity was 40 %, positive predictive value was 86 %, and negative predictive value was 50 %. Our initial experience would suggest that DECT-VNC is highly sensitive but poorly specific in the diagnosis of hip fractures in patients with normal radiographs. The value of DECT-VNC primarily lies in its ability to help detect fractures which may be subtle or undetectable on bone reconstruction CT images.

  17. Imaging of the Coronary Venous System: Validation of Three-Dimensional Rotational Venous Angiography Against Dual-Source Computed Tomography

    SciTech Connect

    Knackstedt, Christian; Muehlenbruch, Georg; Mischke, Karl; Bruners, Philipp; Schimpf, Thomas; Frechen, Dirk; Schummers, Georg; Mahnken, Andreas H.; Guenther, Rolf W.; Kelm, Malte; Schauerte, Patrick

    2008-11-15

    Information on the anatomy of the cardiac venous system (CVS) is increasingly important for cardiac resynchronization therapy or percutaneous transvenous mitral valve annuloplasty. Three-dimensional (3D) imaging can further improve the understanding of the relationship of cardiac structures. This study was performed to validate the accuracy of rotational coronary sinus angiography (CSA) displaying the 3D anatomy of the CVS compared to ECG-gated, contrast-enhanced, cardiac dual-source computed tomography (DSCT). Five domestic pigs (60 kg) underwent DSCT using a standardized examination protocol. Using a standard C-arm for fluoroscopy, a rotational CSA was obtained and 3D-image reconstructions performed. Side branches were identified using both methods and enumerated. Vessel visibility was estimated for each side branch and great cardiac vein/anterior interventricular vein. Also, vessel diameters were measured at distinct landmarks, i.e., side branching. The amount of contrast medium was determined and the effective radiation exposure of both methods was calculated. There was no significant difference regarding the vessel diameter of the great cardiac vein/anterior interventricular vein or its side branches. Also, estimation of vessel visibility was not different between the two imaging modalities. Estimated radiation exposure and amount of contrast medium were lower for rotational CSA. In conclusion, a 3D reconstruction of rotational CSA images is possible. All parts of the CVS are well depicted, allowing a 3D overview of the CVS anatomy. On-site 3D visualization might improve decision making during cardiac interventions. In contrast to DSCT, rotational CSA does not demonstrate the anatomy of the mitral annulus or the course of the left circumflex artery.

  18. Pediatric CT Scans

    Cancer.gov

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  19. Feasibility of CT-based intraoperative 3D stereotactic image-guided navigation in the upper cervical spine of children 10 years of age or younger: initial experience.

    PubMed

    Kovanda, Timothy J; Ansari, Shaheryar F; Qaiser, Rabia; Fulkerson, Daniel H

    2015-07-24

    OBJECT Rigid screw fixation may be technically difficult in the upper cervical spine of young children. Intraoperative stereotactic navigation may potentially assist a surgeon in precise placement of screws in anatomically challenging locations. Navigation may also assist in defining abnormal anatomy. The object of this study was to evaluate the authors' initial experience with the feasibility and accuracy of this technique, both for resection and for screw placement in the upper cervical spine in younger children. METHODS Eight consecutive pediatric patients 10 years of age or younger underwent upper cervical spine surgery aided by image-guided navigation. The demographic, surgical, and clinical data were recorded. Screw position was evaluated with either an intraoperative or immediately postoperative CT scan. RESULTS One patient underwent navigation purely for guidance of bony resection. A total of 14 navigated screws were placed in the other 7 patients, including 5 C-2 pedicle screws. All 14 screws were properly positioned, defined as the screw completely contained within the cortical bone in the expected trajectory. There were no immediate complications associated with navigation. CONCLUSIONS Image-guided navigation is feasible within the pediatric cervical spine and may be a useful surgical tool for placing screws in a patient with small, often difficult bony anatomy. The authors describe their experience with their first 8 pediatric patients who underwent navigation in cervical spine surgery. The authors highlight differences in technique compared with similar navigation in adults.

  20. An Open Library of CT Patient Projection Data.

    PubMed

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia

    2016-02-27

    Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms.

  1. An open library of CT patient projection data

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia

    2016-03-01

    Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms.

  2. An Open Library of CT Patient Projection Data

    PubMed Central

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia

    2016-01-01

    Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms. PMID:27239087

  3. Optimization of acquisition and contrast injection protocol for C-arm CT imaging in transcatheter aortic valve implantation: initial experience in a swine model.

    PubMed

    Numburi, Uma D; Kapadia, Samir R; Schoenhagen, Paul; Tuzcu, E Murat; von Roden, Martin; Halliburton, Sandra S

    2013-02-01

    To determine the optimal C-arm computed tomography (CT) protocol for transcatheter aortic valve implantation (TAVI) in swine. In 6 swine, C-arm CT was performed using 5-s ungated acquisition during sinus rhythm with aortic root (Method 1) or peripheral (Method 2) injection, and during rapid ventricular pacing with root injection (Method 3). Additionally, 24-s ECG-gated acquisitions were performed during sinus rhythm with root (Method 4) or peripheral (Method 5) injection. Aortic root enhancement, presence of artifacts and contrast volumes were compared for all methods. Aortic root measurements were also compared between C-arm CT and multidetector-row computed tomography (MDCT). The best C-arm CT image set was identified and used to predict optimal angiographic projection angles during TAVI; predictions were compared to those from MDCT. Methods 1, 3, 4, and 5 yielded sufficient root enhancement with mild or moderate artifacts and aortic annulus, sinotubular junction, and mid-ascending aorta diameters similar to MDCT. Ungated C-arm CT (Methods 1, 3) required less contrast than ECG-gated C-arm CT (Methods 4, 5). Method 3 was optimal yielding images with high attenuation, few artifacts (2.0), and root measurements similar to MDCT using minimal contrast (36 mL). Predicted angiographic projections from Method 3 were similar to MDCT. Ungated C-arm CT during rapid pacing with aortic root injection required minimal contrast, yielded high attenuation and few artifacts, and aortic root measurements and predicted angiographic planes similar to those from MDCT.

  4. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  5. The application of positron emission tomography (PET/CT) in diagnosis of breast cancer. Part II. Diagnosis after treatment initiation, future perspectives

    PubMed Central

    Jodłowska, Elżbieta; Czarnywojtek, Agata; Rewers, Amanda; Jarząbek, Grażyna; Kędzia, Witold; Ruchała, Marek

    2016-01-01

    Similarly to the applications described in the first part of this publication, positron emission tomography with computed tomography (PET/CT) is also gaining importance in monitoring a tumour's response to therapy and diagnosing breast cancer recurrences. This is additionally caused by the fact that many new techniques (dual-time point imaging, positron emission tomography with magnetic resonance PET/MR, PET/CT mammography) and radiotracers (16α-18F-fluoro-17β-estradiol, 18F-fluorothymidine) are under investigation. The highest sensitivity and specificity when monitoring response to treatment is achieved when the PET/CT scan is made after one or two chemotherapy courses. Response to anti-hormonal treatment can also be monitored, also when new radiotracers, such as FES, are used. When monitoring breast cancer recurrences during follow-up, PET/CT has higher sensitivity than conventional imaging modalities, making it possible to monitor the whole body simultaneously. New techniques and radiotracers enhance the sensitivity and specificity of PET and this is why, despite relatively high costs, it might become more widespread in monitoring response to treatment and breast cancer recurrences. PMID:27647983

  6. Cardiac MOLLI T1 mapping at 3.0 T: comparison of patient-adaptive dual-source RF and conventional RF transmission.

    PubMed

    Rasper, Michael; Nadjiri, Jonathan; Sträter, Alexandra S; Settles, Marcus; Laugwitz, Karl-Ludwig; Rummeny, Ernst J; Huber, Armin M

    2017-01-30

    To prospectively compare image quality and myocardial T1 relaxation times of modified Look-Locker inversion recovery (MOLLI) imaging at 3.0 T (T) acquired with patient-adaptive dual-source (DS) and conventional single-source (SS) radiofrequency (RF) transmission. Pre- and post-contrast MOLLI T1 mapping using SS and DS was acquired in 27 patients. Patient wise and segment wise analysis of T1 times was performed. The correlation of DS MOLLI measurements with a reference spin echo sequence was analysed in phantom experiments. DS MOLLI imaging reduced T1 standard deviation in 14 out of 16 myocardial segments (87.5%). Significant reduction of T1 variance could be obtained in 7 segments (43.8%). DS significantly reduced myocardial T1 variance in 16 out of 25 patients (64.0%). With conventional RF transmission, dielectric shading artefacts occurred in six patients causing diagnostic uncertainty. No according artefacts were found on DS images. DS image findings were in accordance with conventional T1 mapping and late gadolinium enhancement (LGE) imaging. Phantom experiments demonstrated good correlation of myocardial T1 time between DS MOLLI and spin echo imaging. Dual-source RF transmission enhances myocardial T1 homogeneity in MOLLI imaging at 3.0 T. The reduction of signal inhomogeneities and artefacts due to dielectric shading is likely to enhance diagnostic confidence.

  7. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    PubMed

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  8. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT

    PubMed Central

    Badea, Cristian T.; Hedlund, Laurence W.; Johnson, G. Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging. PMID:27006920

  9. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...

  10. Whole-organ perfusion of the pancreas using dynamic volume CT in patients with primary pancreas carcinoma: acquisition technique, post-processing and initial results.

    PubMed

    Kandel, Sonja; Kloeters, Christian; Meyer, Henning; Hein, Patrick; Hilbig, Andreas; Rogalla, Patrik

    2009-11-01

    The purpose of this study was to evaluate a whole-organ perfusion protocol of the pancreas in patients with primary pancreas carcinoma and to analyse perfusion differences between normal and diseased pancreatic tissue. Thirty patients with primary pancreatic malignancy were imaged on a 320-slice CT unit. Twenty-nine cancers were histologically proven. CT data acquisition was started manually after contrast-material injection (8 ml/s, 350 mg iodine/ml) and dynamic density measurements in the right ventricle. After image registration, perfusion was determined with the gradient-relationship technique and volume regions-of-interest were defined for perfusion measurements. Contrast time-density curves and perfusion maps were generated. Statistical analysis was performed using the Kolmogorov-Smirnov test for analysis of normal distribution and Kruskal-Wallis test (nonparametric ANOVA) with Bonferroni correction for multiple stacked comparisons. In all 30 patients the entire pancreas was imaged, and registration could be completed in all cases. Perfusion of pancreatic carcinomas was significantly lower than of normal pancreatic tissue (P < 0.001) and could be visualized on colored perfusion maps. The 320-slice CT allows complete dynamic visualization of the pancreas and enables calculation of whole-organ perfusion maps. Perfusion imaging carries the potential to improve detection of pancreatic cancers due to the perfusion differences.

  11. The impact of x-ray tube stabilization on localized radiation dose in axial CT scans: initial results in CTDI phantoms

    NASA Astrophysics Data System (ADS)

    Mathieu, Kelsey B.; McNitt-Gray, Michael F.; Cody, Dianna D.

    2016-10-01

    Rise, fall, and stabilization of the x-ray tube output occur immediately before and after data acquisition on some computed tomography (CT) scanners and are believed to contribute additional dose to anatomy facing the x-ray tube when it powers on or off. In this study, we characterized the dose penalty caused by additional radiation exposure during the rise, stabilization, and/or fall time (referred to as overscanning). A 32 cm CT dose-index (CTDI) phantom was scanned on three CT scanners: GE Healthcare LightSpeed VCT, GE Healthcare Discovery CT750 HD, and Siemens Somatom Definition Flash. Radiation exposure was detected for various x-ray tube start acquisition angles using a 10 cm pencil ionization chamber placed in the peripheral chamber hole at the phantom’s 12 o’clock position. Scan rotation time, ionization chamber location, phantom diameter, and phantom centering were varied to quantify their effects on the dose penalty caused by overscanning. For 1 s single, axial rotations, CTDI at the 12 o’clock chamber position (CTDI100, 12:00) was 6.1%, 4.0%, and 4.4% higher when the start angle of the x-ray tube was aligned at the top of the gantry (12 o’clock) versus when the start angle was aligned at 9 o’clock for the Siemens Flash, GE CT750 HD, and GE VCT scanner, respectively. For the scanners’ fastest rotation times (0.285 s for the Siemens and 0.4 s for both GE scanners), the dose penalties increased to 22.3%, 10.7%, and 10.5%, respectively, suggesting a trade-off between rotation speed and the dose penalty from overscanning. In general, overscanning was shown to have a greater radiation dose impact for larger diameter phantoms, shorter rotation times, and to peripheral phantom locations. Future research is necessary to determine an appropriate method for incorporating the localized dose penalty from overscanning into standard dose metrics, as well as to assess the impact on organ dose.

  12. Initial evaluation of virtual un-enhanced imaging derived from fast kVp-switching dual energy contrast enhanced CT for the abdomen

    NASA Astrophysics Data System (ADS)

    Joshi, M.; Mendonca, P.; Okerlund, D.; Lamb, P.; Kulkarni, N.; Pinho, D.; Sahani, D.; Bhotika, R.

    2011-03-01

    The feasibility and utility of creating virtual un-enhanced images from contrast enhanced data acquired using a fast switching dual energy CT acquisition, is explored. Utilizing projection based material decomposition data, monochromatic images are generated and a Multi-material decomposition technique is applied. Quantitative and qualitative evaluation is performed to assess the equivalence of Virtual Un-Enhanced (VUE) and True Un-enhanced (TUE) for multiple tissue types and different organs in the abdomen. Ten patient cases were analyzed where a TUE and a subsequent Contrast Enhanced (CE) acquisition were obtained using fast kVp-switching dual energy CT utilizing Gemstone Spectral Imaging. Quantitative measurements were made by placing multiple Regions of Interest on the different tissues and organs in both the TUE and the VUE images. The absolute Hounsfield Unit (HU) differences in the mean values between TUE & VUE were calculated as well as the differences of the standard deviations. Qualitative analysis was done by two radiologists for overall image quality, presence of residual contrast, appearance of pathology, appearance and contrast of normal tissues and organs in comparison to the TUE. There is a very strong correlation between the TUE and VUE images.

  13. A model for quantitative correction of coronary calcium scores on multidetector, dual source, and electron beam computed tomography for influences of linear motion, calcification density, and temporal resolution: A cardiac phantom study

    SciTech Connect

    Greuter, M. J. W.; Groen, J. M.; Nicolai, L. J.; Dijkstra, H.; Oudkerk, M.

    2009-11-15

    Purpose: The objective of this study is to quantify the influence of linear motion, calcification density, and temporal resolution on coronary calcium determination using multidetector computed tomography (MDCT), dual source CT (DSCT), and electron beam tomography (EBT) and to find a quantitative method which corrects for the influences of these parameters using a linear moving cardiac phantom. Methods: On a robotic arm with artificial arteries with four calcifications of increasing density, a linear movement was applied between 0 and 120 mm/s (step of 10 mm/s). The phantom was scanned five times on 64-slice MDCT, DSCT, and EBT using a standard acquisition protocol. The average Agatston, volume, and mass scores were determined for each velocity, calcification, and scanner. Susceptibility to motion was quantified using a cardiac motion susceptibility (CMS) index. Resemblance to EBT and physical volume and mass was quantified using a {Delta} index. Results: Increasing motion artifacts were observed at increasing velocities on all scanners, with increasing severity from EBT to DSCT to 64-slice MDCT. The calcium score showed a linear dependency on motion from which a correction factor could be derived. This correction factor showed a linear dependency on the mean calcification density with a good fit for all three scoring methods and all three scanners (0.73{<=}R{sup 2}{<=}0.95). The slope and offset of this correction factor showed a linear dependency on temporal resolution with a good fit for all three scoring methods and all three scanners (0.83{<=}R{sup 2}{<=}0.98). CMS was minimal for EBT and increasing values were observed for DSCT and highest values for 64-slice MDCT. CMS was minimal for mass score and increasing values were observed for volume score and highest values for Agatston score. For all densities and scoring methods DSCT showed on average the closest resemblance to EBT calcium scores. When using the correction factor, CMS index decreased on average by

  14. Spectra of clinical CT scanners using a portable Compton spectrometer

    SciTech Connect

    Duisterwinkel, H. A.; Abbema, J. K. van; Kawachimaru, R.; Paganini, L.; Graaf, E. R. van der; Brandenburg, S.; Goethem, M. J. van

    2015-04-15

    Purpose: Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. Methods: In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. Results: The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. Conclusions: A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  15. Initial Application of EPIC – µCT to Assess Mouse Articular Cartilage Morphology and Composition: Effects of Aging and Treadmill Running

    PubMed Central

    Kotwal, Naomi; Li, Jun; Sandy, John; Plaas, Anna; Sumner, D. Rick

    2013-01-01

    Objective The current study was undertaken to adapt Equilibrium Partitioning of an Ionic Contrast agent via microcomputed tomography (EPIC-µCT) to mouse articular cartilage, which presents a particular challenge because it is thin (~30 µm) and has a small volume (0.2 – 0.4 mm3), meaning there is only approximately 2 – 4 µg of chondroitin sulfate glycosaminoglycan per joint surface cartilage. Design Using 6 µm isotropic voxels and the negatively charged contrast agent ioxaglate (Hexabrix), we optimized contrast agent concentration and incubation time, assessed two methods of tissue preservation (formalin fixation and freezing), examined the effect of ex vivo chondroitinase ABC digestion on x-ray attenuation, assessed accuracy and precision, compared young and skeletally mature cartilage, and determined patterns of degradation in a murine cartilage damage model induced by treadmill running. Results The optimal concentration of the contrast agent was 15%, formalin fixation was preferred to freezing, and 2 hours of incubation was needed to reach contrast agent equilibrium with formalin fixed specimens. There was good agreement with histologic measurements of cartilage thickness, although µCT overestimated thickness by 13% (~5 µm) in 6 week old mice. Enzymatic release of 0.8 µg of choindrotin sulfate (about 40% of the total) increased x-ray attenuation by ~17%. There was a 15% increase in x-ray attenuation in 14 week old mice compared to 6 week old mice (p < 0.001) and this corresponded to ~65% decrease in chondroitin sulfate content at 14 weeks. The older mice also had reductions of 33% in cartilage thickness and 44% in cartilage volume (p < 0.001). Treadmill running induced a 16% decrease in cartilage thickness (p = 0.012) and a 12% increase in x-ray attenuation (p = 0.006) in 14 week old mice. Conclusion This technique enables non-destructive visualization and quantification of murine femoral articular cartilage in three dimensions with anatomic

  16. CT Imaging of Coronary Stents: Past, Present, and Future

    PubMed Central

    Mahnken, Andreas H.

    2012-01-01

    Coronary stenting became a mainstay in coronary revascularization therapy. Despite tremendous advances in therapy, in-stent restenosis (ISR) remains a key problem after coronary stenting. Coronary CT angiography evolved as a valuable tool in the diagnostic workup of patients after coronary revascularization therapy. It has a negative predictive value in the range of 98% for ruling out significant ISR. As CT imaging of coronary stents depends on patient and stent characteristics, patient selection is crucial for success. Ideal candidates have stents with a diameter of 3 mm and more. Nevertheless, even with most recent CT scanners, about 8% of stents are not accessible mostly due to blooming or motion artifacts. While the diagnosis of ISR is currently based on the visual assessment of the stent lumen, functional information on the hemodynamic significance of in-stent stenosis became available with the most recent generation of dual source CT scanners. This paper provides a comprehensive overview on previous developments, current techniques, and clinical evidence for cardiac CT in patients with coronary artery stents. PMID:22997590

  17. Relative contribution of four nucleases, CtIP, Dna2, Exo1 and Mre11, to the initial step of DNA double-strand break repair by homologous recombination in both the chicken DT40 and human TK6 cell lines.

    PubMed

    Hoa, Nguyen Ngoc; Akagawa, Remi; Yamasaki, Tomomi; Hirota, Kouji; Sasa, Kentaro; Natsume, Toyoaki; Kobayashi, Junya; Sakuma, Tetsushi; Yamamoto, Takashi; Komatsu, Kenshi; Kanemaki, Masato T; Pommier, Yves; Takeda, Shunichi; Sasanuma, Hiroyuki

    2015-12-01

    Homologous recombination (HR) is initiated by double-strand break (DSB) resection, during which DSBs are processed by nucleases to generate 3' single-strand DNA. DSB resection is initiated by CtIP and Mre11 followed by long-range resection by Dna2 and Exo1 in Saccharomyces cerevisiae. To analyze the relative contribution of four nucleases, CtIP, Mre11, Dna2 and Exo1, to DSB resection, we disrupted genes encoding these nucleases in chicken DT40 cells. CtIP and Dna2 are required for DSB resection, whereas Exo1 is dispensable even in the absence of Dna2, which observation agrees with no developmental defect in Exo1-deficient mice. Despite the critical role of Mre11 in DSB resection in S. cerevisiae, loss of Mre11 only modestly impairs DSB resection in DT40 cells. To further test the role of CtIP and Mre11 in other species, we conditionally disrupted CtIP and MRE11 genes in the human TK6 B cell line. As with DT40 cells, CtIP contributes to DSB resection considerably more significantly than Mre11 in TK6 cells. Considering the critical role of Mre11 in HR, this study suggests that Mre11 is involved in a mechanism other than DSB resection. In summary, CtIP and Dna2 are sufficient for DSB resection to ensure efficient DSB repair by HR.

  18. Rotating and semi-stationary multi-beamline architecture study for cardiac CT imaging

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Fitzgerald, Paul; Gao, Hewei; Jin, Yannan; Wang, Ge; De Man, Bruno

    2014-03-01

    Over the past decade, there has been abundant research on future cardiac CT architectures and corresponding reconstruction algorithms. Multiple cardiac CT concepts have been published, including third-generation single-source CT with wide-cone coverage, dual-source CT, and electron-beam CT, etc. In this paper, we apply a Radon space analysis method to two multi-beamline architectures: triple-source CT and semi-stationary ring-source CT. In our studies, we have considered more than thirty cardiac CT architectures and triple-source CT was identified as a promising solution, offering approximately a three-fold advantage in temporal resolution, which can significantly reduce motion artifacts due to the moving heart and lungs. In this work, we describe a triple-source CT architecture with all three beamlines (i.e. source-detector pairs) limited to the cardiac field of view in order to eliminate the radiation dose outside the cardiac region. We also demonstrate the capability of performing full field of view imaging when desired, by shifting the detectors. Ring-source dual-rotating-detector CT is another architecture of interest, which offers the opportunity to provide high temporal resolution using a full-ring stationary source. With this semi-stationary architecture, we found that the azimuthal blur effect can be greater than in a fully-rotating CT system. We therefore propose novel scanning modes to reduce the azimuthal blur in ring-source rotating detector CT. Radon space analysis method proves to be a useful method in CT system architecture study.

  19. Bicomponent Fibrous Scaffolds Made through Dual-source Dual-power Electrospinning: Dual Delivery of rhBMP-2 and Ca-P Nanoparticles and Enhanced Biological Performances.

    PubMed

    Wang, Chong; Weijia Lu, William; Wang, Min

    2017-04-05

    Electrospun scaffolds incorporated with both calcium phosphates (Ca-P) and bone morphogenetic protein-2 (BMP-2) have been used for bone tissue regeneration. However, in most cases BMP-2 and Ca-P were simply mixed and loaded in a monolithic structure, risking low BMP-2 loading level, reduced BMP-2 biological activity, uncontrolled BMP-2 release and inhomogeneous Ca-P distribution. In this investigation, novel bicomponent scaffolds having evenly distributed rhBMP-2-containing fibers and Ca-P nanoparticle-containing fibers were made using an established dual-source dual-power electrospinning technique with the assistance of emulsion electrospinning and blend electrospinning. The release behaviour of rhBMP-2 and Ca(2+) ions could be separately tuned and the released rhBMP-2 retained a 68% level for biological activity. MC3T3-E1 cells showed high viability and normal morphology on scaffolds. Compared to monocomponent scaffolds, enhanced cell proliferation, alkaline phosphatase activity, cell mineralization and gene expression of osteogenic markers were achieved for bicomponent scaffolds due to the synergistic effect of rhBMP-2 and Ca-P nanoparticles. Bicomponent scaffolds with a double mass elicited further enhanced cell adhesion, spreading, proliferation and osteogenic differentiation. This article is protected by copyright. All rights reserved.

  20. Bilateral breast MRI by use of dual-source parallel radiofrequency excitation and image-based shimming at 3 Tesla: improvement in homogeneity on fat-suppression imaging.

    PubMed

    Ishizaka, Kinya; Kato, Fumi; Terae, Satoshi; Mito, Suzuko; Oyama-Manabe, Noriko; Kamishima, Tamotsu; Nakanishi, Mitsuhiro; Sugimori, Hiroyuki; Hamaguchi, Hiroyuki; Shirato, Hiroki

    2015-01-01

    In this study, we aimed to compare fat-suppression homogeneity on breast MR imaging by using dual-source parallel radiofrequency excitation and image-based shimming (DS-IBS) with single-source radiofrequency excitation with volume shim (SS-Vol) at 3 Tesla. Twenty patients were included. Axial three-dimensional T1-weighted turbo-field-echo breast images with DS-IBS and SS-Vol were obtained. Fat suppression was scored with four grade points. The contrast of the pectoral muscle and the fat in each breast area was obtained in the head medial, head lateral, foot medial, and foot lateral areas. The axillary space was calculated and compared between DS-IBS and SS-Vol. The average DS-IBS score was significantly higher than that of SS-Vol. The mean contrasts of fat in the foot lateral areas and axillary spaces on DS-IBS images were significantly higher than on SS-Vol images.

  1. Comparison of Image Quality, Diagnostic Accuracy and Radiation Dose Between Flash Model and Retrospective ECG-Triggered Protocols in Dual Source Computed Tomography (DSCT) in Congenital Heart Diseases

    PubMed Central

    Wang, Rong; Xu, Xiang-Jiu; Huang, Gang; Zhou, Xing; Zhang, Wen-Wen; Ma, Ya-Qiong; Zuo, Xiao-na

    2017-01-01

    Summary Background Dual source computed tomography (DSCT) plays an important role in the diagnosis of congenital heart diseases (CHD). However, the issue of radiation-related side effects constitutes a wide public concern. The aim of the study was to explore the differences in diagnostic accuracy, radiation dose and image quality between a prospectively ECG – triggered high – pitch spiral acquisition (flash model) and a retrospective ECG-gated protocol of DSCT used for the detection of CHD. Material/Methods The study included 58 patients with CHD who underwent a DSCT examination, including two groups of 29 patients in each protocol. Then, both subjective and objective image quality, diagnostic accuracy and radiation dose were compared between the two protocols. Results The image quality and the total as well as partial diagnostic accuracy did not differ significantly between the protocols. The radiation dose in the flash model was obviously lower than that in the retrospective model (P<0.05). Conclusions Compared to the retrospective protocol, the flash model can significantly reduce the dose of radiation, while maintaining both diagnostic accuracy and image quality. PMID:28344686

  2. CT Colonography (Virtual Colonoscopy)

    MedlinePlus

    ... Z CT Colonography Computed tomography (CT) colonography or virtual colonoscopy uses special x-ray equipment to examine ... and blood vessels. CT colonography, also known as virtual colonoscopy, uses low dose radiation CT scanning to ...

  3. Investigation of temporal resolution required for CT coronary angiography

    NASA Astrophysics Data System (ADS)

    Ohashi, Kazuya; Ichikawa, Katsuhiro; Kawai, Tatsuya; Shibamoto, Yuta

    2012-03-01

    Sub-second multi-detector computed tomography systems (MDCTs) offer great potentials for improving cardiac imaging. However, since the temporal resolution of such CT systems is not sufficient, blurring and artifacts produced by fast cardiac motion are still problematic. The purposes of this study were to investigate the accurate method for measurement of temporal resolution (TR) of the cardiac CT and required TR for obtaining better CT coronary angiography (CTCA). We employed a dual source CT system (Somatom Definition, Siemens), which has various temporal resolution modes (83, 125, and 165 msec) for electro-cardiogram (ECG)-gated scanning. The temporal sensitivity profiles (TSPs) were measured by a new method using temporal impulse generated by metal ball (impulse method). The CTCA images of 200 patients with heart rates (HRs) ranging from 36 to 117 beat per minute (bpm) were visually evaluated using a 4-point scale. The 165-msec TR mode, which is mostly available on recent MDCTs, showed a sufficient image quality only at low HR (<= 60 bpm) for all 3 arteries. The image quality of 125-msec TR mode was acceptable at low to intermediate HRs (< 80 bpm) for LADs and LCXs, and insufficient for the RCAs in cases with HR more than 71 bpm. The 83-msec TR mode demonstrated excellent image quality except for cases with very quick motion of the RCAs at a high HR (>80 bpm).

  4. Measurement of the ascending aorta diameter in patients with severe bicuspid and tricuspid aortic valve stenosis using dual-source computed tomography coronary angiography.

    PubMed

    Son, Jee Young; Ko, Sung Min; Choi, Jin Woo; Song, Meong Gun; Hwang, Hweung Kon; Lee, Sook Jin; Kang, Joon-Won

    2011-12-01

    We aimed to evaluate the diagnostic performance of dual-source computed tomography coronary angiography (DSCT-CA) in the measurement of the ascending aorta (AA) diameter and compare the AA diameter in patients with severe bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV) stenosis. Eighty-eight consecutive patients (50 men, mean age 60.3 ± 13 year) with severe aortic stenosis (AS) underwent DSCT-CA before aortic valve surgery. Seventy-four of the 88 patients underwent cardiovascular magnetic resonance (CMR). The internal diameter of AA was measured from early-systole with DSCT-CA and CMR by 2 radiologists independently at 4 levels (aortic annulus, sinuses of Valsalva, sinotubular junction, and tubular portion at the right pulmonary artery). The patients were divided in to 2 groups (BAV [n = 53]; TAV [n = 35]) according to operative findings. Patients with BAV were significantly younger than those with TAV (P = 0.0035). Inter-observer agreement of AA diameters at 4 levels with DSCT-CA and CMR was excellent (intraclass correlation coefficient = 0.89-0.97). Also, the DSCT-CA and CMR measurements of the AA diameter strongly correlated (r = 0.871-0.976). Mean diameter of the AA by DSCT-CA was significantly larger in patients with BAV (34.4 ± 8.2 mm) as compared to those with TAV (30.6 ± 5.5 mm). The diameters at the sinuses of Valsalva, sinotubular junction, and tubular portion were significantly larger in BAV than in TAV. Twenty-two of 53 (41.5%) patients with BAV and 2 of 35 (5.7%) patients with TAV had AA dilatation > 45 mm. DSCT-CA allows accurate assessment of the AA diameters in patients with severe AS. Patients with severe BAV stenosis had larger AA diameters and higher prevalence of AA dilatation > 45 mm as compared to those with severe TAV stenosis.

  5. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications.

    PubMed

    Karçaaltıncaba, Muşturay; Aktaş, Aykut

    2011-09-01

    Although dual-energy CT (DECT) was first conceived in the 1970s, it was not widely used for CT indications. Recently, the simultaneous acquisition of volumetric dual-energy data has been introduced using multidetector CT (MDCT) with two X-ray tubes and rapid kVp switching (gemstone spectral imaging). Two major advantages of DECT are material decomposition by acquiring two image series with different kVp and the elimination of misregistration artifacts. Hounsfield unit measurements by DECT are not absolute and can change depending on the kVp used for an acquisition. Typically, a combination of 80/140 kVp is used for DECT, but for some applications, 100/140 kVp is preferred. In this study, we summarized the clinical applications of DECT and included images that were acquired using the dual-source CT and rapid kVp switching. In general, unenhanced images can be avoided by using DECT for body and neurological applications; iodine can be removed from the image, and a virtual, non-contrast (water) image can be obtained. Neuroradiological applications allow for the removal of bone and calcium from the carotid and brain CT angiography. Thorax applications include perfusion imaging in patients with pulmonary thromboemboli and other chest diseases, xenon ventilation-perfusion imaging and solitary nodule characterization. Cardiac applications include dual-energy cardiac perfusion, viability and cardiac iron detection. The removal of calcific plaques from arteries, bone removal and aortic stent graft evaluation may be achieved in the vascular system. Abdominal applications include the detection and characterization of liver and pancreas masses, the diagnosis of steatosis and iron overload, DECT colonoscopy and CT cholangiography. Urinary system applications are urinary calculi characterization (uric acid vs. non-uric acid), renal cyst characterization and mass characterization. Musculoskeletal applications permit the differentiation of gout from pseudogout and a reduction of

  6. Prognostication of traumatic brain injury outcomes in older trauma patients: A novel risk assessment tool based on initial cranial CT findings

    PubMed Central

    Stawicki, Stanislaw P.; Wojda, Thomas R.; Nuschke, John D.; Mubang, Ronnie N.; Cipolla, James; Hoff, William S.; Hoey, Brian A.; Thomas, Peter G.; Sweeney, Joan; Ackerman, Daniel; Hosey, Jonathan; Falowski, Steven

    2017-01-01

    Introduction: Advanced age has been traditionally associated with worse traumatic brain injury (TBI) outcomes. Although prompt neurosurgical intervention (NSI, craniotomy or craniectomy) may be life-saving in the older trauma patient, it does not guarantee survival and/or return to preinjury functional status. The aim of this study was to determine whether a simple score, based entirely on the initial cranial computed tomography (CCT) is predictive of the need for NSI and key outcome measures (e.g., morbidity and mortality) in the older (age 45+ years) TBI patient subset. We hypothesized that increasing number of categorical CCT findings is independently associated with NSI, morbidity, and mortality in older patients with severe TBI. Methods: After IRB approval, a retrospective study of patients 45 years and older was performed using our Regional Level 1 Trauma Center registry data between June 2003 and December 2013. Collected variables included patient demographics, Injury Severity Score (ISS), Abbreviated Injury Scale Head (AISh), brain injury characteristics on CCT, Glasgow Coma Scale (GCS), Intensive Care Unit (ICU) and hospital length of stay (LOS), all-cause morbidity and mortality, functional independence scores, as well as discharge disposition. A novel CCT scoring tool (CCTST, scored from 1 to 8+) was devised, with one point given for each of the following findings: subdural hematoma, epidural hematoma, subarachnoid blood, intraventricular blood, cerebral contusion/intraparenchymal blood, skull fracture, pneumocephalus, brain edema/herniation, midline shift, and external (skin/face) trauma. Descriptive statistics and univariate analyses were conducted with 30-day mortality, in-hospital morbidity, and need for NSI as primary end-points. Secondary end-points included the length of stay in the ICU (ICULOS), step-down unit (SDLOS), and the hospital (HLOS) as well as patient functional outcomes, and postdischarge destination. Factors associated with the need

  7. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... 2016:chap 133. Radiologyinfo.org. Computed tomography (CT) - abdomen and pelvis. Updated June 16, 2016. www.radiologyinfo. ...

  8. Computed Tomography (CT) - Spine

    MedlinePlus

    ... test used to help diagnose—or rule out—spinal column damage in injured patients. CT scanning is fast, ... CT is to detect—or to rule out—spinal column damage in patients who have been injured. CT ...

  9. Nonlinear registration of serial coronary CT angiography (CCTA) for assessment of changes in atherosclerotic plaque

    SciTech Connect

    Woo, Jonghye; Dey, Damini; Cheng, Victor Y.; Hong, Byung-Woo; Ramesh, Amit; Sundaramoorthi, Ganesh; Nakazato, Ryo; Berman, Daniel S.; Germano, Guido; Kuo, C.-C. Jay; Slomka, Piotr J.

    2010-02-15

    Purpose: Coronary CT angiography (CCTA) is a high-resolution three-dimensional imaging technique for the evaluation of coronary arteries in suspected or confirmed coronary artery disease (CAD). Coregistration of serial CCTA scans would allow precise superimposition of images obtained at two different points in time, which could aid in recognition of subtle changes and precise monitoring of coronary plaque progression or regression. To this end, the authors aimed at developing a fully automatic nonlinear volume coregistration for longitudinal CCTA scan pairs. Methods: The algorithm combines global displacement and local deformation using nonlinear volume coregistration with a volume-preserving constraint. Histogram matching of intensities between two serial scans is performed prior to nonlinear coregistration with dense nonparametric local deformation in which sum of squared differences is used as a similarity measure. The approximate segmentation of coronary arteries obtained from commercially available software provides initial anatomical landmarks for the coregistration algorithm that help localize and emphasize the structure of interest. To avoid possible bias caused by incorrect segmentation, the authors convolve the Gaussian kernel with the segmented binary coronary tree mask and define an extended weighted region of interest. A multiresolution approach is employed to represent coarse-to-fine details of both volumes and the energy function is optimized using a gradient descent method. The authors applied the algorithm in ten paired CCTA datasets (20 scans in total) obtained within 10.7{+-}5.7 months from each other on a dual source CT scanner to monitor progression of CAD. Results: Serial CCTA coregistration was successful in 9/10 cases as visually confirmed. The global displacement and local deformation of target registration error obtained from four anatomical landmarks were 2.22{+-}1.15 and 1.56{+-}0.74 mm, respectively, and the inverse consistency error of

  10. Dual-energy micro-CT imaging for differentiation of iodine- and gold-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Johnston, S. M.; Qi, Y.; Ghaghada, K.; Johnson, G. A.

    2011-03-01

    Spectral CT imaging is expected to play a major role in the diagnostic arena as it provides material decomposition on an elemental basis. One fascinating possibility is the ability to discriminate multiple contrast agents targeting different biological sites. We investigate the feasibility of dual energy micro-CT for discrimination of iodine (I) and gold (Au) contrast agents when simultaneously present in the body. Simulations and experiments were performed to measure the CT enhancement for I and Au over a range of voltages from 40-to-150 kVp using a dual source micro-CT system. The selected voltages for dual energy micro-CT imaging of Au and I were 40 kVp and 80 kVp. On a massconcentration basis, the relative average enhancement of Au to I was 2.75 at 40 kVp and 1.58 at 80 kVp. We have demonstrated the method in a preclinical model of colon cancer to differentiate vascular architecture and extravasation. The concentration maps of Au and I allow quantitative measure of the bio-distribution of both agents. In conclusion, dual energy micro-CT can be used to discriminate probes containing I and Au with immediate impact in pre-clinical research.

  11. SU-E-I-73: Clinical Evaluation of CT Image Reconstructed Using Interior Tomography

    SciTech Connect

    Zhang, J; Ge, G; Winkler, M; Cong, W; Wang, G

    2014-06-01

    Purpose: Radiation dose reduction has been a long standing challenge in CT imaging of obese patients. Recent advances in interior tomography (reconstruction of an interior region of interest (ROI) from line integrals associated with only paths through the ROI) promise to achieve significant radiation dose reduction without compromising image quality. This study is to investigate the application of this technique in CT imaging through evaluating imaging quality reconstructed from patient data. Methods: Projection data were directly obtained from patients who had CT examinations in a Dual Source CT scanner (DSCT). Two detectors in a DSCT acquired projection data simultaneously. One detector provided projection data for full field of view (FOV, 50 cm) while another detectors provided truncated projection data for a FOV of 26 cm. Full FOV CT images were reconstructed using both filtered back projection and iterative algorithm; while interior tomography algorithm was implemented to reconstruct ROI images. For comparison reason, FBP was also used to reconstruct ROI images. Reconstructed CT images were evaluated by radiologists and compared with images from CT scanner. Results: The results show that the reconstructed ROI image was in excellent agreement with the truth inside the ROI, obtained from images from CT scanner, and the detailed features in the ROI were quantitatively accurate. Radiologists evaluation shows that CT images reconstructed with interior tomography met diagnosis requirements. Radiation dose may be reduced up to 50% using interior tomography, depending on patient size. Conclusion: This study shows that interior tomography can be readily employed in CT imaging for radiation dose reduction. It may be especially useful in imaging obese patients, whose subcutaneous tissue is less clinically relevant but may significantly increase radiation dose.

  12. Radiation dose efficiency of dual-energy CT benchmarked against single-source, kilovoltage-optimized scans

    PubMed Central

    Pratap, Jit

    2016-01-01

    Objective: This study evaluated the radiation dose and image quality implications of dual-energy CT (DECT) use, compared with kilovoltage-optimized single-source/single-energy CT (SECT) on a dual-source Siemens Somatom® Definition Flash CT scanner (Siemens Healthcare, Forcheim, Germany). Methods: With equalized radiation dose (volumetric CT dose index), image noise (standard deviation of CT number) and signal-difference-to-noise ratio (SDNR) were measured and compared across three techniques: 100, 120 and 100/140 kVp (dual energy). Noise in a 30-cm-diameter water phantom and SDNR within unenhanced soft-tissue regions of a small adult (50 kg/165 cm) anthropomorphic phantom were utilized for the assessment. Results: Water phantom image noise decreased with DECT compared with the lower noise SECT setting of 120 kVp (p = 0.046). A decrease in SDNR within the anthropomorphic phantom was demonstrated at 120 kVp compared with the SECT kilovoltage-optimized setting of 100 kVp (p = 0.001). A further decrease in SDNR was observed for the DECT technique when compared with 120 kVp (p = 0.01). Conclusion: On the Siemens Somatom Definition Flash system (Siemens Healthcare), and for equalized radiation dose conditions, image quality expressed as SDNR of unenhanced soft tissue may be compromised for DECT when compared with kilovoltage-optimized SECT, particularly for smaller patients. Advances in knowledge: DECT on a dual-source CT scanner may require a radiation dose increase to maintain unenhanced soft-tissue contrast detectability, particularly for smaller patients. PMID:26559438

  13. Quantification of Urinary Stone Composition in Mixed Stones Using Dual-Energy CT: A Phantom Study

    PubMed Central

    Leng, Shuai; Huang, Alice; Montoya, Juan; Duan, Xinhui; Williams, James C.; McCollough, Cynthia H.

    2016-01-01

    Purpose To demonstrate the feasibility of using dual-energy computed tomography to accurately quantify uric acid and non-uric-acid components in urinary stones having mixed composition. Materials and Methods A total of 24 urinary stones were analyzed with microCT to serve as the reference standard for uric acid and non-uric-acid composition. These stones were placed in water phantoms to simulate body attenuation of slim to obese adults and scanned on a third-generation dual-source scanner using dual-energy modes adaptively selected based on phantom size. CT number ratio, which is distinct for different materials, was calculated for each pixel of the stones. Each pixel was then classified as uric acid and non-uric-acid by comparing the CT number ratio with preset thresholds ranging from 1.1 to 1.7. Minimal, maximal and root-mean-square errors were calculated by comparing composition to the reference standard and the threshold with the minimal root-mean-square-error was determined. A paired t-test was performed to compare the stone composition determined with dual-energy CT with the reference standard obtained with microCT. Results The optimal CT number ratio threshold ranged from 1.27 to 1.55, dependent on phantom size. The root-mean-square error ranged from 9.60% to 12.87% across all phantom sizes. Minimal and maximal absolute error ranged from 0.04% to 1.24% and from 22.05% to 35.46%, respectively. Dual-energy CT and the reference microCT did not differ significantly on uric acid and non-uric-acid composition (P from 0.20 to 0.96, paired t-test). Conclusion Accurate quantification of uric acid and non-uric-acid composition in mixed stones is possible using dual-energy CT. PMID:27224260

  14. Utility of Electrocardiography (ECG)-Gated Computed Tomography (CT) for Preoperative Evaluations of Thymic Epithelial Tumors

    PubMed Central

    Ozawa, Yoshiyuki; Hara, Masaki; Nakagawa, Motoo; Shibamoto, Yuta

    2016-01-01

    Summary Background Preoperative evaluation of invasion to the adjacent organs is important for the thymic epithelial tumors on CT. The purpose of our study was to evaluate the utility of electrocardiography (ECG)-gated CT for assessing thymic epithelial tumors with regard to the motion artifacts produced and the preoperative diagnostic accuracy of the technique. Material/Methods Forty thymic epithelial tumors (36 thymomas and 4 thymic carcinomas) were examined with ECG-gated contrast-enhanced CT using a dual source scanner. The scan delay after the contrast media injection was 30 s for the non-ECG-gated CT and 100 s for the ECG-gated CT. Two radiologists blindly evaluated both the non-ECG-gated and ECG-gated CT images for motion artifacts and determined whether the tumors had invaded adjacent structures (mediastinal fat, superior vena cava, brachiocephalic veins, aorta, pulmonary artery, pericardium, or lungs) on each image. Motion artifacts were evaluated using a 3-grade scale. Surgical and pathological findings were used as a reference standard for tumor invasion. Results Motion artifacts were significantly reduced for all structures by ECG gating (p=0.0089 for the lungs and p<0.0001 for the other structures). Non-ECG-gated CT and ECG-gated CT demonstrated 79% and 95% accuracy, respectively, during assessments of pericardial invasion (p=0.03). Conclusions ECG-gated CT reduced the severity of motion artifacts and might be useful for preoperative assessment whether thymic epithelial tumors have invaded adjacent structures. PMID:27920842

  15. Renal Cell Carcinoma with Paraneoplastic Manifestations: Imaging with CT and F-18 FDG PET/CT.

    PubMed

    Nguyen, Ba D; Roarke, Michael C

    2007-01-01

    We present a case of renal cell carcinoma with prominent inflammatory and paraneoplastic manifestations. The initial CT detection of renal malignancy and subsequent post-therapeutic F-18 FDG PET/CT diagnosis of occult osseous metastasis were based on the patient's anemia, thrombocytosis and abnormally increased levels of serum C-reactive protein.

  16. 4D micro-CT using fast prospective gating

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  17. 4D micro-CT using fast prospective gating.

    PubMed

    Guo, Xiaolian; Johnston, Samuel M; Qi, Yi; Johnson, G Allan; Badea, Cristian T

    2012-01-07

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml(-1) delivered via a tail vein catheter in a dose of 0.01 ml g(-1) body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 μm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  18. A material decomposition method for dual energy micro-CT

    NASA Astrophysics Data System (ADS)

    Johnston, S. M.; Johnson, G. A.; Badea, C. T.

    2009-02-01

    The attenuation of x-rays in matter is dependent on the energy of the x-rays and the atomic composition of the matter. Attenuation measurements at multiple x-ray energies can be used to improve the identification of materials. We present a method to estimate the fractional composition of three materials in an object from x-ray CT measurements at two different energies. The energies can be collected from measurements from a single source-detector system at two points in time, or from a dual source-detector system at one point in time. This method sets up a linear system of equations from the measurements and finds the solution through a geometric construction of the inverse matrix equation. This method enables the estimation of the blood fraction within a region of living tissue in which blood containing an iodinated contrast agent is mixed with two other materials. We verified this method using x-ray CT simulations implemented in MATLAB, investigated the parameters needed to optimize the estimation, and then applied the method to a mouse model of lung cancer. A direct application of this method is the estimation of blood fraction in lung tumors in preclinical studies. This work was performed at the Duke Center for In Vivo Microscopy, an NCRR/NCI National Resource (P41 RR005959/U24 CA092656), and also supported by NCI R21 CA124584.

  19. NETL CT Imaging Facility

    ScienceCinema

    None

    2016-07-12

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  20. Body CT (CAT Scan)

    MedlinePlus

    ... may increase the risk of an unusual adverse effect. Women should always inform their physician and the CT ... of data to create two-dimensional cross-sectional images of your body, which are then displayed on a monitor. CT ...

  1. Askin tumor: CT and FDG-PET/CT imaging findings and follow-up.

    PubMed

    Xia, Tingting; Guan, Yubao; Chen, Yongxin; Li, Jingxu

    2014-07-01

    The aim of the study was to describe the imaging findings of Askin tumors on computed tomography (CT) and fluorine 18 fluorodeoxyglucose-positron emission tomography (FDG-PET/CT).Seventeen cases of Askin tumors confirmed by histopathology were retrospectively analyzed in terms of CT (17 cases) and FDG-PET/CT data (6 cases).Fifteen of the tumors were located in the chest wall and the other 2 were in the anterior middle mediastinum. Of the 15 chest wall cases, 13 demonstrated irregular, heterogeneous soft tissue masses with cystic degeneration and necrosis, and 2 demonstrated homogeneous soft tissue masses on unenhanced CT scans. Two mediastinal tumors demonstrated the irregular, heterogeneous soft tissue masses. Calcifications were found in 2 tumors. The tumors demonstrated heterogeneously enhancement in 16 cases and homogeneous enhancement in 1 case on contrast-enhanced scans. FDG-PET/CT images revealed increased metabolic activity in all 6 cases undergone FDG-PET/CT scan, and the lesion SUVmax ranged from 4.0 to 18.6. At initial diagnosis, CT and FDG-PET/CT scans revealed rib destruction in 9 cases, pleural effusion in 9 cases, and lung metastasis in 1 case. At follow-up, 12 cases showed recurrence and/or metastases, 4 cases showed improvement or remained stable, and 1 was lost to follow-up.In summary, CT and FDG-PET/CT images of Askin tumors showed heterogeneous soft tissue masses in the chest wall and the mediastinum, accompanied by rib destruction, pleural effusion, and increased FDG uptake. CT and FDG-PET/CT imaging play important roles in the diagnosis and follow-up of patients with Askin tumors.

  2. ESTIMATION OF CARDIAC CT ANGIOGRAPHY RADIATION DOSE TOWARD THE ESTABLISHMENT OF NATIONAL DIAGNOSTIC REFERENCE LEVEL FOR CCTA IN IRAN.

    PubMed

    Hosseini Nasab, Seyed Mohammad Bagher; Shabestani-Monfared, Ali; Deevband, Mohammad Reza; Paydar, Reza; Nabahati, Mehrdad

    2016-08-29

    In recent years, with the introduction of 64-slice CT and dual-source CT technology, coronary CT angiography (CCTA) has emerged as a useful diagnostic imaging modality as a non-invasive assessment of coronary heart disease. CT produces a larger radiation dose than other imaging tests and cardiac CT involves higher radiation dose with the advances in the spatial and temporal resolution. The aims of this study are patient dose assessment and establishment of national diagnostic reference level for CCTA in Iran. A questionnaire was sent to CCTA centers. Data for patient and CT protocols were obtained. The volumetric CT dose index (CTDIvol), dose length product (DLP) and total DLP were considered in the 32 cm standard body phantom. Calculation of estimated effective dose (ED) was obtained by multiplying the DLP by a conversion factor [k = 0.014 mSv (mGy·cm)(-1)]. Mean value of CTDIvol and DLP for CCTA was 50 mGy and 825 mGy·cm. The third quartile (75th) of the distribution of mean CTDIvol (66.54 mGy) and DLP (1073 mGy·cm) values was expressed as the diagnostic reference level (DRL) for CCTA in Iran. The median of ED was 10.26 mSv and interquartile range of ED was 7.08-15.03 mSv. A large variety in CTDIvol and DLP among CT scanner and different sites due to variability in CT parameter is noted. It seems that training could help to reduce patient's dose.

  3. TU-F-18A-09: CT Number Stability Across Patient Sizes Using Virtual-Monoenergetic Dual-Energy CT

    SciTech Connect

    Michalak, G; Grimes, J; Fletcher, J; McCollough, C; Halaweish, A

    2014-06-15

    Purpose: Virtual-monoenergetic imaging uses dual-energy CT data to synthesize images corresponding to a single photon energy, thereby reducing beam-hardening artifacts. This work evaluated the ability of a commercial virtual-monoenergetic algorithm to achieve stable CT numbers across patient sizes. Methods: Test objects containing a range of iodine and calcium hydroxyapatite concentrations were placed inside 8 torso-shaped water phantoms, ranging in lateral width from 15 to 50 cm, and scanned on a dual-source CT system (Siemens Somatom Force). Single-energy scans were acquired from 70-150 kV in 10 kV increments; dual-energy scans were acquired using 4 energy pairs (low energy: 70, 80, 90, and 100 kV; high energy: 150 kV + 0.6 mm Sn). CTDIvol was matched for all single- and dual-energy scans for a given phantom size. All scans used 128×0.6 mm collimation and were reconstructed with 1-mm thickness at 0.8-mm increment and a medium smooth body kernel. Monoenergetic images were generated using commercial software (syngo Via Dual Energy, VA30). Iodine contrast was calculated as the difference in mean iodine and water CT numbers from respective regions-of-interest in 10 consecutive images. Results: CT numbers remained stable as phantom width varied from 15 to 50 cm for all dual-energy data sets (except for at 50 cm using 70/150Sn due to photon starvation effects). Relative to the 15 cm phantom, iodine contrast was within 5.2% of the 70 keV value for phantom sizes up to 45 cm. At 90/150Sn, photon starvation did not occur at 50 cm, and iodine contrast in the 50-cm phantom was within 1.4% of the 15-cm phantom. Conclusion: Monoenergetic imaging, as implemented in the evaluated commercial system, eliminated the variation in CT numbers due to patient size, and may provide more accurate data for quantitative tasks, including radiation therapy treatment planning. Siemens Healthcare.

  4. Compression of the Right Ventricular Outflow Tract due to Straight Back Syndrome Clarified by Low-dose Dual-source Computed Tomography

    PubMed Central

    Hasegawa, Kohei; Takaya, Tomofumi; Mori, Shumpei; Ito, Tatsuro; Fujiwara, Sei; Nishii, Tatsuya; K Kono, Atsushi; Shimoura, Hiroyuki; Tanaka, Hidekazu; Hirata, Ken-ichi

    2016-01-01

    A 23-year-old asymptomatic woman was referred to our hospital for further examination of a systolic ejection murmur with fixed splitting of the second heart sound auscultated at the third left sternal border. Initial echocardiography could not detect the cause. Subsequently performed low-dose computed tomography, however, ruled out the possibility of any congenital heart diseases, but revealed a markedly shortened anteroposterior diameter of the chest, which led us to a diagnosis of straight back syndrome. A vertically oriented “pancake” appearance of the heart, straight vertebral column, and compression of the right ventricular outflow tract were clearly demonstrated on the reconstructed images. PMID:27853069

  5. SU-E-I-99: Estimation of Effective Charge Distribution by Dual-Energy CT Reconstruction

    SciTech Connect

    Sakata, D; Kida, S; Nakano, M; Masutani, Y; Nakagawa, K; Haga, A

    2014-06-01

    Purpose: Computed Tomography (CT) is a method to produce slice image of specific volume from the scanned x-ray projection images. The contrast of CT image is correlated with the attenuation coefficients of the x-ray in the object. The attenuation coefficient is strongly dependent on the x-ray energy and the effective charge of the material. The purpose of this presentation is to show the effective charge distribution predicted by CT images reconstructed with kilovoltage(kV) and megavoltage(MV) x-ray energy. Methods: The attenuation coefficients of x-ray can be characterized by cross section of photoionization and Compton scattering for the specific xray energy. In particular, the photoionization cross section is strongly correlated with the effective charge of the object. Hence we can calculate effective charge by solving the coupled equation between the attenuation coefficient and the theoretical cross section. For this study, we use the megavoltage (MV) and kilovoltage (kV) x-rays of Elekta Synergy as the dual source x-ray, and CT image of the Phantom Laboratory CatPhan is reconstructed by the filtered back projection (FBP) and iterative algorithm for cone-beam CT (CBCT). Results: We report attenuation coefficients of each component of the CatPhan specified by each x-ray source. Also the effective charge distribution is evaluated by the MV and kV dual x-ray sources. The predicted effective charges are comparable with the nominal ones. Conclusion: We developed the MV and kV dual-source CBCT reconstruction to yield the effective charge distribution. For more accuracy, it is critical to remove an effect of the scattering photon in the CBCT reconstruction algorithm. The finding will be fine reference of the effective charge of tissue and lead to the more realistic absorbed-dose calculation. This work was partly supported by the JSPS Core-to-Core Program(No. 23003), and this work was partly supported by JSPS KAKENHI 24234567.

  6. Initial Staging of Hodgkin’s Disease

    PubMed Central

    Chiaravalloti, Agostino; Danieli, Roberta; Caracciolo, Cristiana Ragano; Travascio, Laura; Cantonetti, Maria; Gallamini, Andrea; Guazzaroni, Manlio; Orlacchio, Antonio; Simonetti, Giovanni; Schillaci, Orazio

    2014-01-01

    Abstract The objective of this study was to compare the diagnostic accuracy of positron emission tomography/low-dose computed tomography (PET/ldCT) versus the same technique implemented by contrast-enhanced computed tomography (ceCT) in staging Hodgkin’s disease (HD). Forty patients (18 men and 22 women, mean age 30 ± 9.6) with biopsy-proven HD underwent a PET/ldCT study for initial staging including an unenhanced low-dose computed tomography for attenuation correction with positron emission tomography acquisition and a ceCT, performed at the end of the PET/ldCT scan, in the same exam session. A detailed datasheet was generated for illness locations for separate imaging modality comparison and then merged in order to compare the separate imaging method results (PET/ldCT and ceCT) versus merged results positron emission tomography/contrast-enhanced computed tomography (PET/ceCT). The nodal and extranodal lesions detected by each technique were then compared with follow-up data that served as the reference standard. No significant differences were found at staging between PET/ldCT and PET/ceCT in our series. One hundred and eighty four stations of nodal involvement have been found with no differences in both modalities. Extranodal involvement was identified in 26 sites by PET/ldCT and in 28 by PET/ceCT. We did not find significant differences concerning the stage (Ann Arbor). Our study shows a good concordance and conjunction between PET/ldCT and ceCT in both nodal and extranodal sites in the initial staging of HD, suggesting that PET/ldCT could suffice in most of these patients. PMID:25121354

  7. CT angiography - chest

    MedlinePlus

    Computed tomography angiography - thorax; CTA - lungs; Pulmonary embolism - CTA chest; Thoracic aortic aneurysm - CTA chest; Venous thromboembolism - CTA lung; Blood clot - CTA lung; Embolus - CTA lung; CT ...

  8. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part II. Implementation on abdomen and thorax phantoms using cross sectional CT images and scanned projection radiograph images

    SciTech Connect

    Wang Jia; Christner, Jodie A.; Duan Xinhui; Leng Shuai; Yu Lifeng; McCollough, Cynthia H.

    2012-11-15

    Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w}, the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.

  9. Preduodenal portal vein in an adult--angiography and CT.

    PubMed

    Sasai, K; Sano, A; Nishizawa, S; Imanaka, K; Kuroda, Y

    1985-01-01

    We report on an adult case of preduodenal portal vein illustrated by computed tomography (CT) and angiography. These diagnostic modalities were initially performed to evaluate a coexisting pancreatic cancer. Contrast-enhanced CT demonstrated unusual positioning of the portal vein ventral to the duodenum. The superior mesenteric-portal vein, which was L-shaped and convexly caudad, strongly suggested this anomalous condition.

  10. Computed Tomography (CT) -- Sinuses

    MedlinePlus

    ... More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses uses special x-ray equipment to evaluate the paranasal sinus cavities – hollow, air-filled spaces within the bones of the face surrounding the ...

  11. Segmentation-free empirical beam hardening correction for CT

    SciTech Connect

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-15

    proposed algorithm to be segmentation-free (sf). This deformation leads to a nonlinear accentuation of higher CT-values. The original volume and the gray value deformed volume are monochromatically forward projected. The two projection sets are then monomially combined and reconstructed to generate sets of basis volumes which are used for correction. This is done by maximization of the image flatness due to adding additionally a weighted sum of these basis images. sfEBHC is evaluated on polychromatic simulations, phantom measurements, and patient data. The raw data sets were acquired by a dual source spiral CT scanner, a digital volume tomograph, and a dual source micro CT. Different phantom and patient data were used to illustrate the performance and wide range of usability of sfEBHC across different scanning scenarios. The artifact correction capabilities are compared to EBHC. Results: All investigated cases show equal or improved image quality compared to the standard EBHC approach. The artifact correction is capable of correcting beam hardening artifacts for different scan parameters and scan scenarios. Conclusions: sfEBHC generates beam hardening-reduced images and is furthermore capable of dealing with images which are affected by high noise and strong artifacts. The algorithm can be used to recover structures which are hardly visible inside the beam hardening-affected regions.

  12. Improvement in B1+ Homogeneity and Average Flip Angle Using Dual-Source Parallel RF Excitation for Cardiac MRI in Swine Hearts.

    PubMed

    Schär, Michael; Ding, Haiyan; Herzka, Daniel A

    2015-01-01

    Cardiac MRI may benefit from increased polarization at high magnetic field strength of 3 Tesla but is challenged by increased field inhomogeneity. Initial human studies have shown that the radiofrequency (RF) excitation field (B1+) used for signal excitation in the heart is both inhomogeneous and significantly lower than desired, potentially leading to image artifacts and biased quantitative measures. Recently, multi-channel transmit systems have been introduced allowing localized patient specific RF shimming based on acquired calibration B1+ maps. Some prior human studies have shown lower than desired mean flip angles in the hearts of large patients even after RF shimming. Here, 100 cardiac B1+ map pairs before and after RF shimming were acquired in 55 swine. The mean flip angle and the coefficient of variation (CV) of the flip angle in the heart were determined before and after RF shimming. Mean flip angle, CV, and RF shim values (power ratio and phase difference between the two transmit channels) were tested for correlation with cross sectional body area and the Right-Left/Anterior-Posterior ratio. RF shimming significantly increased the mean flip angle in swine heart from 74.4±6.7% (mean ± standard deviation) to 94.7±4.8% of the desired flip angle and significantly reduced CV from 0.11±0.03 to 0.07±0.02 (p<1e-10 for both). These results compare well with several previous human studies, except that the mean flip angle in the human heart only improved to 89% with RF shimming, possibly because the RF shimming routine does not consider safety constraints in very large patients. Additionally, mean flip angle decreased and CV increased with larger cross sectional body area, however, the RF shimming parameters did not correlate with cross sectional body area. RF shim power ratio correlated weakly with Right-Left/Anterior-Posterior ratio but phase difference did not, further substantiating the need for subject specific cardiac RF shimming.

  13. CT imaging of enhanced oil recovery experiments

    SciTech Connect

    Gall, B.L.

    1992-12-01

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a good'' surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  14. CT imaging of enhanced oil recovery experiments

    SciTech Connect

    Gall, B.L.

    1992-12-01

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a ``good`` surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  15. Effect of nitrogen flow rate on structural, morphological and optical properties of In-rich InxAl1-xN thin films grown by plasma-assisted dual source reactive evaporation

    NASA Astrophysics Data System (ADS)

    Alizadeh, M.; Ganesh, V.; Goh, B. T.; Dee, C. F.; Mohmad, A. R.; Rahman, S. A.

    2016-08-01

    In-rich InxAl1-xN thin films were deposited on quartz substrate at various nitrogen flow rates by plasma-assisted dual source reactive evaporation technique. The elemental composition, surface morphology, structural and optical properties of the films were investigated by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Raman spectroscopy, X-ray diffraction (XRD), UV-vis spectrophotometer and photoluminescence (PL) measurements. XPS results revealed that the indium composition (x) of the InxAl1-xN films increases from 0.90 to 0.97 as the nitrogen flow rate is increased from 40 to 100 sccm, respectively. FESEM images of the surface and cross-sectional microstructure of the InxAl1-xN films showed that by increasing the N2 flow rate, the grown particles are highly agglomerated. Raman and XRD results indicated that by increasing nitrogen flow rate the In-rich InxAl1-xN films tend to turn into amorphous state. It was found that band gap energy of the films are in the range of 0.90-1.17 eV which is desirable for the application of full spectra solar cells.

  16. Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study.

    PubMed

    Largo, Remo; Stolzmann, Paul; Fankhauser, Christian D; Poyet, Cédric; Wolfsgruber, Pirmin; Sulser, Tullio; Alkadhi, Hatem; Winklhofer, Sebastian

    2016-06-01

    This study investigates the capabilities of low tube voltage computed tomography (CT) and dual-energy CT (DECT) for predicting successful shock wave lithotripsy (SWL) of urinary stones in vitro. A total of 33 urinary calculi (six different chemical compositions; mean size 6 ± 3 mm) were scanned using a dual-source CT machine with single- (120 kVp) and dual-energy settings (80/150, 100/150 Sn kVp) resulting in six different datasets. The attenuation (Hounsfield Units) of calculi was measured on single-energy CT images and the dual-energy indices (DEIs) were calculated from DECT acquisitions. Calculi underwent SWL and the number of shock waves for successful disintegration was recorded. The prediction of required shock waves regarding stone attenuation/DEI was calculated using regression analysis (adjusted for stone size and composition) and the correlation between CT attenuation/DEI and the number of shock waves was assessed for all datasets. The median number of shock waves for successful stone disintegration was 72 (interquartile range 30-361). CT attenuation/DEI of stones was a significant, independent predictor (P < 0.01) for the number of required shock waves with the best prediction at 80 kVp (β estimate 0.576) (P < 0.05). Correlation coefficients between attenuation/DEI and the number of required shock waves ranged between ρ = 0.31 and 0.68 showing the best correlation at 80 kVp (P < 0.001). The attenuation of urinary stones at low tube voltage CT is the best predictor for successful stone disintegration, being independent of stone composition and size. DECT shows no added value for predicting the success of SWL.

  17. 4D micro-CT for cardiac and perfusion applications with view under sampling.

    PubMed

    Badea, Cristian T; Johnston, Samuel M; Qi, Yi; Johnson, G Allan

    2011-06-07

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  18. CT Angiography (CTA)

    MedlinePlus

    ... CT Angiography? Angiography is a minimally invasive medical test that helps physicians diagnose and treat medical conditions. Angiography uses one of three imaging technologies and, in most cases, a contrast material injection ...

  19. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... scanners can perform the exam without stopping.) A computer creates separate images of the body area, called ...

  20. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... scanners can perform the exam without stopping.) A computer creates separate images of the arm area, called ...

  1. Computed Tomography (CT) -- Sinuses

    MedlinePlus Videos and Cool Tools

    ... to urinate; however, this is actually a contrast effect and subsides quickly. When you enter the CT scanner room, special light lines may be seen projected onto your body, and are used to ensure that you are ...

  2. Computed Tomography (CT) -- Head

    MedlinePlus Videos and Cool Tools

    ... to urinate; however, this is actually a contrast effect and subsides quickly. When you enter the CT scanner room, special light lines may be seen projected onto your body, and are used to ensure that you are ...

  3. Thoracic spine CT scan

    MedlinePlus

    ... Narrowing of the spine ( spinal stenosis ) Scoliosis Tumor Risks Risks of CT scans include: Exposure to radiation ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  4. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... stopping.) A computer creates separate images of the spine area, called slices. These images can be stored, ...

  5. Body CT (CAT Scan)

    MedlinePlus

    ... lives. CT has been shown to be a cost-effective imaging tool for a wide range of ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  6. Cardiac CT Scan

    MedlinePlus

    ... CT Scan Related Topics Aneurysm Coronary Calcium Scan Coronary Heart Disease Heart Attack Pulmonary Embolism Send a link to ... imaging test can help doctors detect or evaluate coronary heart disease, calcium buildup in the coronary arteries, problems with ...

  7. CT of pituitary abscess

    SciTech Connect

    Fong, T.C.; Johns, R.D.; Long, M.; Myles, S.T.

    1985-06-01

    Pituitary abscess is a rare condition, with only 50 cases reported in the literature. Of those, 29 cases were well documented for analysis. Preoperative diagnosis of pituitary abscess is difficult. The computed tomographic (CT) appearance of pituitary abscess was first described in 1983; the abscess was depicted by axial images with coronal reconstruction. The authors recently encountered a case of pituitary abscess documented by direct coronal CT of the sella turcica.

  8. Multidetector CT of emergent biliary pathologic conditions.

    PubMed

    Patel, Neel B; Oto, Aytekin; Thomas, Stephen

    2013-01-01

    Various biliary pathologic conditions can lead to acute abdominal pain. Specific diagnosis is not always possible clinically because many biliary diseases have overlapping signs and symptoms. Imaging can help narrow the differential diagnosis and lead to a specific diagnosis. Although ultrasonography (US) is the most useful imaging modality for initial evaluation of the biliary system, multidetector computed tomography (CT) is helpful when US findings are equivocal or when biliary disease is suspected. Diagnostic accuracy can be increased by optimizing the CT protocol and using multiplanar reformations to localize biliary obstruction. CT can be used to diagnose and stage acute cholecystitis, including complications such as emphysematous, gangrenous, and hemorrhagic cholecystitis; gallbladder perforation; gallstone pancreatitis; gallstone ileus; and Mirizzi syndrome. CT also can be used to evaluate acute biliary diseases such as biliary stone disease, benign and malignant biliary obstruction, acute cholangitis, pyogenic hepatic abscess, hemobilia, and biliary necrosis and iatrogenic complications such as biliary leaks and malfunctioning biliary drains and stents. Treatment includes radiologic, endoscopic, or surgical intervention. Familiarity with CT imaging appearances of emergent biliary pathologic conditions is important for prompt diagnosis and appropriate clinical referral and treatment.

  9. Study of tuberculous meningitis by CT.

    PubMed

    Rovira, M; Romero, F; Torrent, O; Ibarra, B

    1980-04-01

    Computed tomography is a very valuable method by which the pathogenic evolution of tuberculous meningitis may be followed, thereby facilitating its differential diagnosis and controlling the efficiency of therapy. The initial miliary tuberculosis in the brain, very often unaccompanied by neurological symptoms, may offer very evident CT images. CT may also demonstrate the fibrogelatinous exudate which fills the basal cisterns and surrounds the arterial vessels which cross this region. Because of this, secondary arteritis is frequent and may be indirectly detected by CT in the form of foci of ischemic infarcts. Tuberculomas may be multiple, and are found equally in the cerebral and the cerebellar parenchyma. These tuberculomas present different images on CT, depending on the evolution of the disease at that moment. Hydrocephalus is a common complication of TM and is caused by a lack of reabsorption of the cerebrospinal fluid, or by an obstructive lesion in the ventricular drainage pathways due to a tuberculoma. This complication is usually easily identified by CT, which, moreover, permits the control of its evolution.

  10. Composite Synthesis Methodology Development: Nanocrvstalline SiC and Ti3SiC2 Alloys for Reactory Materials – Outline of initial synthesis capabilities M4CT-13PN0405034

    SciTech Connect

    Henager, Charles H.; Alvine, Kyle J.; Shin, Yongsoon; Jiang, Weilin; Nguyen, Ba Nghiep

    2013-03-29

    We have identified three initial preceramic polymers to help produce the SiC-based alloys for this project and have developed simple processing steps to make SiC-based alloy ceramics. The use of unfilled SMP-10 (Polycarbosilane) or SMP-877 (Methyl-Polycarbosilane) is not feasible due to the large mass losses that occur during pyrolysis. The pre-gelling steps below save time when those two polymers are filled with powders. The use of SL-MS30 provides us with a SiC-filled polymer that can be used to test out the CNT mats without further complications due to other powders.

  11. Phantom based evaluation of CT to CBCT image registration for proton therapy dose recalculation

    NASA Astrophysics Data System (ADS)

    Landry, Guillaume; Dedes, George; Zöllner, Christoph; Handrack, Josefine; Janssens, Guillaume; Orban de Xivry, Jonathan; Reiner, Michael; Paganelli, Chiara; Riboldi, Marco; Kamp, Florian; Söhn, Matthias; Wilkens, Jan J.; Baroni, Guido; Belka, Claus; Parodi, Katia

    2015-01-01

    The ability to perform dose recalculation on the anatomy of the day is important in the context of adaptive proton therapy. The objective of this study was to investigate the use of deformable image registration (DIR) and cone beam CT (CBCT) imaging to generate the daily stopping power distribution of the patient. We investigated the deformation of the planning CT scan (pCT) onto daily CBCT images to generate a virtual CT (vCT) using a deformable phantom designed for the head and neck (H & N) region. The phantom was imaged at a planning CT scanner in planning configuration, yielding a pCT and in deformed, treatment day configuration, yielding a reference CT (refCT). The treatment day configuration was additionally scanned at a CBCT scanner. A Morphons DIR algorithm was used to generate a vCT. The accuracy of the vCT was evaluated by comparison to the refCT in terms of corresponding features as identified by an adaptive scale invariant feature transform (aSIFT) algorithm. Additionally, the vCT CT numbers were compared to those of the refCT using both profiles and regions of interest and the volumes and overlap (DICE coefficients) of various phantom structures were compared. The water equivalent thickness (WET) of the vCT, refCT and pCT were also compared to evaluate proton range differences. Proton dose distributions from the same initial fluence were calculated on the refCT, vCT and pCT and compared in terms of proton range. The method was tested on a clinical dataset using a replanning CT scan acquired close in time to a CBCT scan as reference using the WET evaluation. Results from the aSIFT investigation suggest a deformation accuracy of 2-3 mm. The use of the Morphon algorithm did not distort CT number intensity in uniform regions and WET differences between vCT and refCT were of the order of 2% of the proton range. This result was confirmed by proton dose calculations. The patient results were consistent with phantom observations. In conclusion, our phantom

  12. CT of abdominal tuberculosis

    SciTech Connect

    Epstein, B.M.; Mann, J.H.

    1982-11-01

    Intraabdominal tuberculosis (TB) presents with a wide variety of clinical and radiologic features. Besides the reported computed tomographic (CT) finding of high-density ascites in tuberculous peritonitis, this report describes additional CT features highly suggestive of abdominal tuberculosis in eight cases: (1) irregular soft-tissue densities in the omental area; (2) low-density masses surrounded by thick solid rims; (3) a disorganized appearance of soft-tissue densities, fluid, and bowel loops forming a poorly defined mass; (4) low-density lymph nodes with a multilocular appearance after intravenous contrast administration; and (5) possibly high-density ascites. The differential diagnosis of these features include lymphoma, various forms of peritonitis, peritoneal carcinomatosis, and peritoneal mesothelioma. It is important that the CT features of intraabdominal tuberculosis be recognized in order that laparotomy be avoided and less invasive procedures (e.g., laparoscopy, biopsy, or a trial of antituberculous therapy) be instituted.

  13. CT findings in ulcerative, granulomatous, and indeterminate colitis.

    PubMed

    Gore, R M; Marn, C S; Kirby, D F; Vogelzang, R L; Neiman, H L

    1984-08-01

    Eight patients with ulcerative colitis, three with colitis indeterminate, and 15 patients with Crohn disease were studied by computed tomography (CT) to establish CT criteria for each disorder in hopes of providing a new diagnostic perspective useful in the radiographic evaluation of inflammatory colitis. The CT findings in ulcerative colitis included thickening of the colon wall (mean, 7.8 mm), which was characterized by inhomogeneous attenuation and a "target" appearance of the rectum, and proliferation of perirectal fat. Bowel wall thickening (mean, 13 mm) with homogeneous attenuation, fistula and abscess formation, and mesenteric abnormalities were observed in patients with Crohn colitis. Patients with colitis indeterminate showed colonic changes on CT observed in both disorders. Initial experience suggests that CT can differentiate patients with well established ulcerative and Crohn colitis.

  14. CT findings in ulcerative, granulomatous, and indeterminate colitis

    SciTech Connect

    Gore, R.M.; Marn, C.S.; Kirby, D.F.; Vogelzang, R.L.; Neiman, H.L.

    1984-08-01

    Eight patients with ulcerative colitis, three with colitis indeterminate, and 15 patients with Crohn disease were studied by computed tomography (CT) to establish CT criteria for each disorder in hopes of providing a new diagnostic perspective useful in the radiographic evaluation of inflammatory colitis. The CT findings in ulcerative colitis included thickening of the colon wall, which was characterized by inhomogeneous attenuation and a target appearance of the rectum, and proliferation of perirectal fat. Bowel wall thickening with homogeneous attenuation, fistula and abscess formation, and mesenteric abnormalities were observed in patients with Crohn colitis. Patients with colitis indeterminate showed colonic changes on CT observed in both disorders. Initial experience suggests that CT can differentiate patients with well established ulcerative and Crohn colitis.

  15. CT Perfusion of the Head

    MedlinePlus

    ... the machine as the actual CT scanning is performed. Depending on the type of CT scan, the machine may make several passes. The contrast material will then be injected through an intravenous line ( ...

  16. Technical aspects of CT angiography.

    PubMed

    Kuszyk, B S; Fishman, E K

    1998-10-01

    The basic tasks of spiral CT acquisition, image processing, and image display are the foundations underlying CT angiography regardless of the anatomic region of interest. Volume rendering is a rapidly emerging image processing technique for creating three-dimensional (3D) images from CT datasets, which has important advantages over other 3D rendering techniques including maximum intensity projection and surface rendering. This articles reviews the techniques that are commonly used in CT angiography and key considerations for optimization.

  17. Seventh-generation CT

    NASA Astrophysics Data System (ADS)

    Besson, G. M.

    2016-03-01

    A new dual-drum CT system architecture has been recently introduced with the potential to achieve significantly higher temporal resolution than is currently possible in medical imaging CT. The concept relies only on known technologies; in particular rotation speeds several times higher than what is possible today could be achieved leveraging typical x-ray tube designs and capabilities. However, the architecture lends itself to the development of a new arrangement of x-ray sources in a toroidal vacuum envelope containing a rotating cathode ring and a (optionally rotating) shared anode ring to potentially obtain increased individual beam power as well as increase total exposure per rotation. The new x-ray source sub-system design builds on previously described concepts and could make the provision of multiple conventional high-power cathodes in a CT system practical by distributing the anode target between the cathodes. In particular, relying on known magnetic-levitation technologies, it is in principle possible to more than double the relative speed of the electron-beam with respect to the target, thus potentially leading to significant individual beam power increases as compared to today's state-of-the-art. In one embodiment, the proposed design can be naturally leveraged by the dual-drum CT concept previously described to alleviate the problem of arranging a number of conventional rotating anode-stem x-ray tubes and power conditioners on the limited space of a CT gantry. In another embodiment, a system with three cathodes is suggested leveraging the architecture previously proposed by Franke.

  18. Assessment of lung tumor response by perfusion CT.

    PubMed

    Coche, E

    2013-01-01

    Perfusion CT permits evaluation of lung cancer angiogenesis and response to therapy by demonstrating alterations in lung tumor vascularity. It is advocated that perfusion CT performed shortly after initiating therapy may provide a better evaluation of physiological changes rather than the conventional size assessment obtained with RECIST. The radiation dose,the volume of contrast medium delivered to the patient and the reproducibility of blood flow parameters remain an issue for this type of investigation.

  19. Concurrent Diffuse Pyelonephritis and Prostatitis: Discordant Findings on Sequential FDG PET/CT and 67Ga SPECT/CT Imaging.

    PubMed

    Lucaj, Robert; Achong, Dwight M

    2017-01-01

    A 45-year-old man underwent FDG PET/CT for initial imaging evaluation of recurrent Escherichia coli urinary tract infections, which demonstrated no significant FDG uptake in either kidney and subtle FDG uptake in the right prostate lobe. Subsequent Ga SPECT/CT demonstrated abnormal intense gallium uptake throughout the right kidney and entire prostate gland, clearly discordant with PET/CT findings and consistent with unexpected concurrent pyelonephritis and prostatitis. Although FDG has effectively replaced Ga in everyday clinical practice, the current case serves as a reminder that there is still a role for Ga in the evaluation of genitourinary infections.

  20. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.

    PubMed

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-02-21

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  1. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-01-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  2. Temporal and spectral imaging with micro-CT

    SciTech Connect

    Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T.

    2012-08-15

    Purpose: Micro-CT is widely used for small animal imaging in preclinical studies of cardiopulmonary disease, but further development is needed to improve spatial resolution, temporal resolution, and material contrast. We present a technique for visualizing the changing distribution of iodine in the cardiac cycle with dual source micro-CT. Methods: The approach entails a retrospectively gated dual energy scan with optimized filters and voltages, and a series of computational operations to reconstruct the data. Projection interpolation and five-dimensional bilateral filtration (three spatial dimensions + time + energy) are used to reduce noise and artifacts associated with retrospective gating. We reconstruct separate volumes corresponding to different cardiac phases and apply a linear transformation to decompose these volumes into components representing concentrations of water and iodine. Since the resulting material images are still compromised by noise, we improve their quality in an iterative process that minimizes the discrepancy between the original acquired projections and the projections predicted by the reconstructed volumes. The values in the voxels of each of the reconstructed volumes represent the coefficients of linear combinations of basis functions over time and energy. We have implemented the reconstruction algorithm on a graphics processing unit (GPU) with CUDA. We tested the utility of the technique in simulations and applied the technique in an in vivo scan of a C57BL/6 mouse injected with blood pool contrast agent at a dose of 0.01 ml/g body weight. Postreconstruction, at each cardiac phase in the iodine images, we segmented the left ventricle and computed its volume. Using the maximum and minimum volumes in the left ventricle, we calculated the stroke volume, the ejection fraction, and the cardiac output. Results: Our proposed method produces five-dimensional volumetric images that distinguish different materials at different points in time, and

  3. Perforation of the mesenteric small bowel: etiologies and CT findings.

    PubMed

    Hines, John; Rosenblat, Juliana; Duncan, Dameon R; Friedman, Barak; Katz, Douglas S

    2013-04-01

    The purpose of this article is to illustrate and discuss the various etiologies of perforation of the mesenteric small bowel and associated findings on abdominal CT. Perforation of the mesenteric small bowel is an uncommon cause of an acute abdomen and can be due to various etiologies. In underdeveloped countries, infection is probably the most common cause, while in industrialized nations, perforation may be due to Crohn disease, diverticulitis, foreign body, trauma, tumor, mechanical obstruction, primary ischemic event, or iatrogenic causes. CT is usually the initial imaging examination in patients with an acute abdomen and is sensitive in diagnosing small bowel perforation. CT findings in the setting of small bowel perforation are often subtle, but when present, may help the radiologist determine a specific cause of perforation. The aims of this pictorial essay are to review the various causes of mesenteric small bowel perforation and to discuss and illustrate the CT findings that can help arrive at the diagnosis.

  4. 1236 C/T and 3435 C/T polymorphisms of the ABCB1 gene in Mexican breast cancer patients.

    PubMed

    Gutierrez-Rubio, S A; Quintero-Ramos, A; Durán-Cárdenas, A; Franco-Topete, R A; Castro-Cervantes, J M; Oceguera-Villanueva, A; Jiménez-Pérez, L M; Balderas-Peña, L M A; Morgan-Villela, G; Del-Toro-Arreola, A; Daneri-Navarro, A

    2015-02-13

    MDR1, which is encoded by the ABCB1 gene, is involved in multidrug resistance (hydrophobic), as well as the elimination of xenotoxic agents. The association between ABCB1 gene polymorphisms and breast cancer risk in different populations has been described previously; however, the results have been inconclusive. In this study, we examined the association between polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene and breast cancer development in Mexican women according to their menopausal status and molecular classification. Molecular subtypes as well as allele and genotype frequencies were analyzed. A total of 248 women with initial breast cancer diagnosis and 180 ethnically matched, healthy, unrelated individuals were enrolled. Polymerase chain reaction-restriction fragment length polymorphism was performed to detect polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene. Premenopausal T allele carriers of the 3435 C/T polymorphism showed a 2-fold increased risk of breast cancer with respect to the reference and postmenopausal groups, as well as triple-negative expression regarding the luminal A/B molecular subrogated subtypes. In contrast, the CT genotype of the 1236 polymorphism was a protective factor against breast cancer. We conclude that the T allele carrier of the 3435 C/T polymorphism in the ABCB1 gene in combination with an estrogen receptor-negative status may be an important risk factor for breast cancer development in premenopausal women.

  5. Technical Note: Relation between dual-energy subtraction of CT images for electron density calibration and virtual monochromatic imaging

    SciTech Connect

    Saito, Masatoshi

    2015-07-15

    Purpose: For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the author previously proposed a simple conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide ρ{sub e} range. The purpose of the present study was to reveal the relation between the ΔHU image for ρ{sub e} calibration and a virtually monochromatic CT image by performing numerical analyses based on the basis material decomposition in dual-energy CT. Methods: The author determined the weighting factor, α{sub 0}, of the ΔHU–ρ{sub e} conversion through numerical analyses of the International Commission on Radiation Units and Measurements Report-46 human body tissues using their attenuation coefficients and given ρ{sub e} values. Another weighting factor, α(E), for synthesizing a virtual monochromatic CT image from high- and low-kV CT images, was also calculated in the energy range of 0.03 < E < 5 MeV, assuming that cortical bone and water were the basis materials. The mass attenuation coefficients for these materials were obtained using the XCOM photon cross sections database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80–140 and 100–140 kV/Sn. Results: The determined α{sub 0} values were 0.455 for 80–140 kV/Sn and 0.743 for 100–140 kV/Sn. These values coincided almost perfectly with the respective maximal points of the calculated α(E) curves located at approximately 1 MeV, in which the photon-matter interaction in human body tissues is exclusively the incoherent (Compton) scattering. Conclusions: The ΔHU image could be regarded substantially as a CT image acquired with monoenergetic 1-MeV photons, which provides a linear relationship between CT numbers and electron densities.

  6. Chronic osteomyelitis examined by CT

    SciTech Connect

    Wing, V.W.; Jeffrey, R.B. Jr.; Federle, M.P.; Helms, C.A.; Trafton, P.

    1985-01-01

    CT examination of 25 patients who had acute exacerbations of chronic osteomyelitis allowed for the correct identification of single or multiple sequestra in 14 surgical patients. Plain radiographs were equivocal for sequestra in seven of these patients, because the sequestra were too small or because diffuse bony sclerosis was present. CT also demonstrated a foreign body and five soft tissue abscesses not suspected on the basis of plain radiographs. CT studies, which helped guide the operative approach, were also useful in treating those patients whose plain radiographs were positive for sequestra. The authors review the potential role of CT in evaluating patients with chronic osteomyelitis.

  7. Sci—Thur PM: Imaging — 06: Canada's National Computed Tomography (CT) Survey

    SciTech Connect

    Wardlaw, GM; Martel, N; Blackler, W; Asselin, J-F

    2014-08-15

    The value of computed tomography (CT) in medical imaging is reflected in its' increased use and availability since the early 1990's; however, given CT's relatively larger exposures (vs. planar x-ray) greater care must be taken to ensure that CT procedures are optimised in terms of providing the smallest dose possible while maintaining sufficient diagnostic image quality. The development of CT Diagnostic Reference Levels (DRLs) supports this process. DRLs have been suggested/supported by international/national bodies since the early 1990's and widely adopted elsewhere, but not on a national basis in Canada. Essentially, CT DRLs provide guidance on what is considered good practice for common CT exams, but require a representative sample of CT examination data to make any recommendations. Canada's National CT Survey project, in collaboration with provincial/territorial authorities, has collected a large national sample of CT practice data for 7 common examinations (with associated clinical indications) of both adult and pediatric patients. Following completion of data entry into a common database, a survey summary report and recommendations will be made on CT DRLs from this data. It is hoped that these can then be used by local regions to promote CT practice optimisation and support any dose reduction initiatives.

  8. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors.

    PubMed

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; Walsum, Theo van

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice

  9. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors

    PubMed Central

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; van Walsum, Theo

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice

  10. 4D micro-CT for cardiac and perfusion applications with view under sampling

    NASA Astrophysics Data System (ADS)

    Badea, Cristian T.; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan

    2011-06-01

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  11. A MRI-CT prostate registration using sparse representation technique

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Jani, Ashesh B.; Rossi, Peter J.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2016-03-01

    Purpose: To develop a new MRI-CT prostate registration using patch-based deformation prediction framework to improve MRI-guided prostate radiotherapy by incorporating multiparametric MRI into planning CT images. Methods: The main contribution is to estimate the deformation between prostate MRI and CT images in a patch-wise fashion by using the sparse representation technique. We assume that two image patches should follow the same deformation if their patch-wise appearance patterns are similar. Specifically, there are two stages in our proposed framework, i.e., the training stage and the application stage. In the training stage, each prostate MR images are carefully registered to the corresponding CT images and all training MR and CT images are carefully registered to a selected CT template. Thus, we obtain the dense deformation field for each training MR and CT image. In the application stage, for registering a new subject MR image with the same subject CT image, we first select a small number of key points at the distinctive regions of this subject CT image. Then, for each key point in the subject CT image, we extract the image patch, centered at the underlying key point. Then, we adaptively construct the coupled dictionary for the underlying point where each atom in the dictionary consists of image patches and the respective deformations obtained from training pair-wise MRI-CT images. Next, the subject image patch can be sparsely represented by a linear combination of training image patches in the dictionary, where we apply the same sparse coefficients to the respective deformations in the dictionary to predict the deformation for the subject MR image patch. After we repeat the same procedure for each subject CT key point, we use B-splines to interpolate a dense deformation field, which is used as the initialization to allow the registration algorithm estimating the remaining small segment of deformations from MRI to CT image

  12. The role of bone marrow biopsy and FDG-PET/CT in identifying bone marrow infiltration in the initial diagnosis of high grade non-Hodgkin B-cell lymphoma and Hodgkin lymphoma. Accuracy in a multicenter series of 372 patients.

    PubMed

    Chen-Liang, Tzu-Hua; Martin-Santos, Taida; Jerez, Andres; Senent, Leonor; Orero, Maria Teresa; Remigia, Maria Jose; Muiña, Begoña; Romera, Marta; Fernandez-Muñoz, Hermogenes; Raya, Jose M; Fernandez-Gonzalez, Marta; Lancharro, Aima; Villegas, Carolina; Carlos Herrera, Juan; Frutos, Laura; Luis Navarro, Jose; Uña, Jon; Igua, Carolina; Sanchez-Vaño, Raquel; Cozar, Maria Del Puig; Contreras, Jose; Sanchez-Blanco, Jose Javier; Perez-Ceballos, Elena; Ortuño, Francisco Jose

    2015-08-01

    Bone marrow infiltration (BMI), categorized as an extra-nodal site, affects stage and is associated with poor prognosis in newly diagnosed lymphoma patients. We have evaluated the accuracy of PET/CT and bone marrow biopsy (BMB) to assess BMI in 372 lymphoma patients [140 Hodgkin Lymphoma (HL) and 232 High Grade B-cell non-Hodgkin Lymphoma (HG B-NHL), among them 155 Diffuse Large B-Cell Lymphoma (DLCL)]. For HL cases, and taking into account PET/CT, sensitivity, negative predictive value (NPV) and accuracy were 96.7, 99.3, and 99.3% while those of BMB were 32.3, 83.8, and 85%, respectively. For HG B-NHL and considering PET/CT, sensitivity, NPV, and accuracy were 52.7, 81.7, and 84.1%, while those of BMB were 77.6, 90.2, and 90.7%, respectively. In the HG B-NHL group, 25 patients would have been under-staged without BMB. These results lead us to recommend PET/CT and the avoidance of BMB to assess BMI in HL. In the case of HG B-NHL, bone marrow status should be assessed firstly by means of PET/CT; only in either focal or diffuse PET/CT with low borderline SUV max values or in negative cases, should BMB be carried out afterwards. In the HG B-NHL setting and at the present moment, both techniques are complementary.

  13. Generation of synthetic CT data using patient specific daily MR image data and image registration

    NASA Astrophysics Data System (ADS)

    Melanie Kraus, Kim; Jäkel, Oliver; Niebuhr, Nina I.; Pfaffenberger, Asja

    2017-02-01

    To fully exploit the advantages of magnetic resonance imaging (MRI) for radiotherapy (RT) treatment planning, a method is required to overcome the problem of lacking electron density information. We aim to establish and evaluate a new method for computed tomography (CT) data generation based on MRI and image registration. The thereby generated CT data is used for dose accumulation. We developed a process flow based on an initial pair of rigidly co-registered CT and T2-weighted MR image representing the same anatomical situation. Deformable image registration using anatomical landmarks is performed between the initial MRI data and daily MR images. The resulting transformation is applied to the initial CT, thus fractional CT data is generated. Furthermore, the dose for a photon intensity modulated RT (IMRT) or intensity modulated proton therapy (IMPT) plan is calculated on the generated fractional CT and accumulated on the initial CT via inverse transformation. The method is evaluated by the use of phantom CT and MRI data. Quantitative validation is performed by evaluation of the mean absolute error (MAE) between the measured and the generated CT. The effect on dose accumulation is examined by means of dose-volume parameters. One patient case is presented to demonstrate the applicability of the method introduced here. Overall, CT data derivation lead to MAEs with a median of 37.0 HU ranging from 29.9 to 66.6 HU for all investigated tissues. The accuracy of image registration showed to be limited in the case of unexpected air cavities and at tissue boundaries. The comparisons of dose distributions based on measured and generated CT data agree well with the published literature. Differences in dose volume parameters kept within 1.6% and 3.2% for photon and proton RT, respectively. The method presented here is particularly suited for application in adaptive RT in current clinical routine, since only minor additional technical equipment is required.

  14. Thoracic textilomas: CT findings*

    PubMed Central

    Machado, Dianne Melo; Zanetti, Gláucia; Araujo, Cesar Augusto; Nobre, Luiz Felipe; Meirelles, Gustavo de Souza Portes; Pereira e Silva, Jorge Luiz; Guimarães, Marcos Duarte; Escuissato, Dante Luiz; Souza, Arthur Soares; Hochhegger, Bruno; Marchiori, Edson

    2014-01-01

    OBJECTIVE: The aim of this study was to analyze chest CT scans of patients with thoracic textiloma. METHODS: This was a retrospective study of 16 patients (11 men and 5 women) with surgically confirmed thoracic textiloma. The chest CT scans of those patients were evaluated by two independent observers, and discordant results were resolved by consensus. RESULTS: The majority (62.5%) of the textilomas were caused by previous heart surgery. The most common symptoms were chest pain (in 68.75%) and cough (in 56.25%). In all cases, the main tomographic finding was a mass with regular contours and borders that were well-defined or partially defined. Half of the textilomas occurred in the right hemithorax and half occurred in the left. The majority (56.25%) were located in the lower third of the lung. The diameter of the mass was ≤ 10 cm in 10 cases (62.5%) and > 10 cm in the remaining 6 cases (37.5%). Most (81.25%) of the textilomas were heterogeneous in density, with signs of calcification, gas, radiopaque marker, or sponge-like material. Peripheral expansion of the mass was observed in 12 (92.3%) of the 13 patients in whom a contrast agent was used. Intraoperatively, pleural involvement was observed in 14 cases (87.5%) and pericardial involvement was observed in 2 (12.5%). CONCLUSIONS: It is important to recognize the main tomographic aspects of thoracic textilomas in order to include this possibility in the differential diagnosis of chest pain and cough in patients with a history of heart or thoracic surgery, thus promoting the early identification and treatment of this postoperative complication. PMID:25410842

  15. Creating Workforce Development Systems That Work: An Evaluation of the Initial One-Stop Implementation Experience. Final Report Appendices: State and Local Profiles.

    ERIC Educational Resources Information Center

    Kogan, Deborah; Fedrau, Ruth; Midling, Michael J.; Remboulis, Maria A.; Wolff, Kristin E.

    This appendix includes individual case study profiles of the One-Stop Career Center implementation experiences of the 9 states and 14 local sites included in the study of initial implementation experiences. The 12 state and local profiles are State of Connecticut (CT); CT Works Career Center, New London, CT; CT Works Career Center, Willimantic,…

  16. Can clinical CT data improve forensic reconstruction?

    PubMed

    Schuh, P; Scheurer, E; Fritz, K; Pavlic, M; Hassler, E; Rienmüller, R; Yen, K

    2013-05-01

    In accidents resulting in severe injuries, a clinical forensic examination is generally abandoned in the initial phase due to high-priority clinical needs. However, in many cases, data from clinical computed tomography (CT) examinations are available. The goals of this prospective study were (a) to evaluate clinical CT data as a basis for forensic reconstruction of the sequence of events, (b) to assess if forensic radiological follow-up reading improves the forensic diagnostic benefit compared to the written clinical radiological reports, and (c) to evaluate if full data storage including additional reconstructed 0.6-mm slices enhances forensic analysis. Clinical CT data of 15 living individuals with imaging of at least the head, thorax, and abdomen following polytrauma were examined regarding the forensic evaluation of the sequence of events. Additionally, 0.6-mm slices and 3D images were reconstructed for forensic purposes and used for the evaluation. At the forensic radiological readings, additional traumatic findings were observed in ten of the 15 patients. The main weakness of the clinical reports was that they were not detailed enough, particularly regarding the localization of injuries and description of wound morphology. In seven cases, however, forensic conclusions were possible on the basis of the written clinical reports, whereas in five cases forensic reconstruction required specific follow-up reading. The additional 0.6-mm slices were easily available and with improved 3D image quality and forensic diagnostics. In conclusion, the use of clinical CT data can considerably support forensic expertise regarding reconstruction issues. Forensic follow-up reading as well as the use of additional thin slices for 3D analysis can further improve its benefit for forensic reconstruction purposes.

  17. Ports Initiative

    EPA Pesticide Factsheets

    The purpose of the ports initiative is to assist EPA and other participants to formulate strategies for moving forward on actions addressing the transportation, air quality and climate issues raised in the National Conversations.

  18. [PET/CT in breast cancer: an update].

    PubMed

    Groheux, D; Moretti, J-L; Giacchetti, S; Hindié, E; Teyton, P; Cuvier, C; Bousquet, G; Misset, J-L; Boin, C; Espié, M

    2009-11-01

    The authors discuss the various roles of 18F-FDG PET/CT in the management of breast cancer. Roles of new tracers such as F-18 fluoro-L-thymidine (a marker of cell proliferation), 18-fluoro-17-B-estradiol (marker of estrogen receptor) and sodium fluoride (marker of bone matrix) are also mentioned. There is little justification for the use of FDG-PET/CT in patient with clinically T1 (< or = 2 cm) N0 tumours. Notably, it cannot be used as a substitute to SLNB "sentinel lymph node biopsy" for axillary staging due to limited sensitivity for the detection of small metastases. The case is different in higher risk patients, and especially so in patients with locally advanced disease. FDG-PET/CT in these patients might depict lymph node involvement in the level III of Berg or in supraclavicular or internal mammary basins. It might also uncover occult distant metastases, notably, early osteomedullary infiltration. Thus, for these tumors, initial PET/CT can enable better intramodality treatment planning or a change in treatment. PET/CT as a whole-body examination is also very efficient in case of suspicion of recurrence. On the other hand, many studies show that this functional imaging could be used to assess early response to neoadjuvant chemotherapy or to chemotherapy of metastatic disease. 18FDG-PET/CT could thus become an unavoidable modality to answer various clinical situations.

  19. Low-dose dual-energy electronic cleansing for fecal-tagging CT Colonography

    NASA Astrophysics Data System (ADS)

    Cai, Wenli; Zhang, Da; Lee, June-Goo; Yoshida, Hiroyuki

    2013-03-01

    Dual-energy electronic cleansing (DE-EC) provides a promising means for cleansing the tagged fecal materials in fecaltagging CT colonography (CTC). However, the increased radiation dose due to the double exposures in dual-energy CTC (DE-CTC) scanning is a major limitation for the use of DE-EC in clinical practice. The purpose of this study was to develop and evaluate a low-dose DE-EC scheme in fecal-tagging DE-CTC. In this study, a custom-made anthropomorphic colon phantom, which was filled with simulated tagged materials by non-ionic iodinated contrast agent (Omnipaque iohexol, GE Healthcare), was scanned by a dual-source CT scanner (SOMATON Definition Flash, Siemens Healthcare) at two photon energies: 80 kVp and 140 kVp with nine different tube current settings ranging from 12 to 74 mAs for 140 kVp, and then reconstructed by soft-tissue reconstruction kernel (B30f). The DE-CTC images were subjected to a low-dose DE-EC scheme. First, our image-space DE-CTC denoising filter was applied for reduction of image noise. Then, the noise-reduced images were processed by a virtual lumen tagging method for reduction of partial volume effect and tagging inhomogeneity. The results were compared with the registered CTC images of native phantom without fillings. Preliminary results showed that our low-dose DE-EC scheme achieved the cleansing ratios, defined by the proportion of the cleansed voxels in the tagging mask, between 93.18% (12 mAs) and 96.62% (74 mAs). Also, the soft-tissue preservation ratios, defined by the proportion of the persevered voxels in the soft-tissue mask, were maintained in the range between 94.67% and 96.41%.

  20. CT scanning of the breast using a conventional CT scanner.

    PubMed

    Doust, B D; Milbrath, J R; Doust, V L

    1981-09-01

    Using a conventional body CT scanner, computed tomography of the breast was performed on 32 patients known to have or suspected of having breast masses. Xeromammograms were available for comparison in all cases. All mass lesions were histologically proved. Seven patients were examined prone, 25 supine. The prone position yielded pictures that resembled craniocaudal mammograms. Breast asymmetry, skin thickening, stranding from a mass to the chest wall, calcification, and axillary lymphadenopathy could be demonstrated by means of CT. The portion of the breast adjacent to the chest wall was more readily examined by means of CT than by conventional mammography. Internal mammary nodes could not be demonstrated.

  1. Purulent lupus panniculitis unmasked by FDG-PET/CT scan

    PubMed Central

    van der Geest, Kornelis S.M.; Moerman, Rada V.; Koopmans, Klaas P.; Holman, Nicole D.; Janssen, Wilbert M.T.

    2016-01-01

    Abstract Rationale: Lupus panniculitis (LP) is a unique variant of cutaneous lupus erythematosus. Clinical manifestations are typically mild and include erythema, nodules, and small ulcers. In certain cases, diagnosing LP may be challenging. Skin overlying the typical subcutaneous inflammation may appear normal, and bacterial superinfections of the skin sometimes mask the underlying LP. It has been suggested that a computed tomography (CT) scan may help to identify obscure LP lesions. Here, we report a case of a 54-year-old woman with an unusually severe form of LP, in which the full disease extent was only revealed by a fluorodeoxyglucose positron emission tomography (FDG-PET)/CT scan. Patient concerns/Diagnoses/Interventions/Outcomes: Our patient initially presented with a bacterial infection of the skin. After initial improvement with antibiotic treatment, new erythematous lesions and sterile subcutaneous pus collections developed. An FDG-PET/CT scan revealed extensive subcutaneous inflammation at sites that had appeared normal during physical examination and on CT scan. As the subcutaneous lesions showed a remarkably linear pattern on FDG-PET/CT scan, the patient was suspected of having LP. After confirmation of this diagnosis by a deep-skin biopsy, our patient was treated with systemic glucocorticoids. Eventually, our patient succumbed to complications of LP and its treatment. Lessons: Our case demonstrates that clinical manifestations of LP are not always mild and that timely diagnosis is needed. Furthermore, we show that obscure LP lesions are more readily identified on an FDG-PET/CT scan than CT scan. PMID:27902603

  2. Helical CT in emergency radiology.

    PubMed

    Novelline, R A; Rhea, J T; Rao, P M; Stuk, J L

    1999-11-01

    Today, a wide range of traumatic and nontraumatic emergency conditions are quickly and accurately diagnosed with helical computed tomography (CT). Many traditional emergency imaging procedures have been replaced with newer helical CT techniques that can be performed in less time and with greater accuracy, less patient discomfort, and decreased cost. The speed of helical technology permits CT examination of seriously ill patients in the emergency department, as well as patients who might not have been taken to CT previously because of the length of the examinations of the past. Also, helical technology permits multiple, sequential CT scans to be quickly obtained in the same patient, a great advance for the multiple-trauma patient. Higher quality CT examinations result from decreased respiratory misregistration, enhanced intravenous contrast material opacification of vascular structures and parenchymal organs, greater flexibility in image reconstruction, and improved multiplanar and three-dimensional reformations. This report summarizes the role and recommended protocols for the helical CT diagnosis of thoracic aortic trauma; aortic dissection; pulmonary embolism; acute conditions of the neck soft tissues; abdominal trauma; urinary tract stones; appendicitis; diverticulitis; abdominal aortic aneurysm; fractures of the face, spine, and extremities; and acute stroke.

  3. Optimization of the protocols for the use of contrast agents in PET/CT studies.

    PubMed

    Pelegrí Martínez, L; Kohan, A A; Vercher Conejero, J L

    The introduction of PET/CT scanners in clinical practice in 1998 has improved care for oncologic patients throughout the clinical pathway, from the initial diagnosis of disease through the evaluation of the response to treatment to screening for possible recurrence. The CT component of a PET/CT study is used to correct the attenuation of PET studies; CT also provides anatomic information about the distribution of the radiotracer. CT is especially useful in situations where PET alone can lead to false positives and false negatives, and CT thereby improves the diagnostic performance of PET. The use of intravenous or oral contrast agents and optimal CT protocols have improved the detection and characterization of lesions. However, there are circumstances in which the systematic use of contrast agents is not justified. The standard acquisition in PET/CT scanners is the whole body protocol, but this can lead to artifacts due to the position of patients and respiratory movements between the CT and PET acquisitions. This article discusses these aspects from a constructive perspective with the aim of maximizing the diagnostic potential of PET/CT and providing better care for patients.

  4. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol.

    PubMed

    Thomas, C; Patschan, O; Ketelsen, D; Tsiflikas, I; Reimann, A; Brodoefel, H; Buchgeister, M; Nagele, U; Stenzl, A; Claussen, C; Kopp, A; Heuschmid, M; Schlemmer, H-P

    2009-06-01

    The efficiency and radiation dose of a low-dose dual-energy (DE) CT protocol for the evaluation of urinary calculus disease were evaluated. A low-dose dual-source DE-CT renal calculi protocol (140 kV, 46 mAs; 80 kV, 210 mAs) was derived from the single-energy (SE) CT protocol used in our institution for the detection of renal calculi (120 kV, 75 mAs). An Alderson-Rando phantom was equipped with thermoluminescence dosimeters and examined by CT with both protocols. The effective doses were calculated. Fifty-one patients with suspected or known urinary calculus disease underwent DE-CT. DE analysis was performed if calculi were detected using a dedicated software tool. Results were compared to chemical analysis after invasive calculus extraction. An effective dose of 3.43 mSv (male) and 5.30 mSv (female) was measured in the phantom for the DE protocol (vs. 3.17/4.57 mSv for the SE protocol). Urinary calculi were found in 34 patients; in 28 patients, calculi were removed and analyzed (23 patients with calcified calculi, three with uric acid calculi, one with 2,8-dihyxdroxyadenine-calculi, one patient with a mixed struvite calculus). DE analysis was able to distinguish between calcified and non-calcified calculi in all cases. In conclusion, dual-energy urinary calculus analysis is effective also with a low-dose protocol. The protocol tested in this study reliably identified calcified urinary calculi in vivo.

  5. MULTIMODALITY IMAGING: BEYOND PET/CT AND SPECT/CT

    PubMed Central

    Cherry, Simon R.

    2009-01-01

    Multimodality imaging with PET/CT and SPECT/CT has become commonplace in clinical practice and in preclinical and basic medical research. Do other combinations of imaging modalities have a similar potential to impact medical science and clinical medicine? The combination of PET or SPECT with MRI is an area of active research at the present time, while other, perhaps less obvious combinations, including CT/MR and PET/optical also are being studied. In addition to the integration of the instrumentation, there are parallel developments in synthesizing imaging agents that can be viewed by multiple imaging modalities. Is the fusion of PET and SPECT with CT the ultimate answer in multimodality imaging, or is it just the first example of a more general trend towards harnessing the complementary nature of the different modalities on integrated imaging platforms? PMID:19646559

  6. WE-D-9A-02: Automated Landmark-Guided CT to Cone-Beam CT Deformable Image Registration

    SciTech Connect

    Kearney, V; Gu, X; Chen, S; Jiang, L; Liu, H; Chiu, T; Yordy, J; Nedzi, L; Mao, W

    2014-06-15

    Purpose: The anatomical changes that occur between the simulation CT and daily cone-beam CT (CBCT) are investigated using an automated landmark-guided deformable image registration (LDIR) algorithm with simultaneous intensity correction. LDIR was designed to be accurate in the presence of tissue intensity mismatch and heavy noise contamination. Method: An auto-landmark generation algorithm was used in conjunction with a local small volume (LSV) gradient matching search engine to map corresponding landmarks between the CBCT and planning CT. The LSVs offsets were used to perform an initial deformation, generate landmarks, and correct local intensity mismatch. The landmarks act as stabilizing controlpoints in the Demons objective function. The accuracy of the LDIR algorithm was evaluated on one synthetic case with ground truth and data of ten head and neck cancer patients. The deformation vector field (DVF) accuracy was accessed using a synthetic case. The Root mean square error of the 3D canny edge (RMSECE), mutual information (MI), and feature similarity index metric (FSIM) were used to access the accuracy of LDIR on the patient data. The quality of the corresponding deformed contours was verified by an attending physician. Results: The resulting 90 percentile DVF error for the synthetic case was within 5.63mm for the original demons algorithm, 2.84mm for intensity correction alone, 2.45mm using controlpoints without intensity correction, and 1.48 mm for the LDIR algorithm. For the five patients the mean RMSECE of the original CT, Demons deformed CT, intensity corrected Demons CT, control-point stabilized deformed CT, and LDIR CT was 0.24, 0.26, 0.20, 0.20, and 0.16 respectively. Conclusion: LDIR is accurate in the presence of multimodal intensity mismatch and CBCT noise contamination. Since LDIR is GPU based it can be implemented with minimal additional strain on clinical resources. This project has been supported by a CPRIT individual investigator award RP11032.

  7. SU-E-J-148: Tools for Development of 4D Proton CT

    SciTech Connect

    Dou, T; Ramos-Mendez, J; Piersimoni, P; Giacometti, V; Penfold, S; Censor, Y; Faddegon, B; Low, D; Schulte, R

    2015-06-15

    Purpose: To develop tools for performing 4D proton computed tomography (CT). Methods: A suitable patient with a tumor in the right lower lobe was selected from a set of 4D CT scans. The volumetric CT images formed the basis for calculating the parameters of a breathing model that allows reconstruction of a static reference CT and CT images in each breathing phase. The images were imported into the TOPAS Monte Carlo simulation platform for simulating an experimental proton CT scan with 45 projections spaced by 4 degree intervals. Each projection acquired data for 2 seconds followed by a gantry rotation for 2 seconds without acquisition. The scan covered 180 degrees with individual protons passing through a 9-cm slab of the patient’s lung covering the moving tumor. An initial proton energy sufficient for penetrating the patient from all directions was determined. Performing the proton CT simulation, TOPAS provided output of the proton energy and coordinates registered in two planes before and after the patient, respectively. The set of projection data was then used with an iterative reconstruction algorithm to generate a volumetric proton CT image set of the static reference image and the image obtained under breathing motion, respectively. Results: An initial proton energy of 230 MeV was found to be sufficient, while for an initial energy of 200 MeV a substantial number of protons did not penetrate the patient. The reconstruction of the static reference image set provided sufficient detail for treatment planning. Conclusion: We have developed tools to perform studies of proton CT in the presence of lung motion based on the TOPAS simulation toolkit. This will allow to optimize 4D reconstruction algorithms by synchronizing the acquired proton CT data with a breathing signal and utilizing a breathing model obtained prior to the proton CT scan. This research has been supported by the National Institute Of Biomedical Imaging And Bioengineering of the National

  8. Errors in CT colonography.

    PubMed

    Trilisky, Igor; Ward, Emily; Dachman, Abraham H

    2015-10-01

    CT colonography (CTC) is a colorectal cancer screening modality which is becoming more widely implemented and has shown polyp detection rates comparable to those of optical colonoscopy. CTC has the potential to improve population screening rates due to its minimal invasiveness, no sedation requirement, potential for reduced cathartic examination, faster patient throughput, and cost-effectiveness. Proper implementation of a CTC screening program requires careful attention to numerous factors, including patient preparation prior to the examination, the technical aspects of image acquisition, and post-processing of the acquired data. A CTC workstation with dedicated software is required with integrated CTC-specific display features. Many workstations include computer-aided detection software which is designed to decrease errors of detection by detecting and displaying polyp-candidates to the reader for evaluation. There are several pitfalls which may result in false-negative and false-positive reader interpretation. We present an overview of the potential errors in CTC and a systematic approach to avoid them.

  9. Imaging of inflammatory bowel disease: CT and MR.

    PubMed

    Zalis, Michael; Singh, Ajay K

    2004-01-01

    Cross-sectional imaging has come to play a central role in the imaging of the abdomen. Concurrent to this, the role of CT and MRI in the imaging of inflammatory bowel disease has also increased in importance. These modalities offer numerous advantages over more traditional methods of radiologic diagnosis, and provide essential information not only for initial diagnosis, but for management, follow-up and detection of potential complications. On the horizon are several derivative techniques involving CT and MRI, potentially in combination with PET imaging; these may further improve the specificity and sensitivity of imaging modalities for diagnosis of inflammatory bowel disease.

  10. Youth Initiatives.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC. Office of Youth Programs.

    Summarizing the first eight months of the planning, design, and implementation of the new federal youth programs created by the Youth Employment and Demonstration Projects Act of 1977 (YEDPA) and the efforts for expansion and enrichment of the Job Corps, this report explains the charters of the two projects and their initial successes in and…

  11. Greening America's Capitals - Hartford, CT

    EPA Pesticide Factsheets

    This Greening America's Capitals report gives Hartford, CT, a new vision for Capitol Avenue that highlights existing assets and fills in gaps along the mile-long area of focus and into the surrounding neighborhoods.

  12. Multiplanar CT of the spine

    SciTech Connect

    Rothman, S.L.G.; Glenn, W.V. Jr.

    1986-01-01

    This is an illustrated text on computed tomography (CT) of the lumbar spine with an emphasis on the role and value of multiplanar imaging for helping determine diagnoses. The book has adequate discussion of scanning techniques for the different regions, interpretations of various abnormalities, degenerative disk disease, and different diagnoses. There is a 50-page chapter on detailed sectional anatomy of the spine and useful chapters on the postoperative spine and the planning and performing of spinal surgery with CT multiplanar reconstruction. There are comprehensive chapters on spinal tumors and trauma. The final two chapters of the book are devoted to CT image processing using digital networks and CT applications of medical computer graphics.

  13. CT Perfusion of the Head

    MedlinePlus

    ... ray beam follows a spiral path. A special computer program processes this large volume of data to create ... process. Nearly all CT scanners now have special computer programs that help to increase image quality at lower ...

  14. CT Demonstration of Caput Medusae

    ERIC Educational Resources Information Center

    Weber, Edward C.; Vilensky, Joel A.

    2009-01-01

    Maximum intensity and volume rendered CT displays of caput medusae are provided to demonstrate both the anatomy and physiology of this portosystemic shunt associated with portal hypertension. (Contains 2 figures.)

  15. Adrenal cortex dysfunction: CT findings

    SciTech Connect

    Huebener, K.H.; Treugut, H.

    1984-01-01

    The computed tomographic appearance of the adrenal gland was studied in 302 patients with possible endocrinologic disease and 107 patients undergoing CT for nonendocrinologic reasons. Measurements of adrenal size were also made in 100 adults with no known adrenal pathology. CT proved to be a sensitive diagnostic tool in combination with clinical studies. When blood hormone levels are increased, CT can differentiate among homogeneous organic hyperplasia, nodular hyperplasia, benign adenoma, and malignant cortical adenoma. When blood hormone levels are decreased, CT can demonstrate hypoplasia or metastatic tumorous destruction. Calcifications can be demonstrated earlier than on plain radiographs. When hormone elimination is increased, the morphologic substrate can be identified; tumorous changes can be localized and infiltration of surrounding organs recognized.

  16. Children's (Pediatric) CT (Computed Tomography)

    MedlinePlus Videos and Cool Tools

    ... What are the limitations of Children's CT? A person who is very large may not fit into ... facility staff and/or your insurance provider to get a better understanding of the possible charges you ...

  17. CT angiography - head and neck

    MedlinePlus

    ... medlineplus.gov/ency/article/007677.htm CT angiography - head and neck To use the sharing features on this page, ... create pictures of the blood vessels in the head and neck. How the Test is Performed You will be ...

  18. Multiplanar CT of the spine

    SciTech Connect

    Rothman, S.L.G.; Glenn, W.V.

    1985-01-01

    This book contains 16 chapters. Some of the topics are: CT of the Sacrum, The Postoperative Spine, Film Organizations and Case Reporting, Degeneration and Disc Disease of the Intervertebral Joint, Lumbar Spinal Stenosis, and Cervical and Thoracic Spine.

  19. A tonsillolith seen on CT.

    PubMed

    Espe, B J; Newmark, H

    1992-01-01

    A case of a large tonsillolith visualized by computerized tomography is presented. Although otolaryngologists are well aware of this entity, few radiologists are. The importance of distinguishing tonsilloliths from other structures by CT scan is discussed.

  20. Liver echinococcus - CT scan (image)

    MedlinePlus

    This upper abdominal CT scan shows multiple cysts in the liver, caused by dog tapeworm (echinococcus). Note the large circular cyst (seen on the left side of the screen) and multiple smaller cysts throughout ...

  1. Youth Initiatives and the Black College.

    ERIC Educational Resources Information Center

    Williams, Lea E.

    1979-01-01

    Youth initiatives at four predominantly Black colleges are examined. Generally, Black institutions, it was found, lack available personnel to read and decipher complex CETA regulations; tend to remain clear of local political maneuvering; and are rarely sought out by local CETA delivery systems. (CT)

  2. Primary lower extremity lymphedema: CT diagnosis

    SciTech Connect

    Gamba, J.L.; Silverman, P.M.; Ling, D.; Dunnick, N.R.; Korobkin, M.

    1983-10-01

    The CT findings of two cases of primary lymphedema of the lower extremities are presented. CT showed a coarse, nonenhancing, reticular pattern in an enlarged subcutaneous compartment. CT excluded the diagnosis of secondary lymphedema from an obstructing mass by demonstrating a normal retroperitoneum and pelvis. The CT findings are correlated with pedal lymphangiograms.

  3. Primary epiploic appendagitis: CT diagnosis.

    PubMed

    Sandrasegaran, Kumaresan; Maglinte, Dean D; Rajesh, Arumugam; Akisik, Fatih M

    2004-08-01

    The purpose of this study was to analyze the CT signs of primary epiploic appendagitis. A retrospective search of the CT database over 12 months for this diagnosis revealed 11 cases. The clinical findings were recorded. Softcopy CT images were reviewed by two experienced abdominal radiologists (KS, DM) for location of lesion, size, shape, presence of central hyperdense focus, degree of bowel wall thickening, mass effect, and ancillary signs. Abdominal pain was the primary symptom in all patients. Preliminary diagnoses were appendicitis (n=2), diverticulitis (n=5), pancreatitis (n=1), ovarian lesion (n=1), or unknown (n=2). Abdominal examination and white blood cell count were uninformative. CT examination revealed a solitary (n=11), ovoid (n=9) fatty lesion with some soft tissue stranding adjacent to the left colon (n=6), transverse colon (n=3), or right colon (n=2). Central hyperdensity (n=5), mild bowel wall thickening (n=2), and parietal peritoneal thickening (n=4) were also seen. In 4 patients the lesions were not visible on follow-up CT examination performed 23-184 days later. Primary epiploic appendagitis can clinically mimic other, more serious inflammatory conditions. Knowledge of its findings on CT would help the radiologist make the diagnosis and allow a more conservative approach to patient care.

  4. An improved level set method for vertebra CT image segmentation

    PubMed Central

    2013-01-01

    Background Clinical diagnosis and therapy for the lumbar disc herniation requires accurate vertebra segmentation. The complex anatomical structure and the degenerative deformations of the vertebrae makes its segmentation challenging. Methods An improved level set method, namely edge- and region-based level set method (ERBLS), is proposed for vertebra CT images segmentation. By considering the gradient information and local region characteristics of images, the proposed model can efficiently segment images with intensity inhomogeneity and blurry or discontinuous boundaries. To reduce the dependency on manual initialization in many active contour models and for an automatic segmentation, a simple initialization method for the level set function is built, which utilizes the Otsu threshold. In addition, the need of the costly re-initialization procedure is completely eliminated. Results Experimental results on both synthetic and real images demonstrated that the proposed ERBLS model is very robust and efficient. Compared with the well-known local binary fitting (LBF) model, our method is much more computationally efficient and much less sensitive to the initial contour. The proposed method has also applied to 56 patient data sets and produced very promising results. Conclusions An improved level set method suitable for vertebra CT images segmentation is proposed. It has the flexibility of segmenting the vertebra CT images with blurry or discontinuous edges, internal inhomogeneity and no need of re-initialization. PMID:23714300

  5. [Extension study and evaluation of the therapeutic response in a patient with metastatic lung adenocarcinoma using sequential study with ¹⁸F-FDG PET-CT and ¹⁸F-fluoride PET-CT].

    PubMed

    Moragas, M; Soler, M; Riera, E; García, J R

    2015-01-01

    We report a case of a patient with lung adenocarcinoma and bone and extraosseus metastases studied with (18)F-FDG PET-CT, (99m)Tc-HMDP and (18)F-fluoride PET-CT. It assesses the usefulness of (18)F-FDG PET-CT for initial staging of the disease and monitoring response to therapy. For the study of the sclerotic bone metastases it shows the superiority of 99mTc-HMDP bone scintigraphy and (18)F-fluoride PET-CT over (18)F-FDG PET-CT, and (18)F-fluoride PET-CT over bone scintigraphy. It also shows the usefulness of (18)F-fluoride PET-CT for monitoring the bone metastases.

  6. SCB initiator

    DOEpatents

    Bickes Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.

    1994-11-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  7. SCB initiator

    SciTech Connect

    Bickes, Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.

    1994-01-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  8. Assessing Patients' Cognitive Therapy Skills: Initial Evaluation of the Competencies of Cognitive Therapy Scale.

    PubMed

    Strunk, Daniel R; Hollars, Shannon N; Adler, Abby D; Goldstein, Lizabeth A; Braun, Justin D

    2014-10-01

    In Cognitive Therapy (CT), therapists work to help patients develop skills to cope with negative affect. Most current methods of assessing patients' skills are cumbersome and impractical for clinical use. To address this issue, we developed and conducted an initial psychometric evaluation of self and therapist reported versions of a new measure of CT skills: the Competencies of Cognitive Therapy Scale (CCTS). We evaluated the CCTS at intake and post-treatment in a sample of 67 patients participating in CT. The CCTS correlated with a preexisting measure of CT skills (the Ways of Responding Questionnaire) and was also related to concurrent depressive symptoms. Across CT, self-reported improvements in CT competencies were associated with greater changes in depressive symptoms. These findings offer initial evidence for the validity of the CCTS. We discuss the CCTS in comparison with other measures of CT skills and suggest future research directions.

  9. Liver recognition based on statistical shape model in CT images

    NASA Astrophysics Data System (ADS)

    Xiang, Dehui; Jiang, Xueqing; Shi, Fei; Zhu, Weifang; Chen, Xinjian

    2016-03-01

    In this paper, an automatic method is proposed to recognize the liver on clinical 3D CT images. The proposed method effectively use statistical shape model of the liver. Our approach consist of three main parts: (1) model training, in which shape variability is detected using principal component analysis from the manual annotation; (2) model localization, in which a fast Euclidean distance transformation based method is able to localize the liver in CT images; (3) liver recognition, the initial mesh is locally and iteratively adapted to the liver boundary, which is constrained with the trained shape model. We validate our algorithm on a dataset which consists of 20 3D CT images obtained from different patients. The average ARVD was 8.99%, the average ASSD was 2.69mm, the average RMSD was 4.92mm, the average MSD was 28.841mm, and the average MSD was 13.31%.

  10. Pulmonary nodule detection in PET/CT images: improved approach using combined nodule detection and hybrid FP reduction

    NASA Astrophysics Data System (ADS)

    Teramoto, Atsushi; Fujita, Hiroshi; Tomita, Yoya; Takahashi, Katsuaki; Yamamuro, Osamu; Tamaki, Tsuneo

    2012-03-01

    In this study, an automated scheme for detecting pulmonary nodules in PET/CT images has been proposed using combined detection and hybrid false-positive (FP) reduction techniques. The initial nodule candidates were detected separately from CT and PET images. FPs were then eliminated in the initial candidates by using support vector machine with characteristic values obtained from CT and PET images. In the experiment, we evaluated proposed method using 105 cases of PET/CT images that were obtained in the cancer-screening program. We evaluated true positive fraction (TPF) and FP / case. As a result, TPFs of CT and PET detections were 0.76 and 0.44, respectively. However, by integrating the both results, TPF was reached to 0.82 with 5.14 FPs/case. These results indicate that our method may be of practical use for the detection of pulmonary nodules using PET/CT images.

  11. Cardiac cone-beam CT

    SciTech Connect

    Manzke, Robert . E-mail: robert.manzke@philips.com

    2005-10-15

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net.

  12. Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy

    SciTech Connect

    Paquin, Dana; Levy, Doron; Xing Lei

    2009-01-15

    Adaptive radiation therapy (ART) is the incorporation of daily images in the radiotherapy treatment process so that the treatment plan can be evaluated and modified to maximize the amount of radiation dose to the tumor while minimizing the amount of radiation delivered to healthy tissue. Registration of planning images with daily images is thus an important component of ART. In this article, the authors report their research on multiscale registration of planning computed tomography (CT) images with daily cone beam CT (CBCT) images. The multiscale algorithm is based on the hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [Multiscale Model. Simul. 2(4), pp. 554-579 (2004)]. Registration is achieved by decomposing the images to be registered into a series of scales using the (BV, L{sup 2}) decomposition and initially registering the coarsest scales of the image using a landmark-based registration algorithm. The resulting transformation is then used as a starting point to deformably register the next coarse scales with one another. This procedure is iterated at each stage using the transformation computed by the previous scale registration as the starting point for the current registration. The authors present the results of studies of rectum, head-neck, and prostate CT-CBCT registration, and validate their registration method quantitatively using synthetic results in which the exact transformations our known, and qualitatively using clinical deformations in which the exact results are not known.

  13. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans

    SciTech Connect

    Sarrut, David; Boldea, Vlad; Miguet, Serge; Ginestet, Chantal

    2006-03-15

    Purpose: We propose to simulate an artificial four-dimensional (4-D) CT image of the thorax during breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale breath-hold. Materials and methods: Breath-hold images were acquired with the ABC (Active Breathing Coordinator) system. Dense deformable registrations were performed. The method was a minimization of the sum of squared differences (SSD) using an approximated second-order gradient. Gaussian and linear-elastic vector field regularizations were compared. A new preprocessing step, called a priori lung density modification (APLDM), was proposed to take into account lung density changes due to inspiration. It consisted of modulating the lung densities in one image according to the densities in the other, in order to make them comparable. Simulated 4-D images were then built by vector field interpolation and image resampling of the two initial CT images. A variation in the lung density was taken into account to generate intermediate artificial CT images. The Jacobian of the deformation was used to compute voxel values in Hounsfield units. The accuracy of the deformable registration was assessed by the spatial correspondence of anatomic landmarks located by experts. Results: APLDM produced statistically significantly better results than the reference method (registration without APLDM preprocessing). The mean (and standard deviation) of distances between automatically found landmark positions and landmarks set by experts were 2.7(1.1) mm with APLDM, and 6.3(3.8) mm without. Interexpert variability was 2.3(1.2) mm. The differences between Gaussian and linear elastic regularizations were not statistically significant. In the second experiment using 4-D images, the mean difference between automatic and manual landmark positions for intermediate CT images was 2.6(2.0) mm. Conclusion: The generation of 4-D CT images by deformable registration of inhale and exhale CT images is

  14. CT imaging, then and now: a 30-year review of the economics of computed tomography.

    PubMed

    Stockburger, Wayne T

    2004-01-01

    The first computed tomography (CT) scanner in the US was installed in June 1973 at the Mayo Clinic in Rochester, MN. By the end of 1974, 44 similar systems had been installed at medical facilities around the country. Less than 4 years after the introduction of CT imaging in the US, at least 400 CT systems had been installed. The practice of pneumoencephalography was eliminated. The use of nuclear medicine brain scans significantly diminished. At the time, CT imaging was limited to head studies, but with the introduction of contrast agents and full body CT systems the changes in the practice of medicine became even more significant. CT imaging was hailed by the US medical community as the greatest advance in radiology since the discovery of x-rays. But the rapid spread of CT systems, their frequency of use, and the associated increase in healthcare costs combined to draw the attention of decision-makers within the federal and state governments, specifically to establish policies regarding the acquisition and use of diagnostic technologies. Initially, CT imaging was limited to neurological applications, but in the 30 years since its inception, capabilities and applications have been expanded as a result of the advancements in technology and software development. While neurological disorders are still a common reason for CT imaging, many other medical disciplines (oncology, emergency medicine, orthopedics, etc.) have found CT imaging to be the definitive tool for diagnostic information. As such, the clinical demand for CT imaging has steadily increased. Economically, the development of CT imaging has been one of success, even in the face of governmental action to restrict its acquisition and utilization by healthcare facilities. CTimaging has increased the cost of healthcare, but in turn has added unquantifiable value to the practice of medicine in the US.

  15. Automated liver segmentation for whole-body low-contrast CT images from PET-CT scanners.

    PubMed

    Wang, Xiuying; Li, Changyang; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2009-01-01

    Accurate objective automated liver segmentation in PET-CT studies is important to improve the identification and localization of hepatic tumor. However, this segmentation is an extremely challenging task from the low-contrast CT images captured from PET-CT scanners because of the intensity similarity between liver and adjacent loops of bowel, stomach and muscle. In this paper, we propose a novel automated three-stage liver segmentation technique for PET-CT whole body studies, where: 1) the starting liver slice is automatically localized based on the liver - lung relations; 2) the "masking" slice containing the biggest liver section is localized using the ratio of liver ROI size to the right half of abdomen ROI size; 3) the liver segmented from the "masking" slice forms the initial estimation or mask for the automated liver segmentation. Our experimental results from clinical PET-CT studies show that this method can automatically segment the liver for a range of different patients, with consistent objective selection criteria and reproducible accurate results.

  16. A Compact Torus Fusion Reactor Utilizing a Continuously Generated Strings of CT's. The CT String Reactor, CTSR.

    SciTech Connect

    Hartman, C W; Reisman, D B; McLean, H S; Thomas, J

    2007-05-30

    A fusion reactor is described in which a moving string of mutually repelling compact toruses (alternating helicity, unidirectional Btheta) is generated by repetitive injection using a magnetized coaxial gun driven by continuous gun current with alternating poloidal field. An injected CT relaxes to a minimum magnetic energy equilibrium, moves into a compression cone, and enters a conducting cylinder where the plasma is heated to fusion-producing temperature. The CT then passes into a blanketed region where fusion energy is produced and, on emergence from the fusion region, the CT undergoes controlled expansion in an exit cone where an alternating poloidal field opens the flux surfaces to directly recover the CT magnetic energy as current which is returned to the formation gun. The CT String Reactor (CTSTR) reactor satisfies all the necessary MHD stability requirements and is based on extrapolation of experimentally achieved formation, stability, and plasma confinement. It is supported by extensive 2D, MHD calculations. CTSTR employs minimal external fields supplied by normal conductors, and can produce high fusion power density with uniform wall loading. The geometric simplicity of CTSTR acts to minimize initial and maintenance costs, including periodic replacement of the reactor first wall.

  17. Racial Differences in CT Phenotypes in COPD

    PubMed Central

    Hansel, Nadia N.; Washko, George R.; Foreman, Marilyn G.; Han, MeiLan K.; Hoffman, Eric A.; DeMeo, Dawn L.; Barr, R. Graham; Van Beek, Edwin J.R.; Kazerooni, Ella A.; Wise, Robert A.; Brown, Robert H.; Black-Shinn, Jennifer; Hokanson, John E.; Hanania, Nicola A.; Make, Barry; Silverman, Edwin K.; Crapo, James D.; Dransfield, Mark T.

    2015-01-01

    Background Whether African Americans (AA) are more susceptible to COPD than non-Hispanic Whites (NHW) and whether racial differences in disease phenotype exist is controversial. The objective is to determine racial differences in the extent of emphysema and airway remodeling in COPD. Methods First, 2,500 subjects enrolled in the COPDGene study were used to evaluate racial differences in quantitative CT (QCT) parameters of % emphysema, air trapping and airway wall thickness. Independent variables studied included race, age, gender, education, BMI, pack-years, smoking status, age at smoking initiation, asthma, previous work in dusty job, CT scanner and center of recruitment. Results Of the 1,063 subjects with GOLD Stage II-IV COPD, 200 self-reported as AA. AAs had a lower mean % emphysema (13.1 % vs. 16.1%, p = 0.005) than NHW and proportionately less emphysema in the lower lung zones. After adjustment for covariates, there was no statistical difference by race in air trapping or airway wall thickness. Measured QCT parameters were more predictive of poor functional status in NHWs compared to AAs. Conclusions AAs have less emphysema than NHWs but the same degree of airway disease. Additional factors not easily assessed by current QCT techniques may account for the poor functional status in AAs. PMID:23413893

  18. Malignant external otitis: CT evaluation

    SciTech Connect

    Curtin, H.D.; Wolfe, P.; May, M.

    1982-11-01

    Malignant external otitis is an aggressive infection caused by Pseudomonas aeruginosa that most often occurs in elderly diabetics. Malignant external otitis often spreads inferiorly from the external canal to involve the subtemporal area and progresses medially towards the petrous apex leading to multiple cranial nerve palsies. The computed tomographic (CT) findings in malignant external otitis include obliteration of the normal fat planes in the subtemporal area as well as patchy destruction of the bony cortex of the mastoid. The point of exit of the various cranial nerves can be identified on CT scans, and the extent of the inflammatory mass correlates well with the clinical findings. Four cases of malignant external otitis are presented. In each case CT provided a good demonstration of involvement of the soft tissues at the base of the skull.

  19. [Gallstone ileus. Abdominal CT usefulness].

    PubMed

    Sukkarieh, F; Brasseur, P; Bissen, L

    2004-06-01

    The authors report the case of a 93-year old woman referred to the emergency department and presenting with an intestinal obstruction. Abdominal CT reveals a biliary ileus caused by the migration and the impaction of a 3 cm gallstone in the small bowel. Surgical treatment by enterolithotomy was successful. In over 90% of cases, gallstone ileus is a complication of cholelithiasis and accounts for 25% of intestinal obstruction in patients over 65 years. To reduce morbidity and mortality, early diagnosis and prompt treatment are essential. Abdominal CT-scan is the gold standard technique.

  20. Granulocytic sarcoma (chloroma): CT manifestations

    SciTech Connect

    Pomeranz, S.J.; Hawkins, H.H.; Towbin, R.; Lisberg, W.N.; Clark, R.A.

    1985-04-01

    Nests of granulocytic tumor cells in patients who have myelogeneous leukemia are termed chloromas. Eight cases of chloroma seen on CT were reviewed. Lymph nodes, subcutaneous tissues, peritoneum, pleural space, pelvis, and portal hepatis were involved. The extracranial appearance of chloroma on CT is that of small, nonenhancing, nodular densities that resemble lymphoma. Cranial involvement is characteristically in the orbit. The central nervous system appearance is variable, however, and high attenuation masses may occur that mimic lymphoma, hematoma, and metastatic neuroblastoma. The recognition of these lesions is important, since radiation, not chemotherapy, is often the preferred treatment for localized chloroma.

  1. Ontological analysis of SNOMED CT

    PubMed Central

    Héja, Gergely; Surján, György; Varga, Péter

    2008-01-01

    Background SNOMED CT is the most comprehensive medical terminology. However, its use for intelligent services based on formal reasoning is questionable. Methods The analysis of the structure of SNOMED CT is based on the formal top-level ontology DOLCE. Results The analysis revealed several ontological and knowledge-engineering errors, the most important are errors in the hierarchy (mostly from an ontological point of view, but also regarding medical aspects) and the mixing of subsumption relations with other types (mostly 'part of'). Conclusion The found errors impede formal reasoning. The paper presents a possible way to correct these problems. PMID:19007445

  2. PET/CT in radiation oncology

    SciTech Connect

    Pan, Tinsu; Mawlawi, Osama

    2008-11-15

    PET/CT is an effective tool for the diagnosis, staging and restaging of cancer patients. It combines the complementary information of functional PET images and anatomical CT images in one imaging session. Conventional stand-alone PET has been replaced by PET/CT for improved patient comfort, patient throughput, and most importantly the proven clinical outcome of PET/CT over that of PET and that of separate PET and CT. There are over two thousand PET/CT scanners installed worldwide since 2001. Oncology is the main application for PET/CT. Fluorine-18 deoxyglucose is the choice of radiopharmaceutical in PET for imaging the glucose uptake in tissues, correlated with an increased rate of glycolysis in many tumor cells. New molecular targeted agents are being developed to improve the accuracy of targeting different disease states and assessing therapeutic response. Over 50% of cancer patients receive radiation therapy (RT) in the course of their disease treatment. Clinical data have demonstrated that the information provided by PET/CT often changes patient management of the patient and/or modifies the RT plan from conventional CT simulation. The application of PET/CT in RT is growing and will become increasingly important. Continuing improvement of PET/CT instrumentation will also make it easier for radiation oncologists to integrate PET/CT in RT. The purpose of this article is to provide a review of the current PET/CT technology, to project the future development of PET and CT for PET/CT, and to discuss some issues in adopting PET/CT in RT and potential improvements in PET/CT simulation of the thorax in radiation therapy.

  3. Automatic lung nodule matching on sequential CT images.

    PubMed

    Hong, Helen; Lee, Jeongjin; Yim, Yeny

    2008-05-01

    We propose an automatic segmentation and registration method that provides more efficient and robust matching of lung nodules in sequential chest computed tomography (CT) images. Our method consists of four steps. First, the lungs are extracted from chest CT images by the automatic segmentation method. Second, gross translational mismatch is corrected by optimal cube registration. This initial alignment does not require extracting any anatomical landmarks. Third, the initial alignment is step-by-step refined by hierarchical surface registration. To evaluate the distance measures between lung boundary points, a three-dimensional distance map is generated by narrow-band distance propagation, which drives fast and robust convergence to the optimal value. Finally, correspondences of manually detected nodules are established from the pairs with the smallest Euclidean distances. Experimental results show that our segmentation method accurately extracts lung boundaries and the registration method effectively finds the nodule correspondences.

  4. Openness initiative

    SciTech Connect

    Duncan, S.S.

    1995-12-31

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.

  5. Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience.

    PubMed

    Bittencourt, Márcio Sommer; Schmidt, Bernhard; Seltmann, Martin; Muschiol, Gerd; Ropers, Dieter; Daniel, Werner Günther; Achenbach, Stephan

    2011-10-01

    Improvements in image quality in cardiac computed tomography may be achieved through iterative image reconstruction techniques. We evaluated the ability of "Iterative Reconstruction in Image Space" (IRIS) reconstruction to reduce image noise and improve subjective image quality. 55 consecutive patients undergoing coronary CT angiography to rule out coronary artery stenosis were included. A dual source CT system and standard protocols were used. Images were reconstructed using standard filtered back projection and IRIS. Image noise, attenuation within the coronary arteries, contrast, signal to noise and contrast to noise parameters as well as subjective classification of image quality (using a scale with four categories) were evaluated and compared between the two image reconstruction protocols. Subjective image quality (2.8 ± 0.4 in filtered back projection and 2.8 ± 0.4 in iterative reconstruction) and the number of "evaluable" segments per patient 14.0 ± 1.2 in filtered back projection and 14.1 ± 1.1 in iterative reconstruction) were not significant different between the two methods. However iterative reconstruction had a lower image noise (22.6 ± 4.5 HU vs. 28.6 ± 5.1 HU) and higher signal to noise and image to noise ratios in the proximal coronary arteries. IRIS reduces image noise and contrast-to-noise ratio in coronary CT angiography, thus providing potential for reducing radiation exposure.

  6. An emerging evidence base for PET-CT in the management of childhood rhabdomyosarcoma: systematic review

    PubMed Central

    Norman, Gill; Fayter, Debra; Lewis-Light, Kate; Chisholm, Julia; McHugh, Kieran; Levine, Daniel; Jenney, Meriel; Mandeville, Henry; Gatz, Suzanne; Phillips, Bob

    2015-01-01

    Introduction Rhabdomyosarcoma (RMS) management depends on risk stratification at diagnosis and treatment response. Assessment methods include CT, MRI, bone scintigraphy, histological analysis and bone marrow biopsy. Advanced functional imaging (FI) has potential to improve staging accuracy and management strategies. Methods and analysis We conducted a systematic review (PROSPERO 2013:CRD42013006128) of diagnostic accuracy and clinical effectiveness of FI in histologically proven paediatric RMS. PRISMA guidance was followed. We searched 10 databases to November 2013. Studies with ≥10 patients with RMS which compared positron emission tomography (PET), PET-CT or diffusion-weighted imaging (DWI) MRI to conventional imaging at any treatment stage were included. Study quality was assessed. Limited, heterogeneous effectiveness data required narrative synthesis, illustrated by plotting sensitivity and specificity in receiver operating curve (ROC) space. Results Eight studies (six PET-CT, two PET) with 272 RMS patients in total were included. No DWI-MRI studies met inclusion criteria. Pooled estimates were not calculated due to sparseness of data. Limited evidence indicated initial PET-CT results were predictive of survival. PET-CT changed management of 7/40 patients. Nodal involvement PET-CT: sensitivity ranged from 80% to 100%; specificity from 89% to 100%. Distant metastatic involvement: PET-CT sensitivity ranged from 95% to 100%; specificity from 80% to100%. Data on metastases in different sites were sparse. Limited data were found on outcome prediction by PET-CT response. Dissemination and ethics PET/PET-CT may increase initial staging accuracy in paediatric RMS, specifically in the detection of nodal involvement and distant metastatic spread. There is a need to further assess PET-CT for this population, ideally in a representative, unbiased and transparently selected cohort of patients. PMID:25573522

  7. Low-dose interpolated average CT for attenuation correction in cardiac PET/CT

    NASA Astrophysics Data System (ADS)

    Wu, Tung-Hsin; Zhang, Geoffrey; Wang, Shyh-Jen; Chen, Chih-Hao; Yang, Bang-Hung; Wu, Nien-Yun; Huang, Tzung-Chi

    2010-07-01

    Because of the advantages in the use of high photon flux and thus the short scan times of CT imaging, the traditional 68Ge scans for positron emission tomography (PET) image attenuation correction have been replaced by CT scans in the modern PET/CT technology. The combination of fast CT scan and slow PET scan often causes image misalignment between the PET and CT images due to respiration motion. Use of the average CT derived from cine CT images is reported to reduce such misalignment. However, the radiation dose to patients is higher with cine CT scans. This study introduces a method that uses breath-hold CT images and their interpolations to generate the average CT for PET image attenuation correction. Breath-hold CT sets are taken at end-inspiration and end-expiration. Deformable image registration is applied to generate a voxel-to-voxel motion matrix between the two CT sets. The motion is equally divided into 5 steps from inspiration to expiration and 5 steps from expiration to inspiration, generating a total of 8 phases of interpolated CT sets. An average CT image is generated from all the 10 phase CT images, including original inhale/exhale CT and 8 interpolated CT sets. Quantitative comparison shows that the reduction of image misalignment artifacts using the average CT from the interpolation technique for PET attenuation correction is at a similar level as that using cine average CT, while the dose to the patient from the CT scans is reduced significantly. The interpolated average CT method hence provides a low dose alternative to cine CT scans for PET attenuation correction.

  8. CT angiography - arms and legs

    MedlinePlus

    ... combines a CT scan with the injection of dye. This technique is able to create pictures of ... Some exams require a special dye, called contrast, to be injected into your body before the test. Contrast helps certain areas show up better on the x- ...

  9. Pocket atlas of normal CT anatomy

    SciTech Connect

    Weinstein, J.B.; Lee, J.K.T.; Sagel, S.S.

    1985-01-01

    This book is a quick reference for interpreting CT scans of the extracranial organs. This collection of 41 CT scans covers all the major organs of the body: neck and larynx; chest; abdomen; male pelvis; and female pelvis.

  10. Surface extraction from multi-material components for metrology using dual energy CT.

    PubMed

    Heinzl, Christoph; Kastner, Johann; Gröller, Eduard

    2007-01-01

    This paper describes a novel method for creating surface models of multi-material components using dual energy computed tomography (DECT). The application scenario is metrology and dimensional measurement in industrial high resolution 3D x-ray computed tomography (3DCT). Based on the dual source / dual exposure technology this method employs 3DCT scans of a high precision micro-focus and a high energy macro-focus x-ray source. The presented work makes use of the advantages of dual x-ray exposure technology in order to facilitate dimensional measurements of multi-material components with high density material within low density material. We propose a workflow which uses image fusion and local surface extraction techniques: a prefiltering step reduces noise inherent in the data. For image fusion the datasets have to be registered. In the fusion step the benefits of both scans are combined. The structure of the specimen is taken from the low precision, blurry, high energy dataset while the sharp edges are adopted and fused into the resulting image from the high precision, crisp, low energy dataset. In the final step a reliable surface model is extracted from the fused dataset using a local adaptive technique. The major contribution of this paper is the development of a specific workflow for dimensional measurements of multi-material industrial components, which takes two x-ray CT datasets with complementary strengths and weaknesses into account. The performance of the workflow is discussed using a test specimen as well as two real world industrial parts. As result, a significant improvement in overall measurement precision, surface geometry and mean deviation to reference measurement compared to single exposure scans was facilitated.

  11. Automatic detection of significant and subtle arterial lesions from coronary CT angiography

    NASA Astrophysics Data System (ADS)

    Kang, Dongwoo; Slomka, Piotr; Nakazato, Ryo; Cheng, Victor Y.; Min, James K.; Li, Debiao; Berman, Daniel S.; Kuo, C.-C. Jay; Dey, Damini

    2012-02-01

    Visual analysis of three-dimensional (3D) Coronary Computed Tomography Angiography (CCTA) remains challenging due to large number of image slices and tortuous character of the vessels. We aimed to develop an accurate, automated algorithm for detection of significant and subtle coronary artery lesions compared to expert interpretation. Our knowledge-based automated algorithm consists of centerline extraction which also classifies 3 main coronary arteries and small branches in each main coronary artery, vessel linearization, lumen segmentation with scan-specific lumen attenuation ranges, and lesion location detection. Presence and location of lesions are identified using a multi-pass algorithm which considers expected or "normal" vessel tapering and luminal stenosis from the segmented vessel. Expected luminal diameter is derived from the scan by automated piecewise least squares line fitting over proximal and mid segments (67%) of the coronary artery, considering small branch locations. We applied this algorithm to 21 CCTA patient datasets, acquired with dual-source CT, where 7 datasets had 17 lesions with stenosis greater than or equal to 25%. The reference standard was provided by visual and quantitative identification of lesions with any >=25% stenosis by an experienced expert reader. Our algorithm identified 16 out of the 17 lesions confirmed by the expert. There were 16 additional lesions detected (average 0.13/segment); 6 out of 16 of these were actual lesions with <25% stenosis. On persegment basis, sensitivity was 94%, specificity was 86% and accuracy was 87%. Our algorithm shows promising results in the high sensitivity detection and localization of significant and subtle CCTA arterial lesions.

  12. Contextual information-aided kidney segmentation in CT sequences

    NASA Astrophysics Data System (ADS)

    Zhao, Enwei; Liang, Yanmei; Fan, Hailun

    2013-03-01

    Based on the continuity of adjacent slices in a medical image sequence, a slice-based 3-D segmentation framework is constructed to extract the intact kidney by processing all slices automatically in the whole sequence. The framework includes four sections: initial segmentation, selection of the most reliable initial segmentation, location and modification of leakage. The crucial section of the proposed framework is selecting the most reliable initial segmentation image, which will be regarded as the reference image to evaluate the continuity of the following slice. Leakage location is carried out based on the contextual features, and the local iterative thresholding (LIT) is used to modify the leakage. As test examples of the framework, abdominal computed tomography (CT) images in enhanced phases are processed to segment kidney automatically. The total of 392 CT images in 7 sequences from 3 patients are selected as training images to determine the parameters in the database, and other 898 CT images in 21 sequences from 7 patients are used as test images to evaluate the effectiveness of the method. An average of three dimensional Dice similarity coefficient (3-D DSC) of 94.7% and average symmetric surface distance (ASSD) of 0.91 mm are obtained, which indicate that the intact kidney can be perfectly extracted with hardly any leakage automatically.

  13. Dedicated Cone-Beam CT System for Extremity Imaging

    PubMed Central

    Al Muhit, Abdullah; Zbijewski, Wojciech; Thawait, Gaurav K.; Stayman, J. Webster; Packard, Nathan; Senn, Robert; Yang, Dong; Foos, David H.; Yorkston, John; Siewerdsen, Jeffrey H.

    2014-01-01

    Purpose To provide initial assessment of image quality and dose for a cone-beam computed tomographic (CT) scanner dedicated to extremity imaging. Materials and Methods A prototype cone-beam CT scanner has been developed for imaging the extremities, including the weight-bearing lower extremities. Initial technical assessment included evaluation of radiation dose measured as a function of kilovolt peak and tube output (in milliampere seconds), contrast resolution assessed in terms of the signal difference–to-noise ratio (SDNR), spatial resolution semiquantitatively assessed by using a line-pair module from a phantom, and qualitative evaluation of cadaver images for potential diagnostic value and image artifacts by an expert CT observer (musculoskeletal radiologist). Results The dose for a nominal scan protocol (80 kVp, 108 mAs) was 9 mGy (absolute dose measured at the center of a CT dose index phantom). SDNR was maximized with the 80-kVp scan technique, and contrast resolution was sufficient for visualization of muscle, fat, ligaments and/or tendons, cartilage joint space, and bone. Spatial resolution in the axial plane exceeded 15 line pairs per centimeter. Streaks associated with x-ray scatter (in thicker regions of the patient—eg, the knee), beam hardening (about cortical bone—eg, the femoral shaft), and cone-beam artifacts (at joint space surfaces oriented along the scanning plane—eg, the interphalangeal joints) presented a slight impediment to visualization. Cadaver images (elbow, hand, knee, and foot) demonstrated excellent visibility of bone detail and good soft-tissue visibility suitable to a broad spectrum of musculoskeletal indications. Conclusion A dedicated extremity cone-beam CT scanner capable of imaging upper and lower extremities (including weight-bearing examinations) provides sufficient image quality and favorable dose characteristics to warrant further evaluation for clinical use. © RSNA, 2013 Online supplemental material is available for

  14. Abdominal CT findings in small bowel perforation.

    PubMed

    Zissin, R; Osadchy, A; Gayer, G

    2009-02-01

    Small bowel perforation is an emergent medical condition for which the diagnosis is usually not made clinically but by CT, a common imaging modality used for the diagnosis of acute abdomen. Direct CT features that suggest perforation include extraluminal air and oral contrast, which are often associated with secondary CT signs of bowel pathology. This pictorial review illustrates the CT findings of small bowel perforation caused by various clinical entities.

  15. CT Scans - Multiple Languages: MedlinePlus

    MedlinePlus

    ... الأشعة المقطعية الحاسوبية - العربية Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) CT (Computerized Tomography) Scan CT ( ... 扫描 - 简体中文 (Chinese - Simplified) Bilingual PDF Health Information Translations Chinese - Traditional (繁體中文) CT (Computerized Tomography) Scan CT ( ...

  16. An Abdominal CT may be Safe in Selected Hypotensive Trauma Patients with Positive FAST Exam

    PubMed Central

    Cook, Mackenzie R.; Holcomb, John B.; Rahbar, Mohammad H.; Alarcon, Louis H.; Bulger, Eileen M.; Brasel, Karen J.; Schreiber, Martin A.

    2016-01-01

    Background Positive Focused Assessment with Sonography in Trauma (FAST) and hypotension often indicates urgent surgery. An abdomen/pelvis CT (apCT) may allow less invasive management but the delay may be associated with adverse outcomes. Methods Patients in the Prospective Observational Multicenter Major Trauma Transfusion study with hypotension and a positive FAST (HF+) who underwent a CT (apCT+) were compared to those who did not. Results Of the 92 HF+ identified, 32(35%) underwent apCT during initial evaluation and apCT was associated with decreased odds of an emergency operation, OR 0.11 95% CI (0.001–0.116) and increased odds of angiographic intervention, OR 14.3 95% CI (1.5–135). There was no significant difference in 30 day mortality or need for dialysis. Conclusion An apCt in HF+ patients is associated with reduced odds of emergency surgery, but not mortality. Select HF+ patients can safely undergo apCT to obtain clinically useful information. PMID:25805456

  17. The Beatles, the Nobel Prize, and CT scanning of the chest.

    PubMed

    Goodman, Lawrence R

    2010-01-01

    From its first test scan on a mouse, in 1967, to current medical practice, the CT scanner has become a core imaging tool in thoracic diagnosis. Initially financed by money from Beatles' record sales, the first patient scan was performed in 1971. Only 8 years later, a Nobel Prize in Physics and Medicine was awarded to Hounsfield and Cormack for their discovery. This article traces the history of CT scanner development and how each technical advance expanded chest diagnostic frontiers. Chest imaging now accounts for 30% of all CT scanning.

  18. Monitoring the Therapy of Extensive Osseous Sarcoidosis With FDG PET/CT.

    PubMed

    Yang, Hua; Numani, Shah; Liu, Shuang

    2017-02-24

    FDG PET/CT was performed in a 47-year-old man to evaluate possible malignancy of the spine revealed by MRI. The PET images revealed numerous focal FDG activity throughout the skeletal system. In addition, multiple foci of the increased activity in the mediastinal and hilar nodes were noted, suggestive of sarcoidosis, which was proven following biopsy. Therapy for sarcoidosis was initiated. In the subsequent 4 follow-up FDG PET/CT scans, the activity in both the bones and mediastinal/hilar regions fluctuated. However, anatomical abnormality in the bones on the CT images was never visualized during the entire clinical course.

  19. Microdrill Initiative - Initial Market Evaluation

    SciTech Connect

    Spears & Associates, Inc

    2003-07-01

    The U.S. Department of Energy (DOE) is launching a major research and development initiative to create a small, fast, inexpensive and environmentally friendly rig for drilling 5000 feet boreholes to investigate potential oil and gas reservoirs. DOE wishes to get input from petroleum industry operators, service companies and equipment suppliers on the operation and application of this coiled-tubing-based drilling unit. To that end, DOE has asked Spears & Associates, Inc. (SAI) to prepare a special state-of-the-market report and assist during a DOE-sponsored project-scoping workshop in Albuquerque near the end of April 2003. The scope of the project is four-fold: (1) Evaluate the history, status and future of demand for very small bore-hole drilling; (2) Measure the market for coiled tubing drilling and describe the state-of-the-art; (3) Identify companies and individuals who should have an interest in micro drilling and invite them to the DOE workshop; and (4) Participate in 3 concurrent workshop sessions, record and evaluate participant comments and report workshop conclusions.

  20. The compact tension, C(T), specimen in laminated composite testing

    SciTech Connect

    Minnetyan, L.; Chamis, C.C.

    1997-12-31

    Use of the compact tension, C(T), specimens in laminated composites testing is investigated by considering two examples. A new computational methodology that scales up constituent material properties, stress, and strain limits to the structure level is used to evaluate damage propagation stages as well as the structural fracture load. Damage initiation, growth, accumulation, progressive fracture, and ultimate fracture modes are identified. Specific dependences of C(T) specimen test characteristics on laminate configuration and composite constituent properties are quantified.

  1. CT dose equilibration and energy absorption in polyethylene cylinders with diameters from 6 to 55 cm

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2015-06-15

    Purpose: ICRU Report No. 87 Committee and AAPM Task Group 200 designed a three-sectional polyethylene phantom of 30 cm in diameter and 60 cm in length for evaluating the midpoint dose D{sub L}(0) and its rise-to-the-equilibrium curve H(L) = D{sub L}(0)/D{sub eq} from computed tomography (CT) scanning, where D{sub eq} is the equilibrium dose. To aid the use of the phantom in radiation dose assessment and to gain an understanding of dose equilibration and energy absorption in polyethylene, the authors evaluated the short (20 cm) to long (60 cm) phantom dose ratio with a polyethylene diameter of 30 cm, assessed H(L) in polyethylene cylinders of 6–55 cm in diameters, and examined energy absorption in these cylinders. Methods: A GEANT4-based Monte Carlo program was used to simulate the single axial scans of polyethylene cylinders (diameters 6–55 cm and length 90 cm, as well as diameter 30 cm and lengths 20 and 60 cm) on a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare). Axial dose distributions were computed on the phantom central and peripheral axes. An average dose over the central 23 or 100 mm region was evaluated for modeling dose measurement using a 0.6 cm{sup 3} thimble chamber or a 10 cm long pencil ion chamber, respectively. The short (20 cm) to long (90 cm) phantom dose ratios were calculated for the 30 cm diameter polyethylene phantoms scanned at four tube voltages (80–140 kV) and a range of beam apertures (1–25 cm). H(L) was evaluated using the dose integrals computed with the 90 cm long phantoms. The resultant H(L) data were subsequently used to compute the fraction of the total energy absorbed inside or outside the scan range (E{sub in}/E or E{sub out}/E) on the phantom central and peripheral axes, where E = LD{sub eq} was the total energy absorbed along the z axis. Results: The midpoint dose in the 60 cm long polyethylene phantom was equal to that in the 90 cm long polyethylene phantom. The short-to-long phantom dose

  2. Ultra low-dose CT attenuation correction in PET SPM

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Jen; Yang, Bang-Hung; Tsai, Chia-Jung; Yang, Ching-Ching; Lee, Jason J. S.; Wu, Tung-Hsin

    2010-07-01

    The use of CT images for attenuation correction (CTAC) allows significantly shorter scanning time and a high quality noise-free attenuation map compared with conventional germanium-68 transmission scan because at least 10 4 times greater of photon flux would be generated from a CT scan under standard operating condition. However, this CTAC technique would potentially introduce more radiation risk to the patients owing to the higher radiation exposure from CT scan. Statistic parameters mapping (SPM) is a prominent technique in nuclear medicine community for the analysis of brain imaging data. The purpose of this study is to assess the feasibility of low-dose CT (LDCT) and ultra low-dose CT (UDCT) in PET SPM applications. The study was divided into two parts. The first part was to evaluate of tracer uptake distribution pattern and quantity analysis by using the striatal phantom to initially assess the feasibility of AC for clinical purpose. The second part was to examine the group SPM analysis using the Hoffman brain phantom. The phantom study is to simulate the human brain and to reduce the experimental uncertainty of real subjects. The initial studies show that the results of PET SPM analysis have no significant differences between LDCT and UDCT comparing to the current used default CTAC. Moreover, the dose of the LDCT is lower than that of the default CT by a factor of 9, and UDCT can even yield a 42 times dose reduction. We have demonstrated the SPM results while using LDCT and UDCT for PET AC is comparable to those using default CT setting, suggesting their feasibility in PET SPM applications. In addition, the necessity of UDCT in PET SPM studies to avoid excess radiation dose is also evident since most of the subjects involved are non-cancer patients or children and some normal subjects are even served as a comparison group in the experiment. It is our belief that additional attempts to decrease the radiation dose would be valuable, especially for children and

  3. Computer aided detection of oral lesions on CT images

    NASA Astrophysics Data System (ADS)

    Galib, S.; Islam, F.; Abir, M.; Lee, H. K.

    2015-12-01

    Oral lesions are important findings on computed tomography (CT) images. In this study, a fully automatic method to detect oral lesions in mandibular region from dental CT images is proposed. Two methods were developed to recognize two types of lesions namely (1) Close border (CB) lesions and (2) Open border (OB) lesions, which cover most of the lesion types that can be found on CT images. For the detection of CB lesions, fifteen features were extracted from each initial lesion candidates and multi layer perceptron (MLP) neural network was used to classify suspicious regions. Moreover, OB lesions were detected using a rule based image processing method, where no feature extraction or classification algorithm were used. The results were validated using a CT dataset of 52 patients, where 22 patients had abnormalities and 30 patients were normal. Using non-training dataset, CB detection algorithm yielded 71% sensitivity with 0.31 false positives per patient. Furthermore, OB detection algorithm achieved 100% sensitivity with 0.13 false positives per patient. Results suggest that, the proposed framework, which consists of two methods, has the potential to be used in clinical context, and assist radiologists for better diagnosis.

  4. Removing blooming artifacts with binarized deconvolution in cardiac CT

    NASA Astrophysics Data System (ADS)

    Hofmann, Christian; Knaup, Michael; Kachelrieß, Marc

    2014-03-01

    With modern CT scanners, detection and classification of coronary artery disease has become a routine applica- tion in cardiac CT. It poses a desirable non-invasive alternative to the invasive coronary angiography, which is the current clinical gold standard. However, the accuracy of cardiac CT depends on the spatial resolution of the imaging system. The limited spatial resolution leads to blooming artifacts, arising from hyper-dense calcification deposits in the arterial walls. This blooming leads to an overestimation of the degree of luminal narrowing and to loss of the morphology of the calcified region. We propose an image-based algorithm, which aims at removing the blooming and estimating the correct CT-value and morphology of the calcification. The method is based on the assumption, that each calcification consists of a compact region which has an almost constant density and attenuation. This knowledge is incorporated into an iterative deconvolution algorithm in image space. We quantitatively assess the accuracy of the proposed algorithm on analytically simulated phantom data. Qualita- tive results of clinical patient data are presented as well. In both cases, the proposed method outperforms the compared algorithms. The initial patient data results are promising. However, an ex vivo study has to be done to confirm the quantitative results of the simulation study with real specimen.

  5. Quality control and patient dosimetry in dental cone beam CT.

    PubMed

    Vassileva, J; Stoyanov, D

    2010-01-01

    This paper presents the initial experience in performing quality control and patient dose measurements in a cone beam computed tomography (CT) scanner (ILUMA Ultra, IMTEC Imaging, USA) for oral and maxillofacial radiology. The X-ray tube and the generator were tested first, including the kVp accuracy and precision, and the half-value layer (HVL). The following tests specific for panoramic dental systems were also performed: tube output, beam size and beam alignment to the detector. The tests specific for CT included measurements of noise and CT numbers in water and in air, as well as the homogeneity of CT numbers. The most appropriate dose quantity was found to be the air kerma-area product (KAP) measured with a KAP-metre installed at the tube exit. KAP values were found to vary from 110 to 185 microGy m(2) for available adult protocols and to be 54 microGy m(2) for the paediatric protocol. The effective dose calculated with the software PCXMC (STUK, Finland) was 0.05 mSv for children and 0.09-0.16 mSv for adults.

  6. Cervical tuberculous adenitis: CT manifestations

    SciTech Connect

    Reede, D.L.; Bergeron, R.T.

    1985-03-01

    Cervical tuberculous adenitis is being seen with increasing frequency in the United States; in the appropriate clinical setting it should be included in the differential diagnosis of an asymptomatic neck mass. Patients are typically young adults who are recent arrivals from Southeast Asia. A history of tuberculosis is not always elicited nor is the chest radiograph always abnormal. All of these patients have positive purified protein derivative tests unless they are anergic. The CT findings may lead to the diagnosis. Several CT patterns of nodal disease can be seen in tuberculous adenitis; some may mimic benign and neoplastic disease. The presence of a multiloculated or multichambered (conglomerate nodal) mass with central lucency and thick rims of enhancement and minimally effaced fascial planes is highly suggestive of tuberculous adenitis, especially if the patient has a strongly positive tuberculosis skin test.

  7. Dual energy CT for attenuation correction with PET/CT

    SciTech Connect

    Xia, Ting; Alessio, Adam M.; Kinahan, Paul E.

    2014-01-15

    Purpose: The authors evaluate the energy dependent noise and bias properties of monoenergetic images synthesized from dual-energy CT (DECT) acquisitions. These monoenergetic images can be used to estimate attenuation coefficients at energies suitable for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This is becoming more relevant with the increased use of quantitative imaging by PET/CT and SPECT/CT scanners. There are, however, potential variations in the noise and bias of synthesized monoenergetic images as a function of energy. Methods: The authors used analytic approximations and simulations to estimate the noise and bias of synthesized monoenergetic images of water-filled cylinders with different shapes and the NURBS-based cardiac-torso (NCAT) phantom from 40 to 520 keV, the range of SPECT and PET energies. The dual-kVp spectra were based on the GE Lightspeed VCT scanner at 80 and 140 kVp with added filtration of 0.5 mm Cu. The authors evaluated strategies of noise suppression with sinogram smoothing and dose minimization with reduction of tube currents at the two kVp settings. The authors compared the impact of DECT-based attenuation correction with single-kVp CT-based attenuation correction on PET quantitation for the NCAT phantom for soft tissue and high-Z materials of bone and iodine contrast enhancement. Results: Both analytic calculations and simulations displayed the expected minimum noise value for a synthesized monoenergetic image at an energy between the mean energies of the two spectra. In addition the authors found that the normalized coefficient of variation in the synthesized attenuation map increased with energy but reached a plateau near 160 keV, and then remained constant with increasing energy up to 511 keV and beyond. The bias was minimal, as the linear attenuation coefficients of the synthesized monoenergetic images were within 2.4% of the known true values across the entire energy range

  8. Ultra-low dose CT attenuation correction for PET/CT

    NASA Astrophysics Data System (ADS)

    Xia, Ting; Alessio, Adam M.; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E.

    2012-01-01

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging.

  9. Postmortem pulmonary CT in hypothermia.

    PubMed

    Schweitzer, Wolf; Thali, Michael; Giugni, Giannina; Winklhofer, Sebastian

    2014-12-01

    Fatal hypothermia has been associated with pulmonary edema. With postmortem full body computed tomography scanning (PMCT), the lungs can also be examined for CT attenuation. In fatal hypothermia cases low CT attenuation appeared to prevail in the lungs. We compared 14 cases of fatal hypothermia with an age-sex matched control group. Additionally, 4 cases of carbon monoxide (CO) poisoning were examined. Furthermore, 10 test cases were examined to test predictability based on PMCT. Two readers measured CT attenuation on four different axial slices across the lungs (blinded to case group and other reader's results). Hypothermia was associated with statistically significantly lower lung PMCT attenuation and lower lung weights than controls, and there was a dose-effect relationship at an environmental temperature cutoff of 2 °C. CO poisoning yielded low pulmonary attenuation but higher lung weights. General model based prediction yielded a 94% probability for fatal hypothermia deaths and a 21% probability for non-hypothermia deaths in the test group. Increased breathing rate is known to accompany both CO poisoning and hypothermia, so this could partly explain the low PMCT lung attenuation due to an oxygen dissociation curve left shift. A more marked distension in fatal hypothermia, compared to CO poisoning, indicates that further, possibly different mechanisms, are involved in these cases. Increased dead space and increased stiffness to deflation (but not inflation) appear to be effects of inhaling cold air (but not CO) that may explain the difference in low PMCT attenuation seen in hypothermia cases.

  10. CT-assisted agile manufacturing

    NASA Astrophysics Data System (ADS)

    Stanley, James H.; Yancey, Robert N.

    1996-11-01

    The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.

  11. Quality control of CT systems by automated monitoring of key performance indicators: a two-year study.

    PubMed

    Nowik, Patrik; Bujila, Robert; Poludniowski, Gavin; Fransson, Annette

    2015-07-08

    The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two-year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service.

  12. Dose calculation using megavoltage cone-beam CT

    SciTech Connect

    Morin, Olivier . E-mail: Morin@radonc17.ucsf.edu; Chen, Josephine; Aubin, Michele; Gillis, Amy; Aubry, Jean-Francois; Bose, Supratik; Chen Hong; Descovich, Martina; Xia Ping; Pouliot, Jean

    2007-03-15

    Purpose: To demonstrate the feasibility of performing dose calculation on megavoltage cone-beam CT (MVCBCT) of head-and-neck patients in order to track the dosimetric errors produced by anatomic changes. Methods and Materials: A simple geometric model was developed using a head-size water cylinder to correct an observed cupping artifact occurring with MVCBCT. The uniformity-corrected MVCBCT was calibrated for physical density. Beam arrangements and weights from the initial treatment plans defined using the conventional CT were applied to the MVCBCT image, and the dose distribution was recalculated. The dosimetric inaccuracies caused by the cupping artifact were evaluated on the water phantom images. An ideal test patient with no observable anatomic changes and a patient imaged with both CT and MVCBCT before and after considerable weight loss were used to clinically validate MVCBCT for dose calculation and to determine the dosimetric impact of large anatomic changes. Results: The nonuniformity of a head-size water phantom ({approx}30%) causes a dosimetric error of less than 5%. The uniformity correction method developed greatly reduces the cupping artifact, resulting in dosimetric inaccuracies of less than 1%. For the clinical cases, the agreement between the dose distributions calculated using MVCBCT and CT was better than 3% and 3 mm where all tissue was encompassed within the MVCBCT. Dose-volume histograms from the dose calculations on CT and MVCBCT were in excellent agreement. Conclusion: MVCBCT can be used to estimate the dosimetric impact of changing anatomy on several structures in the head-and-neck region.

  13. CT of 338 active professional boxers.

    PubMed

    Jordan, B D; Jahre, C; Hauser, W A; Zimmerman, R D; Zarrelli, M; Lipsitz, E C; Johnson, V; Warren, R F; Tsairis, P; Folk, F S

    1992-11-01

    Computed tomography (CT) was performed in 338 active professional boxers. CT scans were abnormal in 25 boxers (7%). The most common CT abnormality was brain atrophy (22 cases). Focal lesions of low attenuation consistent with posttraumatic encephalomalacia were noted in only three boxers. Boxers with abnormal CT scans did not differ from those with borderline or normal CT scans in regard to age, win-loss record, number of bouts, or history of an abnormal electroencephalogram. Thirty-seven boxers with borderline CT scans (49%) and 17 with abnormal CT scans (68%) reported a previous technical knockout (TKO) or knockout (KO), compared with only 89 (37%) of the 238 boxers with normal CT scans (P < .01). Brain atrophy was noted more frequently in boxers with a large cavum septum pellucidum (CSP) than in those with a small or no CSP (P < .05). Boxers with abnormal or borderline CT scans who experienced a TKO or KO were slightly older than those with normal CT scans and a history of a TKO or KO (P < .05).

  14. Modern CT applications in veterinary medicine.

    PubMed

    Garland, Melissa R; Lawler, Leo P; Whitaker, Brent R; Walker, Ian D F; Corl, Frank M; Fishman, Elliot K

    2002-01-01

    Although computed tomography (CT) is used primarily for diagnosis in humans, it can also be used to diagnose disease in veterinary patients. CT and associated three-dimensional reconstruction have a role in diagnosis of a range of illnesses in a variety of animals. In a sea turtle with failure to thrive, CT showed a nodal mass in the chest, granulomas in the lungs, and a ball in the stomach. CT of a sea dragon with balance and movement problems showed absence of the swim bladder. In a sloth with failure to thrive, CT allowed diagnosis of a coin in the intestine. CT of a puffin with failure to thrive showed a mass in the chest, which was found to be a hematoma. In a smooth-sided toad whose head was tilted to one side and who was circling in that direction, CT showed partial destruction of the temporal bone. CT of a domestic cat with listlessness showed a mass with focal calcification, which proved to be a leiomyosarcoma. CT of a sea otter showed pectus excavatum, which is caused by the animal smashing oysters against its chest. In a Japanese koi with abdominal swelling, CT allowed diagnosis of a hepatoma.

  15. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner.

    PubMed

    Schwahofer, Andrea; Bär, Esther; Kuchenbecker, Stefan; Grossmann, J Günter; Kachelrieß, Marc; Sterzing, Florian

    2015-12-01

    Metal artifacts in computed tomography CT images are one of the main problems in radiation oncology as they introduce uncertainties to target and organ at risk delineation as well as dose calculation. This study is devoted to metal artifact reduction (MAR) based on the monoenergetic extrapolation of a dual energy CT (DECT) dataset. In a phantom study the CT artifacts caused by metals with different densities: aluminum (ρ Al=2.7 g/cm(3)), titanium (ρ Ti=4.5 g/cm(3)), steel (ρ steel=7.9 g/cm(3)) and tungsten (ρ W=19.3g/cm(3)) have been investigated. Data were collected using a clinical dual source dual energy CT (DECT) scanner (Siemens Sector Healthcare, Forchheim, Germany) with tube voltages of 100 kV and 140 kV(Sn). For each tube voltage the data set in a given volume was reconstructed. Based on these two data sets a voxel by voxel linear combination was performed to obtain the monoenergetic data sets. The results were evaluated regarding the optical properties of the images as well as the CT values (HU) and the dosimetric consequences in computed treatment plans. A data set without metal substitute served as the reference. Also, a head and neck patient with dental fillings (amalgam ρ=10 g/cm(3)) was scanned with a single energy CT (SECT) protocol and a DECT protocol. The monoenergetic extrapolation was performed as described above and evaluated in the same way. Visual assessment of all data shows minor reductions of artifacts in the images with aluminum and titanium at a monoenergy of 105 keV. As expected, the higher the densities the more distinctive are the artifacts. For metals with higher densities such as steel or tungsten, no artifact reduction has been achieved. Likewise in the CT values, no improvement by use of the monoenergetic extrapolation can be detected. The dose was evaluated at a point 7 cm behind the isocenter of a static field. Small improvements (around 1%) can be seen with 105 keV. However, the dose uncertainty remains of the order of 10

  16. Dictionary learning-based CT detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Wu, Panpan; Xia, Kewen; Zhang, Yanbo; Qian, Xiaohua; Wang, Ge; Yu, Hengyong

    2016-10-01

    Segmentation of lung features is one of the most important steps for computer-aided detection (CAD) of pulmonary nodules with computed tomography (CT). However, irregular shapes, complicated anatomical background and poor pulmonary nodule contrast make CAD a very challenging problem. Here, we propose a novel scheme for feature extraction and classification of pulmonary nodules through dictionary learning from training CT images, which does not require accurately segmented pulmonary nodules. Specifically, two classification-oriented dictionaries and one background dictionary are learnt to solve a two-category problem. In terms of the classification-oriented dictionaries, we calculate sparse coefficient matrices to extract intrinsic features for pulmonary nodule classification. The support vector machine (SVM) classifier is then designed to optimize the performance. Our proposed methodology is evaluated with the lung image database consortium and image database resource initiative (LIDC-IDRI) database, and the results demonstrate that the proposed strategy is promising.

  17. CT findings of accidental fish bone ingestion and its complications

    PubMed Central

    Venkatesh, Sandeep Halagatti; Karaddi, Nanda Kumar Venkatanarasimha

    2016-01-01

    Fish bone is one of the most common accidentally ingested foreign bodies, and patients commonly present to the emergency department with nonspecific symptoms. Fortunately, most of them are asymptomatic and exit the gastrointestinal tract spontaneously. However, fish bones can get impacted in any part of the aerodigestive tract and cause symptoms. Occasionally, they are asymptomatic initially after ingestion and may present remotely at a later date with serious complications such as gastrointestinal tract perforation, obstruction, and abscess formation. Radiographs are most often negative. High degree of clinical suspicion and familiarity with CT appearance can help to detect fish bone along with any associated complications, and direct further management. We describe and illustrate various CT presentations of ingested fish bone and its complications. PMID:26714057

  18. In vivo 3D PIXE-micron-CT imaging of Drosophila melanogaster using a contrast agent

    NASA Astrophysics Data System (ADS)

    Matsuyama, Shigeo; Hamada, Naoki; Ishii, Keizo; Nozawa, Yuichiro; Ohkura, Satoru; Terakawa, Atsuki; Hatori, Yoshinobu; Fujiki, Kota; Fujiwara, Mitsuhiro; Toyama, Sho

    2015-04-01

    In this study, we developed a three-dimensional (3D) computed tomography (CT) in vivo imaging system for imaging small insects with micrometer resolution. The 3D CT imaging system, referred to as 3D PIXE-micron-CT (PIXEμCT), uses characteristic X-rays produced by ion microbeam bombardment of a metal target. PIXEμCT was used to observe the body organs and internal structure of a living Drosophila melanogaster. Although the organs of the thorax were clearly imaged, the digestive organs in the abdominal cavity could not be clearly discerned initially, with the exception of the rectum and the Malpighian tubule. To enhance the abdominal images, a barium sulfate powder radiocontrast agent was added. For the first time, 3D images of the ventriculus of a living D. melanogaster were obtained. Our results showed that PIXEμCT can provide in vivo 3D-CT images that reflect correctly the structure of individual living organs, which is expected to be very useful in biological research.

  19. Prevalence of abnormal CT findings in patients with proven ovarian torsion and a proposed triage schema.

    PubMed

    Moore, Christopher; Meyers, Arthur B; Capotasto, Juliana; Bokhari, Jamal

    2009-03-01

    Many women with ovarian torsion present with nonspecific abdominal/pelvic pain and initially receive computed tomography (CT). We hypothesize that the CT scans preformed on these women will all show abnormalities of the involved ovary. Our purpose is to review cases of surgically proven ovarian torsion at our institution over the last 20 years, assessing CT findings in women with ovarian torsion. A retrospective review of all patients at our institution with surgically proven ovarian torsion from 1985-2005 was conducted. Two physicians reviewed available CT reports, and a radiologist reviewed all available images. CT was obtained in 33% of the 167 patients. Dictated reports were available for 28 studies; all described an enlarged ovary, ovarian cyst, or adnexal mass of the involved ovary. Radiologist review of the available CT images confirmed these findings. This series supports the claim that a CT scan with well-visualized normal appearing ovaries rules out ovarian torsion, while abnormal pelvic findings or failure to visualize the ovaries in women with pelvic pain necessitates further evaluation of torsion.

  20. Automatic co-segmentation of lung tumor based on random forest in PET-CT images

    NASA Astrophysics Data System (ADS)

    Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian

    2016-03-01

    In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.

  1. Cone beam CT assisted re-treatment of class 3 invasive cervical resorption

    PubMed Central

    Krishnan, Unni; Moule, Alex J; Alawadhi, Abdulwahab

    2015-01-01

    Invasive cervical root resorption is an uncommon external root resorption which initiates at the cervical aspect of the tooth. This case report involves a case of cervical root resorption which was initially misdiagnosed and managed as cervical root caries. It was later diagnosed with cone beam CT and the lesion microsurgically removed and restored with resin modified glass ionomer cement. The importance of increasing awareness of this uncommon pathology and the role of cone beam CT in mapping the extent of the lesion is emphasised. PMID:25795743

  2. [Diagnosis and differential diagnosis of cerebro-vascular malformations by CT (author's transl)].

    PubMed

    Schumacher, M; Stoeter, P; Voigt, K

    1980-03-01

    In 38 patients, the diagnosis of a cerebrovascular malformation (17 arteriovenous agniomas including one low-flow- and two venous angiomas; 10 aneurysms; 4 arteriovenous fistulae of the cavernous sinus, the tentorium and one of the Great Vein of Galen; 6 megadolical basilar arteries) was initially made by computertomographic (CT) examination, including contrast enhancement. The characteristic and pathognomonic CT findings are described and compared with those of cerebral angiography also done in these cases. The problems of differential diagnosis and the reasons for a false CT diagnosis in 5 other patients with a cerebro-vascular malformation are investigated; and the diagnostic value of cerebral angiography and CT is discussed and their complementary functions are being pointed out.

  3. Foreign body in urinary bladder--early CT cystogram is investigation of choice.

    PubMed

    Shoaib, Raja Farhat; Anwar, Fahim; Barron, Dominic

    2008-05-01

    Extra peritoneal bladder injuries are very difficult to diagnose on clinical examination alone. CT-scan with cystogram (Contrast: Ultavista300) is a reliable diagnostic tool to evaluate such injuries at an early stage. For accurate diagnosis of bladder injury, enhancement of bladder contents is necessary otherwise extravasated urine can be mistaken for haematoma or ascites. Retrograde filling of bladder with minimum 250 -300 ml of contrast material is necessary before performing abdominopelvic CT to rule out any form of bladder injury. Therefore in case of suspected bladder injury CT cystogram should be performed at the time of initial CT examination in the emergency room. We report a case of extraperitoneal bladder injury and foreign body in urinary bladder after a firework injury.

  4. Comparison of stroke infarction between CT perfusion and diffusion weighted imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Abd. Rahni, Ashrani Aizzuddin; Arka, Israna Hossain; Chellappan, Kalaivani; Mukari, Shahizon Azura; Law, Zhe Kang; Sahathevan, Ramesh

    2016-03-01

    In this paper we present preliminary results of comparison of automatic segmentations of the infarct core, between that obtained from CT perfusion (based on time to peak parameter) and diffusion weighted imaging (DWI). For each patient, the two imaging volumes were automatically co-registered to a common frame of reference based on an acquired CT angiography image. The accuracy of image registration is measured by the overlap of the segmented brain from both images (CT perfusion and DWI), measured within their common field of view. Due to the limitations of the study, DWI was acquired as a follow up scan up to a week after initial CT based imaging. However, we found significant overlap of the segmented brain (Jaccard indices of approximately 0.8) and the percentage of infarcted brain tissue from the two modalities were still fairly highly correlated (correlation coefficient of approximately 0.9). The results are promising with more data needed in future for clinical inference.

  5. Unusual Horner's Syndrome in Recurrent Breast Cancer: Evaluation Using (18)F-FDG PET/CT.

    PubMed

    Park, Sohyun; Kim, Tae Sung; Kim, Seok-Ki

    2017-03-01

    (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is a widely used imaging modality in the initial diagnosis of cancer, treatment response evaluation and detection of recurrence. Herein, we present the case of a 39-year-old female who presented right ptosis on the follow-up of breast cancer after surgery. Clinicians suspected Horner's syndrome, and the patient underwent FDG PET/CT for the evaluation of recurrence that could cause Horner's syndrome. FDG PET/CT demonstrated a focal hypermetabolic lesion in the right cervicothoracic junction area, corresponding to the preganglionic cervical sympathetic trunk. A subsequent needle biopsy was done, and the lesion was confirmed as metastatic ductal carcinoma. In this case, we could detect the exact location of the recurring lesion that caused Horner's syndrome using FDG PET/CT.

  6. Response of osteosarcoma to preoperative intravenous high-dose methotrexate chemotherapy: CT evaluation

    SciTech Connect

    Mail, J.T.; Cohen, M.D.; Mirkin, L.D.; Provisor, A.J.

    1985-01-01

    The histologic response of an osteosarcoma to preamputation high-dose methotrexate therapy can be used to determine the optimum maintenance chemotherapy regimen to be administered after amputation. This study evaluates computed tomography (CT) as a method of assessing the response of the tumor to the methotrexate therapy. Nine patients with nonmetastatic osteosarcoma of an extremity had a CT scan of the tumor at initial presentation. This was compared with a second CT scan after four courses of high-dose intravenous methotrexate. Each set of scans was evaluated for changes in bony destruction, soft-tissue mass, pattern of calcification, and extent of tumor involvement of the marrow cavity. These findings were correlated with the histologic response of the tumor as measured by the degree of tumor necrosis. The changes seen on CT correlated well with the degree of the histologic response in seven of the nine patients.

  7. Functional Imaging: CT and MRI

    PubMed Central

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Synopsis Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advances in magnetic resonance imaging (MRI) of the lung include gadolinium-enhanced perfusion imaging and hyperpolarized helium imaging, which can allow imaging of pulmonary ventilation and .measurement of the size of emphysematous spaces. PMID:18267192

  8. KC-X: Dual Source Procurement Is the Only Option

    DTIC Science & Technology

    2010-04-01

    F-15 non-mission AU/ACSC/Gilpatrick, B /AY10 6 critical flight operations were suspended following the crash of a Missouri Air National Guard...of jet fuel. 37 Despite the significantly larger KC-10 and its mammoth 350,000 pound fuel capacity, there are debates about which is more capable...tankers) simply ran out of space. 53 The larger the aircraft the more space necessary for parking , maintenance, and general support functions. When

  9. Cortical Tremor (CT) with coincident orthostatic movements.

    PubMed

    Termsarasab, Pichet; Frucht, Steven J

    2015-01-01

    Cortical tremor (CT) is a form of cortical reflex myoclonus that can mimic essential tremor (ET). Clinical features that are helpful in distinguishing CT from ET are the irregular and jerky appearance of the movements. We report two patients with CT with coexisting orthostatic movements, either orthostatic tremor (OT) or myoclonus, who experienced functional improvement in both cortical myoclonus and orthostatic movements when treated with levetiracetam.

  10. Pediatric CT and radiation: our responsibility

    NASA Astrophysics Data System (ADS)

    Frush, Donald P.

    2009-02-01

    In order to discuss the cost-benefit ratio of CT examinations in children, one must be familiar with the reasons why CT can provide a high collective or individual dose. The reasons include increasing CT use as well as lack of attention to dose reduction strategies. While those have been substantial efforts for dose reduction, additional work is necessary to prevent unnecessary radiation exposure. This responsibility is shared between science and medicine, industry, regulatory agencies, and patients as well.

  11. Multimodal CT in stroke imaging: new concepts.

    PubMed

    Ledezma, Carlos J; Wintermark, Max

    2009-01-01

    A multimodal CT protocol provides a comprehensive noninvasive survey of acute stroke patients with accurate demonstration of the site of arterial occlusion and its hemodynamic tissue status. It combines widespread availability with the ability to provide functional characterization of cerebral ischemia, and could potentially allow more accurate selection of candidates for acute stroke reperfusion therapy. This article discusses the individual components of multimodal CT and addresses the potential role of a combined multimodal CT stroke protocol in acute stroke therapy.

  12. Radiation dose measurements in coronary CT angiography

    PubMed Central

    Sabarudin, Akmal; Sun, Zhonghua

    2013-01-01

    Coronary computed tomography (CT) angiography is associated with high radiation dose and this has raised serious concerns in the literature. Awareness of various parameters for dose estimates and measurements of coronary CT angiography plays an important role in increasing our understanding of the radiation exposure to patients, thus, contributing to the implementation of dose-saving strategies. This article provides an overview of the radiation dose quantity and its measurement during coronary CT angiography procedures. PMID:24392190

  13. Normal conus medullaris: CT criteria for recognition

    SciTech Connect

    Grogan, J.P.; Daniels, D.L.; Williams, I.L.; Rauschning, W.; Haughton, V.M.

    1984-06-01

    The normal CT configuration and dimension of the conus medullaris and adjacent spinal cord were determined in 30 patients who had no clinical evidence of conus compression. CT studies were also correlated with anatomic sections in cadavers. The normal conus on CT has a distinctive oval configuration, an arterior sulcus, and a posterior promontory. The anteroposterior diameter ranged from 5 to 8 mm; the transverse diameter from 8 to 11 mm. Intramedullary processes altered both the dimensions and configuration of the conus.

  14. Diagnostic Accuracy of CT Enterography for Active Inflammatory Terminal Ileal Crohn Disease: Comparison of Full-Dose and Half-Dose Images Reconstructed with FBP and Half-Dose Images with SAFIRE.

    PubMed

    Gandhi, Namita S; Baker, Mark E; Goenka, Ajit H; Bullen, Jennifer A; Obuchowski, Nancy A; Remer, Erick M; Coppa, Christopher P; Einstein, David; Feldman, Myra K; Kanmaniraja, Devaraju; Purysko, Andrei S; Vahdat, Noushin; Primak, Andrew N; Karim, Wadih; Herts, Brian R

    2016-08-01

    Purpose To compare the diagnostic accuracy and image quality of computed tomographic (CT) enterographic images obtained at half dose and reconstructed with filtered back projection (FBP) and sinogram-affirmed iterative reconstruction (SAFIRE) with those of full-dose CT enterographic images reconstructed with FBP for active inflammatory terminal or neoterminal ileal Crohn disease. Materials and Methods This retrospective study was compliant with HIPAA and approved by the institutional review board. The requirement to obtain informed consent was waived. Ninety subjects (45 with active terminal ileal Crohn disease and 45 without Crohn disease) underwent CT enterography with a dual-source CT unit. The reference standard for confirmation of active Crohn disease was active terminal ileal Crohn disease based on ileocolonoscopy or established Crohn disease and imaging features of active terminal ileal Crohn disease. Data from both tubes were reconstructed with FBP (100% exposure); data from the primary tube (50% exposure) were reconstructed with FBP and SAFIRE strengths 3 and 4, yielding four datasets per CT enterographic examination. The mean volume CT dose index (CTDIvol) and size-specific dose estimate (SSDE) at full dose were 13.1 mGy (median, 7.36 mGy) and 15.9 mGy (median, 13.06 mGy), respectively, and those at half dose were 6.55 mGy (median, 3.68 mGy) and 7.95 mGy (median, 6.5 mGy). Images were subjectively evaluated by eight radiologists for quality and diagnostic confidence for Crohn disease. Areas under the receiver operating characteristic curves (AUCs) were estimated, and the multireader, multicase analysis of variance method was used to compare reconstruction methods on the basis of a noninferiority margin of 0.05. Results The mean AUCs with half-dose scans (FBP, 0.908; SAFIRE 3, 0.935; SAFIRE 4, 0.924) were noninferior to the mean AUC with full-dose FBP scans (0.908; P < .003). The proportion of images with inferior quality was significantly higher with all

  15. SU-E-J-267: Change in Mean CT Intensity of Lung Tumors During Radiation Treatment

    SciTech Connect

    Mahon, R; Tennyson, N; Weiss, E; Hugo, G

    2015-06-15

    Purpose: To evaluate CT intensity change of lung tumors during radiation therapy. Methods: Repeated 4D CT images were acquired on a CT simulator during the course of therapy for 27 lung cancer patients on IRB approved protocols. All subjects received definitive radiation treatment ± chemotherapy. CT scans were completed prior to treatment, and 2–7 times during the treatment course. Primary tumor was delineated by an experienced Radiation Oncologist. Contours were thresholded between −100 HU and 200 HU to remove airways and bone. Correlations between the change in the mean tumor intensity and initial tumor intensity, SUVmax, and tumor volume change rate were investigated. Reproducibility was assessed by evaluating the variation in mean intensity over all phases in 4DCT, for a subgroup of 19 subjects. Results: Reproducibility of tumor intensity between phases as characterized by the root mean square of standard deviation across 19 subjects was 1.8 HU. Subjects had a mean initial tumor intensity of 16.5 ± 11.6 HU and an overall reduction in HU by 10.3 ± 8.5 HU. Evaluation of the changes in tumor intensity during treatment showed a decrease of 0.3 ± 0.3 HU/day for all subjects, except three. No significant correlation was found between change in HU/day and initial HU intensity (p=0.53), initial PET SUVmax (p=0.69), or initial tumor volume (p=0.70). The rate of tumor volume change was weakly correlated (R{sup 2}=0.05) with HU change (p=0.01). Conclusion: Most lung cancer subjects showed a marked trend of decreasing mean tumor CT intensity throughout radiotherapy, including early in the treatment course. Change in HU/day is not correlated with other potential early predictors for response, such as SUV and tumor volume change. This Result supports future studies to evaluate change in tumor intensity on CT as an early predictor of response.

  16. Intracranial CT angiography obtained from a cerebral CT perfusion examination

    SciTech Connect

    Gratama van Andel, H. A. F.; Venema, H. W.; Majoie, C. B.; Den Heeten, G. J.; Grimbergen, C. A.; Streekstra, G. J.

    2009-04-15

    CT perfusion (CTP) examinations of the brain are performed increasingly for the evaluation of cerebral blood flow in patients with stroke and vasospasm after subarachnoid hemorrhage. Of the same patient often also a CT angiography (CTA) examination is performed. This study investigates the possibility to obtain CTA images from the CTP examination, thereby possibly obviating the CTA examination. This would save the patient exposure to radiation, contrast, and time. Each CTP frame is a CTA image with a varying amount of contrast enhancement and with high noise. To improve the contrast-to-noise ratio (CNR) we combined all 3D images into one 3D image after registration to correct for patient motion between time frames. Image combination consists of weighted averaging in which the weighting factor of each frame is proportional to the arterial contrast. It can be shown that the arterial CNR is maximized in this procedure. An additional advantage of the use of the time series of CTP images is that automatic differentiation between arteries and veins is possible. This feature was used to mask veins in the resulting 3D images to enhance visibility of arteries in maximum intensity projection (MIP) images. With a Philips Brilliance 64 CT scanner (64x0.625 mm) CTP examinations of eight patients were performed on 80 mm of brain using the toggling table technique. The CTP examination consisted of a time series of 15 3D images (2x64x0.625 mm; 80 kV; 150 mAs each) with an interval of 4 s. The authors measured the CNR in images obtained with weighted averaging, images obtained with plain averaging, and images with maximal arterial enhancement. The authors also compared CNR and quality of the images with that of regular CTA examinations and examined the effectiveness of automatic vein masking in MIP images. The CNR of the weighted averaged images is, on the average, 1.73 times the CNR of an image at maximal arterial enhancement in the CTP series, where the use of plain averaging

  17. Point Organ Radiation Dose in Abdominal CT: Effect of Patient Off-Centering in an Experimental Human Cadaver Study.

    PubMed

    Ali Khawaja, Ranish Deedar; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Lira, Diego; Zhang, Da; Liu, Bob; Primak, Andrew; Xu, George; Kalra, Mannudeep K

    2017-01-10

    To determine the effect of patient off-centering on point organ radiation dose measurements in a human cadaver scanned with routine abdominal CT protocol. A human cadaver (88 years, body-mass-index 20 kg/m(2)) was scanned with routine abdominal CT protocol on 128-slice dual source MDCT (Definition Flash, Siemens). A total of 18 scans were performed using two scan protocols (a) 120 kV-200 mAs fixed-mA (CTDIvol 14 mGy) (b) 120 kV-125 ref mAs (7 mGy) with automatic exposure control (AEC, CareDose 4D) at three different positions (a) gantry isocenter, (b) upward off-centering and (c) downward off-centering. Scanning was repeated three times at each position. Six thimble (in liver, stomach, kidney, pancreas, colon and urinary bladder) and four MOSFET dosimeters (on cornea, thyroid, testicle and breast) were placed for calculation of measured point organ doses. Organ dose estimations were retrieved from dose-tracking software (eXposure, Radimetrics). Statistical analysis was performed using analysis of variance. There was a significant difference between the trends of point organ doses with AEC and fixed-mA at all three positions (p < 0.01). Variation in point doses between fixed-mA and AEC protocols were statistically significant across all organs at all Table positions (p < 0.001). There was up to 5-6% decrease in point doses with upward off-centering and in downward off-centering. There were statistical significant differences in point doses from dosimeters and dose-tracking software (mean difference for internal organs, 5-36% for fixed-mA & 7-48% for AEC protocols; p < 0.001; mean difference for surface organs, >92% for both protocols; p < 0.0001). For both protocols, the highest mean difference in point doses was found for stomach and lowest for colon. Measured absorbed point doses in abdominal CT vary with patient-centering in the gantry isocenter. Due to lack of consideration of patient positioning in the dose estimation on automatic software-over estimation of

  18. Automated localization and segmentation of lung tumor from PET-CT thorax volumes based on image feature analysis.

    PubMed

    Cui, Hui; Wang, Xiuying; Feng, Dagan

    2012-01-01

    Positron emission tomography - computed tomography (PET-CT) plays an essential role in early tumor detection, diagnosis, staging and treatment. Automated and more accurate lung tumor detection and delineation from PET-CT is challenging. In this paper, on the basis of quantitative analysis of contrast feature of PET volume in SUV (standardized uptake value), our method firstly automatically localized the lung tumor. Then based on analysing the surrounding CT features of the initial tumor definition, our decision strategy determines the tumor segmentation from CT or from PET. The algorithm has been validated on 20 PET-CT studies involving non-small cell lung cancer (NSCLC). Experimental results demonstrated that our method was able to segment the tumor when adjacent to mediastinum or chest wall, and the algorithm outperformed the other five lung segmentation methods in terms of overlapping measure.

  19. CT enterography with polyethylene glycol solution vs CT enteroclysis in small bowel disease

    PubMed Central

    Minordi, L M; Vecchioli, A; Mirk, P; Bonomo, L

    2011-01-01

    Objective The aim of the study is to compare CT enterography with polyethylene glycol solution (PEG-CT) with CT enteroclysis (CT-E) in patients with suspected small bowel disease. Methods 145 patients underwent abdominal contrast-enhanced 16-row multidetector CT after administration of 2000 ml of PEG by mouth (n = 75) or after administration of 2000 ml of methylcellulose by nasojejunal tube (n = 70). Small bowel distension, luminal and extraluminal findings were evaluated and compared with small bowel follow-through examination in 60 patients, double contrast enema in 50, surgery in 25 and endoscopy in 35. Statistical evaluation was carried out by χ2 testing. For both techniques we have also calculated the effective dose and the equivalent dose in a standard patient. Results Crohn's disease was diagnosed in 64 patients, neoplasms in 16, adhesions in 6. Distension of the jejunum was better with CT-E than PEG-CT (p<0.05: statistically significant difference). No significant difference was present for others sites (p>0.05). Evaluation of pathological ileal loops was good with both techniques. The values of sensitivity, specificity and diagnostic accuracy were respectively 94%, 100% and 96% with CT-E, and 93%, 94% and 93% with PEG-CT. The effective dose for PEG-CT was less than the dose for the CT-E (34.7 mSv vs 39.91 mSv). Conclusion PEG-CT shows findings of Crohn's disease as well as CT-E does, although CT-E gives better bowel distension, especially in the jejunum, and has higher specificity than PEG-CT. PMID:20959377

  20. Colitis detection on abdominal CT scans by rich feature hierarchies

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Lay, Nathan; Wei, Zhuoshi; Lu, Le; Kim, Lauren; Turkbey, Evrim; Summers, Ronald M.

    2016-03-01

    Colitis is inflammation of the colon due to neutropenia, inflammatory bowel disease (such as Crohn disease), infection and immune compromise. Colitis is often associated with thickening of the colon wall. The wall of a colon afflicted with colitis is much thicker than normal. For example, the mean wall thickness in Crohn disease is 11-13 mm compared to the wall of the normal colon that should measure less than 3 mm. Colitis can be debilitating or life threatening, and early detection is essential to initiate proper treatment. In this work, we apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals to detect potential colitis on CT scans. Our method first generates around 3000 category-independent region proposals for each slice of the input CT scan using selective search. Then, a fixed-length feature vector is extracted from each region proposal using a CNN. Finally, each region proposal is classified and assigned a confidence score with linear SVMs. We applied the detection method to 260 images from 26 CT scans of patients with colitis for evaluation. The detection system can achieve 0.85 sensitivity at 1 false positive per image.

  1. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer.

    PubMed

    Eriksen, Rie Ø; Strauch, Louise S; Sandgaard, Michael; Kristensen, Thomas S; Nielsen, Michael B; Lauridsen, Carsten A

    2016-09-06

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors.

  2. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer

    PubMed Central

    Eriksen, Rie Ø.; Strauch, Louise S.; Sandgaard, Michael; Kristensen, Thomas S.; Nielsen, Michael B.; Lauridsen, Carsten A.

    2016-01-01

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors. PMID:27608045

  3. Extensible knowledge-based architecture for segmenting CT data

    NASA Astrophysics Data System (ADS)

    Brown, Matthew S.; McNitt-Gray, Michael F.; Goldin, Jonathan G.; Aberle, Denise R.

    1998-06-01

    A knowledge-based system has been developed for segmenting computed tomography (CT) images. Its modular architecture includes an anatomical model, image processing engine, inference engine and blackboard. The model contains a priori knowledge of size, shape, X-ray attenuation and relative position of anatomical structures. This knowledge is used to constrain low-level segmentation routines. Model-derived constraints and segmented image objects are both transformed into a common feature space and posted on the blackboard. The inference engine then matches image to model objects, based on the constraints. The transformation to feature space allows the knowledge and image data representations to be independent. Thus a high-level model can be used, with data being stored in a frame-based semantic network. This modularity and explicit representation of knowledge allows for straightforward system extension. We initially demonstrate an application to lung segmentation in thoracic CT, with subsequent extension of the knowledge-base to include tumors within the lung fields. The anatomical model was later augmented to include basic brain anatomy including the skull and blood vessels, to allow automatic segmentation of vascular structures in CT angiograms for 3D rendering and visualization.

  4. CT demonstration of bilateral adrenal hemorrhage

    SciTech Connect

    Ling, D.; Korobkin, M.; Silverman, P.M.; Dunnick, N.R.

    1983-08-01

    Bilateral adrenal hemorrhage with subsequent adrenal insufficiency is a recognized complication of anticoagulant therapy. Because the clinical manifestations are often nonspecific, the antemortem diagnosis of adrenal hemorrhage has been a difficult clinical problem. Computed tomography (CT) provides detailed images of the adrenal glands that are not possible with conventional imaging methods. The CT findings of bilateral adrenal hemorrhage in an anticoagulated patient are reported.

  5. Reconstructing misaligned x-ray CT data

    SciTech Connect

    Divin, C. J.

    2016-10-24

    Misalignment errors for x-ray computed tomography (CT) systems can manifest as artifacts and a loss of spatial and contrast resolution. To mitigate artifacts, significant effort is taken to determine the system geometry and minimizing any residual error in the system alignment. This project improved our ability to post-correct data which was acquired on a misaligned CT system.

  6. CT of schistosomal calcification of the intestine

    SciTech Connect

    Fataar, S.; Bassiony, H.; Satyanath, S.; Rudwan, M.; Hebbar, G.; Khalifa, A.; Cherian, M.J.

    1985-01-01

    The spectrum of schistosomal colonic calcification on abdominal radiographs has been described. The appearance on computed tomography (CT) is equally distinctive and occurs with varying degrees of genitourinary calcification. The authors have experience in three cases with the appearance on CT of intestinal calcification due to schistosomiasis.

  7. State-of-the-art in CT hardware and scan modes for cardiovascular CT

    PubMed Central

    Halliburton, Sandra; Arbab-Zadeh, Armin; Dey, Damini; Einstein, Andrew J.; Gentry, Ralph; George, Richard T.; Gerber, Thomas; Mahesh, Mahadevappa; Weigold, Wm. Guy

    2013-01-01

    Multidetector row computed tomography (CT) allows noninvasive anatomic and functional imaging of the heart, great vessels, and the coronary arteries. In recent years, there have been several advances in CT hardware, which have expanded the clinical utility of CT for cardiovascular imaging; such advances are ongoing. This review article from the Society of Cardiovascular Computed Tomography (SCCT) Basic and Emerging Sciences and Technology (BEST) Working Group summarizes the technical aspects of current state-of-the-art CT hardware and describes the scan modes this hardware supports for cardiovascular CT imaging. PMID:22551595

  8. State-of-the-art in CT hardware and scan modes for cardiovascular CT.

    PubMed

    Halliburton, Sandra; Arbab-Zadeh, Armin; Dey, Damini; Einstein, Andrew J; Gentry, Ralph; George, Richard T; Gerber, Thomas; Mahesh, Mahadevappa; Weigold, Wm Guy

    2012-01-01

    Multidetector row computed tomography (CT) allows noninvasive anatomic and functional imaging of the heart, great vessels, and coronary arteries. In recent years, there have been several advances in CT hardware, which have expanded the clinical utility of CT for cardiovascular imaging; such advances are ongoing. This review article from the Society of Cardiovascular Computed Tomography Basic and Emerging Sciences and Technology Working Group summarizes the technical aspects of current state-of-the-art CT hardware and describes the scan modes this hardware supports for cardiovascular CT imaging.

  9. Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies.

    PubMed

    Yeh, Benjamin M; FitzGerald, Paul F; Edic, Peter M; Lambert, Jack W; Colborn, Robert E; Marino, Michael E; Evans, Paul M; Roberts, Jeannette C; Wang, Zhen J; Wong, Margaret J; Bonitatibus, Peter J

    2016-09-09

    The introduction of spectral CT imaging in the form of fast clinical dual-energy CT enabled contrast material to be differentiated from other radiodense materials, improved lesion detection in contrast-enhanced scans, and changed the way that existing iodine and barium contrast materials are used in clinical practice. More profoundly, spectral CT can differentiate between individual contrast materials that have different reporter elements such that high-resolution CT imaging of multiple contrast agents can be obtained in a single pass of the CT scanner. These spectral CT capabilities would be even more impactful with the development of contrast materials designed to complement the existing clinical iodine- and barium-based agents. New biocompatible high-atomic number contrast materials with different biodistribution and X-ray attenuation properties than existing agents will expand the diagnostic power of spectral CT imaging without penalties in radiation dose or scan time.

  10. Automated epicardial fat volume quantification from non-contrast CT

    NASA Astrophysics Data System (ADS)

    Ding, Xiaowei; Terzopoulos, Demetri; Diaz-Zamudio, Mariana; Berman, Daniel S.; Slomka, Piotr J.; Dey, Damini

    2014-03-01

    Epicardial fat volume (EFV) is now regarded as a significant imaging biomarker for cardiovascular risk strat-ification. Manual or semi-automated quantification of EFV includes tedious and careful contour drawing of pericardium on fine image features. We aimed to develop and validate a fully-automated, accurate algorithm for EVF quantification from non-contrast CT using active contours and multiple atlases registration. This is a knowledge-based model that can segment both the heart and pericardium accurately by initializing the location and shape of the heart in large scale from multiple co-registered atlases and locking itself onto the pericardium actively. The deformation process is driven by pericardium detection, extracting only the white contours repre- senting the pericardium in the CT images. Following this step, we can calculate fat volume within this region (epicardial fat) using standard fat attenuation range. We validate our algorithm on CT datasets from 15 patients who underwent routine assessment of coronary calcium. Epicardial fat volume quantified by the algorithm (69.15 +/- 8.25 cm3) and the expert (69.46 +/- 8.80 cm3) showed excellent correlation (r = 0.96, p < 0.0001) with no significant differences by comparison of individual data points (p = 0.9). The algorithm achieved a Dice overlap of 0.93 (range 0.88 - 0.95). The total time was less than 60 sec on a standard windows computer. Our results show that fast accurate automated knowledge-based quantification of epicardial fat volume from non-contrast CT is feasible. To our knowledge, this is also the first fully automated algorithms reported for this task.

  11. Application of single- and dual-energy CT brain tissue segmentation to PET monitoring of proton therapy

    NASA Astrophysics Data System (ADS)

    Berndt, Bianca; Landry, Guillaume; Schwarz, Florian; Tessonnier, Thomas; Kamp, Florian; Dedes, George; Thieke, Christian; Würl, Matthias; Kurz, Christopher; Ganswindt, Ute; Verhaegen, Frank; Debus, Jürgen; Belka, Claus; Sommer, Wieland; Reiser, Maximilian; Bauer, Julia; Parodi, Katia

    2017-03-01

    The purpose of this work was to evaluate the ability of single and dual energy computed tomography (SECT, DECT) to estimate tissue composition and density for usage in Monte Carlo (MC) simulations of irradiation induced β + activity distributions. This was done to assess the impact on positron emission tomography (PET) range verification in proton therapy. A DECT-based brain tissue segmentation method was developed for white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). The elemental composition of reference tissues was assigned to closest CT numbers in DECT space (DECTdist). The method was also applied to SECT data (SECTdist). In a validation experiment, the proton irradiation induced PET activity of three brain equivalent solutions (BES) was compared to simulations based on different tissue segmentations. Five patients scanned with a dual source DECT scanner were analyzed to compare the different segmentation methods. A single magnetic resonance (MR) scan was used for comparison with an established segmentation toolkit. Additionally, one patient with SECT and post-treatment PET scans was investigated. For BES, DECTdist and SECTdist reduced differences to the reference simulation by up to 62% when compared to the conventional stoichiometric segmentation (SECTSchneider). In comparison to MR brain segmentation, Dice similarity coefficients for WM, GM and CSF were 0.61, 0.67 and 0.66 for DECTdist and 0.54, 0.41 and 0.66 for SECTdist. MC simulations of PET treatment verification in patients showed important differences between DECTdist/SECTdist and SECTSchneider for patients with large CSF areas within the treatment field but not in WM and GM. Differences could be misinterpreted as PET derived range shifts of up to 4 mm. DECTdist and SECTdist yielded comparable activity distributions, and comparison of SECTdist to a measured patient PET scan showed improved agreement when compared to SECTSchneider. The agreement between predicted and measured PET

  12. Low-Dose High-Pitch CT Angiography of the Supraaortic Arteries Using Sinogram-Affirmed Iterative Reconstruction

    PubMed Central

    Beitzke, Dietrich; Nolz, Richard; Unterhumer, Sylvia; Plank, Christina; Weber, Michael; Schernthaner, Rüdiger; Schöpf, Veronika; Wolf, Florian; Loewe, Christian

    2014-01-01

    Objective To prospectively evaluate image quality and radiation dose using a low-dose computed tomography angiography protocol and iterative image reconstruction for high-pitch dual-source CT-angiography (DSCTA) of the supraaortic arteries. Material and Methods DSCTA was performed in 42 patients, using either 120 kVp tube voltage, 120 mAS tube current, 2.4 pitch and filtered back projection, or 100 kVp tube voltage, 100 mAs tube current, 3.2 pitch, and sinogram affirmed iterative reconstruction. Measurements of vessel attenuation, of the contrast-to-noise ratio (CNR) and the signal-to-noise ratio (SNR) were performed to objectively evaluate image quality. Two readers evaluated subjective image quality and image noise, using a four-point scale. Effective dose was used to compare the differences in radiation dose. Results Low-dose protocol application showed significantly higher vessel opacification (p = 0.013), and non-significantly higher CNR and SNR values. There was no difference in the subjective image quality and image noise reading between the protocols. Effective dose was significantly lower using the low-dose protocol (1.29±0.21 mSv vs. 2.92±0.72 mSv; p<0.001). Conclusion The combined use of reduced tube voltage, reduced tube current, and iterative reconstruction reduces radiation dose by 55.4% in high-pitch DSCTA of the supraaortic arteries without impairment of image quality. PMID:24919195

  13. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma.

    PubMed

    Danielsen, Maria; Kjaer, Andreas; Wu, Max; Martineau, Lea; Nosrati, Mehdi; Leong, Stanley Pl; Sagebiel, Richard W; Iii, James R Miller; Kashani-Sabet, Mohammed

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool to identify occult melanoma metastasis. To date, it is controversial which patients with primary cutaneous melanoma should have staging PET/CT. In this retrospective analysis of more than 800 consecutive patients with cutaneous melanoma, we sought to identify factors predictive of PET/CT positivity in the setting of newly-diagnosed high-risk primary melanoma to determine those patients most appropriate to undergo a PET/CT scan as part of their diagnostic work up. 167 patients with newly-diagnosed high-risk primary cutaneous melanoma underwent a PET/CT scan performed as part of their initial staging. Clinical and histologic factors were evaluated as possible predictors of melanoma metastasis identified on PET/CT scanning using both univariate and multivariate logistic regression. In all, 32 patients (19.2%) had a positive PET/CT finding of metastatic melanoma. In more than half of these patients (56.3%), PET/CT scanning identified disease that was not detectable on clinical examination. Mitotic rate, tumor thickness, lymphadenopathy, and bleeding were significantly predictive of PET/CT positivity. A combinatorial index constructed from these factors revealed a significant association between number of high-risk factors observed and prevalence of PET/CT positivity, which increased from 5.8% (with the presence of 0-2 factors) to 100.0%, when all four factors were present. These results indicate that combining clinical and histologic prognostic factors enables the identification of patients with a higher likelihood of a positive PET/CT scan.

  14. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma

    PubMed Central

    Danielsen, Maria; Kjaer, Andreas; Wu, Max; Martineau, Lea; Nosrati, Mehdi; Leong, Stanley PL; Sagebiel, Richard W; III, James R Miller; Kashani-Sabet, Mohammed

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool to identify occult melanoma metastasis. To date, it is controversial which patients with primary cutaneous melanoma should have staging PET/CT. In this retrospective analysis of more than 800 consecutive patients with cutaneous melanoma, we sought to identify factors predictive of PET/CT positivity in the setting of newly-diagnosed high-risk primary melanoma to determine those patients most appropriate to undergo a PET/CT scan as part of their diagnostic work up. 167 patients with newly-diagnosed high-risk primary cutaneous melanoma underwent a PET/CT scan performed as part of their initial staging. Clinical and histologic factors were evaluated as possible predictors of melanoma metastasis identified on PET/CT scanning using both univariate and multivariate logistic regression. In all, 32 patients (19.2%) had a positive PET/CT finding of metastatic melanoma. In more than half of these patients (56.3%), PET/CT scanning identified disease that was not detectable on clinical examination. Mitotic rate, tumor thickness, lymphadenopathy, and bleeding were significantly predictive of PET/CT positivity. A combinatorial index constructed from these factors revealed a significant association between number of high-risk factors observed and prevalence of PET/CT positivity, which increased from 5.8% (with the presence of 0-2 factors) to 100.0%, when all four factors were present. These results indicate that combining clinical and histologic prognostic factors enables the identification of patients with a higher likelihood of a positive PET/CT scan. PMID:27766186

  15. Thyroid lymphoma on a background of Hashimoto's thyroiditis: PET/CT appearances.

    PubMed

    Mane, Mayuresh; O'Neill, Ailbhe C; Tirumani, Sree Harsha; Shi, Min; Shinagare, Atul B; Fisher, David C

    2014-01-01

    Primary thyroid lymphoma is a rare thyroid tumor accounting for only 5% of all thyroid malignancies. It is more common in patients with a background history of chronic thyroiditis. PET/CT is helpful in the initial staging and for follow up to assess treatment response.

  16. An improved analytical model for CT dose simulation with a new look at the theory of CT dose

    SciTech Connect

    Dixon, Robert L.; Munley, Michael T.; Bayram, Ersin

    2005-12-15

    Gagne [Med. Phys. 16, 29-37 (1989)] has previously described a model for predicting the sensitivity and dose profiles in the slice-width (z) direction for CT scanners. The model, developed prior to the advent of multidetector CT scanners, is still widely used; however, it does not account for the effect of anode tilt on the penumbra or include the heel effect, both of which are increasingly important for the wider beams (up to 40 mm) of contemporary, multidetector scanners. Additionally, it applied only on (or near) the axis of rotation, and did not incorporate the photon energy spectrum. The improved model described herein transcends all of the aforementioned limitations of the Gagne model, including extension to the peripheral phantom axes. Comparison of simulated and measured dose data provides experimental validation of the model, including verification of the superior match to the penumbra provided by the tilted-anode model, as well as the observable effects on the cumulative dose distribution. The initial motivation for the model was to simulate the quasiperiodic dose distribution on the peripheral, phantom axes resulting from a helical scan series in order to facilitate the implementation of an improved method of CT dose measurement utilizing a short ion chamber, as proposed by Dixon [Med. Phys. 30, 1272-1280 (2003)]. A more detailed set of guidelines for implementing such measurements is also presented in this paper. In addition, some fundamental principles governing CT dose which have not previously been clearly enunciated follow from the model, and a fundamental (energy-based) quantity dubbed 'CTDI-aperture' is introduced.

  17. Segmentation of Costal Cartilage in Abdominal CT Data using Watershed Markers

    NASA Astrophysics Data System (ADS)

    Holbrook, Andrew B.; Pauly, Kim Butts

    2007-05-01

    High Intensity Focused Ultrasound (HIFU) ablation is a promising non-invasive technique that heats a specific tumor region to fatal levels, while minimizing cell death in nearby healthy areas. For liver applications, the rib cage limits the transducer placement. A treatment plan based on CT images would segment the ribs and provide visualization of them and the tumor. A HIFU simulation of deposited heat would also require rib segmentation. Unfortunately, the ribs are difficult to segment on CT as they transition to cartilage, with CT units similar to that of the liver. The purpose of this work was to develop a rib segmentation algorithm based on CT images for HIFU treatment planning. After an initial threshold of the CT data, rib regions were characterized based on their size, and if a region were greater than a predetermined area parameter (i.e. it consisted of rib and liver), a marker based watershed transformation separated the two regions and continued to the next inferior slice. After false positives were removed by a predetermined volume parameter, the remaining objects were reassigned high CT values. Preliminary results from six human CT datasets indicated this segmentation method works well, successfully distinguishing the ribs from nearby organs. Of the fifty-five ribs counted in these datasets, only five contained small errors due to reconstruction shading irregularities, with four of these in one dataset. Once all cartilage was assigned high CT numbers, any commercially available 3D rendering software (e.g. OsiriX) can be used to visualize the ribs and tumor.

  18. Iterative image reconstruction in spectral CT

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Michel, Eric; Kim, Hye S.; Kim, Jae G.; Han, Byung H.; Cho, Min H.; Lee, Soo Y.

    2012-03-01

    Scan time of spectral-CTs is much longer than conventional CTs due to limited number of x-ray photons detectable by photon-counting detectors. However, the spectral pixel information in spectral-CT has much richer information on physiological and pathological status of the tissues than the CT-number in conventional CT, which makes the spectral- CT one of the promising future imaging modalities. One simple way to reduce the scan time in spectral-CT imaging is to reduce the number of views in the acquisition of projection data. But, this may result in poorer SNR and strong streak artifacts which can severely compromise the image quality. In this work, spectral-CT projection data were obtained from a lab-built spectral-CT consisting of a single CdTe photon counting detector, a micro-focus x-ray tube and scan mechanics. For the image reconstruction, we used two iterative image reconstruction methods, the simultaneous iterative reconstruction technique (SIRT) and the total variation minimization based on conjugate gradient method (CG-TV), along with the filtered back-projection (FBP) to compare the image quality. From the imaging of the iodine containing phantoms, we have observed that SIRT and CG-TV are superior to the FBP method in terms of SNR and streak artifacts.

  19. Cytomegalovirus pneumonia in transplant patients: CT findings

    SciTech Connect

    Eun-Young Kang; Patz, E.F. Jr.; Mueller, N.L.

    1996-03-01

    Our goal was to assess the CT findings of cytomegalovirus (CMV) pneumonia in transplant patients. The study included 10 transplant patients who had chest CT scan and pathologically proven isolated pulmonary CMV infection. Five patients had bone marrow transplant and five had solid organ transplant. The CT scans were retrospectively reviewed for pattern and distribution of disease and the CT findings compared with the findings on open lung biopsy (n = 9) and autopsy (n = 1). Nine of 10 patients had parenchymal abnormalities apparent at CT and I had normal CT scans. The findings in the nine patients included small nodules (n = 6), consolidation (n = 4), ground-glass attenuation (n = 4), and irregular lines (n = 1). The nodules had a bilateral and symmetric distribution and involved all lung zones. The consolidation was most marked in the lower lung zones. The CT findings of CMV pneumonia in transplant patients are heterogeneous. The most common patterns include small nodules and areas of consolidation. 13 refs., 4 figs., 1 tab.

  20. Ion Stopping Powers and CT Numbers

    SciTech Connect

    Moyers, Michael F.; Sardesai, Milind; Sun, Sean; Miller, Daniel W.

    2010-10-01

    One of the advantages of ion beam therapy is the steep dose gradient produced near the ion's range. Use of this advantage makes knowledge of the stopping powers for all materials through which the beam passes critical. Most treatment planning systems calculate dose distributions using depth dose data measured in water and an algorithm that converts the kilovoltage X-ray computed tomography (CT) number of a given material to its linear stopping power relative to water. Some materials present in kilovoltage scans of patients and simulation phantoms do not lie on the standard tissue conversion curve. The relative linear stopping powers (RLSPs) of 21 different tissue substitutes and positioning, registration, immobilization, and beamline materials were measured in beams of protons accelerated to energies of 155, 200, and 250 MeV; carbon ions accelerated to 290 MeV/n; and iron ions accelerated to 970 MeV/n. These same materials were scanned with both kilovoltage and megavoltage CT scanners to obtain their CT numbers. Measured RLSPs and CT numbers were compared with calculated and/or literature values. Relationships of RLSPs to physical densities, electronic densities, kilovoltage CT numbers, megavoltage CT numbers, and water equivalence values converted by a treatment planning system are given. Usage of CT numbers and substitution of measured values into treatment plans to provide accurate patient and phantom simulations are discussed.

  1. CT & CBCT imaging: assessment of the orbits.

    PubMed

    Hatcher, David C

    2012-11-01

    The orbits can be visualized easily on routine or customized protocols for computed tomography (CT) or cone beam CT (CBCT) scans. Detailed orbital investigations are best performed with 3-dimensional imaging methods. CT scans are preferred for visualizing the osseous orbital anatomy and fissures while magnetic resonance imaging is preferred for evaluating tumors and inflammation. CBCT provides high-resolution anatomic data of the sinonasal spaces, airway, soft tissue surfaces, and bones but does not provide much detail within the soft tissues. This article discusses CBCT imaging of the orbits, osseous anatomy of the orbits, and CBCT investigation of selected orbital pathosis.

  2. Doses metrics and patient age in CT.

    PubMed

    Huda, Walter; Tipnis, Sameer V

    2016-03-01

    The aim of this study was to investigate how effective dose and size-specific dose estimate (SSDE) change with patient age (size) for routine head and abdominal/pelvic CT examinations. Heads and abdomens of patients were modelled as a mass-equivalent cylinder of water corresponding to the patient 'effective diameter'. Head CT scans were performed at CTDIvol(S) of 40 mGy, and abdominal CT scans were performed at CTDIvol(L) of 10 mGy. Values of SSDE were obtained using conversion factors in AAPM Task Group Report 204. Age-specific scan lengths for head and abdominal CT scans obtained from the authors' clinical practice were used to estimate the dose-length product for each CT examination. Effective doses were calculated from previously published age- and sex-specific E/DLP conversion factors, based on ICRP 103 organ-weighting factors. For head CT examinations, the scan length increased from 15 cm in a newborn to 20 cm in adults, and for an abdominal/pelvic CT, the scan length increased from 20 cm in a newborn to 45 cm in adults. For head CT scans, SSDE ranged from 37.2 mGy in adults to 48.8 mGy in a newborn, an increase of 31 %. The corresponding head CT effective doses range from 1.4 mSv in adults to 5.2 mSv in a newborn, an increase of 270 %. For abdomen CT scans, SSDE ranged from 13.7 mGy in adults to 23.0 mGy in a newborn, an increase of 68 %. The corresponding abdominal CT effective doses ranged from 6.3 mSv in adults to 15.4 mSv in a newborn, an increase of 140 %. SSDE increases much less than effective dose in paediatric patients compared with adults because it does not account for scan length or scattered radiation. Size- and age-specific effective doses better quantify the total radiation received by patients in CT by explicitly accounting for all organ doses, as well as their relative radio sensitivity.

  3. [The use of CT in meniscopathy].

    PubMed

    Tellkamp, H; Klein, W; Rosenkranz, G; Köhler, K

    1988-12-01

    The results of CT examination of meniscopathies in 54 patients, most of them competitive athletes, are presented. CT has an overall accuracy of about 90 per cent and can hence be used for diagnosing a lesion of the meniscus with a reasonable amount of safety, while being rapid and avoiding unnecessary exposure to stress. This method, therefore, should be a focal point of the imaging methods and thus be placed between the specialist doctor's findings and possible surgery. The pros and cons of CT compared with other imaging methods are discussed.

  4. Cine CT technique for dynamic airway studies

    SciTech Connect

    Ell, S.R.; Jolles, H.; Keyes, W.D.; Galvin, J.R.

    1985-07-01

    The advent of cine CT scanning with its 50-msec data acquisition time promises a much wider range of dynamic CT studies. The authors describe a method for dynamic evaluation of the extrathoracic airway, which they believe has considerable potential application in nonfixed upper-airway disease, such as sleep apnea and stridor of unknown cause. Conventional CT is limited in such studies by long data acquisition time and can be used to study only prolonged maneuvers such as phonation. Fluoroscopy and digital subtraction studies are limited by relatively high radiation dose and inability to image all wall motions simultaneously.

  5. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    SciTech Connect

    Sarapata, A.; Stayman, J. W.; Siewerdsen, J. H.; Finkenthal, M.; Stutman, D.; Pfeiffer, F.

    2014-02-15

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  6. The Plus 50 Initiative Evaluation: Initiative Impact

    ERIC Educational Resources Information Center

    American Association of Community Colleges (NJ1), 2012

    2012-01-01

    The American Association of Community Colleges (AACC), with funding from The Atlantic Philanthropies, created the Plus 50 Initiative (2008-2012). This initiative was designed to build the capacity of community colleges nationwide to develop programming that engages the plus 50 learner. This report contains: (1) An overview of the Plus 50…

  7. Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner

    SciTech Connect

    Goodsitt, Mitchell M.; Christodoulou, Emmanuel G.; Larson, Sandra C.

    2011-04-15

    /cc range. The RMS errors between the measured and true CT numbers of the tissue mimicking materials in the tissue characterization phantom over the 40-120 keV range varied from about 6 HU-248 HU and did not improve as dramatically with small changes in assumed true density. Conclusions: Initial tests indicate that the Z{sub eff} values computed with DECT on this scanner are reasonably accurate; however, the synthesized monochromatic CT numbers can be very inaccurate, especially for dense tissue mimicking materials at low energies. Furthermore, the synthesized monochromatic CT numbers of materials still depend on the amount of the surrounding tissues especially at low keV, demonstrating that the numbers are not truly monochromatic. Further research is needed to develop DE methods that produce more accurate synthesized monochromatic CT numbers.

  8. Combined SPECT/CT and PET/CT for breast imaging

    NASA Astrophysics Data System (ADS)

    Russo, Paolo; Larobina, Michele; Di Lillo, Francesca; Del Vecchio, Silvana; Mettivier, Giovanni

    2016-02-01

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  9. Surgical anatomy of the frontal recess--is there a benefit in multiplanar CT-reconstruction?

    PubMed

    Leunig, A; Sommer, B; Betz, C S; Sommer, F

    2008-09-01

    Anatomical variations in the sinus region are not necessarily pathological, but they may complicate the anatomy of the lateral nasal wall and contribute to the occurrence or persistence of chronic inflammatory diseases. In this study the interpretations of initial coronal CT scans were significantly altered following multiplanar CT-reconstruction. Assuming that a multiplanar analysis includes coronal views, we may conclude that imaging in three planes yields more information and provides a substantial benefit in the planning and performance of a surgical procedure on the paranasal sinuses.

  10. Remarkable CT features of shock thyroid in traumatic and non-traumatic patients.

    PubMed

    Han, Dae Hee; Ha, Eun Ju; Sun, Joo Sung; Jung, So Lyung

    2016-12-21

    Shock thyroid is a part of the hypovolemic shock complex, which is a constellation of secondary computed tomographic (CT) findings that are observed in patients with hypovolemic shock. However, to the best of our knowledge, there has only been a single report on this condition, which described three cases associated with significant thoracoabdominal trauma. Here, we report four patients with profound hypotension who exhibited similar CT findings as those described in the initial report on shock thyroid, but with a more diverse clinical spectrum.

  11. The accordion sign at CT: report of a case of Crohn's disease with diffuse colonic involvement.

    PubMed

    Mountanos, G I; Manolakakis, I S

    2001-01-01

    The accordion sign is a finding that could be seen on CT scans of the abdomen in patients who have received oral contrast material. Initially, it was described as a sign specific of Clostridium difficile colitis, but it is also reported to represent a sign of diffuse colonic edema of several other etiologies. We report a case of a patient with Crohn's pancolitis whose abdominal CT scan presented the accordion sign throughout the entire large bowel together with signs of Crohn's disease of the small bowel.

  12. CT detection of intraabdominal disease in patients with lower extremity signs and symptoms.

    PubMed

    Meshkov, S L; Seltzer, S E; Finberg, H J

    1982-06-01

    The initial clinical presentation of intraabdominal disease can be in an extraabdominal location. This phenomenon most commonly occurs in the setting of bowel perforation secondary to diverticulitis, appendicitis, or carcinoma, with resultant spread of infection caudal to the abdomen. Hematomas and pancreatic fluid collections may also dissect out of the abdomen. The spread of these disease processes is likely to occur in a predictable fashion along anatomic tissue planes. Computed tomography (CT) is well suited to demonstrate the extraabdominal site of disease, the pathway of spread from the abdomen, and the occult intraabdominal process. We describe four such cases in which CT was useful and discuss the anatomic pathways involved.

  13. CT features of pulmonary artery sarcoma: critical aid to a challenging diagnosis.

    PubMed

    Singla Long, Svati; Johnson, Pamela T; Hruban, Ralph H; Fishman, Elliot K

    2010-03-01

    Pulmonary artery sarcoma is an uncommon and highly malignant neoplasm that presents a diagnostic challenge to radiologists due to its tendency to mimic the more common condition of pulmonary thromboembolism. Presented in this case report is a patient with pulmonary artery sarcoma who was initially diagnosed with saddle pulmonary embolism based upon computed tomography (CT) findings. The case emphasizes the importance of including pulmonary artery sarcoma in the differential diagnosis of a large filling defect in the pulmonary arteries when specific CT findings are identified in the appropriate clinical setting.

  14. Pulmonary Artery Sarcoma Detected on 18F-FDG PET/CT With Unusual Findings.

    PubMed

    Guo, Yuehong; Wang, Tie; Yang, Minfu

    2015-11-01

    A 32-year-old woman, who presented with "sharp pain" in the right chest for more than 1 month and worsening dyspnea and fever for 10 days, was initially thought to have a pulmonary embolism. Cardiac ultrasound showed an ill-defined echogenic mass within the pulmonary trunk. F-FDG PET/CT was performed for further evaluation. PET/CT showed an intense hypermetabolism in the main, bilateral proximal, and the right main pulmonary arteries, suggesting the presence of a malignant lesion. Biopsy confirmed the lesion as a primary pulmonary artery sarcoma.

  15. Intraprocedural yttrium-90 positron emission tomography/CT for treatment optimization of yttrium-90 radioembolization.

    PubMed

    Bourgeois, Austin C; Chang, Ted T; Bradley, Yong C; Acuff, Shelley N; Pasciak, Alexander S

    2014-02-01

    Radioembolization with yttrium-90 ((90)Y) microspheres relies on delivery of appropriate treatment activity to ensure patient safety and optimize treatment efficacy. We report a case in which (90)Y positron emission tomography (PET)/computed tomography (CT) was performed to optimize treatment planning during a same-day, three-part treatment session. This treatment consisted of (i) an initial (90)Y infusion with a dosage determined using an empiric treatment planning model, (ii) quantitative (90)Y PET/CT imaging, and (iii) a secondary infusion with treatment planning based on quantitative imaging data with the goal of delivering a specific total tumor absorbed dose.

  16. CT thermometry for cone-beam CT guided ablation

    NASA Astrophysics Data System (ADS)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  17. Radiation exposure in whole body CT screening.

    PubMed

    Suresh, Pamidighantam; Ratnam, S V; Rao, K V J

    2011-04-01

    Using a technology that "takes a look" at people's insides and promises early warnings of cancer, cardiac disease, and other abnormalities, clinics and medical imaging facilities nationwide are touting a new service for health conscious people: "Whole body CT screening" this typically involves scanning the body from the chin to below the hips with a form of x-ray imaging that produces cross-sectional images. In USA direct-to-consumer marketing of whole body CT is occurring today in many metropolitan areas. Free standing CT screening centres are being sited in shopping malls and other high density public areas, and these centres are being advertised in the electronic and print media. In this context the present article discussed the pros and cons of having such centres in India with the advent of multislice CT leading to fast scan times.

  18. CT appearance of thickened nerves in neurofibromatosis

    SciTech Connect

    Daneman, A.; Mancer, K.; Sonley, M.

    1983-11-01

    In neutrofibromatosis (von Recklinghausen disease), peripheral nerves may develop enlarged diameters or focal fusiform enlargement due to neurofibromatous involvement. Their appearance on computed tomography (CT) forms the basis of this report.

  19. Use of CT in stapedial otosclerosis

    SciTech Connect

    Mafee, M.F.; Henrikson, G.C.; Deitch, R.L.; Norouzi, P.; Kumar, A.; Kriz, R.; Valvassori, G.E.

    1985-09-01

    Otosclerosis (otospongiosis) is a primary focal disease of the labyrinthine capsule. The stapes footplate is fixed when the spongiotic focus expands and invades the oval window. Persons with stapedial otosclerosis experience a progressive conductive hearing loss. In many cases, cochlear degeneration is observed, in which a mixed hearing loss occurs. Using computed tomography (CT), the authors studied the ears of 45 selected patients with conductive or mixed hearing loss. CT proved valuable in determining otosclerotic changes of the oval window and otic capsule. Spongiotic changes of the otic capsule are better appreciated by CT than complex motion tomography. The usefulness of CT in diagnosing other causes of conductive or mixed hearing loss is also described.

  20. CT of soft-tissue neoplasms

    SciTech Connect

    Weekes, R.G.; McLeod, R.A.; Reiman, H.M.; Pritchard, D.J.

    1985-02-01

    The computed tomographic scans (CT) of 84 patients with untreated soft-tissue neoplasms were studied, 75 with primary and nine with secondary lesions. Each scan was evaluated using several criteria: homogeneity and density, presence and type of calcification, presence of bony destruction, involvement of multiple muscle groups, definition of adjacent fat, border definition, and vessel or nerve involvement. CT demonstrated the lesion in all 84 patients and showed excellent anatomic detail in 64 of the 75 patients with primary neoplasms. The CT findings were characteristic enough to suggest the histology of the neoplasm in only 13 lesions (nine lipomas, three hemangiomas, one neurofibroma). No malignant neoplasm had CT characteristics specific enough to differentiate it from any other malignant tumor. However, malignant neoplasms could be differentiated from benign neoplasms in 88% of the cases.

  1. CT in the diagnosis of enterovesical fistulae

    SciTech Connect

    Goldman, S.M.; Fishman, E.K.; Gatewood, O.M.B.; Jones, B.; Siegelman, S.S.

    1985-06-01

    Enterovesical fistulae are difficult to demonstrate by conventional radiographic methods. Computed tomography (CT), a sensitive, noninvasive method of documenting the presence of such fistulae, is unique in its ability to outline the extravesical component of the primary disease process. Twenty enterovesical fistulae identified by CT were caused by diverticulitis (nine), carcinoma of the rectosigmoid (two), Crohn disease (three), gynecologic tumors (two), bladder cancer (one), cecal carcinoma (one), prostatic neoplasia (one), and appendiceal abscess (one). The CT findings included intravesical air (90%), passage of orally or rectally administered contrast medium into the bladder (20%), focal bladder-wall thickening (90%), thickening of adjacent bowel wall (85%), and an extraluminal mass that often contained air (75%). CT proved to be an important new method in the diagnosis of enterovesical fistulae.

  2. CT Image Presentations For Oral Surgery

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael L.; Rothman, Stephen L. G.; Schwarz, Melvyn S.; Tivattanasuk, Eva S.

    1988-06-01

    Reformatted CT images of the mandible and maxilla are described as a planning aid to the surgical implantation of dental fixtures. Precisely scaled and cross referenced axial, oblique, CT generated panorex, and 3-D images are generated to help indicate where and how critical anatomic structures are positioned. This information guides the oral surgeon to those sites where dental implants have optimal osteotic support and least risk to sensitive neural tissue. Oblique images are generated at 1-2 mm increments along the arch of the mandible (or maxilla). Each oblique is oriented perpendicular to the local arch curvature. The adjoining five CT generated panorex views match the patient's mandibular (or maxilla) arch, with each of the views separated by twice the distance between axial CT slices. All views are mutually cross-referenced to show fine detail of the underlying mandibular (or maxilla) structure. Several exams are illustrated and benefit to subsequent surgery is assessed.

  3. MR and CT appearance of cardiac hemangioma

    SciTech Connect

    Kemp, J.L.; Kessler, R.M.; Raizada, V.; Williamson, M.R.

    1996-05-01

    We present a case of cardiac hemangioma in a symptomatic patient. MR and CT each have specific characteristics that should make one consider including or excluding this in the differential diagnosis of a cardiac tumor. 7 refs., 3 figs.

  4. Effect of {sup 18}F-FDG PET/CT Imaging in Patients With Clinical Stage II and III Breast Cancer

    SciTech Connect

    Groheux, David Moretti, Jean-Luc; Baillet, Georges; Espie, Marc; Giacchetti, Sylvie; Hindie, Elif; Hennequin, Christophe; Vilcoq, Jacques-Robert; Cuvier, Caroline; Toubert, Marie-Elisabeth; Filmont, Jean-Emmanuel; Sarandi, Farid; Misset, Jean-Louis

    2008-07-01

    Purpose: To investigate the potential effect of using {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) in the initial assessment of patients with clinical Stage II or III breast cancer. Methods and Materials: During 14 consecutive months, 39 patients (40 tumors) who presented with Stage II or III breast cancer on the basis of a routine extension assessment were prospectively included in this study. PET/CT was performed in addition to the initial assessment. Results: In 3 cases, PET/CT showed extra-axillary lymph node involvement that had not been demonstrated with conventional techniques. Two of these patients had hypermetabolic lymph nodes in the subpectoral and infraclavicular regions, and the third had a hypermetabolic internal mammary node. PET/CT showed distant uptake in 4 women. Of these 4 women, 1 had pleural involvement and 3 had bone metastasis. Overall, of the 39 women, the PET/CT results modified the initial stage in 7 (18%). The modified staging altered the treatment plan for 5 patients (13%). It led to radiotherapy in 4 patients (bone metastasis, pleural lesion, subpectoral lymph nodes, and internal mammary nodes) and excision of, and radiotherapy to, the infraclavicular lymph nodes in 1 patient. Conclusions: PET/CT can provide information on extra-axillary lymph node involvement and can uncover occult distant metastases in a significant percentage of patients. Therefore, initial PET/CT could enable better treatment planning for patients with Stage II and III breast cancer.

  5. Initialized Fractional Calculus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  6. Measuring CT scanner variability of radiomics features

    PubMed Central

    Mackin, Dennis; Fave, Xenia; Zhang, Lifei; Fried, David; Yang, Jinzhong; Taylor, Brian; Rodriguez-Rivera, Edgardo; Dodge, Cristina; Jones, A. Kyle; Court, Laurence

    2015-01-01

    Objectives The purpose of this study was to determine the significance of inter-scanner variability in CT image radiomics studies. Materials and Methods We compared the radiomics features calculated for non-small cell lung cancer (NSCLC) tumors from 20 patients with those calculated for 17 scans of a specially designed radiomics phantom. The phantom comprised 10 cartridges, each filled with different materials to produce a wide range of radiomics feature values. The scans were acquired using General Electric, Philips, Siemens, and Toshiba scanners from four medical centers using their routine thoracic imaging protocol. The radiomics feature studied included the mean and standard deviations of the CT numbers as well as textures derived from the neighborhood gray-tone difference matrix. To quantify the significance of the inter-scanner variability, we introduced the metric feature noise. To look for patterns in the scans, we performed hierarchical clustering for each cartridge. Results The mean CT numbers for the 17 CT scans of the phantom cartridges spanned from -864 to 652 Hounsfield units compared with a span of -186 to 35 Hounsfield units for the CT scans of the NSCLC tumors, showing that the phantom’s dynamic range includes that of the tumors. The inter-scanner variability of the feature values depended on both the cartridge material and the feature, and the variability was large relative to the inter-patient variability in the NSCLC tumors for some features. The feature inter-scanner noise was greatest for busyness and least for texture strength. Hierarchical clustering produced different clusters of the phantom scans for each cartridge, although there was some consistent clustering by scanner manufacturer. Conclusions The variability in the values of radiomics features calculated on CT images from different CT scanners can be comparable to the variability in these features found in CT images of NSCLC tumors. These inter-scanner differences should be

  7. CT of trauma to the abnormal kidney

    SciTech Connect

    Rhyner, P.; Federle, M.P.; Jeffrey, R.B.

    1984-04-01

    Traumatic injuries to already abnormal kidneys are difficult to assess by excretory urography and clinical evaluation. Bleeding and urinary extravasation may accompany minor trauma; conversely, underlying tumors, perirenal hemorrhage, and extravasation may be missed on urography. Computed tomography (CT) was performed in eight cases including three neoplasms, one adult polycystic disease, one simple renal cyst, two hydronephrotic kidneys, and one horseshoe kidney. CT provided specific and clinically useful information in each case that was not apparent on excretory urography.

  8. Bronchogenic cysts with high CT numbers

    SciTech Connect

    Mendelson, D.S.; Rose, J.S.; Efremidis, S.C.; Kirschner, P.A.; Cohen, B.A.

    1983-03-01

    Four patients with mediastinal masses are described. CT examinations demonstrated masses of high attenuation, and solid masses were suspected. At thoracotomy each patient had a cystic mass containing a brownish, turbid, mucoid material. The pathologic diagnosis in each case was a bronchogenic cyst. The possibility of such a cyst should not be excluded because of a high CT number, which reflects the turbid contents of the cyst.

  9. Progress in Fully Automated Abdominal CT Interpretation

    PubMed Central

    Summers, Ronald M.

    2016-01-01

    OBJECTIVE Automated analysis of abdominal CT has advanced markedly over just the last few years. Fully automated assessment of organs, lymph nodes, adipose tissue, muscle, bowel, spine, and tumors are some examples where tremendous progress has been made. Computer-aided detection of lesions has also improved dramatically. CONCLUSION This article reviews the progress and provides insights into what is in store in the near future for automated analysis for abdominal CT, ultimately leading to fully automated interpretation. PMID:27101207

  10. Pulmonary talcosis: CT findings in three cases.

    PubMed

    Padley, S P; Adler, B D; Staples, C A; Miller, R R; Müller, N L

    1993-01-01

    The authors describe the computed tomographic (CT) appearances in three patients with pulmonary talcosis resulting from chronic intravenous drug abuse. There was widespread ground-glass attenuation in one case and an appearance similar to that of progressive massive fibrosis in two cases. In the latter cases, there were confluent perihilar masses with areas of high attenuation. While the CT appearances may be suggestive of pulmonary talcosis, tissue sampling is required for definitive diagnosis.

  11. ADAPTIVE SMALL-ANIMAL SPECT/CT

    PubMed Central

    Furenlid, L.R.; Moore, J.W.; Freed, M.; Kupinski, M.A.; Clarkson, E.; Liu, Z.; Wilson, D.W.; Woolfenden, J.M.; Barrett, H.H.

    2015-01-01

    We are exploring the concept of adaptive multimodality imaging, a form of non-linear optimization where the imaging configuration is automatically adjusted in response to the object. Preliminary studies suggest that substantial improvement in objective, task-based measures of image quality can result. We describe here our work to add motorized adjustment capabilities and a matching CT to our existing FastSPECT II system to form an adaptive small-animal SPECT/CT. PMID:26617457

  12. CT evaluation of the colon: inflammatory disease.

    PubMed

    Horton, K M; Corl, F M; Fishman, E K

    2000-01-01

    Computed tomography (CT) is valuable for detection and characterization of many inflammatory conditions of the colon. At CT, a dilated, thickened appendix is suggestive of appendicitis. A 1-4-cm, oval, fatty pericolic lesion with surrounding mesenteric inflammation is diagnostic of epiploic appendagitis. The key to distinguishing diverticulitis from other inflammatory conditions of the colon is the presence of diverticula in the involved segment. In typhlitis, CT demonstrates cecal distention and circumferential thickening of the cecal wall, which may have low attenuation secondary to edema. In radiation colitis, the clinical history is the key to suggesting the diagnosis because the CT findings can be nonspecific. The location of the involved segment and the extent and appearance of wall thickening may help distinguish Crohn disease and ulcerative colitis. In ischemic colitis, CT typically demonstrates circumferential, symmetric wall thickening with fold enlargement. CT findings of graft-versus-host disease include small bowel and colonic wall thickening, which may result in luminal narrowing and separation of bowel loops. In infectious colitis, the site and thickness of colon affected may suggest a specific organism. The amount of wall thickening in pseudomembranous colitis is typically greater than in any other inflammatory disease of the colon except Crohn disease.

  13. Negative appendectomy rate: influence of CT scans.

    PubMed

    McGory, Marcia L; Zingmond, David S; Nanayakkara, Darshani; Maggard, Melinda A; Ko, Clifford Y

    2005-10-01

    Negative appendectomy rate varies significantly depending on patient age and sex. However, the impact of computed tomography (CT) scans on the diagnosis of appendicitis is unknown. The goal of this study was to examine the negative appendectomy rate using a statewide database and analyze the association of receipt of CT scan. Using the California Inpatient File, all patients undergoing appendectomy in 1999-2000 were identified (n = 75,452). Demographic and clinical data were analyzed, including procedure approach (open vs laparoscopic) and appendicitis type (negative, simple, abscess, peritonitis). Patients with CT scans performed were identified to compare the negative appendectomy rate. For the entire cohort, appendicitis type was 59 per cent simple, 10 per cent with abscess, 18.7 per cent with peritonitis, and 9.3 per cent negative. Males had a lower rate of negative appendicitis than females (6.0% vs 13.4%, P < 0.0001). The use of CT scans was associated with an overall lower negative appendectomy rate for females, especially in the < 5 years and > 45 years age categories. Use of CT scans in males does not appear to be efficacious, as the negative appendectomy rates were similar across all age categories. In conclusion, use of CT was associated with lower rate of negative appendectomy, depending on patient age and sex.

  14. Computer aided diagnosis for severity assessment of pneumoconiosis using CT images

    NASA Astrophysics Data System (ADS)

    Suzuki, Hidenobu; Matsuhiro, Mikio; Kawata, Yoshiki; Niki, Noboru; Kato, Katsuya; Kishimoto, Takumi; Ashizawa, Kazuto

    2016-03-01

    240,000 participants have a screening for diagnosis of pneumoconiosis every year in Japan. Radiograph is used for staging of severity in pneumoconiosis worldwide. This paper presents a method for quantitative assessment of severity in pneumoconiosis using both size and frequency of lung nodules that detected by thin-section CT images. This method consists of three steps. First, thoracic organs (body, ribs, spine, trachea, bronchi, lungs, heart, and pulmonary blood vessels) are segmented. Second, lung nodules that have radius over 1.5mm are detected. These steps used functions of our developed computer aided detection system of chest CT images. Third, severity in pneumoconiosis is quantified using size and frequency of lung nodules. This method was applied to nine pneumoconiosis patients. The initial results showed that proposed method can assess severity in pneumoconiosis quantitatively. This paper demonstrates effectiveness of our method in diagnosis and prognosis of pneumoconiosis in CT screening.

  15. Comparison of 68Ga-DOTANOC PET/CT and contrast-enhanced CT in localisation of tumours in ectopic ACTH syndrome

    PubMed Central

    Jadhav, Swati S; Lila, Anurag R; Kasaliwal, Rajeev; Khare, Shruti; Yerawar, Chaitanya G; Hira, Priya; Phadke, Uday; Shah, Hina; Lele, Vikram R; Malhotra, Gaurav; Bandgar, Tushar; Shah, Nalini S

    2016-01-01

    Background Localising ectopic adrenocorticotrophic hormone (ACTH) syndrome (EAS) tumour source is challenging. Somatostatin receptor-based PET imaging has shown promising results, but the data is limited to case reports and small case series. We reviewed here the performance of 68Ga-DOTANOC positron emission tomography (PET)/computed tomography (CT) and contrast-enhanced CT (CECT) in our cohort of 12 consecutive EAS patients. Materials and methods Retrospective data analysis of 12 consecutive patients of EAS presenting to a single tertiary care centre in a period between January 2013 and December 2014 was done. CECT and 68Ga-DOTANOC PET/CT were reported (blinded) by an experienced radiologist and a nuclear medicine physician, respectively. The performance of CECT and 68Ga-DOTANOC PET/CT was compared. Results Tumours could be localised in 11 out of 12 patients at initial presentation (overt cases), whereas in one patient, tumour remained occult. Thirteen lesions were identified in 11 patients as EAS source (true positives). CECT localised 12 out of these 13 lesions (sensitivity 92.3%) and identified five false-positive lesions (positive predictive value (PPV) 70.5%). Compared with false-positive lesions, true-positive lesions had greater mean contrast enhancement at 60s (33.2 vs 5.6 Hounsfield units (HU)). 68Ga-DOTANOC PET/CT was able to identify 9 out of 13 lesions (sensitivity 69.2%) and reported no false-positive lesions (PPV 100%). Conclusion CECT remains the first-line investigation in localisation of EAS. The contrast enhancement pattern on CECT can further aid in characterisation of the lesions. 68Ga-DOTANOC PET/CT can be added to CECT, to enhance positive prediction of the suggestive lesions. PMID:27006371

  16. Computing effective dose in cardiac CT

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Tipnis, Sameer; Sterzik, Alexander; Schoepf, U. Joseph

    2010-07-01

    We present a method of estimating effective doses in cardiac CT that accounts for selected techniques (kV mAs-1), anatomical location of the scan and patient size. A CT dosimetry spreadsheet (ImPACT CT Patient Dosimetry Calculator) was used to estimate effective doses (E) using ICRP 103 weighting factors for a 70 kg patient undergoing cardiac CT examinations. Using dose length product (DLP) for the same scans, we obtained values of E/DLP for three CT scanners used in cardiac imaging from two vendors. E/DLP ratios were obtained as a function of the anatomical location in the chest and for x-ray tube voltages ranging from 80 to 140 kV. We also computed the ratio of the average absorbed dose in a water cylinder modeling a patient weighing W kg to the corresponding average absorbed dose in a water cylinder equivalent to a 70 kg patient. The average E/DLP for a 16 cm cardiac heart CT scan was 26 µSv (mGy cm)-1, which is about 70% higher than the current E/DLP values used for chest CT scans (i.e. 14-17 µSv (mGy cm)-1). Our cardiac E/DLP ratios are higher because the cardiac region is ~30% more radiosensitive than the chest, and use of the ICRP 103 tissue weighting factors increases cardiac CT effective doses by ~30%. Increasing the x-ray tube voltage from 80 to 140 kV increases the E/DLP conversion factor for cardiac CT by 17%. For the same incident radiation at 120 kV, doses in 45 kg adults were ~22% higher than those in 70 kg adults, whereas doses in 120 kg adults were ~28% lower. Accurate estimates of the patient effective dose in cardiac CT should use ICRP 103 tissue weighting factors, and account for a choice of scan techniques (kV mAs-1), exposed scan region, as well as patient size.

  17. Characterizing anatomical variability in breast CT images

    PubMed Central

    Metheany, Kathrine G.; Abbey, Craig K.; Packard, Nathan; Boone, John M.

    2008-01-01

    Previous work [Burgess , Med. Phys. 28, 419–437 (2001)] has shown that anatomical noise in projection mammography results in a power spectrum well modeled over a range of frequencies by a power law, and the exponent (β) of this power law plays a critical role in determining the size at which a growing lesion reaches the threshold for detection. In this study, the authors evaluated the power-law model for breast computed tomography (bCT) images, which can be thought of as thin sections through a three-dimensional (3D) volume. Under the assumption of a 3D power law describing the distribution of attenuation coefficients in the breast parenchyma, the authors derived the relationship between the power-law exponents of bCT and projection images and found it to be βsection=βproj−1. They evaluated this relationship on clinical images by comparing bCT images from a set of 43 patients to Burgess’ findings in mammography. They were able to make a direct comparison for 6 of these patients who had both a bCT exam and a digitized film-screen mammogram. They also evaluated segmented bCT images to investigate the extent to which the bCT power-law exponent can be explained by a binary model of attenuation coefficients based on the different attenuation of glandular and adipose tissue. The power-law model was found to be a good fit for bCT data over frequencies from 0.07to0.45cyc∕mm, where anatomical variability dominates the spectrum. The average exponent for bCT images was 1.86. This value is close to the theoretical prediction using Burgess’ published data for projection mammography and for the limited set of mammography data available from the authors’ patient sample. Exponents from the segmented bCT images (average value: 2.06) were systematically slightly higher than bCT images, with substantial correlation between the two (r=0.84). PMID:18975714

  18. Can MRI accurately detect pilon articular malreduction? A quantitative comparison between CT and 3T MRI bone models

    PubMed Central

    Radzi, Shairah; Dlaska, Constantin Edmond; Cowin, Gary; Robinson, Mark; Pratap, Jit; Schuetz, Michael Andreas; Mishra, Sanjay

    2016-01-01

    Background Pilon fracture reduction is a challenging surgery. Radiographs are commonly used to assess the quality of reduction, but are limited in revealing the remaining bone incongruities. The study aimed to develop a method in quantifying articular malreductions using 3D computed tomography (CT) and magnetic resonance imaging (MRI) models. Methods CT and MRI data were acquired using three pairs of human cadaveric ankle specimens. Common tibial pilon fractures were simulated by performing osteotomies to the ankle specimens. Five of the created fractures [three AO type-B (43-B1), and two AO type-C (43-C1) fractures] were then reduced and stabilised using titanium implants, then rescanned. All datasets were reconstructed into CT and MRI models, and were analysed in regards to intra-articular steps and gaps, surface deviations, malrotations and maltranslations of the bone fragments. Results Initial results reveal that type B fracture CT and MRI models differed by ~0.2 (step), ~0.18 (surface deviations), ~0.56° (rotation) and ~0.4 mm (translation). Type C fracture MRI models showed metal artefacts extending to the articular surface, thus unsuitable for analysis. Type C fracture CT models differed from their CT and MRI contralateral models by ~0.15 (surface deviation), ~1.63° (rotation) and ~0.4 mm (translation). Conclusions Type B fracture MRI models were comparable to CT and may potentially be used for the postoperative assessment of articular reduction on a case-to-case basis. PMID:28090442

  19. XCAT/DRASIM: a realistic CT/human-model simulation package

    NASA Astrophysics Data System (ADS)

    Fung, George S. K.; Stierstorfer, Karl; Segars, W. Paul; Taguchi, Katsuyuki; Flohr, Thomas G.; Tsui, Benjamin M. W.

    2011-03-01

    The aim of this research is to develop a complete CT/human-model simulation package by integrating the 4D eXtended CArdiac-Torso (XCAT) phantom, a computer generated NURBS surface based phantom that provides a realistic model of human anatomy and respiratory and cardiac motions, and the DRASIM (Siemens Healthcare) CT-data simulation program. Unlike other CT simulation tools which are based on simple mathematical primitives or voxelized phantoms, this new simulation package has the advantages of utilizing a realistic model of human anatomy and physiological motions without voxelization and with accurate modeling of the characteristics of clinical Siemens CT systems. First, we incorporated the 4D XCAT anatomy and motion models into DRASIM by implementing a new library which consists of functions to read-in the NURBS surfaces of anatomical objects and their overlapping order and material properties in the XCAT phantom. Second, we incorporated an efficient ray-tracing algorithm for line integral calculation in DRASIM by computing the intersection points of the rays cast from the x-ray source to the detector elements through the NURBS surfaces of the multiple XCAT anatomical objects along the ray paths. Third, we evaluated the integrated simulation package by performing a number of sample simulations of multiple x-ray projections from different views followed by image reconstruction. The initial simulation results were found to be promising by qualitative evaluation. In conclusion, we have developed a unique CT/human-model simulation package which has great potential as a tool in the design and optimization of CT scanners, and the development of scanning protocols and image reconstruction methods for improving CT image quality and reducing radiation dose.

  20. CT liver volumetry using geodesic active contour segmentation with a level-set algorithm

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Obajuluwa, Ademola; Xu, Jianwu; Hori, Masatoshi; Baron, Richard

    2010-03-01

    Automatic liver segmentation on CT images is challenging because the liver often abuts other organs of a similar density. Our purpose was to develop an accurate automated liver segmentation scheme for measuring liver volumes. We developed an automated volumetry scheme for the liver in CT based on a 5 step schema. First, an anisotropic smoothing filter was applied to portal-venous phase CT images to remove noise while preserving the liver structure, followed by an edge enhancer to enhance the liver boundary. By using the boundary-enhanced image as a speed function, a fastmarching algorithm generated an initial surface that roughly estimated the liver shape. A geodesic-active-contour segmentation algorithm coupled with level-set contour-evolution refined the initial surface so as to more precisely fit the liver boundary. The liver volume was calculated based on the refined liver surface. Hepatic CT scans of eighteen prospective liver donors were obtained under a liver transplant protocol with a multi-detector CT system. Automated liver volumes obtained were compared with those manually traced by a radiologist, used as "gold standard." The mean liver volume obtained with our scheme was 1,520 cc, whereas the mean manual volume was 1,486 cc, with the mean absolute difference of 104 cc (7.0%). CT liver volumetrics based on an automated scheme agreed excellently with "goldstandard" manual volumetrics (intra-class correlation coefficient was 0.95) with no statistically significant difference (p(F<=f)=0.32), and required substantially less completion time. Our automated scheme provides an efficient and accurate way of measuring liver volumes.

  1. Potential lung nodules identification for characterization by variable multistep threshold and shape indices from CT images.

    PubMed

    Iqbal, Saleem; Iqbal, Khalid; Arif, Fahim; Shaukat, Arslan; Khanum, Aasia

    2014-01-01

    Computed tomography (CT) is an important imaging modality. Physicians, surgeons, and oncologists prefer CT scan for diagnosis of lung cancer. However, some nodules are missed in CT scan. Computer aided diagnosis methods are useful for radiologists for detection of these nodules and early diagnosis of lung cancer. Early detection of malignant nodule is helpful for treatment. Computer aided diagnosis of lung cancer involves lung segmentation, potential nodules identification, features extraction from the potential nodules, and classification of the nodules. In this paper, we are presenting an automatic method for detection and segmentation of lung nodules from CT scan for subsequent features extraction and classification. Contribution of the work is the detection and segmentation of small sized nodules, low and high contrast nodules, nodules attached with vasculature, nodules attached to pleura membrane, and nodules in close vicinity of the diaphragm and lung wall in one-go. The particular techniques of the method are multistep threshold for the nodule detection and shape index threshold for false positive reduction. We used 60 CT scans of "Lung Image Database Consortium-Image Database Resource Initiative" taken by GE medical systems LightSpeed16 scanner as dataset and correctly detected 92% nodules. The results are reproducible.

  2. Feature-based US to CT registration of the aortic root

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Chen, Elvis C. S.; Guiraudon, Gerard M.; Jones, Doug L.; Bainbridge, Daniel; Chu, Michael W.; Drangova, Maria; Hata, Noby; Jain, Ameet; Peters, Terry M.

    2011-03-01

    A feature-based registration was developed to align biplane and tracked ultrasound images of the aortic root with a preoperative CT volume. In transcatheter aortic valve replacement, a prosthetic valve is inserted into the aortic annulus via a catheter. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to significant morbidity and mortality. Registration of pre-operative CT to transesophageal ultrasound and fluoroscopy images is a major step towards providing augmented image guidance for this procedure. The proposed registration approach uses an iterative closest point algorithm to register a surface mesh generated from CT to 3D US points reconstructed from a single biplane US acquisition, or multiple tracked US images. The use of a single simultaneous acquisition biplane image eliminates reconstruction error introduced by cardiac gating and TEE probe tracking, creating potential for real-time intra-operative registration. A simple initialization procedure is used to minimize changes to operating room workflow. The algorithm is tested on images acquired from excised porcine hearts. Results demonstrate a clinically acceptable accuracy of 2.6mm and 5mm for tracked US to CT and biplane US to CT registration respectively.

  3. Iofetamine HCI I-123 brain scanning in stroke: a comparison with transmission CT

    SciTech Connect

    Park, C.H.; Madsen, M.T.; McLellan, T.; Schwartzman, R.J.

    1988-03-01

    Although IMP scans fail to show fine anatomical details of the brain, because of poor resolution of a single head rotational system, adequate information is offered by the scans to localize most perfusion defects caused by stroke. The following conclusions can be drawn from our study: 1. The planar IMP brain scans processed through the computer are sensitive in the early diagnosis of acute stroke except for small and deeply localized lesions. 2. The SPECT IMP imaging is more sensitive than the planar or transmission CT scans in the early diagnosis of stroke. Semiquantitative evaluations are feasible with IMP SPECT. 3. Neither transmission CT nor IMP SPECT are sensitive in the detection of acute lacunar infarcts. 4. In acute infarction, the transmission CT is usually negative or minimally positive in the early stages, while impaired uptake of IMP occurs immediately after the onset of the stroke. In acute stroke, the extent of the perfusion defect on IMP is usually greater than the abnormality seen on the transmission CT. 5. On followup studies, IMP scans show improved perfusion reflecting physiologic changes, while transmission CT scans show further dense anatomical changes when compared to the initial studies. 6. Hyperemic changes are likely due to collateral circulation or luxury perfusion. This finding suggests that the IMP reflects local cerebral blood flow in strokes.

  4. Implementation and evaluation of a protocol management system for automated review of CT protocols.

    PubMed

    Grimes, Joshua; Leng, Shuai; Zhang, Yi; Vrieze, Thomas; McCollough, Cynthia

    2016-09-08

    Protocol review is important to decrease the risk of patient injury and increase the consistency of CT image quality. A large volume of CT protocols makes manual review labor-intensive, error-prone, and costly. To address these challenges, we have developed a software system for automatically managing and monitoring CT proto-cols on a frequent basis. This article describes our experiences in the implementation and evaluation of this protocol monitoring system. In particular, we discuss various strategies for addressing each of the steps in our protocol-monitoring workflow, which are: maintaining an accurate set of master protocols, retrieving protocols from the scanners, comparing scanner protocols to master protocols, reviewing flagged differences between the scanner and master protocols, and updating the scanner and/or master protocols. In our initial evaluation focusing only on abdo-men and pelvis protocols, we detected 309 modified protocols in a 24-week trial period. About one-quarter of these modified protocols were determined to contain inappropriate (i.e., erroneous) protocol parameter modifications that needed to be corrected on the scanner. The most frequently affected parameter was the series description, which was inappropriately modified 47 times. Two inappropriate modifications were made to the tube current, which is particularly important to flag as this parameter impacts both radiation dose and image quality. The CT protocol changes detected in this work provide strong motivation for the use of an automated CT protocol quality control system to ensure protocol accuracy and consistency.

  5. FDG PET/CT of extranodal involvement in non-Hodgkin lymphoma and Hodgkin disease.

    PubMed

    Paes, Fabio M; Kalkanis, Dimitrios G; Sideras, Panagiotis A; Serafini, Aldo N

    2010-01-01

    The term extranodal disease refers to lymphomatous infiltration of anatomic sites other than the lymph nodes. Almost any organ can be affected by lymphoma, with the most common extranodal sites of involvement being the stomach, spleen, Waldeyer ring, central nervous system, lung, bone, and skin. The prevalence of extranodal involvement in non-Hodgkin lymphoma and Hodgkin disease has increased in the past decade. The imaging characteristics of extranodal involvement can be subtle or absent at conventional computed tomography (CT). Imaging of tumor metabolism with 2-[fluorine-18]fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) has facilitated the identification of affected extranodal sites, even when CT has demonstrated no lesions. More recently, hybrid PET/CT has become the standard imaging modality for initial staging, follow-up, and treatment response assessment in patients with lymphoma and has proved superior to CT in these settings. Certain PET/CT patterns are suggestive of extranodal disease and can help differentiate tumor from normal physiologic FDG activity, particularly in the mucosal tissues, bone marrow, and organs of the gastrointestinal tract. Familiarity with the different extranodal manifestations in various locations is critical for correct image interpretation. In addition, a knowledge of the differences in FDG avidity among the histologic subtypes of lymphoma, appropriate timing of scanning after therapeutic interventions, and use of techniques to prevent brown fat uptake are essential for providing the oncologist with accurate information.

  6. Malignant pleural mesothelioma: value of CT and MR imaging in predicting resectability

    SciTech Connect

    Patz, E.F. Jr.; Shaffer, K.; Piwnica-Worms, D.R.; Jochelson, M.; Sarin, M.; Sugarbaker, D.J.; Pugatch, R.D. )

    1992-11-01

    OBJECTIVE. The objective was to determine if CT or MR imaging findings could be used to accurately predict resectability in patients with biopsy-proved malignant pleural mesotheliomas. SUBJECTS AND METHODS. CT and MR findings in 41 consecutive patients with malignant mesotheliomas who were referred to the thoracic surgery clinic for extrapleural pneumonectomy were studied by thoracic radiologists before surgery. Review of radiologic studies focused on local invasion of three separate regions: the diaphragm, chest wall, and mediastinum. Results of all imaging examinations were carefully correlated with intraoperative, gross, and microscopic pathologic findings. RESULTS. After radiologic and clinical evaluation, 34 patients (83%) had thoracotomy; 24 of these had tumors that were resectable. The sensitivity was high (> 90%) for both CT and MR in each region. Specificity, however, was low, probably because of the small number of patients with unresectable tumors. CONCLUSION. CT and MR provided similar information on resectability in most cases. Sensitivity was high for both procedures. Because CT is more widely available and used, the authors suggest it as the initial study when determining resectability. In difficult cases, important complementary anatomic information can be derived from MR images obtained before surgical intervention.

  7. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT.

    PubMed

    McNitt-Gray, Michael F

    2002-01-01

    This article describes basic radiation dose concepts as well as those specifically developed to describe the radiation dose from computed tomography (CT). Basic concepts of radiation dose are reviewed, including exposure, absorbed dose, and effective dose. Radiation dose from CT demonstrates variations within the scan plane and along the z axis because of its unique geometry and usage. Several CT-specific dose descriptors have been developed: the Multiple Scan Average Dose descriptor, the Computed Tomography Dose Index (CTDI) and its variations (CTDI(100), CTDI(w), CTDI(vol)), and the dose-length product. Factors that affect radiation dose from CT include the beam energy, tube current-time product, pitch, collimation, patient size, and dose reduction options. Methods of reducing the radiation dose to a patient from CT include reducing the milliampere-seconds value, increasing the pitch, varying the milliampere-seconds value according to patient size, and reducing the beam energy. The effective dose from CT can be estimated by using Monte Carlo methods to simulate CT of a mathematical patient model, by estimating the energy imparted to the body region being scanned, or by using conversion factors for general anatomic regions. Issues related to radiation dose from CT are being addressed by the Society for Pediatric Radiology, the American Association of Physicists in Medicine, the American College of Radiology, and the Center for Devices and Radiological Health of the Food and Drug Administration.

  8. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology

    PubMed Central

    Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-01-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews. PMID:24968749

  9. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology.

    PubMed

    Tanaka, T; Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-09-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews.

  10. Clinical Outcomes in cT1 Micropapillary Bladder Cancer

    PubMed Central

    Willis, DL; Fernandez, MI; Dickstein, RJ; Parikh, S; Shah, JB; Pisters, LL; Guo, CC; Henderson, S; Czerniak, BA; Grossman, HB; Dinney, CP; Kamat, AM

    2015-01-01

    Purpose While many urologists recommend radical cystectomy for patient with micropapillary bladder cancer (MPBC) invading the lamina propria (cT1), contradictory small reports exist regarding the efficacy of conservative management with intravesical BCG for this disease. Herein we report our updated experience with largest series of patients with cT1 MPBC. Materials and Methods An IRB approved review of our cancer database identified 283 patients with MPBC, including 72 staged as cT1N0M0 at diagnosis and initiation of therapy. Survival analysis was performed using Kaplan-Meier estimator and compared using the log-rank test. Results Within this 72 patient cohort, 40 received primary intravesical BCG and 26 underwent upfront radical cystectomy. Patients receiving BCG experienced high rates of disease recurrence (75%) and progression (45%); 35% developed lymph node metastasis. Patients treated with upfront cystectomy had improved survival compared to patients treated with primary BCG (5 year disease specific survival (DSS) of 100% vs. 60% respectively, p=0.006) or patients undergoing delayed cystectomy after recurrence (5 yr. DSS: 62%, p=0.015). Prognosis was especially poor in patients who waited for progression prior to undergoing radical cystectomy, with an estimated 5-year DSS of only 24% and a median survival of 35 months. In patients treated with upfront cystectomy, pathologic upstaging occurred in 27%, including 20% with lymph node metastasis. Conclusions While certain patients with T1 MPBC may respond to intravesical BCG, improved survival is seen in those patients who undergo early radical cystectomy. Further molecular studies are needed to identify subsets of patients able to spare their bladders safely. PMID:25254936

  11. Segmentation and separation of venous vasculatures in liver CT images

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Hansen, Christian; Zidowitz, Stephan; Hahn, Horst K.

    2014-03-01

    Computer-aided analysis of venous vasculatures including hepatic veins and portal veins is important in liver surgery planning. The analysis normally consists of two important pre-processing tasks: segmenting both vasculatures and separating them from each other by assigning different labels. During the acquisition of multi-phase CT images, both of the venous vessels are enhanced by injected contrast agent and acquired either in a common phase or in two individual phases. The enhanced signals established by contrast agent are often not stably acquired due to non-optimal acquisition time. Inadequate contrast and the presence of large lesions in oncological patients, make the segmentation task quite challenging. To overcome these diffculties, we propose a framework with minimal user interactions to analyze venous vasculatures in multi-phase CT images. Firstly, presented vasculatures are automatically segmented adopting an efficient multi-scale Hessian-based vesselness filter. The initially segmented vessel trees are then converted to a graph representation, on which a series of graph filters are applied in post-processing steps to rule out irrelevant structures. Eventually, we develop a semi-automatic workow to refine the segmentation in the areas of inferior vena cava and entrance of portal veins, and to simultaneously separate hepatic veins from portal veins. Segmentation quality was evaluated with intensive tests enclosing 60 CT images from both healthy liver donors and oncological patients. To quantitatively measure the similarities between segmented and reference vessel trees, we propose three additional metrics: skeleton distance, branch coverage, and boundary surface distance, which are dedicated to quantifying the misalignment induced by both branching patterns and radii of two vessel trees.

  12. Dioxin Exposure Initiative

    EPA Pesticide Factsheets

    The Dioxin Exposure Initiative (DEI) is no longer active. This page contains a summary of the dioxin exposure initiative with illustrations, contact and background information.Originally supported by scientist Matthew Lorber, who retired in Mar 2017.

  13. Evaluation of superior vena cava syndrome by axial CT and CT phlebography

    SciTech Connect

    Moncada, R.; Cardella, R.; Demos, T.C.; Churchill, R.J.; Cardoso, M.; Love, L.; Reynes, C.J.

    1984-10-01

    Transverse axial computed tomography (CT) has been combined with CT digital phlebography to study nine patients with superior vena cava syndrome. Six were due to malignancy, two were secondary to benign disease, and one was a paraneoplastic manifestation. This combined CT approach successfully identified the abnormal morphology of the superior vena cava, demonstrating external compression, encasement, or intraluminal thrombus in all patients and the collateral venous channels in eight. This technique is a rapid, informative, and cost-effective method for the workup of superior vena cava syndrome. The CT digital phlebogram, however, is not successful in regularly and optimally opacifying the normal superior vena cava because of the limited amount of contrast material, dilution effect of the nonopacified incoming flow from the jugular and azygos veins, and the lack of image enhancement from the CT digital scanograms.

  14. Friction Reduction for Microhole CT Drilling

    SciTech Connect

    Ken Newman; Patrick Kelleher; Edward Smalley

    2007-03-31

    The objective of this 24 month project focused on improving microhole coiled tubing drilling bottom hole assembly (BHA) reliability and performance, while reducing the drilling cost and complexity associated with inclined/horizontal well sections. This was to be accomplished by eliminating the need for a downhole drilling tractor or other downhole coiled tubing (CT) friction mitigation techniques when drilling long (>2,000 ft.) of inclined/horizontal wellbore. The technical solution to be developed and evaluated in this project was based on vibrating the coiled tubing at surface to reduce the friction along the length of the downhole CT drillstring. The Phase 1 objective of this project centered on determining the optimum surface-applied vibration system design for downhole CT friction mitigation. Design of the system would be based on numerical modeling and laboratory testing of the CT friction mitigation achieved with various types of surface-applied vibration. A numerical model was developed to predict how far downhole the surface-applied vibration would travel. A vibration test fixture, simulating microhole CT drilling in a horizontal wellbore, was constructed and used to refine and validate the numerical model. Numerous tests, with varying surface-applied vibration parameters were evaluated in the vibration test fixture. The data indicated that as long as the axial force on the CT was less than the helical buckling load, axial vibration of the CT was effective at mitigating friction. However, surface-applied vibration only provided a small amount of friction mitigation as the helical buckling load on the CT was reached or exceeded. Since it would be impractical to assume that routine field operations be conducted at less than the helical buckling load of the CT, it was determined that this technical approach did not warrant the additional cost and maintenance issues that would be associated with the surface vibration equipment. As such, the project was

  15. Fast CT-CT fluoroscopy registration with respiratory motion compensation for image-guided lung intervention

    NASA Astrophysics Data System (ADS)

    Su, Po; Xue, Zhong; Lu, Kongkuo; Yang, Jianhua; Wong, Stephen T.

    2012-02-01

    CT-fluoroscopy (CTF) is an efficient imaging method for guiding percutaneous lung interventions such as biopsy. During CTF-guided biopsy procedure, four to ten axial sectional images are captured in a very short time period to provide nearly real-time feedback to physicians, so that they can adjust the needle as it is advanced toward the target lesion. Although popularly used in clinics, this traditional CTF-guided intervention procedure may require frequent scans and cause unnecessary radiation exposure to clinicians and patients. In addition, CTF only generates limited slices of images and provides limited anatomical information. It also has limited response to respiratory movements and has narrow local anatomical dynamics. To better utilize CTF guidance, we propose a fast CT-CTF registration algorithm with respiratory motion estimation for image-guided lung intervention using electromagnetic (EM) guidance. With the pre-procedural exhale and inhale CT scans, it would be possible to estimate a series of CT images of the same patient at different respiratory phases. Then, once a CTF image is captured during the intervention, our algorithm can pick the best respiratory phase-matched 3D CT image and performs a fast deformable registration to warp the 3D CT toward the CTF. The new 3D CT image can be used to guide the intervention by superimposing the EM-guided needle location on it. Compared to the traditional repetitive CTF guidance, the registered CT integrates both 3D volumetric patient data and nearly real-time local anatomy for more effective and efficient guidance. In this new system, CTF is used as a nearly real-time sensor to overcome the discrepancies between static pre-procedural CT and the patient's anatomy, so as to provide global guidance that may be supplemented with electromagnetic (EM) tracking and to reduce the number of CTF scans needed. In the experiments, the comparative results showed that our fast CT-CTF algorithm can achieve better registration

  16. Patient doses from CT examinations in Turkey

    PubMed Central

    Ataç, Gökçe Kaan; Parmaksız, Aydın; İnal, Tolga; Bulur, Emine; Bulgurlu, Figen; Öncü, Tolga; Gündoğdu, Sadi

    2015-01-01

    PURPOSE We aimed to establish the first diagnostic reference levels (DRLs) for computed tomography (CT) examinations in adult and pediatric patients in Turkey and compare these with international DRLs. METHODS CT performance information and examination parameters (for head, chest, high-resolution CT of the chest [HRCT-chest], abdominal, and pelvic protocols) from 1607 hospitals were collected via a survey. Dose length products and effective doses for standard patient sizes were calculated from the reported volume CT dose index (CTDIvol). RESULTS The median number of protocols reported from the 167 responding hospitals (10% response rate) was 102 across five different age groups. Third quartile CTDIvol values for adult pelvic and all pediatric body protocols were higher than the European Commission standards but were comparable to studies conducted in other countries. CONCLUSION The radiation dose indicators for adult patients were similar to those reported in the literature, except for those associated with head protocols. CT protocol optimization is necessary for adult head and pediatric chest, HRCT-chest, abdominal, and pelvic protocols. The findings from this study are recommended for use as national DRLs in Turkey. PMID:26133189

  17. CRYPTOSPORIDIUM LOG-INACTIVATION WITH OZONE USING EFFLUENT CT 10, GEOMETRIC MEAN CT 10 EXTENDED INTEGRATED CT 10 AND EXTENDED-CSTR CALCULATIONS

    EPA Science Inventory

    The draft Long Term 2 Enhanced Surface Water Treatment Rule ("LT2ESWTR") contains Cryptosporidium log-inactivation CT tables. Depending on the water temperature, the Cryptosporidium CT values that are listed are 15 to 25 times greater than CT values fo...

  18. CT10: a new cancer-testis (CT) antigen homologous to CT7 and the MAGE family, identified by representational-difference analysis.

    PubMed

    Güre, A O; Stockert, E; Arden, K C; Boyer, A D; Viars, C S; Scanlan, M J; Old, L J; Chen, Y T

    2000-03-01

    Assays relying on humoral or T-cell-based recognition of tumor antigens to identify potential targets for immunotherapy have led to the discovery of a significant number of immunogenic gene products, including cancer-testis (CT) antigens predominantly expressed in cancer cells and male germ cells. The search for cancer-specific antigens has been extended via the technique of representational-difference analysis and SK-MEL-37, a melanoma cell line expressing a broad range of CT antigens. Using this approach, we have isolated CT antigen genes, genes over-expressed in cancer, e. g., PRAME and KOC, and genes encoding neuro-ectodermal markers. The identified CT antigen genes include the previously defined MAGE-A6, MAGE-A4a, MAGE-A10, CT7/MAGE-C1, as well as a novel gene designated CT10, which shows strong homology to CT7/MAGE-C1 both at cDNA and at genomic levels. Chromosome mapping localized CT10 to Xq27, in close proximity to CT7/MAGE-C1 and MAGE-A genes. CT10 mRNA is expressed in testis and in 20 to 30% of various human cancers. A serological survey identified 2 melanoma patients with anti-CT10 antibody, demonstrating the immunogenicity of CT10 in humans.

  19. [Analysis of Factors on Clinical Application of Vehicle CT Shelter].

    PubMed

    Shuai, Wanjun; Chao, Yong; Liu, Shuai; Dong, Can; Gao, Huayong; Tan, Shulin; Niu, Fu

    2015-09-01

    To assure the clinical quality and requirement of CT shelter used in field environment, the factors related with the practical application were studied. The evaluation indicators of CT equipment were investigated. Based on the technical modification of vehicle shelter CT, the scanning conditions of shelter CT were analyzed. Moreover, the comparative study was done between shelter CT and common CT in hospitals. In result, in order to meet maneuverability application in the field, vehicle shelter CT was restrictive by the field conditions, traffic impacts and running requirement. The application of vehicle shelter CT was affected by the factors, such as mechanical stabilization, moving precision, power fluctuations and variations of temperature and humidity, etc. The results were helpful to improve the clinical quality of vehicle shelter CT and made a base for the quality control study in the future.

  20. Liver segmentation for CT images using GVF snake

    SciTech Connect

    Liu Fan; Zhao Binsheng; Kijewski, Peter K.; Wang Liang; Schwartz, Lawrence H.

    2005-12-15

    Accurate liver segmentation on computed tomography (CT) images is a challenging task especially at sites where surrounding tissues (e.g., stomach, kidney) have densities similar to that of the liver and lesions reside at the liver edges. We have developed a method for semiautomatic delineation of the liver contours on contrast-enhanced CT images. The method utilizes a snake algorithm with a gradient vector flow (GVF) field as its external force. To improve the performance of the GVF snake in the segmentation of the liver contour, an edge map was obtained with a Canny edge detector, followed by modifications using a liver template and a concavity removal algorithm. With the modified edge map, for which unwanted edges inside the liver were eliminated, the GVF field was computed and an initial liver contour was formed. The snake algorithm was then applied to obtain the actual liver contour. This algorithm was extended to segment the liver volume in a slice-by-slice fashion, where the result of the preceding slice constrained the segmentation of the adjacent slice. 551 two-dimensional liver images from 20 volumetric images with colorectal metastases spreading throughout the livers were delineated using this method, and also manually by a radiologist for evaluation. The difference ratio, which is defined as the percentage ratio of mismatching volume between the computer and the radiologist's results, ranged from 2.9% to 7.6% with a median value of 5.3%.

  1. Initiation of vascular development.

    PubMed

    Ohashi-Ito, Kyoko; Fukuda, Hiroo

    2014-06-01

    The initiation of vascular development occurs during embryogenesis and the development of lateral organs, such as lateral roots and leaves. Understanding the mechanism underlying the initiation of vascular development has been an important goal of plant biologists. Auxin flow is a crucial factor involved in the initiation of vascular development. In addition, recent studies have identified key factors that regulate the establishment of vascular initial cells in embryos and roots. In this review, we summarize the recent findings in this field and discuss the initiation of vascular development.

  2. Computerized segmentation of liver in hepatic CT and MRI by means of level-set geodesic active contouring.

    PubMed

    Suzuki, Kenji; Huynh, Hieu Trung; Liu, Yipeng; Calabrese, Dominic; Zhou, Karen; Oto, Aytekin; Hori, Masatoshi

    2013-01-01

    Computerized liver volumetry has been studied, because the current "gold-standard" manual volumetry is subjective and very time-consuming. Liver volumetry is done in either CT or MRI. A number of researchers have developed computerized liver segmentation in CT, but there are fewer studies on ones for MRI. Our purpose in this study was to develop a general framework for liver segmentation in both CT and MRI. Our scheme consisted of 1) an anisotropic diffusion filter to reduce noise while preserving liver structures, 2) a scale-specific gradient magnitude filter to enhance liver boundaries, 3) a fast-marching algorithm to roughly determine liver boundaries, and 4) a geodesic-active-contour model coupled with a level-set algorithm to refine the initial boundaries. Our CT database contained hepatic CT scans of 18 liver donors obtained under a liver transplant protocol. Our MRI database contains 23 patients with 1.5T MRI scanners. To establish "gold-standard" liver volumes, radiologists manually traced the contour of the liver on each CT or MR slice. We compared our computer volumetry with "gold-standard" manual volumetry. Computer volumetry in CT and MRI reached excellent agreement with manual volumetry (intra-class correlation coefficient = 0.94 and 0.98, respectively). Average user time for computer volumetry in CT and MRI was 0.57 ± 0.06 and 1.0 ± 0.13 min. per case, respectively, whereas those for manual volumetry were 39.4 ± 5.5 and 24.0 ± 4.4 min. per case, respectively, with statistically significant difference (p < .05). Our computerized liver segmentation framework provides an efficient and accurate way of measuring liver volumes in both CT and MRI.

  3. Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images.

    PubMed

    Ju, Wei; Xiang, Dehui; Xiang, Deihui; Zhang, Bin; Wang, Lirong; Kopriva, Ivica; Chen, Xinjian

    2015-12-01

    Accurate lung tumor delineation plays an important role in radiotherapy treatment planning. Since the lung tumor has poor boundary in positron emission tomography (PET) images and low contrast in computed tomography (CT) images, segmentation of tumor in the PET and CT images is a challenging task. In this paper, we effectively integrate the two modalities by making fully use of the superior contrast of PET images and superior spatial resolution of CT images. Random walk and graph cut method is integrated to solve the segmentation problem, in which random walk is utilized as an initialization tool to provide object seeds for graph cut segmentation on the PET and CT images. The co-segmentation problem is formulated as an energy minimization problem which is solved by max-flow/min-cut method. A graph, including two sub-graphs and a special link, is constructed, in which one sub-graph is for the PET and another is for CT, and the special link encodes a context term which penalizes the difference of the tumor segmentation on the two modalities. To fully utilize the characteristics of PET and CT images, a novel energy representation is devised. For the PET, a downhill cost and a 3D derivative cost are proposed. For the CT, a shape penalty cost is integrated into the energy function which helps to constrain the tumor region during the segmentation. We validate our algorithm on a data set which consists of 18 PET-CT images. The experimental results indicate that the proposed method is superior to the graph cut method solely using the PET or CT is more accurate compared with the random walk method, random walk co-segmentation method, and non-improved graph cut method.

  4. Initial Events in Bacterial Transcription Initiation

    PubMed Central

    Ruff, Emily F.; Record, M. Thomas; Artsimovitch, Irina

    2015-01-01

    Transcription initiation is a highly regulated step of gene expression. Here, we discuss the series of large conformational changes set in motion by initial specific binding of bacterial RNA polymerase (RNAP) to promoter DNA and their relevance for regulation. Bending and wrapping of the upstream duplex facilitates bending of the downstream duplex into the active site cleft, nucleating opening of 13 bp in the cleft. The rate-determining opening step, driven by binding free energy, forms an unstable open complex, probably with the template strand in the active site. At some promoters, this initial open complex is greatly stabilized by rearrangements of the discriminator region between the −10 element and +1 base of the nontemplate strand and of mobile in-cleft and downstream elements of RNAP. The rate of open complex formation is regulated by effects on the rapidly-reversible steps preceding DNA opening, while open complex lifetime is regulated by effects on the stabilization of the initial open complex. Intrinsic DNA opening-closing appears less regulated. This noncovalent mechanism and its regulation exhibit many analogies to mechanisms of enzyme catalysis. PMID:26023916

  5. Small-animal CT: Its difference from, and impact on, clinical CT

    NASA Astrophysics Data System (ADS)

    Ritman, Erik L.

    2007-10-01

    For whole-body computed tomography (CT) images of small rodents, a voxel resolution of at least 10 -3 mm 3 is needed for scale-equivalence to that currently achieved in clinical CT scanners (˜1 mm 3) in adult humans. These "mini-CT" images generally require minutes rather than seconds to complete a scan. The radiation exposure resulting from these mini-CT scans, while higher than clinical CT scans, is below the level resulting in acute tissue damage. Hence, these scans are useful for performing clinical-type diagnostic and monitoring scans for animal models of disease and their response to treatment. "Micro-CT", with voxel size <10 -5 mm 3, has been useful for imaging isolated, intact organs at an almost cellular level of resolution. Micro-CT has the great advantage over traditional microscopic methods in that it generates detailed three-dimensional images in relatively large, opaque volumes such as an intact rodent heart or kidney. The radiation exposure needed in these scans results in acute tissue damage if used in living animals. Experience with micro-CT is contributing to exploration of new applications for clinical CT imaging by providing insights into different modes of X-ray image formation as follows: Spatial resolution should be sufficient to detect an individual Basic Functional Unit (BFU, the smallest collection of diverse cells, such as hepatic lobule, that behaves like the organ), which requires voxels ˜10 -3 mm 3 in volume, so that the BFUs can be counted. Contrast resolution sufficient to allow quantitation of: New microvascular growth, which manifests as increased tissue contrast due to X-ray contrast agent in those vessels' lumens during passage of injected contrast agent in blood. Impaired endothelial integrity which manifests as increased opacification and delayed washout of contrast from tissues. Discrimination of pathological accumulations of metals such as Fe and Ca, which occur in the arterial wall following hemorrhage or tissue damage

  6. CT measurments of cranial growth: normal subjects

    SciTech Connect

    Hahn, F.J.; Chu, W.K.; Cheung, J.Y.

    1984-06-01

    Growth patterns of the cranium measured directly as head circumference have been well documented. With the availability of computed tomography (CT) , cranial dimensions can be obtained easily. The objective of this project was to establish the mean values and their normal variance of CT cranial area of subjects at different ages. Cranial area and its long and short axes were measured on CT scans for 215 neurologic patients of a wide age range who presented no evidence of abnormal growth of head size. Growth patterns of the cranial area as well as the numeric product of it linear dimensions were determined via a curve fitting process. The patterns resemble that of the head circumference growth chart, with the most rapid growth observed in the first 12 months of age and reaching full size during adolescence.

  7. CT densitometry of the lungs: Scanner performance

    SciTech Connect

    Kemerink, G.J.; Lamers, R.J.S.; Thelissen, G.R.P.; Engelshoven, J.M.A. van

    1996-01-01

    Our goal was to establish the reproducibility and accuracy of the CT scanner in densitometry of the lungs. Scanner stability was assessed by analysis of daily quality checks. Studies using a humanoid phantom and polyethylene foams for lung were performed to measure reproducibility and accuracy. The dependence of the CT-estimated density on reconstruction filter, zoom factor, slice thickness, table height, data truncation, and objects outside the scan field was determined. Stability of the system at air density was within {approx}1 HU and at water density within {approx}2 HU. Reproducibility and accuracy for densities found for lung were within 2-3%. Dependence on the acquisition and reconstruction parameters was neglible, with the exceptions of the ultra high resolution reconstruction algorithm in the case of emphysema, and objects outside the scan field. The performance of the CT scanner tested is quite adequate for densitometry of the lungs. 26 refs., 5 figs., 4 tabs.

  8. Neck after total laryngectomy: CT study

    SciTech Connect

    DiSantis, D.J.; Balfe, D.M.; Hayden, R.E.; Sagel, S.S.; Sessions, D.; Lee, J.K.T.

    1984-12-01

    Computed tomographic scans in 23 patients who had undergone total laryngectomy were analyzed retrospectively to determine normal postoperative appearance and to evaluate the role of CT in assessing recurrent neoplasm. Nine patients without clinical evidence of recurrence illustrated the normal postoperative changes: a round or ovoid neopharynx connecting the base of the tongue with the cervical esophagus and intact fat planes surrounding the neopharynx, neurovascular bundles, and sternocleidomastoid muscles. In the 12 patients with recurrent neoplasm, the CT manifestations included masses involving the internal jugular lymph node chain, tracheostomy site, or paratracheal region. CT supplemented physical examination and indirect mirror examination, providing data regarding presence and extent of recurrent tumor and aiding in planning the mode and scope of therapy.

  9. Stercoral colitis: diagnostic value of CT findings

    PubMed Central

    Ünal, Emre; Onur, Mehmet Ruhi; Balcı, Sinan; Görmez, Ayşegül; Akpınar, Erhan; Böge, Medine

    2017-01-01

    PURPOSE We aimed to evaluate the CT findings of stercoral colitis (SC). METHODS Forty-one patients diagnosed with SC between February 2006 and April 2015 were retrospectively reviewed. RESULTS Rectosigmoid colon was the most frequently involved segment (100%, n=41). CT findings can be summarized as follows: dilatation >6 cm and wall thickening >3 mm of the affected colon segment (100%, n=41), pericolonic fat stranding (100%, n=41), mucosal discontinuity (14.6 %, n=6), presence of free air (14.6%, n=6), free fluid (9.7%, n=4), and pericolonic abscess (2.4%, n=1). The sign most related with mortality was the length of the affected colon segment >40 cm. CONCLUSION CT has an important role in SC, since life-threatening complications can be easily revealed by this imaging modality. Increased length of involved colon segment (>40 cm) is more likely to be associated with mortality. PMID:27910814

  10. Dual energy CT: How well can pseudo-monochromatic imaging reduce metal artifacts?

    SciTech Connect

    Kuchenbecker, Stefan Faby, Sebastian; Sawall, Stefan; Kachelrieß, Marc; Lell, Michael

    2015-02-15

    Purpose: Dual Energy CT (DECT) provides so-called monoenergetic images based on a linear combination of the original polychromatic images. At certain patient-specific energy levels, corresponding to certain patient- and slice-dependent linear combination weights, e.g., E = 160 keV corresponds to α = 1.57, a significant reduction of metal artifacts may be observed. The authors aimed at analyzing the method for its artifact reduction capabilities to identify its limitations. The results are compared with raw data-based processing. Methods: Clinical DECT uses a simplified version of monochromatic imaging by linearly combining the low and the high kV images and by assigning an energy to that linear combination. Those pseudo-monochromatic images can be used by radiologists to obtain images with reduced metal artifacts. The authors analyzed the underlying physics and carried out a series expansion of the polychromatic attenuation equations. The resulting nonlinear terms are responsible for the artifacts, but they are not linearly related between the low and the high kV scan: A linear combination of both images cannot eliminate the nonlinearities, it can only reduce their impact. Scattered radiation yields additional noncanceling nonlinearities. This method is compared to raw data-based artifact correction methods. To quantify the artifact reduction potential of pseudo-monochromatic images, they simulated the FORBILD abdomen phantom with metal implants, and they assessed patient data sets of a clinical dual source CT system (100, 140 kV Sn) containing artifacts induced by a highly concentrated contrast agent bolus and by metal. In each case, they manually selected an optimal α and compared it to a raw data-based material decomposition in case of simulation, to raw data-based material decomposition of inconsistent rays in case of the patient data set containing contrast agent, and to the frequency split normalized metal artifact reduction in case of the metal

  11. Patient position verification using CT images.

    PubMed

    Kress, J; Minohara, S; Endo, M; Debus, J; Kanai, T

    1999-06-01

    The use of ions in the radiotherapy of cancer patients requires an accurate patient positioning in order to exploit its potential benefits. Using CT images as the basis for the setup verification offers the advantage of a high in-plane resolution in combination with a geometrically accurate, volumetric information. Before each fraction a single CT slice is acquired at the isocenter level after the positioning procedure. This single slice is registered to the planning CT cube using automated image registration algorithms. Thus any erreonous translation or rotation can be detected and quantified. The registration process involves the interpolation of the volumetric data, the calculation of an energy function, and the minimization of this energy function. Several data interpolation functions as well as minimization algorithms were compared. CT studies with a head phantom were performed in which defined translations and rotations were simulated by moving a motor-driven treatment chair. Different slice thicknesses and anatomical sites were studied to investigate their potential influence on the registration accuracy. The accuracy of the registration was found to be a fraction of a voxel size for suitable combinations of algorithms (typically better than 0.16 mm/deg). A significant dependancy of the registration accuracy on the CT slice thickness and the anatomical site was found (the accuracy ranges from 0.05 mm/deg to 0.16 mm/deg depending on the site). The calculation time is dependant on the used algorithms and the magnitude of the setup error. For the standard combination of algorithms as proposed by the authors (Downhill Simplex minimization with Trilinear interpolation) the typical calculation time is about 20 s for a Sun UltraSPARC processor. Taking into account the mechanical accuracy of the setup device (motor-driven chair) the registration of CT images is thus a useful tool for detecting and quantifying any significant error in the patient position.

  12. Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction.

    PubMed

    Goo, Hyun Woo; Park, Sang-Hyub

    2015-12-01

    To assess agreement between two semi-automatic, three-dimensional (3D) computed tomography (CT) ventricular volumetry methods with different user interactions in patients with congenital heart disease. In 30 patients with congenital heart disease (median age 8 years, range 5 days-33 years; 20 men), dual-source, multi-section, electrocardiography-synchronized cardiac CT was obtained at the end-systolic (n = 22) and/or end-diastolic (n = 28) phase. Nineteen left ventricle end-systolic (LV ESV), 28 left ventricle end-diastolic (LV EDV), 22 right ventricle end-systolic (RV ESV), and 28 right ventricle end-diastolic volumes (RV EDV) were successfully calculated using two semi-automatic, 3D segmentation methods with different user interactions (high in method 1, low in method 2). The calculated ventricular volumes of the two methods were compared and correlated. A P value <0.05 was considered statistically significant. LV ESV (35.95 ± 23.49 ml), LV EDV (88.76 ± 61.83 ml), and RV ESV (46.87 ± 47.39 ml) measured by method 2 were slightly but significantly smaller than those measured by method 1 (41.25 ± 26.94 ml, 92.20 ± 62.69 ml, 53.61 ± 50.08 ml for LV ESV, LV EDV, and RV ESV, respectively; P ≤ 0.02). In contrast, no statistically significant difference in RV EDV (122.57 ± 88.57 ml in method 1, 123.83 ± 89.89 ml in method 2; P = 0.36) was found between the two methods. All ventricular volumes showed very high correlation (R = 0.978, 0.993, 0.985, 0.997 for LV ESV, LV EDV, RV ESV, and RV EDV, respectively; P < 0.001) between the two methods. In patients with congenital heart disease, 3D CT ventricular volumetry shows good agreement and high correlation between the two methods, but method 2 tends to slightly underestimate LV ESV, LV EDV, and RV ESV.

  13. CT predictors of post-procedural aortic regurgitation in patients referred for transcatheter aortic valve implantation: an analysis of 105 patients.

    PubMed

    Marwan, Mohamed; Achenbach, Stephan; Ensminger, Stefan M; Pflederer, Tobias; Ropers, Dieter; Ludwig, Josef; Weyand, Michael; Daniel, Werner G; Arnold, Martin

    2013-06-01

    Cardiac computed tomography (CT) allows accurate and detailed analysis of the anatomy of the aortic root and valve, including quantification of calcium. We evaluated the correlation between different CT parameters and the degree of post-procedural aortic regurgitation (AR) after transcatheter aortic valve implantation (TAVI) using the balloon-expandable Edwards Sapien prosthesis. Pre-intervention contrast-enhanced dual source CT data sets of 105 consecutive patients (48 males, mean age 81 ± 6 years, mean logEuroSCORE 34 ± 13%) with symptomatic severe aortic valve stenosis referred for TAVI using the Edwards Sapien prosthesis (Edwards lifesciences, Inc., CA, USA) were analysed. The degrees of aortic valve commissural calcification and annular calcification were visually assessed on a scale from 0 to 3. Furthermore, the degree of aortic valve calcification as quantified by the Agatston score, aortic annulus eccentricity, aortic diameter at the level of the sinus of valsalva and at the sinotubular junction were assessed. Early post-procedural AR was assessed using aortography. Significant AR was defined as angiographic AR of at least moderate degree (AR ≥ 2). Visual assessment of the degree of aortic annular calcification as well as the Agatston score of aortic valve calcium correlated weakly, yet significantly with the degree of post-procedural AR (r = 0.31 and 0.24, p = 0.001 and 0.013, respectively). Compared to patients with AR < 2, patients with AR ≥ 2 showed more severe calcification of the aortic annulus (mean visual scores 1.9 ± 0.6 vs. 1.5 ± 0.6, p = 0.003) as well as higher aortic valve Agatston scores (1,517 ± 861 vs. 1,062 ± 688, p = 0.005). Visual score for commissural calcification did not differ significantly between both groups (mean scores 2.4 ± 0.5 vs. 2.5 ± 0.5, respectively, p = 0.117). No significant correlation was observed between the degree of AR and commissural calcification, aortic annulus eccentricity index or aortic diameters

  14. High-Pitch, Low-Voltage and Low-Iodine-Concentration CT Angiography of Aorta: Assessment of Image Quality and Radiation Dose with Iterative Reconstruction

    PubMed Central

    Shen, Yanguang; Sun, Zhonghua; Xu, Lei; Li, Yu; Zhang, Nan; Yan, Zixu; Fan, Zhanming

    2015-01-01

    Objective To assess the image quality of aorta obtained by dual-source computed tomography angiography (DSCTA), performed with high pitch, low tube voltage, and low iodine concentration contrast medium (CM) with images reconstructed using iterative reconstruction (IR). Methods One hundred patients randomly allocated to receive one of two types of CM underwent DSCTA with the electrocardiogram-triggered Flash protocol. In the low-iodine group, 50 patients received CM containing 270 mg I/mL and were scanned at low tube voltage (100 kVp). In the high-iodine CM group, 50 patients received CM containing 370 mg I/mL and were scanned at the tube voltage (120 kVp). The filtered back projection (FBP) algorithm was used for reconstruction in both groups. In addition, the IR algorithm was used in the low-iodine group. Image quality of the aorta was analyzed subjectively by a 3-point grading scale and objectively by measuring the CT attenuation in terms of the signal- and contrast-to-noise ratios (SNR and CNR, respectively). Radiation and CM doses were compared. Results The CT attenuation, subjective image quality assessment, SNR, and CNR of various aortic regions of interest did not differ significantly between two groups. In the low-iodine group, images reconstructed by FBP and IR demonstrated significant differences in image noise, SNR, and CNR (p<0.05). The low-iodine group resulted in 34.3% less radiation (4.4 ± 0.5 mSv) than the high-iodine group (6.7 ± 0.6 mSv), and 27.3% less iodine weight (20.36 ± 2.65 g) than the high-iodine group (28 ± 1.98 g). Observers exhibited excellent agreement on the aortic image quality scores (κ = 0.904). Conclusions CT images of aorta could be obtained within 2 s by using a DSCT Flash protocol with low tube voltage, IR, and low-iodine-concentration CM. Appropriate contrast enhancement was achieved while maintaining good image quality and decreasing the radiation and iodine doses. PMID:25643353

  15. Improved dose calculation accuracy for low energy brachytherapy by optimizing dual energy CT imaging protocols for noise reduction using sinogram affirmed iterative reconstruction.

    PubMed

    Landry, Guillaume; Gaudreault, Mathieu; van Elmpt, Wouter; Wildberger, Joachim E; Verhaegen, Frank

    2016-03-01

    The goal of this study was to evaluate the noise reduction achievable from dual energy computed tomography (CT) imaging (DECT) using filtered backprojection (FBP) and iterative image reconstruction algorithms combined with increased imaging exposure. We evaluated the data in the context of imaging for brachytherapy dose calculation, where accurate quantification of electron density ρe and effective atomic number Zeff is beneficial. A dual source CT scanner was used to scan a phantom containing tissue mimicking inserts. DECT scans were acquired at 80 kVp/140Sn kVp (where Sn stands for tin filtration) and 100 kVp/140Sn kVp, using the same values of the CT dose index CTDIvol for both settings as a measure for the radiation imaging exposure. Four CTDIvol levels were investigated. Images were reconstructed using FBP and sinogram affirmed iterative reconstruction (SAFIRE) with strength 1,3 and 5. From DECT scans two material quantities were derived, Zeff and ρe. DECT images were used to assign material types and the amount of improperly assigned voxels was quantified for each protocol. The dosimetric impact of improperly assigned voxels was evaluated with Geant4 Monte Carlo (MC) dose calculations for an (125)I source in numerical phantoms. Standard deviations for Zeff and ρe were reduced up to a factor ∼2 when using SAFIRE with strength 5 compared to FBP. Standard deviations on Zeff and ρe as low as 0.15 and 0.006 were achieved for the muscle insert representing typical soft tissue using a CTDIvol of 40 mGy and 3mm slice thickness. Dose calculation accuracy was generally improved when using SAFIRE. Mean (maximum absolute) dose errors of up to 1.3% (21%) with FBP were reduced to less than 1% (6%) with SAFIRE at a CTDIvol of 10 mGy. Using a CTDIvol of 40mGy and SAFIRE yielded mean dose calculation errors of the order of 0.6% which was the MC dose calculation precision in this study and no error was larger than ±2.5% as opposed to errors of up to -4% with FPB. This

  16. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  17. CT image visualization: a conceptual introduction.

    PubMed

    Furlow, Bryant

    2014-01-01

    Computed tomography (CT) postprocessing produces information-rich diagnostic images, transforming enormous amounts of x-ray attenuation data into clinical information that can assist in diagnosis and treatment. This article briefly reviews the history of the technological evolution of CT imaging equipment and provides a conceptual overview of scan data visualization processes. Trends in and examples of image postprocessing, segmentation, registration and fusion techniques, and computer-aided detection are described. Finally, the uses of these visualization algorithms in selected diagnostic imaging applications are discussed.

  18. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  19. CT Cystography Following a Scrotal Gunshot Wound.

    PubMed

    Eby, Peter R

    2008-01-01

    We present the case of a 22-year-old man who sustained a gunshot wound to the scrotum. The imaging findings and management of the patient are described and discussed in the context of prior research pertaining to traumatic bladder rupture. Non-pressurized antegrade 10-minute delayed CT may result in unnecessary radiation exposure, delayed diagnosis and is not adequate to exclude bladder rupture. Retrograde pressurized CT cystography should be performed to exclude bladder rupture in patients with high-risk imaging results, clinical findings or injury mechanisms.

  20. Intracerebral pneumatoceles following facial trauma: CT findings

    SciTech Connect

    Mendelsohn, D.B.; Hertzanu, Y.

    1985-01-01

    Three patients with delayed frontal intracerebral pneumatoceles following facial injury are presented. In one patient an unusual appearance of bilateral and symmetrical frontal lobe pneumatoceles was demonstrated. While diagnosis is not difficult on routine radiographs, CT is valuable for determining effects on the brain and clearly delineating the fracture site; CT shows the location of the pneumatocele and may show an associated air-fluid level, mass effect or surrounding edema, or rim enhancement following administration of contrast material. The radiological appearances in conjunction with the clinical findings are highly characteristic and should not be mistaken for gas-forming cerebral abscesses.

  1. Mesentery neurilemmoma: CT, MRI and angiographic findings.

    PubMed

    Lao, Wilson T; Yang, Shih-Hung; Chen, Chi-Long; Chan, Wing P

    2011-01-01

    Mesenteric neurilemmoma is extremely rare. We present a case of a 45-year-old man with mesenteric neurilemmoma, with CT, MRI and angiographic findings. The patient was healthy and had had no symptoms previously. CT and MRI images revealed a 2.2-cm well-defined, soft-tissue mass adjacent to the posterior border of the left lobe of the liver. The tumor mass displayed a heterogenous low signal on T2-weighted image and peripheral enhancement after gadolinium administration. Angiography showed a hypervascular mass beneath the tail of pancreas, which was supplied by small branches of middle splenic artery. Histopathology revealed a mesentery neurilemmoma composed of spindle tumor cells.

  2. Choroidal detachment and ocular hypotony: CT evaluation

    SciTech Connect

    Mafee, M.F.; Peyman, G.A.

    1984-12-01

    The computed tomographic (CT) findings in 20 patients with hemorrhagic choroidal detachment, serous choroidal detachment and/or ocular hypotony are described. Hemorrhagic choroidal detachment appeared as an area of high attenuation that was usually localized, uniformly hyperdense, and not position-dependent. Serous choroidal detachment appeared as a convex, thick line of increased density within the vitreous cavity. Inflammatory choroidal detachment produces a diffuse intrauveal and suprachoroidal accumulation of high-density, position-dependent fluid, and uveoscleral thickening and enhancement, which in cross section resembles a ring. CT has proved valuable in localizing and differentiating serous or hemorrhagic choroidal detachment and uveoscleral infolding.

  3. Alpha image reconstruction (AIR): A new iterative CT image reconstruction approach using voxel-wise alpha blending

    SciTech Connect

    Hofmann, Christian; Sawall, Stefan; Knaup, Michael; Kachelrieß, Marc

    2014-06-15

    factor for contrast-resolution plots. Furthermore, the authors calculate the contrast-to-noise ratio with the low contrast disks and the authors compare the agreement of the reconstructions with the ground truth by calculating the normalized cross-correlation and the root-mean-square deviation. To evaluate the clinical performance of the proposed method, the authors reconstruct patient data acquired with a Somatom Definition Flash dual source CT scanner (Siemens Healthcare, Forchheim, Germany). Results: The results of the simulation study show that among the compared algorithms AIR achieves the highest resolution and the highest agreement with the ground truth. Compared to the reference FBP reconstruction AIR is able to reduce the relative pixel noise by up to 50% and at the same time achieve a higher resolution by maintaining the edge information from the basis images. These results can be confirmed with the patient data. Conclusions: To evaluate the AIR algorithm simulated and measured patient data of a state-of-the-art clinical CT system were processed. It is shown, that generating CT images through the reconstruction of weighting coefficients has the potential to improve the resolution noise trade-off and thus to improve the dose usage in clinical CT.

  4. Trapping volumetric measurement by multidetector CT in chronic obstructive pulmonary disease: Effect of CT threshold

    SciTech Connect

    Wang, Xiaohua; Yuan, Huishu; Duan, Jianghui; Du, Yipeng; Shen, Ning; He, Bei

    2013-08-15

    Purpose: The purpose of this study was to evaluate the effect of various computed tomography (CT) thresholds on trapping volumetric measurements by multidetector CT in chronic obstructive pulmonary disease (COPD).Methods: Twenty-three COPD patients were scanned with a 64-slice CT scanner in both the inspiratory and expiratory phase. CT thresholds of −950 Hu in inspiration and −950 to −890 Hu in expiration were used, after which trapping volumetric measurements were made using computer software. Trapping volume percentage (Vtrap%) under the different CT thresholds in the expiratory phase and below −950 Hu in the inspiratory phase was compared and correlated with lung function.Results: Mean Vtrap% was similar under −930 Hu in the expiratory phase and below −950 Hu in the inspiratory phase, being 13.18 ± 9.66 and 13.95 ± 6.72 (both lungs), respectively; this difference was not significant (P= 0.240). Vtrap% under −950 Hu in the inspiratory phase and below the −950 to −890 Hu threshold in the expiratory phase was moderately negatively correlated with the ratio of forced expiratory volume in one second to forced vital capacity and the measured value of forced expiratory volume in one second as a percentage of the predicted value.Conclusions: Trapping volumetric measurement with multidetector CT is a promising method for the quantification of COPD. It is important to know the effect of various CT thresholds on trapping volumetric measurements.

  5. A novel 3D graph cut based co-segmentation of lung tumor on PET-CT images with Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Chen, Xinjian; Shi, Fei; Zhu, Weifang; Zhang, Bin; Xiang, Dehui

    2016-03-01

    Positron Emission Tomography (PET) and Computed Tomography (CT) have been widely used in clinical practice for radiation therapy. Most existing methods only used one image modality, either PET or CT, which suffers from the low spatial resolution in PET or low contrast in CT. In this paper, a novel 3D graph cut method is proposed, which integrated Gaussian Mixture Models (GMMs) into the graph cut method. We also employed the random walk method as an initialization step to provide object seeds for the improvement of the graph cut based segmentation on PET and CT images. The constructed graph consists of two sub-graphs and a special link between the sub-graphs which penalize the difference segmentation between the two modalities. Finally, the segmentation problem is solved by the max-flow/min-cut method. The proposed method was tested on 20 patients' PET-CT images, and the experimental results demonstrated the accuracy and efficiency of the proposed algorithm.

  6. Implementation and characterization of a 320-slice volumetric CT scanner for simulation in radiation oncology

    SciTech Connect

    Coolens, C.; Breen, S.; Purdie, T. G.; Owrangi, A.; Publicover, J.; Bartolac, S.; Jaffray, D. A.

    2009-11-15

    Purpose: Effective target definition and broad employment of treatment response assessment with dynamic contrast-enhanced CT in radiation oncology requires increased speed and coverage for use within a single bolus injection. To this end, a novel volumetric CT scanner (Aquilion One, Toshiba, Tochigi Pref., Japan) has been installed at the Princess Margaret Hospital for implementation into routine CT simulation. This technology offers great advantages for anatomical and functional imaging in both scan speed and coverage. The aim of this work is to investigate the system's imaging performance and quality as well as CT quantification accuracy which is important for radiotherapy dose calculations. Methods: The 320-slice CT scanner uses a 160 mm wide-area (2D) solid-state detector design which provides the possibility to acquire a volumetric axial length of 160 mm without moving the CT couch. This is referred to as ''volume'' and can be scanned with a rotation speed of 0.35-3 s. The scanner can also be used as a 64-slice CT scanner and perform conventional (axial) and helical acquisitions with collimation ranges of 1-32 and 16-32 mm, respectively. Commissioning was performed according to AAPM Reports TG 66 and 39 for both helical and volumetric imaging. Defrise and other cone-beam image analysis tests were performed. Results: Overall, the imaging spatial resolution and geometric efficiency (GE) were found to be very good (>10 lp/mm, <1 mm spatial integrity and GE{sub 160mm}=85%) and within the AAPM guidelines as well as IEC recommendations. Although there is evidence of some cone-beam artifacts when scanning the Defrise phantom, image quality was found to be good and sufficient for treatment planning (soft tissue noise <10 HU). Measurements of CT number stability and contrast-to-noise values across the volume indicate clinically acceptable scan accuracy even at the field edge. Conclusions: Initial experience with this exciting new technology confirms its accuracy for

  7. WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration

    SciTech Connect

    Ingram, W; Rao, A; Wendt, R; Court, L; Yang, J; Beadle, B

    2015-06-15

    Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded as it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration

  8. [Performance evaluation for CT-AEC(CT automatic exposure control)systems].

    PubMed

    Muramatsu, Yoshihisa; Ikeda, Shu; Osawa, Kazuaki; Sekine, Ryo; Niwa, Nobuyuki; Terada, Masami; Keat, Nicholas; Miyazaki, Shigeru

    2007-05-20

    Although many current CT scanners incorporate CT-AEC, performance evaluation is not standardized. This study evaluates the performance of the latest CT-AEC of each manufacturer with the aim of establishing a standard CT-AEC performance evaluation method. The design of the phantoms was based upon the operation characteristics of different CT-AECs. A cone, an ellipse, a variable-shaped ellipse, stepped phantoms, and their analysis software were devised and carried out the field test. The targets were LightSpeed VCT 64 with 2D and 3D Auto mA(GE), Aquilion 64M with Real-EC and Volume-EC(Toshiba), Sensation 64 with CARE Dose and CARE Dose 4D(Siemens), and Bulliance 16P with Dose Right(Philips). Data was acquired while varying the typical abdominal CT(with CT-AEC)scanning conditions (120 kV, 5 mm slice, standard function for abdomen, scanning range 200 mm). The acquired images were converted to the DICOM format and image noise(SD) was calculated using dedicated software. All 4 CT-AECs reduced exposure dose. For GE and Toshiba, image noise was constant and met the target. For Siemens, noise was independent of phantom shape but varied uniformly with phantom size. For Philips, noise varied with phantom size and shape, and variation degree depended on phantom thickness in scanogram direction. The results reflect the basic concept and performance characteristics of the methods. Standardization of CT-AEC performance evaluation is possible using these phantoms.

  9. Estimation of skull table thickness with clinical CT and validation with microCT.

    PubMed

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies.

  10. Estimation of skull table thickness with clinical CT and validation with microCT

    PubMed Central

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. PMID:25441171

  11. SU-E-J-35: Clinical Performance Evaluation of a Phase II Proton CT Scanner

    SciTech Connect

    Mandapaka, A; Ghebremedhin, A; Farley, D; Giacometti, V; Vence, N; Bashkirov, V; Patyal, B; Schulte, R; Plautz, T; Zatserklyaniy, A; Johnson, R; Sadrozinski, H

    2014-06-01

    Purpose: To develop the methodology to evaluate the clinical performance of a Phase II Proton CT scanner Methods: Range errors on the order of 3%-5% constitute a major uncertainty in current charged particle treatment planning based on Hounsfield Unit (HU)-relative stopping power (RSP) calibration curves. Within our proton CT collaboration, we previously developed and built a Phase I proton CT scanner that provided a sensitive area of 9 cm (axial) × 18 cm (in-plane). This scanner served to get initial experience with this new treatment planning tool and to incorporate lessons learned into the next generation design. A Phase II scanner was recently completed and is now undergoing initial performance testing. It will increase the proton acquisition rate and provide a larger detection area of 9 cm x 36 cm. We are now designing a comprehensive evaluation program to test the image quality, imaging dose, and range uncertainty associated with this scanner. The testing will be performed along the lines of AAPM TG 66. Results: In our discussion of the evaluation protocol we identified the following priorities. The image quality of proton CT images, in particular spatial resolution and low-density contrast discrimination, will be evaluated with the Catphan600 phantom. Initial testing showed that the Catphan uniformity phantom did not provide sufficient uniformity; it was thus replaced by a cylindrical water phantom. The imaging dose will be tested with a Catphan dose module, and compared to a typical cone beam CT dose for comparable image quality. Lastly, we developed a dedicated dosimetry range phantom based on the CIRS pediatric head phantom HN715. Conclusion: A formal evaluation of proton CT as a new tool for proton treatment planning is an important task. The availability of the new Phase II proton CT scanner will allow us to perform this task. This research is supported by the National Institute of Biomedical Imaging and Bioengineering of the NIH under award number R01

  12. Method for transforming CT images for attenuation correction in PET/CT imaging

    SciTech Connect

    Carney, Jonathan P.J.; Townsend, David W.; Rappoport, Vitaliy; Bendriem, Bernard

    2006-04-15

    A tube-voltage-dependent scheme is presented for transforming Hounsfield units (HU) measured by different computed tomography (CT) scanners at different x-ray tube voltages (kVp) to 511 keV linear attenuation values for attenuation correction in positron emission tomography (PET) data reconstruction. A Gammex 467 electron density CT phantom was imaged using a Siemens Sensation 16-slice CT, a Siemens Emotion 6-slice CT, a GE Lightspeed 16-slice CT, a Hitachi CXR 4-slice CT, and a Toshiba Aquilion 16-slice CT at kVp ranging from 80 to 140 kVp. All of these CT scanners are also available in combination with a PET scanner as a PET/CT tomograph. HU obtained for various reference tissue substitutes in the phantom were compared with the known linear attenuation values at 511 keV. The transformation, appropriate for lung, soft tissue, and bone, yields the function 9.6x10{sup -5}{center_dot}(HU+1000) below a threshold of {approx}50 HU and a{center_dot}(HU+1000)+b above the threshold, where a and b are fixed parameters that depend on the kVp setting. The use of the kVp-dependent scaling procedure leads to a significant improvement in reconstructed PET activity levels in phantom measurements, resolving errors of almost 40% otherwise seen for the case of dense bone phantoms at 80 kVp. Results are also presented for patient studies involving multiple CT scans at different kVp settings, which should all lead to the same 511 keV linear attenuation values. A linear fit to values obtained from 140 kVp CT images using the kVp-dependent scaling plotted as a function of the corresponding values obtained from 80 kVp CT images yielded y=1.003x-0.001 with an R{sup 2} value of 0.999, indicating that the same values are obtained to a high degree of accuracy.

  13. Comparison of CT and MR-CT Fusion for Prostate Post-Implant Dosimetry

    SciTech Connect

    Maletz, Kristina L.; Ennis, Ronald D.; Ostenson, Jason; Pevsner, Alexander; Kagen, Alexander; Wernick, Iddo

    2012-04-01

    Purpose: The use of T2 MR for postimplant dosimetry (PID) after prostate brachytherapy allows more anatomically accurate and precise contouring but does not readily permit seed identification. We developed a reproducible technique for performing MR-CT fusion and compared the resulting dosimetry to standard CT-based PID. Methods and Materials: CT and T1-weighted MR images for 45 patients were fused and aligned based on seed distribution. The T2-weighted MR image was then fused to the aligned T1. Reproducibility of the fusion technique was tested by inter- and intraobserver variability for 13 patients. Dosimetry was computed for the prostate as a whole and for the prostate divided into anterior and posterior sectors of the base, mid-prostate, and apex. Results: Inter- and intraobserver variability for the fusion technique showed less than 1% variation in D90. MR-CT fusion D90 and CT D90 were nearly equivalent for the whole prostate, but differed depending on the identification of superior extent of the base (p = 0.007) and on MR/CT prostate volume ratio (p = 0.03). Sector analysis showed a decrease in MR-CT fusion D90 in the anterior base (ratio 0.93 {+-}0.25, p < 0.05) and an increase in MR-CT fusion D90 in the apex (p < 0.05). The volume of extraprostatic tissue encompassed by the V100 is greater on MR than CT. Factors associated with this difference are the MR/CT volume ratio (p < 0.001) and the difference in identification of the inferior extent of the apex (p = 0.03). Conclusions: We developed a reproducible MR-CT fusion technique that allows MR-based dosimetry. Comparing the resulting postimplant dosimetry with standard CT dosimetry shows several differences, including adequacy of coverage of the base and conformity of the dosimetry around the apex. Given the advantage of MR-based tissue definition, further study of MR-based dosimetry is warranted.

  14. Segmentation of multiple knee bones from CT for orthopedic knee surgery planning.

    PubMed

    Wu, Dijia; Sofka, Michal; Birkbeck, Neil; Zhou, S Kevin

    2014-01-01

    Patient-specific orthopedic knee surgery planning requires precisely segmenting from 3D CT images multiple knee bones, namely femur, tibia, fibula, and patella, around the knee joint with severe pathologies. In this work, we propose a fully automated, highly precise, and computationally efficient segmentation approach for multiple bones. First, each bone is initially segmented using a model-based marginal space learning framework for pose estimation followed by non-rigid boundary deformation. To recover shape details, we then refine the bone segmentation using graph cut that incorporates the shape priors derived from the initial segmentation. Finally we remove overlap between neighboring bones using multi-layer graph partition. In experiments, we achieve simultaneous segmentation of femur, tibia, patella, and fibula with an overall accuracy of less than 1mm surface-to-surface error in less than 90s on hundreds of 3D CT scans with pathological knee joints.

  15. Progress in Initiator Modeling

    SciTech Connect

    Hrousis, C A; Christensen, J S

    2009-05-04

    There is great interest in applying magnetohydrodynamic (MHD) simulation techniques to the designs of electrical high explosive (HE) initiators, for the purpose of better understanding a design's sensitivities, optimizing its performance, and/or predicting its useful lifetime. Two MHD-capable LLNL codes, CALE and ALE3D, are being used to simulate the process of ohmic heating, vaporization, and plasma formation in the bridge of an initiator, be it an exploding bridgewire (EBW), exploding bridgefoil (EBF) or slapper type initiator. The initiation of the HE is simulated using Tarver Ignition & Growth reactive flow models. 1-D, 2-D and 3-D models have been constructed and studied. The models provide some intuitive explanation of the initiation process and are useful for evaluating the potential impact of identified aging mechanisms (such as the growth of intermetallic compounds or powder sintering). The end product of this work is a simulation capability for evaluating margin in proposed, modified or aged initiation system designs.

  16. Monitoring Abortive Initiation

    PubMed Central

    Hsu, Lilian M.

    2009-01-01

    Abortive initiation, when first discovered, was an enigmatic phenomenon, but fully three decades hence, it has been shown to be an integral step in the transcript initiation process intimately tied to the promoter escape reaction undergone by RNA polymerase at the initiation-elongation transition. A detailed understanding of abortive initiation-promoter escape has brought within reach a full description of the transcription initiation mechanism. This enormous progress was the result of convergent biochemical, genetic, and biophysical investigations propelled by parallel advances in quantitation technology. This chapter discusses the knowledge gained through the biochemical approach and a high-resolution method that yields quantitative and qualitative information regarding abortive initiation-promoter escape at a promoter. PMID:18948204

  17. MR to CT Registration of Brains using Image Synthesis.

    PubMed

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L; Lee, Junghoon

    2014-03-21

    Computed tomography (CT) is the standard imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  18. MR to CT registration of brains using image synthesis

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  19. Deep convolutional networks for pancreas segmentation in CT imaging

    NASA Astrophysics Data System (ADS)

    Roth, Holger R.; Farag, Amal; Lu, Le; Turkbey, Evrim B.; Summers, Ronald M.

    2015-03-01

    Automatic organ segmentation is an important prerequisite for many computer-aided diagnosis systems. The high anatomical variability of organs in the abdomen, such as the pancreas, prevents many segmentation methods from achieving high accuracies when compared to state-of-the-art segmentation of organs like the liver, heart or kidneys. Recently, the availability of large annotated training sets and the accessibility of affordable parallel computing resources via GPUs have made it feasible for "deep learning" methods such as convolutional networks (ConvNets) to succeed in image classification tasks. These methods have the advantage that used classification features are trained directly from the imaging data. We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not. We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve maximum Dice scores of an average 68% +/- 10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.

  20. CT-video registration accuracy for virtual guidance of bronchoscopy

    NASA Astrophysics Data System (ADS)

    Helferty, James P.; Hoffman, Eric A.; McLennan, Geoffrey; Higgins, William E.

    2004-04-01

    Bronchoscopic biopsy is often used for assisting the assessment of lung cancer. We have found in previous research that live image guidance of bronchoscopy has much potential for improving biopsy outcome. We have devised a system for this purpose. During a guided bronchoscopy procedure, our system simultaneously draws upon both the bronchoscope's video stream and the patient's 3D MDCT volume. The key data-processing step during guided bronchoscopy is the registration of the 3D MDCT data volume to the bronchoscopic video. The registration process is initialized by assuming that the bronchoscope is at a fixed viewpoint, giving a target reference video image, while the virtual-world camera inside the MDCT volume begins at an initial viewpoint that is within a reasonable vicinity of the bronchoscope's viewpoint. During registration, an optimization process searches for the optimal viewpoint to give the virtual image best matching the fixed video target. Overall, we have found that the CT-video registration technique operates robustly over a wide range of conditions, with considerable flexibility in the initial-viewpoint choice. Further, the system appears to be largely insensitive to the differences in lung capacity during the MDCT scan and during bronchoscopy. Finally, the system matches effectively in a wide range of anatomical circumstances.

  1. Adaptive image guided brachytherapy for cervical cancer: A combined MRI-/CT-planning technique with MRI only at first fraction

    PubMed Central

    Nesvacil, Nicole; Pötter, Richard; Sturdza, Alina; Hegazy, Neamat; Federico, Mario; Kirisits, Christian

    2013-01-01

    Purpose To investigate and test the feasibility of adaptive 3D image based BT planning for cervix cancer patients in settings with limited access to MRI, using a combination of MRI for the first BT fraction and planning of subsequent fractions on CT. Material and methods For 20 patients treated with EBRT and HDR BT with tandem/ring applicators two sets of treatment plans were compared. Scenario one is based on the “gold standard” with individual MRI-based treatment plans (applicator reconstruction, target contouring and dose optimization) for two BT applications with two fractions each. Scenario two is based on one initial MRI acquisition with an applicator in place for the planning of the two fractions of the first BT application and reuse of the target contour delineated on MRI for subsequent planning of the second application on CT. Transfer of the target from MRI of the first application to the CT of the second one was accomplished by use of an automatic applicator-based image registration procedure. Individual dose optimization of the second BT application was based on the transferred MRI target volume and OAR structures delineated on CT. DVH parameters were calculated for transferred target structures (virtual dose from MRI/CT plan) and CT-based OAR. The quality of the MRI/CT combination method was investigated by evaluating the CT-based dose distributions on MRI-based target and OAR contours of the same application (real dose from MRI/CT plan). Results The mean difference between the MRI based target volumes (HR CTVMRI2) and the structures transferred from MRI to CT (HR CTVCT2) was −1.7 ± 6.6 cm3 (−2.9 ± 20.4%) with a median of −0.7 cm3. The mean difference between the virtual and the real total D90, based on the MRI/CT combination technique was −1.5 ± 4.3 Gy EQD2. This indicates a small systematic underestimation of the real D90. Conclusions A combination of MRI for first fraction and subsequent CT based planning is feasible and easy

  2. BRCA1-CtIP interaction in the repair of DNA double-strand breaks.

    PubMed

    Aparicio, Tomas; Gautier, Jean

    2016-07-01

    DNA termini at double-strand breaks are often chemically heterogeneous and require processing before initiation of repair. In a recent report, we demonstrated that CtIP and the MRE11-RAD50-NBS1 (MRN) nuclease complex cooperate with BRCA1 to specifically repair topoisomerase II-DNA adducted breaks. In contrast, BRCA1 is dispensable for repair of restriction endonuclease-generated double-strand breaks.

  3. A Case of Intermittently Discharging Skin Lesion: Orodentocutaneous Fistula Demonstrated on CT Fistulography

    PubMed Central

    Ranga, Upasana; Veeraiyan, Saveetha

    2014-01-01

    Orodentocutaneous fistula is a rare entity where periapical dental abscess communicates with both oral cavity and external skin. In few cases, patients presents initially with only cutaneous manifestation with no recollectable history of dental problem. Delay in diagnosis of odontogenic cause of skin lesion makes the disease more chronic and extensive. We hereby present a case of orodentocutaneous fistula that presented with intermittently discharging skin lesion and was evaluated by using CT fistulography. PMID:25302272

  4. Biomechanically constrained groupwise ultrasound to CT registration of the lumbar spine.

    PubMed

    Gill, Sean; Abolmaesumi, Purang; Fichtinger, Gabor; Boisvert, Jonathan; Pichora, David; Borshneck, Dan; Mousavi, Parvin

    2012-04-01

    We present a groupwise US to CT registration algorithm for guiding percutaneous spinal interventions. In addition, we introduce a comprehensive validation scheme that accounts for changes in the curvature of the spine between preoperative and intraoperative imaging. In our registration methodology, each vertebra in CT is treated as a sub-volume and transformed individually. A biomechanical model is used to constrain the displacement of the vertebrae relative to one another. The sub-volumes are then reconstructed into a single volume. During each iteration of registration, an US image is simulated from the reconstructed CT volume and an intensity-based similarity metric is calculated with the real US image. Validation studies are performed on CT and US images from a sheep cadaver, five patient-based phantoms designed to preserve realistic curvatures of the spine and a sixth patient-based phantom where the curvature of the spine is changed between preoperative and intraoperative imaging. For datasets where the spine curve between two imaging modalities was artificially perturbed, the proposed methodology was able to register initial misalignments of up to 20mm with a success rate of 95%. For the phantom with a physical change in the curvature of the spine introduced between the US and CT datasets, the registration success rate was 98.5%. Finally, the registration success rate for the sheep cadaver with soft-tissue information was 87%. The results demonstrate that our algorithm allows for robust registration of US and CT datasets, regardless of a change in the patients pose between preoperative and intraoperative image acquisitions.

  5. Automatic Segmentation and Online virtualCT in Head-and-Neck Adaptive Radiation Therapy

    SciTech Connect

    Peroni, Marta; Ciardo, Delia; Spadea, Maria Francesca; Riboldi, Marco; Comi, Stefania; Alterio, Daniela; Baroni, Guido; Orecchia, Roberto

    2012-11-01

    Purpose: The purpose of this work was to develop and validate an efficient and automatic strategy to generate online virtual computed tomography (CT) scans for adaptive radiation therapy (ART) in head-and-neck (HN) cancer treatment. Method: We retrospectively analyzed 20 patients, treated with intensity modulated radiation therapy (IMRT), for an HN malignancy. Different anatomical structures were considered: mandible, parotid glands, and nodal gross tumor volume (nGTV). We generated 28 virtualCT scans by means of nonrigid registration of simulation computed tomography (CTsim) and cone beam CT images (CBCTs), acquired for patient setup. We validated our approach by considering the real replanning CT (CTrepl) as ground truth. We computed the Dice coefficient (DSC), center of mass (COM) distance, and root mean square error (RMSE) between correspondent points located on the automatically segmented structures on CBCT and virtualCT. Results: Residual deformation between CTrepl and CBCT was below one voxel. Median DSC was around 0.8 for mandible and parotid glands, but only 0.55 for nGTV, because of the fairly homogeneous surrounding soft tissues and of its small volume. Median COM distance and RMSE were comparable with image resolution. No significant correlation between RMSE and initial or final deformation was found. Conclusion: The analysis provides evidence that deformable image registration may contribute significantly in reducing the need of full CT-based replanning in HN radiation therapy by supporting swift and objective decision-making in clinical practice. Further work is needed to strengthen algorithm potential in nGTV localization.

  6. Coronary CT angiography: Beyond morphological stenosis analysis.

    PubMed

    Sun, Zhonghua

    2013-12-26

    Rapid technological developments in computed tomography (CT) imaging technique have made coronary CT angiography an attractive imaging tool in the detection of coronary artery disease. Despite visualization of excellent anatomical details of the coronary lumen changes, coronary CT angiography does not provide hemodynamic changes caused by presence of plaques. Computational fluid dynamics (CFD) is a widely used method in the mechanical engineering field to solve complex problems through analysing fluid flow, heat transfer and associated phenomena by using computer simulations. In recent years, CFD is increasingly used in biomedical research due to high performance hardware and software. CFD techniques have been used to study cardiovascular hemodynamics through simulation tools to assist in predicting the behaviour of circulatory blood flow inside the human body. Blood flow plays a key role in the localization and progression of coronary artery disease. CFD simulation based on 3D luminal reconstructions can be used to analyse the local flow fields and flow profiling due to changes of vascular geometry, thus, identifying risk factors for development of coronary artery disease. The purpose of this article is to provide an overview of the coronary CT-derived CFD applications in coronary artery disease.

  7. Acute small bowel ischemia: CT imaging findings.

    PubMed

    Segatto, Enrica; Mortelé, Koenraad J; Ji, Hoon; Wiesner, Walter; Ros, Pablo R

    2003-10-01

    Small bowel ischemia is a disorder related to a variety of conditions resulting in interruption or reduction of the blood supply of the small intestine. It may present with various clinical and radiologic manifestations, and ranges pathologically from localized transient ischemia to catastrophic necrosis of the intestinal tract. The primary causes of insufficient blood flow to the small intestine are various and include thromboembolism (50% of cases), nonocclusive causes, bowel obstruction, neoplasms, vasculitis, abdominal inflammatory conditions, trauma, chemotherapy, radiation, and corrosive injury. Computed tomography (CT) can demonstrate changes because of ischemic bowel accurately, may be helpful in determining the primary cause of ischemia, and can demonstrate important coexistent findings or complications. However, common CT findings in acute small bowel ischemia are not specific and, therefore, it is often a combination of clinical, laboratory and radiologic signs that may lead to a correct diagnosis. Understanding the pathogenesis of various conditions leading to mesenteric ischemia and being familiar with the spectrum of diagnostic CT signs may help the radiologist recognize ischemic small bowel disease and avoid delayed diagnosis. The aim of this article is to provide a review of the pathogenesis and various causes of acute small bowel ischemia and to demonstrate the contribution of CT in the diagnosis of this complex disease.

  8. Pulmonary nodule, solitary - CT scan (image)

    MedlinePlus

    ... a single lesion (pulmonary nodule) in the right lung. This nodule is seen as the light circle in the upper portion of the dark area on the left side of the picture. A normal lung would look completely black in a CT scan.

  9. 78 FR 11724 - Connecticut Disaster #CT-00030

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... ADMINISTRATION Connecticut Disaster CT-00030 AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Connecticut dated 02/08/2013. Incident: Gateway Estates Condominium Complex Fire. Incident Period: 01/15/2013. Effective...

  10. Maxillary sinus hemangioma: MR and CT studies.

    PubMed

    Kulkarni, M V; Bonner, F M; Abdo, G J

    1989-01-01

    A maxillary sinus hemangioma was detected as an incidental finding during magnetic resonance imaging of the head. The CT findings are more characteristic for the diagnosis of this lesion. Preoperative diagnosis of maxillary sinus hemangioma is important since these lesions can frequently cause a large amount of hemorrhage during surgery.

  11. CT and MRI of the thorax

    SciTech Connect

    Zerhouni, E.A.

    1990-01-01

    This book addresses a variety of topics in thoracic imaging, including magnetic resonance (MR) imaging in thoracic lymphoma; focal and high-resolution computed tomography (CT) of diffuse lung disease; imaging and disorders of the pleura, diaphragm, and mediastinum; and the increasingly important topic of the immunocompromised patient. Eight case studies close out the volume.

  12. ctDNA DLBCL Detection Lancet Oncology

    Cancer.gov

    Measurement of circulating tumor DNA in blood can be used to detect disease recurrence in patients with a curable form of cancer known as diffuse large B-cell lymphoma (DLBCL). In most patients, measurement of ctDNA enabled detection of microscopic diseas

  13. 96. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    96. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  14. 98. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  15. 101. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  16. 97. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  17. 102. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  18. 99. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  19. 100. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  20. [Indications for low-dose CT in the emergency setting].

    PubMed

    Poletti, Pierre-Alexandre; Andereggen, Elisabeth; Rutschmann, Olivier; de Perrot, Thomas; Caviezel, Alessandro; Platon, Alexandra

    2009-08-19

    CT delivers a large dose of radiation, especially in abdominal imaging. Recently, a low-dose abdominal CT protocol (low-dose CT) has been set-up in our institution. "Low-dose CT" is almost equivalent to a single standard abdominal radiograph in term of dose of radiation (about one sixth of those delivered by a standard CT). "Low-dose CT" is now used routinely in our emergency service in two main indications: patients with a suspicion of renal colic and those with right lower quadrant pain. It is obtained without intravenous contrast media. Oral contrast is given to patients with suspicion of appendicitis. "Low-dose CT" is used in the frame of well defined clinical algorithms, and does only replace standard CT when it can reach a comparable diagnostic quality.

  1. 117. Thames River Bridge. New London, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Thames River Bridge. New London, New London Co., CT. Sec. 4215, MP 124.09. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  2. Papillary carcinoma of the pancreas: findings of US and CT

    SciTech Connect

    Kim, S.Y.; Lim, J.H.; Lee, J.D.

    1985-02-01

    Two cases of papillary carcinoma of the pancreas were evaluated by ultrasound and CT. The sonographic and CT findings were those of a well-defined oval mass with partial cystic change. There was radiologic-pathologic correlation.

  3. Anatomy of the ethmoid: CT, endoscopic, and macroscopic

    SciTech Connect

    Terrier, F.; Weber, W.; Ruefenacht, D.; Porcellini, B.

    1985-03-01

    The authors illustrate the normal CT anatomy of the ethmoid region and correlate it with the endoscopic and macroscopic anatomy to define landmarks that can be recognized on CT and during endoscopically controlled transnasal ethmoidectomy.

  4. Lymphoepithelial cyst of the pancreas--evaluation with multidetector CT.

    PubMed

    Neyman, Edward G; Georgiades, Christos S; Horton, Karen H; Lillemoe, Keith D; Fishman, Elliot K

    2005-01-01

    Lymphoepithelial cyst of the pancreas is a rare cystic pancreatic tumor. In this case report we provide the imaging perspective of the lesion including the role of multidetector CT (MDCT) and CT angiography and 3D imaging.

  5. A hybrid method for pancreas extraction from CT image based on level set methods.

    PubMed

    Jiang, Huiyan; Tan, Hanqing; Fujita, Hiroshi

    2013-01-01

    This paper proposes a novel semiautomatic method to extract the pancreas from abdominal CT images. Traditional level set and region growing methods that request locating initial contour near the final boundary of object have problem of leakage to nearby tissues of pancreas region. The proposed method consists of a customized fast-marching level set method which generates an optimal initial pancreas region to solve the problem that the level set method is sensitive to the initial contour location and a modified distance regularized level set method which extracts accurate pancreas. The novelty in our method is the proper selection and combination of level set methods, furthermore an energy-decrement algorithm and an energy-tune algorithm are proposed to reduce the negative impact of bonding force caused by connected tissue whose intensity is similar with pancreas. As a result, our method overcomes the shortages of oversegmentation at weak boundary and can accurately extract pancreas from CT images. The proposed method is compared to other five state-of-the-art medical image segmentation methods based on a CT image dataset which contains abdominal images from 10 patients. The evaluated results demonstrate that our method outperforms other methods by achieving higher accuracy and making less false segmentation in pancreas extraction.

  6. Automatic lung nodule matching for the follow-up in temporal chest CT scans

    NASA Astrophysics Data System (ADS)

    Hong, Helen; Lee, Jeongjin; Shin, Yeong Gil

    2006-03-01

    We propose a fast and robust registration method for matching lung nodules of temporal chest CT scans. Our method is composed of four stages. First, the lungs are extracted from chest CT scans by the automatic segmentation method. Second, the gross translational mismatch is corrected by the optimal cube registration. This initial registration does not require extracting any anatomical landmarks. Third, initial alignment is step by step refined by the iterative surface registration. To evaluate the distance measure between surface boundary points, a 3D distance map is generated by the narrow-band distance propagation, which drives fast and robust convergence to the optimal location. Fourth, nodule correspondences are established by the pairs with the smallest Euclidean distances. The results of pulmonary nodule alignment of twenty patients are reported on a per-center-of mass point basis using the average Euclidean distance (AED) error between corresponding nodules of initial and follow-up scans. The average AED error of twenty patients is significantly reduced to 4.7mm from 30.0mm by our registration. Experimental results show that our registration method aligns the lung nodules much faster than the conventional ones using a distance measure. Accurate and fast result of our method would be more useful for the radiologist's evaluation of pulmonary nodules on chest CT scans.

  7. Dose Optimization in TOF-PET/MR Compared to TOF-PET/CT

    PubMed Central

    Queiroz, Marcelo A.; Delso, Gaspar; Wollenweber, Scott; Deller, Timothy; Zeimpekis, Konstantinos; Huellner, Martin; de Galiza Barbosa, Felipe; von Schulthess, Gustav; Veit-Haibach, Patrick

    2015-01-01

    Purpose To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity. Materials and Methods A total of 75 consecutive patients were evaluated in this study. PET/CT imaging was performed on a PET/CT (time-of-flight (TOF) Discovery D 690 PET/CT). Initial PET/MR imaging was performed on a newly available simultaneous TOF-PET/MR (Signa PET/MR). An optimal NECR for diagnostic purposes was defined in clinical patients (NECRP) in PET/CT. Subsequent optimal activity concentration at the acquisition time ([A]0) and target NECR (NECRT) were obtained. These data were used to predict the theoretical FDG activity requirement of the new TOF-PET/MR system. Twenty-five initial patients were acquired with (retrospectively reconstructed) different imaging times equivalent for different activities on the simultaneous PET/MR for the evaluation of clinically realistic FDG-activities. Results The obtained values for NECRP, [A]0 and NECRT were 114.6 (± 14.2) kcps (Kilocounts per second), 4.0 (± 0.7) kBq/mL and 45 kcps, respectively. Evaluating the NECRT together with the phantom curve of the TOF-PET/MR device, the theoretical optimal activity concentration was found to be approximately 1.3 kBq/mL, which represents 35% of the activity concentration required by the TOF-PET/CT. Initial evaluation on patients in the simultaneous TOF-PET/MR shows clinically realistic activities of 1.8 kBq/mL, which represent 44% of the required activity. Conclusion The new TOF-PET/MR device requires significantly less activity to generate PET-images with good-to-excellent image quality, due to improvements in detector geometry and detector technologies. The theoretically achievable dose reduction accounts for up to 65% but cannot be fully translated into clinical

  8. An active contour model for medical image segmentation with application to brain CT image

    PubMed Central

    Qian, Xiaohua; Wang, Jiahui; Guo, Shuxu; Li, Qiang

    2013-01-01

    Purpose: Cerebrospinal fluid (CSF) segmentation in computed tomography (CT) is a key step in computer-aided detection (CAD) of acute ischemic stroke. Because of image noise, low contrast and intensity inhomogeneity, CSF segmentation has been a challenging task. A region-based active contour model, which is insensitive to contour initialization and robust to intensity inhomogeneity, was developed for segmenting CSF in brain CT images. Methods: The energy function of the region-based active contour model is composed of a range domain kernel function, a space domain kernel function, and an edge indicator function. By minimizing the energy function, the region of edge elements of the target could be automatically identified in images with less dependence on initial contours. The energy function was optimized by means of the deepest descent method with a level set framework. An overlap rate between segmentation results and the reference standard was used to assess the segmentation accuracy. The authors evaluated the performance of the proposed method on both synthetic data and real brain CT images. They also compared the performance level of our method to those of region-scalable fitting (RSF) and global convex segment (GCS) models. Results: For the experiment of CSF segmentation in 67 brain CT images, their method achieved an average overlap rate of 66% compared to the average overlap rates of 16% and 46% from the RSF model and the GCS model, respectively. Conclusions: Their region-based active contour model has the ability to achieve accurate segmentation results in images with high noise level and intensity inhomogeneity. Therefore, their method has great potential in the segmentation of medical images and would be useful for developing CAD schemes for acute ischemic stroke in brain CT images. PMID:23387759

  9. Winning with Initiative

    ERIC Educational Resources Information Center

    Morgan, Matthew J.

    2004-01-01

    A common complaint among high school coaches is the lack of initiative shown by some of their players. Coaches expect a certain level of decision-making and independence, and more so from team captains and senior players. Developing leadership skills is a major benefit to athletes who participate at a competitive level, and taking initiative can…

  10. The Fostering Hope Initiative

    ERIC Educational Resources Information Center

    Rider, Steven; Winters, Katie; Dean, Joyce; Seymour, Jim

    2014-01-01

    The Fostering Hope Initiative is a neighborhood-based Collective Impact initiative that promotes optimum child and youth development by supporting vulnerable families, encouraging connections between neighbors, strengthening systems to ensure collective impact, and advocating for family-friendly public policy. This article describes the…

  11. Prioritizing Scientific Initiatives.

    ERIC Educational Resources Information Center

    Bahcall, John N.

    1991-01-01

    Discussed is the way in which a limited number of astronomy research initiatives were chosen and prioritized based on a consensus of members from the Astronomy and Astrophysics Survey Committee. A list of recommended equipment initiatives and estimated costs is provided. (KR)

  12. State of the art imaging of multiple myeloma: comparative review of FDG PET/CT imaging in various clinical settings.

    PubMed

    Mesguich, Charles; Fardanesh, Reza; Tanenbaum, Lawrence; Chari, Ajai; Jagannath, Sundar; Kostakoglu, Lale

    2014-12-01

    18-Flurodeoxyglucose Positron Emission Tomography with computed tomography (FDG PET/CT) and Magnetic Resonance Imaging (MRI) have higher sensitivity and specificity than whole-body X-ray (WBXR) survey in evaluating disease extent in patients with multiple myeloma (MM). Both modalities are now recommended by the Durie-Salmon Plus classification although the emphasis is more on MRI than PET/CT. The presence of extra-medullary disease (EMD) as evaluated by PET/CT imaging, initial SUVmax and number of focal lesions (FL) are deemed to be strong prognostic parameters at staging. MRI remains the most sensitive technique for the detection of diffuse bone marrow involvement in both the pre and post-therapy setting. Compression fractures are best characterized with MRI signal changes, for determining vertebroplasty candidates. While PET/CT allows for earlier and more specific evaluation of therapeutic efficacy compared to MRI, when signal abnormalities persist years after treatment. PET/CT interpretation, however, can be challenging in the vertebral column and pelvis as well as in cases with post-therapy changes. Hence, a reading approach combining the high sensitivity of MRI and superior specificity of FDG PET/CT would be preferred to increase the diagnostic accuracy. In summary, the established management methods in MM, mainly relying on biological tumor parameters should be complemented with functional imaging data, both at staging and restaging for optimal management of MM.

  13. Diagnostic value of CT numbers in pelvocalyceal flling defects

    SciTech Connect

    Parienty, R.A.; Ducellier, R.; Pradel, J.; Lubrano, J.M.; Coquille, F.; Francois, R.

    1982-12-01

    Thirty-seven patients, found to have a nonopaque pelvocalyceal filling defect on excretory urograhy, were shown to have an intrapelvic mass on computed tomography (CT). There were 20 nonopaque stones, 14 cases of transitionalcell carcinoma, 1 benign papilloma, and 2 blood clots. All had a sufficiently specific range of CT numbers and differences in contrast enhancement to allow the correct diagnosis on plain CT scans, or, if necessary, a dynamic CT study following a rapid intravenous bolus of contrast medium.

  14. Early Detection of Bone Metastasis in Small Cell Neuroendocrine Carcinoma of the Cervix by 68Ga-DOTATATE PET/CT Imaging.

    PubMed

    Damian, Andres; Lago, Graciela; Rossi, Susana; Alonso, Omar; Engler, Henry

    2017-03-01

    The neuroendocrine small cell carcinoma of the cervix is a rare malignancy that has a poor prognosis due to early lymphatic and hematogenous spread. We herein report a case of a 27- year-old woman who was referred for initial staging of a neuroendocrine small cell carcinoma with previous unremarkable structural imaging. Ga-DOTATATE PET/CT revealed focal uptake at the primary tumor and in a solitary pelvic bone lesion suggestive of metastases that was further confirmed by CT-guided biopsy. Somatostatin receptor PET/CT may be a useful image modality for early detection of metastases to guide treatment in these patients.

  15. 12. Riverside Avenue Bridge. Riverside, Fairfield Co., CT. Sec. 9108, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Riverside Avenue Bridge. Riverside, Fairfield Co., CT. Sec. 9108, MP 30.26. (See HAER No. CT-13 for further documentation on this structure). - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  16. Systematic scanner variability of patient CT attenuation measurements

    NASA Astrophysics Data System (ADS)

    Judy, Philip F.; Nawfel, Richard D.; Silverman, Stuart G.

    2009-02-01

    CT numbers of the spleen, liver, and trachea air were measured from non-contrast images obtained from 4-channel and 64-channel scanners from the same vendor. Image sections of 1 mm and 5 mm were reconstructed using smooth and sharp kernels. For spleen and liver, no significant differences associated with the variations in kernels or slice thickness could be demonstrated. The increase of the number of channels from 4 to 64 lowered the spleen CT numbers from 53 HU to 43 HU (p <0.00001). The 4-channel spleen CT numbers slightly increased as function of patient size, while the 64-channel CT numbers decreased as function of patient size. Linear regressions predicted for 40-cm patients the spleen 64-channel CT values were 23 HU lower than 4-channel CT numbers. The smooth kernel, 4-channel trachea air CT numbers had mean of -1004 +/-4.8 HU and the 64-channel trachea air CT numbers had a mean of -989+/-4.5 HU. The patient-size dependencies suggest that the CT attenuation variation is associated with increased scatter in 64-channel MSCT. Using CT number to distinguish solid lesions from cysts or quantitative evaluation of COPD disease using CT images may be complicated by inconsistencies between CT scanners.

  17. 21 CFR 1020.33 - Computed tomography (CT) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... paragraphs (b), (c)(1), and (c)(2) are applicable as specified herein to CT x-ray systems manufactured or... applicable to CT x-ray systems manufactured or remanufactured on or after November 29, 1984. (b) Definitions... selectable parameters governing the operation of a CT x-ray system including nominal tomographic...

  18. 21 CFR 1020.33 - Computed tomography (CT) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... paragraphs (b), (c)(1), and (c)(2) are applicable as specified herein to CT x-ray systems manufactured or... applicable to CT x-ray systems manufactured or remanufactured on or after November 29, 1984. (b) Definitions... selectable parameters governing the operation of a CT x-ray system including nominal tomographic...

  19. The numerical stability of transformation-based CT ventilation.

    PubMed

    Castillo, Edward; Castillo, Richard; Vinogradskiy, Yevgeniy; Guerrero, Thomas

    2017-04-01

    Computed tomography (CT)-derived ventilation imaging utilizes deformable image registration (DIR) to recover respiratory-induced tissue volume changes from inhale/exhale 4DCT phases. While current strategies for validating CT ventilation rely on analyzing its correlation with existing functional imaging modalities, the numerical stability of the CT ventilation calculation has not been characterized.

  20. Hemodialysis fistula occlusion: demonstration with 64-slice CT angiography.

    PubMed

    Neyman, Edward G; Johnson, Pamela T; Fishman, Elliot K

    2006-01-01

    The speed and resolution of 64-slice CT have resulted in new applications for CT angiography (CTA) owing to rapid data acquisition during the arterial phase, improved visualization of small vessels, and lengthened anatomic coverage. Extremity CT angiography is one such region. This case report shows the utility of multislice CTA for the evaluation of hemodialysis graft dysfunction.

  1. [Is ceCT necessary beyond FDG-PET/CT for primary staging in Hodgkin lymphoma?].

    PubMed

    Kajáry, Kornélia; Molnár, Zsuzsa; Szakáll, Szabolcs; Molnár, Péter; Lengyel, Zsolt

    2014-02-09

    Bevezetés: Nemzetközi tanulmányok igazolták, hogy Hodgkin-lymphoma kezelés előtti stádiummeghatározásában a natív, alacsony dózisú komputertomográfiával (CT) végzett, 18-F-fluorodeoxiglükóz (FDG) alkalmazásával készült pozitronemissziós tomográfia/komputertomográfia (standard PET/CT) pontosabb, mint az intravénás kontrasztanyag adásával végzett, normáldózisú CT-vizsgálat (konvencionális CT). Célkitűzés: A szerzők összehasonlították saját beteganyagukban a fenti indikációban külön-külön a két vizsgálat pontosságát, valamint megvizsgálták, hogy szükséges-e a standard PET/CT mellett konvencionális CT-vizsgálat elvégzése is. Módszer: Huszonnyolc beteg stádiumbesorolását végezték el a konvencionális CT-vizsgálat, majd a standard PET/CT vizsgálat alapján, végül a két vizsgálatot együttesen értékelték. Eredmények: Mindhárom módszerrel azonos stádiumot találtak 24 betegben. Négy betegnél a standard PET/CT-vel magasabb stádiumot észleltek, mint a konvencionális CT-vel. A csak standard PET/CT-vel meghatározott stádiumon nem változtatott a vizsgálatok együttes értékelése. Következtetések: A Hodgkin-lymphoma kezelés előtti stádiummeghatározásában a standard PET/CT vizsgálat pontosabb, mint az önállóan végzett konvencionális CT-vizsgálat. Emellett megállapítható, hogy ebben az indikációban nem indokolható a standard PET/CT konvencionális CT-vel való kiegészítése. Orv. Hetil., 2014, 155(6), 226–230.

  2. 3D patient-specific model of the tibia from CT for orthopedic use

    PubMed Central

    González-Carbonell, Raide A.; Ortiz-Prado, Armando; Jacobo-Armendáriz, Victor H.; Cisneros-Hidalgo, Yosbel A.; Alpízar-Aguirre, Armando

    2015-01-01

    Objectives 3D patient-specific model of the tibia is used to determine the torque needed to initialize the tibial torsion correction. Methods The finite elements method is used in the biomechanical modeling of tibia. The geometric model of the tibia is obtained from CT images. The tibia is modeled as an anisotropic material with non-homogeneous mechanical properties. Conclusions The maximum stress is located in the shaft of tibia diaphysis. With both meshes are obtained similar results of stresses and displacements. For this patient-specific model, the torque must be greater than 30 Nm to initialize the correction of tibial torsion deformity. PMID:25829755

  3. Attenuation correction of PET cardiac data with low-dose average CT in PET/CT

    SciTech Connect

    Pan Tinsu; Mawlawi, Osama; Luo, Dershan; Liu, Hui H.; Chi Paichun, M.; Mar, Martha V.; Gladish, Gregory; Truong, Mylene; Erasmus, Jeremy Jr.; Liao Zhongxing; Macapinlac, H. A.

    2006-10-15

    We proposed a low-dose average computer tomography (ACT) for attenuation correction (AC) of the PET cardiac data in PET/CT. The ACT was obtained from a cine CT scan of over one breath cycle per couch position while the patient was free breathing. We applied this technique on four patients who underwent tumor imaging with {sup 18}F-FDG in PET/CT, whose PET data showed high uptake of {sup 18}F-FDG in the heart and whose CT and PET data had misregistration. All four patients did not have known myocardiac infarction or ischemia. The patients were injected with 555-740 MBq of {sup 18}F-FDG and scanned 1 h after injection. The helical CT (HCT) data were acquired in 16 s for the coverage of 100 cm. The PET acquisition was 3 min per bed of 15 cm. The duration of cine CT acquisition per 2 cm was 5.9 s. We used a fast gantry rotation cycle time of 0.5 s to minimize motion induced reconstruction artifacts in the cine CT images, which were averaged to become the ACT images for AC of the PET data. The radiation dose was about 5 mGy for 5.9 s cine duration. The selection of 5.9 s was based on our analysis of the respiratory signals of 600 patients; 87% of the patients had average breath cycles of less than 6 s and 90% had standard deviations of less than 1 s in the period of breath cycle. In all four patient studies, registrations between the CT and the PET data were improved. An increase of average uptake in the anterior and the lateral walls up to 48% and a decrease of average uptake in the septal and the inferior walls up to 16% with ACT were observed. We also compared ACT and conventional slow scan CT (SSCT) of 4 s duration in one patient study and found ACT was better than SSCT in depicting average respiratory motion and the SSCT images showed motion-induced reconstruction artifacts. In conclusion, low-dose ACT improved registration of the CT and the PET data in the heart region in our study of four patients. ACT was superior than SSCT for depicting average respiration

  4. Evaluation of CT-based SUV normalization

    NASA Astrophysics Data System (ADS)

    Devriese, Joke; Beels, Laurence; Maes, Alex; Van de Wiele, Christophe; Pottel, Hans

    2016-09-01

    The purpose of this study was to determine patients’ lean body mass (LBM) and lean tissue (LT) mass using a computed tomography (CT)-based method, and to compare standardized uptake value (SUV) normalized by these parameters to conventionally normalized SUVs. Head-to-toe positron emission tomography (PET)/CT examinations were retrospectively retrieved and semi-automatically segmented into tissue types based on thresholding of CT Hounsfield units (HU). The following HU ranges were used for determination of CT-estimated LBM and LT (LBMCT and LTCT):  -180 to  -7 for adipose tissue (AT), -6 to 142 for LT, and 143 to 3010 for bone tissue (BT). Formula-estimated LBMs were calculated using formulas of James (1976 Research on Obesity: a Report of the DHSS/MRC Group (London: HMSO)) and Janmahasatian et al (2005 Clin. Pharmacokinet. 44 1051-65), and body surface area (BSA) was calculated using the DuBois formula (Dubois and Dubois 1989 Nutrition 5 303-11). The CT segmentation method was validated by comparing total patient body weight (BW) to CT-estimated BW (BWCT). LBMCT was compared to formula-based estimates (LBMJames and LBMJanma). SUVs in two healthy reference tissues, liver and mediastinum, were normalized for the aforementioned parameters and compared to each other in terms of variability and dependence on normalization factors and BW. Comparison of actual BW to BWCT shows a non-significant difference of 0.8 kg. LBMJames estimates are significantly higher than LBMJanma with differences of 4.7 kg for female and 1.0 kg for male patients. Formula-based LBM estimates do not significantly differ from LBMCT, neither for men nor for women. The coefficient of variation (CV) of SUV normalized for LBMJames (SUVLBM-James) (12.3%) was significantly reduced in liver compared to SUVBW (15.4%). All SUV variances in mediastinum were significantly reduced (CVs were 11.1-12.2%) compared to SUVBW (15.5%), except SUVBSA (15.2%). Only SUVBW and SUVLBM-James show

  5. Utility of head CT in the evaluation of vertigo/dizziness in the emergency department.

    PubMed

    Lawhn-Heath, Courtney; Buckle, Christopher; Christoforidis, Gregory; Straus, Christopher

    2013-01-01

    Acute dizziness (including vertigo) is a common reason to visit the emergency room, and imaging with head CT is often performed initially to exclude a central cause. In this study, consecutive patients presenting with dizziness and undergoing head CT were retrospectively reviewed to determine diagnostic yield. Four hundred forty-eight consecutive head CTs in a representative sample of dizzy emergency room (ER) patients, including patients with other neurological symptoms, were reviewed to identify an acute or subacute cause for acute dizziness along with the frequency and modalities used in follow-up imaging. The diagnostic yield for head CT ordered in the ER for acute dizziness is low (2.2 %; 1.6 % for emergent findings), but MRI changes the diagnosis up to 16 % of the time, acutely in 8 % of cases. Consistent with the American College of Radiology appropriateness criteria and the literature, this study suggests a low diagnostic yield for CT in the evaluation of acute dizziness but an important role for MRI in appropriately selected cases.

  6. Lung Cancer Screening With Low-Dose CT: Its Effect on Smoking Behavior

    PubMed Central

    Gomez, Meaghan McEntee; LoBiondo-Wood, Geri

    2013-01-01

    Lung cancer screening provides an opportunity for smoking cessation interventions. A review of the literature found that smokers who participated in lung cancer screening had a higher smoking cessation rate compared with smokers in the general population. However, the randomized controlled trials included in the review did not identify any difference in smoking cessation rates between the individuals who had a CT scan to screen for lung cancer and unscreened control groups. Multiple studies observed participants for lengths of time ranging from 1 to 36 months and concluded that individuals who received abnormal CT results had a higher smoking cessation rate compared with participants with normal CT results. A single study that observed participants for 6 years initially found similar increased cessation rates among those with abnormal CT results, but at the conclusion of the study the difference in cessation rates had dissipated. Lung cancer screening produces a teachable moment when individuals may be more receptive to smoking cessation interventions. Advanced practitioners should take an active role in promoting smoking cessation interventions and fostering this teachable moment created by lung cancer screening. PMID:25032020

  7. Fluence-Field Modulated X-ray CT using Multiple Aperture Devices

    PubMed Central

    Stayman, J. Webster; Mathews, Aswin; Zbijewski, Wojciech; Gang, Grace; Siewerdsen, Jeffrey; Kawamoto, Satomi; Blevis, Ira; Levinson, Reuven

    2016-01-01

    We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1–1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures. PMID:27110052

  8. The Use of PET-CT in the Assessment of Patients with Colorectal Carcinoma.

    PubMed

    O'Connor, Owen J; McDermott, Shanaugh; Slattery, James; Sahani, Dushyant; Blake, Michael A

    2011-01-01

    Colorectal cancer is the third most commonly diagnosed cancer, accounting for 53,219 deaths in 2007 and an estimated 146,970 new cases in the USA during 2009. The combination of FDG PET and CT has proven to be of great benefit for the assessment of colorectal cancer. This is most evident in the detection of occult metastases, particularly intra- or extrahepatic sites of disease, that would preclude a curative procedure or in the detection of local recurrence. FDG PET is generally not used for the diagnosis of colorectal cancer although there are circumstances where PET-CT may make the initial diagnosis, particularly with its more widespread use. In addition, precancerous adenomatous polyps can also be detected incidentally on whole-body images performed for other indications; sensitivity increases with increasing polyp size. False-negative FDG PET findings have been reported with mucinous adenocarcinoma, and false-positive findings have been reported due to inflammatory conditions such as diverticulitis, colitis, and postoperative scarring. Therefore, detailed evaluation of the CT component of a PET/CT exam, including assessment of the entire colon, is essential.

  9. Predictive models for observer performance in CT: applications in protocol optimization

    NASA Astrophysics Data System (ADS)

    Richard, S.; Li, X.; Yadava, G.; Samei, E.

    2011-03-01

    The relationship between theoretical descriptions of imaging performance (Fourier-based) and the performance of real human observers was investigated for detection tasks in multi-slice CT. The detectability index for the Fisher-Hotelling model observer and non-prewhitening model observer (with and without internal noise and eye filter) was computed using: 1) the measured modulation transfer function (MTF) and noise-power spectrum (NPS) for CT; and 2) a Fourier description of imaging task. Based upon CT images of human patients with added simulated lesions, human observer performance was assessed via an observer study in terms of the area under the ROC curve (Az). The degree to which the detectability index correlated with human observer performance was investigated and results for the non-prewhitening model observer with internal noise and eye filter (NPWE) were found to agree best with human performance over a broad range of imaging conditions. Results provided initial validation that CT image acquisition and reconstruction parameters can be optimized for observer performance rather than system performance (i.e., contrast-to-noise ratio, MTF, and NPS). The NPWE model was further applied for the comparison of FBP with a novel modelbased iterative reconstruction algorithm to assess its potential for dose reduction.

  10. Why emergency XeCT-CBF should become routine in acute ischemic stroke before thrombolytic therapy.

    PubMed

    Meyer, J S; Rauch, G M

    2000-02-01

    Intravenous thrombolytic therapy using recombinant tissue plasminogen activator (rtpa) has been approved for the treatment of acute ischemic stroke in the USA, if treatment is initiated within 3-hours (NINDS tpa Stroke Study Group) but not 6 hours (ECASS II) after time of onset. Favorable outcome in the placebo arm was much higher than expected possibly because patients with TIA's are likely to be included as progressive ischemic stroke subjects when a brief 3-6 hours duration of stroke is defined as the therapeutic window. Yonas' group at the University of Pittsburg demonstrated that adding stable xenon inhalation to routine CT scanning performed during emergency screening of acute stroke, predicted which cases became irreversibly infarcted if thrombolytic therapy was not administered within a few hours of stroke onset, since non-contrasted CT scans are usually normal this early. Adding a few minutes for inhalation of 26% xenon is justified in order to measure LCBF values which predict size, severity and volumes of impending cerebral infarctions and rule out TIA's which have relatively normal CT-CBF values. CT-CBF measures provide positive indications for thrombolytic therapy. This is not possible by MRI and SPECT methods which are not sufficiently quantitative to discern LCBF values persistently below ischemic thresholds of 16 mls/100 gm/min, thereby predicting impending infarction.

  11. Implications of CT noise and artifacts for quantitative {sup 99m}Tc SPECT/CT imaging

    SciTech Connect

    Hulme, K. W.; Kappadath, S. C.

    2014-04-15

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI{sub vol} = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in {sup 99m}Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI{sub vol} = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ{sub 140} {sub keV} on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed {sup 99m}Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because

  12. Whole body 18F-FDG PET/CT is superior to CT as first line diagnostic imaging in patients referred with serious non-specific symptoms or signs of cancer: a randomized prospective study of 200 patients.

    PubMed

    Lebech, Anne-Mette; Gaardsting, Anne; Loft, Annika; Graff, Jesper; Markova, Elena; Berthelsen, Anne Kiil; Madsen, Jan Lysgaard; Helms, Morten; Mathiesen, Lars R; David, Kim P; Kronborg, Gitte; Kjaer, Andreas

    2017-01-12

    A fast-track pathway has been established in Denmark to investigate patients with serious non-specific symptoms and signs of cancer (NSSC), which are not eligible to enter an organ-specific cancer program. The prevalence of cancer in this cohort is approximately 20%. The optimal screening strategy in patients with NSSC remains unknown. The aim was to investigate if (18)F-FDG-positron emission tomography/computed tomography (PET/CT) was superior to CT as initial imaging modality in patients with NSSC. In a randomized prospective trial the imaging modalities were compared with regard to diagnostic performance.

  13. Application of single- and dual-energy CT brain tissue segmentation to PET monitoring of proton therapy.

    PubMed

    Berndt, Bianca; Landry, Guillaume; Schwarz, Florian; Tessonnier, Thomas; Kamp, Florian; Dedes, Georgios; Thieke, Christian; Wuerl, Matthias; Kurz, Christopher; Ganswindt, Ute; Verhaegen, Frank; Debus, Juergen; Belka, Claus; Sommer, Wieland; Reiser, Maximilian; Bauer, Julia; Parodi, Katia

    2017-02-09

    The purpose of this work was to evaluate the ability of single and dual energy computed tomography (SECT, DECT) to estimate tissue composition and density for usage in Monte Carlo (MC) simulations of irradiation induced β+ activity distributions. This was done to assess the impact on positron emission tomography (PET) range verification in proton therapy. A DECT-based brain tissue segmentation method was developed for white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). The elemental composition of reference tissues was assigned to closest CT numbers in DECT space (DECTdist). The method was also applied to SECT data (SECTdist). In a validation experiment, the proton irradiation induced PET activity of three brain equivalent solutions (BES) was compared to simulations based on different tissue segmentations. Five patients scanned with a dual source DECT scanner were analyzed to compare the different segmentation methods. A single magnetic resonance (MR) scan was used for comparison with an established segmentation toolkit. Additionally, one patient with SECT and post-treatment PET scans was investigated. For BES, DECTdist and SECTdist reduced differences to the reference simulation by up to 62% when compared to the conventional stoichiometric segmentation (SECTSchneider). In comparison to MR brain segmentation, Dice similarity coefficients for WM, GM and CSF were 0.61, 0.67 and 0.66 for DECTdist and 0.54, 0.41 and 0.66 for SECTdist. MC simulations of PET treatment verification in patients showed important differences between DECTdist/SECTdist and SECTSchneider for patients with large CSF areas within the treatment field but not in WM and GM. Differences could be misinterpreted as PET derived range shifts of up to 4 mm. DECTdist and SECTdist yielded comparable activity distributions, and comparison of SECT

  14. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    NASA Astrophysics Data System (ADS)

    Fíla, T.; Kumpová, I.; Koudelka, P.; Zlámal, P.; Vavřík, D.; Jiroušek, O.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi7Mg0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation.

  15. Autonomous aircraft initiative study

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1991-01-01

    The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.

  16. Collaborative Procurement Initiative

    EPA Pesticide Factsheets

    GPP's Clean Energy Collaborative Procurement Initiative provides a platform for deploying clean energy technologies across multiple government and educational organizations for maximum impact on installed solar system capacity and local economic activity.

  17. About the RAS Initiative

    Cancer.gov

    The RAS Initiative, a "hub and spoke" model, connects researchers to better understand and target the more than 30% of cancers driven by mutations in RAS genes. Includes oversight and contact information.

  18. RAS Initiative - Community Outreach

    Cancer.gov

    Through community and technical collaborations, workshops and symposia, and the distribution of reference reagents, the RAS Initiative seeks to increase the sharing of knowledge and resources essential to defeating cancers caused by mutant RAS genes.

  19. RAS Initiative - Events

    Cancer.gov

    The NCI RAS Initiative has organized multiple events with outside experts to discuss how the latest scientific and technological breakthroughs can be applied to discover vulnerabilities in RAS-driven cancers.

  20. Advanced Concepts Research Initiative

    <