Science.gov

Sample records for dumbfounded affects myoblast

  1. Substrate stiffness affects skeletal myoblast differentiation in vitro

    NASA Astrophysics Data System (ADS)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  2. Thermal manipulation during embryogenesis affects myoblast proliferation and skeletal muscle growth in meat-type chickens.

    PubMed

    Piestun, Yogev; Yahav, Shlomo; Halevy, Orna

    2015-10-01

    Thermal manipulation (TM) of 39.5°C applied during mid-embryogenesis (embryonic d 7 to 16) has been proven to promote muscle development and enhance muscle growth and meat production in meat-type chickens. This study aimed to elucidate the cellular basis for this effect. Continuous TM or intermittent TM (for 12 h/d) increased myoblast proliferation manifested by higher (25 to 48%) myoblast number in the pectoral muscles during embryonic development but also during the first week posthatch. Proliferation ability of the pectoral-muscle-derived myoblasts in vitro was significantly higher in the TM treatments until embryonic d 15 (intermittent TM) or 13 (continuous TM) compared to that of controls, suggesting increased myogenic progeny reservoir in the muscle. However, the proliferation ability of myoblasts was lower in the TM treatments vs. control during the last days of incubation. This coincided with higher levels of myogenin expression in the muscle, indicating enhanced cell differentiation in the TM muscle. A similar pattern was observed posthatch: Myoblast proliferation was significantly higher in the TM chicks relative to controls during the peak of posthatch cell proliferation until d 6, followed by lower cell number 2 wk posthatch as myoblast number sharply decreases. Higher myogenin expression was observed in the TM chicks on d 6. This resulted in increased muscle growth, manifested by significantly higher relative weight of breast muscle in the embryo and posthatch. It can be concluded that temperature elevation during mid-term embryogenesis promotes myoblast proliferation, thus increasing myogenic progeny reservoir in the muscle, resulting in enhanced muscle growth in the embryo and posthatch.

  3. Drosophila rolling pebbles colocalises and putatively interacts with alpha-Actinin and the Sls isoform Zormin in the Z-discs of the sarcomere and with Dumbfounded/Kirre, alpha-Actinin and Zormin in the terminal Z-discs.

    PubMed

    Kreisköther, Nina; Reichert, Nina; Buttgereit, Detlev; Hertenstein, Alexander; Fischbach, Karl-Friedrich; Renkawitz-Pohl, Renate

    2006-01-01

    The rolling pebbles gene of Drosophila encodes two proteins, one of which, Rols7, is essential for myoblast fusion. In addition, Rols 7 is expressed during myofibrillogenesis and in the mature muscles. Here it overlaps with alpha-Actinin (alpha-Actn) and the N-terminus of D-Titin/Kettin/Zormin in the Z-line of the sarcomeres. In the attachment sites of the somatic muscles, Rols7 and the immunoglobulin superfamily protein Dumbfounded/Kin of irreC (Duf/Kirre) colocalise. As Duf/Kirre is detectable only transiently, it may be involved in establishing the first contact of the outgrowing muscle fiber to the epidermal attachment site. We propose that Rols7 and Duf/Kirre link the terminal Z-disc to the cell membrane by direct interaction. This is supported by the fact that in yeast two hybrid assays the tetratricopeptide repeat E (TPR E) of Rols7 shows interaction with the intracellular domain of Duf/Kirre. The colocalisation of Rols7 with alpha-Actn and with D-Titin/Kettin/Zormin in the Z-dics is reflected in interactions with different domains of Rols7 in this assay. In summary, these data show that besides the role in myoblast fusion, Rols7 is a scaffold protein during myofibrillogenesis and in the Z-line of the sarcomere as well as in the terminal Z-disc linking the muscle to the epidermal attachment sites.

  4. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  5. A positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila

    PubMed Central

    Menon, Sree Devi; Osman, Zalina; Chenchill, Kho; Chia, William

    2005-01-01

    In Drosophila, myoblasts are subdivided into founders and fusion-competent myoblasts (fcm) with myotubes forming through fusion of one founder and several fcm. Duf and rolling pebbles 7 (Rols7; also known as antisocial) are expressed in founders, whereas sticks and stones (SNS) is present in fcm. Duf attracts fcm toward founders and also causes translocation of Rols7 from the cytoplasm to the fusion site. We show that Duf is a type 1 transmembrane protein that induces Rols7 translocation specifically when present intact and engaged in homophilic or Duf–SNS adhesion. Although its membrane-anchored extracellular domain functions as an attractant and is sufficient for the initial round of fusion, subsequent fusions require replenishment of Duf through cotranslocation with Rols7 tetratricopeptide repeat/coiled-coil domain-containing vesicles to the founder/myotube surface, causing both Duf and Rols7 to be at fusion sites between founders/myotubes and fcm. This implicates the Duf–Rols7 positive feedback loop to the occurrence of fusion at specific sites along the membrane and provides a mechanism by which the rate of fusion is controlled. PMID:15955848

  6. G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates

    PubMed Central

    Hamoud, Noumeira; Tran, Viviane; Croteau, Louis-Philippe; Kania, Artur; Côté, Jean-François

    2014-01-01

    Muscle fibers form as a result of myoblast fusion, yet the cell surface receptors regulating this process are unknown in vertebrates. In Drosophila, myoblast fusion involves the activation of the Rac pathway by the guanine nucleotide exchange factor Myoblast City and its scaffolding protein ELMO, downstream of cell-surface cell-adhesion receptors. We previously showed that the mammalian ortholog of Myoblast City, DOCK1, functions in an evolutionarily conserved manner to promote myoblast fusion in mice. In search for regulators of myoblast fusion, we identified the G-protein coupled receptor brain-specific angiogenesis inhibitor (BAI3) as a cell surface protein that interacts with ELMO. In cultured cells, BAI3 or ELMO1/2 loss of function severely impaired myoblast fusion without affecting differentiation and cannot be rescued by reexpression of BAI3 mutants deficient in ELMO binding. The related BAI protein family member, BAI1, is functionally distinct from BAI3, because it cannot rescue the myoblast fusion defects caused by the loss of BAI3 function. Finally, embryonic muscle precursor expression of a BAI3 mutant unable to bind ELMO was sufficient to block myoblast fusion in vivo. Collectively, our findings provide a role for BAI3 in the relay of extracellular fusion signals to their intracellular effectors, identifying it as an essential transmembrane protein for embryonic vertebrate myoblast fusion. PMID:24567399

  7. Decreased proliferation kinetics of mouse myoblasts overexpressing FRG1.

    PubMed

    Chen, Steven C; Frett, Ellie; Marx, Joseph; Bosnakovski, Darko; Reed, Xylena; Kyba, Michael; Kennedy, Brian K

    2011-01-01

    Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD) to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overexpressing FRG1. Myoblasts isolated from thigh muscle of FRG1 transgenic mice, an affected dystrophic muscle, exhibit delayed proliferation as measured by decreased clone size, whereas myoblasts isolated from the unaffected diaphragm muscle proliferated normally. To confirm the observation that overexpression of FRG1 could impair myoblast proliferation, we examined C2C12 myoblasts with inducible overexpression of FRG1, finding increased doubling time and G1-phase cells in mass culture after induction of FRG1 and decreased levels of pRb phosphorylation. We propose that depressed myoblast proliferation may contribute to the pathology of mice overexpressing FRG1 and may play a part in FSHD.

  8. The brain expressed x-linked gene 1 (Bex1) regulates myoblast fusion

    PubMed Central

    Yue, Feng; Kuang, Shihuan

    2015-01-01

    Skeletal muscle development (myogenesis) is a complex but precisely orchestrated process involving spatiotemporal regulation of the proliferation, differentiation and fusion of myogenic progenitor cells (myoblasts). Here we identify brain expressed x-linked gene 1 (Bex1) as a transient, developmentally regulated gene involved in myoblast fusion. Bex1 expression is undetectable in adult muscles or in quiescent muscle stem cells (satellite cells). During embryonic myogenesis, however, Bex1 is robustly expressed by myogenin+ differentiating myoblasts, but not by Pax7+ proliferating myoblasts. Interestingly, Bex1 is initially localized in the cytoplasm and then translocates into the nucleus. During adult muscle regeneration, Bex1 is highly expressed in newly regenerated myofibers and the expression is rapidly downregulated during maturation. Consistently, in cultured myoblasts, Bex1 is not expressed at the proliferation stage but transiently expressed upon induction of myogenic differentiation, following a similar cytoplasm to nucleus translocation pattern as seen in vivo. Using gain- and loss-of-function studies, we found that overexpression of Bex1 promotes the fusion of primary myoblasts without affecting myogenic differentiation and myogenin expression. Conversely, Bex1 knockout myoblasts exhibit obvious fusion defects, even though they express normal levels of myogenin and differentiate normally. These results elucidate a novel role of Bex1 in myogenesis through regulating myoblast fusion. PMID:26586200

  9. Palmdelphin promotes myoblast differentiation and muscle regeneration

    PubMed Central

    Nie, Yaping; Chen, Hu; Guo, Cilin; Yuan, Zhuning; Zhou, Xingyu; Zhang, Ying; Zhang, Xumeng; Mo, Delin; Chen, Yaosheng

    2017-01-01

    Differentiation of myoblasts is essential in the development and regeneration of skeletal muscles to form multinucleated, contractile muscle fibers. However, the process of myoblast differentiation in mammals is complicated and requires to be further investigated. In this study, we found Palmdelphin (Palmd), a cytosolic protein, promotes myoblast differentiation. Palmd is predominantly expressed in the cytosol of myoblasts and is gradually up-regulated after differentiation. Knockdown of Palmd by small interfering RNA (siRNA) in C2C12 markedly inhibits myogenic differentiation, suggesting a specific role of Palmd in the morphological changes of myoblast differentiation program. Overexpression of Palmd in C2C12 enhances myogenic differentiation. Remarkably, inhibition of Palmd results in impaired myotube formation during muscle regeneration after injury. These findings reveal a new cytosolic protein that promotes mammalian myoblast differentiation and provide new insights into the molecular regulation of muscle formation. PMID:28148961

  10. Signaling mechanisms in mammalian myoblast fusion.

    PubMed

    Hindi, Sajedah M; Tajrishi, Marjan M; Kumar, Ashok

    2013-04-23

    Myoblast fusion is a critical process that contributes to the growth of muscle during development and to the regeneration of myofibers upon injury. Myoblasts fuse with each other as well as with multinucleated myotubes to enlarge the myofiber. Initial studies demonstrated that myoblast fusion requires extracellular calcium and changes in cell membrane topography and cytoskeletal organization. More recent studies have identified several cell-surface and intracellular proteins that mediate myoblast fusion. Furthermore, emerging evidence suggests that myoblast fusion is also regulated by the activation of specific cell-signaling pathways that lead to the expression of genes whose products are essential for the fusion process and for modulating the activity of molecules that are involved in cytoskeletal rearrangement. Here, we review the roles of the major signaling pathways in mammalian myoblast fusion.

  11. Myoblast replication is reduced in the IUGR fetus despite maintained proliferative capacity in vitro.

    PubMed

    Soto, Susan M; Blake, Amy C; Wesolowski, Stephanie R; Rozance, Paul J; Barthel, Kristen B; Gao, Bifeng; Hetrick, Byron; McCurdy, Carrie E; Garza, Natalia G; Hay, William W; Leinwand, Leslie A; Friedman, Jacob E; Brown, Laura D

    2017-03-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass and insulin resistance, suggesting muscle growth may be restricted by molecular events that occur during fetal development. To explore the basis of restricted fetal muscle growth, we used a sheep model of progressive placental insufficiency-induced IUGR to assess myoblast proliferation within intact skeletal muscle in vivo and isolated myoblasts stimulated with insulin in vitro Gastrocnemius and soleus muscle weights were reduced by 25% in IUGR fetuses compared to those in controls (CON). The ratio of PAX7+ nuclei (a marker of myoblasts) to total nuclei was maintained in IUGR muscle compared to CON, but the fraction of PAX7+ myoblasts that also expressed Ki-67 (a marker of cellular proliferation) was reduced by 23%. Despite reduced proliferation in vivo, fetal myoblasts isolated from IUGR biceps femoris and cultured in enriched media in vitro responded robustly to insulin in a dose- and time-dependent manner to increase proliferation. Similarly, insulin stimulation of IUGR myoblasts upregulated key cell cycle genes and DNA replication. There were no differences in the expression of myogenic regulatory transcription factors that drive commitment to muscle differentiation between CON and IUGR groups. These results demonstrate that the molecular machinery necessary for transcriptional control of proliferation remains intact in IUGR fetal myoblasts, indicating that in vivo factors such as reduced insulin and IGF1, hypoxia and/or elevated counter-regulatory hormones may be inhibiting muscle growth in IUGR fetuses.

  12. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation.

    PubMed

    Pedrotty, Dawn M; Koh, Jennifer; Davis, Bryce H; Taylor, Doris A; Wolf, Patrick; Niklason, Laura E

    2005-04-01

    Immature skeletal muscle cells, or myoblasts, have been used in cellular cardiomyoplasty in attempts to regenerate cardiac muscle tissue by injection of cells into damaged myocardium. In some studies, muscle tissue within myoblast implant sites may be morphologically similar to cardiac muscle. We hypothesized that identifiable aspects of the cardiac milieu may contribute to growth and development of implanted myoblasts in vivo. To test this hypothesis, we designed a novel in vitro system to mimic some aspects of the electrical and biochemical environment of native myocardium. This system enabled us to separate the three-dimensional (3-D) electrical and biochemical signals that may be involved in myoblast proliferation and plasticity. Myoblasts were grown on 3-D polyglycolic acid mesh scaffolds under control conditions, in the presence of cardiac-like electrical current fluxes, or in the presence of culture medium that had been conditioned by mature cardiomyocytes. Cardiac-like electrical current fluxes caused increased myoblast number in 3-D culture, as determined by DNA assay. The increase in cell number was due to increased cellular proliferation and not differences in apoptosis, as determined by proliferating cell nuclear antigen and TdT-mediated dUTP nick-end labeling. Cardiomyocyte-conditioned medium also significantly increased myoblast proliferation. Expression of transcription factors governing differentiation along skeletal or cardiac lineages was evaluated by immunoblotting. Although these assays are qualitative, no changes in differentiation state along skeletal or cardiac lineages were observed in response to electrical current fluxes. Furthermore, from these experiments, conditioned medium did not appear to alter the differentiation state of skeletal myoblasts. Hence, cardiac milieu appears to stimulate proliferation but does not affect differentiation of skeletal myoblasts.

  13. Immunological studies of the embryonic muscle cell surface. Antiserum to the prefusion myoblast

    PubMed Central

    1979-01-01

    Xenogeneic antisera raised in rabbits have been used to detect compositional changes at the cell surfaces of differentiating embryonic chick skeletal muscle. In this report, we present the serological characterization of antiserum (Anti-M-24) against muscle tissue and developmental stage-specific cell surface antigens of the prefusion myoblast. Cells from primary cultures of 12-d-old embryonic chick hindlimb muscle were injected into rabbits, and the resulting antisera were selectively absorbed to obtain immunological specificity. Cytotoxicity and immunohistochemical assays were used to test this antiserum. Absorption with embryonic or adult chick heart, brain, retina, liver, erythrocytes, or skeletal muscle fibroblasts failed to remove all reactivity of Anti-M-24 for myogenic cells at all stages of development. After absorption with embryonic myotubes, however, Anti-M- 24 no longer reacted with differentiated myofibers, but did react with prefusion myoblasts. The myoblast surface antigens detected with Anti-M- 24 are components of the muscle cell membrane: (a) these macromolecules are free to diffuse laterally within the myoblast membrane; (b) Anti-M- 24, in the presence of complement, induced lysis of the muscle cell membrane; and (c) intact monolayers of viable myoblasts completely absorbed reactivity of Anti-M-24 for myoblasts. These antigens are not loosely adsorbed culture medium components or an artifact of tissue culture because: (a) absorption of Anti-M-24 with homogenized embryonic muscle removed all antibodies to cultured myoblasts; (b) Anti-M-24 reacted with myoblast surfaces in vivo; and (c) absorption of Anti-M-24 with culture media did not affect the titer of this antiserum for myoblasts. We conclude that myogenic cells at all stages of development possess externally exposed antigens which are undetected on other embryonic and adult chick tissues. In addition, myoblasts exhibit surface antigenic determinants that are either masked, absent, or present

  14. Ultrastructural Analysis of Myoblast Fusion in Drosophila

    PubMed Central

    Zhang, Shiliang; Chen, Elizabeth H.

    2015-01-01

    Summary Myoblast fusion in Drosophila has become a powerful genetic system with which to unravel the mechanisms underlying cell fusion. The identification of important components of myoblast fusion by genetic analysis has led to a molecular pathway toward our understanding of this cellular process. In addition to the application of immunohistochemistry and live imaging techniques to visualize myoblast fusion at the light microscopic level, ultrastructural analysis using electron microscopy remains an indispensable tool to reveal fusion intermediates and specific membrane events at sites of fusion. In this chapter, we describe conventional chemical fixation and high-pressure freezing/freeze substitution methods for visualizing fusion intermediates during Drosophila myoblast fusion. Furthermore, we describe an immunoelectron microscopic method for localizing specific proteins relative to the fusion apparatus. PMID:18979250

  15. Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts

    PubMed Central

    Tajhya, Rajeev B; Hu, Xueyou; Tanner, Mark R; Huq, Redwan; Kongchan, Natee; Neilson, Joel R; Rodney, George G; Horrigan, Frank T; Timchenko, Lubov T; Beeton, Christine

    2016-01-01

    Myoblasts are mononucleated precursors of myofibers; they persist in mature skeletal muscles for growth and regeneration post injury. During myotonic dystrophy type 1 (DM1), a complex autosomal-dominant neuromuscular disease, the differentiation of skeletal myoblasts into functional myotubes is impaired, resulting in muscle wasting and weakness. The mechanisms leading to this altered differentiation are not fully understood. Here, we demonstrate that the calcium- and voltage-dependent potassium channel, KCa1.1 (BK, Slo1, KCNMA1), regulates myoblast proliferation, migration, and fusion. We also show a loss of plasma membrane expression of the pore-forming α subunit of KCa1.1 in DM1 myoblasts. Inhibiting the function of KCa1.1 in healthy myoblasts induced an increase in cytosolic calcium levels and altered nuclear factor kappa B (NFκB) levels without affecting cell survival. In these normal cells, KCa1.1 block resulted in enhanced proliferation and decreased matrix metalloproteinase secretion, migration, and myotube fusion, phenotypes all observed in DM1 myoblasts and associated with disease pathogenesis. In contrast, introducing functional KCa1.1 α-subunits into DM1 myoblasts normalized their proliferation and rescued expression of the late myogenic marker Mef2. Our results identify KCa1.1 channels as crucial regulators of skeletal myogenesis and suggest these channels as novel therapeutic targets in DM1. PMID:27763639

  16. Overexpression of calpastatin inhibits L8 myoblast fusion

    SciTech Connect

    Barnoy, Sivia; E-mail: sivia@post.tau.ac.il; Maki, Masatoshi; Kosower, Nechama S.

    2005-07-08

    The formation of skeletal muscle fibers involves cessation of myoblast division, myoblast alignment, and fusion to multinucleated myofibers. Calpain is one of the factors shown to be involved in myoblast fusion. Using L8 rat myoblasts, we found that calpain levels did not change significantly during myoblast differentiation, whereas calpastatin diminished prior to myoblast fusion and reappeared after fusion. The transient diminution in calpastatin allows the Ca{sup 2+}-promoted activation of calpain and calpain-induced membrane proteolysis, which is required for myoblast fusion. Here we show that calpastatin overexpression in L8 myoblasts does not inhibit cell proliferation and alignment, but prevents myoblast fusion and fusion-associated protein degradation. In addition, calpastatin appears to modulate myogenic gene expression, as indicated by the lack of myogenin (a transcription factor expressed in differentiating myoblasts) in myoblasts overexpressing calpastatin. These results suggest that, in addition to the role in membrane disorganization in the fusing myoblasts, the calpain-calpastatin system may also modulate the levels of factors required for myoblast differentiation.

  17. Tocotrienol-Rich Fraction Ameliorates Antioxidant Defense Mechanisms and Improves Replicative Senescence-Associated Oxidative Stress in Human Myoblasts

    PubMed Central

    Wan Ngah, Wan Zurinah; Abdul Karim, Norwahidah

    2017-01-01

    During aging, oxidative stress affects the normal function of satellite cells, with consequent regeneration defects that lead to sarcopenia. This study aimed to evaluate tocotrienol-rich fraction (TRF) modulation in reestablishing the oxidative status of myoblasts during replicative senescence and to compare the effects of TRF with other antioxidants (α-tocopherol (ATF) and N-acetyl-cysteine (NAC)). Primary human myoblasts were cultured to young, presenescent, and senescent phases. The cells were treated with antioxidants for 24 h, followed by the assessment of free radical generation, lipid peroxidation, antioxidant enzyme mRNA expression and activities, and the ratio of reduced to oxidized glutathione. Our data showed that replicative senescence increased reactive oxygen species (ROS) generation and lipid peroxidation in myoblasts. Treatment with TRF significantly diminished ROS production and decreased lipid peroxidation in senescent myoblasts. Moreover, the gene expression of superoxide dismutase (SOD2), catalase (CAT), and glutathione peroxidase (GPX1) was modulated by TRF treatment, with increased activity of superoxide dismutase and catalase and reduced glutathione peroxidase in senescent myoblasts. In comparison to ATF and NAC, TRF was more efficient in heightening the antioxidant capacity and reducing free radical insults. These results suggested that TRF is able to ameliorate antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in myoblasts. PMID:28243354

  18. Myoblast fusion: Experimental systems and cellular mechanisms.

    PubMed

    Schejter, Eyal D

    2016-12-01

    Fusion of myoblasts gives rise to the large, multi-nucleated muscle fibers that power and support organism motion and form. The mechanisms underlying this prominent form of cell-cell fusion have been investigated by a variety of experimental approaches, in several model systems. The purpose of this review is to describe and discuss recent progress in the field, as well as point out issues currently unresolved and worthy of further investigation. Following a description of several new experimental settings employed in the study of myoblast fusion, a series of topics relevant to the current understanding of the process are presented. These pertain to elements of three major cellular machineries- cell-adhesion, the actin-based cytoskeleton and membrane-associated elements- all of which play key roles in mediating myoblast fusion. Among the issues raised are the diversity of functions ascribed to different adhesion proteins (e.g. external cell apposition and internal recruitment of cytoskeleton regulators); functional significance of fusion-associated actin structures; and discussion of alternative mechanisms employing single or multiple fusion pore formation as the basis for muscle cell fusion.

  19. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest

    PubMed Central

    Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall; Jørgensen, Louise Helskov; Dhawan, Jyotsna; Nielsen, Michael Friberg Bruun; Schrøder, Henrik Daa

    2016-01-01

    Objectives Most cell culture studies have been performed at atmospheric oxygen tension of 21%, however the physiological oxygen tension is much lower and is a factor that may affect skeletal muscle myoblasts. In this study we have compared activation of G0 arrested myoblasts in 21% O2 and in 1% O2 in order to see how oxygen tension affects activation and proliferation of human myoblasts. Materials and Methods Human myoblasts were isolated from skeletal muscle tissue and G0 arrested in vitro followed by reactivation at 21% O2 and 1% O2. The effect was assesses by Real-time RT-PCR, immunocytochemistry and western blot. Results and Conclusions We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β-catenin indicated that notch signaling may be induced in 21% O2, while the canonical Wnt signaling may be induced in 1% O2 during activation and proliferation of myoblasts. PMID:27442119

  20. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    PubMed

    Subramaniam, Sindhu; Sreenivas, Prethish; Cheedipudi, Sirisha; Reddy, Vatrapu Rami; Shashidhara, Lingadahalli Subrahmanya; Chilukoti, Ravi Kumar; Mylavarapu, Madhavi; Dhawan, Jyotsna

    2014-01-01

    Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts) to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2). Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation). Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for pathological

  1. Mechanisms of myoblast fusion during muscle development

    PubMed Central

    Kim, Ji Hoon; Jin, Peng; Duan, Rui; Chen, Elizabeth H.

    2015-01-01

    The development and regeneration of skeletal muscles require the fusion of mononulceated muscle cells to form multinucleated, contractile muscle fibers. Studies using a simple genetic model, Drosophila melanogaster, have discovered many evolutionarily conserved fusion-promoting factors in vivo. Recent work in zebrafish and mouse also identified several vertebrate-specific factors required for myoblast fusion. Here, we integrate progress in multiple in vivo systems and highlight conceptual advance in understanding how muscle cell membranes are brought together for fusion. We focus on the molecular machinery at the fusogenic synapse and present a three-step model to describe the molecular and cellular events leading to fusion pore formation. PMID:25989064

  2. Systemic delivery of recombinant proteins by genetically modified myoblasts

    SciTech Connect

    Barr, E.; Leiden, J.M. )

    1991-12-06

    The ability to stably deliver recombinant proteins to the systemic circulation would facilitate the treatment of a variety of acquired and inherited diseases. To explore the feasibility of the use of genetically engineered myoblasts as a recombinant protein delivery system, stable transfectants of the murine C2C12 myoblast cell line were produced that synthesize and secrete high levels of human growth hormone (hGH) in vitro. Mice injected with hGH-transfected myoblasts had significant levels of hGH in both muscle and serum that were stable for at least 3 weeks after injection. Histological examination of muscles injected with {beta}-galactosidase-expressing C2C12 myoblasts demonstrated that many of the injected cells had fused to form multinucleated myotubes. Thus, genetically engineered myoblasts can be used for the stable delivery of recombinant proteins into the circulation.

  3. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    PubMed

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.

  4. M & M's: Mechanosensitivity and Mechanotransduction in Myoblasts

    NASA Astrophysics Data System (ADS)

    Al-Rekabi, Zeinab; Pelling, Andrew

    2012-02-01

    The effect of external mechanical stimulation of muscle precursor cells (myoblasts) during exercise is a crucial step in myogenesis. This effect takes place many hours later while muscles are in a resting state; however it remains unclear to what extent the role of force application has on the promotion of myogenesis. Here, we combine Traction Force Microscopy (TFM) and Atomic Force Microscopy (AFM) to directly measure the magnitude of generated cellular traction forces (CTFs) in myoblasts, as a result of controlled mechanical loading. Precise nanonewton forces (1 & 10 nN) were applied to live cells with the AFM tip while simultaneous TFM measurements were performed. The experiment was performed on substrates ranging in elastic moduli (E), (16-89 kPa) mimicking resting and active muscle tissue, respectively. The results of this analysis demonstrated that the magnitude of CTFs was dependent on substrate E, as expected. However, CTFs only increased in response to applied force (compared to controls) on substrates with E greater than 62 kPa. Our results suggest that muscle precursor cells are most sensitive to mechanical force when the surrounding muscle tissue is stiff and contracted, whereas myogenesis itself proceeds optimally on softer, resting tissue.

  5. Myomaker: A membrane activator of myoblast fusion and muscle formation

    PubMed Central

    Millay, Douglas P.; O’Rourke, Jason R.; Sutherland, Lillian B.; Bezprozvannaya, Svetlana; Shelton, John M.; Bassel-Duby, Rhonda; Olson, Eric N.

    2013-01-01

    Summary Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibers. However, the identity of myogenic proteins that directly govern this fusion process has remained elusive. Here, we discovered a muscle-specific membrane protein, named Myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is down-regulated thereafter. Over-expression of Myomaker in myoblasts dramatically enhances fusion and genetic disruption of Myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibers. Remarkably, forced expression of Myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacologic perturbation of the actin cytoskeleton abolishes the activity of Myomaker, consistent with prior studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein both necessary and sufficient for mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation. PMID:23868259

  6. A genomic approach to myoblast fusion in Drosophila

    PubMed Central

    Estrada, Beatriz; Michelson, Alan M.

    2009-01-01

    Summary We have developed an integrated genetic, genomic and computational approach to identify and characterize genes involved in myoblast fusion in Drosophila. We first used fluorescence activated cell sorting to purify mesodermal cells both from wild-type embryos and from twelve variant genotypes in which muscle development is perturbed in known ways. Then, we obtained gene expression profiles for the purified cells by hybridizing isolated mesodermal RNA to Affymetrix GeneChip arrays. These data were subsequently compounded into a statistical meta-analysis that predicts myoblast subtype-specific gene expression signatures that were later validated by in situ hybridization experiments. Finally, we analyzed the myogenic functions of a subset of these myoblast genes using a double-stranded RNA interference assay in living embryos expressing green fluorescent protein under control of a muscle-specific promoter. This experimental strategy led to the identification of several previously uncharacterized genes required for myoblast fusion in Drosophila. PMID:18979251

  7. CaMKK2 Suppresses Muscle Regeneration through the Inhibition of Myoblast Proliferation and Differentiation

    PubMed Central

    Ye, Cheng; Zhang, Duo; Zhao, Lei; Li, Yan; Yao, Xiaohan; Wang, Hui; Zhang, Shengjie; Liu, Wei; Cao, Hongchao; Yu, Shuxian; Wang, Yucheng; Jiang, Jingjing; Wang, Hui; Li, Xihua; Ying, Hao

    2016-01-01

    Skeletal muscle has a major role in locomotion and muscle disorders are associated with poor regenerative efficiency. Therefore, a deeper understanding of muscle regeneration is needed to provide a new insight for new therapies. CaMKK2 plays a role in the calcium/calmodulin-dependent kinase cascade; however, its role in skeletal muscle remains unknown. Here, we found that CaMKK2 expression levels were altered under physiological and pathological conditions including postnatal myogensis, freeze or cardiotoxin-induced muscle regeneration, and Duchenne muscular dystrophy. Overexpression of CaMKK2 suppressed C2C12 myoblast proliferation and differentiation, while inhibition of CaMKK2 had opposite effect. We also found that CaMKK2 is able to activate AMPK in C2C12 myocytes. Inhibition of AMPK could attenuate the effect of CaMKK2 overexpression, while AMPK agonist could abrogate the effect of CaMKK2 knockdown on C2C12 cell differentiation and proliferation. These results suggest that CaMKK2 functions as an AMPK kinase in muscle cells and AMPK mediates the effect of CaMKK2 on myoblast proliferation and differentiation. Our data also indicate that CaMKK2 might inhibit myoblast proliferation through AMPK-mediated cell cycle arrest by inducing cdc2-Tyr15 phosphorylation and repress differentiation through affecting PGC1α transcription. Lastly, we show that overexpressing CaMKK2 in the muscle of mice via electroporation impaired the muscle regeneration during freeze-induced injury, indicating that CaMKK2 could serve as a potential target to treat patients with muscle injury or myopathies. Together, our study reveals a new role for CaMKK2 as a negative regulator of myoblast differentiation and proliferation and sheds new light on the molecular regulation of muscle regeneration. PMID:27783047

  8. Drosophila Kette coordinates myoblast junction dissolution and the ratio of Scar-to-WASp during myoblast fusion

    PubMed Central

    Hamp, Julia; Löwer, Andreas; Dottermusch-Heidel, Christine; Beck, Lothar; Moussian, Bernard; Flötenmeyer, Matthias

    2016-01-01

    ABSTRACT The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila. Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell–cell contact. At the ultrastructural level, these events are reflected by the appearance of finger-like protrusions and electron-dense plaques that appear prior to fusion. Severe defects in myoblast fusion are caused by the loss of Kette (a homolog of Nap1 and Hem-2, also known as NCKAP1 and NCKAP1L, respectively), a member of the regulatory complex formed by Scar or WAVE proteins (represented by the single protein, Scar, in flies). kette mutants form finger-like protrusions, but the electron-dense plaques are extended. Here, we show that the electron-dense plaques in wild-type and kette mutant myoblasts resemble other electron-dense structures that are known to function as cellular junctions. Furthermore, analysis of double mutants and attempts to rescue the kette mutant phenotype with N-cadherin, wasp and genes of members of the regulatory Scar complex revealed that Kette has two functions during myoblast fusion. First, Kette controls the dissolution of electron-dense plaques. Second, Kette controls the ratio of the Arp2/3 activators Scar and WASp in FCMs. PMID:27521427

  9. Activation of an adipogenic program in adult myoblasts with age.

    PubMed

    Taylor-Jones, Jane M; McGehee, Robert E; Rando, Thomas A; Lecka-Czernik, Beata; Lipschitz, David A; Peterson, Charlotte A

    2002-03-31

    Myoblasts isolated from mouse hindlimb skeletal muscle demonstrated increased adipogenic potential as a function of age. Whereas myoblasts from 8-month-old adult mice did not significantly accumulate terminal markers of adipogenesis regardless of culture conditions, myoblasts from 23-month-old mice accumulated fat and expressed genes characteristic of differentiated adipocytes, such as the fatty acid binding protein aP2. This change in differentiation potential was associated with a change in the abundance of the mRNA encoding the transcription factor C/EBPalpha, and in the relative abundance of PPARgamma2 to PPARgamma1 mRNAs. Furthermore, PPARgamma activity appeared to be regulated at the level of phosphorylation, being more highly phosphorylated in myoblasts isolated from younger animals. Although adipogenic gene expression in myoblasts from aged animals was activated, presumably in response to PPARgamma and C/EBPalpha, unexpectedly, myogenic gene expression was not effectively repressed. The Wnt signaling pathway may also alter differentiation potential in muscle with age. Wnt-10b mRNA was more abundantly expressed in muscle tissue and cultured myoblasts from adult compared with aged mice, resulting in stabilization of cytosolic beta-catenin, that may potentially contribute to inhibition of adipogenic gene expression in adult myoblasts. The changes reported here, together with those reported in bone marrow stroma with age, suggest that a default program may be activated in mesenchymal cells with increasing age resulting in a more adipogenic-like phenotype. Whether this change in differentiation potential contributes to the increased adiposity in muscle with age remains to be determined.

  10. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes

    SciTech Connect

    Jeong, Jaemin; Conboy, Irina M.

    2011-10-14

    Highlights: {yields} PS broadly and persistently trans-locates to the outer leaflet of plasma membrane during myoblast fusion into myotubes. {yields} Robust myotubes are formed when PS liposomes are added exogenously. {yields} PS increases the width of de novo myotubes and the numbers of myonuclei, but not the myotube length. {yields} Annexin V or PS antibody inhibits myotube formation by masking exposed PS. -- Abstract: Cell membrane consists of various lipids such as phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Among them, PS is a molecular marker of apoptosis, because it is located to the inner leaflet of plasma membrane generally but it is moved to the outer leaflet during programmed cell death. The process of apoptosis has been implicated in the fusion of muscle progenitor cells, myoblasts, into myotubes. However, it remained unclear whether PS regulates muscle cell differentiation directly. In this paper, localization of PS to the outer leaflet of plasma membrane in proliferating primary myoblasts and during fusion of these myoblasts into myotubes is validated using Annexin V. Moreover, we show the presence of PS clusters at the cell-cell contact points, suggesting the importance of membrane ruffling and PS exposure for the myogenic cell fusion. Confirming this conclusion, experimentally constructed PS, but not PC liposomes dramatically enhance the formation of myotubes from myoblasts, thus demonstrating a direct positive effect of PS on the muscle cell fusion. In contrast, myoblasts exposed to PC liposomes produce long myotubes with low numbers of myonuclei. Moreover, pharmacological masking of PS on the myoblast surface inhibits fusion of these cells into myotubes in a dose-dependent manner.

  11. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion.

    PubMed

    Brunetti, Tonya M; Fremin, Brayon J; Cripps, Richard M

    2015-05-15

    In Drosophila, myoblast fusion is a conserved process in which founder cells (FCs) and fusion competent myoblasts (FCMs) fuse to form a syncytial muscle fiber. Mutants for the myogenic regulator Myocyte enhancer factor-2 (MEF2) show a failure of myoblast fusion, indicating that MEF2 regulates the fusion process. Indeed, chromatin immunoprecipitation studies show that several genes involved in myoblast fusion are bound by MEF2 during embryogenesis. Of these, the MARVEL domain gene singles bar (sing), is down-regulated in MEF2 knockdown pupae, and has five consensus MEF2 binding sites within a 9000-bp region. To determine if MEF2 is an essential and direct regulator of sing during pupal muscle development, we identified a 315-bp myoblast enhancer of sing. This enhancer was active during myoblast fusion, and mutation of two MEF2 sites significantly decreased enhancer activity. We show that lack of sing expression resulted in adult lethality and muscle loss, due to a failure of fusion during the pupal stage. Additionally, we sought to determine if sing was required in either FCs or FCMs to support fusion. Interestingly, knockdown of sing in either population did not significantly affect fusion, however, knockdown in both FCs and FCMs resulted in muscles with significantly reduced nuclei numbers, provisionally indicating that sing function is required in either cell type, but not both. Finally, we found that MEF2 regulated sing expression at the embryonic stage through the same 315-bp enhancer, indicating that sing is a MEF2 target at both critical stages of myoblast fusion. Our studies define for the first time how MEF2 directly controls fusion at multiple stages of the life cycle, and provide further evidence that the mechanisms of fusion characterized in Drosophila embryos is also used in the formation of the more complex adult muscles.

  12. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration

    PubMed Central

    Park, Seung-Yoon; Yun, Youngeun; Lim, Jung-Suk; Kim, Mi-Jin; Kim, Sang-Yeob; Kim, Jung-Eun; Kim, In-San

    2016-01-01

    Myoblast fusion is essential for the formation of skeletal muscle myofibres. Studies have shown that phosphatidylserine is necessary for myoblast fusion, but the underlying mechanism is not known. Here we show that the phosphatidylserine receptor stabilin-2 acts as a membrane protein for myoblast fusion during myogenic differentiation and muscle regeneration. Stabilin-2 expression is induced during myogenic differentiation, and is regulated by calcineurin/NFAT signalling in myoblasts. Forced expression of stabilin-2 in myoblasts is associated with increased myotube formation, whereas deficiency of stabilin-2 results in the formation of small, thin myotubes. Stab2-deficient mice have myofibres with small cross-sectional area and few myonuclei and impaired muscle regeneration after injury. Importantly, myoblasts lacking stabilin-2 have reduced phosphatidylserine-dependent fusion. Collectively, our results show that stabilin-2 contributes to phosphatidylserine-dependent myoblast fusion and provide new insights into the molecular mechanism by which phosphatidylserine mediates myoblast fusion during muscle growth and regeneration. PMID:26972991

  13. FOXO1 delays skeletal muscle regeneration and suppresses myoblast proliferation.

    PubMed

    Yamashita, Atsushi; Hatazawa, Yukino; Hirose, Yuma; Ono, Yusuke; Kamei, Yasutomi

    2016-08-01

    Unloading stress, such as bed rest, inhibits the regenerative potential of skeletal muscles; however, the underlying mechanisms remain largely unknown. FOXO1 expression, which induces the upregulated expression of the cell cycle inhibitors p57 and Gadd45α, is known to be increased in the skeletal muscle under unloading conditions. However, there is no report addressing FOXO1-induced inhibition of myoblast proliferation. Therefore, we induced muscle injury by cardiotoxin in transgenic mice overexpressing FOXO1 in the skeletal muscle (FOXO1-Tg mice) and observed regeneration delay in skeletal muscle mass and cross-sectional area in FOXO1-Tg mice. Increased p57 and Gadd45α mRNA levels, and decreased proliferation capacity were observed in C2C12 myoblasts expressing a tamoxifen-inducible active form of FOXO1. These results suggest that decreased proliferation capacity of myoblasts by FOXO1 disrupts skeletal muscle regeneration under FOXO1-increased conditions, such as unloading.

  14. The critical role of myostatin in differentiation of sheep myoblasts

    SciTech Connect

    Liu, Chenxi; Li, Wenrong; Zhang, Xuemei; Zhang, Ning; He, Sangang; Huang, Juncheng; Ge, Yubin; Liu, Mingjun

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Identification of the effective and specific shRNA to knockdown MSTN. Black-Right-Pointing-Pointer Overexpression of MSTN reversibly suppressed myogenic differentiation. Black-Right-Pointing-Pointer shRNA knockdown of endogenous MSTN promoted ovine myoblast differentiation. Black-Right-Pointing-Pointer MSTN inhibits myogenic differentiation through down-regulation of MyoD and Myogenin and up-regulation of Smad3. Black-Right-Pointing-Pointer Provides a promise for the generation of transgenic sheep to improve meat productivity. -- Abstract: Myostatin [MSTN, also known as growth differentiation factor 8 (GDF8)], is an inhibitor of skeletal muscle growth. Blockade of MSTN function has been reported to result in increased muscle mass in mice. However, its role in myoblast differentiation in farm animals has not been determined. In the present study, we sought to determine the role of MSTN in the differentiation of primary sheep myoblasts. We found that ectopic overexpression of MSTN resulted in lower fusion index in sheep myoblasts, which indicated the repression of myoblast differentiation. This phenotypic change was reversed by shRNA knockdown of the ectopically expressed MSTN in the cells. In contrast, shRNA knockdown of the endogenous MSTN resulted in induction of myogenic differentiation. Additional studies revealed that the induction of differentiation by knocking down the ectopically or endogenously expressed MSTN was accompanied by up-regulation of MyoD and myogenin, and down-regulation of Smad3. Our results demonstrate that MSTN plays critical role in myoblast differentiation in sheep, analogous to that in mice. This study also suggests that shRNA knockdown of MSTN could be a potentially promising approach to improve sheep muscle growth, so as to increase meat productivity.

  15. Identification and functional characterization of TRPA1 in human myoblasts.

    PubMed

    Osterloh, Markus; Böhm, Mario; Kalbe, Benjamin; Osterloh, Sabrina; Hatt, Hanns

    2016-02-01

    The proper function of the skeletal muscle is essential for the survival of most animals. Thus, efficient and rapid repair of muscular damage following injury is crucial. In recent years, satellite cells have emerged as key players of muscle repair, capable of undergoing extensive proliferation after injury, fusing into myotubes and restoring muscle function. Furthermore, it has been shown that Ca(2+)/calmodulin-dependent generation of nitric oxide (NO) is an important regulator of muscle repair. Here, we demonstrate the functional expression of transient receptor potential, subfamily A1 (TRPA1) channel in human primary myoblasts. Stimulation of these cells with well-known TRPA1 ligands led to robust intracellular Ca(2+) rises which could be inhibited by specific TRPA1 antagonists. Moreover, we show that TRPA1 activation enhances important aspects of skeletal muscle repair such as cell migration and myoblast fusion in vitro. Interestingly, TRPA1 levels and inducible Ca(2+) transients decline with ongoing myoblast differentiation. We suggest that TRPA1 might serve as a physiological mediator for inflammatory signals and appears to have a functional role in promoting myoblast migration, fusion, and potentially also in activating satellite cells in humans.

  16. Myomaker is a membrane activator of myoblast fusion and muscle formation.

    PubMed

    Millay, Douglas P; O'Rourke, Jason R; Sutherland, Lillian B; Bezprozvannaya, Svetlana; Shelton, John M; Bassel-Duby, Rhonda; Olson, Eric N

    2013-07-18

    Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation.

  17. Microfluidic analysis of extracellular matrix-bFGF crosstalk on primary human myoblast chemoproliferation, chemokinesis, and chemotaxis

    PubMed Central

    Ferreira, Meghaan M.; Dewi, Ruby E.; Heilshorn, Sarah C.

    2015-01-01

    Exposing myoblasts to basic fibroblast growth factor (bFGF), which is released after muscle injury, results in receptor phosphorylation, faster migration, and increased proliferation. These effects occur on time scales that extend across three orders of magnitude (100 – 103 minutes). Finite element modeling of Transwell assays, which are traditionally used to assess chemotaxis, revealed that the bFGF gradient formed across the membrane pore is short-lived and diminishes 45% within the first minute. Thus, to evaluate bFGF-induced migration over 102 minutes, we employed a microfluidic assay capable of producing a stable, linear concentration gradient to perform single-cell analyses of chemokinesis and chemotaxis. We hypothesized that the composition of the underlying extracellular matrix (ECM) may affect the behavioral response of myoblasts to soluble bFGF, as previous work with other cell types has suggested crosstalk between integrin and fibroblast growth factor (FGF) receptors. Consistent with this notion, we found that bFGF significantly reduced the doubling time of myoblasts cultured on laminin but not fibronectin or collagen. Laminin also promoted significantly faster migration speeds (13.4 μm/h) than either fibronectin (10.6 μm/h) or collagen (7.6 μm/h) without bFGF stimulation. Chemokinesis driven by bFGF further increased migration speed in a strictly additive manner, resulting in an average increase of 2.3 μm/h across all ECMs tested. We observed relatively mild chemoattraction (~ 67% of myoblast population) in response to bFGF gradients of 3.2 ng/mL/mm regardless of ECM identity. Thus, while ECM-bFGF crosstalk did impact chemoproliferation, it did not have a significant effect on chemokinesis or chemotaxis. These data suggest that the main physiological effect of bFGF on myoblast migration is chemokinesis and that changes in the surrounding ECM, resulting from aging and/or disease may impact muscle regeneration by altering myoblast migration and

  18. Characterization of hereditary inclusion body myopathy myoblasts: possible primary impairment of apoptotic events.

    PubMed

    Amsili, S; Shlomai, Z; Levitzki, R; Krause, S; Lochmuller, H; Ben-Bassat, H; Mitrani-Rosenbaum, S

    2007-11-01

    Hereditary inclusion body myopathy (HIBM) is a unique muscular disorder caused by mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene. GNE encodes a bi-functional enzyme acting in the biosynthetic pathway of sialic acid. Since the underlying myopathological mechanism leading to the disease phenotype is poorly understood, we have established human myoblasts cultures, derived from HIBM satellite cells carrying the homozygous M712T mutation, and identified cellular and molecular characteristics of these cells. HIBM and control myoblasts showed similar heterogeneous patterns of proliferation and differentiation. Upon apoptosis induction, phosphatidylserine externalization was similar in HIBM and controls. In contrast, the active forms of caspase-3 and -9 were strongly enhanced in most HIBM cultures compared to controls, while pAkt, downregulated in controls, remained high in HIBM cells. These results could indicate impaired apoptotic signaling in HIBM cells. Since satellite cells enable partial regeneration of the post-mitotic muscle tissue, these altered processes could contribute to the muscle mass loss seen in patients. The identification of survival defects in HIBM affected muscle cells could disclose new functions for GNE in muscle cells.

  19. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    SciTech Connect

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke; Chao, Guozheng; Takahashi, Hideyuki; Watanabe, Kouichi; Ohwada, Shyuichi; Aso, Hisashi; Yamaguchi, Takahiro

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated at a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.

  20. Effect of atrophy and contractions on myogenin mRNA concentration in chick and rat myoblast omega muscle cells

    NASA Technical Reports Server (NTRS)

    Krebs, J. M.; Denney, R. M.

    1997-01-01

    The skeletal rat myoblast omega (RMo) cell line forms myotubes that exhibit spontaneous contractions under appropriate conditions in culture. We examined if the RMo cells would provide a model for studying atrophy and muscle contraction. To better understand how to obtain contractile cultures, we examined levels of contraction under different growing conditions. The proliferation medium and density of plating affected the subsequent proportion of spontaneously contracting myotubes. Using a ribonuclease protection assay, we found that exponentially growing RMo myoblasts contained no detectable myogenin or herculin mRNA, while differentiating myoblasts contained high levels of myogenin mRNA but no herculin mRNA. There was no increase in myogenin mRNA concentration in either primary chick or RMo myotubes whose contractions were inhibited by depolarizing concentrations of potassium (K+). Thus, altered myogenin mRNA concentrations are not involved in atrophy of chick myotubes. Depolarizing concentrations of potassium inhibited spontaneous contractions in both RMo cultures and primary chick myotube cultures. However, we found that the myosin concentration of 6-d-old contracting RMo cells fed medium plus AraC was 11 +/- 3 micrograms myosin/microgram DNA, not significantly different from 12 +/- 4 micrograms myosin/microgram DNA (n = 3), the myosin concentration of noncontracting RMo cells (treated with 12 mM K+ for 6 d). Resolving how RMo cells maintained their myosin content when contraction is inhibited may be important for understanding atrophy.

  1. Myostatin gene targeting in cultured China Han ovine myoblast cells.

    PubMed

    Zhang, L; Yang, X; An, X; Chen, Y

    2007-11-01

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, has been shown to be a negative regulator of myogenesis. Natural mutation in beef cattle causes double-muscling phenotypes. We report an investigation designed to knockout the MSTN gene by gene targeting in ovine myoblast cells. Two promoter-trap targeting vectors MSTN-green fluorescent protein (GFP) and MSTN-neo were constructed and used to transfect foetal and neonatal ovine primary myoblast cells. Both GFP-expressing cells and drug-resistant cells were obtained. Targeted cells expressing GFP were confirmed by polymerase chain reaction (PCR) assay and drug-resistant cells were characterised by PCR and Southern blot after growing into cell clones.

  2. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  3. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation

    PubMed Central

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y. Eugene; Ma, Peter X.

    2015-01-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. PMID:26335860

  4. CD36 is required for myoblast fusion during myogenic differentiation

    SciTech Connect

    Park, Seung-Yoon; Yun, Youngeun; Kim, In-San

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer CD36 expression was induced during myogenic differentiation. Black-Right-Pointing-Pointer CD36 expression was localized in multinucleated myotubes. Black-Right-Pointing-Pointer The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. Black-Right-Pointing-Pointer Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  5. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System.

    PubMed

    Chaturvedi, Vishal; Dye, Danielle E; Kinnear, Beverley F; van Kuppevelt, Toin H; Grounds, Miranda D; Coombe, Deirdre R

    2015-01-01

    Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates.

  6. Analysis of Mitochondrial Network Morphology in Cultured Myoblasts from Patients with Mitochondrial Disorders.

    PubMed

    Sládková, J; Spáčilová, J; Čapek, M; Tesařová, M; Hansíková, H; Honzík, T; Martínek, J; Zámečník, J; Kostková, O; Zeman, J

    2015-01-01

    Mitochondrial morphology was studied in cultivated myoblasts obtained from patients with mitochondrial disorders, including CPEO, MELAS and TMEM70 deficiency. Mitochondrial networks and ultrastructure were visualized by fluorescence microscopy and transmission electron microscopy, respectively. A heterogeneous picture of abnormally sized and shaped mitochondria with fragmentation, shortening, and aberrant cristae, lower density of mitochondria and an increased number of "megamitochondria" were found in patient myoblasts. Morphometric Fiji analyses revealed different mitochondrial network properties in myoblasts from patients and controls. The small number of cultivated myoblasts required for semiautomatic morphometric image analysis makes this tool useful for estimating mitochondrial disturbances in patients with mitochondrial disorders.

  7. Nitric oxide donors, sodium nitroprusside and S-nitroso-N-acetylpencillamine, stimulate myoblast proliferation in vitro

    NASA Technical Reports Server (NTRS)

    Ulibarri, J. A.; Mozdziak, P. E.; Schultz, E.; Cook, C.; Best, T. M.

    1999-01-01

    Nitric oxide (NO) is an inter- and intracellular messenger involved in a variety of physiologic and pathophysiologic conditions. The effect of two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) and their effect on myoblast proliferation was examined. Both donors stimulated an increase in myoblast cell number over a range (1-10 microM) of donor concentrations. However, 50 microM SNAP inhibited myoblast proliferation. Cell numbers from cultures treated with degraded 10 microM SNAP were equivalent to the control. Therefore, it appears NO can stimulate as well as inhibit myoblast proliferation.

  8. Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery–Dreifuss muscular dystrophy

    PubMed Central

    Meinke, Peter; Schneiderat, Peter; Srsen, Vlastimil; Korfali, Nadia; Lê Thành, Phú; Cowan, Graeme J.M.; Cavanagh, David R.; Wehnert, Manfred; Schirmer, Eric C.; Walter, Maggie C.

    2015-01-01

    Emery–Dreifuss muscular dystrophy (EDMD) is a neuromuscular disease characterized by early contractures, slowly progressive muscular weakness and life-threatening cardiac arrhythmia that can develop into cardiomyopathy. In X-linked EDMD (EDMD1), female carriers are usually unaffected. Here we present a clinical description and in vitro characterization of a mildly affected EDMD1 female carrying the heterozygous EMD mutation c.174_175delTT; p.Y59* that yields loss of protein. Muscle tissue sections and cultured patient myoblasts exhibited a mixed population of emerin-positive and -negative cells; thus uneven X-inactivation was excluded as causative. Patient blood cells were predominantly emerin-positive, but considerable nuclear lobulation was observed in non-granulocyte cells – a novel phenotype in EDMD. Both emerin-positive and emerin-negative myoblasts exhibited spontaneous differentiation in tissue culture, though emerin-negative myoblasts were more proliferative than emerin-positive cells. The preferential proliferation of emerin-negative myoblasts together with the high rate of spontaneous differentiation in both populations suggests that loss of functional satellite cells might be one underlying mechanism for disease pathology. This could also account for the slowly developing muscle phenotype. PMID:25454731

  9. Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery-Dreifuss muscular dystrophy.

    PubMed

    Meinke, Peter; Schneiderat, Peter; Srsen, Vlastimil; Korfali, Nadia; Lê Thành, Phú; Cowan, Graeme J M; Cavanagh, David R; Wehnert, Manfred; Schirmer, Eric C; Walter, Maggie C

    2015-02-01

    Emery-Dreifuss muscular dystrophy (EDMD) is a neuromuscular disease characterized by early contractures, slowly progressive muscular weakness and life-threatening cardiac arrhythmia that can develop into cardiomyopathy. In X-linked EDMD (EDMD1), female carriers are usually unaffected. Here we present a clinical description and in vitro characterization of a mildly affected EDMD1 female carrying the heterozygous EMD mutation c.174_175delTT; p.Y59* that yields loss of protein. Muscle tissue sections and cultured patient myoblasts exhibited a mixed population of emerin-positive and -negative cells; thus uneven X-inactivation was excluded as causative. Patient blood cells were predominantly emerin-positive, but considerable nuclear lobulation was observed in non-granulocyte cells - a novel phenotype in EDMD. Both emerin-positive and emerin-negative myoblasts exhibited spontaneous differentiation in tissue culture, though emerin-negative myoblasts were more proliferative than emerin-positive cells. The preferential proliferation of emerin-negative myoblasts together with the high rate of spontaneous differentiation in both populations suggests that loss of functional satellite cells might be one underlying mechanism for disease pathology. This could also account for the slowly developing muscle phenotype.

  10. α-Syntrophin Modulates Myogenin Expression in Differentiating Myoblasts

    PubMed Central

    Kim, Min Jeong; Hwang, Sung Ho; Lim, Jeong A.; Froehner, Stanley C.; Adams, Marvin E.; Kim, Hye Sun

    2010-01-01

    Background α-Syntrophin is a scaffolding protein linking signaling proteins to the sarcolemmal dystrophin complex in mature muscle. However, α-syntrophin is also expressed in differentiating myoblasts during the early stages of muscle differentiation. In this study, we examined the relationship between the expression of α-syntrophin and myogenin, a key muscle regulatory factor. Methods and Findings The absence of α-syntrophin leads to reduced and delayed myogenin expression. This conclusion is based on experiments using muscle cells isolated from α-syntrophin null mice, muscle regeneration studies in α-syntrophin null mice, experiments in Sol8 cells (a cell line that expresses only low levels of α-syntrophin) and siRNA studies in differentiating C2 cells. In primary cultured myocytes isolated from α-syntrophin null mice, the level of myogenin was less than 50% that from wild type myocytes (p<0.005) 40 h after differentiation induction. In regenerating muscle, the expression of myogenin in the α-syntrophin null muscle was reduced to approximately 25% that of wild type muscle (p<0.005). Conversely, myogenin expression is enhanced in primary cultures of myoblasts isolated from a transgenic mouse over-expressing α-syntrophin and in Sol8 cells transfected with a vector to over-express α-syntrophin. Moreover, we find that myogenin mRNA is reduced in the absence of α-syntrophin and increased by α-syntrophin over-expression. Immunofluorescence microscopy shows that α-syntrophin is localized to the nuclei of differentiating myoblasts. Finally, immunoprecipitation experiments demonstrate that α-syntrophin associates with Mixed-Lineage Leukemia 5, a regulator of myogenin expression. Conclusions We conclude that α-syntrophin plays an important role in regulating myogenesis by modulating myogenin expression. PMID:21179410

  11. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    SciTech Connect

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  12. Characterization of human myoblast cultures for tissue engineering.

    PubMed

    Stern-Straeter, Jens; Bran, Gregor; Riedel, Frank; Sauter, Alexander; Hörmann, Karl; Goessler, Ulrich Reinhart

    2008-01-01

    Skeletal muscle tissue engineering, a promising specialty, aims at the reconstruction of skeletal muscle loss. In vitro tissue engineering attempts to achieve this goal by creating differentiated, functional muscle tissue through a process in which stem cells are extracted from the patient, e.g. by muscle biopsies, expanded and differentiated in a controlled environment, and subsequently re-implanted. A prerequisite for this undertaking is the ability to cultivate and differentiate human skeletal muscle cell cultures. Evidently, optimal culture conditions must be investigated for later clinical utilization. We therefore analysed the proliferation of human cells in different environments and evaluated the differentiation potential of different culture media. It was shown that human myoblasts have a higher rate of proliferation in the alamarBlue assay when cultured on gelatin-coated culture flasks rather than polystyrene-coated flasks. We also demonstrated that myoblasts treated with a culture medium with a high concentration of growth factors [growth medium (GM)] showed a higher proliferation compared to cultures treated with a culture medium with lower amounts of growth factors [differentiation medium (DM)]. Differentiation of human myoblast cell cultures treated with GM and DM was analysed until day 16 and myogenesis was verified by expression of MyoD, myogenin, alpha-sarcomeric actin and myosin heavy chain by semi-quantitative RT-PCR. Immunohistochemical staining for desmin, Myf-5 and alpha-sarcomeric actin was performed to verify the myogenic phenotype of extracted satellite cells and to prove the maturation of cells. Cultures treated with DM showed positive staining for alpha-sarcomeric actin. Notably, markers of differentiation were also detected in cultures treated with GM, but there was no formation of myotubes. In the enzymatic assay of creatine phosphokinase, cultures treated with DM showed a higher activity, evidencing a higher degree of differentiation

  13. Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion.

    PubMed

    O'Connor, Roddy S; Steeds, Craig M; Wiseman, Robert W; Pavlath, Grace K

    2008-06-15

    Myoblast fusion is essential for muscle development, postnatal growth and muscle repair after injury. Recent studies have demonstrated roles for actin polymerization during myoblast fusion. Dynamic cytoskeletal assemblies directing cell-cell contact, membrane coalescence and ultimately fusion require substantial cellular energy demands. Various energy generating systems exist in cells but the partitioning of energy sources during myoblast fusion is unknown. Here, we demonstrate a novel role for phosphocreatine (PCr) as a spatiotemporal energy buffer during primary mouse myoblast fusion with nascent myotubes. Creatine treatment enhanced cell fusion in a creatine kinase (CK)-dependent manner suggesting that ATP-consuming reactions are replenished through the PCr/CK system. Furthermore, selective inhibition of actin polymerization prevented myonuclear addition following creatine treatment. As myotube formation is dependent on cytoskeletal reorganization, our findings suggest that PCr hydrolysis is coupled to actin dynamics during myoblast fusion. We conclude that myoblast fusion is a high-energy process, and can be enhanced by PCr buffering of energy demands during actin cytoskeletal rearrangements in myoblast fusion. These findings implicate roles for PCr as a high-energy phosphate buffer in the fusion of multiple cell types including sperm/oocyte, trophoblasts and macrophages. Furthermore, our results suggest the observed beneficial effects of oral creatine supplementation in humans may result in part from enhanced myoblast fusion.

  14. Silencing myotubularin related protein 7 enhances proliferation and early differentiation of C2C12 myoblast.

    PubMed

    Yuan, Zhuning; Chen, Yaosheng; Zhang, Xumeng; Zhou, Xingyu; Li, Mingsen; Chen, Hu; Wu, Ming; Zhang, Ying; Mo, Delin

    2017-03-11

    Myotubularin related protein 7 (MTMR7) is a key member of the highly conserved myotubularin related proteins (MTMRs) family, which has phosphatase activity. MTMR7 was increased during myoblast differentiation and exhibited high expression level at primary fibers formation stages in pigs. This suggests that MTMR7 may be involved in myogenesis. In our study, we investigated the roles of MTMR7 on proliferation and differentiation of C2C12 myoblasts. Knocking down MTMR7 not only enhanced myoblast early differentiation via altering the expression of Myf5, but also promoted myoblast proliferation through increasing cyclinA2 expression. The improved proliferation capacity was related to the increased phosphorylation of AKT. Taken together, our research demonstrates that MTMR7 plays an important role in proliferation and early differentiation of C2C12 myoblast.

  15. Fbxw7β, E3 ubiquitin ligase, negative regulation of primary myoblast differentiation, proliferation and migration.

    PubMed

    Shin, Kyungshin; Hwang, Sang-Gu; Choi, Ik Joon; Ko, Young-Gyu; Jeong, Jaemin; Kwon, Heechung

    2017-04-01

    Satellite cells attached to skeletal muscle fibers play a crucial role in skeletal muscle regeneration. During regeneration, the satellite cells proliferate, migrate to the damaged region, and fuse to each other. Although it is important to determine the cellular mechanisms controlling myoblast behavior, their regulators are not well understood. In this study, we evaluated the roles of Fbxw7 in primary myoblasts and determined its potential as a therapeutic target for muscle disease. We originally found that Fbxw7β, one of the E3 ubiquitin ligase Fbxw7 subtypes, negatively regulates differentiation, proliferation and migration of myoblasts and satellite cells on muscle fiber. However, these phenomena were not observed in myoblasts expressing a dominant-negative, F-box deleted Fbxw7β, mutant. Our results suggest that myoblast differentiation potential and muscle regeneration can be regulated by Fbxw7β.

  16. Distinct Effects of Rac1 on Differentiation of Primary Avian Myoblasts

    PubMed Central

    Gallo, Rita; Serafini, Marco; Castellani, Loriana; Falcone, Germana; Alemà, Stefano

    1999-01-01

    Rho family GTPases have been implicated in the regulation of the actin cytoskeleton in response to extracellular cues and in the transduction of signals from the membrane to the nucleus. Their role in development and cell differentiation, however, is little understood. Here we show that the transient expression of constitutively active Rac1 and Cdc42 in unestablished avian myoblasts is sufficient to cause inhibition of myogenin expression and block of the transition to the myocyte compartment, whereas activated RhoA affects myogenic differentiation only marginally. Activation of c-Jun N-terminal kinase (JNK) appears not to be essential for block of differentiation because, although Rac1 and Cdc42 GTPases modestly activate JNK in quail myoblasts, a Rac1 mutant defective for JNK activation can still inhibit myogenic differentiation. Stable expression of active Rac1, attained by infection with a recombinant retrovirus, is permissive for terminal differentiation, but the resulting myotubes accumulate severely reduced levels of muscle-specific proteins. This inhibition is the consequence of posttranscriptional events and suggests the presence of a novel level of regulation of myogenesis. We also show that myotubes expressing constitutively active Rac1 fail to assemble ordered sarcomeres. Conversely, a dominant-negative Rac1 variant accelerates sarcomere maturation and inhibits v-Src–induced selective disassembly of I-Z-I complexes. Collectively, our findings provide a role for Rac1 during skeletal muscle differentiation and strongly suggest that Rac1 is required downstream of v-Src in the signaling pathways responsible for the dismantling of tissue-specific supramolecular structures. PMID:10512856

  17. A role for acetylcholine receptors in the fusion of chick myoblasts

    PubMed Central

    1988-01-01

    The role of acetylcholine receptors in the control of chick myoblast fusion in culture has been explored. Spontaneous fusion of myoblasts was inhibited by the nicotinic acetylcholine receptor antagonists alpha- bungarotoxin, Naja naja toxin and monoclonal antibody mcAb 5.5. The muscarinic antagonists QNB and n-methyl scopolamine were without effect. Atropine had no effect below 1 microM, where it blocks muscarinic receptors; at higher concentrations, when it blocks nicotinic receptors also, atropine inhibited myoblast fusion. The inhibitions imposed by acetylcholine receptor antagonists lasted for approximately 12 h; fusion stimulated by other endogenous substances then took over. The inhibition was limited to myoblast fusion. The increases in cell number, DNA content, the level of creatine phosphokinase activity (both total and muscle-specific isozyme) and the appearance of heavy chain myosin, which accompany muscle differentiation, followed a normal time course. Pre-fusion myoblasts, fusing myoblasts, and young myotubes specifically bound labeled alpha- bungarotoxin, indicating the presence of acetylcholine receptors. The nicotinic acetylcholine receptor agonist, carbachol, induced uptake of [14C]Guanidinium through the acetylcholine receptor. Myoblasts, aligned myoblasts and young myotubes expressed the synthetic enzyme Choline acetyltransferase and stained positively with antibodies against acetylcholine. The appearance of ChAT activity in myogenic cultures was prevented by treatment with BUDR; nonmyogenic cells in the cultures expressed ChAT at a level which was too low to account for the activity in myogenic cultures. We conclude that activation of the nicotinic acetylcholine receptor is part of the mechanism controlling spontaneous myoblast fusion and that myoblasts synthesize an endogenous, fusion- inducing agent that activates the nicotinic ACh receptor. PMID:3372592

  18. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    SciTech Connect

    Itoigawa, Yoshiaki; Kishimoto, Koshi N.; Okuno, Hiroshi; Sano, Hirotaka; Kaneko, Kazuo; Itoi, Eiji

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  19. Cullin E3 Ligase Activity Is Required for Myoblast Differentiation.

    PubMed

    Blondelle, Jordan; Shapiro, Paige; Domenighetti, Andrea A; Lange, Stephan

    2017-04-07

    The role of cullin E3-ubiquitin ligases for muscle homeostasis is best known during muscle atrophy, as the cullin-1 substrate adaptor atrogin-1 is among the most well-characterized muscle atrogins. We investigated whether cullin activity was also crucial during terminal myoblast differentiation and aggregation of acetylcholine receptors for the establishment of neuromuscular junctions in vitro. The activity of cullin E3-ligases is modulated through post-translational modification with the small ubiquitin-like modifier nedd8. Using either the Nae1 inhibitor MLN4924 (Pevonedistat) or siRNA against nedd8 in early or late stages of differentiation on C2C12 myoblasts, and primary satellite cells from mouse and human, we show that cullin E3-ligase activity is necessary for each step of the muscle cell differentiation program in vitro. We further investigate known transcriptional repressors for terminal muscle differentiation, namely ZBTB38, Bhlhe41, and Id1. Due to their identified roles for terminal muscle differentiation, we hypothesize that the accumulation of these potential cullin E3-ligase substrates may be partially responsible for the observed phenotype. MLN4924 is currently undergoing clinical trials in cancer patients, and our experiments highlight concerns on the homeostasis and regenerative capacity of muscles in these patients who often experience cachexia.

  20. Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology

    SciTech Connect

    Shafey, Dina; Cote, Patrice D.; Kothary, Rashmi . E-mail: rkothary@ohri.ca

    2005-11-15

    Dosage of the survival motor neuron (SMN) protein has been directly correlated with the severity of disease in patients diagnosed with spinal muscular atrophy (SMA). It is also clear that SMA is a neurodegenerative disorder characterized by the degeneration of the {alpha}-motor neurons in the anterior horn of the spinal cord and atrophy of the associated skeletal muscle. What is more controversial is whether it is neuronal and/or muscle-cell-autonomous defects that are responsible for the disease per se. Although motor neuron degeneration is generally accepted as the primary event in SMA, intrinsic muscle defects in this disease have not been ruled out. To gain a better understanding of the influence of SMN protein dosage in muscle, we have generated a hypomorphic series of myoblast (C2C12) stable cell lines with variable Smn knockdown. We show that depletion of Smn in these cells resulted in a decrease in the number of nuclear 'gems' (gemini of coiled bodies), reduced proliferation with no increase in cell death, defects in myoblast fusion, and malformed myotubes. Importantly, the severity of these abnormalities is directly correlated with the decrease in Smn dosage. Taken together, our work supports the view that there is an intrinsic defect in skeletal muscle cells of SMA patients and that this defect contributes to the overall pathogenesis in this devastating disease.

  1. Effects of 1,25(OH)2D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy

    PubMed Central

    van der Meijden, K.; Bravenboer, N.; Dirks, N.F.; Heijboer, A.C.; den Heijer, M.; de Wit, G.M.J.; Offringa, C.; Lips, P.

    2016-01-01

    An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2D by 1α‐hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2D3. We show that myoblasts not only responded to 1,25(OH)2D3, but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α‐hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2D3. J. Cell. Physiol. 231: 2517–2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27018098

  2. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies.

    PubMed

    Saxena, A K; Marler, J; Benvenuto, M; Willital, G H; Vacanti, J P

    1999-12-01

    Skeletal muscle is responsible for the control of voluntary movement and the maintenance of structural contours of the body. Muscle loss or deficiency is encountered in various pathological states, and attempts to correct them have been employed with limited success. The aim of the present study was to tissue engineer three-dimensional vascularized skeletal muscle using isolated myoblasts attached to synthetic biodegradable polymer for tissue replacement in the enhancement of muscle regeneration. Myoblasts derived from neonatal rats (3-5-day-old), Fisher CDF-F344, were seeded onto polyglycolic acid meshes and implanted into the omentum of syngeneic adult Fisher CDF-F344 rats. Rats were sacrificed on day 30 and day 45 after the transplantation, and the cell-polymer constructs were harvested for morphological analysis. Histological analysis of the constructs were performed by hematoxylin and eosin, and immunohistochemical staining was positive for alpha sarcomeric actin and desmin skeletal muscle marker. Viable myoblasts organized between strands of degrading polymer mesh formed the new tissue, and vascularization of the entire construct was observed. Organization of neomuscle strands surrounded by vascularized tissue composed of degrading polymer and fusing myoblasts demonstrated the ability of myoblast constructs to survive, reorganize and regenerate tissue-like structures. Since myoblast transplantation to date has been limited to the cellular level of replacement, myoblast-polyglycolic acid constructs may be useful in defining the application of tissue engineering for future skeletal muscle transplantations.

  3. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression.

    PubMed

    Langley, Brett; Thomas, Mark; Bishop, Amy; Sharma, Mridula; Gilmour, Stewart; Kambadur, Ravi

    2002-12-20

    Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. In vitro, increasing concentrations of recombinant mature myostatin reversibly blocked the myogenic differentiation of myoblasts, cultured in low serum media. Western and Northern blot analysis indicated that addition of myostatin to the low serum culture media repressed the levels of MyoD, Myf5, myogenin, and p21 leading to the inhibition of myogenic differentiation. The transient transfection of C(2)C(12) myoblasts with MyoD expressing constructs did not rescue myostatin-inhibited myogenic differentiation. Myostatin signaling specifically induced Smad 3 phosphorylation and increased Smad 3.MyoD association, suggesting that Smad 3 may mediate the myostatin signal by interfering with MyoD activity and expression. Consistent with this, the expression of dominant-negative Smad3 rescued the activity of a MyoD promoter-reporter in C(2)C(12) myoblasts treated with myostatin. Taken together, these results suggest that myostatin inhibits MyoD activity and expression via Smad 3 resulting in the failure of the myoblasts to differentiate into myotubes. Thus we propose that myostatin plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that lack functional myostatin is because of deregulated proliferation and differentiation of myoblasts.

  4. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a “fuse-me” signal

    PubMed Central

    Kim, Go-Woon; Park, Seung-Yoon; Kim, In-San

    2016-01-01

    Myoblast fusion is important for skeletal muscle formation. Even though the knowledge of myoblast fusion mechanism has accumulated over the years, the initial signal of fusion is yet to be elucidated. Our study reveals the novel function of a phosphatidylserine (PS) receptor, stabilin-2 (Stab2), in the modulation of myoblast fusion, through the recognition of PS exposed on myoblasts. During differentiation of myoblasts, Stab2 expression is higher than other PS receptors and is controlled by calcineurin/NFAT signaling on myoblasts. The forced expression of Stab2 results in an increase in myoblast fusion; genetic ablation of Stab2 in mice causes a reduction in muscle size, as a result of impaired myoblast fusion. After muscle injury, muscle regeneration is impaired in Stab2-deficient mice, resulting in small myofibers with fewer nuclei, which is due to reduction of fusion rather than defection of myoblast differentiation. The fusion-promoting role of Stab2 is dependent on its PS-binding motif, and the blocking of PS-Stab2 binding impairs cell-cell fusion on myoblasts. Given our previous finding that Stab2 recognizes PS exposed on apoptotic cells for sensing as an “eat-me” signal, we propose that PS-Stab2 binding is required for sensing of a “fuse-me” signal as the initial signal of myoblast fusion. [BMB Reports 2016; 49(6): 303-304] PMID:27174501

  5. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a "fuse-me" signal.

    PubMed

    Kim, Go-Woon; Park, Seung-Yoon; Kim, In-San

    2016-06-01

    Myoblast fusion is important for skeletal muscle formation. Even though the knowledge of myoblast fusion mechanism has accumulated over the years, the initial signal of fusion is yet to be elucidated. Our study reveals the novel function of a phosphatidylserine (PS) receptor, stabilin-2 (Stab2), in the modulation of myoblast fusion, through the recognition of PS exposed on myoblasts. During differentiation of myoblasts, Stab2 expression is higher than other PS receptors and is controlled by calcineurin/NFAT signaling on myoblasts. The forced expression of Stab2 results in an increase in myoblast fusion; genetic ablation of Stab2 in mice causes a reduction in muscle size, as a result of impaired myoblast fusion. After muscle injury, muscle regeneration is impaired in Stab2- deficient mice, resulting in small myofibers with fewer nuclei, which is due to reduction of fusion rather than defection of myoblast differentiation. The fusion-promoting role of Stab2 is dependent on its PS-binding motif, and the blocking of PS-Stab2 binding impairs cell-cell fusion on myoblasts. Given our previous finding that Stab2 recognizes PS exposed on apoptotic cells for sensing as an "eat-me" signal, we propose that PS-Stab2 binding is required for sensing of a "fuse-me" signal as the initial signal of myoblast fusion. [BMB Reports 2016; 49(6): 303-304].

  6. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System

    PubMed Central

    Chaturvedi, Vishal; Dye, Danielle E.; Kinnear, Beverley F.; van Kuppevelt, Toin H.; Grounds, Miranda D.; Coombe, Deirdre R.

    2015-01-01

    Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates. PMID:26030912

  7. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host

    PubMed Central

    Léobon, Bertrand; Garcin, Isabelle; Menasché, Philippe; Vilquin, Jean-Thomas; Audinat, Etienne; Charpak, Serge

    2003-01-01

    Survival and differentiation of myogenic cells grafted into infarcted myocardium have raised the hope that cell transplantation becomes a new therapy for cardiovascular diseases. The approach was further supported by transplantation of skeletal myoblasts, which was shown to improve cardiac performance in several animal species. Despite the success of myoblast transplantation and its recent trial in human, the mechanism responsible for the functional improvement remains unclear. Here, we used intracellular recordings coupled to video and fluorescence microscopy to establish whether myoblasts, genetically labeled with enhanced GFP and transplanted into rat infarcted myocardium, retain excitable and contractile properties, and participate actively to cardiac function. Our results indicate that grafted myoblasts differentiate into peculiar hyperexcitable myotubes with a contractile activity fully independent of neighboring cardiomyocytes. We conclude that mechanisms other than electromechanical coupling between grafted and host cells are involved in the improvement of cardiac function. PMID:12805561

  8. The prelamin A pre-peptide induces cardiac and skeletal myoblast differentiation

    SciTech Connect

    Brodsky, Gary L. . E-mail: Gary.Brodsky@uchsc.edu; Bowersox, Jeffrey A.; Fitzgerald-Miller, Lisa; Miller, Leslie A.; Maclean, Kenneth N.

    2007-05-18

    Prelamin A processing is unique amongst mammalian proteins and results in the production of a farnesylated and carboxymethylated peptide. We examined the effect of pathogenic LMNA mutations on prelamin A processing, and of the covalently modified peptide on cardiac and skeletal myoblast differentiation. Here we report a mutation associated with dilated cardiomyopathy prevents prelamin A peptide production. In addition, topical application of the covalently modified C-terminal peptide to proliferating skeletal and cardiac myoblasts induced myotube and striated tissue formation, respectively. Western blot analysis revealed that skeletal and cardiac myoblasts are the first cell lines examined to contain unprocessed prelamin A, and immunostaining of peptide-treated cells revealed a previously unidentified role for prelamin A in cytoskeleton formation and intercellular organization. These results demonstrate a direct role for prelamin A in myoblast differentiation and indicate the prelamin A peptide may have therapeutic potential.

  9. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    SciTech Connect

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  10. PARP1 Differentially Interacts with Promoter region of DUX4 Gene in FSHD Myoblasts

    PubMed Central

    Sharma, Vishakha; Pandey, Sachchida Nand; Khawaja, Hunain; Brown, Kristy J; Hathout, Yetrib; Chen, Yi-Wen

    2016-01-01

    Objective The goal of the study is to identity proteins, which interact with the promoter region of double homeobox protein 4 (DUX4) gene known to be causative for the autosomal dominant disorder Facioscapulohumeral Muscular Dystrophy (FSHD). Methods We performed a DNA pull down assay coupled with mass spectrometry analysis to identify proteins that interact with a DUX4 promoter probe in Rhabdomyosarcomca (RD) cells. We selected the top ranked protein poly (ADP-ribose) polymerase 1 (PARP1) from our mass spectrometry data for further ChIP-qPCR validation using patients' myoblasts. We then treated FSHD myoblasts with PARP1 inhibitors to investigate the role of PARP1 in the FSHD myoblasts. Results In our mass spectrometry analysis, PARP1 was found to be the top ranked protein interacting preferentially with the DUX4 promoter probe in RD cells. We further validated this interaction by immunoblotting in RD cells (2-fold enrichment compared to proteins pulled down by a control probe, p<0.05) and ChIP-qPCR in patients' myoblasts (65-fold enrichment, p<0.01). Interestingly, the interaction was only observed in FSHD myoblasts but not in the control myoblasts. Upon further treatment of FSHD myoblasts with PARP1 inhibitors, we showed that treatment with a PARP1 inhibitor, 3-aminobenzamide (0.5 mM), for 24 h had a suppression of DUX4 (2.6 fold, p<0.05) and ZSCAN4, a gene previously shown to be upregulated by DUX4, (1.6 fold, p<0.01) in FSHD myoblasts. Treatment with fisetin (0.5 mM), a polyphenol compound with PARP1 inhibitory property, for 24 h also suppressed the expression of DUX4 (44.8 fold, p<0.01) and ZSCAN4 (2.2 fold, p<0.05) in the FSHD myoblasts. We further showed that DNA methyltransferase 1 (DNMT1), a gene regulated by PARP1 was also enriched at the DUX4 promoter in RD cells through immunoblotting (2-fold, p<0.01) and immortalized FSHD myoblasts (42-fold, p<0.01) but not control myoblasts through ChIP qPCR. Conclusion Our results showed that PARP1 and DNMT1

  11. Elastic hydrogel substrate supports robust expansion of murine myoblasts and enhances their engraftment

    SciTech Connect

    Ding, Ke; Yang, Zhong; Xu, Jian-zhong; Liu, Wen-ying; Zeng, Qiang; Hou, Fang; Lin, Sen

    2015-09-10

    The application of satellite cell-derived myoblasts in regenerative medicine has been restricted by the rapid loss of stemness during in vitro cell expansion using traditional culture systems. However, studies published in the past decade have highlighted the influence of substrate elasticity on stem cell fate and revealed that culture on a soft hydrogel substrate can promote self-renewal and prolong the regenerative potential of muscle stem cells. Whether hydrogel substrates have similar effects after long-term robust expansion remains to be determined. Herein we prepared an elastic chitosan/beta-glycerophosphate/collagen hydrogel mimicking the soft microenvironment of muscle tissues for use as the substrate for satellite cell culture and investigated its influence on long-term cell expansion. After 20 passages in culture, satellite cell-derived myoblasts cultured on our hydrogel substrate exhibited significant improvements in proliferation capability, cell viability, colony forming frequency, and potential for myogenic differentiation compared to those cultured on a routine rigid culture surface. Immunochemical staining and western blot analysis both confirmed that myoblasts cultured on the hydrogel substrate expressed higher levels of several differentiation-related markers, including Pax7, Pax3, and SSEA-1, and a lower level of MyoD compared to myoblasts cultured on rigid culture plates (all p<0.05). After transplantation into the tibialis anterior of nude mice, myoblasts that had been cultured on the hydrogel substrate demonstrated a significantly greater engraftment efficacy than those cultured on the traditional surface. Collectively, these results indicate that the elastic hydrogel substrate supported robust expansion of murine myoblasts and enhanced their engraftment in vivo. - Highlights: • An elastic hydrogel was designed to mimic the pliable muscle tissue microenvironment. • Myoblasts retained their stemness in long-term culture on the elastic

  12. The CELF1 RNA-Binding Protein Regulates Decay of Signal Recognition Particle mRNAs and Limits Secretion in Mouse Myoblasts

    PubMed Central

    Russo, Joseph; Lee, Jerome E.; López, Carolina M.; Anderson, John; Nguyen, Thuy-mi P.; Heck, Adam M.; Wilusz, Jeffrey

    2017-01-01

    We previously identified several mRNAs encoding components of the secretory pathway, including signal recognition particle (SRP) subunit mRNAs, among transcripts associated with the RNA-binding protein CELF1. Through immunoprecipitation of RNAs crosslinked to CELF1 in myoblasts and in vitro binding assays using recombinant CELF1, we now provide evidence that CELF1 directly binds the mRNAs encoding each of the subunits of the SRP. Furthermore, we determined the half-lives of the Srp transcripts in control and CELF1 knockdown myoblasts. Our results indicate CELF1 is a destabilizer of at least five of the six Srp transcripts and that the relative abundance of the SRP proteins is out of balance when CELF1 is depleted. CELF1 knockdown myoblasts exhibit altered secretion of a luciferase reporter protein and are impaired in their ability to migrate and close a wound, consistent with a defect in the secreted extracellular matrix. Importantly, similar defects in wound healing are observed when SRP subunit imbalance is induced by over-expression of SRP68. Our studies support the existence of an RNA regulon containing Srp mRNAs that is controlled by CELF1. One implication is that altered function of CELF1 in myotonic dystrophy may contribute to changes in the extracellular matrix of affected muscle through defects in secretion. PMID:28129347

  13. Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system.

    PubMed

    Johnston, Adam P W; Baker, Jeff; De Lisio, Michael; Parise, Gianni

    2011-06-01

    A paucity of information exists regarding the presence of local renin-angiotensin systems (RASs) in skeletal muscle and associated muscle stem cells. Skeletal muscle and muscle stem cells were isolated from C57BL/6 mice and examined for the presence of a local RAS using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), Western blotting and liquid chromatography-mass spectrometry (LC-MS). Furthermore, the effect of mechanical stimulation on RAS member gene expression was analysed. Whole skeletal muscle, primary myoblasts and C2C12 derived myoblasts and myotubes differentially expressed members of the RAS including angiotensinogen, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) type 1 (AT(1)) and type 2 (AT(2)). Renin transcripts were never detected, however, mRNA for the 'renin-like' enzyme cathepsin D was observed and Ang I and Ang II were identified in cell culture supernatants from proliferating myoblasts. AT(1) appeared to co-localise with polymerised actin filaments in proliferating myoblasts and was primarily found in the nucleus of terminally differentiated myotubes. Furthermore, mechanical stretch of proliferating and differentiating C2C12 cells differentially induced mRNA expression of angiotensinogen, AT(1) and AT(2). Proliferating and differentiated muscle stem cells possess a local stress-responsive RAS in vitro. The precise function of a local RAS in myoblasts remains unknown. However, evidence presented here suggests that Ang II may be a regulator of skeletal muscle myoblasts.

  14. Tethering Membrane Fusion: Common and Different Players in Myoblasts and at the Synapse

    PubMed Central

    Rust, Marco B.; Jacob, Ralf; Renkawitz-Pohl, Renate

    2014-01-01

    Drosophila Membrane fusion is essential for the communication of membrane-defined compartments, development of multicellular organisms and tissue homeostasis. Although membrane fusion has been studied extensively, still little is known about the molecular mechanisms. Especially the intercellular fusion of cells during development and tissue homeostasis is poorly understood. Somatic muscle formation in Drosophila depends on the intercellular fusion of myoblasts. In this process, myoblasts recognize each other and adhere, thereby triggering a protein machinery that leads to electron-dense plaques, vesicles and F-actin formation at apposing membranes. Two models of how local membrane stress is achieved to induce the merging of the myoblast membranes have been proposed: the electron-dense vesicles transport and release a fusogen and F-actin bends the plasma membrane. In this review, we highlight cell-adhesion molecules and intracellular proteins known to be involved in myoblast fusion. The cell-adhesion proteins also mediate the recognition and adhesion of other cell types, such as neurons that communicate with each other via special intercellular junctions, termed chemical synapses. At these synapses, neurotransmitters are released through the intracellular fusion of synaptic vesicles with the plasma membrane. As the targeting of electron-dense vesicles in myoblasts shares some similarities with the targeting of synaptic vesicle fusion, we compare molecules required for synaptic vesicle fusion to recently identified molecules involved in myoblast fusion. PMID:24957080

  15. Spatial Geometries of Self-Assembled Chitohexaose Monolayers Regulate Myoblast Fusion

    PubMed Central

    Poosala, Pornthida; Ichinose, Hirofumi; Kitaoka, Takuya

    2016-01-01

    Myoblast fusion into functionally-distinct myotubes to form in vitro skeletal muscle constructs under differentiation serum-free conditions still remains a challenge. Herein, we report that our microtopographical carbohydrate substrates composed of bioactive hexa-N-acetyl-d-glucosamine (GlcNAc6) modulated the efficiency of myoblast fusion without requiring horse serum or any differentiation medium during cell culture. Promotion of the differentiation of dissociated mononucleated skeletal myoblasts (C2C12; a mouse myoblast cell line) into robust myotubes was found only on GlcNAc6 micropatterns, whereas the myoblasts on control, non-patterned GlcNAc6 substrates or GlcNAc6-free patterns exhibited an undifferentiated form. We also examined the possible role of GlcNAc6 micropatterns with various widths in the behavior of C2C12 cells in early and late stages of myogenesis through mRNA expression of myosin heavy chain (MyHC) isoforms. The spontaneous contraction of myotubes was investigated via the regulation of glucose transporter type 4 (GLUT4), which is involved in stimulating glucose uptake during cellular contraction. Narrow patterns demonstrated enhanced glucose uptake rate and generated a fast-twitch muscle fiber type, whereas the slow-twitch muscle fiber type was dominant on wider patterns. Our findings indicated that GlcNAc6-mediated integrin interactions are responsible for guiding myoblast fusion forward along with myotube formation. PMID:27164094

  16. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration.

    PubMed

    Teng, Shuzhi; Stegner, David; Chen, Qin; Hongu, Tsunaki; Hasegawa, Hiroshi; Chen, Li; Kanaho, Yasunori; Nieswandt, Bernhard; Frohman, Michael A; Huang, Ping

    2015-02-01

    Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes.

  17. MicroRNA-27a promotes myoblast proliferation by targeting myostatin

    SciTech Connect

    Huang, Zhiqing; Chen, Xiaoling; Yu, Bing; He, Jun; Chen, Daiwen

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We identified a myogenic role for miR-27a and a new target, myostatin. Black-Right-Pointing-Pointer The miR-27a was confirmed to target myostatin 3 Prime UTR. Black-Right-Pointing-Pointer miR-27a is upregulated and myostatin is downregulated during myoblast proliferation. Black-Right-Pointing-Pointer miR-27a promotes myoblast proliferation by reducing the expression of myostatin. -- Abstract: MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs that play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. However, the role of miRNAs in myoblast proliferation remains poorly understood. Here we found that the expression of miR-27a was increased during proliferation of C2C12 myoblasts. Moreover, overexpression of miR-27a in C2C12 cells promoted myoblast proliferation by reducing the expression of myostatin, a critical inhibitor of skeletal myogenesis. In addition, the miR-27a was confirmed to target myostatin 3 Prime UTR by a luciferase reporter analysis. Together, these results suggest that miR-27a promotes myoblast proliferation through targeting myostatin.

  18. Involvement of Transient Receptor Potential Cation Channel Vanilloid 1 (TRPV1) in Myoblast Fusion.

    PubMed

    Kurosaka, Mitsutoshi; Ogura, Yuji; Funabashi, Toshiya; Akema, Tatsuo

    2016-10-01

    The mechanisms that underlie the complex process of muscle regeneration after injury remain unknown. Transient receptor potential cation channel vanilloid 1 (TRPV1) is expressed in several cell types, including skeletal muscle, and is activated by high temperature and by certain molecules secreted during tissue inflammation. Severe inflammation and local temperature perturbations are induced during muscle regeneration, which suggests that TRPV1 might be activated and involved in the process. The aim of this study, was to clarify the role of TRPV1 in the myogenic potential of satellite cells responsible for muscle regeneration. We found that mRNA and protein levels of TRPV1 increased during regeneration after cardiotoxin (CTX)-induced muscle injury in mice. Using isolated mouse satellite cells (i.e., myoblasts), we observed that activation of TRPV1 by its agonist capsaicin (CAP) augmented myogenin protein levels. Whereas CAP did not alter myoblast proliferation, it facilitated myoblast fusion (evaluated using myonucleii number per myotube and fusion index). In contrast, suppression of TRPV1 by siRNA impaired myoblast fusion. Using mice, we also demonstrated that intramuscular injection of CAP facilitated muscle repair after CTX-induced muscle injury. Moreover, we showed that these roles of TRPV1 might be mediated by interleukin-4 and calcium signaling during myoblast fusion. Collectively, these results suggest that TRPV1 underlies normal myogenesis through promotion of myoblast fusion. J. Cell. Physiol. 231: 2275-2285, 2016. © 2016 Wiley Periodicals, Inc.

  19. Hepatocyte growth factor (HGF) signals through SHP2 to regulate primary mouse myoblast proliferation

    SciTech Connect

    Li, Ju; Reed, Sarah A.; Johnson, Sally E.

    2009-08-01

    Niche localized HGF plays an integral role in G{sub 0} exit and the return to mitotic activity of adult skeletal muscle satellite cells. HGF actions are regulated by MET initiated intracellular signaling events that include recruitment of SHP2, a protein tyrosine phosphatase. The importance of SHP2 in HGF-mediated signaling was examined in myoblasts and primary cultures of satellite cells. Myoblasts stably expressing SHP2 (23A2-SHP2) demonstrate increased proliferation rates by comparison to controls or myoblasts expressing a phosphatase-deficient SHP2 (23A2-SHP2DN). By comparison to 23A2 myoblasts, treatment of 23A2-SHP2 cells with HGF does not further increase proliferation rates and 23A2-SHP2DN myoblasts are unresponsive to HGF. Importantly, the effects of SHP2 are independent of downstream ERK1/2 activity as inclusion of PD98059 does not blunt the HGF-induced proliferative response. SHP2 function was further evaluated in primary satellite cell cultures. Ectopic expression of SHP2 in satellite cells tends to decrease proliferation rates and siSHP2 causes an increase the percentage of dividing myogenic cells. Interestingly, treatment of satellite cells with high concentrations of HGF (50 ng/ml) inhibits proliferation, which can be overcome by knockdown of SHP2. From these results, we conclude that HGF signals through SHP2 in myoblasts and satellite cells to directly alter proliferation rates.

  20. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation.

    PubMed

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee; Seo, Dong-Wan; Kang, Jong-Sun; Bae, Gyu-Un

    2016-01-29

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways.

  1. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium

    PubMed Central

    Huang, Hai; Kornberg, Thomas B

    2015-01-01

    The flight muscles, dorsal air sacs, wing blades, and thoracic cuticle of the Drosophila adult function in concert, and their progenitor cells develop together in the wing imaginal disc. The wing disc orchestrates dorsal air sac development by producing decapentaplegic and fibroblast growth factor that travel via specific cytonemes in order to signal to the air sac primordium (ASP). Here, we report that cytonemes also link flight muscle progenitors (myoblasts) to disc cells and to the ASP, enabling myoblasts to relay signaling between the disc and the ASP. Frizzled (Fz)-containing myoblast cytonemes take up Wingless (Wg) from the disc, and Delta (Dl)-containing myoblast cytonemes contribute to Notch activation in the ASP. Wg signaling negatively regulates Dl expression in the myoblasts. These results reveal an essential role for cytonemes in Wg and Notch signaling and for a signal relay system in the myoblasts. DOI: http://dx.doi.org/10.7554/eLife.06114.001 PMID:25951303

  2. Mechanical strain applied to human fibroblasts differentially regulates skeletal myoblast differentiation.

    PubMed

    Hicks, Michael R; Cao, Thanh V; Campbell, David H; Standley, Paul R

    2012-08-01

    Cyclic short-duration stretches (CSDS) such as those resulting from repetitive motion strain increase the risk of musculoskeletal injury. Myofascial release is a common technique used by clinicians that applies an acyclic long-duration stretch (ALDS) to muscle fascia to repair injury. When subjected to mechanical strain, fibroblasts within muscle fascia secrete IL-6, which has been shown to induce myoblast differentiation, essential for muscle repair. We hypothesize that fibroblasts subjected to ALDS following CSDS induce myoblast differentiation through IL-6. Fibroblast conditioned media and fibroblast-myoblast cocultures were used to test fibroblasts' ability to induce myoblast differentiation. The coculture system applies strain to fibroblasts only but still allows for diffusion of potential differentiation mediators to unstrained myoblasts on coverslips. To determine the role of IL-6, we utilized myoblast unicultures ± IL-6 (0-100 ng/ml) and cocultures ± α-IL-6 (0-200 μg/ml). Untreated uniculture myoblasts served as a negative control. After 96 h, coverslips (n = 6-21) were microscopically analyzed and quantified by blinded observer for differentiation endpoints: myotubes per square millimeter (>3 nuclei/cell), nuclei/myotube, and fusion efficiency (%nuclei within myotubes). The presence of fibroblasts and fibroblast conditioned media significantly enhanced myotube number (P < 0.05). However, in coculture, CSDS applied to fibroblasts did not reproduce this effect. ALDS following CSDS increased myotube number by 78% and fusion efficiency by 96% vs. CSDS alone (P < 0.05). Fibroblasts in coculture increase IL-6 secretion; however, IL-6 secretion did not correlate with enhanced differentiation among strain groups. Exogenous IL-6 in myoblast uniculture failed to induce differentiation. However, α-IL-6 attenuated differentiation in all coculture groups (P < 0.05). Fibroblasts secrete soluble mediators that have profound effects on several measures of myoblast

  3. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis.

    PubMed

    Singh, François; Charles, Anne-Laure; Schlagowski, Anna-Isabel; Bouitbir, Jamal; Bonifacio, Annalisa; Piquard, François; Krähenbühl, Stephan; Geny, Bernard; Zoll, Joffrey

    2015-07-01

    Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.

  4. Slowing Down Differentiation of Engrafted Human Myoblasts Into Immunodeficient Mice Correlates With Increased Proliferation and Migration

    PubMed Central

    Riederer, Ingo; Negroni, Elisa; Bencze, Maximilien; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Silva-Barbosa, Suse D.; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent

    2012-01-01

    We have used a model of xenotransplantation in which human myoblasts were transplanted intramuscularly into immunodeficient Rag2-/-γC-/- mice, in order to investigate the kinetics of proliferation and differentiation of the transplanted cells. After injection, most of the human myoblasts had already differentiated by day 5. This differentiation correlated with reduction in proliferation and limited migration of the donor cells within the regenerating muscle. These results suggest that the precocious differentiation, already detected at 3 days postinjection, is a limiting factor for both the migration from the injection site and the participation of the donor cells to muscle regeneration. When we stimulated in vivo proliferation of human myoblasts, transplanting them in a serum-containing medium, we observed 5 days post-transplantation a delay of myogenic differentiation and an increase in cell numbers, which colonized a much larger area within the recipient's muscle. Importantly, these myoblasts maintained their ability to differentiate, since we found higher numbers of myofibers seen 1 month postengraftment, as compared to controls. Conceptually, these data suggest that in experimental myoblast transplantation, any intervention upon the donor cells and/or the recipient's microenvironment aimed at enhancing proliferation and migration should be done before differentiation of the implanted cells, e.g., day 3 postengraftment. PMID:21934656

  5. Slowing down differentiation of engrafted human myoblasts into immunodeficient mice correlates with increased proliferation and migration.

    PubMed

    Riederer, Ingo; Negroni, Elisa; Bencze, Maximilien; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Silva-Barbosa, Suse D; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent

    2012-01-01

    We have used a model of xenotransplantation in which human myoblasts were transplanted intramuscularly into immunodeficient Rag2(-/-)γC(-/-) mice, in order to investigate the kinetics of proliferation and differentiation of the transplanted cells. After injection, most of the human myoblasts had already differentiated by day 5. This differentiation correlated with reduction in proliferation and limited migration of the donor cells within the regenerating muscle. These results suggest that the precocious differentiation, already detected at 3 days postinjection, is a limiting factor for both the migration from the injection site and the participation of the donor cells to muscle regeneration. When we stimulated in vivo proliferation of human myoblasts, transplanting them in a serum-containing medium, we observed 5 days post-transplantation a delay of myogenic differentiation and an increase in cell numbers, which colonized a much larger area within the recipient's muscle. Importantly, these myoblasts maintained their ability to differentiate, since we found higher numbers of myofibers seen 1 month postengraftment, as compared to controls. Conceptually, these data suggest that in experimental myoblast transplantation, any intervention upon the donor cells and/or the recipient's microenvironment aimed at enhancing proliferation and migration should be done before differentiation of the implanted cells, e.g., day 3 postengraftment.

  6. Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts

    PubMed Central

    1988-01-01

    Using a sensitive and quantitative adhesion assay, we have studied the initial stages of the intercellular adhesion of the C2 mouse myoblast line. After dissociation in low levels of trypsin in EDTA, C2 cells can rapidly reaggregate by Ca2+-independent mechanisms to form large multicellular aggregates. If cells are allowed to recover from dissociation by incubation in defined media, this adhesive system is augmented by a Ca2+-dependent mechanism with maximum recovery seen after 4 h incubation. The Ca2+-independent adhesion system is inhibited by preincubation of cell monolayers with cycloheximide before dissociation. Aggregation is also reduced after exposure to monensin, implicating a role for surface-translocated glycoproteins in this mechanism of adhesion. In coaggregation experiments using C2 myoblasts and 3T3 fibroblasts in which the Ca2+-dependent adhesion system was inactivated, no adhesive specificity between the two cell types was seen. Although synthetic peptides containing the RGD sequence are known to inhibit cell-substratum adhesion in various cell types, incubation of C2 myoblasts with the integrin-binding tetrapeptide, RGDS, greatly stimulated the Ca2+-independent aggregation of these cells while control analogs had no effect. These results show that a Ca2+- independent mechanism alone is sufficient to allow for the rapid formation of multicellular aggregates in a mouse myoblast line, and that many of the requirements and perturbants of the Ca2+-independent system of intercellular myoblast adhesion are similar to those of the Ca2+-dependent adhesion mechanisms. PMID:3198689

  7. AP-2{alpha} suppresses skeletal myoblast proliferation and represses fibroblast growth factor receptor 1 promoter activity

    SciTech Connect

    Mitchell, Darrion L.; DiMario, Joseph X.

    2010-01-15

    Skeletal muscle development is partly characterized by myoblast proliferation and subsequent differentiation into postmitotic muscle fibers. Developmental regulation of expression of the fibroblast growth factor receptor 1 (FGFR1) gene is required for normal myoblast proliferation and muscle formation. As a result, FGFR1 promoter activity is controlled by multiple transcriptional regulatory proteins during both proliferation and differentiation of myogenic cells. The transcription factor AP-2{alpha} is present in nuclei of skeletal muscle cells and suppresses myoblast proliferation in vitro. Since FGFR1 gene expression is tightly linked to myoblast proliferation versus differentiation, the FGFR1 promoter was examined for candidate AP-2{alpha} binding sites. Mutagenesis studies indicated that a candidate binding site located at - 1035 bp functioned as a repressor cis-regulatory element. Furthermore, mutation of this site alleviated AP-2{alpha}-mediated repression of FGFR1 promoter activity. Chromatin immunoprecipitation studies demonstrated that AP-2{alpha} interacted with the FGFR1 promoter in both proliferating myoblasts and differentiated myotubes. In total, these results indicate that AP-2{alpha} is a transcriptional repressor of FGFR1 gene expression during skeletal myogenesis.

  8. An in silico prediction tool for the expansion culture of human skeletal muscle myoblasts

    PubMed Central

    Kagawa, Yuki

    2016-01-01

    Regenerative therapy using autologous skeletal myoblasts requires a large number of cells to be prepared for high-level secretion of cytokines and chemokines to induce good regeneration of damaged regions. However, myoblast expansion culture is hindered by a reduction in growth rate owing to cellular quiescence and differentiation, therefore optimization is required. We have developed a kinetic computational model describing skeletal myoblast proliferation and differentiation, which can be used as a prediction tool for the expansion process. In the model, myoblasts migrate, divide, quiesce and differentiate as observed during in vitro culture. We assumed cell differentiation initiates following cell–cell attachment for a defined time period. The model parameter values were estimated by fitting to several predetermined experimental datasets. Using an additional experimental dataset, we confirmed validity of the developed model. We then executed simulations using the developed model under several culture conditions and quantitatively predicted that non-uniform cell seeding had adverse effects on the expansion culture, mainly by reducing the existing ratio of proliferative cells. The proposed model is expected to be useful for predicting myoblast behaviours and in designing efficient expansion culture conditions for these cells. PMID:27853565

  9. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro

    PubMed Central

    Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; MacLeod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S

    2006-01-01

    Background Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. Methods To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry. Results More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than

  10. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion

    PubMed Central

    Estrada, Beatriz; Maeland, Anne D.; Gisselbrecht, Stephen S.; Bloor, James W.; Brown, Nicholas H.; Michelson, Alan M.

    2007-01-01

    Summary Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where—as in myoblast fusion—membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells is unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane. PMID:17537424

  11. Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts.

    PubMed

    Michot, Caroline; Mamoune, Asmaa; Vamecq, Joseph; Viou, Mai Thao; Hsieh, Lu-Sheng; Testet, Eric; Lainé, Jeanne; Hubert, Laurence; Dessein, Anne-Frédérique; Fontaine, Monique; Ottolenghi, Chris; Fouillen, Laetitia; Nadra, Karim; Blanc, Etienne; Bastin, Jean; Candon, Sophie; Pende, Mario; Munnich, Arnold; Smahi, Asma; Djouadi, Fatima; Carman, George M; Romero, Norma; de Keyzer, Yves; de Lonlay, Pascale

    2013-12-01

    Lipin-1 deficiency is associated with massive rhabdomyolysis episodes in humans, precipitated by febrile illnesses. Despite well-known roles of lipin-1 in lipid biosynthesis and transcriptional regulation, the pathogenic mechanisms leading to rhabdomyolysis remain unknown. Here we show that primary myoblasts from lipin-1-deficient patients exhibit a dramatic decrease in LPIN1 expression and phosphatidic acid phosphatase 1 activity, and a significant accumulation of lipid droplets (LD). The expression levels of LPIN1-target genes [peroxisome proliferator-activated receptors delta and alpha (PPARδ, PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), acyl-coenzyme A dehydrogenase, very long (ACADVL), carnitine palmitoyltransferase IB and 2 (CPT1B and CPT2)] were not affected while lipin-2 protein level, a closely related member of the family, was increased. Microarray analysis of patients' myotubes identified 19 down-regulated and 51 up-regulated genes, indicating pleiotropic effects of lipin-1 deficiency. Special attention was paid to the up-regulated ACACB (acetyl-CoA carboxylase beta), a key enzyme in the fatty acid synthesis/oxidation balance. We demonstrated that overexpression of ACACB was associated with free fatty acid accumulation in patients' myoblasts whereas malonyl-carnitine (as a measure of malonyl-CoA) and CPT1 activity were in the normal range in basal conditions accordingly to the normal daily activity reported by the patients. Remarkably ACACB invalidation in patients' myoblasts decreased LD number and size while LPIN1 invalidation in controls induced LD accumulation. Further, pro-inflammatory treatments tumor necrosis factor alpha+Interleukin-1beta(TNF1α+IL-1ß) designed to mimic febrile illness, resulted in increased malonyl-carnitine levels, reduced CPT1 activity and enhanced LD accumulation, a phenomenon reversed by dexamethasone and TNFα or IL-1ß inhibitors. Our data suggest that the pathogenic mechanism

  12. Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts

    PubMed Central

    Michot, Caroline; Mamoune, Asmaa; Vamecq, Joseph; Viou, Mai Thao; Hsieh, Lu-Sheng; Testet, Eric; Lainé, Jeanne; Hubert, Laurence; Dessein, Anne-Frédérique; Fontaine, Monique; Ottolenghi, Chris; Fouillen, Laetitia; Nadra, Karim; Blanc, Etienne; Bastin, Jean; Candon, Sophie; Pende, Mario; Munnich, Arnold; Smahi, Asma; Djouadi, Fatima; Carman, George M.; Romero, Norma; de Keyzer, Yves; de Lonlay, Pascale

    2014-01-01

    Lipin-1 deficiency is associated with massive rhabdomyolysis episodes in humans, precipitated by febrile illnesses. Despite well-known roles of lipin-1 in lipid biosynthesis and transcriptional regulation, the pathogenic mechanisms leading to rhabdomyolysis remain unknown. Here we show that primary myoblasts from lipin-1-deficient patients exhibit a dramatic decrease in LPIN1 expression and phosphatidic acid phosphatase 1 activity, and a significant accumulation of lipid droplets (LD). The expression levels of LPIN1-target genes [peroxisome proliferator-activated receptors delta and alpha (PPARδ, PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), acyl-coenzyme A dehydrogenase, very long (ACADVL), carnitine palmitoyltransferase IB and 2 (CPT1B and CPT2)] were not affected while lipin-2 protein level, a closely related member of the family, was increased. Microarray analysis of patients’ myotubes identified 19 down-regulated and 51 up-regulated genes, indicating pleiotropic effects of lipin-1 deficiency. Special attention was paid to the up-regulated ACACB (acetyl-CoA carboxylase beta), a key enzyme in the fatty acid synthesis/oxidation balance. We demonstrated that overexpression of ACACB was associated with free fatty acid accumulation in patients’ myoblasts whereas malonyl-carnitine (as a measure of malonyl-CoA) and CPT1 activity were in the normal range in basal conditions accordingly to the normal daily activity reported by the patients. Remarkably ACACB invalidation in patients’ myoblasts decreased LD number and size while LPIN1 invalidation in controls induced LD accumulation. Further, pro-inflammatory treatments tumor necrosis factor alpha + Interleukin-1beta(TNF1α + IL-1β) designed to mimic febrile illness, resulted in increased malonyl-carnitine levels, reduced CPT1 activity and enhanced LD accumulation, a phenomenon reversed by dexamethasone and TNFα or IL-1β inhibitors. Our data suggest that the pathogenic

  13. Spatial and functional restriction of regulatory molecules during mammalian myoblast fusion

    SciTech Connect

    Pavlath, Grace K.

    2010-11-01

    Myoblast fusion is a highly regulated process that is key for forming skeletal muscle during development and regeneration in mammals. Much remains to be understood about the molecular regulation of myoblast fusion. Some molecules that influence mammalian muscle fusion display specific cellular localization during myogenesis. Such molecules can be localized to the contact region between two fusing cells either in both cells or only in one of the cells. How distinct localization of molecules contributes to fusion is not clear. Further complexity exists as other molecules are functionally restricted to myoblasts at later stages of myogenesis to regulate their fusion with multinucleated myotubes. This review examines these three categories of molecules and discusses how spatial and functional restriction may contribute to the formation of a multinucleated cell. Understanding how and why molecules become restricted in location or function is likely to provide further insights into the mechanisms regulating mammalian muscle fusion.

  14. Myomaker, Regulated by MYOD, MYOG and miR-140-3p, Promotes Chicken Myoblast Fusion

    PubMed Central

    Luo, Wen; Li, Erxin; Nie, Qinghua; Zhang, Xiquan

    2015-01-01

    The fusion of myoblasts is an important step during skeletal muscle differentiation. A recent study in mice found that a transmembrane protein called Myomaker, which is specifically expressed in muscle, is critical for myoblast fusion. However, the cellular mechanism of its roles and the regulatory mechanism of its expression remain unclear. Chicken not only plays an important role in meat production but is also an ideal model organism for muscle development research. Here, we report that Myomaker is also essential for chicken myoblast fusion. Forced expression of Myomaker in chicken primary myoblasts promotes myoblast fusion, whereas knockdown of Myomaker by siRNA inhibits myoblast fusion. MYOD and MYOG, which belong to the family of myogenic regulatory factors, can bind to a conserved E-box located proximal to the Myomaker transcription start site and induce Myomaker transcription. Additionally, miR-140-3p can inhibit Myomaker expression and myoblast fusion, at least in part, by binding to the 3ʹ UTR of Myomaker in vitro. These findings confirm the essential roles of Myomaker in avian myoblast fusion and show that MYOD, MYOG and miR-140-3p can regulate Myomaker expression. PMID:26540045

  15. Myomaker, Regulated by MYOD, MYOG and miR-140-3p, Promotes Chicken Myoblast Fusion.

    PubMed

    Luo, Wen; Li, Erxin; Nie, Qinghua; Zhang, Xiquan

    2015-11-02

    The fusion of myoblasts is an important step during skeletal muscle differentiation. A recent study in mice found that a transmembrane protein called Myomaker, which is specifically expressed in muscle, is critical for myoblast fusion. However, the cellular mechanism of its roles and the regulatory mechanism of its expression remain unclear. Chicken not only plays an important role in meat production but is also an ideal model organism for muscle development research. Here, we report that Myomaker is also essential for chicken myoblast fusion. Forced expression of Myomaker in chicken primary myoblasts promotes myoblast fusion, whereas knockdown of Myomaker by siRNA inhibits myoblast fusion. MYOD and MYOG, which belong to the family of myogenic regulatory factors, can bind to a conserved E-box located proximal to the Myomaker transcription start site and induce Myomaker transcription. Additionally, miR-140-3p can inhibit Myomaker expression and myoblast fusion, at least in part, by binding to the 3' UTR of Myomaker in vitro. These findings confirm the essential roles of Myomaker in avian myoblast fusion and show that MYOD, MYOG and miR-140-3p can regulate Myomaker expression.

  16. Feasibility and safety of autologous myoblast transplantation in patients with ischemic cardiomyopathy.

    PubMed

    Dib, Nabil; McCarthy, Patrick; Campbell, Ann; Yeager, Michael; Pagani, Francis D; Wright, Susan; MacLellan, W Robb; Fonarow, Gregg; Eisen, Howard J; Michler, Robert E; Binkley, Philip; Buchele, Diane; Korn, Ronald; Ghazoul, Marwan; Dinsmore, Jonathan; Opie, Shaun R; Diethrich, Edward

    2005-01-01

    Successful autologous skeletal myoblast transplantation into infarcted myocardium in a variety of animal models has demonstrated improvement in cardiac function. We evaluated the safety and feasibility of transplanting autologous myoblasts into infarcted myocardium of patients undergoing concurrent coronary artery bypass grafting (CABG) or left ventricular assist device implantation (LVAD). In addition, we sought to gain preliminary information on graft survival and any potential improvement of cardiac function. Eighteen patients with a history of ischemic cardiomyopathy participated in a phase I, nonrandomized, multicenter pilot study of autologous skeletal myoblast transplantation concurrent with CABG or LVAD implantation. Twelve patients with a history of previous myocardial infarction (MI) and a left ventricular ejection of less than 30% were enrolled in the CABG arm. In a second arm, six patients underwent LVAD implantation as a bridge to heart transplantation and were required to donate their heart for testing at the time of heart transplant. Myoblasts were successfully transplanted in all patients without any acute injection-related complications or significant long-term unexpected adverse events. Follow-up PET scans showed new areas of viability within the infarct scar in CABG patients. Echocardiography measured an average improvement in left ventricular ejection fraction (LVEF) from 25% to 34%. Histological evaluation in four out of five patients who underwent heart transplantation documented survival and engraftment of the skeletal myoblasts within the infarcted myocardium. These interim results demonstrate survival, feasibility, and safety of autologous myoblast transplantation and suggest that this modality may offer a potential therapeutic treatment for end-stage heart disease.

  17. High efficiency of muscle regeneration after human myoblast clone transplantation in SCID mice.

    PubMed Central

    Huard, J; Verreault, S; Roy, R; Tremblay, M; Tremblay, J P

    1994-01-01

    SCID mouse tibialis anterior muscles were first irradiated to prevent regeneration by host myoblasts and injected with notexin to damage the muscle fibers and trigger regeneration. The muscles were then injected with roughly 5 million human myoblasts. 1 mo later, 16-33% of the normal number of muscle fibers were present in the injected muscle, because of incomplete regeneration. However, > 90% of these muscle fibers contained human dystrophin. Some newly formed muscle fibers had an accumulation of human dystrophin and desmin on a part of their membrane. Such accumulations have been demonstrated at neuromuscular junctions before suggesting that the new muscle fibers are innervated and functional. The same pool of clones of human myoblasts produced only < or = 4% of muscle fibers containing human dystrophin when injected in nude mice muscles. Several of the human myoblasts did not fuse and remained in interstitial space or tightly associated with muscle fibers suggesting that some of them have formed satellite cells. Moreover, cultures of 98% pure human myoblasts were obtained from transplanted SCID muscles. In some mice where the muscle regeneration was not complete, the muscle fibers containing human dystrophin also expressed uniformly HLA class 1, confirming that the fibers are of human origin. The presence of hybrid muscle fibers containing human dystrophin and mouse MHC was also demonstrated following transplantation. These results establish that in absence of an immune reaction, transplanted human myoblasts participate to the muscle regeneration with a high degree of efficacy even if the animals were killed only 1 mo after the transplantation. Images PMID:8113396

  18. p130/p107 expression distinguishes adipogenic potential in primary myoblasts based on age.

    PubMed

    Guan, Yu; Taylor-Jones, Jane M; Peterson, Charlotte A; McGehee, Robert E

    2002-09-06

    Recent investigations have provided significant evidence that many mesodermally derived tissues contain stem cell-like precursors capable of being stimulated to undergo differentiation into a variety of cellular lineages. We have recently reported that primary myoblasts isolated from 23-month-old mice have an increased adipogenic potential when compared to their 8-month-old counterparts. To further characterize the degree of adipocyte differentiation in these myoblasts, we examined early and late markers of adipocyte differentiation. Within the first 24h of adipocyte differentiation, expression of p130 and p107, two members of the retinoblastoma tumor suppressor gene family, are regulated and this event is an important one early in adipogenesis. Consistent with the increased adipogenic potential of the older myoblasts and in contrast to the younger cells, the p130:p107 pattern of expression is very similar to that observed in adipogenesis where there is a transient increase in p107 expression accompanied by a decrease in p130 expression. Interestingly, while these older cells accumulated lipid and expressed genes associated with lipid metabolism, they failed to express adipsin and leptin, two well-established markers of terminal adipocyte differentiation. These results suggest that older myoblasts are capable of initiating and progressing through the adipogenic program to a point where they express genes associated with lipid metabolism, but do not reach a terminally differentiated state. This finding may have important metabolic implications in the aging population.

  19. ROCK-2 is associated with focal adhesion maturation during myoblast migration.

    PubMed

    Goetsch, K P; Snyman, C; Myburgh, K H; Niesler, C U

    2014-07-01

    Satellite cell migration is critical for skeletal muscle growth and regeneration. Controlled cell migration is dependent on the formation of mature focal adhesions between the cell and the underlying extracellular matrix (ECM). These cell-ECM interactions trigger the activation of signalling events such as the Rho/ROCK pathway. We have previously identified a specific role for ROCK-2 during myoblast migration. In this study we report that ROCK inhibition with Y-27632 increases C2C12 myoblast velocity, but at the expense of directional migration. In response to Y-27632 an increased number of smaller focal adhesions were distributed across adhesion sites that in turn were clearly larger than sites in untreated cells, suggesting a reduction in focal adhesion maturation. We also confirm ROCK-2 localisation to the focal adhesion sites in migrating myoblasts and demonstrate a change in the distribution of these ROCK-2 containing adhesions in response to Y-27632. Taken together, our observations provide further proof that ROCK-2 regulates directional myoblast migration through focal adhesion formation and maturation.

  20. Leucine and isoleucine reduce protein degradation in rainbow trout (Oncorhynchus mykiss) primary myoblast cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myogenic precursor cells were isolated from rainbow trout skeletal muscle and incubated in media containing 10% fetal bovine serum for 7 days, thereby differentiating into myoblasts. Rates of protein degradation were determined in response to minimal essential media (MEM) of various amino acid (AA)...

  1. Structure–function analysis of myomaker domains required for myoblast fusion

    PubMed Central

    Millay, Douglas P.; Gamage, Dilani G.; Quinn, Malgorzata E.; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell–cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation. PMID:26858401

  2. HACD1, a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth

    PubMed Central

    Blondelle, Jordan; Ohno, Yusuke; Gache, Vincent; Guyot, Stéphane; Storck, Sébastien; Blanchard-Gutton, Nicolas; Barthélémy, Inès; Walmsley, Gemma; Rahier, Anaëlle; Gadin, Stéphanie; Maurer, Marie; Guillaud, Laurent; Prola, Alexandre; Ferry, Arnaud; Aubin-Houzelstein, Geneviève; Demarquoy, Jean; Relaix, Frédéric; Piercy, Richard J.; Blot, Stéphane; Kihara, Akio; Tiret, Laurent; Pilot-Storck, Fanny

    2015-01-01

    The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism. PMID:26160855

  3. Structure-function analysis of myomaker domains required for myoblast fusion.

    PubMed

    Millay, Douglas P; Gamage, Dilani G; Quinn, Malgorzata E; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N

    2016-02-23

    During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.

  4. Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity

    PubMed Central

    Zeng, Weihua; Jiang, Shan; Kong, Xiangduo; El-Ali, Nicole; Ball, Alexander R.; Ma, Christopher I-Hsing; Hashimoto, Naohiro; Yokomori, Kyoko; Mortazavi, Ali

    2016-01-01

    Myoblasts are precursor skeletal muscle cells that differentiate into fused, multinucleated myotubes. Current single-cell microfluidic methods are not optimized for capturing very large, multinucleated cells such as myotubes. To circumvent the problem, we performed single-nucleus transcriptome analysis. Using immortalized human myoblasts, we performed RNA-seq analysis of single cells (scRNA-seq) and single nuclei (snRNA-seq) and found them comparable, with a distinct enrichment for long non-coding RNAs (lncRNAs) in snRNA-seq. We then compared snRNA-seq of myoblasts before and after differentiation. We observed the presence of mononucleated cells (MNCs) that remained unfused and analyzed separately from multi-nucleated myotubes. We found that while the transcriptome profiles of myoblast and myotube nuclei are relatively homogeneous, MNC nuclei exhibited significant heterogeneity, with the majority of them adopting a distinct mesenchymal state. Primary transcripts for microRNAs (miRNAs) that participate in skeletal muscle differentiation were among the most differentially expressed lncRNAs, which we validated using NanoString. Our study demonstrates that snRNA-seq provides reliable transcriptome quantification for cells that are otherwise not amenable to current single-cell platforms. Our results further indicate that snRNA-seq has unique advantage in capturing nucleus-enriched lncRNAs and miRNA precursors that are useful in mapping and monitoring differential miRNA expression during cellular differentiation. PMID:27566152

  5. Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity.

    PubMed

    Zeng, Weihua; Jiang, Shan; Kong, Xiangduo; El-Ali, Nicole; Ball, Alexander R; Ma, Christopher I-Hsing; Hashimoto, Naohiro; Yokomori, Kyoko; Mortazavi, Ali

    2016-12-01

    Myoblasts are precursor skeletal muscle cells that differentiate into fused, multinucleated myotubes. Current single-cell microfluidic methods are not optimized for capturing very large, multinucleated cells such as myotubes. To circumvent the problem, we performed single-nucleus transcriptome analysis. Using immortalized human myoblasts, we performed RNA-seq analysis of single cells (scRNA-seq) and single nuclei (snRNA-seq) and found them comparable, with a distinct enrichment for long non-coding RNAs (lncRNAs) in snRNA-seq. We then compared snRNA-seq of myoblasts before and after differentiation. We observed the presence of mononucleated cells (MNCs) that remained unfused and analyzed separately from multi-nucleated myotubes. We found that while the transcriptome profiles of myoblast and myotube nuclei are relatively homogeneous, MNC nuclei exhibited significant heterogeneity, with the majority of them adopting a distinct mesenchymal state. Primary transcripts for microRNAs (miRNAs) that participate in skeletal muscle differentiation were among the most differentially expressed lncRNAs, which we validated using NanoString. Our study demonstrates that snRNA-seq provides reliable transcriptome quantification for cells that are otherwise not amenable to current single-cell platforms. Our results further indicate that snRNA-seq has unique advantage in capturing nucleus-enriched lncRNAs and miRNA precursors that are useful in mapping and monitoring differential miRNA expression during cellular differentiation.

  6. DRAGON, a GPI-anchored membrane protein, inhibits BMP signaling in C2C12 myoblasts.

    PubMed

    Kanomata, Kazuhiro; Kokabu, Shoichiro; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu

    2009-06-01

    Bone morphogenetic proteins (BMPs) induce osteoblastic differentiation of myoblasts via binding to cell surface receptors. Repulsive guidance molecules (RGMs) have been identified as BMP co-receptors. We report here that DRAGON/RGMb, a member of the RGM family, suppressed BMP signaling in C2C12 myoblasts via a novel mechanism. All RGMs were expressed in C2C12 cells that were differentiated into myocytes and osteoblastic cells, but RGMc was not detected in immature cells. In C2C12 cells, only DRAGON suppressed ALP and Id1 promoter activities induced by BMP-4 or by constitutively activated BMP type I receptors. This inhibition by DRAGON was dependent on the secretory form of the von Willbrand factor type D domain. DRAGON even suppressed BMP signaling induced by constitutively activated Smad1. Over-expression of neogenin did not alter the inhibitory capacity of DRAGON. Taken together, these findings indicate that DRAGON may be an inhibitor of BMP signaling in C2C12 myoblasts. We also suggest that a novel molecule(s) expressed on the cell membrane may mediate the signal transduction of DRAGON in order to suppress BMP signaling in C2C12 myoblasts.

  7. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives.

    PubMed

    Shimizu, Kazunori; Fujita, Hideaki; Nagamori, Eiji

    2009-06-15

    Alignment of cells plays a significant key role in skeletal muscle tissue engineering because skeletal muscle tissue in vivo has a highly organized structure consisting of long parallel multinucleated myotubes formed through differentiation and fusion of myoblasts. In the present study, we developed an easy, simple, and low-cost method for aligning skeletal muscle cells by using surfaces with linear microscale features fabricated by grinding. Iron blocks were ground in one direction with three kinds of abrasives (9 microm diamond suspension, #400 sandpaper, and #150 sandpaper) and then used as molds to make micropatterned polydimethylsiloxane (PDMS) substrates (type I, type II, and type III). Observation of the surface topography revealed that the PDMS substrates exhibited different degree of mean roughness (Ra), 0.03 microm for type I, 0.16 microm for type II, and 0.56 microm for type III, respectively. Murine skeletal muscle cell line C2C12 myoblasts were cultured and differentiated on the patterned PDMS substrates, and it was examined whether the alignment of C2C12 myoblasts and myotubes was possible. Although the cell growth and differentiation on the three types of patterned substrates were similar to those on the flat PDMS substrate as a control, the alignment of both C2C12 myoblasts and myotubes was obviously observed on types II and III, but not on type I or the control substrate. These results indicate that surfaces ground with abrasives will be useful for fabricating aligned skeletal muscle tissues.

  8. Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study.

    PubMed

    Périé, Sophie; Trollet, Capucine; Mouly, Vincent; Vanneaux, Valérie; Mamchaoui, Kamel; Bouazza, Belaïd; Marolleau, Jean Pierre; Laforêt, Pascal; Chapon, Françoise; Eymard, Bruno; Butler-Browne, Gillian; Larghero, Jérome; St Guily, Jean Lacau

    2014-01-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant genetic disease mainly characterized by ptosis and dysphagia. We conducted a phase I/IIa clinical study (ClinicalTrials.gov NCT00773227) using autologous myoblast transplantation following myotomy in adult OPMD patients. This study included 12 patients with clinical diagnosis of OPMD, indication for cricopharyngeal myotomy, and confirmed genetic diagnosis. The feasibility and safety end points of both autologous myoblast transplantation and the surgical procedure were assessed by videoendoscopy in addition to physical examinations. Potential therapeutic benefit was also assessed through videoendoscopy and videofluoroscopy of swallowing, quality of life score, dysphagia grade, and a drink test. Patients were injected with a median of 178 million myoblasts following myotomy. Short and long-term (2 years) safety and tolerability were observed in all the patients, with no adverse effects. There was an improvement in the quality of life score for all 12 patients, and no functional degradation in swallowing was observed for 10 patients. A cell dose-dependant improvement in swallowing was even observed in this study. This trial supports the hypothesis that a local injection of autologous myoblasts in the pharyngeal muscles is a safe and efficient procedure for OPMD patients.

  9. Co-Activation of Nuclear Factor-κB and Myocardin/Serum Response Factor Conveys the Hypertrophy Signal of High Insulin Levels in Cardiac Myoblasts*

    PubMed Central

    Madonna, Rosalinda; Geng, Yong-Jian; Bolli, Roberto; Rokosh, Gregg; Ferdinandy, Peter; Patterson, Cam; De Caterina, Raffaele

    2014-01-01

    Hyperinsulinemia contributes to cardiac hypertrophy and heart failure in patients with the metabolic syndrome and type 2 diabetes. Here, high circulating levels of tumor necrosis factor (TNF)-α may synergize with insulin in signaling inflammation and cardiac hypertrophy. We tested whether high insulin affects activation of TNF-α-induced NF-κB and myocardin/serum response factor (SRF) to convey hypertrophy signaling in cardiac myoblasts. In canine cardiac myoblasts, treatment with high insulin (10−8 to 10−7 m) for 0–24 h increased insulin receptor substrate (IRS)-1 phosphorylation at Ser-307, decreased protein levels of chaperone-associated ubiquitin (Ub) E3 ligase C terminus of heat shock protein 70-interacting protein (CHIP), increased SRF activity, as well as β-myosin heavy chain (MHC) and myocardin expressions. Here siRNAs to myocardin or NF-κB, as well as CHIP overexpression prevented (while siRNA-mediated CHIP disruption potentiated) high insulin-induced SR element (SRE) activation and β-MHC expression. Insulin markedly potentiated TNF-α-induced NF-κB activation. Compared with insulin alone, insulin+TNF-α increased SRF/SRE binding and β-MHC expression, which was reversed by the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) and by NF-κB silencing. In the hearts of db/db diabetic mice, in which Akt phosphorylation was decreased, p38MAPK, Akt1, and IRS-1 phosphorylation at Ser-307 were increased, together with myocardin expression as well as SRE and NF-κB activities. In response to high insulin, cardiac myoblasts increase the expression or the promyogenic transcription factors myocardin/SRF in a CHIP-dependent manner. Insulin potentiates TNF-α in inducing NF-κB and SRF/SRE activities. In hyperinsulinemic states, myocardin may act as a nuclear effector of insulin, promoting cardiac hypertrophy. PMID:24855642

  10. Histone methyltransferase Setd2 is critical for the proliferation and differentiation of myoblasts.

    PubMed

    Yi, Xin; Tao, Ye; Lin, Xi; Dai, Yuan; Yang, Tingli; Yue, Xiaojing; Jiang, Xuejun; Li, Xiaoyan; Jiang, Ding-Sheng; Andrade, Kelsey C; Chang, Jiang

    2017-04-01

    Skeletal muscle cell proliferation and differentiation are tightly regulated. Epigenetic regulation is a major component of the regulatory mechanism governing these processes. Histone modification is part of the epigenetic code used for transcriptional regulation of chromatin through the establishment of an active or repressive state for genes involved in myogenesis in a temporal manner. Here, we uncovered the function of SET domain containing 2 (Setd2), an essential histone 3 lysine 36 trimethyltransferase, in regulating the proliferation and differentiation of myoblasts. Setd2 was silenced in the skeletal muscle myoblast cell line, C2C12, using the CRISPR/CAS9 system. The mutant cells exhibited defect in myotube formation. The myotube formation marker, myosin heavy chain (MHC), was downregulated earlier in Setd2 silenced cells compared to wild-type myoblasts during differentiation. The deficiency in Setd2 also resulted in repression of Myogenin (MyoG) expression, a key myogenic regulator during differentiation. In addition to the myoblast differentiation defect, decreased proliferation rate with significantly reduced levels of histone 3 phosphorylation, indicative of cell proliferation defect, were observed in the Setd2 silenced cells; suggesting an impaired proliferation phenotype. Furthermore, compromised G1/S- and G2/M-phase transition and decreased expression levels of major regulators of cell cycle G1/S checkpoints, cyclin D1, CDK4, CDK6, and cyclin E2 were detected in Setd2 silenced cells. Consistent with the cell cycle arrested phenotype, cyclin-dependent kinase inhibitor p21 was upregulated in Setd2 silenced cells. Together, this study demonstrates an essential role of Setd2 in myoblast proliferation and differentiation, and uncovers Setd2-mediated molecular mechanism through regulating MyoG and p21.

  11. An Integrated Strategy for Analyzing the Unique Developmental Programs of Different Myoblast Subtypes

    PubMed Central

    Gisselbrecht, Stephen S; Michaud, Sebastien; Raj, Lakshmi; Busser, Brian W; Halfon, Marc S; Church, George M; Michelson, Alan M

    2006-01-01

    An important but largely unmet challenge in understanding the mechanisms that govern the formation of specific organs is to decipher the complex and dynamic genetic programs exhibited by the diversity of cell types within the tissue of interest. Here, we use an integrated genetic, genomic, and computational strategy to comprehensively determine the molecular identities of distinct myoblast subpopulations within the Drosophila embryonic mesoderm at the time that cell fates are initially specified. A compendium of gene expression profiles was generated for primary mesodermal cells purified by flow cytometry from appropriately staged wild-type embryos and from 12 genotypes in which myogenesis was selectively and predictably perturbed. A statistical meta-analysis of these pooled datasets—based on expected trends in gene expression and on the relative contribution of each genotype to the detection of known muscle genes—provisionally assigned hundreds of differentially expressed genes to particular myoblast subtypes. Whole embryo in situ hybridizations were then used to validate the majority of these predictions, thereby enabling true-positive detection rates to be estimated for the microarray data. This combined analysis reveals that myoblasts exhibit much greater gene expression heterogeneity and overall complexity than was previously appreciated. Moreover, it implicates the involvement of large numbers of uncharacterized, differentially expressed genes in myogenic specification and subsequent morphogenesis. These findings also underscore a requirement for considerable regulatory specificity for generating diverse myoblast identities. Finally, to illustrate how the developmental functions of newly identified myoblast genes can be efficiently surveyed, a rapid RNA interference assay that can be scored in living embryos was developed and applied to selected genes. This integrated strategy for examining embryonic gene expression and function provides a substantially

  12. The Activity of Differentiation Factors Induces Apoptosis in Polyomavirus Large T-Expressing Myoblasts

    PubMed Central

    Fimia, Gian Maria; Gottifredi, Vanesa; Bellei, Barbara; Ricciardi, Maria Rosaria; Tafuri, Agostino; Amati, Paolo; Maione, Rossella

    1998-01-01

    It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor β or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G00 arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis. PMID:9614186

  13. Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk?

    PubMed

    Forterre, Alexis; Jalabert, Audrey; Berger, Emmanuelle; Baudet, Mathieu; Chikh, Karim; Errazuriz, Elisabeth; De Larichaudy, Joffrey; Chanon, Stéphanie; Weiss-Gayet, Michèle; Hesse, Anne-Marie; Record, Michel; Geloen, Alain; Lefai, Etienne; Vidal, Hubert; Couté, Yohann; Rome, Sophie

    2014-01-01

    Exosomes are nanometer-sized microvesicles formed in multivesicular bodies (MVBs) during endosome maturation. Exosomes are released from cells into the microenvironment following fusion of MVBs with the plasma membrane. During the last decade, skeletal muscle-secreted proteins have been identified with important roles in intercellular communications. To investigate whether muscle-derived exosomes participate in this molecular dialog, we determined and compared the protein contents of the exosome-like vesicles (ELVs) released from C2C12 murine myoblasts during proliferation (ELV-MB), and after differentiation into myotubes (ELV-MT). Using a proteomic approach combined with electron microscopy, western-blot and bioinformatic analyses, we compared the protein repertoires within ELV-MB and ELV-MT. We found that these vesicles displayed the classical properties of exosomes isolated from other cell types containing components of the ESCRT machinery of the MVBs, as well as numerous tetraspanins. Specific muscle proteins were also identified confirming that ELV composition also reflects their muscle origin. Furthermore quantitative analysis revealed stage-preferred expression of 31 and 78 proteins in ELV-MB and ELV-MT respectively. We found that myotube-secreted ELVs, but not ELV-MB, reduced myoblast proliferation and induced differentiation, through, respectively, the down-regulation of Cyclin D1 and the up-regulation of myogenin. We also present evidence that proteins from ELV-MT can be incorporated into myoblasts by using the GFP protein as cargo within ELV-MT. Taken together, our data provide a useful database of proteins from C2C12-released ELVs throughout myogenesis and reveals the importance of exosome-like vesicles in skeletal muscle biology.

  14. Myoblast transfer therapy: is there any light at the end of the tunnel?

    PubMed

    Mouly, V; Aamiri, A; Périé, S; Mamchaoui, K; Barani, A; Bigot, A; Bouazza, B; François, V; Furling, D; Jacquemin, V; Negroni, E; Riederer, I; Vignaud, A; St Guily, J L; Butler-Browne, G S

    2005-10-01

    Myoblast transfer therapy (MTT) was proposed in the 70's as a potential treatment for muscular dystrophies, based upon the early results obtained in mdx mice: dystrophin expression was restored in this model by intramuscular injections of normal myoblasts. These results were quickly followed by clinical trials for patients suffering from Duchenne Muscular Dystrophy (DMD) in the early 90's, based mainly upon intramuscular injections of allogenic myoblasts. The clinical benefits obtained from these trials were minimal, if any, and research programs concentrated then on the various pitfalls that hampered these clinical trials, leading to numerous failures. Several causes for these failures were identified in mouse models, including a massive cell death of myoblasts following their injection, adverse events involving the immune system and requiring immunosuppression and the adverse events linked to it, as well as a poor dispersion of the injected cells following their injection. It should be noted that these studies were conducted in mouse models, not taking into account the fundamental differences between mice and men. One of these differences concerns the regulation of proliferation, which is strictly limited by proliferative senescence in humans. Although this list is certainly not exhaustive, new therapeutic venues were then explored, such as the use of stem cells with myogenic potential, which have been described in various populations, including bone marrow, circulating blood or muscle itself. These stem cells presented the main advantage to be available and not exhausted by the numerous cycles of degeneration/regeneration which characterize muscle dystrophies. However, the different stem candidates have shown their limits in terms of efficiency to participate to the regeneration of the host. Another issue was raised by clinical trials involving the injection of autologous myoblasts in infacted hearts, which showed that limited targets could be aimed with

  15. α-Linolenic Acid Reduces TNF-Induced Apoptosis in C2C12 Myoblasts by Regulating Expression of Apoptotic Proteins

    PubMed Central

    Carotenuto, Felicia; Coletti, Dario; Di Nardo, Paolo; Teodori, Laura

    2016-01-01

    Impaired regeneration and consequent muscle wasting is a major feature of muscle degenerative diseases. Nutritional interventions such as adjuvant strategy for preventing these conditions are recently gaining increasing attention. Ingestion of n3-polyunsaturated fatty acids has been suggested as having a positive impact on muscle diseases. We recently demonstrated that a diet enriched with plant derived n3-fatty acid, α-linolenic acid (ALA), exerts potent beneficial effects in preserving skeletal muscle regeneration in models of muscle dystrophy. To better elucidate the underlying mechanism we here investigate on the expression level of the anti- and pro-apoptotic proteins, as well as caspase-3 activity, in C2C12 myoblasts challenged with pathological levels of tumor necrosis factor-α (TNF). The results demonstrated that ALA protective effect on C2C12 myoblasts was associated with a decrease in caspase-3 activity and an increase of the Bcl-2/Bax ratio. Indeed, the effect of ALA was directed to rescuing Bcl-2 expression and to revert Bax translocation to mitochondria both affected in an opposite way by TNF, a major pro-inflammatory cytokine expressed in damaged skeletal muscle. Therefore, ALA counteracts inflammatory signals in the muscle microenvironment and may represent a valuable strategy for ameliorating skeletal muscle pathologies. PMID:28078067

  16. ADP-Ribosylation Factor 6 Regulates Mammalian Myoblast Fusion through Phospholipase D1 and Phosphatidylinositol 4,5-Bisphosphate Signaling Pathways

    PubMed Central

    Bach, Anne-Sophie; Enjalbert, Sandrine; Comunale, Franck; Bodin, Stéphane; Vitale, Nicolas; Charrasse, Sophie

    2010-01-01

    Myoblast fusion is an essential step during myoblast differentiation that remains poorly understood. M-cadherin–dependent pathways that signal through Rac1 GTPase activation via the Rho-guanine nucleotide exchange factor (GEF) Trio are important for myoblast fusion. The ADP-ribosylation factor (ARF)6 GTPase has been shown to bind to Trio and to regulate Rac1 activity. Moreover, Loner/GEP100/BRAG2, a GEF of ARF6, has been involved in mammalian and Drosophila myoblast fusion, but the specific role of ARF6 has been not fully analyzed. Here, we show that ARF6 activity is increased at the time of myoblast fusion and is required for its implementation in mouse C2C12 myoblasts. Specifically, at the onset of myoblast fusion, ARF6 is associated with the multiproteic complex that contains M-cadherin, Trio, and Rac1 and accumulates at sites of myoblast fusion. ARF6 silencing inhibits the association of Trio and Rac1 with M-cadherin. Moreover, we demonstrate that ARF6 regulates myoblast fusion through phospholipase D (PLD) activation and phosphatidylinositol 4,5-bis-phosphate production. Together, these data indicate that ARF6 is a critical regulator of C2C12 myoblast fusion and participates in the regulation of PLD activities that trigger both phospholipids production and actin cytoskeleton reorganization at fusion sites. PMID:20505075

  17. Developmental regulation of neuraminidase-sensitive lectin-binding glycoproteins during myogenesis of rat L6 myoblasts.

    PubMed Central

    Holland, P C; Pena, S D; Guerin, C W

    1984-01-01

    Intact monolayers of L6 myoblasts were treated with neuraminidase, with the aim of selectively removing sialic acid residues of cell-surface glycoproteins. Neuraminidase treatment unmasked binding sites for Ricinus communis agglutinin I and peanut agglutinin, thus allowing the identification of the major binding proteins for these lectins. For Ricinus communis agglutinin I these neuraminidase-sensitive glycoproteins had apparent Mr values of 136000, 115000, 87000, 83000 and 49000. For peanut agglutinin the major neuraminidase-sensitive glycoproteins had apparent Mr values of 200000, 136000, 87000 and 83000. We found highly reproducible, developmentally regulated, changes in the lectin-binding capacity of certain of these glycoproteins as L6 myoblasts differentiated into myotubes. Coincident with myoblast fusion there was a co-ordinate decrease in Ricinus communis agglutinin I binding by glycoproteins of apparent Mr of 136000 and 49000. There was also a co-ordinate shift in mobility of the broad band of glycoprotein, centred at an apparent Mr of 115000 in myoblasts, to a new average apparent Mr of 107000 in mid-fusion cultures and myotube cultures. Peanut agglutinin binding by the major protein of apparent Mr 136000 also decreased at the mid-fusion stage of myogenesis, and was barely detectable in 7-day-old fused cultures. These developmentally regulated changes in neuraminidase-sensitive glycoproteins were all inhibited by growth of myoblasts in 6.4 microM-5-bromo-2'-deoxyuridine, indicating that they are associated with myoblast differentiation. In contrast, an increase in fibronectin was seen in mid-fusion cultures, which was not inhibited by growth of myoblasts in 5-bromo-2'-deoxyuridine. This initial increase in fibronectin is, therefore, unlikely to be directly related to myoblast fusion or differentiation. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6712625

  18. Ten-Eleven Translocation-2 (Tet2) Is Involved in Myogenic Differentiation of Skeletal Myoblast Cells in Vitro.

    PubMed

    Zhong, Xia; Wang, Qian-Qian; Li, Jian-Wei; Zhang, Yu-Mei; An, Xiao-Rong; Hou, Jian

    2017-03-08

    Muscle cell differentiation is a complex process that is principally governed by related myogenic regulatory factors (MRFs). DNA methylation is considered to play an important role on the expression of MRF genes and on muscle cell differentiation. However, the roles of enzymes specifically in myogenesis are not fully understood. Here, we demonstrate that Tet2, a ten-eleven translocation (Tet) methylcytosine dioxygenase, exerts a role during skeletal myoblast differentiation. By using an immunostaining method, we found that the levels of 5-hydroxymethylcytosine (5-hmC) were much higher in differentiated myotubes than in undifferentiated C2C12 myoblasts. Both Tet1 and Tet2 expression were upregulated after differentiation induction of C2C12 myoblasts. Knockdown of Tet2, but not Tet1, significantly reduced the expression of myogenin as well as Myf6 and myomaker, and impaired myoblast differentiation. DNA demethylation of myogenin and myomaker promoters was negatively influenced by Tet2 knockdown as detected by bisulfite sequencing analysis. Furthermore, although vitamin C could promote genomic 5hmC generation, myogenic gene expression and myoblast differentiation, its effect was significantly attenuated by Tet2 knockdown. Taken together, these results indicate that Tet2 is involved in myoblast differentiation through promoting DNA demethylation and myogenic gene expression.

  19. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    PubMed

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

  20. Therapeutic angiogenesis by a myoblast layer harvested by tissue transfer printing from cell-adhesive, thermosensitive hydrogels.

    PubMed

    Kim, Dong Wan; Jun, Indong; Lee, Tae-Jin; Lee, Ji Hye; Lee, Young Jun; Jang, Hyeon-Ki; Kang, Seokyung; Park, Ki Dong; Cho, Seung-Woo; Kim, Byung-Soo; Shin, Heungsoo

    2013-11-01

    Peripheral arterial disease (PAD) is characterized by the altered structure and function of arteries caused by accumulated plaque. There have been many studies on treating this disease by the direct injection of various types of therapeutic cells, however, the low cell engraftment efficiency and diffusion of the transplanted cells have been major problems. In this study, we developed an approach (transfer printing) to deliver monolayer of cells to the hindlimb ischemic tissue using thermosensitive hydrogels, and investigated its efficacy in long term retention upon transplantation and therapeutic angiogenesis. We first investigated the in vitro maintenance of robust cell-cell contacts and stable expression of the ECM proteins in myoblast layer following transfer printing process. In order to confirm the therapeutic effect of the myoblasts in vivo, we cultured a monolayer of C2C12 myoblasts on thermosensitive hydrogels, which was then transferred to the hindlimb ischemia tissue of athymic mice directly from the hydrogel by conformal contact. The transferred myoblast layer was retained for a longer period of time than an intramuscularly injected cell suspension. In addition, the morphology of the mice and laser Doppler perfusion (28 days after treatment) supported that the myoblast layer enhanced the therapeutic effects on the ischemic tissue. In summary, the transplantation of the C2C12 myoblast layer using a tissue transfer printing method could represent a new approach for the treatment of PAD by therapeutic angiogenesis.

  1. Ten-Eleven Translocation-2 (Tet2) Is Involved in Myogenic Differentiation of Skeletal Myoblast Cells in Vitro

    PubMed Central

    Zhong, Xia; Wang, Qian-Qian; Li, Jian-Wei; Zhang, Yu-Mei; An, Xiao-Rong; Hou, Jian

    2017-01-01

    Muscle cell differentiation is a complex process that is principally governed by related myogenic regulatory factors (MRFs). DNA methylation is considered to play an important role on the expression of MRF genes and on muscle cell differentiation. However, the roles of enzymes specifically in myogenesis are not fully understood. Here, we demonstrate that Tet2, a ten-eleven translocation (Tet) methylcytosine dioxygenase, exerts a role during skeletal myoblast differentiation. By using an immunostaining method, we found that the levels of 5-hydroxymethylcytosine (5-hmC) were much higher in differentiated myotubes than in undifferentiated C2C12 myoblasts. Both Tet1 and Tet2 expression were upregulated after differentiation induction of C2C12 myoblasts. Knockdown of Tet2, but not Tet1, significantly reduced the expression of myogenin as well as Myf6 and myomaker, and impaired myoblast differentiation. DNA demethylation of myogenin and myomaker promoters was negatively influenced by Tet2 knockdown as detected by bisulfite sequencing analysis. Furthermore, although vitamin C could promote genomic 5hmC generation, myogenic gene expression and myoblast differentiation, its effect was significantly attenuated by Tet2 knockdown. Taken together, these results indicate that Tet2 is involved in myoblast differentiation through promoting DNA demethylation and myogenic gene expression. PMID:28272491

  2. Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle

    PubMed Central

    Ding, Jian; Nie, Mao; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Deng, Zhong-Liang; Wang, Da-Zhi

    2016-01-01

    Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skeletal muscle specific Trbp mutant mice appear to be phenotypically normal under normal physiological conditions. However, these mice exhibited impaired muscle regeneration and increased fibrosis in response to cardiotoxin-induced muscle injury, suggesting that Trbp is required for muscle repair. Using cultured myoblast cells we further showed that inhibition of Trbp repressed myoblast differentiation in vitro. The impaired myogenesis is associated with reduced expression of muscle-specific miRNAs, miR-1a and miR-133a. Together, our study demonstrated that Trbp participates in the regulation of muscle differentiation and regeneration. PMID:27159388

  3. SRSF10 Plays a Role in Myoblast Differentiation and Glucose Production via Regulation of Alternative Splicing.

    PubMed

    Wei, Ning; Cheng, Yuanming; Wang, Zhijia; Liu, Yuguo; Luo, Chunling; Liu, Lina; Chen, Linlin; Xie, Zhiqin; Lu, Yun; Feng, Ying

    2015-11-24

    Alternative splicing is a major mechanism of controlling gene expression and protein diversity in higher eukaryotes. We report that the splicing factor SRSF10 functions during striated muscle development, myoblast differentiation, and glucose production both in cells and in mice. A combination of RNA-sequencing and molecular analysis allowed us to identify muscle-specific splicing events controlled by SRSF10 that are critically involved in striated muscle development. Inclusion of alternative exons 16 and 17 of Lrrfip1 is a muscle-specific event that is activated by SRSF10 and essential for myoblast differentiation. On the other hand, in mouse primary hepatocytes, PGC1α is a key target of SRSF10 that regulates glucose production by fasting. SRSF10 represses inclusion of PGC1α exon 7a and facilitates the production of functional protein. The results highlight the biological significance of SRSF10 and regulated alternative splicing in vivo.

  4. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.

    PubMed

    Ito, Akira; Yamamoto, Masahiro; Ikeda, Kazushi; Sato, Masanori; Kawabe, Yoshinori; Kamihira, Masamichi

    2015-05-01

    Skeletal muscle regeneration requires migration, proliferation and fusion of myoblasts to form multinucleated myotubes. In our previous study, we showed that insulin-like growth factor (IGF)-I gene delivery stimulates the proliferation and differentiation of mouse myoblast C2C12 cells and promotes the contractile force generated by tissue-engineered skeletal muscles. The aim of this study was to investigate the effects of the extracellular matrix on IGF-I gene-engineered C2C12 cells in vitro. Retroviral vectors for doxycycline (Dox)-inducible expression of the IGF-I gene were transduced into C2C12 cells. When cultured on a type IV collagen-coated surface, we observed significant increases in the migration speed and number of IGF-I gene-engineered C2C12 cells with Dox addition, designated as C2C12/IGF (+) cells. Co-culture of C2C12/IGF (+) cells and parental C2C12 cells, which had been cultured in differentiation medium for 3 days, greatly enhanced myotube formation. Moreover, type IV collagen supplementation promoted the fusion of C2C12/IGF (+) cells with differentiated C2C12 cells and increased the number of myotubes with striations. Myotubes formed by C2C12/IGF (+) cells cultured on type IV collagen showed a dynamic contractile activity in response to electrical pulse stimulation. These findings indicate that type IV collagen promotes skeletal muscle regeneration mediated by IGF-I-expressing myoblasts, which may have important clinical implications in the design of myoblast-based therapies.

  5. Protein Kinase D2 Is an Essential Regulator of Murine Myoblast Differentiation

    PubMed Central

    Pusapati, Ganesh V.; Armacki, Milena; Müller, Martin; Tümpel, Stefan; Illing, Anett; Hartmann, Daniel; Brunner, Cornelia; Liebau, Stefan; Rudolph, Karl L.; Adler, Guido; Seufferlein, Thomas

    2011-01-01

    Muscle differentiation is a highly conserved process that occurs through the activation of quiescent satellite cells whose progeny proliferate, differentiate, and fuse to generate new myofibers. A defined pattern of myogenic transcription factors is orchestrated during this process and is regulated via distinct signaling cascades involving various intracellular signaling pathways, including members of the protein kinase C (PKC) family. The protein kinase D (PKD) isoenzymes PKD1, -2, and -3, are prominent downstream targets of PKCs and phospholipase D in various biological systems including mouse and could hence play a role in muscle differentiation. In the present study, we used a mouse myoblast cell line (C2C12) as an in vitro model to investigate the role of PKDs, in particular PKD2, in muscle stem cell differentiation. We show that C2C12 cells express all PKD isoforms with PKD2 being highly expressed. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated during the initiation of mouse myoblast differentiation. Selective inhibition of PKCs or PKDs by pharmacological inhibitors blocked myotube formation. Depletion of PKD2 by shRNAs resulted in a marked inhibition of myoblast cell fusion. PKD2-depleted cells exhibit impaired regulation of muscle development-associated genes while the proliferative capacity remains unaltered. Vice versa forced expression of PKD2 increases myoblast differentiation. These findings were confirmed in primary mouse satellite cells where myotube fusion was also decreased upon inhibition of PKDs. Active PKD2 induced transcriptional activation of myocyte enhancer factor 2D and repression of Pax3 transcriptional activity. In conclusion, we identify PKDs, in particular PKD2, as a major mediator of muscle cell differentiation in vitro and thereby as a potential novel target for the modulation of muscle regeneration. PMID:21298052

  6. Insulin receptor autophosphorylation in cultured myoblasts correlates to glucose disposal in Pima Indians.

    PubMed

    Youngren, J F; Goldfine, I D; Pratley, R E

    1999-05-01

    In a previous study [Youngren, J. F., I. D. Goldfire, and R. E. Pratley. Am. J. Physiol. 273 (Endocrinol. Metab. 36): E276-E283, 1997] of skeletal muscle biopsies from insulin-resistant, nondiabetic Pima Indians, we demonstrated that diminished insulin receptor (IR) autophosphorylation correlated with in vivo insulin resistance. In the present study, to determine whether decreased IR function is a primary trait of muscle, and not secondary to an altered in vivo environment, we cultured myoblasts from 17 nondiabetic Pima Indians in whom insulin-stimulated glucose disposal (M) was measured during hyperinsulinemic-euglycemic glucose clamps. Myoblast IR autophosphorylation was determined by a highly sensitive ELISA. IR autophosphorylation directly correlated with M (r = 0.56, P = 0.02) and inversely correlated with the fasting plasma insulin (r = -0.58, P < 0.05). The relationship between M and IR autophosphorylation remained significant after M was adjusted for the effects of percent body fat (partial r = 0.53, P < 0.04). The relationship between insulin resistance and the capacity for myoblast IR autophosphorylation in nondiabetic Pima Indians suggests that variations in IR-signaling capacity may be intrinsic characteristics of muscle that contribute to the genetic component determining insulin action in this population.

  7. Rigidity-patterned polyelectrolyte films to control myoblast cell adhesion and spatial organization

    PubMed Central

    Monge, Claire; Saha, Naresh; Boudou, Thomas; Pózos-Vásquez, Cuauhtemoc; Dulong, Virginie; Glinel, Karine; Picart, Catherine

    2014-01-01

    In vivo, cells are sensitive to the stiffness of their micro-environment and especially to the spatial organization of the stiffness. In vitro studies of this phenomenon can help to better understand the mechanisms of the cell response to spatial variations of the matrix stiffness. In this work, we design polelyelectrolyte multilayer films made of poly(L-lysine) and a photo-reactive hyaluronan derivative. These films can be photo-crosslinked through a photomask to create spatial patterns of rigidity. Quartz substrates incorporating a chromium mask are prepared to expose selectively the film to UV light (in a physiological buffer), without any direct contact between the photomask and the soft film. We show that these micropatterns are chemically homogeneous and flat, without any preferential adsorption of adhesive proteins. Three groups of pattern geometries differing by their shape (circles or lines), size (form 2 to 100 μm) or interspacing distance between the motifs are used to study the adhesion and spatial organization of myoblast cells. On large circular micropatterns, the cells form large assemblies that are confined to the stiffest parts. Conversely, when the size of the rigidity patterns is subcellular, the cells respond by forming protrusions. Finally, on linear micropatterns of rigidity, myoblasts align and their nuclei drastically elongate in specific conditions. These results pave the way for the study of the different steps of myoblast fusion in response to matrix rigidity in well-defined geometrical conditions. PMID:25100929

  8. Acetylcholine receptor channels are present in undifferentiated satellite cells but not in embryonic myoblasts in culture.

    PubMed

    Cossu, G; Eusebi, F; Grassi, F; Wanke, E

    1987-09-01

    The expression and the physiological properties of acetylcholine receptors (AChRs) of mononucleated myogenic cells, isolated from either embryonic or adult muscle of the mouse, have been investigated using the gigaohm seal patch-clamp technique in combination with immunocytochemistry (with an anti-myosin antibody) and alpha-bungarotoxin binding techniques. Undifferentiated (myosin-negative) embryonic myoblasts, grown either in mass culture or under clonal conditions, were found to be unresponsive to ACh and did not bind alpha-bungarotoxin. On the contrary, undifferentiated satellite cells (from adult muscle) exhibited channels activated by ACh and alpha-bungarotoxin binding sites similar to those observed in differentiated (myosin-positive) embryonic myoblasts and myotubes. Two classes of ACh-activated channels with different opening frequencies were identified. The major class of channels had a conductance of about 42 pS and mean open time of 3.1-8.2 msec. The minor class of channels had smaller conductance (about 17 pS) and similar open time. During differentiation, the conductance of the two channels did not change significantly, while channel lifetime became shorter in myotubes derived from satellite cells but not in myotubes derived from embryonic myoblasts. The relative proportion of small over large channels was significantly larger in embryonic than in adult myogenic cells.

  9. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles

    PubMed Central

    Dhanyasi, Nagaraju; Segal, Dagan; Shimoni, Eyal; Shinder, Vera

    2015-01-01

    Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell–cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast–myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell–cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process. PMID:26459604

  10. Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers

    PubMed Central

    Wang, Jing-hua; Wang, Qiao-jing; Wang, Chao; Reinholt, Brad; Grant, Alan L; Gerrard, David E; Kuang, Shihuan

    2015-01-01

    Each skeletal muscle contains a fixed ratio of fast and slow myofibers that are distributed in a stereotyped pattern to achieve a specific motor function. How myofibers are specified during development and regeneration is poorly understood. Here we address this question using transgenic reporter mice that indelibly mark the myofiber lineages based on activation of fast or slow myosin. Lineage tracing indicates that during development all muscles have activated the fast myosin gene Myl1, but not the slow myosin gene Myh7, which is activated in all slow but a subset of fast myofibers. Similarly, most nascent myofibers do not activate Myh7 during fast muscle regeneration, but the ratio and pattern of fast and slow myofibers are restored at the completion of regeneration. At the single myofiber level, most mature fast myofibers are heterogeneous in nuclear composition, manifested by mosaic activation of Myh7. Strikingly, Myh7 is activated in a subpopulation of proliferating myoblasts that co-express the myogenic progenitor marker Pax7. When induced to differentiate, the Myh7-activated myoblasts differentiate more readily than the non-activated myoblasts, and have a higher tendency, but not restricted, to become slow myotubes. Together, our data reveal significant nuclear heterogeneity within a single myofiber, and challenge the conventional view that myosin genes are only expressed after myogenic differentiation. These results provide novel insights into the regulation of muscle fiber type specification. PMID:25794679

  11. The Mutual Interactions between Mesenchymal Stem Cells and Myoblasts in an Autologous Co-Culture Model

    PubMed Central

    Szczepanska, Izabela; Zarychta-Wisniewska, Weronika; Pajak, Beata; Bojarczuk, Kamil; Dybowski, Bartosz; Paczek, Leszek

    2016-01-01

    Both myoblasts and mesenchymal stem cells (MSC) take part in the muscle tissue regeneration and have been used as experimental cellular therapy in muscular disorders treatment. It is possible that co-transplantation approach could improve the efficacy of this treatment. However, the relations between those two cell types are not clearly defined. The aim of this study was to determine the reciprocal interactions between myoblasts and MSC in vitro in terms of the features important for the muscle regeneration process. Primary caprine muscle-derived cells (MDC) and bone marrow-derived MSC were analysed in autologous settings. We found that MSC contribute to myotubes formation by fusion with MDC when co-cultured directly, but do not acquire myogenic phenotype if exposed to MDC-derived soluble factors only. Experiments with exposure to hydrogen peroxide showed that MSC are significantly more resistant to oxidative stress than MDC, but a direct co-culture with MSC does not diminish the cytotoxic effect of H2O2 on MDC. Cell migration assay demonstrated that MSC possess significantly greater migration ability than MDC which is further enhanced by MDC-derived soluble factors, whereas the opposite effect was not found. MSC-derived soluble factors significantly enhanced the proliferation of MDC, whereas MDC inhibited the division rate of MSC. To conclude, presented results suggest that myogenic precursors and MSC support each other during muscle regeneration and therefore myoblasts-MSC co-transplantation could be an attractive approach in the treatment of muscular disorders. PMID:27551730

  12. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts.

    PubMed

    Sin, Jon; Andres, Allen M; Taylor, David J R; Weston, Thomas; Hiraumi, Yoshimi; Stotland, Aleksandr; Kim, Brandon J; Huang, Chengqun; Doran, Kelly S; Gottlieb, Roberta A

    2016-01-01

    Myogenesis is a crucial process governing skeletal muscle development and homeostasis. Differentiation of primitive myoblasts into mature myotubes requires a metabolic switch to support the increased energetic demand of contractile muscle. Skeletal myoblasts specifically shift from a highly glycolytic state to relying predominantly on oxidative phosphorylation (OXPHOS) upon differentiation. We have found that this phenomenon requires dramatic remodeling of the mitochondrial network involving both mitochondrial clearance and biogenesis. During early myogenic differentiation, autophagy is robustly upregulated and this coincides with DNM1L/DRP1 (dynamin 1-like)-mediated fragmentation and subsequent removal of mitochondria via SQSTM1 (sequestosome 1)-mediated mitophagy. Mitochondria are then repopulated via PPARGC1A/PGC-1α (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha)-mediated biogenesis. Mitochondrial fusion protein OPA1 (optic atrophy 1 [autosomal dominant]) is then briskly upregulated, resulting in the reformation of mitochondrial networks. The final product is a myotube replete with new mitochondria. Respirometry reveals that the constituents of these newly established mitochondrial networks are better primed for OXPHOS and are more tightly coupled than those in myoblasts. Additionally, we have found that suppressing autophagy with various inhibitors during differentiation interferes with myogenic differentiation. Together these data highlight the integral role of autophagy and mitophagy in myogenic differentiation.

  13. Electrical Impedance Monitoring of C2C12 Myoblast Differentiation on an Indium Tin Oxide Electrode

    PubMed Central

    Park, Ilhwan; Hong, Yeonhee; Jun, Young-Hoo; Lee, Ga-Yeon; Jun, Hee-Sook; Pyun, Jae-Chul; Choi, Jeong-Woo; Cho, Sungbo

    2016-01-01

    Electrical cell-substrate impedance sensing is increasingly being used for label-free and real-time monitoring of changes in cell morphology and number during cell growth, drug screening, and differentiation. In this study, we evaluated the feasibility of using ECIS to monitor C2C12 myoblast differentiation using a fabricated indium tin oxide (ITO) electrode-based chip. C2C12 myoblast differentiation on the ITO electrode was validated based on decreases in the mRNA level of MyoD and increases in the mRNA levels of myogenin and myosin heavy chain (MHC). Additionally, MHC expression and morphological changes in myoblasts differentiated on the ITO electrode were comparable to those in cells in the control culture dish. From the monitoring the integration of the resistance change at 21.5 kHz, the cell differentiation was label-free and real-time detectable in 30 h of differentiation (p < 0.05). PMID:27929401

  14. Rab35 regulates cadherin-mediated adherens junction formation and myoblast fusion

    PubMed Central

    Charrasse, Sophie; Comunale, Franck; De Rossi, Sylvain; Echard, Arnaud; Gauthier-Rouvière, Cécile

    2013-01-01

    Cadherins are homophilic cell–cell adhesion molecules implicated in many fundamental processes, such as morphogenesis, cell growth, and differentiation. They accumulate at cell–cell contact sites and assemble into large macromolecular complexes named adherens junctions (AJs). Cadherin targeting and function are regulated by various cellular processes, many players of which remain to be uncovered. Here we identify the small GTPase Rab35 as a new regulator of cadherin trafficking and stabilization at cell–cell contacts in C2C12 myoblasts and HeLa cells. We find that Rab35 accumulates at cell–cell contacts in a cadherin-dependent manner. Knockdown of Rab35 or expression of a dominant-negative form of Rab35 impaired N- and M-cadherin recruitment to cell–cell contacts, their stabilization at the plasma membrane, and association with p120 catenin and led to their accumulation in transferrin-, clathrin-, and AP-2–positive intracellular vesicles. We also find that Rab35 function is required for PIP5KIγ accumulation at cell–cell contacts and phosphatidyl inositol 4,5-bisphosphate production, which is involved in cadherin stabilization at contact sites. Finally, we show that Rab35 regulates myoblast fusion, a major cellular process under the control of cadherin-dependent signaling. Taken together, these results reveal that Rab35 regulates cadherin-dependent AJ formation and myoblast fusion. PMID:23197472

  15. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    PubMed

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions.

  16. Differential Cooperation between Heterochromatin Protein HP1 Isoforms and MyoD in Myoblasts*S⃞

    PubMed Central

    Yahi, Hakima; Fritsch, Lauriane; Philipot, Ophelie; Guasconi, Valentina; Souidi, Mouloud; Robin, Philippe; Polesskaya, Anna; Losson, Regine; Harel-Bellan, Annick; Ait-Si-Ali, Slimane

    2008-01-01

    Mechanisms of transcriptional repression are important during cell differentiation. Mammalian heterochromatin protein 1 isoforms HP1α, HP1β, and HP1γ play important roles in the regulation of chromatin structure and function. We explored the possibility of different roles for the three HP1 isoforms in an integrated system, skeletal muscle terminal differentiation. In this system, terminal differentiation is initiated by the transcription factor MyoD, whose target genes remain mainly silent until myoblasts are induced to differentiate. Here we show that HP1α and HP1β isoforms, but not HP1γ, interact with MyoD in myoblasts. This interaction is direct, as shown using recombinant proteins in vitro. A gene reporter assay revealed that HP1α and HP1β, but not HP1γ, inhibit MyoD transcriptional activity, suggesting a model in which MyoD could serve as a bridge between nucleosomes and chromatin-binding proteins such as HDACs and HP1. Chromatin immunoprecipitation assays show a preferential recruitment of HP1 proteins on MyoD target genes in proliferating myoblasts. Finally, modulation of HP1 protein level impairs MyoD target gene expression and muscle terminal differentiation. Together, our data show a nonconventional interaction between HP1 and a tissue-specific transcription factor, MyoD. In addition, they strongly suggest that HP1 isoforms play important roles during muscle terminal differentiation in an isoform-dependent manner. PMID:18599480

  17. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.

    PubMed

    Williamson, Matthew Richard; Adams, Eric F; Coombes, Allan G A

    2006-03-01

    Poly(epsilon-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. As-spun PCL fibres exhibited a mean strength and stiffness of 7.9 MPa and 0.1 GPa, respectively and a rough, porous surface morphology. Cold drawing to an extension of 500% resulted in increases in fibre strength (43 MPa) and stiffness (0.3 GPa) and development of an oriented, fibrillar surface texture. The proliferation rate of Swiss 3T3 mouse fibroblasts and C2C12 mouse myoblasts on as-spun, 500% cold-drawn and gelatin-modified PCL fibres was determined in cell culture to provide a basic measure of the biocompatibility of the fibres. Proliferation of both cell types was consistently higher on gelatin-coated fibres relative to as-spun fibres at time points below 7 days. Fibroblast growth rates on cold-drawn PCL fibres exceeded those on as-spun fibres but myoblast proliferation was similar on both substrates. After 1 day in culture, both cell types had spread and coalesced on the fibres to form a cell layer, which conformed closely to the underlying topography. The high fibre compliance combined with a potential for modifying the fibre surface chemistry with cell adhesion molecules and the surface architecture by cold drawing to enhance proliferation of fibroblasts and myoblasts, recommends further investigation of gravity-spun PCL fibres for 3-D scaffold production in soft tissue engineering.

  18. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-04-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P < 0.05). An over-expression assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.

  19. Mechanical stretch regulates microRNA expression profile via NF-κB activation in C2C12 myoblasts

    PubMed Central

    Hua, Wenxi; Zhang, Mahui; Wang, Yongkui; Yu, Lei; Zhao, Tingting; Qiu, Xiaozhong; Wang, Leyu

    2016-01-01

    MicroRNAs (miRNAs/miRs) and nuclear factor (NF)-κB activation are involved in mechanical stretch-induced skeletal muscle regeneration. However, there are a small number of miRNAs that have been reported to be associated with NF-κB activation during mechanical stretch-induced myogenesis. In the present study, C2C12 myoblasts underwent cyclic mechanical stretch in vitro, to explore the relationship between miRNA expression and NF-κB activation during stretch-mediated myoblast proliferation. The results revealed that 10% deformation, 0.125 Hz cyclic mechanical stretch could promote myoblast proliferation. The miRNA expression profile was subsequently altered; miR-500, −1934, −31, −378, −331 and −5097 were downregulated, whereas miR-1941 was upregulated. These miRNAs were all involved in stretch-mediated myoblast proliferation. Notably, the expression of these miRNAs was reversed following treatment of 0.125 Hz mechanically stretched C2C12 cells with NF-κB inhibitors, which was accompanied by C2C12 cell growth suppression. Therefore, the present study is the first, to the best of our knowledge, to demonstrate that the NF-κB-dependent miRNA profile is associated with mechanical stretch-induced myoblast proliferation. PMID:27840929

  20. E-cadherin cytoplasmic domain inhibits cell surface localization of endogenous cadherins and fusion of C2C12 myoblasts.

    PubMed

    Ozawa, Masayuki

    2015-10-09

    Myoblast fusion is a highly regulated process that is essential for skeletal muscle formation during muscle development and regeneration in mammals. Much remains to be elucidated about the molecular mechanism of myoblast fusion although cadherins, which are Ca(2+)-dependent cell-cell adhesion molecules, are thought to play a critical role in this process. Mouse myoblasts lacking either N-cadherin or M-cadherin can still fuse to form myotubes, indicating that they have no specific function in this process and may be functionally replaced by either M-cadherin or N-cadherin, respectively. In this study, we show that expressing the E-cadherin cytoplasmic domain ectopically in C2C12 myoblasts inhibits cell surface localization of endogenous M-cadherin and N-cadherin, as well as cell-cell fusion. This domain, however, does not inhibit myoblast differentiation according to microarray-based gene expression analysis. In contrast, expressing a dominant-negative β-catenin mutant ectopically, which suppresses Wnt/β-catenin signaling, did not inhibit cell-cell fusion. Therefore, the E-cadherin cytoplasmic domain inhibits cell-cell fusion by inhibiting cell surface localization of endogenous cadherins and not by inhibiting Wnt/β-catenin signaling.

  1. Positive regulation of myoblast differentiation by medaka Neu3b sialidase through gangliosides desialylation.

    PubMed

    Shiozaki, Kazuhiro; Harasaki, Yusuke; Fukuda, Midori; Yoshinaga, Ayana; Ryuzono, Sena; Chigwechokha, Petros Kingstone; Komatsu, Masaharu; Miyagi, Taeko

    2016-04-01

    Sialidase Neu3b is an unique enzyme conserved in medaka and tilapia, but not in mammals. Previous study revealed that medaka Neu3b is localized at cytosol and is a ganglioside-specific sialidase. Neu3b functions, however, have not been understood, while Neu3a sialidase, which is widely conserved from human to fish, is known as a regulator of neurite formation. Here, we investigated the biological function of Neu3b for C2C12 myoblast cell differentiation. Bioinformatics analysis using genome browser revealed the presence of neu3b gene in some orders of fish species such as Beloniformes, Perciformes and Cyprinodontiformes. With the treatment of 2% horse serum, Neu3b-overexpression accelerated myoblast cell differentiation to myotubes accompanied with up-regulation of myogenesis biomarkers mRNA, myod and myog. Neu3b altered ganglioside composition in C2C12 cells results showing a decrease in GM2, and the increase of Lac-Cer, while desialylation of glycoproteins were not detected. Contrary to cell differentiation, Neu3b cell proliferation was suppressed in normal growth medium. To understand the mechanism of the alteration of cell differentiation and proliferation, phosphorylation of signal molecules in EGFR/ERK pathway was investigated. Neu3b induced a decline in phosphorylation of ERK and EGFR. Surprisingly, immuno-blot and real-time PCR analysis revealed that down-regulation of egfr gene could be involved in the acceleration of cell differentiation by Neu3b. These results suggested that Neu3b sialidase is a positive regulator for myoblast differentiation, similar with mammalian cytosolic sialidase Neu2.

  2. Overexpression of insulin-like growth factor-II induces accelerated myoblast differentiation.

    PubMed

    Stewart, C E; James, P L; Fant, M E; Rotwein, P

    1996-10-01

    Previous studies have shown that exogenous insulin-like growth factors (IGFs) can stimulate the terminal differentiation of skeletal myoblasts in culture and have established a correlation between the rate and the extent of IGF-II secretion by muscle cell lines and the rate of biochemical and morphological differentiation. To investigate the hypothesis that autocrine secretion of IGF-II plays a critical role in stimulating spontaneous myogenic differentiation in vitro, we have established C2 muscle cell lines that stably express a mouse IGF-II cDNA under control of the strong, constitutively active Moloney sarcoma virus promoter, enabling us to study directly the effects of IGF-II overproduction. Similar to observations with other muscle cell lines, IGF-II overexpressing myoblasts proliferated normally in growth medium containing 20% fetal serum, but they underwent enhanced differentiation compared with controls when incubated in low-serum differentiation medium. Accelerated differentiation of IGF-II overexpressing C2 cells was preceded by the rapid induction of myogenin mRNA and protein expression (within 1 h, compared with 24-48 h in controls) and was accompanied by an enhanced proportion of the retinoblastoma protein in an underphosphrylated and potentially active form, by a marked increase in activity of the muscle-specific enzyme, creatine phosphokinase, by extensive myotube formation by 48 h, and by elevated secretion of IGF binding protein-5 when compared with controls. These results confirm a role for IGF-II as an autocrine/paracrine differentiation factor for skeletal myoblasts, and they define a model cell system that will be useful in determining the biochemical mechanisms of IGF action in cellular differentiation.

  3. Impaired muscle regeneration and myoblast differentiation in mice with a muscle-specific KO of IGF-IR.

    PubMed

    Heron-Milhavet, Lisa; Mamaeva, Daria; LeRoith, Derek; Lamb, Ned J; Fernandez, Anne

    2010-10-01

    IGF-I and its receptor IGF-IR are seen as critical effectors of muscle hypertrophy, a notion recently questioned. Using MKR transgenic mice that express a dominant negative IGF-IR only in skeletal muscle, we have examined the role of the IGF-IR signaling in differentiation and repair of muscle fibers after damage-induced muscle regeneration. This process is impaired in MKR muscle, with incomplete regeneration, persistence of infiltrating cells and sustained expression of differentiation markers. Analysis of MKR and WT muscle-derived progenitor stem cells and myoblasts showed twice as many such cells in MKR muscle and an incomplete in vitro differentiation, that is, despite similar levels of myogenin expression, the level of fusion of MKR myoblasts was significantly reduced in comparison to WT myoblasts. These data show IGF-IR signaling is not only required at early hyperplasia stages of muscle differentiation, but also for late stages of myofiber maturation and hypertrophy.

  4. Propolis Ethanol Extract Stimulates Cytokine and Chemokine Production through NF-κB Activation in C2C12 Myoblasts

    PubMed Central

    Washio, Kohei; Kobayashi, Mao; Saito, Natsuko; Amagasa, Misato; Kitamura, Hiroshi

    2015-01-01

    Myoblast activation is a triggering event for muscle remodeling. We assessed the stimulatory effects of propolis, a beehive product, on myoblasts. After an 8 h treatment with 100 μg/mL of Brazilian propolis ethanol extract, expression of various chemokines, including CCL-2 and CCL-5, and cytokines, such as IL-6, increased. This propolis-induced cytokine production appears to depend on NF-κB activation, because the IKK inhibitor BMS-345541 repressed mRNA levels of CCL-2 by ~66%, CCL-5 by ~81%, and IL-6 by ~69% after propolis treatment. Supernatant from propolis-conditioned C2C12 cells upregulated RAW264 macrophage migration. The supernatant also stimulated RAW264 cells to produce angiogenic factors, including VEGF-A and MMP-12. Brazilian green propolis therefore causes myoblasts to secrete cytokines and chemokines, which might contribute to tissue remodeling of skeletal muscle. PMID:26604971

  5. Preparation and Culture of Myogenic Precursor Cells/Primary Myoblasts from Skeletal Muscle of Adult and Aged Humans.

    PubMed

    Soriano-Arroquia, Ana; Clegg, Peter D; Molloy, Andrew P; Goljanek-Whysall, Katarzyna

    2017-02-16

    Skeletal muscle homeostasis depends on muscle growth (hypertrophy), atrophy and regeneration. During ageing and in several diseases, muscle wasting occurs. Loss of muscle mass and function is associated with muscle fiber type atrophy, fiber type switching, defective muscle regeneration associated with dysfunction of satellite cells, muscle stem cells, and other pathophysiological processes. These changes are associated with changes in intracellular as well as local and systemic niches. In addition to most commonly used rodent models of muscle ageing, there is a need to study muscle homeostasis and wasting using human models, which due to ethical implications, consist predominantly of in vitro cultures. Despite the wide use of human Myogenic Progenitor Cells (MPCs) and primary myoblasts in myogenesis, there is limited data on using human primary myoblast and myotube cultures to study molecular mechanisms regulating different aspects of age-associated muscle wasting, aiding in the validation of mechanisms of ageing proposed in rodent muscle. The use of human MPCs, primary myoblasts and myotubes isolated from adult and aged people, provides a physiologically relevant model of molecular mechanisms of processes associated with muscle growth, atrophy and regeneration. Here we describe in detail a robust, inexpensive, reproducible and efficient protocol for the isolation and maintenance of human MPCs and their progeny - myoblasts and myotubes from human muscle samples using enzymatic digestion. Furthermore, we have determined the passage number at which primary myoblasts from adult and aged people undergo senescence in an in vitro culture. Finally, we show the ability to transfect these myoblasts and the ability to characterize their proliferative and differentiation capacity and propose their suitability for performing functional studies of molecular mechanisms of myogenesis and muscle wasting in vitro.

  6. Dexamethasone-dependent inhibition of differentiation of C2 myoblasts bearing steroid-inducible N-ras oncogenes

    PubMed Central

    1988-01-01

    ras proteins are localized to the plasma membrane where they are postulated to interact with growth factor receptors and other proximal elements in intracellular cascades triggered by growth factors. The molecular events associated with terminal differentiation of certain skeletal myoblasts are inhibited by specific polypeptide growth factors and by constitutive expression of transforming ras oncogenes. To determine whether the inhibitory effects of ras on myogenic differentiation were reversible and to investigate whether muscle- specific genes remained susceptible to ras-dependent repression in terminally differentiated myotubes, the murine myoblast cell line, C2, was transfected with a plasmid containing a mutationally activated human N-ras oncogene under transcriptional control of the steroid- sensitive promoter of the mouse mammary tumor virus long terminal repeat. Addition of dexamethasone to myoblasts bearing steroid- inducible ras oncogenes prevented myotube formation and induction of muscle creatine kinase and acetylcholine receptors. Inhibition of differentiation by dexamethasone occurred in a dose-dependent manner and was a titratable function of ras expression. In the presence of dexamethasone, myoblasts bearing steroid-inducible ras genes retained their dependence on exogenous growth factors to divide and exhibited contact inhibition of growth at confluent densities, indicating that the inhibitory effects of ras on differentiation were independent of cell proliferation. Removal of dexamethasone from N-ras-transfected myoblasts led to fusion and induction of muscle-specific gene products in a manner indistinguishable from control C2 cells. Examination of the effects of culture media conditioned by ras-transfected myoblasts on differentiation of normal C2 cells yielded no evidence for inhibition of differentiation via an autocrine mechanism. In contrast to the ability of N-ras to prevent up-regulation of muscle-specific gene products in myoblasts

  7. In vivo Fluorescence Imaging of Muscle Cell Regeneration by Transplanted EGFP-labeled Myoblasts

    PubMed Central

    Xu, Xiaoyin; Yang, Zhong; Liu, Qiang; Wang, Yaming

    2010-01-01

    In vivo fluorescence imaging (FLI) enables monitoring fluorescent protein (FP)-labeled cells and proteins in living organisms noninvasively. Here, we examined whether this modality could reach a sufficient sensitivity to allow evaluation of the regeneration process of enhanced green fluorescent protein (eGFP)-labeled muscle precursors (myoblasts). Using a basic FLI station, we were able to detect clear fluorescence signals generated by 40,000 labeled cells injected into a tibialis anterior (TA) muscle of mouse. We observed that the signal declined to ~25% on the 48 hours of cell injection followed by a recovery starting at the second day and reached a peak of ~45% of the original signal by the 7th day, suggesting that the survived population underwent a limited run of proliferation before differentiation. To assess whether transplanted myoblasts could form satellite cells, we injured the transplanted muscles repeatedly with cardiotoxin. We observed a recovery of fluorescence signal following a disappearance of the signal after each cardiotoxin injection. Histology results showed donor-derived cells located underneath basal membrane and expressing Pax7, confirming that the regeneration observed by imaging was indeed mediated by donor-derived satellite cells. Our results show that FLI is a powerful tool that can extend our ability to unveil complicated biological processes such as stem cell-mediated regeneration. PMID:20125125

  8. Identification of novel MYO18A interaction partners required for myoblast adhesion and muscle integrity

    PubMed Central

    Cao, Jian-Meng; Cheng, Xiao-Ning; Li, Shang-Qi; Heller, Stefan; Xu, Zhi-Gang; Shi, De-Li

    2016-01-01

    The unconventional myosin MYO18A that contains a PDZ domain is required for muscle integrity during zebrafish development. However, the mechanism by which it functions in myofibers is not clear. The presence of a PDZ domain suggests that MYO18A may interact with other partners to perform muscle-specific functions. Here we performed double-hybrid screening and co-immunoprecipitation to identify MYO18A-interacting proteins, and have identified p190RhoGEF and Golgin45 as novel partners for the MYO18A PDZ domain. We have also identified Lurap1, which was previously shown to bind MYO18A. Functional analyses indicate that, similarly as myo18a, knockdown of lurap1, p190RhoGEF and Golgin45 by morpholino oligonucleotides disrupts dystrophin localization at the sarcolemma and produces muscle lesions. Simultaneous knockdown of myo18a with either of these genes severely disrupts myofiber integrity and dystrophin localization, suggesting that they may function similarly to maintain myofiber integrity. We further show that MYO18A and its interaction partners are required for adhesion of myoblasts to extracellular matrix, and for the formation of the Golgi apparatus and organization of F-actin bundles in myoblast cells. These findings suggest that MYO18A has the potential to form a multiprotein complex that links the Golgi apparatus to F-actin, which regulates muscle integrity and function during early development. PMID:27824130

  9. Transient and stable transfections of mouse myoblasts with genes coding for pro-angiogenic factors.

    PubMed

    Bialas, M; Krupka, M; Janeczek, A; Rozwadowska, N; Fraczek, M; Kotlinowski, J; Kucharzewska, P; Lackowska, B; Kurpisz, M

    2011-04-01

    Cardiomyocyte loss in the ischaemic heart can be the reason of many complications, eventually being even the cause of patient's death. Despite many promises, cell therapy with the use of skeletal muscle stem cells (SMSC) still remains to be modified and improved. Combined cell and gene therapy seems to be a promising strategy to heal damaged myocardium. In the present study we have investigated the influence of a simultaneous overexpression of two potent pro-angiogenic genes encoding the fibroblast growth factor-4 (FGF-4) and the vascular endothelial growth factor-A (VEGF-A) on a myogenic murine C2C12 cell line. We have demonstrated in in vitro conditions that myoblasts which overexpressed these factors exhibited significant changes in the cell cycle and pro-angiogenic potential with only slight differences in the expression of the myogenic genes. There was not observed the influence of transient or stable overexpression of FGF-4 and VEGF on cell apoptosis/necrosis in standard or oxidative stress conditions comparing to non transfected controls. Overall, our results suggest that the possible transplantation of myoblasts overexpressing pro-angiogenic factors may potentially improve the functionality of the injured myocardium although the definite proof must originate from in situ conducted pre-clinical studies.

  10. An invasive podosome-like structure promotes fusion pore formation during myoblast fusion

    PubMed Central

    Sens, Kristin L.; Zhang, Shiliang; Jin, Peng; Duan, Rui; Zhang, Guofeng; Luo, Fengbao; Parachini, Lauren

    2010-01-01

    Recent studies in Drosophila have implicated actin cytoskeletal remodeling in myoblast fusion, but the cellular mechanisms underlying this process remain poorly understood. Here we show that actin polymerization occurs in an asymmetric and cell type–specific manner between a muscle founder cell and a fusion-competent myoblast (FCM). In the FCM, a dense F-actin–enriched focus forms at the site of fusion, whereas a thin sheath of F-actin is induced along the apposing founder cell membrane. The FCM-specific actin focus invades the apposing founder cell with multiple finger-like protrusions, leading to the formation of a single-channel macro fusion pore between the two muscle cells. Two actin nucleation–promoting factors of the Arp2/3 complex, WASP and Scar, are required for the formation of the F-actin foci, whereas WASP but not Scar promotes efficient foci invasion. Our studies uncover a novel invasive podosome-like structure (PLS) in a developing tissue and reveal a previously unrecognized function of PLSs in facilitating cell membrane juxtaposition and fusion. PMID:21098115

  11. Involvement of transglutaminase in myofibril assembly of chick embryonic myoblasts in culture

    PubMed Central

    1995-01-01

    Involvement of transglutaminase in myofibrillogenesis of chick embryonic myoblasts has been investigated in vitro. Both the activity and protein level of transglutaminase initially decreased to a minimal level at the time of burst of myoblast fusion but gradually increased thereafter. The localization of transglutaminase underwent a dramatic change from the whole cytoplasm in a diffuse pattern to the cross- striated sarcomeric A band, being strictly colocalized with the myosin thick filaments. For a brief period prior to the appearance of cross- striation, transglutaminase was localized in nonstriated filamental structures that coincided with the stress fiber-like structures. When 12-o-tetradecanoyl phorbol acetate was added to muscle cell cultures to induce the sequential disassembly of thin and thick filaments, transglutaminase was strictly colocalized with the myosin thick filaments even in the myosacs, of which most of the thin filaments were disrupted. Moreover, monodansylcadaverine, a competitive inhibitor of transglutaminase, reversibly inhibited the myofibril maturation. In addition, myosin heavy chain behaved as one of the potential intracellular substrates for transglutaminase. The cross-linked myosin complex constituted approximately 5% of the total Triton X-100- insoluble pool of myosin molecules in developing muscle cells, and its level was reduced to below 1% upon treatment with monodansylcadaverine. These results suggest that transglutaminase plays a crucial role in myofibrillogenesis of developing chick skeletal muscle. PMID:7657697

  12. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors.

    PubMed

    Allen, David L; Unterman, Terry G

    2007-01-01

    Myostatin, a member of the transforming growth factor (TGF)-beta family, plays an important role in regulating skeletal muscle growth and differentiation. Here we examined the role of FoxO1 and SMAD transcription factors in regulating myostatin gene expression and myoblast differentiation in C(2)C(12) myotubes in vitro. Both myostatin and FoxO1 mRNA expression were greater in fast- vs. slow-twitch skeletal muscles in vivo. Moreover, expression of a constitutively active form of FoxO1 increased myostatin mRNA and increased activity of a myostatin promoter reporter construct in differentiated C(2)C(12) myotubes. Mutagenesis of highly conserved FoxO or SMAD binding sites significantly decreased myostatin promoter activity, and binding assays showed that both FoxO1 and SMADs bind to their respective sites in the myostatin promoter. Treatment with TGF-beta and/or overexpression of SMAD2, -3, or -4 also resulted in a significant increase in myostatin promoter activity. Treatment with TGF-beta along with overexpression of SMAD2 and FoxO1 resulted in the largest increase in myostatin promoter activity. Finally, TGF-beta treatment and SMAD2 overexpression greatly potentiated FoxO1-mediated suppression of myoblast differentiation. Together these data demonstrate that FoxO1 and SMAD transcription factors regulate the expression of myostatin and contribute to the control of muscle cell growth and differentiation.

  13. Boron nitride nanotube-functionalised myoblast/microfibre constructs: a nanotech-assisted tissue-engineered platform for muscle stimulation.

    PubMed

    Danti, Serena; Ciofani, Gianni; Pertici, Gianni; Moscato, Stefania; D'Alessandro, Delfo; Ciabatti, Elena; Chiellini, Federica; D'Acunto, Mario; Mattoli, Virgilio; Berrettini, Stefano

    2015-07-01

    In this communication, we introduce boron nitride nanotube (BNNT)-functionalised muscle cell/microfibre mesh constructs, obtained via tissue engineering, as a three-dimensional (3D) platform to study a wireless stimulation system for electrically responsive cells and tissues. Our stimulation strategy exploits the piezoelectric behaviour of some classes of ceramic nanoparticles, such as BNNTs, able to polarize under mechanical stress, e.g. using low-frequency ultrasound (US). In the microfibre scaffolds, C2C12 myoblasts were able to differentiate into viable myotubes and to internalize BNNTs, also upon US irradiation, so as to obtain a nanotech-assisted 3D in vitro model. We then tested our stimulatory system on 2D and 3D cellular models by investigating the expression of connexin 43 (Cx43), as a molecule involved in cell crosstalk and mechanotransduction, and myosin, as a myogenic differentiation marker. Cx43 gene expression revealed a marked model dependency. In control samples (without US and/or BNNTs), Cx43 was upregulated under 2D culture conditions (10.78 ± 1.05-fold difference). Interactions with BNNTs increased Cx43 expression in 3D samples. Cx43 mRNA dropped in 2D under the 'BNNTs + US' regimen, while it was best enhanced in 3D samples (3.58 ± 1.05 vs 13.74 ± 1.42-fold difference, p = 0.0001). At the protein level, the maximal expressions of Cx43 and myosin were detected in the 3D model. In contrast with the 3D model, in 2D cultures, BNNTs and US exerted a synergistic depletive effect upon myosin synthesis. These findings indicate that model dimensionality and stimulatory regimens can strongly affect the responses of signalling and differentiation molecules, proving the importance of developing proper in vitro platforms for biological modelling.

  14. Separating myoblast differentiation from muscle cell fusion using IGF-I and the p38 MAP kinase inhibitor SB202190

    PubMed Central

    Gardner, Samantha; Gross, Sean M.; David, Larry L.; Klimek, John E.

    2015-01-01

    The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis. PMID:26246429

  15. Separating myoblast differentiation from muscle cell fusion using IGF-I and the p38 MAP kinase inhibitor SB202190.

    PubMed

    Gardner, Samantha; Gross, Sean M; David, Larry L; Klimek, John E; Rotwein, Peter

    2015-10-01

    The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis.

  16. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    SciTech Connect

    Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven

    2014-09-26

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.

  17. Activation of PPARγ2 by PPARγ1 through a functional PPRE in transdifferentiation of myoblasts to adipocytes induced by EPA.

    PubMed

    Luo, Hefeng; Zhou, Yuanfei; Hu, Xiaoming; Peng, Xuewu; Wei, Hongkui; Peng, Jian; Jiang, Siwen

    2015-01-01

    PPARγ and Wnt signaling are central positive and negative regulators of adipogenesis, respectively. Here we identified that, eicosapentaenoic acid (EPA) could effectively induce the transdifferentiation of myoblasts into adipocytes through modulation of both PPARγ expression and Wnt signaling. During the early stage of transdifferentiation, EPA activates PPARδ and PPARγ1, which in turn targets β-catenin to degradation and down-regulates Wnt/β-catenin signaling, such that the myogenic fate of myoblasts could be switched to adipogenesis. In addition, EPA up-regulates the expression of PPARγ1 by activating RXRα, then PPARγ1 binds to the functional peroxisome proliferator responsive element (PPRE) in the promoter of adipocyte-specific PPARγ2 to continuously activate the expression of PPARγ2 throughout the transdifferentiation process. Our data indicated that EPA acts as a dual-function stimulator of adipogenesis that both inhibits Wnt signaling and induces PPARγ2 expression to facilitate the transdifferentiation program, and the transcriptional activation of PPARγ2 by PPARγ1 is not only the key factor for the transdifferentiation of myoblasts to adipocytes, but also the crucial evidence for successful transdifferentiation. The present findings provided insight for the first time as to how EPA induces the transdifferentiation of myoblasts to adipocytes, but also provide new clues for strategies to prevent and treat some metabolic diseases.

  18. Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors

    PubMed Central

    2013-01-01

    Background In sea urchin larvae the circumesophageal fibers form a prominent muscle system of mesodermal origin. Although the morphology and later development of this muscle system has been well-described, little is known about the molecular signature of these cells or their precise origin in the early embryo. As an invertebrate deuterostome that is more closely related to the vertebrates than other commonly used model systems in myogenesis, the sea urchin fills an important phylogenetic gap and provides a unique perspective on the evolution of muscle cell development. Results Here, we present a comprehensive description of the development of the sea urchin larval circumesophageal muscle lineage beginning with its mesodermal origin using high-resolution localization of the expression of several myogenic transcriptional regulators and differentiation genes. A few myoblasts are bilaterally distributed at the oral vegetal side of the tip of the archenteron and first appear at the late gastrula stage. The expression of the differentiation genes Myosin Heavy Chain, Tropomyosin I and II, as well as the regulatory genes MyoD2, FoxF, FoxC, FoxL1, Myocardin, Twist, and Tbx6 uniquely identify these cells. Interestingly, evolutionarily conserved myogenic factors such as Mef2, MyoR and Six1/2 are not expressed in sea urchin myoblasts but are found in other mesodermal domains of the tip of the archenteron. The regulatory states of these domains were characterized in detail. Moreover, using a combinatorial analysis of gene expression we followed the development of the FoxF/FoxC positive cells from the onset of expression to the end of gastrulation. Our data allowed us to build a complete map of the Non-Skeletogenic Mesoderm at the very early gastrula stage, in which specific molecular signatures identify the precursors of different cell types. Among them, a small group of cells within the FoxY domain, which also express FoxC and SoxE, have been identified as plausible myoblast

  19. Engineering skeletal muscle tissues from murine myoblast progenitor cells and application of electrical stimulation.

    PubMed

    van der Schaft, Daisy W J; van Spreeuwel, Ariane C C; Boonen, Kristel J M; Langelaan, Marloes L P; Bouten, Carlijn V C; Baaijens, Frank P T

    2013-03-19

    Engineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative (1). The first reported 3D muscle constructs have been made many years ago and pioneers in the field are Vandenburgh and colleagues (2,3). Advances made in muscle tissue engineering are not only the result from the vast gain in knowledge of biochemical factors, stem cells and progenitor cells, but are in particular based on insights gained by researchers that physical factors play essential roles in the control of cell behavior and tissue development. State-of-the-art engineered muscle constructs currently consist of cell-populated hydrogel constructs. In our lab these generally consist of murine myoblast progenitor cells, isolated from murine hind limb muscles or a murine myoblast cell line C2C12, mixed with a mixture of collagen/Matrigel and plated between two anchoring points, mimicking the muscle ligaments. Other cells may be considered as well, e.g. alternative cell lines such as L6 rat myoblasts (4), neonatal muscle derived progenitor cells (5), cells derived from adult muscle tissues from other species such as human (6) or even induced pluripotent stem cells (iPS cells) (7). Cell contractility causes alignment of the cells along the long axis of the construct (8,9) and differentiation of the muscle progenitor cells after approximately one week of culture. Moreover, the application of electrical stimulation can enhance the process of differentiation to some extent (8). Because of its limited size (8 x 2 x 0.5 mm) the complete tissue can be analyzed using confocal microscopy to monitor e.g. viability, differentiation and cell alignment. Depending on the specific application the requirements for the engineered muscle tissue will vary; e.g. use for regenerative medicine requires the up scaling of tissue size and vascularization, while

  20. Engineering Skeletal Muscle Tissues from Murine Myoblast Progenitor Cells and Application of Electrical Stimulation

    PubMed Central

    van der Schaft, Daisy W. J.; van Spreeuwel, Ariane C. C.; Boonen, Kristel J. M.; Langelaan, Marloes L. P.; Bouten, Carlijn V. C.; Baaijens, Frank P. T.

    2013-01-01

    Engineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative 1. The first reported 3D muscle constructs have been made many years ago and pioneers in the field are Vandenburgh and colleagues 2,3. Advances made in muscle tissue engineering are not only the result from the vast gain in knowledge of biochemical factors, stem cells and progenitor cells, but are in particular based on insights gained by researchers that physical factors play essential roles in the control of cell behavior and tissue development. State-of-the-art engineered muscle constructs currently consist of cell-populated hydrogel constructs. In our lab these generally consist of murine myoblast progenitor cells, isolated from murine hind limb muscles or a murine myoblast cell line C2C12, mixed with a mixture of collagen/Matrigel and plated between two anchoring points, mimicking the muscle ligaments. Other cells may be considered as well, e.g. alternative cell lines such as L6 rat myoblasts 4, neonatal muscle derived progenitor cells 5, cells derived from adult muscle tissues from other species such as human 6 or even induced pluripotent stem cells (iPS cells) 7. Cell contractility causes alignment of the cells along the long axis of the construct 8,9 and differentiation of the muscle progenitor cells after approximately one week of culture. Moreover, the application of electrical stimulation can enhance the process of differentiation to some extent 8. Because of its limited size (8 x 2 x 0.5 mm) the complete tissue can be analyzed using confocal microscopy to monitor e.g. viability, differentiation and cell alignment. Depending on the specific application the requirements for the engineered muscle tissue will vary; e.g. use for regenerative medicine requires the up scaling of tissue size and vascularization, while to serve as a

  1. Distinct genetic programs guide Drosophila circular and longitudinal visceral myoblast fusion

    PubMed Central

    2014-01-01

    Background The visceral musculature of Drosophila larvae comprises circular visceral muscles tightly interwoven with longitudinal visceral muscles. During myogenesis, the circular muscles arise by one-to-one fusion of a circular visceral founder cell (FC) with a visceral fusion-competent myoblast (FCM) from the trunk visceral mesoderm, and longitudinal muscles arise from FCs of the caudal visceral mesoderm. Longitudinal FCs migrate anteriorly under guidance of fibroblast growth factors during embryogenesis; it is proposed that they fuse with FCMs from the trunk visceral mesoderm to give rise to syncytia containing up to six nuclei. Results Using fluorescence in situ hybridization and immunochemical analyses, we investigated whether these fusion events during migration use the same molecular repertoire and cellular components as fusion-restricted myogenic adhesive structure (FuRMAS), the adhesive signaling center that mediates myoblast fusion in the somatic mesoderm. Longitudinal muscles were formed by the fusion of one FC with Sns-positive FCMs, and defects in FCM specification led to defects in longitudinal muscle formation. At the fusion sites, Duf/Kirre and the adaptor protein Rols7 accumulated in longitudinal FCs, and Blow and F-actin accumulated in FCMs. The accumulation of these four proteins at the fusion sites argues for FuRMAS-like adhesion and signaling centers. Longitudinal fusion was disturbed in rols and blow single, and scar wip double mutants. Mutants of wasp or its interaction partner wip had no defects in longitudinal fusion. Conclusions Our results indicated that all embryonic fusion events depend on the same cell-adhesion molecules, but that the need for Rols7 and regulators of F-actin distinctly differs. Rols7 was required for longitudinal visceral and somatic myoblast fusion but not for circular visceral fusion. Importantly, longitudinal fusion depended on Kette and SCAR/Wave but was independent of WASp-dependent Arp2/3 activation. Thus, the

  2. E2F1-miR-20a-5p/20b-5p auto-regulatory feedback loop involved in myoblast proliferation and differentiation

    PubMed Central

    Luo, Wen; Li, Guihuan; Yi, Zhenhua; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    miR-17 family microRNAs (miRNAs) are crucial for embryo development, however, their role in muscle development is still unclear. miR-20a-5p and miR-20b-5p belong to the miR-17 family and are transcribed from the miR-17~92 and miR-106a~363 clusters respectively. In this study, we found that miR-20a-5p and miR-20b-5p promoted myoblast differentiation and repressed myoblast proliferation by directly binding the 3′ UTR of E2F transcription factor 1 (E2F1) mRNA. E2F1 is an important transcriptional factor for organism’s normal development. Overexpression of E2F1 in myoblasts promoted myoblast proliferation and inhibited myoblast differentiation. Conversely, E2F1 inhibition induced myoblast differentiation and repressed myoblast proliferation. Moreover, E2F1 can bind directly to promoters of the miR-17~92 and miR-106a~363 clusters and activate their transcription, and E2F1 protein expression is correlated with the expression of pri-miR-17~92 and pri-miR-106a~363 during myoblast differentiation. These results suggested an auto-regulatory feedback loop between E2F1 and miR-20a-5p/20b-5p, and indicated that miR-20a-5p, miR-20b-5p and E2F1 are involved in myoblast proliferation and differentiation through the auto-regulation between E2F1 and miR-20a-5p/20b-5p. These findings provide new insight into the mechanism of muscle differentiation, and further shed light on the understanding of muscle development and muscle diseases. PMID:27282946

  3. Comparison of arrhythmogenicity and proinflammatory activity induced by intramyocardial or epicardial myoblast sheet delivery in a rat model of ischemic heart failure.

    PubMed

    Pätilä, Tommi; Miyagawa, Shigeru; Imanishi, Yukiko; Fukushima, Satsuki; Siltanen, Antti; Mervaala, Eero; Kankuri, Esko; Harjula, Ari; Sawa, Yoshiki

    2015-01-01

    Although cell therapy of the failing heart by intramyocardial injections of myoblasts to results in regenerative benefit, it has also been associated with undesired and prospectively fatal arrhythmias. We hypothesized that intramyocardial injections of myoblasts could enhance inflammatory reactivity and facilitate electrical cardiac abnormalities that can be reduced by epicardial myoblast sheet delivery. In a rat model of ischemic heart failure, myoblast therapy either by intramyocardial injections or epicardial cell sheets was given 2 weeks after occlusion of the coronary artery. Ventricular premature contractions (VPCs) were assessed, using an implanted three-lead electrocardiograph at 1, 7, and 14 days after therapy, and 16-point epicardial electropotential mapping (EEPM) was used to evaluate ventricular arrhythmogenicity under isoproterenol stress. Cardiac functioning was assessed by echocardiography. Both transplantation groups showed therapeutic benefit over sham therapy. However, VPCs were more frequent in the Injection group on day 1 and day 14 after therapy than in animals receiving epicardial or sham therapy (p < 0.05 and p < 0.01, respectively). EEPM under isoproterenol stress showed macroreentry at the infarct border area, leading to ventricular tachycardias in the Injection group, but not in the myoblast sheet- or sham-treated groups (p = 0.045). Both transplantation types modified the myocardial cytokine expression profile. In animals receiving epicardial myoblast therapy, selective reductions in the expressions of interferon gamma, interleukin (IL)-1β and IL12 were observed, accompanied by reduced infiltration of inflammatory CD11b- and CD68-positive leukocytes, compared with animals receiving myoblasts as intramyocardial injections. Intramyocardial myoblast delivery was associated with enhanced inflammatory and immunomodulatory reactivity and increased frequency of VPCs. In comparison to intramyocardial injection, the epicardial route may serve as

  4. Intracellular Accumulation of Methylglyoxal by Glyoxalase 1 Knock Down Alters Collagen Homoeostasis in L6 Myoblasts

    PubMed Central

    Stratmann, Bernd; Goldstein, Bernhard; Thornalley, Paul J.; Rabbani, Naila; Tschoepe, Diethelm

    2017-01-01

    Hyperglycemia results in accumulation of the reactive dicarbonyl methylglyoxal (MG). Methylglyoxal is detoxified by the glyoxalase system (glyoxalase 1 and 2). The influence of glyoxalase 1 knockdown on expression of collagens 1, 3, 4, and 5 in L6 myoblasts under hyperglycemic conditions was investigated. Increased biosynthesis of collagens 1, 3, 4, and 5 was detected at mRNA-level following knockdown of glyoxalase 1 (GLO1). At the protein level a significant elevation of the concentration of collagen 1 and 4 was shown, whereas no increase of collagen 5 and a non-significant increase in collagen 3 were detectable. These results could partially explain MG-induced changes in the extracellular matrix (ECM) which account for increased fibrosis and impaired function in myocytes. The mechanisms by which reactive glucose metabolites influence ECM composition deserve further investigation. PMID:28241483

  5. Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation.

    PubMed

    Go, Shinji; Go, Shiori; Veillon, Lucas; Ciampa, Maria Grazia; Mauri, Laura; Sato, Chihiro; Kitajima, Ken; Prinetti, Alessandro; Sonnino, Sandro; Inokuchi, Jin-Ichi

    2017-03-08

    Gangliosides (sialic acid-containing glycosphingolipids) help regulate many important biological processes, including cell proliferation, signal transduction, and differentiation, via formation of functional microdomains in plasma membranes. The structural diversity of gangliosides arises from both the ceramide moiety and glycan portion. Recently, differing molecular species of a given ganglioside are suggested to have distinct biological properties, and regulate specific and distinct biological events. Elucidation of the function of each molecular species is important and will provide new insights into ganglioside biology. Gangliosides are also suggested to be involved in skeletal muscle differentiation; however, the differential roles of ganglioside molecular species remain unclear. We describe here striking changes in quantity and quality of gangliosides (particularly GM3) during differentiation of mouse C2C12 myoblast cells, and key roles played by distinct GM3 molecular species at each step of the process.

  6. Rab8A regulates insulin-stimulated GLUT4 translocation in C2C12 myoblasts.

    PubMed

    Li, Hanbing; Ou, Liting; Fan, Jiannan; Xiao, Mei; Kuang, Cuifang; Liu, Xu; Sun, Yonghong; Xu, Yingke

    2017-02-01

    Rab proteins are important regulators of GLUT4 trafficking in muscle and adipose cells. It is still unclear which Rabs are involved in insulin-stimulated GLUT4 translocation in C2C12 myoblasts. In this study, we detect the colocalization of Rab8A with GLUT4 and the presence of Rab8A at vesicle exocytic sites by TIRFM imaging. Overexpression of dominant-negative Rab8A (T22N) diminishes insulin-stimulated GLUT4 translocation, while constitutively active Rab8A (Q67L) augments it. In addition, knockdown of Rab8A inhibits insulin-stimulated GLUT4 translocation, which is rescued by replenishment of RNAi-resistant Rab8A. Together, these results indicate an indispensable role for Rab8A in insulin-regulated GLUT4 trafficking in C2C12 cells.

  7. Conductance-voltage relations in large-conductance chloride channels in proliferating L6 myoblasts.

    PubMed

    Hurnák, O; Zachar, J

    1994-06-01

    Large-conductance chloride channels (maxi-Cl channels) were studied in cultured myoblasts (L6 rat muscle cell line); in excised (inside-out) and in cell attached membrane patches using a conventional patch clamp method. The incidence of maxi-Cl channels was substantially higher in proliferating myoballs, then in quiescent (bottom-attached) myoblasts (90% and 50% percent of examined cells, respectively). The maxi-Cl channels in myoballs were present both in cell attached and excised patches. The channel conductance at symmetric [Cl] = 150 mmol/l was 359 +/- 42 pS (n = 74) in quiescent cells and 439 +/- 10 pS (n = 6) in proliferating myoballs respectively. The conductance of the channel in quiescent cells increased with chloride concentration in symmetric NaCl rich solutions according to Michaelis-Menten curve with the saturation limiting conductance of about 640 pS (gmax) and Km = 112 mmol/l. The shift of the reversal potential upon increasing the pipette concentration of NaCl from 150 to 250 mmol/l was consistent with PNa/PCl = 0.1. Neither the conductance nor the activation of the channel were dependent on the presence of calcium ions. The bell-shaped steady state channel conductance-voltage relationship is asymmetric and can be fitted by two Boltzmann equations with different Vh and k constants; -25.6 mV and -6.8 mV, respectively, for the negative side and +49.6 mV and +13.7 mV for the positive side in quiescent cells. The corresponding values in proliferating myoballs were as follows: -15.5 mV and -2.4 mV, respectively, for the negative side and +31.4 mV and +6.8 mV for the positive side. From the maximum slopes of the Popen versus V curves an estimate was made of the charges for the gates that close at negative (3.5) or positive (1.7) potentials, respectively, in quiescent cells. The corresponding values in myoballs were 10.6 and 3.7, respectively. The probability of one gate to be open was dependent on the state of activation of the opposite gate as determined

  8. Construction and Myogenic Differentiation of 3D Myoblast Tissues Fabricated by Fibronectin-Gelatin Nanofilm Coating

    PubMed Central

    Gribova, Varvara; Liu, Chen Yun; Nishiguchi, Akihiro; Matsusaki, Michiya; Boudou, Thomas; Picart, Catherine; Akashi, Mitsuru

    2016-01-01

    In this study, we used a recently developed approach of coating the cells with fibronectin-gelatin nanofilms to build 3D skeletal muscle tissue models. We constructed the microtissues from C2C12 myoblasts and subsequently differentiated them to form muscle-like tissue. The thickness of the constructs could be successfully controlled by altering the number of seeded cells. We were able to build up to ~ 76 µm thick 3D constructs that formed multinucleated myotubes. We also found that Rho-kinase inhibitor Y27632 improved myotube formation in thick constructs. Our approach makes it possible to rapidly form 3D muscle tissues and is promising for the in vitro construction of physiologically relevant human skeletal muscle tissue models. PMID:27125461

  9. Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation

    SciTech Connect

    Roura-Ferrer, Meritxell; Sole, Laura; Martinez-Marmol, Ramon; Villalonga, Nuria; Felipe, Antonio

    2008-05-16

    Voltage-dependent K{sup +} channels (Kv) are involved in myocyte proliferation and differentiation by triggering changes in membrane potential and regulating cell volume. Since Kv7 channels may participate in these events, the purpose of this study was to investigate whether skeletal muscle Kv7.1 and Kv7.5 were involved during proliferation and myogenesis. Here we report that, while myotube formation did not regulate Kv7 channels, Kv7.5 was up-regulated during cell cycle progression. Although, Kv7.1 mRNA also increased during the G{sub 1}-phase, pharmacological evidence mainly involves Kv7.5 in myoblast growth. Our results indicate that the cell cycle-dependent expression of Kv7.5 is involved in skeletal muscle cell proliferation.

  10. Necdin mediates skeletal muscle regeneration by promoting myoblast survival and differentiation

    PubMed Central

    Deponti, Daniela; François, Stéphanie; Baesso, Silvia; Sciorati, Clara; Innocenzi, Anna; Broccoli, Vania; Muscatelli, Françoise; Meneveri, Raffaella; Clementi, Emilio; Cossu, Giulio; Brunelli, Silvia

    2007-01-01

    Regeneration of muscle fibers that are lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. An important cell type involved in muscle regeneration is the satellite cell. Necdin is a protein expressed in satellite cell–derived myogenic precursors during perinatal growth. However, its function in myogenesis is not known. We compare transgenic mice that overexpress necdin in skeletal muscle with both wild-type and necdin null mice. After muscle injury the necdin null mice show a considerable defect in muscle healing, whereas mice that overexpress necdin show a substantial increase in myofiber regeneration. We also find that in muscle, necdin increases myogenin expression, accelerates differentiation, and counteracts myoblast apoptosis. Collectively, these data clarify the function and mechanism of necdin in skeletal muscle and show the importance of necdin in muscle regeneration. PMID:17954612

  11. Methylglyoxal impairs GLUT4 trafficking and leads to increased glucose uptake in L6 myoblasts.

    PubMed

    Engelbrecht, B; Mattern, Y; Scheibler, S; Tschoepe, D; Gawlowski, T; Stratmann, B

    2014-02-01

    Methylglyoxal (MG) is a highly reactive dicarbonyl compound derived mainly from glucose degradation pathways, but also from protein and fatty acid metabolism. MG modifies structure and function of different biomolecules and thus plays an important role in the pathogenesis of diabetic complications. Hyperglycemia-associated accumulation of MG might be associated with generation of oxidative stress and subsequently insulin resistance. Therefore, the effects of MG on insulin signaling and on translocation of glucose transporter 4 (GLUT4) were investigated in the rat skeletal muscle cell line L6-GLUT4myc stably expressing myc-tagged GLUT4. Twenty four-hour MG treatment resulted in elevated GLUT4 presentation on the surface of L6 myoblasts and in an increased uptake of glucose even without insulin stimulation. Exogenously added MG neither effected IRS-1 expression nor IRS-1 phosphorylation. A decreased expression of Akt1 but not Akt2 and concomitantly increased apoptosis were detected following MG treatment. To exclude that oxidative stress caused by MG treatment leads to increased GLUT4 translocation, effects of pretreatment with 2 antioxidants were investigated. The antioxidant and MG scavenger NAC prevented the MG-induced GLUT4 translocation. In contrast, tiron, a well-known antioxidant that does not exert MG-scavenger function, had no impact on MG-induced GLUT4 translocation supporting the hypothesis of a direct effect of MG on GLUT4 trafficking. In conclusion, prolonged treatment with MG augments GLUT4 level on the surface of L6 myoblasts, at least in part through a higher translocation of GLUT4 from the intracellular compartment as well as a reduction of GLUT4 internalization, resulting in increased glucose uptake.

  12. Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages

    PubMed Central

    Froehlich, Jacob Michael; Seiliez, Iban; Gabillard, Jean-Charles; Biga, Peggy R.

    2014-01-01

    Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4. PMID:24835774

  13. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts

    PubMed Central

    Vandenburgh, Herman; Shansky, Janet; Benesch-Lee, Frank; Skelly, Kirsten; Spinazzola, Janelle M.; Saponjian, Yero; Tseng, Brian S.

    2009-01-01

    Identification of factors that improve muscle function in boys with Duchenne muscular dystrophy (DMD) could lead to an improved quality of life. To establish a functional in vitro assay for muscle strength, mdx murine myoblasts, the genetic homologue of DMD, were tissue engineered in 96-microwell plates into 3-dimensional muscle constructs with parallel arrays of striated muscle fibers. When electrically stimulated, they generated tetanic forces measured with an automated motion tracking system. Thirty-one compounds of interest as potential treatments for patients with DMD were tested at 3 to 6 concentrations. Eleven of the compounds (insulin-like growth factor-1, creatine, β-hydroxy-β-methylbutyrate, trichostatin A, lisinopril, and 6 from the glucocorticoid family) significantly increased tetanic force relative to placebo-treated controls. The glucocorticoids methylprednisolone, deflazacort, and prednisone increased tetanic forces at low doses (EC50 of 6, 19, and 56 nM, respectively), indicating a direct muscle mechanism by which they may be benefitting DMD patients. The tetanic force assay also identified beneficial compound interactions (arginine plus deflazacort and prednisone plus creatine) as well as deleterious interactions (prednisone plus creatine inhibited by pentoxifylline) of combinatorial therapies taken by some DMD patients. Since mdx muscle in vivo and DMD patients respond in a similar manner to many of these compounds, the in vitro assay will be a useful tool for the rapid identification of new potential treatments for muscle weakness in DMD and other muscle disorders.—Vandenburgh, H., Shansky, J., Benesch-Lee, F., Skelly, K., Spinazzola, J.M., Saponjian, Y., Tseng, B.S. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. PMID:19487307

  14. Gene Expression Profiling of H9c2 Myoblast Differentiation towards a Cardiac-Like Phenotype

    PubMed Central

    Branco, Ana F.; Pereira, Susana P.; Gonzalez, Susana; Gusev, Oleg; Rizvanov, Albert A.; Oliveira, Paulo J.

    2015-01-01

    H9c2 myoblasts are a cell model used as an alternative for cardiomyocytes. H9c2 cells have the ability to differentiate towards a cardiac phenotype when the media serum is reduced in the presence of all-trans-retinoic acid (RA), creating multinucleated cells with low proliferative capacity. In the present study, we performed for the first time a transcriptional analysis of the H9c2 cell line in two differentiation states, i.e. embryonic cells and differentiated cardiac-like cells. The results show that RA-induced H9c2 differentiation increased the expression of genes encoding for cardiac sarcomeric proteins such as troponin T, or calcium transporters and associated machinery, including SERCA2, ryanodine receptor and phospholamban as well as genes associated with mitochondrial energy production including respiratory chain complexes subunits, mitochondrial creatine kinase, carnitine palmitoyltransferase I and uncoupling proteins. Undifferentiated myoblasts showed increased gene expression of pro-survival proteins such as Bcl-2 as well as cell cycle-regulating proteins. The results indicate that the differentiation of H9c2 cells lead to an increase of transcripts and protein levels involved in calcium handling, glycolytic and mitochondrial metabolism, confirming that H9c2 cell differentiation induced by RA towards a more cardiac-like phenotype involves remodeled mitochondrial function. PI3K, PDK1 and p-CREB also appear to be involved on H9c2 differentiation. Furthermore, complex analysis of differently expressed transcripts revealed significant up-regulation of gene expression related to cardiac muscle contraction, dilated cardiomyopathy and other pathways specific for the cardiac tissue. Metabolic and gene expression remodeling impacts cell responses to different stimuli and determine how these cells are used for biochemical assays. PMID:26121149

  15. Fad24, a Positive Regulator of Adipogenesis, Is Required for S Phase Re-entry of C2C12 Myoblasts Arrested in G0 Phase and Involved in p27(Kip1) Expression at the Protein Level.

    PubMed

    Ochiai, Natsuki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2016-05-01

    Factor for adipocyte differentiation 24 (fad24) is a positive regulator of adipogenesis. We previously found that human fad24 is abundantly expressed in skeletal muscle. However, the function of fad24 in skeletal muscle remains largely unknown. Because skeletal muscle is a highly regenerative tissue, we focused on the function of fad24 in skeletal muscle regeneration. In this paper, we investigated the role of fad24 in the cell cycle re-entry of quiescent C2C12 myoblasts-mimicked satellite cells. The expression levels of fad24 and histone acetyltransferase binding to ORC1 (hbo1), a FAD24-interacting factor, were elevated at the early phase of the regeneration process in response to cardiotoxin-induced muscle injury. The knockdown of fad24 inhibited the proliferation of quiescent myoblasts, whereas fad24 knockdown did not affect differentiation. S phase entry following serum activation is abrogated by fad24 knockdown in quiescent cells. Furthermore, fad24 knockdown cells show a marked accumulation of p27(Kip1) protein. These results suggest that fad24 may have an important role in the S phase re-entry of quiescent C2C12 cells through the regulation of p27(Kip1) at the protein level.

  16. Stem cell antigen-1 regulates the tempo of muscle repair through effects on proliferation of {alpha}7 integrin-expressing myoblasts

    SciTech Connect

    Epting, Conrad L.; Lopez, Javier E.; Pedersen, Anissa; Brown, Courtney; Spitz, Paul; Ursell, Philip C.; Bernstein, Harold S.

    2008-03-10

    Skeletal muscle repair occurs through a programmed series of events including myogenic precursor activation, myoblast proliferation, and differentiation into new myofibers. We previously identified a role for Stem cell antigen-1 (Sca-1) in myoblast proliferation and differentiation in vitro. We demonstrated that blocking Sca-1 expression resulted in sustained myoblast cell division. Others have since demonstrated that Sca-1-null myoblasts display a similar phenotype when cultured ex vivo. To test the importance of Sca-1 during myogenesis in vivo, we employed a myonecrotic injury model in Sca-1{sup -/-} and Sca-1{sup +/+} mice. Our results demonstrate that Sca-1{sup -/-} myoblasts exhibit a hyperproliferative response consisting of prolonged and accelerated cell division in response to injury. This leads to delayed myogenic differentiation and muscle repair. These data provide the first in vivo evidence for Sca-1 as a regulator of myoblast proliferation during muscle regeneration. These studies also suggest that the balance between myogenic precursor proliferation and differentiation is critical to normal muscle repair.

  17. Involvement of tyrosine phosphorylation in HMG-CoA reductase inhibitor-induced cell death in L6 myoblasts.

    PubMed

    Mutoh, T; Kumano, T; Nakagawa, H; Kuriyama, M

    1999-02-05

    Our previous studies have shown that the HMG-CoA reductase (HCR) inhibitor (HCRI), simvastatin, causes myopathy in rabbits and kills L6 myoblasts. The present study was designed to elucidate the molecular mechanism of HCRI-induced cell death. We have demonstrated that simvastatin induces the tyrosine phosphorylation of several cellular proteins within 10 min. These phosphorylations were followed by apoptosis, as evidenced by the occurrence of internucleosomal DNA fragmentation and by morphological changes detected with Nomarski optics. Simvastatin-induced cell death was prevented by tyrosine kinase inhibitors. The MTT assay revealed that the addition of mevalonic acid into the culture medium partially inhibited simvastatin-induced cell death. Thus, these results suggested that protein tyrosine phosphorylation might play an important role in the intracellular signal transduction pathway mediating the HCRI-induced death of myoblasts.

  18. An exploration of the antioxidant effects of garlic saponins in mouse-derived C2C12 myoblasts.

    PubMed

    Kang, Ji Sook; Kim, Sung Ok; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Chang, Young-Chae; Kim, Wun-Jae; Kim, Cheol Min; Yoo, Young Hyun; Choi, Yung Hyun

    2016-01-01

    In this study, we aimed to confirm the protective effects of garlic saponins against oxidative stress-induced cellular damage and to further elucidate the underlying mechanisms in mouse-derived C2C12 myoblasts. Relative cell viability was determined by 3-(4.5-dimethylthiazol-2-yl)-2.5 diphenyltetrazolium bromide assay. Comet assay was used to measure DNA damage and oxidative stress was determined using 2',7'-dichlorofluorescein diacetate to measure intracellular reactive oxygen species (ROS) generation. Western blot analysis and small interfering RNA (siRNA)-based knockdown were used in order to investigate the possible molecular mechanisms. Our results revealed that garlic saponins prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular ROS. We also observed that garlic saponins prevented H2O2-induced comet tail formation and decreased the phosphorylation levels of γH2AX expression, suggesting that they can prevent H2O2-induced DNA damage. In addition, garlic saponins increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme associated with the induction and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the translocation of Nrf2 from the cytosol into the nucleus. However, the protective effects of garlic saponins on H2O2-induced ROS generation and growth inhibition were significantly reduced by zinc protoporphyrin Ⅸ, an HO-1 competitive inhibitor. In addition, the potential of garlic saponins to mediate HO-1 induction and protect against H2O2‑mediated growth inhibition was adversely affected by transient transfection with Nrf2-specific siRNA. Garlic saponins activated extracellular signal‑regulated kinase (ERK) signaling, whereas a specific ERK inhibitor was able to inhibit HO-1 upregulation, as well as Nrf2 induction and phosphorylation. Taken together, the findings of our study suggest that garlic saponins activate the Nrf2/HO-1 pathway by enabling

  19. Genetic Evidence That Captured Retroviral Envelope syncytins Contribute to Myoblast Fusion and Muscle Sexual Dimorphism in Mice

    PubMed Central

    Vernochet, Cécile; Mariot, Virginie; Gache, Vincent; Charrin, Stéphanie; Tiret, Laurent; Dumonceaux, Julie; Dupressoir, Anne; Heidmann, Thierry

    2016-01-01

    Syncytins are envelope genes from endogenous retroviruses, “captured” for a role in placentation. They mediate cell-cell fusion, resulting in the formation of a syncytium (the syncytiotrophoblast) at the fetomaternal interface. These genes have been found in all placental mammals in which they have been searched for. Cell-cell fusion is also pivotal for muscle fiber formation and repair, where the myotubes are formed from the fusion of mononucleated myoblasts into large multinucleated structures. Here we show, taking advantage of mice knocked out for syncytins, that these captured genes contribute to myoblast fusion, with a >20% reduction in muscle mass, mean muscle fiber area and number of nuclei per fiber in knocked out mice for one of the two murine syncytin genes. Remarkably, this reduction is only observed in males, which subsequently show muscle quantitative traits more similar to those of females. In addition, we show that syncytins also contribute to muscle repair after cardiotoxin-induced injury, with again a male-specific effect on the rate and extent of regeneration. Finally, ex vivo experiments carried out on murine myoblasts demonstrate the direct involvement of syncytins in fusion, with a >40% reduction in fusion index upon addition of siRNA against both syncytins. Importantly, similar effects are observed with primary myoblasts from sheep, dog and human, with a 20–40% reduction upon addition of siRNA against the corresponding syncytins. Altogether, these results show a direct contribution of the fusogenic syncytins to myogenesis, with a demonstrated male-dependence of the effect in mice, suggesting that these captured genes could be responsible for the muscle sexual dimorphism observed in placental mammals. PMID:27589388

  20. Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR

    PubMed Central

    Wang, Haohan; Li, Xinxin; Liu, Hehe; Sun, Lingli; Zhang, Rongping; Li, Liang; Wangding, Mincheng; Wang, Jiwen

    2016-01-01

    Abstract As a critical transcription factor, Six1 plays an important role in the regulation of myogenesis and muscle development. However, little is known about its regulatory mechanism associated with muscular protein synthesis. The objective of this study was to investigate the effects of overexpression ofSix1 on the expression of key protein metabolism-related genes in duck myoblasts. Through an experimental model where duck myoblasts were transfected with a pEGFP-duSix1 construct, we found that overexpression of duckSix1 could enhance cell proliferation activity and increase mRNA expression levels of key genes involved in the PI3K/Akt/mTOR signaling pathway, while the expression of FOXO1, MuRF1and MAFbx was not significantly altered, indicating thatSix1 could promote protein synthesis in myoblasts through up-regulating the expression of several related genes. Additionally, in duck myoblasts treated with LY294002 and rapamycin, the specific inhibitors ofPI3K and mTOR, respectively, the overexpression of Six1 could significantly ameliorate inhibitive effects of these inhibitors on protein synthesis. Especially, the mRNA expression levels of mTOR and S6K1 were observed to undergo a visible change, and a significant increase in protein expression of S6K1 was seen. These data suggested that Six1plays an important role in protein synthesis, which may be mainly due to activation of the mTOR signaling pathway. PMID:27007909

  1. Space shuttle flight (STS-45) of L8 myoblast cells results in the isolation of a nonfusing cell line variant

    NASA Technical Reports Server (NTRS)

    Kulesh, D. A.; Anderson, L. H.; Wilson, B.; Otis, E. J.; Elgin, D. M.; Barker, M. J.; Mehm, W. J.; Kearney, G. P.

    1994-01-01

    Myoblast cell cultures have been widely employed in conventional (1g) studies of biological processes because characteristics of intact muscle can be readily observed in these cultured cells. We decided to investigate the effects of spaceflight on muscle by utilizing a well characterized myoblast cell line (L8 rat myoblasts) as cultured in the recently designed Space Tissue Loss Flight Module "A" (STL-A). The STL-A is a "state of the art," compact, fully contained, automated cell culture apparatus which replaces a single mid-deck locker on the Space Shuttle. The L8 cells were successfully flown in the STL-A on the Space Shuttle STS-45 mission. Upon return to earth, reculturing of these spaceflown L8 cells (L8SF) resulted in their unexpected failure to fuse and differentiate into myotubes. This inability of the L8SF cells to fuse was found to be a permanent phenotypic alteration. Scanning electron microscopic examination of L8SF cells growing at 1g on fibronectin-coated polypropylene fibers exhibited a strikingly different morphology as compared to control cells. In addition to their failure to fuse into myotubes, L8SF cells also piled up on top of each other. When assayed in fusion-promoting soft agar, L8SF cells gave rise to substantially more and larger colonies than did either preflight (L8AT) or ground control (L8GC) cells. All data to this point indicate that flying L8 rat myoblasts on the Space Shuttle for a duration of 7-10 d at subconfluent densities results in several permanent phenotypic alterations in these cells.

  2. Photobiomodulation Protects and Promotes Differentiation of C2C12 Myoblast Cells Exposed to Snake Venom

    PubMed Central

    da Silva, Aline; Vieira, Rodolfo Paula; Mesquita-Ferrari, Raquel Agnelli; Cogo, José Carlos; Zamuner, Stella Regina

    2016-01-01

    Background Snakebites is a neglected disease and in Brazil is considered a serious health problem, with the majority of the snakebites caused by the genus Bothrops. Antivenom therapy and other first-aid treatments do not reverse local myonecrose which is the main sequel caused by the envenomation. Several studies have shown the effectiveness of low level laser (LLL) therapy in reducing local myonecrosis induced by Bothropic venoms, however the mechanism involved in this effect is unknown. In this in vitro study, we aimed to analyze the effect of LLL irradiation against cytotoxicity induced by Bothrops jararacussu venom on myoblast C2C12 cells. Methodology C2C12 were utilized as a model target and were incubated with B. jararacussu venom (12.5 μg/mL) and immediately irradiated with LLL at wavelength of red 685 nm or infrared 830 nm with energy density of 2.0, 4.6 and 7.0 J/cm2. Effects of LLL on cellular responses of venom-induced cytotoxicity were examined, including cell viability, measurement of cell damage and intra and extracellular ATP levels, expression of myogenic regulatory factors, as well as cellular differentiation. Results In non-irradiated cells, the venom caused a decrease in cell viability and a massive release of LDH and CK levels indicating myonecrosis. Infrared and red laser at all energy densities were able to considerably decrease venom-induced cytotoxicity. Laser irradiation induced myoblasts to differentiate into myotubes and this effect was accompanied by up regulation of MyoD and specially myogenin. Moreover, LLL was able to reduce the extracellular while increased the intracellular ATP content after venom exposure. In addition, no difference in the intensity of cytotoxicity was shown by non-irradiated and irradiated venom. Conclusion LLL irradiation caused a protective effect on C2C12 cells against the cytotoxicity caused by B. jararacussu venom and promotes differentiation of these cells by up regulation of myogenic factors. A modulatory

  3. Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation

    PubMed Central

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub–Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-01-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2−/− γC−/− immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy. PMID:23070116

  4. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation.

    PubMed

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub-Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-11-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2(-/-) γC(-/-) immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy.

  5. FACS-purified myoblasts producing controlled VEGF levels induce safe and stable angiogenesis in chronic hind limb ischemia.

    PubMed

    Wolff, Thomas; Mujagic, Edin; Gianni-Barrera, Roberto; Fueglistaler, Philipp; Helmrich, Uta; Misteli, Heidi; Gurke, Lorenz; Heberer, Michael; Banfi, Andrea

    2012-01-01

    We recently developed a method to control the in vivo distribution of vascular endothelial growth factor (VEGF) by high throughput Fluorescence-Activated Cell Sorting (FACS) purification of transduced progenitors such that they homogeneously express specific VEGF levels. Here we investigated the long-term safety of this method in chronic hind limb ischemia in nude rats. Primary myoblasts were transduced to co-express rat VEGF-A(164) (rVEGF) and truncated ratCD8a, the latter serving as a FACS-quantifiable surface marker. Based on the CD8 fluorescence of a reference clonal population, which expressed the desired VEGF level, cells producing similar VEGF levels were sorted from the primary population, which contained cells with very heterogeneous VEGF levels. One week after ischemia induction, 12 × 10(6) cells were implanted in the thigh muscles. Unsorted myoblasts caused angioma-like structures, whereas purified cells only induced normal capillaries that were stable after 3 months. Vessel density was doubled in engrafted areas, but only approximately 0.1% of muscle volume showed cell engraftment, explaining why no increase in total blood flow was observed. In conclusion, the use of FACS-purified myoblasts granted the cell-by-cell control of VEGF expression levels, which ensured long-term safety in a model of chronic ischemia. Based on these results, the total number of implanted cells required to achieve efficacy will need to be determined before a clinical application.

  6. Cellular metabolic rates in cultured primary dermal fibroblasts and myoblast cells from fast-growing and control Coturnix quail.

    PubMed

    Jimenez, Ana Gabriela; Cooper-Mullin, Clara; Anthony, Nicholas B; Williams, Joseph B

    2014-05-01

    Fibroblast cells have been extensively used in research, including in medicine, physiology, physiological-ecology, and conservation biology. However, whether the physiology of fibroblasts reflects the physiology of other cell types in the same animal is unknown. Dermal fibroblasts are responsible for generating connective tissue and involved in wound healing, but generally, this cell type is thought to be metabolically inactive until it is required at the site of tissue damage. Thus, one might question whether fibroblasts are a representative model system to portray the metabolic profile of the whole organism, as compared with cells isolated from other tissues, like muscle, brain or kidneys. To explore whether fibroblasts have the same metabolic profile as do myoblast cells, we cultured cells from day-old chicks of quail (Coturnix coturnix japonica) selected for fast-growth or normal growth (our control group). Our results suggest that isolated primary fibroblasts and myoblast cells had higher rates of glycolysis, oxygen consumption and more mitochondria in the fast-growing line than in the control line. Our findings lend support for the idea that fibroblasts are a representative cell system to characterize the whole organism metabolic signature at the cellular-level. These data are striking, however, because fibroblasts had higher rates of metabolism for every parameter measured than myoblast cells isolated from the same individuals.

  7. Store-operated calcium entry contributes to abnormal Ca²⁺ signalling in dystrophic mdx mouse myoblasts.

    PubMed

    Onopiuk, Marta; Brutkowski, Wojciech; Young, Christopher; Krasowska, Elżbieta; Róg, Justyna; Ritso, Morten; Wojciechowska, Sylwia; Arkle, Stephen; Zabłocki, Krzysztof; Górecki, Dariusz C

    2015-03-01

    Sarcolemma damage and activation of various calcium channels are implicated in altered Ca(2+) homeostasis in muscle fibres of both Duchenne muscular dystrophy (DMD) sufferers and in the mdx mouse model of DMD. Previously we have demonstrated that also in mdx myoblasts extracellular nucleotides trigger elevated cytoplasmic Ca(2+) concentrations due to alterations of both ionotropic and metabotropic purinergic receptors. Here we extend these findings to show that the mdx mutation is associated with enhanced store-operated calcium entry (SOCE). Substantially increased rate of SOCE in mdx myoblasts in comparison to that in control cells correlated with significantly elevated STIM1 protein levels. These results reveal that mutation in the dystrophin-encoding Dmd gene may significantly impact cellular calcium response to metabotropic stimulation involving depletion of the intracellular calcium stores followed by activation of the store-operated calcium entry, as early as in undifferentiated myoblasts. These data are in agreement with the increasing number of reports showing that the dystrophic pathology resulting from dystrophin mutations may be developmentally regulated. Moreover, our results showing that aberrant responses to extracellular stimuli may contribute to DMD pathogenesis suggest that treatments inhibiting such responses might alter progression of this lethal disease.

  8. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type.

  9. Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate.

    PubMed

    Ciriza, J; Saenz del Burgo, L; Virumbrales-Muñoz, M; Ochoa, I; Fernandez, L J; Orive, G; Hernandez, R M; Pedraz, J L

    2015-09-30

    Cell microencapsulation represents a great promise for long-term drug delivery, but still several challenges need to be overcome before its translation into the clinic, such as the long term cell survival inside the capsules. On this regard, graphene oxide has shown to promote proliferation of different cell types either in two or three dimensions. Therefore, we planned to combine graphene oxide with the cell microencapsulation technology. We first studied the effect of this material on the stability of the capsules and next we analyzed the biocompatibility of this chemical compound with erythropoietin secreting C2C12 myoblasts within the microcapsule matrix. We produced 160 μm-diameter alginate microcapsules with increasing concentrations of graphene oxide and did not find modifications on the physicochemical parameters of traditional alginate microcapsules. Moreover, we observed that the viability of encapsulated cells within alginate microcapsules containing specific graphene oxide concentrations was enhanced. These results provide a relevant step for the future clinical application of graphene oxide on cell microencapsulation.

  10. Interactions between FGF18 and retinoic acid regulate differentiation of chick embryo limb myoblasts.

    PubMed

    Mok, Gi Fay; Cardenas, Ryan; Anderton, Helen; Campbell, Keith H S; Sweetman, Dylan

    2014-12-15

    During limb development Pax3 positive myoblasts delaminate from the hypaxial dermomyotome of limb level somites and migrate into the limb bud where they form the dorsal and ventral muscle masses. Only then do they begin to differentiate and express markers of myogenic commitment and determination such as Myf5 and MyoD. However the signals regulating this process remain poorly characterised. We show that FGF18, which is expressed in the distal mesenchyme of the limb bud, induces premature expression of both Myf5 and MyoD and that blocking FGF signalling also inhibits endogenous MyoD expression. This expression is mediated by ERK MAP kinase but not PI3K signalling. We also show that retinoic acid (RA) can inhibit the myogenic activity of FGF18 and that blocking RA signalling allows premature induction of MyoD by FGF18 at HH19. We propose a model where interactions between FGF18 in the distal limb and retinoic acid in the proximal limb regulate the timing of myogenic gene expression during limb bud development.

  11. Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts

    PubMed Central

    Benavides Damm, Tatiana; Franco-Obregón, Alfredo; Egli, Marcel

    2013-01-01

    Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading. PMID:23974110

  12. Establishment of a Novel Primary Human Skeletal Myoblast Cellular Model for Chikungunya Virus Infection and Pathogenesis.

    PubMed

    Hussain, Khairunnisa' Mohamed; Lee, Regina Ching Hua; Ng, Mary Mah-Lee; Chu, Justin Jang Hann

    2016-02-19

    Chikungunya virus (CHIKV) is a re-emerging arbovirus known to cause chronic myalgia and arthralgia and is now considered endemic in countries across Asia and Africa. The tissue tropism of CHIKV infection in humans remains, however, ill-defined. Due to the fact that myositis is commonly observed in most patients infected with CHIKV, we sought to develop a clinically relevant cellular model to better understand the pathogenesis of CHIKV infection. In this study, primary human skeletal muscle myoblasts (HSMM) were established as a novel human primary cell line that is highly permissive to CHIKV infection, with maximal amounts of infectious virions observed at 16 hours post infection. Genome-wide microarray profiling analyses were subsequently performed to identify and map genes that are differentially expressed upon CHIKV infection. Infection of HSMM cells with CHIKV resulted in altered expressions of host genes involved in skeletal- and muscular-associated disorders, innate immune responses, cellular growth and death, host metabolism and virus replication. Together, this study has shown the establishment of a clinically relevant primary human cell model that paves the way for the further analysis of host factors and their involvement in the various stages of CHIKV replication cycle and viral pathogenesis.

  13. MyoD-positive myoblasts are present in mature fetal organs lacking skeletal muscle

    PubMed Central

    Gerhart, Jacquelyn; Bast, Brian; Neely, Christine; Iem, Stephanie; Amegbe, Paula; Niewenhuis, Robert; Miklasz, Steven; Cheng, Pei Feng; George-Weinstein, Mindy

    2001-01-01

    The epiblast of the chick embryo gives rise to the ectoderm, mesoderm, and endoderm during gastrulation. Previous studies revealed that MyoD-positive cells were present throughout the epiblast, suggesting that skeletal muscle precursors would become incorporated into all three germ layers. The focus of the present study was to examine a variety of organs from the chicken fetus for the presence of myogenic cells. RT-PCR and in situ hybridizations demonstrated that MyoD-positive cells were present in the brain, lung, intestine, kidney, spleen, heart, and liver. When these organs were dissociated and placed in culture, a subpopulation of cells differentiated into skeletal muscle. The G8 antibody was used to label those cells that expressed MyoD in vivo and to follow their fate in vitro. Most, if not all, of the muscle that formed in culture arose from cells that expressed MyoD and G8 in vivo. Practically all of the G8-positive cells from the intestine differentiated after purification by FACS®. This population of ectopically located cells appears to be distinct from multipotential stem cells and myofibroblasts. They closely resemble quiescent, stably programmed skeletal myoblasts with the capacity to differentiate when placed in a permissive environment. PMID:11684706

  14. An adaptable stage perfusion incubator for the controlled cultivation of C2C12 myoblasts.

    PubMed

    Kurth, Felix; Franco-Obregón, Alfredo; Bärtschi, Christoph A; Dittrich, Petra S

    2015-01-07

    Here we present a stage perfusion incubation system that allows for the cultivation of mammalian cells within PDMS microfluidic devices for long-term microscopic examination and analysis. The custom-built stage perfusion incubator is adaptable to any x-y microscope stage and is enabled for temperature, gas and humidity control as well as equipped with chip and tubing holder. The applied double-layered microfluidic chip allows the predetermined positioning and concentration of cells while the gas permeable PDMS material facilitates pH control via CO2 levels throughout the chip. We demonstrate the functionality of this system by culturing C2C12 murine myoblasts in buffer free medium within its confines for up to 26 hours. We moreover demonstrated the system's compatibility with various chip configurations, other cells lines (HEK-293 cells) and for longer-term culturing. The cost-efficient system are applicable for any type of PDMS-based cell culture system. Detailed technical drawings and specification to reproduce this perfusion incubation system is provided in the ESI.

  15. Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics

    NASA Astrophysics Data System (ADS)

    Al-Rekabi, Zeinab; Pelling, Andrew E.

    2013-12-01

    Growing evidence suggests that critical cellular processes are profoundly influenced by the cross talk between extracellular nanomechanical forces and the material properties of the cellular microenvironment. Although many studies have examined either the effect of nanomechanical forces or the material properties of the microenvironment on biological processes, few have investigated the influence of both. Here, we performed simultaneous atomic force microscopy and traction force microscopy to demonstrate that muscle precursor cells (myoblasts) rapidly generate a significant increase in traction when stimulated with a local 10 nN force. Cells were cultured and nanomechanically stimulated on hydrogel substrates with controllable local elastic moduli varying from ˜16-89 kPa, as confirmed with atomic force microscopy. Importantly, cellular traction dynamics in response to nanomechanical stimulation only occurred on substrates that were similar to the elasticity of working muscle tissue (˜64-89 kPa) as opposed to substrates mimicking resting tissue (˜16-51 kPa). The traction response was also transient, occurring within 30 s, and dissipating by 60 s, during constant nanomechanical stimulation. The observed biophysical dynamics are very much dependent on rho-kinase and myosin-II activity and likely contribute to the physiology of these cells. Our results demonstrate the fundamental ability of cells to integrate nanoscale information in the cellular microenvironment, such as nanomechanical forces and substrate mechanics, during the process of mechanotransduction.

  16. Surgical and catheter delivery of autologous myoblasts in patients with congestive heart failure.

    PubMed

    Opie, Shaun R; Dib, Nabil

    2006-03-01

    Autologous skeletal myoblast (ASM) transplantation is being explored as a possible therapy for patients who have suffered a myocardial infarction. Our initial experience with direct injection during coronary artery bypass grafting demonstrated that this method of delivery was both feasible and safe. In addition, proof of concept of the engraftment and survival of ASMs was shown. However, since many patients who have survived a myocardial infarction are not candidates for surgery, a less invasive delivery method is preferred. We implemented a series of translational research steps to bring catheter-based technology to a clinical application. This included assessing the biocompatibility of the ASM and a novel needle injection catheter using a 3-dimensional endoventricular navigation system, the bioretention and biodistribution of ASMs in a porcine model of myocardial infarction, and the safety and efficacy of ASM transplantation for cardiac function in the porcine model. After catheter functionality had been demonstrated, electromechanical mapping was used to assess the viability in the region of ASM transplantation, and echocardiography, electrocardiogram, and angiography tests were used to assess cardiac function 2 months after ASM transplantation. The results from these preclinical studies were used as a foundation for application of these concepts to a human clinical trial. Here we review the results from our preclinical experiments and surgical delivery clinical trial, and describe the recent clinical studies undertaken to assess the safety and feasibility of catheter-based ASM transplantation into human subjects.

  17. Photovoltaic surfaces enable clonal myoblastic cell release using visible light as external stimulation.

    PubMed

    Bhuyan, Mohammod Kabir; Rodriguez-Devora, Jorge; Tseng, Tzu-Liang Bill; Boland, Thomas

    2016-03-01

    Many new biomedical approaches to treating disease require the supply of cells delivered to an injured or diseased organ either individually, collectively as aggregates or sheets, or encapsulated with a scaffold. The collection of cells is accomplished by using enzymatic digestion witch suffer from the need to remove the enzymes after digestion. In addition, enzymatic methods are not applicable for all cells, cell aggregates, cell sheets or 3D structures. The objective of this study was to investigate the release of cultured cells from silicon based Photovoltaic (PV) surfaces using a light source as external stimulation. C2C12 myoblasts were cultured on the negative surface of a PV device and upon confluence they were exposed to light. The amount of released cells was quantified as a function light exposure. It was found that light exposure at 25,000 lux for one hour caused equivalent cell release from the PV surface than trypsination. The released cells are viable and can be re-cultured if needed. This mechanism may offer an alternative method to release excitable cells without using an enzymatic agent. This may be important for cell therapy if larger cell structures such as sheets need to be collected.

  18. Effect of IR Laser on Myoblasts: Prospects of Application for Counteracting Microgravity-Induced Muscle Atrophy

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Cialdai, Francesca; Romano, Giovanni; Corsetto, Paola Antonia; Rizzo, Angela Maria; Caselli, Anna; Ranaldi, Francesco

    2013-02-01

    Microgravity-induced muscle atrophy is a problem of utmost importance for the impact it may have on the health and performance of astronauts. Therefore, appropriate countermeasures are needed to prevent disuse atrophy and favour muscle recovery. Muscle atrophy is characterized by loss of muscle mass and strength, and a shift in substrate utilization from fat to glucose, that leads to a reduced metabolic efficiency and enhanced fatigability. Laser therapy is already used in physical medicine and rehabilitation to accelerate muscle recovery and in sports medicine to prevent damages produced by metabolic disturbances and inflammatory reactions after heavy exercise. The aim of the research we present was to get insights on possible benefits deriving from the application of an advanced infrared laser system to counteract deficits of muscle energy metabolism and stimulate the recovery of the hypotrophic tissue. The source used was a Multiwave Locked System (MLS) laser, which combines continuous and pulsed emissions at 808 nm and 905 nm, respectively. We studied the effect of MLS treatment on morphology and energy metabolism of C2C12 cells, a widely accepted myoblast model, previously exposed to microgravity conditions modelled by a Random Positioning Machine. The MLS laser treatment was able to restore basal levels of serine/threonine protein phosphatase activity and to counteract cytoskeletal alterations and increase in glycolytic enzymes activity that occurred following the exposure to modelled microgravity. In conclusion, the results provide interesting insights for the application of infrared laser in the treatment of muscle atrophy.

  19. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  20. Curcumin reduces cold storage-induced damage in human cardiac myoblasts.

    PubMed

    Abuarqoub, Hadil; Green, Colin J; Foresti, Roberta; Motterlini, Roberto

    2007-04-30

    Curcumin is a polyphenolic compound possessing interesting anti-inflammatory and antioxidant properties and has the ability to induce the defensive protein heme oxygenase-1 (HO-1). The objective of this study was to investigate whether curcumin protects against cold storage-mediated damage of human adult atrial myoblast cells (Girardi cells) and to assess the potential involvement of HO-1 in this process. Girardi cells were exposed to either normothermic or hypothermic conditions in Celsior preservation solution in the presence or absence of curcumin. HO-1 protein expression and heme oxygenase activity as well as cellular damage were assessed after cold storage or cold storage followed by re-warming. In additional experiments, an inhibitor of heme oxygenase activity (tin protoporphyrin IX, 10 microM) or siRNA for HO-1 were used to investigate the participation of HO-1 as a mediator of curcumin-induced effects. Treatment with curcumin produced a marked induction of cardiac HO-1 in normothermic condition but cells were less responsive to the polyphenolic compound at low temperature. Cold storage-induced damage was markedly reduced in the presence of curcumin and HO-1 contributed to some extent to this effect. Thus, curcumin added to Celsior preservation solution effectively prevents the damage caused by cold-storage; this effect involves the protective enzyme HO-1 but also other not yet identified mechanisms.

  1. Cdo Regulates Surface Expression of Kir2.1 K+ Channel in Myoblast Differentiation

    PubMed Central

    Koh, Jewoo; Kang, KyeongJin; Bae, Gyu-Un; Cho, Hana; Kang, Jong-Sun

    2016-01-01

    A potassium channel Kir2.1-associated membrane hyperpolarization is required for myogenic differentiation. However the molecular regulatory mechanisms modulating Kir2.1 channel activities in early stage of myogenesis are largely unknown. A cell surface protein, Cdo functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that Cdo forms a complex with Kir2.1 during myogenic differentiation, and is required for the channel activity by enhancing the surface expression of Kir2.1 in the early stage of differentiation. The expression of a constitutively active form of the upstream kinase for p38MAPK, MKK6(EE) can restore Kir2.1 activities in Cdo-depleted C2C12 cells, while the treatment with a p38MAPK inhibitor, SB203580 exhibits a similar effect of Cdo depletion on Kir2.1 surface expression. Furthermore, Cdo-/- primary myoblasts, which display a defective differentiation program, exhibit a defective Kir2.1 activity. Taken together, our results suggest that a promyogenic Cdo signaling is critical for Kir2.1 activities in the induction of myogenic differentiation. PMID:27380411

  2. Effects of anabolic agents on protein breakdown in L6 myoblasts.

    PubMed Central

    Ballard, F J; Francis, G L

    1983-01-01

    1. Protein degradation in rat L6 myoblasts is inhibited by high concentrations of insulin as well as by foetal bovine serum and bovine colostrum, mixtures rich in growth-factor activity. 2. Growth factors achieve maximal effects within 2 h after addition to the cell cultures, but these diminish with time. Indeed, during incubations greater than 12 h, foetal calf serum actually stimulates protein breakdown. The changed response, however, is not due to the depletion of growth factors from serum. 3. Protein breakdown is stimulated by dexamethasone by a process that takes several hours to be expressed, but is more pronounced over a 4 h measurement period than over 18h. The glucocorticoid response is prevented by insulin or by cycloheximide. 4. Anabolic agents such as trenbolone, diethylstilboestrol and testosterone do not alter rates of intracellular protein breakdown and do not interfere with the glucocorticoid-induced catabolic response. 5. The results are consistent with anabolic steroids and related agents acting indirectly on muscle, perhaps via altering concentrations of growth factors of the somatomedin type. PMID:6342615

  3. Establishment of a Novel Primary Human Skeletal Myoblast Cellular Model for Chikungunya Virus Infection and Pathogenesis

    PubMed Central

    Hussain, Khairunnisa’ Mohamed; Lee, Regina Ching Hua; Ng, Mary Mah-Lee; Chu, Justin Jang Hann

    2016-01-01

    Chikungunya virus (CHIKV) is a re-emerging arbovirus known to cause chronic myalgia and arthralgia and is now considered endemic in countries across Asia and Africa. The tissue tropism of CHIKV infection in humans remains, however, ill-defined. Due to the fact that myositis is commonly observed in most patients infected with CHIKV, we sought to develop a clinically relevant cellular model to better understand the pathogenesis of CHIKV infection. In this study, primary human skeletal muscle myoblasts (HSMM) were established as a novel human primary cell line that is highly permissive to CHIKV infection, with maximal amounts of infectious virions observed at 16 hours post infection. Genome-wide microarray profiling analyses were subsequently performed to identify and map genes that are differentially expressed upon CHIKV infection. Infection of HSMM cells with CHIKV resulted in altered expressions of host genes involved in skeletal- and muscular-associated disorders, innate immune responses, cellular growth and death, host metabolism and virus replication. Together, this study has shown the establishment of a clinically relevant primary human cell model that paves the way for the further analysis of host factors and their involvement in the various stages of CHIKV replication cycle and viral pathogenesis. PMID:26892458

  4. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts.

    PubMed

    Watanabe, Tomonobu M; Higuchi, Sayaka; Kawauchi, Keiko; Tsukasaki, Yoshikazu; Ichimura, Taro; Fujita, Hideaki

    2012-02-24

    Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage during myogenesis using the state diagram developed with the parameters obtained in this study.

  5. Shaping leg muscles in Drosophila: role of ladybird, a conserved regulator of appendicular myogenesis.

    PubMed

    Maqbool, Tariq; Soler, Cedric; Jagla, Teresa; Daczewska, Malgorzata; Lodha, Neha; Palliyil, Sudhir; VijayRaghavan, K; Jagla, Krzysztof

    2006-12-27

    Legs are locomotor appendages used by a variety of evolutionarily distant vertebrates and invertebrates. The primary biological leg function, locomotion, requires the formation of a specialised appendicular musculature. Here we report evidence that ladybird, an orthologue of the Lbx1 gene recognised as a hallmark of appendicular myogenesis in vertebrates, is expressed in leg myoblasts, and regulates the shape, ultrastructure and functional properties of leg muscles in Drosophila. Ladybird expression is progressively activated in myoblasts associated with the imaginal leg disc and precedes that of the founder cell marker dumbfounded. The RNAi-mediated attenuation of ladybird expression alters properties of developing myotubes, impairing their ability to grow and interact with the internal tendons and epithelial attachment sites. It also affects sarcomeric ultrastructure, resulting in reduced leg muscle performance and impaired mobility in surviving flies. The over-expression of ladybird also results in an abnormal pattern of dorsally located leg muscles, indicating different requirements for ladybird in dorsal versus ventral muscles. This differential effect is consistent with the higher level of Ladybird in ventrally located myoblasts and with positive ladybird regulation by extrinsic Wingless signalling from the ventral epithelium. In addition, ladybird expression correlates with that of FGF receptor Heartless and the read-out of FGF signalling downstream of FGF. FGF signals regulate the number of leg disc associated myoblasts and are able to accelerate myogenic differentiation by activating ladybird, leading to ectopic muscle fibre formation. A key role for ladybird in leg myogenesis is further supported by its capacity to repress vestigial and to down-regulate the vestigial-governed flight muscle developmental programme. Thus in Drosophila like in vertebrates, appendicular muscles develop from a specialised pool of myoblasts expressing ladybird/Lbx1. The

  6. The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differentiation in the Prevention of Replicative Senescence of Myoblasts

    PubMed Central

    Khor, Shy Cian; Razak, Azraul Mumtazah; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum; Abdul Karim, Norwahidah; Makpol, Suzana

    2016-01-01

    Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts. PMID:26885980

  7. An NF-κB – EphrinA5 – Dependent Communication between NG2+ Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates

    PubMed Central

    Gu, Jin-Mo; Wang, David J.; Peterson, Jennifer M.; Shintaku, Jonathan; Liyanarachchi, Sandya; Coppola, Vincenzo; Frakes, Ashley E.; Kaspar, Brian K.; Cornelison, Dawn D.; Guttridge, Denis C.

    2015-01-01

    SUMMARY Skeletal muscle growth immediately following birth is a critical for proper body posture and locomotion. However, compared to embryogenesis and adulthood, the processes regulating the maturation of neonatal muscles is considerably less clear. Studies in the 1960s predicted that neonatal muscle growth results from nuclear accretion of myoblasts preferentially at the tips of myofibers. Remarkably, little information has been added since then to resolve how myoblasts migrate to the ends of fibers. Here, we provide insight to this process by revealing a unique NF-κB-dependent communication between NG2+ interstitial cells and myoblasts. NF-κB in NG2+ cells promotes myoblast migration to the tips of myofibers through cell-cell contact. This occurs through expression of ephrinA5 from NG2+ cells, which we further deduce is an NF-κB target gene. Together, results suggest that NF-κB plays an important role in the development of newborn muscles to ensure proper myoblast migration for fiber growth. PMID:26777211

  8. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders

    PubMed Central

    2011-01-01

    Background Investigations into both the pathophysiology and therapeutic targets in muscle dystrophies have been hampered by the limited proliferative capacity of human myoblasts. Isolation of reliable and stable immortalized cell lines from patient biopsies is a powerful tool for investigating pathological mechanisms, including those associated with muscle aging, and for developing innovative gene-based, cell-based or pharmacological biotherapies. Methods Using transduction with both telomerase-expressing and cyclin-dependent kinase 4-expressing vectors, we were able to generate a battery of immortalized human muscle stem-cell lines from patients with various neuromuscular disorders. Results The immortalized human cell lines from patients with Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, congenital muscular dystrophy, and limb-girdle muscular dystrophy type 2B had greatly increased proliferative capacity, and maintained their potential to differentiate both in vitro and in vivo after transplantation into regenerating muscle of immunodeficient mice. Conclusions Dystrophic cellular models are required as a supplement to animal models to assess cellular mechanisms, such as signaling defects, or to perform high-throughput screening for therapeutic molecules. These investigations have been conducted for many years on cells derived from animals, and would greatly benefit from having human cell models with prolonged proliferative capacity. Furthermore, the possibility to assess in vivo the regenerative capacity of these cells extends their potential use. The innovative cellular tools derived from several different neuromuscular diseases as described in this report will allow investigation of the pathophysiology of these disorders and assessment of new therapeutic strategies. PMID:22040608

  9. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    SciTech Connect

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  10. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    SciTech Connect

    Watanabe, Tomonobu M.; Higuchi, Sayaka; Kawauchi, Keiko; Tsukasaki, Yoshikazu; Ichimura, Taro; Fujita, Hideaki

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Change in the epigenetic landscape during myogenesis was optically investigated. Black-Right-Pointing-Pointer Mobility of nuclear proteins was used to state the epigenetic status of the cell. Black-Right-Pointing-Pointer Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. Black-Right-Pointing-Pointer Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage

  11. Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity

    PubMed Central

    Busser, Brian W.; Shokri, Leila; Jaeger, Savina A.; Gisselbrecht, Stephen S.; Singhania, Aditi; Berger, Michael F.; Zhou, Bo; Bulyk, Martha L.; Michelson, Alan M.

    2012-01-01

    A subfamily of Drosophila homeodomain (HD) transcription factors (TFs) controls the identities of individual muscle founder cells (FCs). However, the molecular mechanisms by which these TFs generate unique FC genetic programs remain unknown. To investigate this problem, we first applied genome-wide mRNA expression profiling to identify genes that are activated or repressed by the muscle HD TFs Slouch (Slou) and Muscle segment homeobox (Msh). Next, we used protein-binding microarrays to define the sequences that are bound by Slou, Msh and other HD TFs that have mesodermal expression. These studies revealed that a large class of HDs, including Slou and Msh, predominantly recognize TAAT core sequences but that each HD also binds to unique sites that deviate from this canonical motif. To understand better the regulatory specificity of an individual FC identity HD, we evaluated the functions of atypical binding sites that are preferentially bound by Slou relative to other HDs within muscle enhancers that are either activated or repressed by this TF. These studies showed that Slou regulates the activities of particular myoblast enhancers through Slou-preferred sequences, whereas swapping these sequences for sites that are capable of binding to multiple HD family members does not support the normal regulatory functions of Slou. Moreover, atypical Slou-binding sites are overrepresented in putative enhancers associated with additional Slou-responsive FC genes. Collectively, these studies provide new insights into the roles of individual HD TFs in determining cellular identity, and suggest that the diversity of HD binding preferences can confer regulatory specificity. PMID:22296846

  12. Runx1 Transcription Factor Is Required for Myoblasts Proliferation during Muscle Regeneration

    PubMed Central

    Umansky, Kfir Baruch; Gruenbaum-Cohen, Yael; Tsoory, Michael; Feldmesser, Ester; Goldenberg, Dalia; Brenner, Ori; Groner, Yoram

    2015-01-01

    Following myonecrosis, muscle satellite cells proliferate, differentiate and fuse, creating new myofibers. The Runx1 transcription factor is not expressed in naïve developing muscle or in adult muscle tissue. However, it is highly expressed in muscles exposed to myopathic damage yet, the role of Runx1 in muscle regeneration is completely unknown. Our study of Runx1 function in the muscle’s response to myonecrosis reveals that this transcription factor is activated and cooperates with the MyoD and AP-1/c-Jun transcription factors to drive the transcription program of muscle regeneration. Mice lacking dystrophin and muscle Runx1 (mdx - /Runx1 f/f), exhibit impaired muscle regeneration leading to age-dependent muscle waste, gradual decrease in motor capabilities and a shortened lifespan. Runx1-deficient primary myoblasts are arrested at cell cycle G1 and consequently differentiate. Such premature differentiation disrupts the myoblasts’ normal proliferation/differentiation balance, reduces the number and size of regenerating myofibers and impairs muscle regeneration. Our combined Runx1-dependent gene expression, ChIP-seq, ATAC-seq and histone H3K4me1/H3K27ac modification analyses revealed a subset of Runx1-regulated genes that are co-occupied by MyoD and c-Jun in mdx - /Runx1 f/f muscle. The data provide unique insights into the transcriptional program driving muscle regeneration and implicate Runx1 as an important participant in the pathology of muscle wasting diseases. PMID:26275053

  13. FRG2, an FSHD candidate gene, is transcriptionally upregulated in differentiating primary myoblast cultures of FSHD patients

    PubMed Central

    Rijkers, T; Deidda, G; van Koningsbrugge..., S; van Geel, M; Lemmers, R; van Deutekom, J C T; Figlewicz, D; Hewitt, J; Padberg, G; Frants, R; van der Maarel, S M

    2004-01-01

    Background: Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is associated with partial deletion of the subtelomeric D4Z4 repeat array on chromosome 4qter. This chromosomal rearrangement may result in regional chromatin relaxation and transcriptional deregulation of genes nearby. Methods and results: Here we describe the isolation and characterisation of FRG2, a member of a chromosomally dispersed gene family, mapping only 37 kb proximal to the D4Z4 repeat array. Homology and motif searches yielded no clues to the function of the predicted protein. FRG2 expression is undetectable in all tissues tested except for differentiating myoblasts of FSHD patients, which display low, yet distinct levels of FRG2 expression, partly from chromosome 4 but predominantly originating from its homologue on chromosome 10. However, in non-FSHD myopathy patients only distantly related FRG2 homologues are transcribed, while differentiating myoblasts from healthy controls fail to express any member of this gene family. Moreover, fibroblasts of FSHD patients and control individuals undergoing forced Ad5-MyoD mediated myogenesis show expression of FRG2 mainly originating from chromosome 10. Luciferase reporter assays show that the FRG2 promoter region can direct high levels of expression but is inhibited by increasing numbers of D4Z4 repeat units. Transient transfection experiments with FRG2 fusion-protein constructs reveal nuclear localisation and apparently FRG2 overexpression causes a wide range of morphological changes. Conclusion: The localisation of FRG2 genes close to the D4Z4 repeats on chromosome 4 and 10, their transcriptional upregulation specifically in FSHD myoblast cultures, potential involvement in myogenesis, and promoter properties qualify FRG2 as an attractive candidate for FSHD pathogenesis. PMID:15520407

  14. Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway.

    PubMed

    Yu, Minli; Wang, Huan; Xu, Yali; Yu, Debing; Li, Dongfeng; Liu, Xiuhong; Du, Wenxing

    2015-08-01

    During embryonic development, IGF-1 fulfils crucial roles in skeletal myogenesis. However, the involvement of IGF-1-induced myoblast proliferation in muscle growth is still unclear. In the present study, we have characterised the role of IGF-1 in myoblast proliferation both in vitro and in vivo and have revealed novel details of how exogenous IGF-1 influences myogenic genes in chicken embryos. The results show that IGF-1 significantly induces the proliferation of cultured myoblasts in a dose-dependent manner. Additionally, the IGF-1 treatment significantly promoted myoblasts entering a new cell cycle and increasing the mRNA expression levels of cell cycle-dependent genes. However, these effects were inhibited by the PI3K inhibitor LY294002 and the Akt inhibitor KP372-1. These data indicated that the pro-proliferative effect of IGF-1 was mediated in response to the PI3K/Akt signalling pathway. Moreover, we also showed that exogenous IGF-1 stimulated myoblast proliferation in vivo. IGF-1 administration obviously promoted the incorporation of BrdU and remarkably increased the number of PAX7-positive cells in the skeletal muscle of chicken embryos. Administration of IGF-1 also significantly induced the upregulation of myogenic factors gene, the enhancement of c-Myc and the inhibition of myostatin (Mstn) expression. These findings demonstrate that IGF-1 has strong activity as a promoter of myoblast expansion and muscle fiber formation during early myogenesis. Therefore, this study offers insight into the mechanisms responsible for IGF-1-mediated stimulation of embryonic skeletal muscle development, which could have important implications for the improvement of chicken meat production.

  15. Glypican-1 regulates myoblast response to HGF via Met in a lipid raft-dependent mechanism: effect on migration of skeletal muscle precursor cells

    PubMed Central

    2014-01-01

    Background Via the hepatocyte growth factor receptor (Met), hepatocyte growth factor (HGF) exerts key roles involving skeletal muscle development and regeneration. Heparan sulfate proteoglycans (HSPGs) are critical modulators of HGF activity, but the role of specific HSPGs in HGF regulation is poorly understood. Glypican-1 is the only HSPG expressed in myoblasts that localize in lipid raft membrane domains, controlling cell responses to extracellular stimuli. We determined if glypican-1 in these domains is necessary to stabilize the HGF-Met signaling complex and myoblast response to HGF. Methods C2C12 myoblasts and a derived clone (C6) with low glypican-1 expression were used as an experimental model. The activation of Met, ERK1/2 and AKT in response to HGF was evaluated. The distribution of Met and its activated form in lipid raft domains, as well as its dependence on glypican-1, were characterized by sucrose density gradient fractionation in both cell types. Rescue experiments reexpressing glypican-1 or a chimeric glypican-1 fused to the transmembrane and cytoplasmic domains of mouse syndecan-1 or myoblast pretreatment with MβCD were conducted. In vitro and in vivo myoblast migration assays in response to HGF were also performed. Results Glypican-1 localization in membrane raft domains was required for a maximum cell response to HGF. It stabilized Met and HGF in lipid raft domains, forming a signaling complex where the active phospho-Met receptor was concentrated. Glypican-1 also stabilized CD44 in a HGF-dependent manner. In addition, glypican-1 was required for in vitro and in vivo HGF-dependent myoblast migration. Conclusions Glypican-1 is a regulator of HGF-dependent signaling via Met in lipid raft domains. PMID:24517345

  16. Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts

    SciTech Connect

    Nordgren, Kendra K.S. Wallace, Kendall B.

    2014-01-01

    Doxorubicin (DOX) is a widely prescribed treatment for a broad scope of cancers, but clinical utility is limited by the cumulative, dose-dependent cardiomyopathy that occurs with repeated administration. DOX-induced cardiotoxicity is associated with the production of reactive oxygen species (ROS) and oxidation of lipids, DNA and proteins. A major cellular defense mechanism against such oxidative stress is activation of the Keap1/Nrf2-antioxidant response element (ARE) signaling pathway, which transcriptionally regulates expression of antioxidant genes such as Nqo1 and Gstp1. In the present study, we address the hypothesis that an initial event associated with DOX-induced oxidative stress is activation of the Keap1/Nrf2-dependent expression of antioxidant genes and that this is regulated through drug-induced changes in redox status of the Keap1 protein. Incubation of H9c2 rat cardiac myoblasts with DOX resulted in a time- and dose-dependent decrease in non-protein sulfhydryl groups. Associated with this was a near 2-fold increase in Nrf2 protein content and enhanced transcription of several of the Nrf2-regulated down-stream genes, including Gstp1, Ugt1a1, and Nqo1; the expression of Nfe2l2 (Nrf2) itself was unaltered. Furthermore, both the redox status and the total amount of Keap1 protein were significantly decreased by DOX, with the loss of Keap1 being due to both inhibited gene expression and increased autophagic, but not proteasomal, degradation. These findings identify the Keap1/Nrf2 pathway as a potentially important initial response to acute DOX-induced oxidative injury, with the primary regulatory events being the oxidation and autophagic degradation of the redox sensor Keap1 protein. - Highlights: • DOX caused a ∼2-fold increase in Nrf2 protein content. • DOX enhanced transcription of several Nrf2-regulated down-stream genes. • Redox status and total amount of Keap1 protein were significantly decreased by DOX. • Loss of Keap1 protein was due to

  17. Action of lovastatin, simvastatin, and pravastatin on sterol synthesis and their antiproliferative effect in cultured myoblasts from human striated muscle.

    PubMed

    van Vliet, A K; Nègre-Aminou, P; van Thiel, G C; Bolhuis, P A; Cohen, L H

    1996-11-08

    Lovastatin, simvastatin, and pravastatin are fairly strong inhibitors of sterol synthesis in human myoblasts in culture. Lovastatin and simvastatin have IC50 values of 19 +/- 6 nM and 4.0 +/- 2.3 nM, respectively. Pravastatin is a weaker inhibitor of sterol synthesis (IC50 value of 110 +/- 38 nM). Through inhibition of mevalonate production, these compounds have a distinct inhibiting effect on cell proliferation. Because proliferation of myoblasts is important in the repair of damaged skeletal muscle, experiments were performed to investigate the effect of lovastatin, simvastatin, and pravastatin on cell proliferation and cell viability. The more potent inhibitors of sterol synthesis, lovastatin, and simvastatin, were able to inhibit the proliferation of these cells during 3 days of incubation with drug concentrations of 1 microM for lovastatin and 0.1 microM or 1 microM for simvastatin. DNA synthesis was decreased by more than 80% in the presence of 1 microM of lovastatin or simvastatin. In contrast, under these conditions, pravastatin had no influence on cell proliferation or DNA synthesis, which is probably related to the lack of inhibition of sterol synthesis by pravastatin on extended incubation. The three 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors did not disturb cell viability because mitochondrial dehydrogenase activity and ATP content remained proportional to the number of cells in the culture at any concentration used.

  18. Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method

    PubMed Central

    Iyombe-Engembe, Jean-Paul; Ouellet, Dominique L; Barbeau, Xavier; Rousseau, Joël; Chapdelaine, Pierre; Lagüe, Patrick; Tremblay, Jacques P

    2016-01-01

    The CRISPR/Cas9 system is a great revolution in biology. This technology allows the modification of genes in vitro and in vivo in a wide variety of living organisms. In most Duchenne muscular dystrophy (DMD) patients, expression of dystrophin (DYS) protein is disrupted because exon deletions result in a frame shift. We present here the CRISPR-induced deletion (CinDel), a new promising genome-editing technology to correct the DMD gene. This strategy is based on the use of two gRNAs targeting specifically exons that precede and follow the patient deletion in the DMD gene. This pair of gRNAs induced a precise large additional deletion leading to fusion of the targeted exons. Using an adequate pair of gRNAs, the deletion of parts of these exons and the intron separating them restored the DMD reading frame in 62% of the hybrid exons in vitro in DMD myoblasts and in vivo in electroporated hDMD/mdx mice. Moreover, adequate pairs of gRNAs also restored the normal spectrin-like repeat of the dystrophin rod domain; such restoration is not obtained by exon skipping or deletion of complete exons. The expression of an internally deleted DYS protein was detected following the formation of myotubes by the unselected, treated DMD myoblasts. Given that CinDel induces permanent reparation of the DMD gene, this treatment would not have to be repeated as it is the case for exon skipping induced by oligonucleotides. PMID:26812655

  19. Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation

    PubMed Central

    Chang, Ya-Ju; Chen, Yun-Ju; Huang, Chia-Wei; Fan, Shih-Chen; Huang, Bu-Miin; Chang, Wen-Tsan; Tsai, Yau-Sheng; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Thiazolidinedione (TZD), a specific peroxisome proliferator-activated receptor γ (PPARγ) agonist, was developed to control blood glucose in diabetes patients. However, several side effects were reported that increased the risk of heart failure. We used C2C12 myoblasts to investigate the role of PPARs and their transcriptional activity during myotube formation. The role of mechanical stretch during myogenesis was also explored by applying cyclic stretch to the differentiating C2C12 myoblasts with 10% strain deformation at 1 Hz. The myogenesis medium (MM), composed of Dulbecco’s modified Eagle’s medium with 2% horse serum, facilitated myotube formation with increased myosin heavy chain and α-smooth muscle actin (α-SMA) protein expression. The PPARγ protein and PPAR response element (PPRE) promoter activity decreased during MM induction. Cyclic stretch further facilitated the myogenesis in MM with increased α-SMA and decreased PPARγ protein expression and inhibited PPRE promoter activity. Adding a PPARγ agonist (TZD) to the MM stopped the myogenesis and restored the PPRE promoter activity, whereas a PPARγ antagonist (GW9662) significantly increased the myotube number and length. During the myogenesis induction, application of cyclic stretch rescued the inhibitory effects of TZD. These results provide novel perspectives for mechanical stretch to interplay and rescue the dysfunction of myogenesis with the involvement of PPARγ and its target drugs. PMID:27047938

  20. Wnt/{beta}-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    SciTech Connect

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. Black-Right-Pointing-Pointer Wnt3a induces Id3 expression via canonical Wnt/{beta}-catenin pathway. Black-Right-Pointing-Pointer Wnt3a-induced Id3 expression does not depend on BMP signaling activation. Black-Right-Pointing-Pointer Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a {beta}-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/{beta}-catenin induced gene in myoblast cell fate determination.

  1. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts.

    PubMed

    Pantic, Boris; Borgia, Doriana; Giunco, Silvia; Malena, Adriana; Kiyono, Tohru; Salvatori, Sergio; De Rossi, Anita; Giardina, Emiliano; Sangiuolo, Federica; Pegoraro, Elena; Vergani, Lodovica; Botta, Annalisa

    2016-03-01

    Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro.

  2. Rbfox2-coordinated alternative splicing of Mef2d and Rock2 controls myoblast fusion during myogenesis

    PubMed Central

    Bland, Christopher S.; Kalsotra, Auinash; Scavuzzo, Marissa A.; Curk, Tomaz; Ule, Jernej; Li, Wei; Cooper, Thomas A.

    2014-01-01

    Summary Alternative splicing plays important regulatory roles during periods of physiological change. During development a large number of genes coordinately express protein isoform transitions regulated by alternative splicing, however, the mechanisms that coordinate splicing and the functional integration of the resultant tissue-specific protein isoforms are typically unknown. Here we show that the conserved Rbfox2 RNA binding protein regulates 30% of the splicing transitions observed during myogenesis and is required for the specific step of myoblast fusion. Integration of Rbfox2-dependent splicing outcomes from RNA-seq with Rbfox2 iCLIP data identified Mef2d and Rock2 as Rbfox2 splicing targets. Restored activities of Mef2d and Rock2 rescued myoblast fusion in Rbfox2 depleted cultures demonstrating functional cooperation of protein isoforms generated by coordinated alterative splicing. The results demonstrate that coordinated alternative splicing by a single RNA binding protein modulates transcription (Mef2d) and cell signaling (Rock2) programs to drive tissue-specific functions (cell fusion) to promote a developmental transition. PMID:25087874

  3. Tumor necrosis factor-α alters integrins and metalloprotease ADAM12 levels and signaling in differentiating myoblasts.

    PubMed

    Grzelkowska-Kowalczyk, K; Tokarska, J; Grabiec, K; Gajewska, M; Milewska, M; Błaszczyk, M

    2016-01-01

    The extracellular matrix (ECM) is important in the regulation of myogenesis. We hypothesized that tumor necrosis factor-α (TNF-α) modifies ECM during differentiation of mouse C2C12 myoblasts. Exogenous TNF-α (1 ng/ml) stimulated myoblast fusion on the 3rd day (by 160% vs control) but not on the 5th day of myogenesis. The level of integrin α5 was significantly augmented by TNF-α during 5 day-differentiation; however, integrin β1 was higher than control only on the 3rd day of cytokine treatment. Both the abundance of integrin α5 bound to actin and the level of integrin β1 complexed with integrin α5 increased in the presence of TNF-α, especially on the 3rd day of differentiation. Similarly, the stimulatory effects of TNF-α on integrin α3, metalloprotease ADAM12 and kinases related to integrins, FAK and ILK, were limited to the 3rd day of differentiation. We concluded that TNF-α-induced changes in ECM components in differentiating myogenic cells, i.e. i) increased expression of integrin α5, β1, α3, and metalloprotease ADAM12, ii) enhanced formation of α5β1 integrin receptors and interaction of integrin α5-cytoskeleton, and iii) increased expression of kinases associated with integrin signaling, FAK and ILK, were temporarily associated with the onset of myocyte fusion.

  4. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies.

    PubMed

    Zhu, Chun-Hong; Mouly, Vincent; Cooper, Racquel N; Mamchaoui, Kamel; Bigot, Anne; Shay, Jerry W; Di Santo, James P; Butler-Browne, Gillian S; Wright, Woodring E

    2007-08-01

    Cultured human myoblasts fail to immortalize following the introduction of telomerase. The availability of an immortalization protocol for normal human myoblasts would allow one to isolate cellular models from various neuromuscular diseases, thus opening the possibility to develop and test novel therapeutic strategies. The parameters limiting the efficacy of myoblast transfer therapy (MTT) could be assessed in such models. Finally, the presence of an unlimited number of cell divisions, and thus the ability to clone cells after experimental manipulations, reduces the risks of insertional mutagenesis by many orders of magnitude. This opportunity for genetic modification provides an approach for creating a universal donor that has been altered to be more therapeutically useful than its normal counterpart. It can be engineered to function under conditions of chronic damage (which are very different than the massive regeneration conditions that recapitulate normal development), and to overcome the biological problems such as cell death and failure to proliferate and migrate that limit current MTT strategies. We describe here the production and characterization of a human myogenic cell line, LHCN-M2, that has overcome replicative aging due to the expression of telomerase and cyclin-dependent kinase 4. We demonstrate that it functions as well as young myoblasts in xenotransplant experiments in immunocompromized mice under conditions of regeneration following muscle damage.

  5. The roles of supernatant of macrophage treated by excretory-secretory products from muscle larvae of Trichinella spiralis on the differentiation of C2C12 myoblasts.

    PubMed

    Bai, X; Wang, X L; Tang, B; Shi, H N; Boireau, P; Rosenthal, B; Wu, X P; Liu, M Y; Liu, X L

    2016-11-15

    The excretory-secretory products (ESPs) released by the muscle-larvae (ML) stage of Trichinella spiralis have been suggested to be involved in nurse cell formation. However, the molecular mechanisms by which ML-ESPs modulate nurse cell formation remain unclear. Macrophages exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for skeletal muscle repair, notably, via their actions on myogenic precursor cells. However, these interactions during T. spiralis infection have not been characterized. In the present study, the ability of conditioned medium (CM) from J774A.1 macrophages treated with ML-ESPs to influence the differentiation of murine myoblasts, and the mechanisms of this influence, were investigated in vitro. The results showed that the expression of Myogenic Regulatory Factors (MRFs) MyoD and myogenin, myosin heavy chain (MyHC), and the p21 cyclin-dependent kinase inhibitor were reduced in CM treated cells compared to their expression in the control group. These findings indicated that CM inhibited myoblast differentiation. Conversely, CM promoted myoblast proliferation and increased cyclin D1 levels. Taken together, results of our study suggested that CM can indirectly influence myoblast differentiation and proliferation, which provides a new method for the elucidation of the complex mechanisms involved in cell-parasite and cell-cell interactions during T. spiralis infection.

  6. Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model.

    PubMed

    Choi, In Young; Lim, HoTae; Estrellas, Kenneth; Mula, Jyothi; Cohen, Tatiana V; Zhang, Yuanfan; Donnelly, Christopher J; Richard, Jean-Philippe; Kim, Yong Jun; Kim, Hyesoo; Kazuki, Yasuhiro; Oshimura, Mitsuo; Li, Hongmei Lisa; Hotta, Akitsu; Rothstein, Jeffrey; Maragakis, Nicholas; Wagner, Kathryn R; Lee, Gabsang

    2016-06-07

    Duchenne muscular dystrophy (DMD) remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs). Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our "chemical-compound-based" strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFβ signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological "dual-SMAD" inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form "rescued" multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human "DMD-in-a-dish" model using hiPSC-based disease modeling.

  7. Long-Term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes In Vivo

    PubMed Central

    Suhr, Frank; Konou, Thierry M.; Tappe, Kim A.; Toigo, Marco; Jung, Hans H.; Henke, Christine; Steigleder, Ruth; Strissel, Pamela L.; Huebner, Hanna; Beckmann, Matthias W.; van der Keylen, Piet; Schoser, Benedikt; Schiffer, Thorsten; Frese, Laura; Bloch, Wilhelm; Strick, Reiner

    2015-01-01

    Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts. No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal muscle biopsies of competitive cyclists for muscle-specific attributes and expression of human endogenous retrovirus (ERV) envelope genes due to their involvement in cell fusion of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs) occurred. We propose that during the pre-competitive season SC proliferation occurred following with increased cell fusion during the competitive season. Expression of twenty-two envelope genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fusogenic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohistochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and SLC1A5 of Syncytin-1 showed significant decrease of expression in post-competitive muscles compared with the pre-competitive season, but only SLC1A4 protein expression localized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber, whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors, PPARγ and RXRα, showed no protein expression in the myofiber, whereas the pCREB-Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syncytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified during proliferating or actively-fusing human primary myoblast cell

  8. Long-Term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes In Vivo.

    PubMed

    Frese, Sebastian; Ruebner, Matthias; Suhr, Frank; Konou, Thierry M; Tappe, Kim A; Toigo, Marco; Jung, Hans H; Henke, Christine; Steigleder, Ruth; Strissel, Pamela L; Huebner, Hanna; Beckmann, Matthias W; van der Keylen, Piet; Schoser, Benedikt; Schiffer, Thorsten; Frese, Laura; Bloch, Wilhelm; Strick, Reiner

    2015-01-01

    Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts. No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal muscle biopsies of competitive cyclists for muscle-specific attributes and expression of human endogenous retrovirus (ERV) envelope genes due to their involvement in cell fusion of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs) occurred. We propose that during the pre-competitive season SC proliferation occurred following with increased cell fusion during the competitive season. Expression of twenty-two envelope genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fusogenic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohistochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and SLC1A5 of Syncytin-1 showed significant decrease of expression in post-competitive muscles compared with the pre-competitive season, but only SLC1A4 protein expression localized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber, whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors, PPARγ and RXRα, showed no protein expression in the myofiber, whereas the pCREB-Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syncytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified during proliferating or actively-fusing human primary myoblast cell

  9. The CDM superfamily protein MBC directs myoblast fusion through a mechanism that requires phosphatidylinositol 3,4,5-triphosphate binding but is independent of direct interaction with DCrk.

    PubMed

    Balagopalan, Lakshmi; Chen, Mei-Hui; Geisbrecht, Erika R; Abmayr, Susan M

    2006-12-01

    Myoblast city (mbc), a member of the CDM superfamily, is essential in the Drosophila melanogaster embryo for fusion of myoblasts into multinucleate fibers. Using germ line clones in which both maternal and zygotic contributions were eliminated and rescue of the zygotic loss-of-function phenotype, we established that mbc is required in the fusion-competent subset of myoblasts. Along with its close orthologs Dock180 and CED-5, MBC has an SH3 domain at its N terminus, conserved internal domains termed DHR1 and DHR2 (or "Docker"), and C-terminal proline-rich domains that associate with the adapter protein DCrk. The importance of these domains has been evaluated by the ability of MBC mutations and deletions to rescue the mbc loss-of-function muscle phenotype. We demonstrate that the SH3 and Docker domains are essential. Moreover, ethyl methanesulfonate-induced mutations that change amino acids within the MBC Docker domain to residues that are conserved in other CDM family members nevertheless eliminate MBC function in the embryo, which suggests that these sites may mediate interactions specific to Drosophila MBC. A functional requirement for the conserved DHR1 domain, which binds to phosphatidylinositol 3,4,5-triphosphate, implicates phosphoinositide signaling in myoblast fusion. Finally, the proline-rich C-terminal sites mediate strong interactions with DCrk, as expected. These sites are not required for MBC to rescue the muscle loss-of-function phenotype, however, which suggests that MBC's role in myoblast fusion can be carried out independently of direct DCrk binding.

  10. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    SciTech Connect

    Zuloaga, R.; Fuentes, E.N.; Molina, A.; Valdés, J.A.

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.

  11. Co-transplantation of plasmid-transfected myoblasts and myotubes into rat brains enables high levels of gene expression long-term

    NASA Technical Reports Server (NTRS)

    Jiao, S.; Williams, P.; Safda, N.; Schultz, E.; Wolff, J. A.

    1993-01-01

    We have previously proposed the use of primary muscle cells as a "platform," or "vehicle" for intracerebral transgene expression. Brain grafts of minced muscle, or cultured muscle cells persisted in rat brains for at least 6 mo without any decrease in graft size, or tumor formation. Stable, but moderate levels of intracerebral transgene expression were obtained by transplanting plasmid-transfected myotubes in culture. In the present study, high and stable levels of intracerebral transgene expression were achieved by the co-transplantation of plasmid-transfected myoblasts and myotubes in culture. Approximately 5 X 10(5) myoblasts and myotubes were transfected with 10 micrograms pRSVL plasmid DNA, and 30 micrograms Lipofectin (BRL), respectively. They were mixed together (total cell number was 1 million), and stereotactically injected into the caudate nucleus of an adult rat brain. The activity of luciferase, the product of transgene expression, was stable for at least 4 mo, and much higher than the levels in myotube grafts, or co-grafts of myoblasts and minced muscle. Presumably, the myotubes served as a framework on which the myoblasts can form myotubes. The sections of brains transplanted with co-graft of myoblasts, and myotubes transfected with pRSVLac-Z were stained immunofluorescently for beta-galactosidase activity. The muscle grafts contained beta-galactosidase positive myofibers 4 mo after transplantation. Such high and stable levels of in vivo expression after postnatal gene transfer have rarely been achieved. Primary muscle cells are useful vehicle for transgene expression in brains, and potentially valuable for gene therapy of degenerative neurological disorders.

  12. Small molecules dorsomorphin and LDN-193189 inhibit myostatin/GDF8 signaling and promote functional myoblast differentiation.

    PubMed

    Horbelt, Daniel; Boergermann, Jan H; Chaikuad, Apirat; Alfano, Ivan; Williams, Eleanor; Lukonin, Ilya; Timmel, Tobias; Bullock, Alex N; Knaus, Petra

    2015-02-06

    GDF8, or myostatin, is a member of the TGF-β superfamily of secreted polypeptide growth factors. GDF8 is a potent negative regulator of myogenesis both in vivo and in vitro. We found that GDF8 signaling was inhibited by the small molecule ATP competitive inhibitors dorsomorphin and LDN-193189. These compounds were previously shown to be potent inhibitors of BMP signaling by binding to the BMP type I receptors ALK1/2/3/6. We present the crystal structure of the type II receptor ActRIIA with dorsomorphin and demonstrate that dorsomorphin or LDN-193189 target GDF8 induced Smad2/3 signaling and repression of myogenic transcription factors. As a result, both inhibitors rescued myogenesis in myoblasts treated with GDF8. As revealed by quantitative live cell microscopy, treatment with dorsomorphin or LDN-193189 promoted the contractile activity of myotubular networks in vitro. We therefore suggest these inhibitors as suitable tools to promote functional myogenesis.

  13. Liquid Crystal Elastomer Microspheres as Three-Dimensional Cell Scaffolds Supporting the Attachment and Proliferation of Myoblasts.

    PubMed

    Bera, Tanmay; Freeman, Ernest J; McDonough, Jennifer A; Clements, Robert J; Aladlaan, Asaad; Miller, Donald W; Malcuit, Christopher; Hegmann, Torsten; Hegmann, Elda

    2015-07-08

    We report that liquid crystal elastomers (LCEs), often portrayed as artificial muscles, serve as scaffolds for skeletal muscle cell. A simultaneous microemulsion photopolymerization and cross-linking results in nematic LCE microspheres 10-30 μm in diameter that when conjoined form a LCE construct that serves as the first proof-of-concept for responsive LCE muscle cell scaffolds. Confocal microscopy experiments clearly established that LCEs with a globular, porous morphology permit both attachment and proliferation of C2C12 myoblasts, while the nonporous elastomer morphology, prepared in the absence of a microemulsion, does not. In addition, cytotoxicity and proliferation assays confirm that the liquid crystal elastomer materials are biocompatible promoting cellular proliferation without any inherent cytotoxicity.

  14. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux

    PubMed Central

    Kim, Hyunju; Lee, Kang Il; Jang, Minsu; Namkoong, Sim; Park, Rackhyun; Ju, Hyunwoo; Choi, Inho; Oh, Won Keun

    2016-01-01

    Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2) result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux. PMID:27257813

  15. Degree of Suppression of Mouse Myoblast Cell Line C2C12 Differentiation Varies According to Chondroitin Sulfate Subtype

    PubMed Central

    Warita, Katsuhiko; Oshima, Nana; Takeda-Okuda, Naoko; Tamura, Jun-ichi; Hosaka, Yoshinao Z.

    2016-01-01

    Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C2C12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion. PMID:27775651

  16. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype.

    PubMed

    Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D

    2011-03-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.

  17. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype

    PubMed Central

    Kato, Satoshi; Tomita, Katsuro; Titus, Louisa; Boden, Scott D.

    2011-01-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1−/− knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071

  18. Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts.

    PubMed

    Espinoza-Lewis, Ramon A; Yang, Qiumei; Liu, Jianming; Huang, Zhan-Peng; Hu, Xiaoyun; Chen, Daiwen; Wang, Da-Zhi

    2017-04-05

    Control of muscle cell proliferation and differentiation is essential to proper muscle development, function, and regeneration, and numerous transcriptional and post-transcriptional regulators are key to these processes. For example, recent studies have linked microRNAs (miRNAs) to muscle gene expression, development, and disease. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) has been reported to bind the 3'UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function in skeletal muscle and general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. SiRNA-based inhibition of Pcbp1 transcript levels in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth, a slow- to fast- myofibril switch and in the proliferation of myoblasts and muscle satellite cells. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with Argonaute 2 (AGO2) and other miRNA pathway components. Our results therefore link the function of Pcbp1 to the miRNA pathway in skeletal muscle in mice. Future studies could help determine whether human Pbcp1 is involved in disorders such as muscular dystrophy or muscle degeneration.

  19. Automated High-Content Assay for Compounds Selectively Toxic to Trypanosoma cruzi in a Myoblastic Cell Line

    PubMed Central

    Alonso-Padilla, Julio; Cotillo, Ignacio; Presa, Jesús L.; Cantizani, Juan; Peña, Imanol; Bardera, Ana I.; Martín, Jose J.; Rodriguez, Ana

    2015-01-01

    Background Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, represents a very important public health problem in Latin America where it is endemic. Although mostly asymptomatic at its initial stage, after the disease becomes chronic, about a third of the infected patients progress to a potentially fatal outcome due to severe damage of heart and gut tissues. There is an urgent need for new drugs against Chagas disease since there are only two drugs available, benznidazole and nifurtimox, and both show toxic side effects and variable efficacy against the chronic stage of the disease. Methodology/Principal Findings Genetically engineered parasitic strains are used for high throughput screening (HTS) of large chemical collections in the search for new anti-parasitic compounds. These assays, although successful, are limited to reporter transgenic parasites and do not cover the wide T. cruzi genetic background. With the aim to contribute to the early drug discovery process against Chagas disease we have developed an automated image-based 384-well plate HTS assay for T. cruzi amastigote replication in a rat myoblast host cell line. An image analysis script was designed to inform on three outputs: total number of host cells, ratio of T. cruzi amastigotes per cell and percentage of infected cells, which respectively provides one host cell toxicity and two T. cruzi toxicity readouts. The assay was statistically robust (Z´ values >0.6) and was validated against a series of known anti-trypanosomatid drugs. Conclusions/Significance We have established a highly reproducible, high content HTS assay for screening of chemical compounds against T. cruzi infection of myoblasts that is amenable for use with any T. cruzi strain capable of in vitro infection. Our visual assay informs on both anti-parasitic and host cell toxicity readouts in a single experiment, allowing the direct identification of compounds selectively targeted to the parasite. PMID:25615687

  20. Detection of Pancreatic Cancer-induced Cachexia using a Fluorescent Myoblast Reporter System and Analysis of Metabolite Abundance

    PubMed Central

    Winnard, Paul T.; Bharti, Santosh; Penet, Marie-France; Marik, Radharani; Mironchik, Yelena; Wildes, Flonne; Maitra, Anirban; Bhujwalla, Zaver M.

    2016-01-01

    The dire effects of cancer-induced cachexia undermine treatment and contribute to decreased survival rates. Therapeutic options for this syndrome are limited, and therefore efforts to identify signs of precachexia in cancer patients are necessary for early intervention. The applications of molecular and functional imaging that would enable a whole-body “holistic” approach to this problem may lead to new insights and advances for diagnosis and treatment of this syndrome. Here we have developed a myoblast optical reporter system with the purpose of identifying early cachectic events. We generated a myoblast cell line expressing a dual tdTomato:GFP construct that was grafted onto the muscle of mice bearing human pancreatic cancer xenografts to provide noninvasive live imaging of events associated with cancer-induced cachexia (i.e., weight loss). Real time optical imaging detected a strong tdTomato fluorescent signal from skeletal muscle grafts in mice with weight loses of only 1.2 to 2.7% and tumor burdens of only ~79 to ~170 mm3. Weight loss in cachectic animals was also associated with a depletion of lipid, cholesterol, valine, and alanine levels, which may provide informative biomarkers of cachexia. Taken together, our findings demonstrate the utility of a reporter system that is capable of tracking tumor-induced weight loss, an early marker of cachexia. Future studies incorporating resected tissue from human pancreatic ductal adenocarcinoma (PDAC) into a reporter-carrying mouse may be able to provide a risk assessment of cachexia with possible implications for therapeutic development. PMID:26719527

  1. Nandrolone, an anabolic steroid, stabilizes Numb protein through inhibition of mdm2 in C2C12 myoblasts.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Collier, Lauren; Bauman, William A; Cardozo, Christopher P

    2012-01-01

    Nandrolone, an anabolic steroid, slows denervation atrophy of rat muscle, prevents denervation-induced nuclear accumulation of intracellular domain of the Notch receptor, and elevates expression of Numb. Numb acts as an inhibitor of Notch signaling and promotes myogenic differentiation of satellite cells. Turnover of Numb is regulated by mdm2, an E3 ubiquitin ligase. With these considerations in mind, we investigated the effects of nandrolone on the expression of Numb and mdm2 proteins and determined the effect of mdm2 on nandrolone-induced alterations in Numb protein in C2C12 myoblasts. When C2C12 cells were cultured in a medium favoring differentiation (Dulbecco modified Eagle medium containing 2% horse serum), nandrolone up-regulated Numb protein levels in a time-dependent manner and prolonged Numb protein half-life from 10 to 18 hours. In contrast, nandrolone reduced the expression of mdm2 protein. To determine whether the decreased mdm2 expression induced by nandrolone was responsible for the increased levels and prolonged half-life of Numb protein in this cell line, mdm2-small interfering RNA (siRNA) was employed to inhibit mdm2 expression. Compared to cells transfected with scrambled siRNA (negative control), transfection with mdm2-siRNA increased basal Numb protein expression but abolished the further increase in Numb protein levels by nandrolone. In addition, transfection of mdm2-siRNA mimicked the effect of nandrolone to prolong the half-life of Numb protein. Moreover, when C2C12 cells were forced to overexpress mdm2, there was a significant decline in the expression of both basal and inducible Numb protein. Our data suggest that nandrolone, by a novel mechanism for this agent in a muscle cell type, increases Numb protein levels in C2C12 myoblasts by stabilizing Numb protein against degradation, at least in part, via suppression of mdm2 expression.

  2. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate.

    PubMed

    Lozano-Velasco, Estefanía; Vallejo, Daniel; Esteban, Francisco J; Doherty, Chris; Hernández-Torres, Francisco; Franco, Diego; Aránega, Amelia Eva

    2015-09-01

    The acquisition of a proliferating-cell status from a quiescent state as well as the shift between proliferation and differentiation are key developmental steps in skeletal-muscle stem cells (satellite cells) to provide proper muscle regeneration. However, how satellite cell proliferation is regulated is not fully understood. Here, we report that the c-isoform of the transcription factor Pitx2 increases cell proliferation in myoblasts by downregulating microRNA 15b (miR-15b), miR-23b, miR-106b, and miR-503. This Pitx2c-microRNA (miRNA) pathway also regulates cell proliferation in early-activated satellite cells, enhancing Myf5(+) satellite cells and thereby promoting their commitment to a myogenic cell fate. This study reveals unknown functions of several miRNAs in myoblast and satellite cell behavior and thus may have future applications in regenerative medicine.

  3. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7

    SciTech Connect

    Bonn, Bettina R.; Rudolf, Anja; Hornbruch-Freitag, Christina; Daum, Gabor; Kuckwa, Jessica; Kastl, Lena; Buttgereit, Detlev; Renkawitz-Pohl, Renate

    2013-02-15

    Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell–cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles. - Highlights: ► The class XVIII myosin encoding gene Mhcl is transcribed in the mesoderm. ► Mhcl localization at contact sites of fusing myoblasts depends on Rols7. ► Mhcl interacts in vitro with Rols7 which is essential for myogenesis. ► Functional redundancy with other myosins is likely as mutants show no muscle defects. ► Mhcl localizes adjacent to Z-discs of sarcomeres and might support muscle integrity.

  4. Small Heat Shock Protein αB-Crystallin Controls Shape and Adhesion of Glioma and Myoblast Cells in the Absence of Stress

    PubMed Central

    2016-01-01

    Cell shape and adhesion and their proper controls are fundamental for all biological systems. Mesenchymal cells migrate at an average rate of 6 to 60 μm/hr, depending on the extracellular matrix environment and cell signaling. Myotubes, fully differentiated muscle cells, are specialized for power-generation and therefore lose motility. Cell spreading and stabilities of focal adhesion are regulated by the critical protein vinculin from immature myoblast to mature costamere of differentiated myotubes where myofibril Z-band linked to sarcolemma. The Z-band is constituted from microtubules, intermediate filaments, cell adhesion molecules and other adapter proteins that communicate with the outer environment. Mesenchymal cells, including myoblast cells, convert actomyosin contraction forces to tension through mechano-responsive adhesion assembly complexes as Z-band equivalents. There is growing evidence that microtubule dynamics are involved in the generation of contractile forces; however, the roles of microtubules in cell adhesion dynamics are not well determined. Here, we show for the first time that αB-crystallin, a molecular chaperon for tubulin/microtubules, is involved in cell shape determination. Moreover, knockdown of this molecule caused myoblasts and glioma cells to lose their ability for adhesion as they tended to behave like migratory cells. Surprisingly, αB-crystallin knockdown in both C6 glial cells and L6 myoblast permitted cells to migrate more rapidly (2.7 times faster for C6 and 1.3 times faster for L6 cells) than dermal fibroblast. On the other hand, overexpression of αB-crystallin in cells led to an immortal phenotype because of persistent adhesion. Position of matured focal adhesion as visualized by vinculin immuno-staining, stress fiber direction, length, and density were clearly αB-crystallin dependent. These results indicate that the small HSP αB-crystallin has important roles for cell adhesion, and thus microtubule dynamics are necessary

  5. IGF-1 induces IP3 -dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation.

    PubMed

    Valdés, Juan A; Flores, Sylvia; Fuentes, Eduardo N; Osorio-Fuentealba, Cesar; Jaimovich, Enrique; Molina, Alfredo

    2013-07-01

    Skeletal muscle differentiation is a complex and highly regulated process characterized by cell cycle arrest, which is associated with morphological changes including myoblast alignment, elongation, and fusion into multinucleated myotubes. This is a balanced process dynamically coordinated by positive and negative signals such as the insulin-like growth factor I (IGF-1) and myostatin (MSTN), respectively. In this study, we report that the stimulation of skeletal myoblasts during differentiation with IGF-1 induces a rapid and transient calcium increase from intracellular stores, which are principally mediated through the phospholipase C gamma (PLC γ)/inositol 1,4,5-triphosphate (IP3 )-dependent signaling pathways. This response was completely blocked when myoblasts were incubated with LY294002 or transfected with the dominant-negative p110 gamma, suggesting a fundamental role of phosphatidylinositol 3-kinase (PI3K) in PLCγ activation. Additionally, we show that calcium released via IP3 and induced by IGF-1 stimulates NFAT-dependent gene transcription and nuclear translocation of the GFP-labeled NFATc3 isoform. This activation was independent of extracellular calcium influx and calcium release mediated by ryanodine receptor (RyR). Finally, we examined mstn mRNA levels and mstn promoter activity in myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents and in reporter activity, which was inhibited by cyclosporin A, 11R-VIVIT, and by inhibitors of the PI3Kγ, PLCγ, and IP3 receptor. Our results strongly suggest that IGF-1 regulates myostatin transcription through the activation of the NFAT transcription factor in an IP3 /calcium-dependent manner. This is the first study to demonstrate a role of calcium-dependent signaling pathways in the mRNA expression of myostatin.

  6. Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation

    NASA Astrophysics Data System (ADS)

    Böcking, Dominique; Wiltschka, Oliver; Niinimäki, Jenni; Shokry, Hussein; Brenner, Rolf; Lindén, Mika; Sahlgren, Cecilia

    2014-01-01

    Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery.Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with

  7. The histone demethylase KDM4B interacts with MyoD to regulate myogenic differentiation in C2C12 myoblast cells.

    PubMed

    Choi, Jang Hyun; Song, Young Joon; Lee, Hansol

    2015-01-24

    Enzymes that mediate posttranslational modifications of histone and nonhistone proteins have been implicated in regulation of skeletal muscle differentiation. However, functions of histone demethylases that could counter the actions of H3-K9 specific histone methyltransferases remain still obscure. Here we present evidences that KDM4B histone demethylase regulates expression of myogenic regulators such as MyoD and thereby controls myogenic differentiation of C2C12 myoblast cells. We demonstrate that expression of KDM4B gradually increases during myogenic differentiation and depletion of KDM4B using shRNA results in inhibition of differentiation in C2C12 myoblast cells, which is correlated with decreased expression of MyoD and myogenin. In addition, we find that KDM4B shRNA represses expression of MyoD promoter-driven luciferase reporter and exogenous expression of MyoD rescues myogenic potential in KDM4B-depleted myoblast cells. We further show that KDM4B interacts with MyoD, binds to MyoD and myogenin promoters in vivo, and finally, is involved in demethylation of tri-methylated H3-K9 on promoters of MyoD and myogenin. Taken together, our data suggest that KDM4B plays key roles in myogenic differentiation of C2C12 cells, presumably by its function as a H3-K9 specific histone demethylase.

  8. Preliminary Quantitative Profile of Differential Expression between Rat L6 Myoblasts and Myotubes by Stable Isotope Labeling by Amino acids in Cell Culture

    PubMed Central

    Cui, Ziyou; Chen, Xiulan; Lu, Bingwen; Park, Sung Kyu; Xu, Tao; Xie, Zhensheng; Xue, Peng; Hou, Junjie; Hang, Haiying; Yates, John R.; Yang, Fuquan

    2010-01-01

    Defining the mechanisms governing myogenesis has advanced in recent years. Skeletal-muscle differentiation is a multi-step process controlled spatially and temporally by various factors at the transcription level. To explore those factors involved in myogenesis, stable isotope labeling with amino acids in cell culture (SILAC), coupled with high accuracy mass spectrometry (LTQ-Orbitrap), was applied successfully. Rat L6 cell line is an excellent model system for studying muslce myogenesis in vitro. When mononucleate L6 myoblast cells reach confluent in culture plate, they could transform into multinucleate myotubes by serum starvation. By comparing protein expression of L6 myoblasts and terminally differentiated multinucleated myotubes, 1170 proteins were quantified and 379 proteins changed significantly in fully differentiated myotubes in contrast to myoblasts. These differentially expressed proteins are mainly involved in inter-or intracellular signaling, protein synthesis and degradation, protein folding, cell adhesion and extracelluar matrix, cell structure and motility, metabolism, substance transportation, etc. These findings were supported by many previous studies on myogenic differentiation, of which many up-regulated proteins were found to be involved in promoting skeletal muscle differentiation for the first time in our study. In sum, our results provide new clues for understanding the mechanism of myogenesis. PMID:19253283

  9. PAX3-FOXO1 is essential for tumour initiation and maintenance but not recurrence in a human myoblast model of rhabdomyosarcoma.

    PubMed

    Pandey, Puspa R; Chatterjee, Bishwanath; Olanich, Mary E; Khan, Javed; Miettinen, Markku M; Hewitt, Stephen M; Barr, Frederic G

    2017-01-31

    The PAX3-FOXO1 fusion gene is generated by a 2;13 chromosomal translocation and is a characteristic feature of an aggressive subset of rhabdomyosarcoma (RMS). To dissect the mechanism of oncogene action during RMS tumourigenesis and progression, doxycycline-inducible PAX3-FOXO1 and constitutive MYCN expression constructs were introduced into immortalised human myoblasts. Though myoblasts expressing PAX3-FOXO1 or MYCN alone were not transformed in focus formation assays, combined PAX3-FOXO1 and MYCN expression resulted in transformation. Following intramuscular injection into immunodeficient mice, myoblasts expressing PAX3-FOXO1 and MYCN formed rapidly growing RMS tumours whereas myoblasts expressing only PAX3-FOXO1 formed tumours after a longer latency period. Doxycycline withdrawal in myoblasts expressing inducible PAX3-FOXO1 and constitutive MYCN following tumour formation in vivo or focus formation in vitro resulted in tumour regression or smaller foci associated with myogenic differentiation and cell death. Following regression, most tumours recurred in the absence of doxycycline. Analysis of recurrent tumours revealed a subset without PAX3-FOXO1 expression, and cell lines derived from these recurrent tumours demonstrated transformation in the absence of doxycycline. The doxycycline-independent oncogenicity in these recurrent tumour-derived lines persisted even after PAX3-FOXO1 was inactivated by a CRISPR-Cas9 editing strategy. Whereas cell lines derived from primary tumours were dependent on PAX3-FOXO1 and differentiated following doxycycline withdrawal, recurrent tumour-derived cells without PAX3-FOXO1 expression did not differentiate under these conditions. These findings indicate that PAX3-FOXO1 collaborates with MYCN during early RMS tumourigenesis to dysregulate proliferation and inhibit myogenic differentiation and cell death. Although most cells in the primary tumours are dependent on PAX3-FOXO1, recurrent tumours can develop by a PAX3-FOXO1

  10. Comparative Proteomic Study of Fatty Acid-treated Myoblasts Reveals Role of Cox-2 in Palmitate-induced Insulin Resistance.

    PubMed

    Chen, Xiulan; Xu, Shimeng; Wei, Shasha; Deng, Yaqin; Li, Yiran; Yang, Fuquan; Liu, Pingsheng

    2016-02-22

    Accumulated studies demonstrate that saturated fatty acids (FAs) such as palmitic acid (PA) inhibit insulin signaling in skeletal muscle cells and monounsaturated fatty acids such as oleic acid (OA) reverse the effect of PA on insulin signaling. The detailed molecular mechanism of these opposite effects remains elusive. Here we provide a comparative proteomic study of skeletal myoblast cell line C2C12 that were untreated or treated with PA, and PA plus OA. A total of 3437 proteins were quantified using SILAC in this study and 29 proteins fall into the pattern that OA reverses PA effect. Expression of some these proteins were verified using qRT-PCR and Western blot. The most significant change was cyclooxygenase-2 (Cox-2). In addition to whole cell comparative proteomic study, we also compared lipid droplet (LD)-associated proteins and identified that Cox-2 was one of three major altered proteins under the FA treatment. This finding was then confirmed using immunofluorescence. Finally, Cox-2 selective inhibitor, celecoxib protected cells from PA-reduced insulin signaling Akt phosphorylation. Together, these results not only provide a dataset of protein expression change in FA treatment but also suggest that Cox-2 and lipid droplets (LDs) are potential players in PA- and OA-mediated cellular processes.

  11. Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling

    PubMed Central

    Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas

    2017-01-01

    In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro. PMID:28134270

  12. Amino acid availability regulates S6K1 and protein synthesis in avian insulin-insensitive QM7 myoblasts.

    PubMed

    Tesseraud, Sophie; Bigot, Karine; Taouis, Mohammed

    2003-04-10

    The regulation of S6K1 by nutritional status and insulin has been recently reported in vivo in chicken muscle despite the relative insulin resistance of this tissue as estimated by phosphatidylinositol 3-kinase (PI3-kinase) activity. The present work aimed to study the impact of amino acids on S6K1 activity in quail muscle (QM7) myoblasts. Firstly, we characterized S6K1 in QM7 cells and demonstrated the absence of insulin receptors in these cells. Secondly, we showed that amino acids in the absence of insulin induced S6K1 phosphorylation on Thr389 and concomitantly increased its enzymatic activity. Amino acid-induced S6K1 activation was inhibited by LY294002 (PI3-kinase inhibitor) and rapamycin (inhibitor of the mammalian target of rapamycin, mTOR), suggesting the involvement of an avian homolog of mTOR. The availability of individual amino acids (methionine or leucine) regulated S6K1 phosphorylation on Thr389 and QM7 protein synthesis. In conclusion, amino acids regulate S6K1 phosphorylation and activity in QM7 cells through the mTOR/PI3-kinase pathway in an insulin-independent manner.

  13. Celf1 regulates cell cycle and is partially responsible for defective myoblast differentiation in myotonic dystrophy RNA toxicity.

    PubMed

    Peng, Xiaoping; Shen, Xiaopeng; Chen, Xuanying; Liang, Rui; Azares, Alon R; Liu, Yu

    2015-07-01

    Myotonic dystrophy is a neuromuscular disease of RNA toxicity. The disease gene DMPK harbors expanded CTG trinucleotide repeats on its 3'-UTR. The transcripts of this mutant DMPK led to misregulation of RNA-binding proteins including MBNL1 and Celf1. In myoblasts, CUG-expansion impaired terminal differentiation. In this study, we formally tested how the abundance of Celf1 regulates normal myocyte differentiation, and how Celf1 expression level mediates CUG-expansion RNA toxicity-triggered impairment of myocyte differentiation. As the results, overexpression of Celf1 largely recapitulated the defects of myocytes with CUG-expansion, by increasing myocyte cycling. Knockdown of endogenous Celf1 level led to precocious myotube formation, supporting a negative connection between Celf1 abundance and myocyte terminal differentiation. Finally, knockdown of Celf1 in myocyte with CUG-expansion led to partial rescue, by promoting cell cycle exit. Our results suggest that Celf1 plays a distinctive and negative role in terminal myocyte differentiation, which partially contribute to DM1 RNA toxicity. Targeting Celf1 may be a valid strategy in correcting DM1 muscle phenotypes, especially for congenital cases.

  14. Synthetically modified mRNA for efficient and fast human iPS cell generation and direct transdifferentiation to myoblasts.

    PubMed

    Preskey, David; Allison, Thomas F; Jones, Mark; Mamchaoui, Kamel; Unger, Christian

    2016-05-06

    Synthetic mRNA transfection enables efficient and controlled gene expression in human cells, without genome integrations. Further, modifications to the mRNA and transfection protocol now allow for repeated transfection and long-term gene expression of an otherwise short-lived mRNA expression. This is mainly achieved through introducing modified nucleosides and interferon suppression. In this study we provide an overview and details of the advanced synthesis and modifications of mRNA originally developed for reprogramming. This mRNA allows for very efficient transfection of fibroblasts enabling the generation of high quality human iPS cells with a six-factor mRNA cocktail in 9 days. Furthermore, we synthesised and transfected modified MYOD1 mRNA to transdifferentiate human fibroblasts into myoblast-like cells without a transgene footprint. This efficient and integration-free mRNA technology opens the door for safe and controlled gene expression to reverse or redirect cell fate.

  15. Skeletal myoblasts for heart regeneration and repair: state of the art and perspectives on the mechanisms for functional cardiac benefits.

    PubMed

    Formigli, L; Zecchi-Orlandini, S; Meacci, E; Bani, D

    2010-01-01

    Until recently, skeletal myoblasts (SkMBs) have been the most widely used cells in basic research and clinical trials of cell based therapy for cardiac repair and regeneration. Although SkMB engraftment into the post-infarcted heart has been consistently found to improve cardiac contractile function, the underlying therapeutic mechanisms remain still a matter of controversy and debate. This is basically because SkMBs do not attain a cardiac-like phenotype once homed into the diseased heart nor they form a contractile tissue functionally coupled with the surrounding viable myocardium. This issue of concern has generated the idea that the cardiotropic action of SkMBs may depend on the release of paracrine factors. However, the paracrine hypothesis still remains ill-defined, particularly concerning the identification of the whole spectrum of cell-derived soluble factors and details on their cardiac effects. In this context, the possibility to genetically engineering SkMBs to potentate their paracrine attitudes appears particularly attractive and is actually raising great expectation. Aim of the present review is not to cover all the aspects of cell-based therapy with SkMBs, as this has been the object of previous exhaustive reviews in this field. Rather, we focused on novel aspects underlying the interactions between SkMBs and the host cardiac tissues which may be relevant for directing the future basic and applied research on SkMB transplantation for post ischemic cardiac dysfunction.

  16. In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts.

    PubMed

    Le Bihan, Marie-Catherine; Bigot, Anne; Jensen, Søren Skov; Dennis, Jayne L; Rogowska-Wrzesinska, Adelina; Lainé, Jeanne; Gache, Vincent; Furling, Denis; Jensen, Ole Nørregaard; Voit, Thomas; Mouly, Vincent; Coulton, Gary R; Butler-Browne, Gillian

    2012-12-21

    Efficient muscle regeneration requires cross talk between multiple cell types via secreted signaling molecules. However, as yet there has been no comprehensive analysis of this secreted signaling network in order to understand how it regulates myogenesis in humans. Using integrated proteomic and genomic strategies, we show that human muscle cells release not only soluble secreted proteins through conventional secretory mechanisms but also complex protein and nucleic acid cargos via membrane microvesicle shedding. The soluble secretome of muscle cells contains 253 conventionally secreted signaling proteins, including 43 previously implicated in myogenesis, while others are known to modulate various cell types thus implying a much broader role for myoblasts in muscle remodeling. We also isolated and characterized two types of secreted membrane-derived vesicles: nanovesicles harboring typical exosomal features and larger, morphologically distinct, microvesicles. While they share some common features, their distinct protein and RNA cargos suggest independent functions in myogenesis. We further demonstrate that both types of microvesicles can dock and fuse with adjacent muscle cells but also deliver functional protein cargo. Thus, the intercellular signaling networks invoked during muscle differentiation and regeneration may employ conventional soluble signaling molecules acting in concert with muscle derived microvesicles delivering their cargos directly into target cells.

  17. Specific deletion of CMF1 nuclear localization domain causes incomplete cell cycle withdrawal and impaired differentiation in avian skeletal myoblasts

    SciTech Connect

    Dees, Ellen . E-mail: ellen.dees@vanderbilt.edu; Robertson, J. Brian; Zhu, Tianli; Bader, David

    2006-10-01

    CMF1 is a protein expressed in embryonic striated muscle with onset of expression preceding that of contractile proteins. Disruption of CMF1 in myoblasts disrupts muscle-specific protein expression. Preliminary studies indicate both nuclear and cytoplasmic distribution of CMF1 protein, suggesting functional roles in both cellular compartments. Here we examine the nuclear function of CMF1, using a newly characterized antibody generated against the CMF1 nuclear localization domain and a CMF1 nuclear localization domain-deleted stable myocyte line. The antibody demonstrates nuclear distribution of the CMF1 protein both in vivo and in cell lines, with clustering of CMF1 protein around chromatin during mitosis. In more differentiated myocytes, the protein shifts to the cytoplasm. The CMF1 NLS-deleted cell lines have markedly impaired capacity to differentiate. Specifically, these cells express less contractile protein than wild-type or full-length CMF1 stably transfected cells, and do not fuse properly into multinucleate syncytia with linear nuclear alignment. In response to low serum medium, a signal to differentiate, CMF1 NLS-deleted cells enter G0, but continue to express proliferation markers and will reenter the cell cycle when stimulated by restoring growth medium. These data suggest that CMF1 is involved in regulation the transition from proliferation to differentiation in embryonic muscle.

  18. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo

    PubMed Central

    Joshi, Shilpy; Le Gras, Stéphanie; Watanabe, Shuichi; Braun, Thomas

    2017-01-01

    The TEAD family of transcription factors (TEAD1-4) bind the MCAT element in the regulatory elements of both growth promoting and myogenic differentiation genes. Defining TEAD transcription factor function in myogenesis has proved elusive due to overlapping expression of family members and their functional redundancy. We show that silencing of either Tead1, Tead2 or Tead4 did not effect primary myoblast (PM) differentiation, but that their simultaneous knockdown strongly impaired differentiation. In contrast, Tead1 or Tead4 silencing impaired C2C12 differentiation showing their different contributions in PMs and C2C12 cells. Chromatin immunoprecipitation identified enhancers associated with myogenic genes bound by combinations of Tead4, Myod1 or Myog. Tead4 regulated distinct gene sets in C2C12 cells and PMs involving both activation of the myogenic program and repression of growth and signaling pathways. ChIP-seq from mature mouse muscle fibres in vivo identified a set of highly transcribed muscle cell-identity genes and sites bound by Tead1 and Tead4. Although inactivation of Tead4 in mature muscle fibres caused no obvious phenotype under normal conditions, notexin-induced muscle regeneration was delayed in Tead4 mutants suggesting an important role in myogenic differentiation in vivo. By combining knockdown in cell models in vitro with Tead4 inactivation in muscle in vivo, we provide the first comprehensive description of the specific and redundant roles of Tead factors in myogenic differentiation. PMID:28178271

  19. Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expression.

    PubMed

    Kanno, Yuichiro; Ota, Rumi; Someya, Kousuke; Kusakabe, Taichi; Kato, Keisuke; Inouye, Yoshio

    2013-01-01

    The myogenic differentiation of C2C12 myoblast cells is induced by the novel androgen receptor (AR) partial agonist, (17α,20E)-17,20-[(1-methoxyethylidene)bis-(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), as well as by dihydrotestosterone (DHT). YK11 is a selective androgen receptor modulator (SARM), which activates AR without the N/C interaction. In this study, we further investigated the mechanism by which YK11 induces myogenic differentiation of C2C12 cells. The induction of key myogenic regulatory factors (MRFs), such as myogenic differentiation factor (MyoD), myogenic factor 5 (Myf5) and myogenin, was more significant in the presence of YK11 than in the presence of DHT. YK11 treatment of C2C12 cells, but not DHT, induced the expression of follistatin (Fst), and the YK11-mediated myogenic differentiation was reversed by anti-Fst antibody. These results suggest that the induction of Fst is important for the anabolic effect of YK11.

  20. Intracellular Distribution and Nuclear Activity of Antisense Oligonucleotides After Unassisted Uptake in Myoblasts and Differentiated Myotubes In Vitro.

    PubMed

    González-Barriga, Anchel; Nillessen, Bram; Kranzen, Julia; van Kessel, Ingeborg D G; Croes, Huib J E; Aguilera, Begoña; de Visser, Peter C; Datson, Nicole A; Mulders, Susan A M; van Deutekom, Judith C T; Wieringa, Bé; Wansink, Derick G

    2017-04-04

    Clinical efficacy of antisense oligonucleotides (AONs) for the treatment of neuromuscular disorders depends on efficient cellular uptake and proper intracellular routing to the target. Selection of AONs with highest in vitro efficiencies is usually based on chemical or physical methods for forced cellular delivery. Since these methods largely bypass existing natural mechanisms for membrane passage and intracellular trafficking, spontaneous uptake and distribution of AONs in cells are still poorly understood. Here, we report on the unassisted uptake of naked AONs, so-called gymnosis, in muscle cells in culture. We found that gymnosis works similarly well for proliferating myoblasts as for terminally differentiated myotubes. Cell biological analyses combined with microscopy imaging showed that a phosphorothioate backbone promotes efficient gymnosis, that uptake is clathrin mediated and mainly results in endosomal-lysosomal accumulation. Nuclear localization occurred at a low level, but the gymnotically delivered AONs effectively modulated the expression of their nuclear RNA targets. Chloroquine treatment after gymnotic delivery helped increase nuclear AON levels. In sum, we demonstrate that gymnosis is feasible in proliferating and non-proliferating muscle cells and we confirm the relevance of AON chemistry for uptake and intracellular trafficking with this method, which provides a useful means for bio-activity screening of AONs in vitro.

  1. Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas

    2017-01-01

    In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro.

  2. Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts.

    PubMed

    Sestili, Piero; Barbieri, Elena; Martinelli, Chiara; Battistelli, Michela; Guescini, Michele; Vallorani, Luciana; Casadei, Lucia; D'Emilio, Alessandra; Falcieri, Elisabetta; Piccoli, Giovanni; Agostini, Deborah; Annibalini, Giosuè; Paolillo, Marco; Gioacchini, Anna Maria; Stocchi, Vilberto

    2009-09-01

    Creatine (Cr), one of the most popular nutritional supplements among athletes, has been recently shown to prevent the cytotoxicity caused by different oxidative stressors in various mammalian cell lines, including C2C12 myoblasts, via a direct antioxidant activity. Here, the effect of Cr on the differentiating capacity of C2C12 cells exposed to H(2)O(2) has been investigated. Differentiation into myotubes was monitored using morphological, ultrastructural, and molecular techniques. Treatment with H(2)O(2) (1 h) not only caused a significant (30%) loss of cell viability, but also abrogated the myogenic ability of surviving C2C12. Cr-supplementation (24 h prior to H(2)O(2) treatment) was found to prevent these effects. Interestingly, H(2)O(2)-challenged cells preconditioned with the established antioxidants trolox or N-acetyl-cysteine, although cytoprotected, did not display the same differentiating ability characterizing oxidatively-injured, Cr-supplemented cells. Besides acting as an antioxidant, Cr increased the level of muscle regulatory factors and IGF1 (an effect partly refractory to oxidative stress), the cellular availability of phosphocreatine and seemed to exert some mitochondrially-targeted protective activity. It is concluded that Cr preserves the myogenic ability of oxidatively injured C2C12 via a pleiotropic mechanism involving not only its antioxidant capacity, but also the contribution to cell energy charge and effects at the transcriptional level which common bona fide antioxidants lack.

  3. Small Molecules Dorsomorphin and LDN-193189 Inhibit Myostatin/GDF8 Signaling and Promote Functional Myoblast Differentiation*

    PubMed Central

    Horbelt, Daniel; Boergermann, Jan H.; Chaikuad, Apirat; Alfano, Ivan; Williams, Eleanor; Lukonin, Ilya; Timmel, Tobias; Bullock, Alex N.; Knaus, Petra

    2015-01-01

    GDF8, or myostatin, is a member of the TGF-β superfamily of secreted polypeptide growth factors. GDF8 is a potent negative regulator of myogenesis both in vivo and in vitro. We found that GDF8 signaling was inhibited by the small molecule ATP competitive inhibitors dorsomorphin and LDN-193189. These compounds were previously shown to be potent inhibitors of BMP signaling by binding to the BMP type I receptors ALK1/2/3/6. We present the crystal structure of the type II receptor ActRIIA with dorsomorphin and demonstrate that dorsomorphin or LDN-193189 target GDF8 induced Smad2/3 signaling and repression of myogenic transcription factors. As a result, both inhibitors rescued myogenesis in myoblasts treated with GDF8. As revealed by quantitative live cell microscopy, treatment with dorsomorphin or LDN-193189 promoted the contractile activity of myotubular networks in vitro. We therefore suggest these inhibitors as suitable tools to promote functional myogenesis. PMID:25368322

  4. Transthyretin: A Transporter Protein Essential for Proliferation of Myoblast in the Myogenic Program

    PubMed Central

    Lee, Eun Ju; Pokharel, Smritee; Jan, Arif Tasleem; Huh, Soyeon; Galope, Richelle; Lim, Jeong Ho; Lee, Dong-Mok; Choi, Sung Wook; Nahm, Sang-Soep; Kim, Yong-Woon; Park, So-Young; Choi, Inho

    2017-01-01

    Irregularities in the cellular uptake of thyroid hormones significantly affect muscle development and regeneration. Herein, we report indispensable role of transthyretin (TTR) in maintaining cellular thyroxine level. TTR was found to enhance recruitment of muscle satellite cells to the site of injury, thereby regulating muscle regeneration. Fluorescence-activated cell sorting (FACS) and immunofluorescence analysis of TTRwt (TTR wild type) and TTRkd (TTR knock-down) cells revealed that TTR controlled cell cycle progression by affecting the expression of Cyclin A2. Deiodinase 2 (D2) mediated increases in triiodothyronine levels were found to regulate the expression of myogenic marker, myogenin (MYOG). Moreover, use of a coumarin derivative (CD) revealed a significant reduction in cellular thyroxine, thereby indicating that TTR play a role in the transport of thyroxine. Taken together, these findings suggest that TTR mediated transport of thyroxine represents a survival mechanism necessary for the myogenic program. The results of this study will be highly useful to the strategic development of novel therapeutics to combat muscular dystrophies. PMID:28075349

  5. Expression and subcellular localization of myogenic regulatory factors during the differentiation of skeletal muscle C2C12 myoblasts.

    PubMed

    Ferri, Paola; Barbieri, Elena; Burattini, Sabrina; Guescini, Michele; D'Emilio, Alessandra; Biagiotti, Laura; Del Grande, Paolo; De Luca, Antonio; Stocchi, Vilberto; Falcieri, Elisabetta

    2009-12-15

    It is known that the MyoD family members (MyoD, Myf5, myogenin, and MRF4) play a pivotal role in the complex mechanism of skeletal muscle cell differentiation. However, fragmentary information on transcription factor-specific regulation is available and data on their post-transcriptional and post-translational behavior are still missing. In this work, we combined mRNA and protein expression analysis with their subcellular localization. Each myogenic regulator factor (MRF) revealed a specific mRNA trend and a protein quantitative analysis not overlapping, suggesting the presence of post-transcriptional mechanisms. In addition, each MRF showed a specific behavior in situ, characterized by a differentiation stage-dependent localization suggestive of a post-translational regulation also. Consistently with their transcriptional activity, immunogold electron microscopy data revealed MRFs distribution in interchromatin domains. Our results showed a MyoD and Myf5 contrasting expression profile in proliferating myoblasts, as well as myogenin and MRF4 opposite distribution in the terminally differentiated myotubes. Interestingly, MRFs expression and subcellular localization analysis during C2C12 cell differentiation stages showed two main MRFs regulation mechanisms: (i) the protein half-life regulation to modulate the differentiation stage-dependent transcriptional activity and (ii) the cytoplasmic retention, as a translocation process, to inhibit the transcriptional activity. Therefore, our results exhibit that MRFs nucleo-cytoplasmic trafficking is involved in muscle differentiation and suggest that, besides the MRFs expression level, also MRFs subcellular localization, related to their functional activity, plays a key role as a regulatory step in transcriptional control mechanisms.

  6. MicroRNAs Regulate Cellular ATP Levels by Targeting Mitochondrial Energy Metabolism Genes during C2C12 Myoblast Differentiation

    PubMed Central

    Siengdee, Puntita; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2. PMID:26010876

  7. A candidate molecule for the matrix assembly receptor to the N-terminal 29-kDa fragment of fibronectin in chick myoblasts.

    PubMed

    Moon, K Y; Shin, K S; Song, W K; Chung, C H; Ha, D B; Kang, M S

    1994-03-11

    Myoblast surface proteins with binding activity toward the N-terminal 29-kDa fragment of fibronectin were identified by two different experimental techniques: one involves radioiodination of the cell surface proteins, followed by solubilization with Triton X-100 and affinity purification on a Sepharose column conjugated with the 29-kDa fragment, and the other involves cross-linking of the 29-kDa fragment to the cells metabolically labeled with [35S]methionine, followed by immunoprecipitation with anti-29-kDa IgG. Both approaches revealed that primary cultures of chick myoblasts contain the 66- and 48-kDa proteins that bind to the 29-kDa fragment. These binding proteins were then purified to apparent homogeneity by two successive chromatographies of the solubilized extracts of 12-day-old embryonic muscle on wheat germ agglutinin-agarose and 29-kDa fragment-Sepharose columns. However, the 48-kDa protein was found to be derived from contaminating fibroblasts upon immunoblot analysis of the myogenic cell lines, rat L8E63 and mouse C2A3, and cultured fibroblasts using the antibody raised against the 66-kDa protein. Anti-66-kDa IgG inhibited the binding of the 125I-29-kDa protein to the primary culture of myoblasts in a dose-dependent manner. On the other hand, the same antibody showed little or no effect on the initial binding of 125I-fibronectin to the cell surface, but dramatically inhibited its incorporation into deoxycholate-insoluble matrices. Furthermore, Fab fragments of anti-66-kDa IgG completely blocked the incorporation of fluoresceinated fibronectin into matrices but not its binding to the cell surface. These results suggest that fibronectin matrix assembly is mediated at least in part by the interaction of the 66-kDa protein with the N-terminal type I domain of fibronectin.

  8. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    SciTech Connect

    Eom, Young Woo; Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin; Park, Won Jin; Kong, Jee Hyun; Shim, Kwang Yong; Lee, Jong In; Kim, Hyun Soo

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  9. Thimerosal-Induced Apoptosis in Mouse C2C12 Myoblast Cells Occurs through Suppression of the PI3K/Akt/Survivin Pathway

    PubMed Central

    Li, Wen-Xue; Chen, Si-Fan; Chen, Li-Ping; Yang, Guang-Yu; Li, Jun-Tao; Liu, Hua-Zhang; Zhu, Wei

    2012-01-01

    Background Thimerosal, a mercury-containing preservative, is one of the most widely used preservatives and found in a variety of biological products. Concerns over its possible toxicity have reemerged recently due to its use in vaccines. Thimerosal has also been reported to be markedly cytotoxic to neural tissue. However, little is known regarding thimerosal-induced toxicity in muscle tissue. Therefore, we investigated the cytotoxic effect of thimerosal and its possible mechanisms on mouse C2C12 myoblast cells. Methodology/Principal Findings The study showed that C2C12 myoblast cells underwent inhibition of proliferation and apoptosis after exposure to thimerosal (125–500 nM) for 24, 48 and 72 h. Thimerosal caused S phase arrest and induced apoptosis as assessed by flow cytometric analysis, Hoechst staining and immunoblotting. The data revealed that thimerosal could trigger the leakage of cytochrome c from mitochondria, followed by cleavage of caspase-9 and caspase-3, and that an inhibitor of caspase could suppress thimerosal-induced apoptosis. Thimerosal inhibited the phosphorylation of Aktser473 and survivin expression. Wortmannin, a PI3K inhibitor, inhibited Akt activity and decreased survivin expression, resulting in increased thimerosal-induced apoptosis in C2C12 cells, while the activation of PI3K/Akt pathway by mIGF-I (50 ng/ml) increased the expression of survivin and attenuated apoptosis. Furthermore, the inhibition of survivin expression by siRNA enhanced thimerosal-induced cell apoptosis, while overexpression of survivin prevented thimerosal-induced apoptosis. Taken together, the data show that the PI3K/Akt/survivin pathway plays an important role in the thimerosal-induced apoptosis in C2C12 cells. Conclusions/Significance Our results suggest that in C2C12 myoblast cells, thimerosal induces S phase arrest and finally causes apoptosis via inhibition of PI3K/Akt/survivin signaling followed by activation of the mitochondrial apoptotic pathway. PMID

  10. Sodium arsenite delays the differentiation of C2C12 mouse myoblast cells and alters methylation patterns on the transcription factor myogenin

    SciTech Connect

    Steffens, Amanda A.; Hong Giaming; Bain, Lisa J.

    2011-01-15

    Epidemiological studies have correlated arsenic exposure with cancer, skin diseases, and adverse developmental outcomes such as spontaneous abortions, neonatal mortality, low birth weight, and delays in the use of musculature. The current study used C2C12 mouse myoblast cells to examine whether low concentrations of arsenic could alter their differentiation into myotubes, indicating that arsenic can act as a developmental toxicant. Myoblast cells were exposed to 20 nM sodium arsenite, allowed to differentiate into myotubes, and expression of the muscle-specific transcription factor myogenin, along with the expression of tropomyosin, suppressor of cytokine signaling 3 (Socs3), prostaglandin I2 synthesis (Ptgis), and myocyte enhancer 2 (Mef2), was investigated using QPCR and immunofluorescence. Exposing C2C12 cells to 20 nM sodium arsenite delayed the differentiation process, as evidenced by a significant reduction in the number of multinucleated myotubes, a decrease in myogenin mRNA expression, and a decrease in the total number of nuclei expressing myogenin protein. The expression of mRNA involved in myotube formation, such as Ptgis and Mef2 mRNA, was also significantly reduced by 1.6-fold and 4-fold during differentiation. This was confirmed by immunofluorescence for Mef2, which showed a 2.6-fold reduction in nuclear translocation. Changes in methylation patterns in the promoter region of myogenin (-473 to + 90) were examined by methylation-specific PCR and bisulfite genomic sequencing. Hypermethylated CpGs were found at -236 and -126 bp, whereas hypomethylated CpGs were found at -207 bp in arsenic-exposed cells. This study indicates that 20 nM sodium arsenite can alter myoblast differentiation by reducing the expression of the transcription factors myogenin and Mef2c, which is likely due to changes in promoter methylation patterns. The delay in muscle differentiation may lead to developmental abnormalities.

  11. Transmembrane proteoglycans syndecan-2, 4, receptor candidates for the impact of HGF and FGF2 on semaphorin 3A expression in early-differentiated myoblasts

    PubMed Central

    Do, Mai-Khoi Q; Shimizu, Naomi; Suzuki, Takahiro; Ohtsubo, Hideaki; Mizunoya, Wataru; Nakamura, Mako; Sawano, Shoko; Furuse, Mitsuhiro; Ikeuchi, Yoshihide; Anderson, Judy E; Tatsumi, Ryuichi

    2015-01-01

    Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed an unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) and basic fibroblast growth factor (FGF2) triggered its expression exclusively at the early differentiation phase. In order to advance this concept, the present study described that transmembrane heparan/chondroitin sulfate proteoglycans syndecan-2, 4 may be the plausible receptor candidates for HGF and FGF2 to signal Sema3A expression. Results showed that mRNA expression of syndecan-2, 4 was abundant (two magnitudes higher than syndecan-1, 3) in early-differentiated myoblasts and their in vitro knockdown diminished the HGF/FGF2-induced expression of Sema3A down to a baseline level. Pretreatment with heparitinase and chondroitinase ABC decreased the HGF and FGF2 responses, respectively, in non–knockdown cultures, supporting a possible model that HGF and FGF2 may bind to heparan and chondroitin sulfate chains of syndecan-2, 4 to signal Sema3A expression. The findings, therefore, extend our understanding that HGF/FGF2-syndecan-2, 4 association may stimulate a burst of Sema3A secretion by myoblasts recruited to the site of muscle injury; this would ensure a coordinated delay in the attachment of motoneuron terminals onto fibers early in muscle regeneration, and thus synchronize the recovery of muscle fiber integrity and the early resolution of inflammation after injury with reinnervation toward functional recovery. PMID:26381016

  12. In Vitro Development and Characterization of a Tissue-Engineered Conduit Resembling Esophageal Wall Using Human and Pig Skeletal Myoblast, Oral Epithelial Cells, and Biologic Scaffolds

    PubMed Central

    Poghosyan, Tigran; Gaujoux, Sebastien; Vanneaux, Valerie; Bruneval, Patrick; Domet, Thomas; Lecourt, Severine; Jarraya, Mohamed; Sfeir, Rony; Larghero, Jerome

    2013-01-01

    Introduction Tissue engineering represents a promising approach for esophageal replacement, considering the complexity and drawbacks of conventional techniques. Aim To create the components necessary to reconstruct in vitro or in vivo an esophageal wall, we analyzed the feasibility and the optimal conditions of human and pig skeletal myoblast (HSM and PSM) and porcine oral epithelial cell (OEC) culture on biologic scaffolds. Materials and Methods PSM and HSM were isolated from striated muscle and porcine OECs were extracted from oral mucosa biopsies. Myoblasts were seeded on an acellular scaffold issue from porcine small intestinal submucosa (SIS) and OEC on decellularized human amniotic membrane (HAM). Seeding conditions (cell concentrations [0.5×106 versus 106 cells/cm2] and culture periods [7, 14 and 21 days]), were analyzed using the methyl thiazoltetrazolium assay, quantitative PCR, flow cytometry, and immunohistochemistry. Results Phenotypic stability was observed after cellular expansion for PSM and HSM (85% and 97% CD56-positive cells, respectively), and OECs (90% AE1/AE3- positive cells). After PSM and HSM seeding, quantities of viable cells were similar whatever the initial cell concentration used and remained stable at all time points. During cell culture on SIS, a decrease of CD56-positive cells was observed (76% and 76% by D7, 56% and 70% by D14, 28% and 60% by D21, for PSM and HSM, respectively). Multilayered surface of α-actin smooth muscle and Desmine-positive cells organized in bundles was seen as soon as D7, with no evidence of cell within the SIS. Myoblasts fusion was observed at D21. Pax3 and Pax7 expression was downregulated and MyoD expression upregulated, at D14.OEC proliferation was observed on HAM with both cell concentrations from D7 to D21. The cell metabolism activity was more important on matrix seeded by 106 cells/cm2. With 0.5×106 OEC/cm2, a single layer of pancytokeratin-positive cells was seen at D7, which became pluristratified

  13. Modeling of the Human Alveolar Rhabdomyosarcoma Pax3-Foxo1 Chromosome Translocation in Mouse Myoblasts Using CRISPR-Cas9 Nuclease

    PubMed Central

    Lagutina, Irina V.; Valentine, Virginia; Picchione, Fabrizio; Harwood, Frank; Valentine, Marcus B.; Villarejo-Balcells, Barbara; Carvajal, Jaime J.; Grosveld, Gerard C.

    2015-01-01

    Many recurrent chromosome translocations in cancer result in the generation of fusion genes that are directly implicated in the tumorigenic process. Precise modeling of the effects of cancer fusion genes in mice has been inaccurate, as constructs of fusion genes often completely or partially lack the correct regulatory sequences. The reciprocal t(2;13)(q36.1;q14.1) in human alveolar rhabdomyosarcoma (A-RMS) creates a pathognomonic PAX3-FOXO1 fusion gene. In vivo mimicking of this translocation in mice is complicated by the fact that Pax3 and Foxo1 are in opposite orientation on their respective chromosomes, precluding formation of a functional Pax3-Foxo1 fusion via a simple translocation. To circumvent this problem, we irreversibly inverted the orientation of a 4.9 Mb syntenic fragment on chromosome 3, encompassing Foxo1, by using Cre-mediated recombination of two pairs of unrelated oppositely oriented LoxP sites situated at the borders of the syntenic region. We tested if spatial proximity of the Pax3 and Foxo1 loci in myoblasts of mice homozygous for the inversion facilitated Pax3-Foxo1 fusion gene formation upon induction of targeted CRISPR-Cas9 nuclease-induced DNA double strand breaks in Pax3 and Foxo1. Fluorescent in situ hybridization indicated that fore limb myoblasts show a higher frequency of Pax3/Foxo1 co-localization than hind limb myoblasts. Indeed, more fusion genes were generated in fore limb myoblasts via a reciprocal t(1;3), which expressed correctly spliced Pax3-Foxo1 mRNA encoding Pax3-Foxo1 fusion protein. We conclude that locus proximity facilitates chromosome translocation upon induction of DNA double strand breaks. Given that the Pax3-Foxo1 fusion gene will contain all the regulatory sequences necessary for precise regulation of its expression, we propose that CRISPR-Cas9 provides a novel means to faithfully model human diseases caused by chromosome translocation in mice. PMID:25659124

  14. YB1/p32, a nuclear Y-box binding protein 1, is a novel regulator of myoblast differentiation that interacts with Msx1 homeoprotein

    SciTech Connect

    Song, Young Joon; Lee, Hansol

    2010-02-15

    Precisely controlled cellular differentiation is essential for the proper development of vertebrate embryo and deregulated differentiation is a major cause of many human congenital diseases as well as cancer. Msx1 is a member of the homeoprotein family implicated in these processes, which inhibits the differentiation of skeletal muscle and other cell types, presumably by regulating transcription of target genes through interaction with other cellular factors. We presently show that YB1/p32, a nuclear Y-box binding protein 1, interacts with Msx1 homeoprotein and functions as a regulator of C2C12 myoblast differentiation. We demonstrate that YB1/p32 functionally interacts with Msx1 through its N-terminal region and colocalizes with Msx1 at the nuclear periphery. Moreover, we find that YB1/p32 is competent for inhibition of C2C12 myoblast differentiation, which is correlated with its activity as a negative regulator of MyoD gene expression and binding to the MyoD core enhancer region (CER). Furthermore, YB1/p32 cooperates with Msx1 in transcriptional repression and knocking down the expression of endogenous YB1 attenuates the effects of Msx1. Taken together, our study has uncovered a new function of YB1/p32, a regulator of skeletal muscle differentiation.

  15. Static magnetic fields inhibit proliferation and disperse subcellular localization of gamma complex protein3 in cultured C2C12 myoblast cells.

    PubMed

    Kim, SeungChan; Im, Wooseok

    2010-05-01

    Magnetic fields may delay the rate of cell cycle progression, and there are reports that magnetic fields induce neurite outgrowth in cultured neuronal cells. To demonstrate whether magnetic field also effects on myoblast cells in cell growth, C2C12 cell lines were cultured and 2000G static magnetic field was applied. After 48 h of incubation, both the WST-1 assay (0.01 < P < 0.025, t-test) and direct cell counting (P < 0.0005, t-test) showed that static magnetic fields inhibit the proliferation of cultured C2C12 cells. Immunocytochemistry for alpha and tubulin gamma complex protein (TUBA and GCP3) was made and applying a static magnetic field-dispersed tubulin GCP3 formation, a intracellular apparatus for tubulin structuring in cell division. This protein expression was not altered by western blot. This study indicates that applying a static magnetic field alters the subcellular localizing of GCP3, and may delay the cell growth in cultured C2C12 myoblast cells.

  16. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  17. Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt.

    PubMed

    McDaneld, T G; Spurlock, D M

    2008-11-01

    Ankyrin repeat and suppressor of cytokine signaling box-containing protein (ASB) 15 is a novel ASB gene family member predominantly expressed in skeletal muscle. We have previously reported that overexpression of ASB15 delays differentiation and alters protein turnover in mouse C(2)C(12) myoblasts. However, the extent of ASB15 regulation of differentiation and molecular pathways underlying this activity are unknown. The extracellular signal-regulated kinase (Erk) 1/2 and phosphatidylinositol-3 kinase-Akt (PI3K/Akt; Akt is also known as protein kinase B) signaling pathways have a role in skeletal muscle growth. Activation (phosphorylation) of the Erk1/2 signaling pathway promotes proliferation, whereas activation of the PI3K/Akt signaling pathway promotes myoblast differentiation. Accordingly, we tested the hypothesis that ASB15 controls myoblast differentiation through its regulation of these kinases. Stably transfected myoblasts overexpressing ASB15 (ASB15+) demonstrated decreased differentiation, whereas attenuation of ASB15 expression (ASB15-) increased differentiation. However, ASB15+ cells had less abundance of the phosphorylated mitogen-activated protein kinase (active) form, despite decreased differentiation relative to control myoblasts (ASB15Con). The mitogen-activated protein kinase kinase inhibitor, U0126, effectively decreased mitogen-activated protein kinase phosphorylation and stimulated differentiation in ASB15- and ASB15Con cells. However, inhibition of the Erk1/2 pathway was unable to overcome the inhibitory effect of overexpressing ASB15 on differentiation (ASB15+), suggesting that the Erk1/2 pathway is likely not the predominant mediator of ASB15 activity on differentiation. Expression of ASB15 also altered phosphorylation of the PI3K/Akt pathway, as ASB15+ and ASB15- cells had decreased and increased Akt phosphorylation, respectively. These data were consistent with observed differences in differentiation. Administration of IGF-I, a PI3K

  18. Cell-Adhesive Matrices Composed of RGD Peptide-Displaying M13 Bacteriophage/Poly(lactic-co-glycolic acid) Nanofibers Beneficial to Myoblast Differentiation.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Kim, Chuntae; Hong, Suck Won; Oh, Jin Woo; Han, Dong-Wook

    2015-10-01

    Recently, there has been considerable effort to develop suitable scaffolds for tissue engineering applications. Cell adhesion is a prerequisite for cells to survive. In nature, the extracellular matrix (ECM) plays this role. Therefore, an ideal scaffold should be structurally similar to the natural ECM and have biocompatibility and biodegradability. In addition, the scaffold should have biofunctionality, which provides the potent ability to enhance the cellular behaviors, such as adhesion, proliferation and differentiation. This study concentrates on fabricating cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) nanofibers. Long rod-shaped M13 bacteriophages are non-toxic and can express many desired proteins on their surface. A genetically engineered M13 phage was constructed to display RGD peptides on its surface. PLGA is a biodegradable polymer with excellent biocompatibility and suitable physicochemical property for adhesive matrices. In this study, RGD-M13 phage/PLGA hybrid nanofiber matrices were fabricated by electrospinning. The physicochemical properties of these matrices were characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and contact angle measurement. In addition, the cellular behaviors, such as the initial attachment, proliferation and differentiation, were analyzed by a CCK-8 assay and immunofluorescence staining to evaluate the potential application of these matrices to tissue engineering scaffolds. The RGD-M13 phage/PLGA nanofiber matrices could enhance the cellular behaviors and promote the differentiation of C2C12 myoblasts. These results suggest that the RGD-M13 phage/PLGA nanofiber matrices are beneficial to myoblast differentiation and can serve as effective tissue engineering scaffolds.

  19. Comparative transcriptomic analysis reveals the oncogenic fusion protein PAX3-FOXO1 globally alters mRNA and miRNA to enhance myoblast invasion

    PubMed Central

    Loupe, J M; Miller, P J; Bonner, B P; Maggi, E C; Vijayaraghavan, J; Crabtree, J S; Taylor, C M; Zabaleta, J; Hollenbach, A D

    2016-01-01

    Rhabdomyosarcoma, one of the most common childhood sarcomas, is comprised of two main subtypes, embryonal and alveolar (ARMS). ARMS, the more aggressive subtype, is primarily characterized by the t(2;13)(p35;p14) chromosomal translocation, which fuses two transcription factors, PAX3 and FOXO1 to generate the oncogenic fusion protein PAX3-FOXO1. Patients with PAX3-FOXO1-postitive tumors have a poor prognosis, in part due to the enhanced local invasive capacity of these cells, which leads to the increased metastatic potential for this tumor. Despite this knowledge, little is known about the role that the oncogenic fusion protein has in this increased invasive potential. In this report we use large-scale comparative transcriptomic analyses in physiologically relevant primary myoblasts to demonstrate that the presence of PAX3-FOXO1 is sufficient to alter the expression of 70 mRNA and 27 miRNA in a manner predicted to promote cellular invasion. In contrast the expression of PAX3 alters 60 mRNA and 23 miRNA in a manner predicted to inhibit invasion. We demonstrate that these alterations in mRNA and miRNA translate into changes in the invasive potential of primary myoblasts with PAX3-FOXO1 increasing invasion nearly 2-fold while PAX3 decreases invasion nearly 4-fold. Taken together, these results allow us to build off of previous reports and develop a more expansive molecular model by which the presence of PAX3-FOXO1 alters global gene regulatory networks to enhance the local invasiveness of cells. Further, the global nature of our observed changes highlights the fact that instead of focusing on a single-gene target, we must develop multi-faceted treatment regimens targeting multiple genes of a single oncogenic phenotype or multiple genes that target different oncogenic phenotypes for tumor progression. PMID:27454080

  20. Myogenic differentiation of L6 rat myoblasts: evidence for pleiotropic effects on myogenesis by RNA polymerase II mutations to alpha-amanitin resistance.

    PubMed Central

    Crerar, M M; Leather, R; David, E; Pearson, M L

    1983-01-01

    To assess the functional role of RNA polymerase II in the regulation of transcription during muscle differentiation, we isolated and characterized a large number of independent alpha-amanitin-resistant (AmaR) mutants of L6 rat myoblasts that express both wild-type and altered RNA polymerase II activities. We also examined their myogenic (Myo) phenotype by determining their ability to develop into mature myotubes, to express elevated levels of muscle creatine kinase, and to synthesize muscle-characteristic proteins as detected by two-dimensional polyacrylamide gel electrophoresis. We found a two- to threefold increase in the frequency of clones with a myogenic-defective phenotype in the AmaR (RNA polymerase II) mutants as compared to control ethyl methane sulfonate-induced, 6-thioguanine-resistant (hypoxanthine, guanine phosphoribosyl transferase) mutants or to unselected survivors also exposed to ethyl methane sulfonate. Subsequent analysis showed that about half of these myogenic-defective AmaR mutants had a conditional Myo(ama) phenotype; when cultured in the presence of amanitin, they exhibited a Myo- phenotype; in its absence they exhibited a Myo+ phenotype. This conditional Myo(ama) phenotype is presumably caused by the inactivation by amanitin of the wild-type amanitin-sensitive RNA polymerase II activity and the subsequent rise in the level of mutant amanitin-resistant RNA polymerase II activity. In these Myo(ama) mutants, the wild-type RNA polymerase II is normally dominant with respect to the Myo+ phenotype, whereas the mutant RNA polymerase II is recessive and results in a Myo- phenotype only when the wild-type enzyme is inactivated. These findings suggest that certain mutations in the amaR structural gene for the amanitin-binding subunit of RNA polymerase II can selectively impair the transcription of genes specific for myogenic differentiation but not those specific for myoblast proliferation. Images PMID:6865946

  1. Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts.

    PubMed

    O-Uchi, Jin; Jhun, Bong Sook; Hurst, Stephen; Bisetto, Sara; Gross, Polina; Chen, Ming; Kettlewell, Sarah; Park, Jongsun; Oyamada, Hideto; Smith, Godfrey L; Murayama, Takashi; Sheu, Shey-Shing

    2013-12-01

    Ca(+) influx to mitochondria is an important trigger for both mitochondrial dynamics and ATP generation in various cell types, including cardiac cells. Mitochondrial Ca(2+) influx is mainly mediated by the mitochondrial Ca(2+) uniporter (MCU). Growing evidence also indicates that mitochondrial Ca(2+) influx mechanisms are regulated not solely by MCU but also by multiple channels/transporters. We have previously reported that skeletal muscle-type ryanodine receptor (RyR) type 1 (RyR1), which expressed at the mitochondrial inner membrane, serves as an additional Ca(2+) uptake pathway in cardiomyocytes. However, it is still unclear which mitochondrial Ca(2+) influx mechanism is the dominant regulator of mitochondrial morphology/dynamics and energetics in cardiomyocytes. To investigate the role of mitochondrial RyR1 in the regulation of mitochondrial morphology/function in cardiac cells, RyR1 was transiently or stably overexpressed in cardiac H9c2 myoblasts. We found that overexpressed RyR1 was partially localized in mitochondria as observed using both immunoblots of mitochondrial fractionation and confocal microscopy, whereas RyR2, the main RyR isoform in the cardiac sarcoplasmic reticulum, did not show any expression at mitochondria. Interestingly, overexpression of RyR1 but not MCU or RyR2 resulted in mitochondrial fragmentation. These fragmented mitochondria showed bigger and sustained mitochondrial Ca(2+) transients compared with basal tubular mitochondria. In addition, RyR1-overexpressing cells had a higher mitochondrial ATP concentration under basal conditions and showed more ATP production in response to cytosolic Ca(2+) elevation compared with nontransfected cells as observed by a matrix-targeted ATP biosensor. These results indicate that RyR1 possesses a mitochondrial targeting/retention signal and modulates mitochondrial morphology and Ca(2+)-induced ATP production in cardiac H9c2 myoblasts.

  2. A re-investigation of the ribonuclease sensitivity of a DNA demethylation reaction in chicken embryo and G8 mouse myoblasts.

    PubMed

    Jost, J P; Siegmann, M; Thiry, S; Jost, Y C; Benjamin, D; Schwarz, S

    1999-04-23

    Recently published results (Nucleic Acids Res. 26, 5573-5580, 1998) suggest that the ribonuclease sensitivity of the DNA demethylation reaction may be an experimental artifact due to the possible tight binding of the nucleases to the methylated DNA substrate. Using an improved protocol we show for two different systems that demethylation of hemimethylated DNA is indeed sensitive to micrococcal nuclease, requires RNA and is not an experimental artifact. The purified 5-MeC-DNA glycosylase from chicken embryos and G8 mouse myoblasts was first incubated for 5 min at 37 degrees C with micrococcal nuclease in the presence of Ca2+ in the absence of the DNA substrate. Upon blocking the nuclease activity by the addition of 25 mM EGTA, the DNA demethylation reaction was initiated by adding the labeled hemimethylated DNA substrate to the reaction mixture. Under these conditions the DNA demethylation reaction was abolished. In parallel controls, where the purified 5-MeC-DNA glycosylase was pre-incubated at 37 degrees C with the nuclease, Ca2+ and EGTA or with the nuclease and EGTA, RNA was not degraded and no inhibition of the demethylation reaction was obtained. As has already been shown for chicken embryos, the loss of 5-MeC-DNA glycosylase activity from G8 myoblasts following nuclease treatment can also be restored by the addition of synthetic RNA complementary to the methylated strand of the substrate DNA. No reactivation of 5-MeC-DNA glycosylase is obtained by complementation with a random RNA sequence, the RNA sequence complementary to the non-methylated strand or DNA, thus ruling out a non-specific competition of the RNA for the binding of the nuclease to the labeled DNA substrate.

  3. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    SciTech Connect

    Hong, Gia-Ming

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  4. The NF-κB-modulated microRNAs miR-195 and miR-497 inhibit myoblast proliferation by targeting Igf1r, Insr and cyclin genes.

    PubMed

    Wei, Wei; Zhang, Wei-Ya; Bai, Jian-Bo; Zhang, Hai-Xin; Zhao, Yuan-Yuan; Li, Xin-Yun; Zhao, Shu-Hong

    2016-01-01

    MicroRNAs (miRNAs) play important roles in the development of skeletal muscle. In our previous study, expression of miR-195 and miR-497 were shown to be upregulated during muscle development in pigs. In this study, we investigated the roles of these two miRNAs in myogenesis and analyzed their transcriptional regulation. Our results showed that miR-195 and miR-497 were upregulated during muscle development and myoblast differentiation. Moreover, miR-195 and miR-497 inhibited proliferation but not differentiation in C2C12 cells. Further investigation revealed that Igf1r, Insr, Ccnd2 and Ccne1 were directly targeted by miR-195 and miR-497 in myoblasts. In addition, we confirmed that miR-195 and miR-497, which shared the similar expression profiling, were negatively regulated by nuclear factor κB (NF-κB) in both myoblasts and skeletal muscle tissue. Our data illustrate that the signaling pathway NF-κB-miR-195/497-Igf1r/Insr-Ccnd2/Ccne1 plays important roles in myogenesis. Our study provides novel evidence for the roles of miR-195 and miR-497 in muscle development.

  5. Annexin A1 Deficiency does not Affect Myofiber Repair but Delays Regeneration of Injured Muscles

    PubMed Central

    Leikina, Evgenia; Defour, Aurelia; Melikov, Kamran; Van der Meulen, Jack H.; Nagaraju, Kanneboyina; Bhuvanendran, Shivaprasad; Gebert, Claudia; Pfeifer, Karl; Chernomordik, Leonid V.; Jaiswal, Jyoti K.

    2015-01-01

    Repair and regeneration of the injured skeletal myofiber involves fusion of intracellular vesicles with sarcolemma and fusion of the muscle progenitor cells respectively. In vitro experiments have identified involvement of Annexin A1 (Anx A1) in both these fusion processes. To determine if Anx A1 contributes to these processes during muscle repair in vivo, we have assessed muscle growth and repair in Anx A1-deficient mouse (AnxA1−/−). We found that the lack of Anx A1 does not affect the muscle size and repair of myofibers following focal sarcolemmal injury and lengthening contraction injury. However, the lack of Anx A1 delayed muscle regeneration after notexin-induced injury. This delay in muscle regeneration was not caused by a slowdown in proliferation and differentiation of satellite cells. Instead, lack of Anx A1 lowered the proportion of differentiating myoblasts that managed to fuse with the injured myofibers by days 5 and 7 after notexin injury as compared to the wild type (w.t.) mice. Despite this early slowdown in fusion of Anx A1−/− myoblasts, regeneration caught up at later times post injury. These results establish in vivo role of Anx A1 in cell fusion required for myofiber regeneration and not in intracellular vesicle fusion needed for repair of myofiber sarcolemma. PMID:26667898

  6. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were up regulated during C2C12 differentiation. The IGF2 expression levels wer...

  7. Insulin induced alteration in post-translational modifications of histone H3 under a hyperglycemic condition in L6 skeletal muscle myoblasts.

    PubMed

    Kabra, Dhiraj G; Gupta, Jeena; Tikoo, Kulbhushan

    2009-06-01

    Chromatin remodelling events, especially histone modifications are proposed to form the mainstay for most of the biological processes. However, the role of these histone modifications in the progression of diabetes is still unknown. Hyperglycemia plays a major role in diabetes and its complications. The present study was undertaken to check the effect of insulin on alterations in post-translational modifications of histone H3 in L6 myoblasts under a hyperglycemic condition. We provide first evidence that insulin under hyperglycemic condition alters multiple histone modifications by enhanced production of reactive oxygen species. Insulin induces dose dependent changes in Lysine 4 and 9 methylation, Ser 10 phosphorylation and acetylation of histone H3. Interestingly, insulin induced generation of reactive oxygen species induces dephosphorylation and deacetylation of histone H3. Preincubation with catalase and DPI prevents these changes in post-translational modifications of histone H3. Furthermore, changes in histone H3 phosphorylation was found to be independent of ERK, p38, RSK2 and MSK1. Moreover, serine/threonine phosphatase inhibitor, okadaic acid attenuates insulin induced dephosphorylation and deacetylation of histone H3, suggesting a role of serine/threonine phosphatases in altering modifications of histone H3. These changes in epigenetic modifications can provide new insights into pathogenesis of diabetes.

  8. Nrf2-Mediated HO-1 Induction Contributes to Antioxidant Capacity of a Schisandrae Fructus Ethanol Extract in C2C12 Myoblasts

    PubMed Central

    Kang, Ji Sook; Han, Min Ho; Kim, Gi-Young; Kim, Cheol Min; Kim, Byung Woo; Hwang, Hye Jin; Choi, Yung Hyun

    2014-01-01

    This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz.) Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE) significantly attenuated hydrogen peroxide (H2O2)-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1) and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway. PMID:25493944

  9. O-GlcNAc protein modification in C2C12 myoblasts exposed to oxidative stress indicates parallels with endogenous antioxidant defense.

    PubMed

    Peternelj, Tina Tinkara; Marsh, Susan A; Morais, Christudas; Small, David M; Dalbo, Vincent J; Tucker, Patrick S; Coombes, Jeff S

    2015-02-01

    A growing body of evidence demonstrates the involvement of protein modification with O-linked β-N-acetylglucosamine (O-GlcNAc) in the stress response and its beneficial effects on cell survival. Here we investigated protein O-GlcNAcylation in skeletal muscle cells exposed to oxidative stress and the crosstalk with endogenous antioxidant system. The study focused on antioxidant enzymes superoxide dismutase 2 (SOD2), catalase (CAT), and glutathione peroxidase 1 (GPX1), and transcriptional regulators proliferator-activated receptor gamma coactivator 1-α (PGC-1α) and forkhead box protein O1 (FOXO1), which play important roles in oxidative stress response and are known to be O-GlcNAc-modified. C2C12 myoblasts were subjected to 24 h incubation with different reagents, including hydrogen peroxide, diethyl maleate, high glucose, and glucosamine, and the inhibitors of O-GlcNAc cycling enzymes. Surprisingly, O-GlcNAc levels were significantly increased only with glucosamine, whilst other treatments showed no effect. Significant changes at the mRNA level were observed with concomitant upregulation of the genes for O-GlcNAc enzymes and stress-related proteins with oxidizing agents and downregulation of these genes with agents promoting O-GlcNAcylation. Our findings suggest a role of O-GlcNAc in the stress response and indicate an inhibitory mechanism controlling O-GlcNAc levels in the muscle cells. This could represent an important homeostatic regulation of the cellular defense system.

  10. Fine-Tuning of the Actin Cytoskeleton and Cell Adhesion During Drosophila Development by the Unconventional Guanine Nucleotide Exchange Factors Myoblast City and Sponge

    PubMed Central

    Biersmith, Bridget; Wang, Zong-Heng; Geisbrecht, Erika R.

    2015-01-01

    The evolutionarily conserved Dock proteins function as unconventional guanine nucleotide exchange factors (GEFs). Upon binding to engulfment and cell motility (ELMO) proteins, Dock–ELMO complexes activate the Rho family of small GTPases to mediate a diverse array of biological processes, including cell motility, apoptotic cell clearance, and axon guidance. Overlapping expression patterns and functional redundancy among the 11 vertebrate Dock family members, which are subdivided into four families (Dock A, B, C, and D), complicate genetic analysis. In both vertebrate and invertebrate systems, the actin dynamics regulator, Rac, is the target GTPase of the Dock-A subfamily. However, it remains unclear whether Rac or Rap1 are the in vivo downstream GTPases of the Dock-B subfamily. Drosophila melanogaster is an excellent genetic model organism for understanding Dock protein function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock A) and Sponge (Spg; Dock B). Here we show that the roles of Spg and Mbc are not redundant in the Drosophila somatic muscle or the dorsal vessel. Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide evidence that Spg functions in concert with Rap1, possibly to regulate aspects of cell adhesion. Together these data show that Mbc and Spg can have different downstream GTPase targets. Our findings predict that the ability to regulate downstream GTPases is dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell adhesion events in biological processes that undergo cell morphogenesis. PMID:25908317

  11. sem-4/spalt and egl-17/FGF have a conserved role in sex myoblast specification and migration in P. pacificus and C. elegans.

    PubMed

    Photos, Andreas; Gutierrez, Arturo; Sommer, Ralf J

    2006-05-01

    Evolutionary comparisons between Caenorhabditis elegans and the satellite organism Pristionchus pacificus revealed major differences in the regulation of nematode vulva development. For example, Wnt signaling is part of a negative signaling system that prevents vulva formation in P. pacificus, whereas it plays a positive role in C. elegans. We wondered if the genetic control of the second major part of the nematode egg-laying system, the sex muscles, has diverged similarly between P. pacificus and C. elegans. The sex muscles derive from the mesoblast M, which has an identical lineage in both species. Here, we describe a large-scale mutagenesis screen for mutations that disrupt the M lineage and the sex myoblast (SM) sublineage. We isolated and characterized mutations that result in a failure of proper SM fate specification and SM migration and showed that the corresponding genes encode Ppa-sem-4 and Ppa-egl-17, respectively. Ppa-sem-4 mutants have additional defects in the specification of the vulva precursor cells P(5, 7).p and experimental studies in the Ppa-egl-17 mutant background indicate a complex set of gonad-dependent and gonad-independent mechanisms required for SM migration. Mutations in Cel-sem-4 and Cel-egl-17 cause similar defects. Thus, the molecular mechanisms of SM cell specification and migration are conserved between P. pacificus and C. elegans.

  12. FoxO1 regulates muscle fiber-type specification and inhibits calcineurin signaling during C2C12 myoblast differentiation.

    PubMed

    Yuan, Yuan; Shi, Xin-e; Liu, Yue-guang; Yang, Gong-she

    2011-02-01

    Adult skeletal muscle fibers can be categorized into slow-oxidative and fast-glycolytic subtypes based on specialized metabolic and contractile properties. The Forkhead box O1 (FoxO1) transcription factor governs muscle growth, metabolism, and cell differentiation, and has been shown to be involved in regulating muscle fiber type specification. However, to date, the mechanism behind FoxO1-mediated fiber type diversity is still unclear. In this article, FoxO1 being expressed preferentially in fast twitch fiber enriched muscles is reported. Moreover, the autors also detected that FoxO1 expression decreased in both fast and slow muscles from mice undergoing endurance exercise which induced a fast-to-slow fiber type transition. Using C2C12 myoblast, constitutively active FoxO1 mutant altered the proportion of muscle fiber type composition toward a fast-glycolytic phenotype and attenuated calcineurin phosphatase activity. In addition, a transcriptionally inactive FoxO1 by resveratrol triggered the expression of genes related to slow-oxidative muscle but not sufficient to induce a complete slow fiber transformation. Taken together, these results suggest that FoxO1 up-regulates fast fiber-type formation and down-regulates muscle oxidative capacity at least in part through inhibition of the calcineurin pathway.

  13. Fine-Tuning of the Actin Cytoskeleton and Cell Adhesion During Drosophila Development by the Unconventional Guanine Nucleotide Exchange Factors Myoblast City and Sponge.

    PubMed

    Biersmith, Bridget; Wang, Zong-Heng; Geisbrecht, Erika R

    2015-06-01

    The evolutionarily conserved Dock proteins function as unconventional guanine nucleotide exchange factors (GEFs). Upon binding to engulfment and cell motility (ELMO) proteins, Dock-ELMO complexes activate the Rho family of small GTPases to mediate a diverse array of biological processes, including cell motility, apoptotic cell clearance, and axon guidance. Overlapping expression patterns and functional redundancy among the 11 vertebrate Dock family members, which are subdivided into four families (Dock A, B, C, and D), complicate genetic analysis. In both vertebrate and invertebrate systems, the actin dynamics regulator, Rac, is the target GTPase of the Dock-A subfamily. However, it remains unclear whether Rac or Rap1 are the in vivo downstream GTPases of the Dock-B subfamily. Drosophila melanogaster is an excellent genetic model organism for understanding Dock protein function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock A) and Sponge (Spg; Dock B). Here we show that the roles of Spg and Mbc are not redundant in the Drosophila somatic muscle or the dorsal vessel. Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide evidence that Spg functions in concert with Rap1, possibly to regulate aspects of cell adhesion. Together these data show that Mbc and Spg can have different downstream GTPase targets. Our findings predict that the ability to regulate downstream GTPases is dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell adhesion events in biological processes that undergo cell morphogenesis.

  14. Cultured senescent myoblasts derived from human vastus lateralis exhibit normal mitochondrial ATP synthesis capacities with correlating concomitant ROS production while whole cell ATP production is decreased.

    PubMed

    Minet, Ariane D; Gaster, Michael

    2012-06-01

    The free radical theory of aging says that increased oxidative stress and mitochondrial dysfunction are associated with old age. In the present study we have investigated the effects of cellular senescence on muscle energetic by comparing mitochondrial content and function in cultured muscle satellite cells at early and late passage numbers. We show that cultured muscle satellite cells undergoing senescence express a reduced mitochondrial mass, decreased whole cell ATP level, normal to increased mitochondrial ATP production under ATP utilization, increased mitochondrial membrane potential and increased superoxide/mitochondrial mass and hydrogen peroxide/mitochondrial mass ratios. Moreover, the increased ROS production correlates with the corresponding mitochondrial ATP production. Thus, myotubes differentiated from human myoblasts undergoing senescence have a reduced mitochondrial content, but the existent mitochondria express normal to increased functional capabilities. The present data suggest that the origin of aging lies outside the mitochondria and that a malfunction in the cell might be preceding and initiating the increase of mitochondrial ATP synthesis and concomitant ROS production in the single mitochondrion in response to decreased mitochondrial mass and reduced extra-mitochondrial energy supply. This then can lead to the increased damage of DNA, lipids and proteins of the mitochondria as postulated by the free radical theory of aging.

  15. Discrepancies between the fate of myoblast xenograft in mouse leg muscle and NMR label persistency after loading with Gd-DTPA or SPIOs.

    PubMed

    Baligand, C; Vauchez, K; Fiszman, M; Vilquin, J-T; Carlier, P G

    2009-06-01

    1H-NMR (nuclear magnetic resonance) imaging is regularly proposed to non-invasively monitor cell therapy protocols. Prior to transplantation, cells must be loaded with an NMR contrast agent (CA). Most studies performed so far make use of superparamagnetic iron oxide particles (SPIOs), mainly for favorable detection sensitivity. However, in the case of labeled cell death, SPIO recapture by inflammatory cells might introduce severe bias. We investigated whether NMR signal changes induced by preloading with SPIOs or the low molecular weight gadolinium (Gd)-DTPA accurately monitored the outcome of transplanted cells in a murine model of acute immunologic rejection. CA-loaded human myoblasts were grafted in the tibialis anterior of C57BL/6 mice. NMR imaging was repeated regularly until 3 months post-transplantation. Label outcome was evaluated by the size of the labeled area and its relative contrast to surrounding tissue. In parallel, immunohistochemistry assessed the presence of human cells. Data analysis revealed that CA-induced signal changes did not strictly reflect the graft status. Gd-DTPA label disappeared rapidly yet with a 2-week delay compared with immunohistochemical evaluation. More problematically, SPIO label was still visible after 3 months, grossly overestimating cell survival (<1 week). SPIOs should be used with extreme caution to evaluate the presence of grafted cells in vivo and could hardly be recommended for the long-term monitoring of cell transplantation protocols.

  16. Cytotoxic action in myoblasts and myotubes (C2C12) and enzymatic characterization of a new phospholipase A2 isoform (Bj-V) from Bothrops jararacussu venom.

    PubMed

    Bonfim, Vera Luis; Ponce-Soto, Luis Alberto; Novello, Jose Camilo; Marangoni, Sergio

    2006-01-01

    A new PLA2 Bj-V from Bothrops jararacussu (14039.49 Da determined by MALDI-TOF mass spectrometry) was isolated in only one chromatographic step by HPLC ion-exchange and its purity was confirmed by reverse phase. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The N-terminal sequence (DLWQFGQMIL KETGKIPFPY YGAYGCYCGW GGRGGKPKDG TDRCCYVHD...) showed a high degree of homology with basic D49 PLA2 myotoxins from other Bothrops venoms. Bj V showed discrete sigmoidal enzymatic behavior, with maximal activity at pH 8.4 and 35-40 degrees C. Full PLA2 activity required Ca2+ (10 mM) and there was little catalytic activity in the presence of 1 mM Ca2+. The addition of Mn2+ or Mg2+ (10 mM) in the presence of low (1 mM) Ca2+ slightly increased the enzyme activity, whereas Zn2+ and Cu2+ (10 mM) diminished the activity. The substitution of Ca2+ for Mg2+ or Cu2+ also reduced the enzymatic activity. Bj V had PLA2 activity and produced cytotoxicity in murine C2C12 skeletal muscle myoblasts and myotubes. The isolation of these isoforms Bj-IV [1] and Bj-V (described herein) found in a fraction previously described as homogeneous shows us the importance of optimization in purification techniques in order to better understand their biological behavior.

  17. Transformation by myc prevents fusion but not biochemical differentiation of C2C12 myoblasts: mechanisms of phenotypic correction in mixed culture with normal cells

    PubMed Central

    1994-01-01

    To study the effects of myc oncogene on muscle differentiation, we infected the murine skeletal muscle cell line C2C12 with retroviral vectors encoding various forms of avian c- or v-myc oncogene. myc expression induced cell transformation but, unlike many other oncogenes, prevented neither biochemical differentiation, nor commitment (irreversible withdrawal from the cell cycle). Yet, myotube formation by fusion of differentiated cells was strongly inhibited. Comparison of uninfected C2C12 myotubes with differentiated myc- expressing C2C12 did not reveal consistent differences in the expression of several muscle regulatory or structural genes. The present results lead us to conclude that transformation by myc is compatible with differentiation in C2C12 cells. myc expression induced cell death under growth restricting conditions. Differentiated cells escaped cell death despite continuing expression of myc, suggesting that the muscle differentiation programme interferes with the mechanism of myc-induced cell death. Cocultivation of v-myc-transformed C2C12 cells with normal fibroblasts or myoblasts restored fusion competence and revealed two distinguishable mechanisms that lead to correction of the fusion defect. PMID:8195295

  18. [Affective dependency].

    PubMed

    Scantamburlo, G; Pitchot, W; Ansseau, M

    2013-01-01

    Affective dependency is characterized by emotional distress (insecure attachment) and dependency to another person with a low self-esteem and reassurance need. The paper proposes a reflection on the definition of emotional dependency and the confusion caused by various denominations. Overprotective and authoritarian parenting, cultural and socio-environmental factors may contribute to the development of dependent personality. Psychological epigenetic factors, such as early socio-emotional trauma could on neuronal circuits in prefronto-limbic regions that are essential for emotional behaviour.We also focus on the interrelations between dependent personality, domestic violence and addictions. The objective for the clinician is to propose a restoration of self-esteem and therapeutic strategies focused on autonomy.

  19. The combination of ursolic acid and leucine potentiates the differentiation of C2C12 murine myoblasts through the mTOR signaling pathway.

    PubMed

    Kim, Minjung; Sung, Bokyung; Kang, Yong Jung; Kim, Dong Hwan; Lee, Yujin; Hwang, Seong Yeon; Yoon, Jeong-Hyun; Yoo, Mi-Ae; Kim, Cheol Min; Chung, Hae Young; Kim, Nam Deuk

    2015-03-01

    Aging causes phenotypic changes in skeletal muscle progenitor cells that lead to the progressive loss of myogenic differentiation and thus a decrease in muscle mass. The naturally occurring triterpene, ursolic acid, has been reported to be an effective agent for the prevention of muscle loss by suppressing degenerative muscular dystrophy. Leucine, a branched-chain amino acid, and its metabolite, β-hydroxy-β-methylbutyric acid, have been reported to enhance protein synthesis in skeletal muscle. Therefore, the aim of the present study was to investigate whether the combination of ursolic acid and leucine promotes greater myogenic differentiation compared to either agent alone in C2C12 murine myoblasts. Morphological changes were observed and creatine kinase (CK) activity analysis was performed to determine the conditions through which the combination of ursolic acid and leucine would exert the most prominent effects on muscle cell differentiation. The effect of the combination of ursolic acid and leucine on the expression of myogenic differentiation marker genes was examined by RT-PCR and western blot analysis. The combination of ursolic acid (0.5 µM) and leucine (10 µM) proved to be the most effective in promoting myogenic differentiation. The combination of ursolic acid and leucine significantly increased CK activity than treatment with either agent alone. The level of myosin heavy chain, a myogenic differentiation marker protein, was also enhanced by the combination of ursolic acid and leucine. The combination of ursolic acid and leucine significantly induced the expression of myogenic differentiation marker genes, such as myogenic differentiation 1 (MyoD) and myogenin, at both the mRNA and protein level. In addition, the number of myotubes and the fusion index were increased. These findings indicate that the combination of ursolic acid and leucine promotes muscle cell differentiation, thus suggesting that this combination of agents may prove to be beneficial

  20. Global N-linked Glycosylation is Not Significantly Impaired in Myoblasts in Congenital Myasthenic Syndromes Caused by Defective Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT1)

    PubMed Central

    Chen, Qiushi; Müller, Juliane S.; Pang, Poh-Choo; Laval, Steve H.; Haslam, Stuart M.; Lochmüller, Hanns; Dell, Anne

    2015-01-01

    Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the first enzyme of the hexosamine biosynthetic pathway. It transfers an amino group from glutamine to fructose-6-phosphate to yield glucosamine-6-phosphate, thus providing the precursor for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is an essential substrate for all mammalian glycosylation biosynthetic pathways and N-glycan branching is especially sensitive to alterations in the concentration of this sugar nucleotide. It has been reported that GFPT1 mutations lead to a distinct sub-class of congenital myasthenic syndromes (CMS) termed “limb-girdle CMS with tubular aggregates”. CMS are hereditary neuromuscular transmission disorders in which neuromuscular junctions are impaired. To investigate whether alterations in protein glycosylation at the neuromuscular junction might be involved in this impairment, we have employed mass spectrometric strategies to study the N-glycomes of myoblasts and myotubes derived from two healthy controls, three GFPT1 patients, and four patients with other muscular diseases, namely CMS caused by mutations in DOK7, myopathy caused by mutations in MTND5, limb girdle muscular dystrophy type 2A (LGMD2A), and Pompe disease. A comparison of the relative abundances of bi-, tri-, and tetra-antennary N-glycans in each of the cell preparations revealed that all samples exhibited broadly similar levels of branching. Moreover, although some differences were observed in the relative abundances of some of the N-glycan constituents, these variations were modest and were not confined to the GFPT1 samples. Therefore, GFPT1 mutations in CMS patients do not appear to compromise global N-glycosylation in muscle cells. PMID:26501342

  1. Global N-linked Glycosylation is Not Significantly Impaired in Myoblasts in Congenital Myasthenic Syndromes Caused by Defective Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT1).

    PubMed

    Chen, Qiushi; Müller, Juliane S; Pang, Poh-Choo; Laval, Steve H; Haslam, Stuart M; Lochmüller, Hanns; Dell, Anne

    2015-10-16

    Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the first enzyme of the hexosamine biosynthetic pathway. It transfers an amino group from glutamine to fructose-6-phosphate to yield glucosamine-6-phosphate, thus providing the precursor for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is an essential substrate for all mammalian glycosylation biosynthetic pathways and N-glycan branching is especially sensitive to alterations in the concentration of this sugar nucleotide. It has been reported that GFPT1 mutations lead to a distinct sub-class of congenital myasthenic syndromes (CMS) termed "limb-girdle CMS with tubular aggregates". CMS are hereditary neuromuscular transmission disorders in which neuromuscular junctions are impaired. To investigate whether alterations in protein glycosylation at the neuromuscular junction might be involved in this impairment, we have employed mass spectrometric strategies to study the N-glycomes of myoblasts and myotubes derived from two healthy controls, three GFPT1 patients, and four patients with other muscular diseases, namely CMS caused by mutations in DOK7, myopathy caused by mutations in MTND5, limb girdle muscular dystrophy type 2A (LGMD2A), and Pompe disease. A comparison of the relative abundances of bi-, tri-, and tetra-antennary N-glycans in each of the cell preparations revealed that all samples exhibited broadly similar levels of branching. Moreover, although some differences were observed in the relative abundances of some of the N-glycan constituents, these variations were modest and were not confined to the GFPT1 samples. Therefore, GFPT1 mutations in CMS patients do not appear to compromise global N-glycosylation in muscle cells.

  2. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo.

    PubMed

    Wu, Melissa P; Doyle, Jamie R; Barry, Brenda; Beauvais, Ariane; Rozkalne, Anete; Piao, Xianhua; Lawlor, Michael W; Kopin, Alan S; Walsh, Christopher A; Gussoni, Emanuela

    2013-12-01

    Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities.

  3. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    SciTech Connect

    Liu, Xin-Hua; Bauman, William A.; Cardozo, Christopher

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop

  4. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity.

    PubMed

    Liu, Xin-Hua; Bauman, William A; Cardozo, Christopher

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle.

  5. Cartap-induced cytotoxicity in mouse C2C12 myoblast cell line and the roles of calcium ion and oxidative stress on the toxic effects.

    PubMed

    Liao, Jiunn-Wang; Kang, Jaw-Jou; Jeng, Chian-Ren; Chang, Shao-Kuang; Kuo, Ming-Jang; Wang, Shun-Cheng; Liu, Michael R S; Pang, Victor Fei

    2006-02-15

    Our previous study has demonstrated that instead of neuromuscular blockage cartap, an organonitrogen insecticide, could cause a marked irreversible Ca2+-dependent contracture in both isolated mouse and rabbit phrenic nerve-diaphragms. We further examined the potential of direct myocytotoxicity of cartap and the possible roles of calcium ion and oxidative stress on cartap-induced muscle cell injury using the mouse myoblast cell line, C2C12. Cartap exerted a dose- and time-dependent cytotoxic effect in C2C12 cells measured by MTT colorimetric assay and trypan blue dye exclusion. The extracellular activities of both creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated in the cartap-treated groups at or greater than 100 microM. The isoenzymatic profiles showed that the elevations were mainly due to CK-3, LDH-3, and LDH-4. Following the addition of 0.5-2.5mM EGTA, a Ca2+ chelator, or 30-100 microM verapamil, an L-type Ca2+ channel blocker, the cartap-induced reduction in MTT metabolic rate of C2C12 cells was significantly restored in a dose-dependent manner in both EGTA and verapamil-treated cells. Furthermore, EGTA could significantly reduce the cartap-induced elevation in the levels of total extracellular CK and LDH activities. Additionally, cartap significantly increased the level of endogenous reactive oxygen species (ROS) in C2C12 cells in a dose- and time-dependent manner. The cartap-induced ROS generation could be significantly inhibited by antioxidants, including Vitamins C and E, catalase, and superoxide dismutase, with catalase the most effective. EGTA could significantly inhibit cartap-induced ROS generation in a dose-dependent manner. The results suggested that cartap could induce ROS generation in C2C12 cells via a Ca2+-dependent mechanism resulting in subsequent cytotoxicity, at least partially, to C2C12 cells. It is speculated that both Ca2+ and Ca2+-induced ROS may also play the central role on the myogenic contracture and myofiber injury

  6. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway

    SciTech Connect

    Favreau, Catherine; Delbarre, Erwan; Courvalin, Jean-Claude; Buendia, Brigitte

    2008-04-01

    Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.

  7. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    SciTech Connect

    Takegahara, Yuki; Yamanouchi, Keitaro Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  8. Affective processing requires awareness.

    PubMed

    Lähteenmäki, Mikko; Hyönä, Jukka; Koivisto, Mika; Nummenmaa, Lauri

    2015-04-01

    Studies using backward masked emotional stimuli suggest that affective processing may occur outside visual awareness and imply primacy of affective over semantic processing, yet these experiments have not strictly controlled for the participants' awareness of the stimuli. Here we directly compared the primacy of affective versus semantic categorization of biologically relevant stimuli in 5 experiments (n = 178) using explicit (semantic and affective discrimination; Experiments 1-3) and implicit (semantic and affective priming; Experiments 4-5) measures. The same stimuli were used in semantic and affective tasks. Visual awareness was manipulated by varying exposure duration of the masked stimuli, and subjective level of stimulus awareness was measured after each trial using a 4-point perceptual awareness scale. When participants reported no awareness of the stimuli, semantic and affective categorization were at chance level and priming scores did not differ from zero. When participants were even partially aware of the stimuli, (a) both semantic and affective categorization could be performed above chance level with equal accuracy, (b) semantic categorization was faster than affective categorization, and (c) both semantic and affective priming were observed. Affective categorization speed was linearly dependent on semantic categorization speed, suggesting dependence of affective processing on semantic recognition. Manipulations of affective and semantic categorization tasks revealed a hierarchy of categorization operations beginning with basic-level semantic categorization and ending with superordinate level affective categorization. We conclude that both implicit and explicit affective and semantic categorization is dependent on visual awareness, and that affective recognition follows semantic categorization.

  9. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage [published erratum appears in J Cell Biol 1995 Feb;128(4):following 713

    PubMed Central

    1994-01-01

    The implantation of bone morphogenetic protein (BMP) into muscular tissues induces ectopic bone formation at the site of implantation. To investigate the mechanism underlying this process, we examined whether recombinant bone morphogenetic protein-2 (BMP-2) converts the differentiation pathway of the clonal myoblastic cell line, C2C12, into that of osteoblast lineage. Incubating the cells with 300 ng/ml of BMP- 2 for 6 d almost completely inhibited the formation of the multinucleated myotubes expressing troponin T and myosin heavy chain, and induced the appearance of numerous alkaline phosphatase (ALP)- positive cells. BMP-2 dose dependently induced ALP activity, parathyroid hormone (PTH)-dependent 3',5'-cAMP production, and osteocalcin production at concentrations above 100 ng/ml. The concentration of BMP-2 required to induce these osteoblastic phenotypes was the same as that required to almost completely inhibit myotube formation. Incubating primary muscle cells with 300 ng/ml of BMP-2 for 6 d also inhibited myotube formation, whereas induced ALP activity and osteocalcin production. Incubation with 300 ng/ml of BMP-2 suppressed the expression of mRNA for muscle creatine kinase within 6 h, whereas it induced mRNA expression for ALP, PTH/PTH-related protein (PTHrP) receptors, and osteocalcin within 24-48 h. BMP-2 completely inhibited the expression of myogenin mRNA by day 3. By day 3, BMP-2 also inhibited the expression of MyoD mRNA, but it was transiently stimulated 12 h after exposure to BMP-2. Expression of Id-1 mRNA was greatly stimulated by BMP-2. When C2C12 cells pretreated with BMP-2 for 6 d were transferred to a colony assay system in the absence of BMP-2, more than 84% of the colonies generated became troponin T-positive and ALP activity disappeared. TGF-beta 1 also inhibited myotube formation in C2C12 cells, and suppressed the expression of myogenin and MyoD mRNAs without inducing that of Id-1 mRNA. However, no osteoblastic phenotype was induced by TGF

  10. Kinesics of Affective Instability.

    ERIC Educational Resources Information Center

    Dil, Nasim

    1979-01-01

    Discusses the rationale of studying kinesics of affective instability, describes the phenonmenon of affective instability, examines the role of kinesics in the overall process of communication, and presents three case studies. (Author/AM)

  11. The Cytoprotective Effect of Petalonia binghamiae Methanol Extract against Oxidative Stress in C2C12 Myoblasts: Mediation by Upregulation of Heme Oxygenase-1 and Nuclear Factor-Erythroid 2 Related Factor 2.

    PubMed

    Kang, Ji Sook; Choi, Il-Whan; Han, Min Ho; Lee, Dae-Sung; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Kim, Cheol Min; Yoo, Young Hyun; Choi, Yung Hyun

    2015-04-29

    This study was designed to examine the protective effects of the marine brown algae Petalonia binghamiae against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms. P. binghamiae methanol extract (PBME) prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2 in mouse-derived C2C12 myoblasts. PBME also significantly attenuated H2O2-induced comet tail formation in a comet assay, histone γH2A.X phosphorylation, and annexin V-positive cells, suggesting that PBME prevented H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, PBME increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a HO-1 competitive inhibitor, significantly abolished the protective effects of PBME on H2O2-induced ROS generation, growth inhibition, and apoptosis. Collectively, these results demonstrate that PBME augments the antioxidant defense capacity through activation of the Nrf2/HO-1 pathway.

  12. Sphingosine-1-phosphate pretreatment amends hypoxia-induced metabolic dysfunction and impairment of myogenic potential in differentiating C2C12 myoblasts by stimulating viability, calcium homeostasis and energy generation.

    PubMed

    Rahar, Babita; Chawla, Sonam; Pandey, Sanjay; Bhatt, Anant Narayan; Saxena, Shweta

    2017-01-09

    Sphingosine-1-phosphate (S1P) has a role in transpiration in patho-physiological signaling in skeletal muscles. The present study evaluated the pre-conditioning efficacy of S1P in facilitating differentiation of C2C12 myoblasts under a normoxic/hypoxic cell culture environment. Under normoxia, exogenous S1P significantly promoted C2C12 differentiation as evident from morphometric descriptors and differentiation markers of the mature myotubes, but it could facilitate only partial recovery from hypoxia-induced compromised differentiation. Pretreatment of S1P optimized the myokine secretion, intracellular calcium release and energy generation by boosting the aerobic/anaerobic metabolism and mitochondrial mass. In the hypoxia-exposed cells, there was derangement of the S1PR1-3 expression patterns, while the same could be largely restored with S1P pretreatment. This is being proposed as a plausible underlying mechanism for the observed pro-myogenic efficacy of exogenous S1P preconditioning. The present findings are an invaluable addition to the existing knowledge on the pro-myogenic potential of S1P and may prove beneficial in the field of hypoxia-related myo-pathologies.

  13. Antioxidative effects of diallyl trisulfide on hydrogen peroxide-induced cytotoxicity through regulation of nuclear factor-E2-related factor-mediated thioredoxin reductase 1 expression in C2C12 skeletal muscle myoblast cells.

    PubMed

    Kang, Ji Sook; Kim, Gi-Yiung; Kim, Byung Woo; Choi, Yung Hyun

    2017-04-01

    Diallyl trisulfide (DATS) is one of the major sulfur-containing compounds in garlic oil. In this study, we analyzed the effects of DATS against hydrogen peroxide (H2O2)-induced oxidative stress in C2C12 myoblasts. DATS preconditioning significantly attenuated H2O2-induced growth inhibition and DNA damage, as well as apoptosis by decreasing the generation of ROS. Treatment with DATS alone effectively upregulated the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and thioredoxin reductase 1 (TrxR1), which was associated with the increased phosphorylation of Nrf2. However, the protective effects of DATS against H2O2-induced growth reduction and ROS accumulation were significantly abolished by auranofin, an inhibitor of TrxR activity. Moreover, DATS-mediated phosphorylation of Nrf2 and induction of TrxR1 were markedly reduced by genetic silencing of Nrf2. DATS treatment also induced the phosphorylation extracellular signal-regulating kinase (ERK), and analysis using specific inhibitors of cellular signaling pathways demonstrated that only ERK activation was involved in Nrf2 phosphorylation and TrxR1 induction. In addition, the cytoprotective potentials were abrogated in C2C12 cells pretreated with an ERK specific inhibitor. The results demonstrate that DATS protects against oxidative stress-induced DNA damage and apoptosis in C2C12 cells in part through the activation of Nrf2-mediated TrxR1 induction via the ERK signaling pathway.

  14. The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation.

    PubMed

    Choi, Yung Hyun

    2016-04-01

    This study was designed to confirm the protective effects of isorhamnetin against oxidative stress-induced cellular damage. Our results indicated that isorhamnetin inhibited the hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against the intracellular reactive oxygen species (ROS) in mouse-derived C2C12 myoblasts. Isorhamnetin also significantly attenuated H2O2-induced DNA damage and apoptosis, and increased the levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and its phosphorylation associated with the induction of heme oxygenase-1 (HO-1). However, the protective effects of isorhamnetin on H2O2-induced ROS and growth inhibition were significantly abolished by an HO-1 competitive inhibitor. Moreover, the potential of isorhamnetin to mediate HO-1 induction and protect against H2O2-mediated growth inhibition was abrogated by transient transfection with Nrf2-specific small interfering RNA. Additionally, isorhamnetin induced the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. However, the specific inhibitor of ERK, but not JNK and p38 MAPK, was able to abolish the HO-1 upregulation and the Nrf2 phosphorylation. Collectively, these results demonstrate that isorhamnetin augments the cellular antioxidant defense capacity by activating the Nrf2/HO-1 pathway involving the activation of the ERK pathway, thus protecting the C2C12 cells from H2O2-induced cytotoxicity.

  15. Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide-polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility.

    PubMed

    Chaudhuri, Biswadeep; Bhadra, Debabrata; Moroni, Lorenzo; Pramanik, Krishna

    2015-02-18

    Recently graphene and graphene based composites are emerging as better materials to fabricate scaffolds. Addition of graphene oxide (GO) nanoplatelets (GOnPs) in bioactive polymers was found to enhance its conductivity (σ) and, dielectric permittivity (ϵ) along with biocompatibility. In this paper, human cord blood derived mesenchymal stem cells (CB-hMSCs) were differentiated to skeletal muscle cells (hSkMCs) on spin coated thin GO sheets composed of GOnPs and on electrospun fibrous meshes of GO-PCL (poly-caprolactone) composite. Both substrates exhibited excellent myoblast differentiations and promoted self-alignedmyotubesformation similar to natural orientation. σ, ϵ, microstructural and vibration spectroscopic studies were carried out for the characterizations of GO sheet and the composite scaffolds. Significantly enhanced values of both σ and ϵ of the GO-PCL composite were considered to provide favourable cues for the formation of superior multinucleated myotubes on the electrospun meshes compared to those on thin GO sheets. The present results demonstrated that both substrates might be used as potential candidates for CB-hMSCs differentiation and proliferation for human skeletal muscle tissue regeneration.

  16. Establishment of clonal myogenic cell lines from severely affected dystrophic muscles - CDK4 maintains the myogenic population

    PubMed Central

    2011-01-01

    Background A hallmark of muscular dystrophies is the replacement of muscle by connective tissue. Muscle biopsies from patients severely affected with facioscapulohumeral muscular dystrophy (FSHD) may contain few myogenic cells. Because the chromosomal contraction at 4q35 linked to FSHD is thought to cause a defect within myogenic cells, it is important to study this particular cell type, rather than the fibroblasts and adipocytes of the endomysial fibrosis, to understand the mechanism leading to myopathy. Results We present a protocol to establish clonal myogenic cell lines from even severely dystrophic muscle that has been replaced mostly by fat, using overexpression of CDK4 and the catalytic component of telomerase (human telomerase reverse transcriptase; hTERT), and a subsequent cloning step. hTERT is necessary to compensate for telomere loss during in vitro cultivation, while CDK4 prevents a telomere-independent growth arrest affecting CD56+ myogenic cells, but not their CD56- counterpart, in vitro. Conclusions These immortal cell lines are valuable tools to reproducibly study the effect of the FSHD mutation within myoblasts isolated from muscles that have been severely affected by the disease, without the confounding influence of variable amounts of contaminating connective-tissue cells. PMID:21798090

  17. Androgens Up-regulate Transcription of the Notch Inhibitor Numb in C2C12 Myoblasts via Wnt/β-Catenin Signaling to T Cell Factor Elements in the Numb Promoter*

    PubMed Central

    Liu, Xin-Hua; Wu, Yong; Yao, Shen; Levine, Alice C.; Kirschenbaum, Alexander; Collier, Lauren; Bauman, William A.; Cardozo, Christopher P.

    2013-01-01

    Androgen signaling via the androgen receptor is a key pathway that contributes to development, cell fate decisions, and differentiation, including that of myogenic progenitors. Androgens and synthetic steroids have well established anabolic actions on skeletal muscle. Wnt and Notch signaling pathways are also essential to myogenic cell fate decisions during development and tissue repair. However, the interactions among these pathways are largely unknown. Androgenic regulation of Wnt signaling has been reported. Nandrolone, an anabolic steroid, has been shown to inhibit Notch signaling and up-regulate Numb, a Notch inhibitor. To elucidate the mechanisms of interaction between nandrolone and Wnt/Notch signaling, we investigated the effects of nandrolone on Numb expression and Wnt signaling and determined the roles of Wnt signaling in nandrolone-induced Numb expression in C2C12 myoblasts. Nandrolone increased Numb mRNA and protein levels and T cell factor (Tcf) transcriptional activity via inhibition of glycogen synthase kinase 3β. Up-regulation of Numb expression by nandrolone was blocked by the Wnt inhibitors, sFRP1 and DKK1, whereas Wnt3a increased Numb mRNA and protein expression. In addition, we observed that the proximal promoter of the Numb gene had functional Tcf binding elements to which β-catenin was recruited in a manner enhanced by both nandrolone and Wnt3a. Moreover, site-directed mutagenesis indicated that the Tcf binding sites in the Numb promoter are required for the nandrolone-induced Numb transcriptional activation in this cell line. These results reveal a novel molecular mechanism underlying up-regulation of Numb transcription with a critical role for increased canonical Wnt signaling. In addition, the data identify Numb as a novel target gene of the Wnt signaling pathway by which Wnts would be able to inhibit Notch signaling. PMID:23649620

  18. [Affect and mimetic behavior].

    PubMed

    Zepf, S; Ullrich, B; Hartmann, S

    1998-05-01

    The relationship between facial expression and experienced affect presents many problems. The two diametrically opposed positions proposing solutions to this problem are exemplified using the conceptions of Mandler u. Izard. The underlying premises of both conceptions still prevail in various forms. The authors reject the concepts according to which facial expression is merely correlated to the affects (see Mandler 1975) as well as the view that facial expression controls the affects (see Izard 1977). The relationship between affect and facial expression is reexamined, subjecting it to a semiotic, essentially semantic analysis similar to the Ogden and Richards' language and meaning approach. This analysis involves a critical discussion of Scherer's attempt of a purely communicational interpretation using Bühler's organon model. In the author's approach, facial expression is seen not simply as a system of signals, but as a system of representative signs which signify the affects and refer to the emotive meaning of things for the subject. The authors develop the thesis that human beings are not born simply with the ability to speak, but also with the abstract possibility of performing facial expressions. This ability develops by way of coordinating patterns of expressions, which are presumably phylogenetically determined, with affects that take on a socially determined individual form, similar to language acquisition during socialisation. The authors discuss the methodological implications arising for studies investigating the affective meaning of facial expressions.

  19. Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis.

    PubMed

    Brosig, Michaela; Ferralli, Jacqueline; Gelman, Laurent; Chiquet, Matthias; Chiquet-Ehrismann, Ruth

    2010-10-01

    Mechanical stress controls a broad range of cellular functions. The cytoskeleton is physically connected to the extracellular matrix via integrin receptors, and to the nuclear lamina by the LINC complex that spans both nuclear membranes. We asked here how disruption of this direct link from the cytoskeleton to nuclear chromatin affects mechanotransduction. Fibroblasts grown on flexible silicone membranes reacted to cyclic stretch by nuclear rotation. This rotation was abolished by inhibition of actomyosin contraction as well as by overexpression of dominant-negative versions of nesprin or sun proteins that form the LINC complex. In an in vitro model of muscle differentiation, cyclic strain inhibits differentiation and induces proliferation of C2C12 myoblasts. Interference with the LINC complex in these cells abrogated their stretch-induced proliferation, while stretch increased p38 MAPK and NFkappaB phosphorylation and the transcript levels of myogenic transcription factors MyoD and myogenin. We found that the physical link from the cytoskeleton to the nuclear lamina is crucial for correct mechanotransduction, and that disruption of the LINC complex perturbs the mechanical control of cell differentiation.

  20. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  1. Affective responses to dance.

    PubMed

    Christensen, Julia F; Pollick, Frank E; Lambrechts, Anna; Gomila, Antoni

    2016-07-01

    The objective of the present work was the characterization of mechanisms by which affective experiences are elicited in observers when watching dance movements. A total of 203 dance stimuli from a normed stimuli library were used in a series of independent experiments. The following measures were obtained: (i) subjective measures of 97 dance-naïve participants' affective responses (Likert scale ratings, interviews); and (ii) objective measures of the physical parameters of the stimuli (motion energy, luminance), and of the movements represented in the stimuli (roundedness, impressiveness). Results showed that (i) participants' ratings of felt and perceived affect differed, (ii) felt and perceived valence but not arousal ratings correlated with physical parameters of the stimuli (motion energy and luminance), (iii) roundedness in posture shape was related to the experience of more positive emotion than edgy shapes (1 of 3 assessed rounded shapes showed a clear effect on positiveness ratings while a second reached trend level significance), (iv) more impressive movements resulted in more positive affective responses, (v) dance triggered affective experiences through the imagery and autobiographical memories it elicited in some people, and (vi) the physical parameters of the video stimuli correlated only weakly and negatively with the aesthetics ratings of beauty, liking and interest. The novelty of the present approach was twofold; (i) the assessment of multiple affect-inducing mechanisms, and (ii) the use of one single normed stimulus set. The results from this approach lend support to both previous and present findings. Results are discussed with regards to current literature in the field of empirical aesthetics and affective neuroscience.

  2. Individual Differences in Affect.

    ERIC Educational Resources Information Center

    Haviland, Jeannette

    This paper argues that infants' affect patterns are innate and are meaningful indicators of individual differences in internal state. Videotapes of seven infants' faces were coded using an ethogram; the movement of the eyebrow, eye direction, eye openness, mouth shape, mouth position, lip position, and tongue protrusion were assessed…

  3. Affective Factors: Anxiety

    ERIC Educational Resources Information Center

    Tasnimi, Mahshad

    2009-01-01

    Affective factors seem to play a crucial role in success or failure in second language acquisition. Negative attitudes can reduce learners' motivation and harm language learning, while positive attitudes can do the reverse. Discovering students' attitudes about language will help both teacher and student in teaching learning process. Anxiety is…

  4. How Body Affects Brain.

    PubMed

    Suzuki, Wendy A

    2016-08-09

    Studies show that physical exercise can affect a range of brain and cognitive functions. However, little is known about the peripheral signals that initiate these central changes. Moon et al. (2016) provide exciting new evidence that a novel myokine, cathepsin B (CTSB), released with exercise is associated with improved memory.

  5. What Variables Affect Solubility?

    ERIC Educational Resources Information Center

    Baker, William P.; Leyva, Kathryn

    2003-01-01

    Helps middle school students understand the concept of solubility through hands-on experience with a variety of liquids and solids. As they explore factors that affect solubility and saturation, students gain content mastery and an understanding of the inquiry process. Also enables teachers to authentically assess student performance on several…

  6. Food Affects Human Behavior.

    ERIC Educational Resources Information Center

    Kolata, Gina

    1982-01-01

    A conference on whether food and nutrients affect human behavior was held on November 9, 1982 at the Massachusetts Institute of Technology. Various research studies on this topic are reviewed, including the effects of food on brain biochemistry (particularly sleep) and effects of tryptophane as a pain reducer. (JN)

  7. Factors affecting soil cohesion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erodibility is a measure of a soil’s resistance against erosive forces and is affected by both intrinsic (or inherent) soil property and the extrinsic condition at the time erodibility measurement is made. Since soil erodibility is usually calculated from results obtained from erosion experimen...

  8. Dynamic Synchronization of Teacher-Students Affection in Affective Instruction

    ERIC Educational Resources Information Center

    Zhang, Wenhai; Lu, Jiamei

    2011-01-01

    Based on Bower's affective network theory, the article links the dynamic analysis of affective factors in affective instruction, and presents affective instruction strategic of dynamic synchronization between teacher and students to implement the best ideal mood that promotes students' cognition and affection together. In the process of teaching,…

  9. Affect in electoral politics.

    PubMed

    Glaser, J; Salovey, P

    1998-01-01

    Recent U.S. history provides vivid illustrations of the importance of politicians' emotional displays in subsequent judgments of them. Yet, a review of empirical research on the role of affect (emotion, mood, and evaluation) in electoral politics reveals little work that has focused on the impact of candidates' emotional expression on voters' preferences for them. A theoretical framework is proposed to identify psychological mechanisms by which a target's displays of emotion influence judgments of that target. Findings from the emerging literature on emotions and politics challenge the traditional assumption of political science that voters make decisions based solely on the cold consideration of nonaffectively charged information. The affect and politics literature, although somewhat unfocused and broad, represents an interdisciplinary domain of study that contributes to the understanding of both electoral politics and social interaction more generally.

  10. Conditions affecting the foreskin.

    PubMed

    Hunter, David

    This article aims to provide an update on the anatomy of, and some of the conditions affecting, the foreskin. The cultural and religious significance of the foreskin will be explored, as well as nursing care and health promotion needs of men. The possible link between circumcision status and human immunodeficiency virus will be briefly discussed. Maintaining cleanliness of the genitals is advocated to reduce the incidence of inflammatory conditions.

  11. Comprehensive affected environment

    SciTech Connect

    1995-10-01

    Energy Vision 2020 evaluates the affected environment to help provide a baseline for measuring the environmental consequences of alternative energy strategies. Because this report is also an environmental impact statement, special emphasis is given to the environment. This regional perspective takes in both natural conditions and those resulting from human development. It considers socioeconomic, air, water, and land resources. This section of the Energy Vision 2020 draft report provides the overview for the environmental assessment.

  12. Psychological factors affecting migraine.

    PubMed

    Shulman, B H

    1989-01-01

    Psychological factors are known to increase the severity and intensity of headaches. When they are shown to be present, an appropriate psychiatric diagnosis is the Diagnostic and Statistical Manual's (DSMIII-R) category of psychological factors affecting physical condition (code no. 316.0). These factors can be differentiated into stress factors, personality traits, psychodynamic factors, learned behaviors, and mood disturbances. The factors overlap and intertwine in the average headache patient. Attention to these factors in a systematic way should enhance our understanding and treatment of the chronic headache patient.

  13. Seasonal affective disorder.

    PubMed

    Kurlansik, Stuart L; Ibay, Annamarie D

    2012-12-01

    Seasonal affective disorder is a combination of biologic and mood disturbances with a seasonal pattern, typically occurring in the autumn and winter with remission in the spring or summer. In a given year, about 5 percent of the U.S. population experiences seasonal affective disorder, with symptoms present for about 40 percent of the year. Although the condition is seasonally limited, patients may have significant impairment from the associated depressive symptoms. Treatment can improve these symptoms and also may be used as prophylaxis before the subsequent autumn and winter seasons. Light therapy is generally well tolerated, with most patients experiencing clinical improvement within one to two weeks after the start of treatment. To avoid relapse, light therapy should continue through the end of the winter season until spontaneous remission of symptoms in the spring or summer. Pharmacotherapy with antidepressants and cognitive behavior therapy are also appropriate treatment options and have been shown to be as effective as light therapy. Because of the comparable effectiveness of treatment options, first-line management should be guided by patient preference.

  14. Factors affecting bone growth.

    PubMed

    Gkiatas, Ioannis; Lykissas, Marios; Kostas-Agnantis, Ioannis; Korompilias, Anastasios; Batistatou, Anna; Beris, Alexandros

    2015-02-01

    Bone growth and development are products of the complex interactions of genetic and environmental factors. Longitudinal bone growth depends on the growth plate. The growth plate has 5 different zones-each with a different functional role-and is the final target organ for longitudinal growth. Bone length is affected by several systemic, local, and mechanical factors. All these regulation systems control the final length of bones in a complicated way. Despite its significance to bone stability, bone growth in width has not been studied as extensively as longitudinal bone growth. Bone growth in width is also controlled by genetic factors, but mechanical loading regulates periosteal apposition. In this article, we review the most recent data regarding bone growth from the embryonic age and analyze the factors that control bone growth. An understanding of this complex system is important in identifying metabolic and developmental bone diseases and fracture risk.

  15. Community structure affects behavior.

    PubMed

    Jaenson, C

    1991-06-01

    AID's prevention efforts can benefit from taking into account 5 main aspects (KEPRA) of community structure identified by anthropologists: 1) kinship patterns, 2) economics, 3) politics, 4) religion, and 5) associations. For example, in Uganda among the Basoga and paternal aunt or senga is responsible for female sex education. Such culturally determined patterns need to be targeted in order to enhance education and effectiveness. Economics can reflect differing systems of family support through sexual means. The example given involves a poor family with a teenager in Thailand who exchanges a water buffalo or basic necessity for this daughter's prostitution. Politics must be considered because every society identifies people who have the power to persuade, influence, exchange resources, coerce, or in some way get people to do what is wanted. Utilizing these resources whether its ministers of health, factory owners, or peers is exemplified in the Monterey, Mexico factor floor supervisor and canteen worker introducing to workers the hows and whys of a new AID's education program. His peer status will command more respect than the director with direct authority. Religious beliefs have explanations for causes of sickness or disease, or provide instruction in sex practices. The example given is of a health workers in Uganda discussing AIDS with rural women by saying that we all know that disease and deaths are caused by spells. "But not AIDS - slim. AIDS is different." Associations can help provide educational, economic, and emotional assistance to the AID's effort or families affected.

  16. Affective Incoherence: When Affective Concepts and Embodied Reactions Clash

    PubMed Central

    Centerbar, David B.; Clore, Gerald L.; Schnall, Simone; Garvin, Erika

    2008-01-01

    In five studies, we examined the effects on cognitive performance of coherence and incoherence between conceptual and experiential sources of affective information. The studies crossed the priming of happy and sad concepts with affective experiences. In different experiments, these included: approach or avoidance actions, happy or sad feelings, and happy or sad expressive behaviors. In all studies, coherence between affective concepts and affective experiences led to better recall of a story than affective incoherence. We suggested that the experience of such experiential affective cues serves as evidence of the appropriateness of affective concepts that come to mind. The results suggest that affective coherence has epistemic benefits, and that incoherence is costly, for cognitive performance. PMID:18361672

  17. Assessment of affect integration: validation of the affect consciousness construct.

    PubMed

    Solbakken, Ole André; Hansen, Roger Sandvik; Havik, Odd E; Monsen, Jon T

    2011-05-01

    Affect integration, or the capacity to utilize the motivational and signal properties of affect for personal adjustment, is assumed to be an important aspect of psychological health and functioning. Affect integration has been operationalized through the affect consciousness (AC) construct as degrees of awareness, tolerance, nonverbal expression, and conceptual expression of nine discrete affects. A semistructured Affect Consciousness Interview (ACI) and separate Affect Consciousness Scales (ACSs) have been developed to specifically assess these aspects of affect integration. This study explored the construct validity of AC in a Norwegian clinical sample including estimates of reliability and assessment of structure by factor analyses. External validity issues were addressed by examining the relationships between scores on the ACSs and self-rated symptom- and interpersonal problem measures as well as independent, observer-based ratings of personality disorder criteria and the Global Assessment of Functioning (GAF) scale from the Diagnostic and Statistical Manual of Mental Disorders (4th ed. [DSM-IV]; American Psychiatric Association, 1994).

  18. Encountering Science Education's Capacity to Affect and Be Affected

    ERIC Educational Resources Information Center

    Alsop, Steve

    2016-01-01

    What might science education learn from the recent affective turn in the humanities and social sciences? Framed as a response to Michalinos Zembylas's article, this essay draws from selected theorizing in affect theory, science education and science and technology studies, in pursuit of diverse and productive ways to talk of affect within science…

  19. Drugs affecting the eye.

    PubMed

    Taylor, F

    1985-08-01

    This discussion reviews drugs that affect the eye, including antihyperglycemic agents; corticosteroids; antirheumatic drugs (quinolines, indomethacin, and allopurinol); psychiatric drugs (phenothiazine, thioridazine, and chlorpromazine); drugs used in cardiology (practolol, amiodarone, and digitalis gylcosides); drugs implicated in optic neuritis and atrophy, drugs with an anticholinergic action; oral contraceptives (OCs); and topical drugs and systemic effects. Refractive changes, either myopic or hypermetropic, can occur as a result of hyperglycemia, and variation in vision is sometimes a presenting symptom in diabetes mellitus. If it causes a change in the refraction, treatment of hyperglycemia almost always produces a temporary hypermetropia. A return to the original refractive state often takes weeks, sometimes months. There is some evidence that patients adequately treated with insulin improve more rapidly than those taking oral medication. Such patients always should be referred for opthalmological evaluation as other factors might be responsible, but it might not be possible to order the appropriate spectacle correction for some time. The most important ocular side effect of the systemic adiministration of corticosteroids is the formation of a posterior subcapsular cataract. Glaucoma also can result from corticosteroids, most often when they are applied topically. Corticosteroids have been implicated in the production of benign intracranial hypertension, which is paradoxical because they also are used in its treatment. The most important side effect of drugs such as chloroquine and hydroxychloroquine is an almost always irreversible maculopathy with resultant loss of central vision. Corneal and retinal changes similar to those caused by the quinolines have been reported with indomethacin, but there is some question about a cause and effect relationship. The National Registry of Drug Induced Ocular Side Effects in the US published 30 case histories of

  20. Identifying Occupationally Specific Affective Behaviors.

    ERIC Educational Resources Information Center

    Pucel, David J.

    1993-01-01

    Data from two groups of cosmetology instructors (n=15) and two groups of machinist instructors (n=17) validated the Occupational Affective Behavior Analysis instrument as capable of identifying affective behaviors viewed as important to success in a given occupation. (SK)

  1. [Emotions and affect in psychoanalysisis].

    PubMed

    Carton, Solange; Widlöcher, Daniel

    2012-06-01

    The goal of this paper is to give some indications on the concept of affect in psychoanalysis. There is no single theory of affect, and Freud gave successive definitions, which continue to be deepened in contemporary psychoanalysis. We review some steps of Freud works on affect, then we look into some present major questions, such as its relationship to soma, the nature of unconscious affects and the repression of affect, which is particularly developed in the field of psychoanalytic psychosomatic. From Freud's definitions of affect as one of the drive representative and as a limit-concept between the somatic and the psychic, we develop some major theoretical perspectives, which give a central place to soma and drive impulses, and which agree on the major idea that affect is the result of a process. We then note some parallelism between psychoanalysis of affect and psychology and neurosciences of emotion, and underline the gaps and conditions of comparison between these different epistemological approaches.

  2. Affective Induction and Creative Thinking

    ERIC Educational Resources Information Center

    Fernández-Abascal, Enrique G.; Díaz, María D. Martín

    2013-01-01

    Three studies explored the relation between affect and production of creative divergent thinking, assessed with the Torrance Tests of Creative Thinking (Figural TTCT). In the first study, general, positive, and negative affect, assessed with the Positive and Negative Affect Scale (PANAS) were compared with creative production. In the second study,…

  3. Affective Productions of Mathematical Experience

    ERIC Educational Resources Information Center

    Walshaw, Margaret; Brown, Tony

    2012-01-01

    In underscoring the affective elements of mathematics experience, we work with contemporary readings of the work of Spinoza on the politics of affect, to understand what is included in the cognitive repertoire of the Subject. We draw on those resources to tell a pedagogical tale about the relation between cognition and affect in settings of…

  4. The dyadic regulation of affect.

    PubMed

    Fosha, D

    2001-02-01

    Accelerated Experiential-Dynamic Psychotherapy integrates experiential, relational, and psychodynamic elements. Deep authentic affective experience and its regulation through coordinated emotional interchanges between patient and therapist are viewed as key transformational agents. When maintaining attachment with caregivers necessitates excluding particular affects, a patient's capacity to regulate emotion becomes compromised. Being in an emotionally alive therapeutic relationship enables patients to better tolerate and communicate affective states; doing so, in turn, fosters security, openness, and intimacy in their other relationships. A clinical vignette will illustrate how using the therapist's affect, and focusing on the patient's experience of it, contributes to the repair of affect regulatory difficulties.

  5. Affect as a Psychological Primitive

    PubMed Central

    Barrett, Lisa Feldman; Bliss-Moreau, Eliza

    2009-01-01

    In this article, we discuss the hypothesis that affect is a fundamental, psychologically irreducible property of the human mind. We begin by presenting historical perspectives on the nature of affect. Next, we proceed with a more contemporary discussion of core affect as a basic property of the mind that is realized within a broadly distributed neuronal workspace. We then present the affective circumplex, a mathematical formalization for representing core affective states, and show that this model can be used to represent individual differences in core affective feelings that are linked to meaningful variation in emotional experience. Finally, we conclude by suggesting that core affect has psychological consequences that reach beyond the boundaries of emotion, to influence learning and consciousness. PMID:20552040

  6. Non-thermic skin affections.

    PubMed

    Broz, L; Kripner, J

    2000-01-01

    The Centre for Burns can help by its means (material, technical and personal) in the treatment of burns with extensive and deep losses of the skin cover and other tissue structures and in some affections with a different etiology (non-thermic affections). Indicated for admission are, in particular, extensive exfoliative affections--Stevens-Johnson's syndrome (SJS), Lyell's syndrome--toxic epidermal necrolysis (TEN) and staphylococcal scalded skin syndrome (SSSS), deep skin and tissue affections associated with fulminant purpura (PF), possibly other affections (epidermolysis bullosa, posttraumatic avulsions etc.). The similarity with burn injuries with loss of the skin cover grade II is typical, in particular in exfoliative affections with a need for adequate fluid replacement in the acute stage and aseptic surgical treatment of the affected area from the onset of the disease. In conditions leading to full thickness skin loss, in addition to general treatment rapid plastic surgical interventions dominate.

  7. Encountering science education's capacity to affect and be affected

    NASA Astrophysics Data System (ADS)

    Alsop, Steve

    2016-09-01

    What might science education learn from the recent affective turn in the humanities and social sciences? Framed as a response to Michalinos Zembylas's article, this essay draws from selected theorizing in affect theory, science education and science and technology studies, in pursuit of diverse and productive ways to talk of affect within science education. These discussions are framed by desires to transcend traditional epistemic boundaries and practices. The article concludes offering some associated ambiguities and tensions involved.

  8. Positive affect and psychobiological processes.

    PubMed

    Dockray, Samantha; Steptoe, Andrew

    2010-09-01

    Positive affect has been associated with favourable health outcomes, and it is likely that several biological processes mediate the effects of positive mood on physical health. There is converging evidence that positive affect activates the neuroendocrine, autonomic and immune systems in distinct and functionally meaningful ways. Cortisol, both total output and the awakening response, has consistently been shown to be lower among individuals with higher levels of positive affect. The beneficial effects of positive mood on cardiovascular function, including heart rate and blood pressure, and the immune system have also been described. The influence of positive affect on these psychobiological processes is independent of negative affect, suggesting that positive affect may have characteristic biological correlates. The duration and conceptualisation of positive affect may be important considerations in understanding how different biological systems are activated in association with positive affect. The association of positive affect and psychobiological processes has been established, and these biological correlates may be partly responsible for the protective effects of positive affect on health outcomes.

  9. Phentermine, sibutramine and affective disorders.

    PubMed

    An, Hoyoung; Sohn, Hyunjoo; Chung, Seockhoon

    2013-04-01

    A safe and effective way to control weight in patients with affective disorders is needed, and phentermine is a possible candidate. We performed a PubMed search of articles pertaining to phentermine, sibutramine, and affective disorders. We compared the studies of phentermine with those of sibutramine. The search yielded a small number of reports. Reports concerning phentermine and affective disorders reported that i) its potency in the central nervous system may be comparatively low, and ii) it may induce depression in some patients. We were unable to find more studies on the subject; thus, it is unclear presently whether phentermine use is safe in affective disorder patients. Reports regarding the association of sibutramine and affective disorders were slightly more abundant. A recent study that suggested that sibutramine may have deleterious effects in patients with a psychiatric history may provide a clue for future phentermine research. Three explanations are possible concerning the association between phentermine and affective disorders: i) phentermine, like sibutramine, may have a depression-inducing effect that affects a specific subgroup of patients, ii) phentermine may have a dose-dependent depression-inducing effect, or iii) phentermine may simply not be associated with depression. Large-scale studies with affective disorder patients focusing on these questions are needed to clarify this matter before investigation of its efficacy may be carried out and it can be used in patients with affective disorders.

  10. Factors Affecting Willingness to Mentor

    ERIC Educational Resources Information Center

    Ghislieri, Chiara; Gatti, Paola; Quaglino, Gian Piero

    2009-01-01

    The paper presents a survey among 300 employees in Northern Italy to assess the willingness to mentor and identify the factors that affect it. Men and respondents with previous mentoring experience indicate a higher willingness to be a mentor. Willingness is affected by personal characteristics that are perceived as necessary for a mentor and the…

  11. Affect and Self-Regulation

    ERIC Educational Resources Information Center

    Malmivuori, Marja-Liisa

    2006-01-01

    This paper presents affect as an essential aspect of students' self-reflection and self-regulation. The introduced concepts of self-system and self-system process stress the importance of self-appraisals of personal competence and agency in affective responses and self-regulation in problem solving. Students are viewed as agents who constantly…

  12. Measurement of Family Affective Structure.

    ERIC Educational Resources Information Center

    Lowman, Joseph

    1980-01-01

    Three studies demonstrate that the Inventory of Family Feelings, a measure of family affective structure, has high reliability and construct and concurrent validity. It is appropriate for affective comparisons by age, sex, and ordinal position of children and for measuring change after family or marital therapy, or after predictable stress…

  13. Developing Effective Affective Assessment Practices

    ERIC Educational Resources Information Center

    Glennon, William; Hart, Aaron; Foley, John T.

    2015-01-01

    Physical educators generally understand the importance of the affective domain for student growth and development. However, many teachers struggle with assessing affective behaviors in a way that can be documented and reported. The five-step process outlined in this article can assist teachers in developing an effective way to assess the affective…

  14. Intuition, Affect, and Peculiar Beliefs

    PubMed Central

    Boden, Matthew Tyler; Berenbaum, Howard; Topper, Maurice

    2012-01-01

    Research with college students has found that intuitive thinking (e.g., using hunches to ascribe meaning to experiences) and positive affect interactively predict ideas of reference and odd/magical beliefs. We investigated whether these results would generalize to a diverse community sample of adults that included individuals with elevated levels of peculiar perceptions and beliefs. We measured positive and negative affect and intuitive thinking through questionnaires, and peculiar beliefs (i.e., ideas of reference and odd/magical beliefs) through structured clinical interviews. We found that peculiar beliefs were associated with intuitive thinking and negative affect, but not positive affect. Furthermore, in no instance did the interaction of affect and intuitive thinking predict peculiar beliefs. These results suggest that there are important differences in the factors that contribute to peculiar beliefs between college students and clinically meaningful samples. PMID:22707815

  15. Flow, affect and visual creativity.

    PubMed

    Cseh, Genevieve M; Phillips, Louise H; Pearson, David G

    2015-01-01

    Flow (being in the zone) is purported to have positive consequences in terms of affect and performance; however, there is no empirical evidence about these links in visual creativity. Positive affect often--but inconsistently--facilitates creativity, and both may be linked to experiencing flow. This study aimed to determine relationships between these variables within visual creativity. Participants performed the creative mental synthesis task to simulate the creative process. Affect change (pre- vs. post-task) and flow were measured via questionnaires. The creativity of synthesis drawings was rated objectively and subjectively by judges. Findings empirically demonstrate that flow is related to affect improvement during visual creativity. Affect change was linked to productivity and self-rated creativity, but no other objective or subjective performance measures. Flow was unrelated to all external performance measures but was highly correlated with self-rated creativity; flow may therefore motivate perseverance towards eventual excellence rather than provide direct cognitive enhancement.

  16. On Patterns in Affective Media

    NASA Astrophysics Data System (ADS)

    ADAMATZKY, ANDREW

    In computational experiments with cellular automaton models of affective solutions, where chemical species represent happiness, anger, fear, confusion and sadness, we study phenomena of space time dynamic of emotions. We demonstrate feasibility of the affective solution paradigm in example of emotional abuse therapy. Results outlined in the present paper offer unconventional but promising technique to design, analyze and interpret spatio-temporal dynamic of mass moods in crowds.

  17. [Affective disorders and eating disorders].

    PubMed

    Fakra, Eric; Belzeaux, R; Azorin, J M; Adida, M

    2014-12-01

    Epidemiologic studies show a frequent co-occurence of affective and eating disorders. The incidence of one disorder in patients suffering from the other disorder is well over the incidence in the general population. Several causes could explain this increased comorbidity. First, the iatrogenic origin is detailed. Indeed, psychotropic drugs, and particularly mood stabilizers, often lead to modification in eating behaviors, generally inducing weight gain. These drugs can increase desire for food, reduce baseline metabolism or decrease motor activity. Also, affective and eating disorders share several characteristics in semiology. These similarities can not only obscure the differential diagnosis but may also attest of conjoint pathophysiological bases in the two conditions. However, genetic and biological findings so far are too sparse to corroborate this last hypothesis. Nonetheless, it is noteworthy that comorbidity of affective and eating disorders worsens patients'prognosis and is associated with more severe forms of affective disorders characterized by an earlier age of onset in the disease, higher number of mood episodes and a higher suicidality. Lastly, psychotropic drugs used in affective disorders (lithium, antiepileptic mood stabilizers, atypical antipsychotics, antidepressants) are reviewed in order to weigh their efficacy in eating disorders. This could help establish the best therapeutic option when confronted to comorbidity.

  18. Political Trends Affecting Nonmetropolitan America.

    ERIC Educational Resources Information Center

    Nachtigal, Paul M.

    There are two stories about political trends affecting nonmetropolitan America. The old story, which is the story of declining rural population and declining rural influence on public policy formation, has its roots in early deliberations about governance in this country. Jefferson's republicanism focused on direct citizen involvement in decision…

  19. Test Expectancy Affects Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Thiede, Keith W.; Wiley, Jennifer; Griffin, Thomas D.

    2011-01-01

    Background: Theory suggests that the accuracy of metacognitive monitoring is affected by the cues used to judge learning. Researchers have improved monitoring accuracy by directing attention to more appropriate cues; however, this is the first study to more directly point students to more appropriate cues using instructions regarding tests and…

  20. How Supplementation Affects Grazing Behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers are still in the early stages of understanding how supplementation affects grazing behavior. Conventional nutrition wisdom, including early research with grazing cattle, has been based almost entirely upon stored feeds fed in confinement. In these situations, most dietary “choices” were ...

  1. Decoding Children's Expressions of Affect.

    ERIC Educational Resources Information Center

    Feinman, Joel A.; Feldman, Robert S.

    1982-01-01

    Mothers' ability to decode their children's nonverbal expressions of four affects (happiness, sadness, fear, and anger) was contrasted with the decoding ability of a matched group of nonmothers. Results indicate that mothers were accurately able to decode expressions of happiness but had relative difficulty with decoding expressions of sadness,…

  2. RACIAL AFFECT IN READING COMPREHENSION.

    ERIC Educational Resources Information Center

    AARON, ROBERT L.; WHITE, WILLIAM F.

    THREE FIFTH-GRADE CLASSES OF ECONOMICALLY DEPRIVED NEGRO CHILDREN, EQUATED ON INTELLIGENCE AND READING ACHIEVEMENT, PARTICIPATED IN A STUDY OF THE EFFECTS OF VARYING AMOUNTS AND TYPES OF RACIAL CUEING ON AFFECTIVE SETS TOWARD THE PROTAGONIST AND ANTAGONIST IN A CLOZE TYPE READING SELECTION. ALL THREE CLASSES READ THE SELECTION, BUT CLASS A WAS…

  3. Supersonic Wave Interference Affecting Stability

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.

    1958-01-01

    Some of the significant interference fields that may affect stability of aircraft at supersonic speeds are briefly summarized. Illustrations and calculations are presented to indicate the importance of interference fields created by wings, bodies, wing-body combinations, jets, and nacelles.

  4. Affective temperament and personal identity.

    PubMed

    Stanghellini, Giovanni; Rosfort, René

    2010-10-01

    The complex relationship between temperament and personal identity, and between these and mental disorders, is of critical interest to both philosophy and psychopathology. More than other living creatures, human beings are constituted and characterized by the interplay of their genotype and phenotype. There appears to be an explanatory gap between the almost perfect genetic identity and the individual differences among humans. One reason for this gap is that a human being is a person besides a physiological organism. We propose an outline of a theoretical model that might somewhat mitigate the explanatory discrepancies between physiological mechanisms and individual human emotional experience and behaviour. Arguing for the pervasive nature of human affectivity, i.e., for the assumption that human consciousness and behaviour is characterised by being permeated by affectivity; to envisage the dynamics of emotional experience, we make use of a three-levelled model of human personal identity that differentiates between factors that are simultaneously at work in the constitution of the individual human person: 1) core emotions, 2) affective temperament types/affective character traits, and 3) personhood. These levels are investigated separately in order to respect the methodological diversity among them (neuroscience, psychopathology, and philosophy), but they are eventually brought together in a hermeneutical account of human personhood.

  5. Demographic Factors Affecting Faculty Salary.

    ERIC Educational Resources Information Center

    Webster, Allen L.

    1995-01-01

    Specific demographic attributes that influence salary at institutions of higher education were studied through data from 420 faculty members at 9 institutions. Results suggested that experience, publication rates, time at the institution, and possession of a terminal degree affected salary levels. The presence of salary compression was noted. (SLD)

  6. Unconscious Affective Responses to Food

    PubMed Central

    Sato, Wataru; Sawada, Reiko; Kubota, Yasutaka; Toichi, Motomi; Fushiki, Tohru

    2016-01-01

    Affective or hedonic responses to food are crucial for humans, both advantageously (e.g., enhancing survival) and disadvantageously (e.g., promoting overeating and lifestyle-related disease). Although previous psychological studies have reported evidence of unconscious cognitive and behavioral processing related to food, it remains unknown whether affective reactions to food can be triggered unconsciously and its relationship with daily eating behaviors. We investigated these issues by using the subliminal affective priming paradigm. Photographs of food or corresponding mosaic images were presented in the peripheral visual field for 33 ms. Target photos of faces with emotionally neutral expressions were then presented, and participants rated their preferences for the faces. Eating behaviors were also assessed using questionnaires. The food images, relative to the mosaics, increased participants’ preference for subsequent target faces. Furthermore, the difference in the preference induced by food versus mosaic images was positively correlated with the tendency to engage in external eating. These results suggest that unconscious affective reactions are elicited by the sight of food and that these responses contribute to daily eating behaviors related to overeating. PMID:27501443

  7. Aesthetics, Affect, and Educational Politics

    ERIC Educational Resources Information Center

    Means, Alex

    2011-01-01

    This essay explores aesthetics, affect, and educational politics through the thought of Gilles Deleuze and Jacques Ranciere. It contextualizes and contrasts the theoretical valences of their ethical and democratic projects through their shared critique of Kant. It then puts Ranciere's notion of dissensus to work by exploring it in relation to a…

  8. Affective Parent Education in Philadelphia.

    ERIC Educational Resources Information Center

    Gibson, Jessie M.

    It is apparent that the family, and the parents in particular, are powerful influences on the child's learning, even before the child reaches school. The home is the place where children learn first, and the extent to which they learn later in life is determined greatly by what goes on at home. The Affective Education Program, a Title I funded…

  9. Does Positive Affect Influence Health?

    ERIC Educational Resources Information Center

    Pressman, Sarah D.; Cohen, Sheldon

    2005-01-01

    This review highlights consistent patterns in the literature associating positive affect (PA) and physical health. However, it also raises serious conceptual and methodological reservations. Evidence suggests an association of trait PA and lower morbidity and of state and trait PA and decreased symptoms and pain. Trait PA is also associated with…

  10. Affecting Critical Thinking through Speech.

    ERIC Educational Resources Information Center

    O'Keefe, Virginia P.

    Intended for teachers, this booklet shows how spoken language can affect student thinking and presents strategies for teaching critical thinking skills. The first section discusses the theoretical and research bases for promoting critical thinking through speech, defines critical thinking, explores critical thinking as abstract thinking, and tells…

  11. Motor Execution Affects Action Prediction

    ERIC Educational Resources Information Center

    Springer, Anne; Brandstadter, Simone; Liepelt, Roman; Birngruber, Teresa; Giese, Martin; Mechsner, Franz; Prinz, Wolfgang

    2011-01-01

    Previous studies provided evidence of the claim that the prediction of occluded action involves real-time simulation. We report two experiments that aimed to study how real-time simulation is affected by simultaneous action execution under conditions of full, partial or no overlap between observed and executed actions. This overlap was analysed by…

  12. Bodily action penetrates affective perception

    PubMed Central

    Rigutti, Sara; Gerbino, Walter

    2016-01-01

    Fantoni & Gerbino (2014) showed that subtle postural shifts associated with reaching can have a strong hedonic impact and affect how actors experience facial expressions of emotion. Using a novel Motor Action Mood Induction Procedure (MAMIP), they found consistent congruency effects in participants who performed a facial emotion identification task after a sequence of visually-guided reaches: a face perceived as neutral in a baseline condition appeared slightly happy after comfortable actions and slightly angry after uncomfortable actions. However, skeptics about the penetrability of perception (Zeimbekis & Raftopoulos, 2015) would consider such evidence insufficient to demonstrate that observer’s internal states induced by action comfort/discomfort affect perception in a top-down fashion. The action-modulated mood might have produced a back-end memory effect capable of affecting post-perceptual and decision processing, but not front-end perception. Here, we present evidence that performing a facial emotion detection (not identification) task after MAMIP exhibits systematic mood-congruent sensitivity changes, rather than response bias changes attributable to cognitive set shifts; i.e., we show that observer’s internal states induced by bodily action can modulate affective perception. The detection threshold for happiness was lower after fifty comfortable than uncomfortable reaches; while the detection threshold for anger was lower after fifty uncomfortable than comfortable reaches. Action valence induced an overall sensitivity improvement in detecting subtle variations of congruent facial expressions (happiness after positive comfortable actions, anger after negative uncomfortable actions), in the absence of significant response bias shifts. Notably, both comfortable and uncomfortable reaches impact sensitivity in an approximately symmetric way relative to a baseline inaction condition. All of these constitute compelling evidence of a genuine top-down effect on

  13. Rodent empathy and affective neuroscience.

    PubMed

    Panksepp, Jules B; Lahvis, Garet P

    2011-10-01

    In the past few years, several experimental studies have suggested that empathy occurs in the social lives of rodents. Thus, rodent behavioral models can now be developed to elucidate the mechanistic substrates of empathy at levels that have heretofore been unavailable. For example, the finding that mice from certain inbred strains express behavioral and physiological responses to conspecific distress, while others do not, underscores that the genetic underpinnings of empathy are specifiable and that they could be harnessed to develop new therapies for human psychosocial impairments. However, the advent of rodent models of empathy is met at the outset with a number of theoretical and semantic problems that are similar to those previously confronted by studies of empathy in humans. The distinct underlying components of empathy must be differentiated from one another and from lay usage of the term. The primary goal of this paper is to review a set of seminal studies that are directly relevant to developing a concept of empathy in rodents. We first consider some of the psychological phenomena that have been associated with empathy, and within this context, we consider the component processes, or endophenotypes of rodent empathy. We then review a series of recent experimental studies that demonstrate the capability of rodents to detect and respond to the affective state of their social partners. We focus primarily on experiments that examine how rodents share affective experiences of fear, but we also highlight how similar types of experimental paradigms can be utilized to evaluate the possibility that rodents share positive affective experiences. Taken together, these studies were inspired by Jaak Panksepp's theory that all mammals are capable of felt affective experiences.

  14. Environmental issues affecting CCT development

    SciTech Connect

    Reidy, M.

    1997-12-31

    While no final legislative schedule has been set for the new Congress, two issues with strong environmental ramifications which are likely to affect the coal industry seem to top the list of closely watched debates in Washington -- the Environmental Protection Agency`s proposed new ozone and particulate matter standards and utility restructuring. The paper discusses the background of the proposed standards, public comment, the Congressional review of regulations, other legislative options, and utility restructuring.

  15. Affective cycling in thyroid disease

    SciTech Connect

    Tapp, A.

    1988-05-01

    Depression in an elderly man with primary recurrent unipolar depression responded to radioactive iodine treatment of a thyrotoxic nodule, without the addition of psychotropic medications. Two months later, manic symptoms developed concomitant with the termination of the hyperthyroid state secondary to the radioactive iodine treatment. Clinical implications of these findings in relation to the possible mechanism of action of thyroid hormones on affective cycling are discussed.

  16. [Dissociative disorders and affective disorders].

    PubMed

    Montant, J; Adida, M; Belzeaux, R; Cermolacce, M; Pringuey, D; Da Fonseca, D; Azorin, J-M

    2014-12-01

    The phenomenology of dissociative disorders may be complex and sometimes confusing. We describe here two cases who were initially misdiagnosed. The first case concerned a 61 year-old woman, who was initially diagnosed as an isolated dissociative fugue and was actually suffering from severe major depressive episode. The second case concerned a 55 year-old man, who was suffering from type I bipolar disorder and polyvascular disease, and was initially diagnosed as dissociative fugue in a mooddestabilization context, while it was finally a stroke. Yet dissociative disorders as affective disorder comorbidity are relatively unknown. We made a review on this topic. Dissociative disorders are often studied through psycho-trauma issues. Litterature is rare on affective illness comorbid with dissociative disorders, but highlight the link between bipolar and dissociative disorders. The later comorbidity often refers to an early onset subtype with also comorbid panic and depersonalization-derealization disorder. Besides, unipolar patients suffering from dissociative symptoms have more often cyclothymic affective temperament. Despite the limits of such studies dissociative symptoms-BD association seems to correspond to a clinical reality and further works on this topic may be warranted.

  17. Anthropogenic noise affects vocal interactions.

    PubMed

    McMullen, Heather; Schmidt, Rouven; Kunc, Hansjoerg P

    2014-03-01

    Animal communication plays a crucial role in many species, and it involves a sender producing a signal and a receiver responding to that signal. The shape of a signal is determined by selection pressures acting upon it. One factor that exerts selection on acoustic signals is the acoustic environment through which the signal is transmitted. Recent experimental studies clearly show that senders adjust their signals in response to increased levels of anthropogenic noise. However, to understand how noise affects the whole process of communication, it is vital to know how noise affects the receiver's response during vocal interactions. Therefore, we experimentally manipulated ambient noise levels to expose male European robins (Erithacus rubecula) to two playback treatments consisting of the same song: one with noise and another one without noise. We found that males responding to a conspecific in a noise polluted environment increased minimum frequency and decreased song complexity and song duration. Thus, we show that the whole process of communication is affected by noise, not just the behaviour of the sender.

  18. Affective robot for elderly assistance.

    PubMed

    Carelli, Laura; Gaggioli, Andrea; Pioggia, Giovanni; De Rossi, Federico; Riva, Giuseppe

    2009-01-01

    Recently, several robotic solutions for the elderly have been proposed. However, to date, the diffusion of these devices has been limited: available robots are too cumbersome, awkward, and expensive to become widely adopted. Another key issue which reduces the appeal of assistive robots is the lack of socio-emotional interaction: affective interchanges represent key requirements to create sustainable relationships between elderly and robots. In this paper, we propose a new approach to enhance the acceptability of robotic systems, based on the introduction of affective dimensions in human-robot interaction. This strategy is aimed at designing a new generation of relational and cognitive robots fusing information from embodied unobtrusive sensory interfaces. The final objective is to develop embodied interfaces, which are able to learn and adapt their affective responses to the user's behavior. User and robot will engage in natural interactions, involving verbal and non-verbal communication, improving empathic exchange of moods and feelings. Relevant independent living and quality of life related issues will be addressed: on-going monitoring of health parameters, assistance in everyday's activities, social support and cognitive/physical exercises. We expect that the proposed strategy will enhance the user's acceptance and adoption of the assistive robotic system.

  19. Anticipation in bipolar affective disorder

    SciTech Connect

    McInnis, M.G.; McMahon, F.J.; Chase, G.A.; Simpson, S.G.; Ross, C.A.; DePaulo, J.R. Jr. )

    1993-08-01

    Anticipation refers to the increase in disease severity or decrease in age at onset in succeeding generations. This phenomenon, formerly ascribed to observation biases, correlates with the expansion of trinucleotide repeat sequences (TNRs) in some disorders. If present in bipolar affective disorder (BPAD), anticipation could provide clues to its genetic etiology. The authors compared age at onset and disease severity between two generations of 34 unilineal families ascertained for a genetic linkage study of BPAD. Life-table analyses showed a significant decrease in survival to first mania or depression from the first to the second generation (P <.001). Intergenerational pairwise comparisons showed both a significantly earlier age at onset (P < .001) and a significantly increased disease severity (P < .001) in the second generation. This difference was significant under each of four data-sampling schemes which excluded probands in the second generation. The second generation experienced onset 8.9-13.5 years earlier and illness 1.8-3.4 times more severe than did the first generation. In additional analyses, drug abuse, deaths of affected individuals prior to interview, decreased fertility, censoring of age at onset, and the cohort effect did not affect our results. The authors conclude that genetic anticipation occurs in this sample of unilineal BPAD families. These findings may implicate genes with expanding TNRs in the genetic etiology of BPAD. 24 refs., 1 fig., 1 tab.

  20. Musical affect regulation in infancy.

    PubMed

    Trehub, Sandra E; Ghazban, Niusha; Corbeil, Mariève

    2015-03-01

    Adolescents and adults commonly use music for various forms of affect regulation, including relaxation, revitalization, distraction, and elicitation of pleasant memories. Mothers throughout the world also sing to their infants, with affect regulation as the principal goal. To date, the study of maternal singing has focused largely on its acoustic features and its consequences for infant attention. We describe recent laboratory research that explores the consequences of singing for infant affect regulation. Such work reveals that listening to recordings of play songs can maintain 6- to 9-month-old infants in a relatively contented or neutral state considerably longer than recordings of infant-directed or adult-directed speech. When 10-month-old infants fuss or cry and are highly aroused, mothers' multimodal singing is more effective than maternal speech at inducing recovery from such distress. Moreover, play songs are more effective than lullabies at reducing arousal in Western infants. We explore the implications of these findings along with possible practical applications.

  1. Rheumatoid Arthritis: Can It Affect the Lungs?

    MedlinePlus

    Rheumatoid arthritis: Can it affect the lungs? Can rheumatoid arthritis affect your lungs? Answers from April Chang-Miller, M.D. Although rheumatoid arthritis primarily affects joints, it sometimes causes lung disease ...

  2. Rheumatoid Arthritis: Can It Affect the Eyes?

    MedlinePlus

    Rheumatoid arthritis: Can it affect the eyes? Can rheumatoid arthritis affect the eyes? Answers from April Chang-Miller, M.D. Rheumatoid arthritis is a chronic inflammatory disease that primarily affects ...

  3. The Affective Regulation of Cognitive Priming

    PubMed Central

    Storbeck, Justin; Clore, Gerald L.

    2008-01-01

    Semantic and affective priming are classic effects observed in cognitive and social psychology, respectively. We discovered that affect regulates such priming effects. In Experiment 1, positive and negative moods were induced prior to one of three priming tasks; evaluation, categorization, or lexical decision. As predicted, positive affect led to both affective priming (evaluation task) and semantic priming (category and lexical decision tasks). However, negative affect inhibited such effects. In Experiment 2, participants in their natural affective state completed the same priming tasks as in Experiment 1. As expected, affective priming (evaluation task) and category priming (categorization and lexical decision tasks) were observed in such resting affective states. Hence, we conclude that negative affect inhibits semantic and affective priming. These results support recent theoretical models, which suggest that positive affect promotes associations among strong and weak concepts, and that negative affect impairs such associations (Kuhl, 2000; Clore & Storbeck, 2006). PMID:18410195

  4. Does trade affect child health?

    PubMed

    Levine, David I; Rothman, Dov

    2006-05-01

    Frankel and Romer [Frankel, J., Romer, D., 1999. Does trade cause growth? American Economic Review 89 (3), 379-399] documented positive effects of geographically determined trade openness on economic growth. At the same time, critics fear that openness can lead to a "race to the bottom" that increases pollution and reduces government resources for investments in health and education. We use Frankel and Romer's gravity model of trade to examine how openness to trade affects children. Overall, we find little harm from trade, and potential benefits largely through slightly faster GDP growth.

  5. Mood Swings: An Affective Interactive Art System

    NASA Astrophysics Data System (ADS)

    Bialoskorski, Leticia S. S.; Westerink, Joyce H. D. M.; van den Broek, Egon L.

    The progress in the field of affective computing enables the realization of affective consumer products, affective games, and affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on the integration of a framework for affective movements and a color model. This enables Mood Swings to recognize affective movement characteristics as expressed by a person and display a color that matches the expressed emotion. With that, a unique interactive system is introduced, which can be considered as art, a game, or a combination of both.

  6. How anthropogenic noise affects foraging.

    PubMed

    Luo, Jinhong; Siemers, Björn M; Koselj, Klemen

    2015-09-01

    The influence of human activity on the biosphere is increasing. While direct damage (e.g. habitat destruction) is relatively well understood, many activities affect wildlife in less apparent ways. Here, we investigate how anthropogenic noise impairs foraging, which has direct consequences for animal survival and reproductive success. Noise can disturb foraging via several mechanisms that may operate simultaneously, and thus, their effects could not be disentangled hitherto. We developed a diagnostic framework that can be applied to identify the potential mechanisms of disturbance in any species capable of detecting the noise. We tested this framework using Daubenton's bats, which find prey by echolocation. We found that traffic noise reduced foraging efficiency in most bats. Unexpectedly, this effect was present even if the playback noise did not overlap in frequency with the prey echoes. Neither overlapping noise nor nonoverlapping noise influenced the search effort required for a successful prey capture. Hence, noise did not mask prey echoes or reduce the attention of bats. Instead, noise acted as an aversive stimulus that caused avoidance response, thereby reducing foraging efficiency. We conclude that conservation policies may seriously underestimate numbers of species affected and the multilevel effects on animal fitness, if the mechanisms of disturbance are not considered.

  7. Dietary factors affecting polyphenol bioavailability.

    PubMed

    Bohn, Torsten

    2014-07-01

    While many epidemiological studies have associated the consumption of polyphenols within fruits and vegetables with a decreased risk of developing several chronic diseases, intervention studies have generally not confirmed these beneficial effects. The reasons for this discrepancy are not fully understood but include potential differences in dosing, interaction with the food matrix, and differences in polyphenol bioavailability. In addition to endogenous factors such as microbiota and digestive enzymes, the food matrix can also considerably affect bioaccessibility, uptake, and further metabolism of polyphenols. While dietary fiber (such as hemicellulose), divalent minerals, and viscous and protein-rich meals are likely to cause detrimental effects on polyphenol bioaccessibility, digestible carbohydrates, dietary lipids (especially for hydrophobic polyphenols, e.g., curcumin), and additional antioxidants may enhance polyphenol availability. Following epithelial uptake, polyphenols such as flavonoids may reduce phase II metabolism and excretion, enhancing polyphenol bioavailability. Furthermore, polyphenols may act synergistically due to their influence on efflux transporters such as p-glycoprotein. In order to understand polyphenol bioactivity, increased knowledge of the factors affecting polyphenol bioavailability, including dietary factors, is paramount.

  8. Factors Affecting Medical Service Quality

    PubMed Central

    MOSADEGHRAD, Ali Mohammad

    2014-01-01

    Abstract Background A better understanding of factors influencing quality of medical service can pinpoint better strategies for quality assurance in medical services. This study aimed to identify factors affecting the quality of medical services provided by Iranian physicians. Methods Exploratory in-depth individual interviews were conducted with sixty-four physicians working in various medical institutions in Iran. Results Individual, organizational and environmental factors enhance or inhibit the quality of medical services. Quality of medical services depends on the personal factors of the physician and patient, and factors pertaining to the healthcare setting and the broader environment. Conclusion Differences in internal and external factors such as availability of resources, patient cooperation and collaboration among providers affect the quality of medical services and patient outcomes. Supportive leadership, proper planning, education and training and effective management of resources and processes improve the quality of medical services. This article contributes to healthcare theory and practice by developing a conceptual framework for understanding factors that influence medical services quality. PMID:26060745

  9. How Attention Affects Spatial Resolution

    PubMed Central

    Carrasco, Marisa; Barbot, Antoine

    2015-01-01

    We summarize and discuss a series of psychophysical studies on the effects of spatial covert attention on spatial resolution, our ability to discriminate fine patterns. Heightened resolution is beneficial in most, but not all, visual tasks. We show how endogenous attention (voluntary, goal driven) and exogenous attention (involuntary, stimulus driven) affect performance on a variety of tasks mediated by spatial resolution, such as visual search, crowding, acuity, and texture segmentation. Exogenous attention is an automatic mechanism that increases resolution regardless of whether it helps or hinders performance. In contrast, endogenous attention flexibly adjusts resolution to optimize performance according to task demands. We illustrate how psychophysical studies can reveal the underlying mechanisms of these effects and allow us to draw linking hypotheses with known neurophysiological effects of attention. PMID:25948640

  10. Nutritional Factors Affecting Mental Health

    PubMed Central

    Lim, So Young; Kim, Eun Jin; Kim, Arang; Lee, Hee Jae; Choi, Hyun Jin

    2016-01-01

    Dietary intake and nutritional status of individuals are important factors affecting mental health and the development of psychiatric disorders. Majority of scientific evidence relating to mental health focuses on depression, cognitive function, and dementia, and limited evidence is available about other psychiatric disorders including schizophrenia. As life span of human being is increasing, the more the prevalence of mental disorders is, the more attention rises. Lists of suggested nutritional components that may be beneficial for mental health are omega-3 fatty acids, phospholipids, cholesterol, niacin, folate, vitamin B6, and vitamin B12. Saturated fat and simple sugar are considered detrimental to cognitive function. Evidence on the effect of cholesterol is conflicting; however, in general, blood cholesterol levels are negatively associated with the risk of depression. Collectively, the aims of this review are to introduce known nutritional factors for mental health, and to discuss recent issues of the nutritional impact on cognitive function and healthy brain aging. PMID:27482518

  11. Gender Affects Body Language Reading

    PubMed Central

    Sokolov, Arseny A.; Krüger, Samuel; Enck, Paul; Krägeloh-Mann, Ingeborg; Pavlova, Marina A.

    2011-01-01

    Body motion is a rich source of information for social cognition. However, gender effects in body language reading are largely unknown. Here we investigated whether, and, if so, how recognition of emotional expressions revealed by body motion is gender dependent. To this end, females and males were presented with point-light displays portraying knocking at a door performed with different emotional expressions. The findings show that gender affects accuracy rather than speed of body language reading. This effect, however, is modulated by emotional content of actions: males surpass in recognition accuracy of happy actions, whereas females tend to excel in recognition of hostile angry knocking. Advantage of women in recognition accuracy of neutral actions suggests that females are better tuned to the lack of emotional content in body actions. The study provides novel insights into understanding of gender effects in body language reading, and helps to shed light on gender vulnerability to neuropsychiatric and neurodevelopmental impairments in visual social cognition. PMID:21713180

  12. Pemphigus vulgaris affecting 19 nails.

    PubMed

    Patsatsi, A; Sotiriou, E; Devliotou-Panagiotidou, D; Sotiriadis, D

    2009-03-01

    A 60-year-old woman presented with painful erosions in the oral mucosa, pharynx, perineum and perianal area, and multiple plaques with thick adherent crusts on the scalp. Most (nine) of the patient's fingernails had alterations in colour, affecting more than half of the nail plate, and all the toenails had severe inflammation of the nail folds, haemorrhagic paronychia and subungual or intraungual haemorrhage. A diagnosis of pemphigus vulgaris (PV) was made based on histology and on direct and indirect immunofluorescence findings. Groups of acantholytic cells were also observed in a Tzanck smear obtained from a subungual lesion. Onychomadesis in most of the fingernails and in all the toenails developed gradually. The patient was hospitalized and treated with oral corticosteroids. Complete recovery without residual damage to the nails and persistent remission was achieved. Nail involvement in PV is rarely described and is always of interest, as its presentation varies widely.

  13. Does health affect portfolio choice?

    PubMed

    Love, David A; Smith, Paul A

    2010-12-01

    A number of recent studies find that poor health is empirically associated with a safer portfolio allocation. It is difficult to say, however, whether this relationship is truly causal. Both health status and portfolio choice are influenced by unobserved characteristics such as risk attitudes, impatience, information, and motivation, and these unobserved factors, if not adequately controlled for, can induce significant bias in the estimates of asset demand equations. Using the 1992-2006 waves of the Health and Retirement Study, we investigate how much of the connection between health and portfolio choice is causal and how much is due to the effects of unobserved heterogeneity. Accounting for unobserved heterogeneity with fixed effects and correlated random effects models, we find that health does not appear to significantly affect portfolio choice among single households. For married households, we find a small effect (about 2-3 percentage points) from being in the lowest of five self-reported health categories.

  14. Affective Dimensions of Intergroup Humiliation

    PubMed Central

    Leidner, Bernhard; Sheikh, Hammad; Ginges, Jeremy

    2012-01-01

    Despite the wealth of theoretical claims about the emotion of humiliation and its effect on human relations, there has been a lack of empirical research investigating what it means to experience humiliation. We studied the affective characteristics of humiliation, comparing the emotional experience of intergroup humiliation to two other emotions humiliation is often confused with: anger and shame. The defining characteristics of humiliation were low levels of guilt and high levels of other-directed outrage (like anger and unlike shame), and high levels of powerlessness (like shame and unlike anger). Reasons for the similarities and differences of humiliation with anger and shame are discussed in terms of perceptions of undeserved treatment and injustice. Implications for understanding the behavioral consequences of humiliation and future work investigating the role of humiliation in social life are discussed. PMID:23029499

  15. Psychological factors affecting oncology conditions.

    PubMed

    Grassi, Luigi; Biancosino, Bruno; Marmai, Luciana; Rossi, Elena; Sabato, Silvana

    2007-01-01

    The area of psychological factors affecting cancer has been the object of research starting from the early 1950s and consolidating from the 1970s with the development of psychooncology. A series of problems in the DSM and ICD nosological systems, such as the difficult application of the criteria for psychiatric diagnoses (i.e. major depression, adjustment disorders) and the scarce space dedicated to the rubric of psychosocial implications of medical illness (i.e. Psychological Factors Affecting a Medical Condition under 'Other Conditions That May Be a Focus of Clinical Attention' in the DSM-IV) represent a major challenge in psycho-oncology. The application of the Diagnostic Criteria for Psychosomatic Research (DCPR) has been shown to be useful in a more precise identification of several psychological domains in patients with cancer. The DCPR dimensions of health anxiety, demoralization and alexithymia have been shown to be quite frequent in cancer patient (37.7, 28.8 and 26%, respectively). The overlap between a formal DSM-IV diagnosis and the DCPR is low, with 58% of patients being categorized as non-cases on the DSM-IV having at least one DCPR syndrome. The specific quality of the DCPR in characterizing psychosocial aspects secondary to cancer is also confirmed by the fact that some dimensions of coping (e.g. Mini-Mental Adjustment to Cancer subscale hopelessness) correlate with the DCPR dimension of demoralization, while a quantitative approach on symptom assessment (e.g. stress symptoms on the Brief Symptom Inventory) is not useful in discriminating the patients with and without DCPR syndromes. More research is needed in order to understand the relationship between DCPR constructs (e.g. alexithymia) and psychosocial factors which have been shown to be significant in oncology (e.g. emotional repression and avoidance). The role of specific DCPR constructs in influencing the course of illness is also an area that should be investigated.

  16. Developing Hierarchical Structures Integrating Cognition and Affect.

    ERIC Educational Resources Information Center

    Hurst, Barbara Martin

    Several categories of the affective domain are important to the schooling process. Schools are delegated the responsibility of helping students to clarify their esthetic, instrumental, and moral values. Three areas of affect are related to student achievement: subject-related affect, school-related affect, and academic self concept. In addition,…

  17. Medical affective computing: medical informatics meets affective computing.

    PubMed

    Webster, C

    1998-01-01

    "The need to cope with a changing and partly unpredictable world makes it very likely that any intelligent system with multiple motives and limited powers will have emotions." [1] From advisory systems that understand emotional attitudes toward medical outcomes, to wearable computers that compensate for communication disability, to computer simulations of emotions and their disorders, the research agendas of medical informatics and affective computing--how and why to create computers that detect, convey, and even have emotions--increasingly overlap. Some psychiatric and neurological researchers state their theories in terms of actual or hypothetical computer programs. Adaptive intelligent systems will increasingly rely on emotions to compensate for their own conflicting goals and limited resources--emotional reactions about which psychiatrists and neurologists have special insights. DEP2 (Depression Emulation Program 2) is a computer simulation of adaptive depression--learning from explainable patterns of failure in autobiographical memory--that simulates many depressive behaviors. In the terminology of fault-tolerant computing, adaptive depression involves fault detection (triggered by failure), fault location (strategic retreat and failure diagnosis), and fault recovery (return to on-line operation). DEP2 relies on subsystems whose structures and behaviors are based on popular hypotheses about left and right brain hemispheric function during depression and emotion. DEP2 and its predecessors, DEP and DEPlanner, are relevant to psychiatric and neurological informatics, and to the design of adaptive autonomous robots and software agents.

  18. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  19. Clinorotation affects soybean seedling morphology.

    PubMed

    Hilaire, E; Guikema, J A; Brown, C S

    1995-01-01

    Although spaceflight does not appear to significantly affect seed germination, it can influence subsequent plant growth. On STS-3 and SL-2, decreased growth (measured as plant length, fresh weight and dry weight) was noted for pine, oat and mung bean. In the CHROMEX-01 and -02 experiments with Haplopappus and in the CHROMEX-03 experiment with Arabidopsis, enhanced root growth was noted in the space-grown plants. In the CHROMEX-04 experiment with wheat, both leaf fresh weight and leaf area were diminished in the space-grown plants but there was no difference in total plant height (CS Brown, HG Levine, and AD Krikorian, unpublished data). These data suggest that microgravity impacts growth by whole plant partitioning of assimilates. The objective of the present study was to determine the influence of clinorotation on the growth and morphology of soybean seedlings grown in the BRIC (Biological Research In Canister) flight hardware. This experiment provided baseline data for a spaceflight experiment (BRIC-03) flown on STS-63 (Feb. 3-11, 1995).

  20. Quantum Tunneling Affects Engine Performance.

    PubMed

    Som, Sibendu; Liu, Wei; Zhou, Dingyu D Y; Magnotti, Gina M; Sivaramakrishnan, Raghu; Longman, Douglas E; Skodje, Rex T; Davis, Michael J

    2013-06-20

    We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO2 + HO2 = H2O2 + O2 can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g., diesel) engine, and that an accurate prediction of ignition delay time for the engine model requires an accurate estimation of the tunneling correction for this reaction. The three-dimensional model includes detailed descriptions of the chemistry of a surrogate for a biodiesel fuel, as well as all the features of the engine, such as the liquid fuel spray and turbulence. This study is part of a larger investigation of how the features of the dynamics and potential energy surfaces of key reactions, as well as their reaction rate uncertainties, affect engine performance, and results in these directions are also presented here.

  1. Spatial layout affects speed discrimination

    NASA Technical Reports Server (NTRS)

    Verghese, P.; Stone, L. S.

    1997-01-01

    We address a surprising result in a previous study of speed discrimination with multiple moving gratings: discrimination thresholds decreased when the number of stimuli was increased, but remained unchanged when the area of a single stimulus was increased [Verghese & Stone (1995). Vision Research, 35, 2811-2823]. In this study, we manipulated the spatial- and phase relationship between multiple grating patches to determine their effect on speed discrimination thresholds. In a fusion experiment, we merged multiple stimulus patches, in stages, into a single patch. Thresholds increased as the patches were brought closer and their phase relationship was adjusted to be consistent with a single patch. Thresholds increased further still as these patches were fused into a single patch. In a fission experiment, we divided a single large patch into multiple patches by superimposing a cross with luminance equal to that of the background. Thresholds decreased as the large patch was divided into quadrants and decreased further as the quadrants were maximally separated. However, when the cross luminance was darker than the background, it was perceived as an occluder and thresholds, on average, were unchanged from that for the single large patch. A control experiment shows that the observed trend in discrimination thresholds is not due to the differences in perceived speed of the stimuli. These results suggest that the parsing of the visual image into entities affects the combination of speed information across space, and that each discrete entity effectively provides a single independent estimate of speed.

  2. How Feeling Betrayed Affects Cooperation

    PubMed Central

    Ramazi, Pouria; Hessel, Jop; Cao, Ming

    2015-01-01

    For a population of interacting self-interested agents, we study how the average cooperation level is affected by some individuals' feelings of being betrayed and guilt. We quantify these feelings as adjusted payoffs in asymmetric games, where for different emotions, the payoff matrix takes the structure of that of either a prisoner's dilemma or a snowdrift game. Then we analyze the evolution of cooperation in a well-mixed population of agents, each of whom is associated with such a payoff matrix. At each time-step, an agent is randomly chosen from the population to update her strategy based on the myopic best-response update rule. According to the simulations, decreasing the feeling of being betrayed in a portion of agents does not necessarily increase the level of cooperation in the population. However, this resistance of the population against low-betrayal-level agents is effective only up to some extend that is explicitly determined by the payoff matrices and the number of agents associated with these matrices. Two other models are also considered where the betrayal factor of an agent fluctuates as a function of the number of cooperators and defectors that she encounters. Unstable behaviors are observed for the level of cooperation in these cases; however, we show that one can tune the parameters in the function to make the whole population become cooperative or defective. PMID:25922933

  3. How feeling betrayed affects cooperation.

    PubMed

    Ramazi, Pouria; Hessel, Jop; Cao, Ming

    2015-01-01

    For a population of interacting self-interested agents, we study how the average cooperation level is affected by some individuals' feelings of being betrayed and guilt. We quantify these feelings as adjusted payoffs in asymmetric games, where for different emotions, the payoff matrix takes the structure of that of either a prisoner's dilemma or a snowdrift game. Then we analyze the evolution of cooperation in a well-mixed population of agents, each of whom is associated with such a payoff matrix. At each time-step, an agent is randomly chosen from the population to update her strategy based on the myopic best-response update rule. According to the simulations, decreasing the feeling of being betrayed in a portion of agents does not necessarily increase the level of cooperation in the population. However, this resistance of the population against low-betrayal-level agents is effective only up to some extend that is explicitly determined by the payoff matrices and the number of agents associated with these matrices. Two other models are also considered where the betrayal factor of an agent fluctuates as a function of the number of cooperators and defectors that she encounters. Unstable behaviors are observed for the level of cooperation in these cases; however, we show that one can tune the parameters in the function to make the whole population become cooperative or defective.

  4. Bilingualism affects audiovisual phoneme identification.

    PubMed

    Burfin, Sabine; Pascalis, Olivier; Ruiz Tada, Elisa; Costa, Albert; Savariaux, Christophe; Kandel, Sonia

    2014-01-01

    We all go through a process of perceptual narrowing for phoneme identification. As we become experts in the languages we hear in our environment we lose the ability to identify phonemes that do not exist in our native phonological inventory. This research examined how linguistic experience-i.e., the exposure to a double phonological code during childhood-affects the visual processes involved in non-native phoneme identification in audiovisual speech perception. We conducted a phoneme identification experiment with bilingual and monolingual adult participants. It was an ABX task involving a Bengali dental-retroflex contrast that does not exist in any of the participants' languages. The phonemes were presented in audiovisual (AV) and audio-only (A) conditions. The results revealed that in the audio-only condition monolinguals and bilinguals had difficulties in discriminating the retroflex non-native phoneme. They were phonologically "deaf" and assimilated it to the dental phoneme that exists in their native languages. In the audiovisual presentation instead, both groups could overcome the phonological deafness for the retroflex non-native phoneme and identify both Bengali phonemes. However, monolinguals were more accurate and responded quicker than bilinguals. This suggests that bilinguals do not use the same processes as monolinguals to decode visual speech.

  5. Clinorotation affects soybean seedling morphology

    NASA Technical Reports Server (NTRS)

    Hilaire, Emmanuel; Guikema, James A.; Brown, Christopher S.

    1995-01-01

    Although spaceflight does not appear to significantly affect seed germination, it can influence subsequent plant growth. On STS-3 and SL-2, decreased growth (measured as plant length, fresh weight, and dry weight) was noted for pine, oat, and mung bean. In the CHROMEX-01 and 02 experiments with Haplopappus and in the CHROMEX-03 experiment with Arabidopsis, enhanced root growth was noted in the space-grown plants. In the CHROMEX-04 experiments with wheat, both leaf fresh weight and leaf area were diminished in the space-grown plants but there was no difference in total plant height (CS Brown, HG Levine, and AD Krikorian, unpublished data). These data suggest that microgravity impacts growth by whole plant partitioning of the assimilates. The objective of the present study was to determine the influence of clinorotation on the growth and the morphology of soybean seedlings grown in the Biological Research In Canister (BRIC) flight hardware. This experiment provided baseline data for a spaceflight experiment (BRIC-3) flown on STS-63 (February 3-11, 1995).

  6. Bilingualism affects audiovisual phoneme identification

    PubMed Central

    Burfin, Sabine; Pascalis, Olivier; Ruiz Tada, Elisa; Costa, Albert; Savariaux, Christophe; Kandel, Sonia

    2014-01-01

    We all go through a process of perceptual narrowing for phoneme identification. As we become experts in the languages we hear in our environment we lose the ability to identify phonemes that do not exist in our native phonological inventory. This research examined how linguistic experience—i.e., the exposure to a double phonological code during childhood—affects the visual processes involved in non-native phoneme identification in audiovisual speech perception. We conducted a phoneme identification experiment with bilingual and monolingual adult participants. It was an ABX task involving a Bengali dental-retroflex contrast that does not exist in any of the participants' languages. The phonemes were presented in audiovisual (AV) and audio-only (A) conditions. The results revealed that in the audio-only condition monolinguals and bilinguals had difficulties in discriminating the retroflex non-native phoneme. They were phonologically “deaf” and assimilated it to the dental phoneme that exists in their native languages. In the audiovisual presentation instead, both groups could overcome the phonological deafness for the retroflex non-native phoneme and identify both Bengali phonemes. However, monolinguals were more accurate and responded quicker than bilinguals. This suggests that bilinguals do not use the same processes as monolinguals to decode visual speech. PMID:25374551

  7. Affective reactions to acoustic stimuli.

    PubMed

    Bradley, M M; Lang, P J

    2000-03-01

    Emotional reactions to naturally occurring sounds (e.g., screams, erotica, bombs, etc.) were investigated in two studies. In Experiment 1, subjects rated the pleasure and arousal elicited when listening to each of 60 sounds, followed by an incidental free recall task. The shape of the two-dimensional affective space defined by the mean ratings for each sound was similar to that previously obtained for pictures, and, like memory for pictures, free recall was highest for emotionally arousing stimuli. In Experiment 2, autonomic and facial electromyographic (EMG) activity were recorded while a new group of subjects listened to the same set of sounds; the startle reflex was measured using visual probes. Listening to unpleasant sounds resulted in larger startle reflexes, more corrugator EMG activity, and larger heart rate deceleration compared with listening to pleasant sounds. Electrodermal reactions were larger for emotionally arousing than for neutral materials. Taken together, the data suggest that acoustic cues activate the appetitive and defensive motivational circuits underlying emotional expression in ways similar to pictures.

  8. Factors Affecting Radiologist's PACS Usage.

    PubMed

    Forsberg, Daniel; Rosipko, Beverly; Sunshine, Jeffrey L

    2016-12-01

    The purpose of this study was to determine if any of the factors radiologist, examination category, time of week, and week effect PACS usage, with PACS usage defined as the sequential order of computer commands issued by a radiologist in a PACS during interpretation and dictation. We initially hypothesized that only radiologist and examination category would have significant effects on PACS usage. Command logs covering 8 weeks of PACS usage were analyzed. For each command trace (describing performed activities of an attending radiologist interpreting a single examination), the PACS usage variables number of commands, number of command classes, bigram repetitiveness, and time to read were extracted. Generalized linear models were used to determine the significance of the factors on the PACS usage variables. The statistical results confirmed the initial hypothesis that radiologist and examination category affect PACS usage and that the factors week and time of week to a large extent have no significant effect. As such, this work provides direction for continued efforts to analyze system data to better understand PACS utilization, which in turn can provide input to enable optimal utilization and configuration of corresponding systems. These continued efforts were, in this work, exemplified by a more detailed analysis using PACS usage profiles, which revealed insights directly applicable to improve PACS utilization through modified system configuration.

  9. Focus cues affect perceived depth

    PubMed Central

    Watt, Simon J.; Akeley, Kurt; Ernst, Marc O.; Banks, Martin S.

    2007-01-01

    Depth information from focus cues—accommodation and the gradient of retinal blur—is typically incorrect in three-dimensional (3-D) displays because the light comes from a planar display surface. If the visual system incorporates information from focus cues into its calculation of 3-D scene parameters, this could cause distortions in perceived depth even when the 2-D retinal images are geometrically correct. In Experiment 1 we measured the direct contribution of focus cues to perceived slant by varying independently the physical slant of the display surface and the slant of a simulated surface specified by binocular disparity (binocular viewing) or perspective/texture (monocular viewing). In the binocular condition, slant estimates were unaffected by display slant. In the monocular condition, display slant had a systematic effect on slant estimates. Estimates were consistent with a weighted average of slant from focus cues and slant from disparity/texture, where the cue weights are determined by the reliability of each cue. In Experiment 2, we examined whether focus cues also have an indirect effect on perceived slant via the distance estimate used in disparity scaling. We varied independently the simulated distance and the focal distance to a disparity-defined 3-D stimulus. Perceived slant was systematically affected by changes in focal distance. Accordingly, depth constancy (with respect to simulated distance) was significantly reduced when focal distance was held constant compared to when it varied appropriately with the simulated distance to the stimulus. The results of both experiments show that focus cues can contribute to estimates of 3-D scene parameters. Inappropriate focus cues in typical 3-D displays may therefore contribute to distortions in perceived space. PMID:16441189

  10. A Multimodal Theory of Affect Diffusion.

    PubMed

    Peters, Kim; Kashima, Yoshihisa

    2015-09-01

    There is broad consensus in the literature that affect diffuses through social networks (such that a person may "acquire" or "catch" an affective state from his or her social contacts). It is further assumed that affect diffusion primarily occurs as the result of people's tendencies to synchronize their affective actions (such as smiles and frowns). However, as we show, there is a lack of clarity in the literature about the substrate and scope of affect diffusion. One consequence of this is a difficulty in distinguishing between affect diffusion and several other affective influence phenomena that look similar but have very different consequences. There is also a growing body of evidence that action synchrony is unlikely to be the only, or indeed the most important, pathway for affect diffusion. This paper has 2 key aims: (a) to craft a formal definition of affect diffusion that does justice to the core of the phenomenon while distinguishing it from other phenomena with which it is frequently confounded and (b) to advance a theory of the mechanisms of affect diffusion. This theory, which we call the multimodal theory of affect diffusion, identifies 3 parallel multimodal mechanisms that may act as routes for affect diffusion. It also provides a basis for novel predictions about the conditions under which affect is most likely to diffuse.

  11. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  12. Light Therapy Boxes for Seasonal Affective Disorder

    MedlinePlus

    Diseases and Conditions Seasonal affective disorder (SAD) Light therapy boxes can offer an effective treatment for seasonal affective disorder. Features such as light intensity, safety, cost and style are important considerations. ...

  13. How Do Beta Blocker Drugs Affect Exercise?

    MedlinePlus

    ... Aneurysm More How do beta blocker drugs affect exercise? Updated:Aug 5,2015 Beta blockers are a ... about them: Do they affect your ability to exercise? The answer can vary a great deal, depending ...

  14. Toward a definition of affective instability.

    PubMed

    Renaud, Suzane M; Zacchia, Camillo

    2012-01-01

    Affective instability is a psychophysiological symptom observed in some psychopathologies. It is a complex construct that encompasses (1) primary emotions, or affects, and secondary emotions, with each category having its own characteristics, amplitude, and duration, (2) rapid shifting from neutral or valenced affect to intense affect, and (3) dysfunctional modulation of emotions. Affective instability is often confused with mood lability, as in bipolar disorders, as well as with other terms. To clarify the concept, we searched databases for the term affective instability and read related articles on the topic. In this article we situate the term within the current affective nomenclature and human emotional experience, explore its psychophysiological features, and place it within the context of psychopathology. We explain why the term can potentially be confused with mood pathology and then define affective instability as an inherited temperamental trait modulated by developmental experience.

  15. 40 CFR 1508.3 - Affecting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Affecting. 1508.3 Section 1508.3 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.3 Affecting. Affecting means will or may have an effect on....

  16. Trait Affectivity and Nonreferred Adolescent Conduct Problems

    ERIC Educational Resources Information Center

    Loney, Bryan R.; Lima, Elizabeth N.; Butler, Melanie A.

    2006-01-01

    This study examined for profiles of positive trait affectivity (PA) and negative trait affectivity (NA) associated with adolescent conduct problems. Prior trait affectivity research has been relatively biased toward the assessment of adults and internalizing symptomatology. Consistent with recent developmental modeling of antisocial behavior, this…

  17. Affective Priming with Associatively Acquired Valence

    ERIC Educational Resources Information Center

    Aguado, Luis; Pierna, Manuel; Saugar, Cristina

    2005-01-01

    Three experiments explored the effect of affectively congruent or incongruent primes on evaluation responses to positive or negative valenced targets (the "affective priming" effect). Experiment 1 replicated the basic affective priming effect with Spanish nouns: reaction time for evaluative responses (pleasant/unpleasant) were slower on…

  18. An Affect Control Theory of Technology

    ERIC Educational Resources Information Center

    Shank, Daniel B.

    2010-01-01

    Affect control theory is a theory of interaction that takes into account cultural meanings. Affect control research has previously considered interaction with technology, but there remains a lack of theorizing about inclusion of technology within the theory. This paper lays a foundation for an affect control theory of technology by addressing key…

  19. Affect, Behavioural Schemas and the Proving Process

    ERIC Educational Resources Information Center

    Selden, Annie; McKee, Kerry; Selden, John

    2010-01-01

    In this largely theoretical article, we discuss the relation between a kind of affect, behavioural schemas and aspects of the proving process. We begin with affect as described in the mathematics education literature, but soon narrow our focus to a particular kind of affect--nonemotional cognitive feelings. We then mention the position of feelings…

  20. An evaluation of affect and binge eating.

    PubMed

    Deaver, Cristine M; Miltenberger, Raymond G; Smyth, Joshua; Meidinger, Amy; Crosby, Ross

    2003-09-01

    The affect regulation model of binge eating suggests that binge eating occurs because it provides momentary relief from negative affect. The purpose of this study was to evaluate change in affect during binge eating to evaluate the merits of this model. Participants were young adult women from a midwestern university. Binge eaters recorded their level of pleasantness using the affect grid at 2-minute intervals before, during, and after binge eating episodes and regular meals. Controls recorded in a similar manner during meals. The results showed a different pattern of affect for binge eaters during binge eating episodes and normal meals and for binge eaters and controls at normal meals. The results support the affect regulation model of binge eating and suggest that binge eating is negatively reinforced because it produces momentary relief from negative affect.

  1. Emotional task management: neural correlates of switching between affective and non-affective task-sets.

    PubMed

    Reeck, Crystal; Egner, Tobias

    2015-08-01

    Although task-switching has been investigated extensively, its interaction with emotionally salient task content remains unclear. Prioritized processing of affective stimulus content may enhance accessibility of affective task-sets and generate increased interference when switching between affective and non-affective task-sets. Previous research has demonstrated that more dominant task-sets experience greater switch costs, as they necessitate active inhibition during performance of less entrenched tasks. Extending this logic to the affective domain, the present experiment examined (a) whether affective task-sets are more dominant than non-affective ones, and (b) what neural mechanisms regulate affective task-sets, so that weaker, non-affective task-sets can be executed. While undergoing functional magnetic resonance imaging, participants categorized face stimuli according to either their gender (non-affective task) or their emotional expression (affective task). Behavioral results were consistent with the affective task dominance hypothesis: participants were slower to switch to the affective task, and cross-task interference was strongest when participants tried to switch from the affective to the non-affective task. These behavioral costs of controlling the affective task-set were mirrored in the activation of a right-lateralized frontostriatal network previously implicated in task-set updating and response inhibition. Connectivity between amygdala and right ventrolateral prefrontal cortex was especially pronounced during cross-task interference from affective features.

  2. Audio-visual affective expression recognition

    NASA Astrophysics Data System (ADS)

    Huang, Thomas S.; Zeng, Zhihong

    2007-11-01

    Automatic affective expression recognition has attracted more and more attention of researchers from different disciplines, which will significantly contribute to a new paradigm for human computer interaction (affect-sensitive interfaces, socially intelligent environments) and advance the research in the affect-related fields including psychology, psychiatry, and education. Multimodal information integration is a process that enables human to assess affective states robustly and flexibly. In order to understand the richness and subtleness of human emotion behavior, the computer should be able to integrate information from multiple sensors. We introduce in this paper our efforts toward machine understanding of audio-visual affective behavior, based on both deliberate and spontaneous displays. Some promising methods are presented to integrate information from both audio and visual modalities. Our experiments show the advantage of audio-visual fusion in affective expression recognition over audio-only or visual-only approaches.

  3. Reliability Generalization: An Examination of the Positive Affect and Negative Affect Schedule

    ERIC Educational Resources Information Center

    Leue, Anja; Lange, Sebastian

    2011-01-01

    The assessment of positive affect (PA) and negative affect (NA) by means of the Positive Affect and Negative Affect Schedule has received a remarkable popularity in the social sciences. Using a meta-analytic tool--namely, reliability generalization (RG)--population reliability scores of both scales have been investigated on the basis of a random…

  4. Leveraging Affective Learning for Developing Future Airmen

    DTIC Science & Technology

    2009-11-01

    sity, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release: distribution unlimited...clude affective objectives in their lessons. A student’s affective state influences his or her learning pre- disposition, and educators should consider...but may not be possible for a large number of students or for dispersed learning activity. The ability to discern the affective state of students

  5. Affect regulation: holding, containing and mirroring.

    PubMed

    Pedersen, Signe Holm; Poulsen, Stig; Lunn, Susanne

    2014-10-01

    Gergely and colleagues' state that their "Social Biofeedback Theory of Parental Affect Mirroring" can be seen as a kind of operationalization of the classical psychoanalytic concepts of holding, containing and mirroring. This article examines to what extent the social biofeedback theory of parental affect mirroring may be understood as a specification of these concepts. It is argued that despite similarities at a descriptive level the concepts are embedded in theories with different ideas of subjectivity. Hence an understanding of the concept of affect regulation as a concretization and specification of the classical concepts dilutes the complexity of both the concept of affect regulation and of the classical concepts.

  6. Role of serotonin in seasonal affective disorder.

    PubMed

    Gupta, A; Sharma, P K; Garg, V K; Singh, A K; Mondal, S C

    2013-01-01

    This review was prepared with an aim to show role of serotonin in seasonal affective disorder. Seasonal affective disorder, which is also called as winter depression or winter blues, is mood disorder in which persons with normal mental health throughout most of the year will show depressive symptoms in the winter or, less commonly, in the summer. Serotonin is an important endogenous neurotransmitter which also acts as neuromodulator. The least invasive, natural, and researched treatment of seasonal affective disorder is natural or otherwise is light therapy. Negative air ionization, which acts by liberating charged particles on the sleep environment, has also become effective in treatment of seasonal affective disorder.  

  7. Toward a Definition of Affect in Education.

    ERIC Educational Resources Information Center

    Wight, Albert R.

    A model for expansion of educational objectives beyond the usual narrow focus on low-level cognitive abilities and the transmission of facts is suggested. A brief definition of the three domains--psychomotor (doing), cognitive (thinking), and affective (feeling)--is given, and it is pointed out that affect (Feelings) is present with either…

  8. Affective Education for Gifted, Culturally Diverse Learners

    ERIC Educational Resources Information Center

    Baldwin, Alexinia

    2009-01-01

    Over the years, there has been an ongoing controversy about affective education. Some see it as an important element of good teaching, and some see it as fluff, diminishing academics, and playing into the "feel good" movement. While criticisms may be appropriate in some situations, affective education can play a fundamental role in other…

  9. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe...

  10. Do School Facilities Affect Academic Outcomes?

    ERIC Educational Resources Information Center

    Schneider, Mark

    This review explores which facility attributes affect academic outcomes the most and in what manner and degree. The research is examined in six categories: indoor air quality, ventilation, and thermal comfort; lighting; acoustics; building age and quality; school size; and class size. The review concludes that school facilities affect learning.…

  11. Trait Affect and Job Search Outcomes

    ERIC Educational Resources Information Center

    Cote, Stephane; Saks, Alan M.; Zikic, Jelena

    2006-01-01

    The present study examines the role of trait affect in job search. One hundred and twenty-three university students completed measures of positive and negative affectivity, conscientiousness, job search self-efficacy, job search clarity, and job search intensity during their last year of school while on the job market. At the end of the school…

  12. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe...

  13. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe...

  14. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe...

  15. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe...

  16. Attitudinal and Affective Response toward Accented English.

    ERIC Educational Resources Information Center

    Bresnahan, Mary Jiang; Ohashi, Rie; Liu, Wen Ying; Nebashi, Reiko; Shearman, Sachiyo Morinaga

    2002-01-01

    Evaluated attitudinal and affective responses toward accented English based on variation in role identity and intelligibility. American English was preferred; intelligible foreign accents resulted in more positive attitudes and affective responses compared to foreign accents that were unintelligible. Friends were viewed more positively compared to…

  17. Affective Commitment among Student Affairs Professionals

    ERIC Educational Resources Information Center

    Boehman, Joseph

    2007-01-01

    Student affairs professionals in the United States were surveyed to determine the predictive value of overall job satisfaction, organizational support, organizational politics, and work/nonwork interaction on affective organizational commitment. Results indicate that a supportive work environment leads to increased affective attachment to the…

  18. Affect and Engagement during Small Group Instruction

    ERIC Educational Resources Information Center

    Linnenbrink-Garcia, Lisa; Rogat, Toni Kempler; Koskey, Kristin L. K.

    2011-01-01

    Two studies (Study 1: n = 137; Study 2: n = 192) were conducted to investigate how upper-elementary students' affect during small group instruction related to their social-behavioral engagement during group work. A circumplex model of affect consisting of valence (positive, negative) and activation (high, low) was used to examine the relation of…

  19. 28 CFR 549.71 - Inmates affected.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Inmates affected. 549.71 Section 549.71 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MEDICAL SERVICES Fees for Health Care Services § 549.71 Inmates affected. This subpart applies to: (a) Any...

  20. 28 CFR 549.71 - Inmates affected.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Inmates affected. 549.71 Section 549.71 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MEDICAL SERVICES Fees for Health Care Services § 549.71 Inmates affected. This subpart applies to: (a) Any...

  1. 28 CFR 549.71 - Inmates affected.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Inmates affected. 549.71 Section 549.71 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MEDICAL SERVICES Fees for Health Care Services § 549.71 Inmates affected. This subpart applies to: (a) Any...

  2. 28 CFR 549.71 - Inmates affected.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Inmates affected. 549.71 Section 549.71 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MEDICAL SERVICES Fees for Health Care Services § 549.71 Inmates affected. This subpart applies to: (a) Any...

  3. Affect in the "Communicative" Classroom: A Model.

    ERIC Educational Resources Information Center

    Acton, William

    Recent research on affective variables and classroom second language learning suggests that: (1) affective variables are context-sensitive in at least two ways; (2) attitudes are contagious, and the general attitude of students can be influenced from various directions; (3) research in pragmatics, discourse analysis, and communicative functions…

  4. Affect Recognition in Adults with ADHD

    ERIC Educational Resources Information Center

    Miller, Meghan; Hanford, Russell B.; Fassbender, Catherine; Duke, Marshall; Schweitzer, Julie B.

    2011-01-01

    Objective: This study compared affect recognition abilities between adults with and without ADHD. Method: The sample consisted of 51 participants (34 men, 17 women) divided into 3 groups: ADHD-combined type (ADHD-C; n = 17), ADHD-predominantly inattentive type (ADHD-I; n = 16), and controls (n = 18). The mean age was 34 years. Affect recognition…

  5. Priming Effects for Affective vs. Neutral Faces

    ERIC Educational Resources Information Center

    Burton, Leslie A.; Rabin, Laura; Wyatt, Gwinne; Frohlich, Jonathan; Vardy, Susan B.; Dimitri, Diana

    2005-01-01

    Affective and Neutral Tasks (faces with negative or neutral content, with different lighting and orientation) requiring reaction time judgments of poser identity were administered to 32 participants. Speed and accuracy were better for the Affective than Neutral Task, consistent with literature suggesting facilitation of performance by affective…

  6. Affective Scaffolds, Expressive Arts, and Cognition

    PubMed Central

    Maiese, Michelle

    2016-01-01

    Some theorists have argued that elements of the surrounding world play a crucial role in sustaining and amplifying both cognition and emotion. Such insights raise an interesting question about the relationship between cognitive and affective scaffolding: in addition to enabling the realization of specific affective states, can an affective niche also enable the realization of certain cognitive capacities? In order to gain a better understanding of this relationship between affective niches and cognition, I will examine the use of expressive arts in the context of psychotherapy and peacebuilding. In these settings, environmental resources and interpersonal scaffolds not only evoke emotion and encourage the adoption of particular bodily affective styles, but also support the development of capacities for self-awareness and interpersonal understanding. These affective scaffolds play a crucial role in therapy and peacebuilding, in fact, insofar as they facilitate the development of self-knowledge, enhance capacities associated with social cognition, and build positive rapport and trust among participants. I will argue that this is because affectivity is linked to the way that subjects frame and attend to their surroundings. Insofar as the regulation and modification of emotion goes hand in hand with opening up new interpretive frames and establishing new habits of mind, the creation of an affective niche can contribute significantly to various modes of cognition. PMID:27014164

  7. Affective Priming with Auditory Speech Stimuli

    ERIC Educational Resources Information Center

    Degner, Juliane

    2011-01-01

    Four experiments explored the applicability of auditory stimulus presentation in affective priming tasks. In Experiment 1, it was found that standard affective priming effects occur when prime and target words are presented simultaneously via headphones similar to a dichotic listening procedure. In Experiment 2, stimulus onset asynchrony (SOA) was…

  8. 47 CFR 1.2003 - Applications affected.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Applications affected. 1.2003 Section 1.2003 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Implementation of the Anti-Drug Abuse Act of 1988 § 1.2003 Applications affected. The certification required by § 1.2002 must be...

  9. Affective Understanding and the Reading of Poetry.

    ERIC Educational Resources Information Center

    Vine, Harold A., Jr.

    This investigation was designed to shed light on the study of literature by focusing on the reader's affective understandings and by using the semantic differential (S.D.) to measure affective meaning. Initially, an experimental group of 49 advanced senior high school students and a comparison group of 53 average senior high students used the S.D.…

  10. Human cerebral response to animal affective vocalizations.

    PubMed

    Belin, Pascal; Fecteau, Shirley; Charest, Ian; Nicastro, Nicholas; Hauser, Marc D; Armony, Jorge L

    2008-03-07

    It is presently unknown whether our response to affective vocalizations is specific to those generated by humans or more universal, triggered by emotionally matched vocalizations generated by other species. Here, we used functional magnetic resonance imaging in normal participants to measure cerebral activity during auditory stimulation with affectively valenced animal vocalizations, some familiar (cats) and others not (rhesus monkeys). Positively versus negatively valenced vocalizations from cats and monkeys elicited different cerebral responses despite the participants' inability to differentiate the valence of these animal vocalizations by overt behavioural responses. Moreover, the comparison with human non-speech affective vocalizations revealed a common response to the valence in orbitofrontal cortex, a key component on the limbic system. These findings suggest that the neural mechanisms involved in processing human affective vocalizations may be recruited by heterospecific affective vocalizations at an unconscious level, supporting claims of shared emotional systems across species.

  11. The Affective Regulation of Social Interaction*

    PubMed Central

    Clore, Gerald L.; Pappas, Jesse

    2008-01-01

    The recent publication of David Heise’s Expressive Order (2007) provides an occasion for discussing some of the key ideas in Affect Control Theory. The theory proposes that a few dimensions of affective meaning provide a common basis for interrelating personal identities and social actions. It holds that during interpersonal interactions, social behavior is continually regulated to maintain an affective tone compatible with whatever social roles or identities define the situation. We outline the intellectual history of the proposed dimensions and of the idea that each social action invites an action from the other that has a particular location along these dimensions. We also relate these ideas to the Affect-as-Information hypothesis, an approach that often guides research in psychology on the role of affect in regulating judgment and thought. PMID:18461152

  12. The psychic costs of intense positive affect.

    PubMed

    Diener, E; Colvin, C R; Pavot, W G; Allman, A

    1991-09-01

    Recent research indicates that happiness, or affective well-being, is related primarily to the frequency, not to the intensity, of positive affect (PA). The question arises as to why intense positive affect (PI) is not a larger contributor to subjective well-being. Whether processes that yield PI also produce intense negative affect was examined. Studies 1 and 2 suggested that cognitive mechanisms that amplify or dampen affect can carry over from positive to negative events. Study 3 demonstrated that, because of judgment mechanisms, an extremely positive event can make other events less positive. Study 4 revealed that naturally occurring intensely positive experiences are often preceded by negative ones. Study 5 suggested that the more persons valence success at a task, the happier they will be if they succeed, but unhappier if they fail. The 5 studies reveal that intense positive experiences may sometimes have costs that counterbalance their desirable nature.

  13. Embodied affectivity: on moving and being moved

    PubMed Central

    Fuchs, Thomas; Koch, Sabine C.

    2014-01-01

    There is a growing body of research indicating that bodily sensation and behavior strongly influences one's emotional reaction toward certain situations or objects. On this background, a framework model of embodied affectivity1 is suggested: we regard emotions as resulting from the circular interaction between affective qualities or affordances in the environment and the subject's bodily resonance, be it in the form of sensations, postures, expressive movements or movement tendencies. Motion and emotion are thus intrinsically connected: one is moved by movement (perception; impression; affection2) and moved to move (action; expression; e-motion). Through its resonance, the body functions as a medium of emotional perception: it colors or charges self-experience and the environment with affective valences while it remains itself in the background of one's own awareness. This model is then applied to emotional social understanding or interaffectivity which is regarded as an intertwinement of two cycles of embodied affectivity, thus continuously modifying each partner's affective affordances and bodily resonance. We conclude with considerations of how embodied affectivity is altered in psychopathology and can be addressed in psychotherapy of the embodied self. PMID:24936191

  14. Affective brain-computer music interfacing

    NASA Astrophysics Data System (ADS)

    Daly, Ian; Williams, Duncan; Kirke, Alexis; Weaver, James; Malik, Asad; Hwang, Faustina; Miranda, Eduardo; Nasuto, Slawomir J.

    2016-08-01

    Objective. We aim to develop and evaluate an affective brain-computer music interface (aBCMI) for modulating the affective states of its users. Approach. An aBCMI is constructed to detect a user's current affective state and attempt to modulate it in order to achieve specific objectives (for example, making the user calmer or happier) by playing music which is generated according to a specific affective target by an algorithmic music composition system and a case-based reasoning system. The system is trained and tested in a longitudinal study on a population of eight healthy participants, with each participant returning for multiple sessions. Main results. The final online aBCMI is able to detect its users current affective states with classification accuracies of up to 65% (3 class, p\\lt 0.01) and modulate its user's affective states significantly above chance level (p\\lt 0.05). Significance. Our system represents one of the first demonstrations of an online aBCMI that is able to accurately detect and respond to user's affective states. Possible applications include use in music therapy and entertainment.

  15. Flow of affective information between communicating brains.

    PubMed

    Anders, Silke; Heinzle, Jakob; Weiskopf, Nikolaus; Ethofer, Thomas; Haynes, John-Dylan

    2011-01-01

    When people interact, affective information is transmitted between their brains. Modern imaging techniques permit to investigate the dynamics of this brain-to-brain transfer of information. Here, we used information-based functional magnetic resonance imaging (fMRI) to investigate the flow of affective information between the brains of senders and perceivers engaged in ongoing facial communication of affect. We found that the level of neural activity within a distributed network of the perceiver's brain can be successfully predicted from the neural activity in the same network in the sender's brain, depending on the affect that is currently being communicated. Furthermore, there was a temporal succession in the flow of affective information from the sender's brain to the perceiver's brain, with information in the perceiver's brain being significantly delayed relative to information in the sender's brain. This delay decreased over time, possibly reflecting some 'tuning in' of the perceiver with the sender. Our data support current theories of intersubjectivity by providing direct evidence that during ongoing facial communication a 'shared space' of affect is successively built up between senders and perceivers of affective facial signals.

  16. Implicit Processing of Visual Emotions Is Affected by Sound-Induced Affective States and Individual Affective Traits

    PubMed Central

    Quarto, Tiziana; Blasi, Giuseppe; Pallesen, Karen Johanne; Bertolino, Alessandro; Brattico, Elvira

    2014-01-01

    The ability to recognize emotions contained in facial expressions are affected by both affective traits and states and varies widely between individuals. While affective traits are stable in time, affective states can be regulated more rapidly by environmental stimuli, such as music, that indirectly modulate the brain state. Here, we tested whether a relaxing or irritating sound environment affects implicit processing of facial expressions. Moreover, we investigated whether and how individual traits of anxiety and emotional control interact with this process. 32 healthy subjects performed an implicit emotion processing task (presented to subjects as a gender discrimination task) while the sound environment was defined either by a) a therapeutic music sequence (MusiCure), b) a noise sequence or c) silence. Individual changes in mood were sampled before and after the task by a computerized questionnaire. Additionally, emotional control and trait anxiety were assessed in a separate session by paper and pencil questionnaires. Results showed a better mood after the MusiCure condition compared with the other experimental conditions and faster responses to happy faces during MusiCure compared with angry faces during Noise. Moreover, individuals with higher trait anxiety were faster in performing the implicit emotion processing task during MusiCure compared with Silence. These findings suggest that sound-induced affective states are associated with differential responses to angry and happy emotional faces at an implicit stage of processing, and that a relaxing sound environment facilitates the implicit emotional processing in anxious individuals. PMID:25072162

  17. Implicit processing of visual emotions is affected by sound-induced affective states and individual affective traits.

    PubMed

    Quarto, Tiziana; Blasi, Giuseppe; Pallesen, Karen Johanne; Bertolino, Alessandro; Brattico, Elvira

    2014-01-01

    The ability to recognize emotions contained in facial expressions are affected by both affective traits and states and varies widely between individuals. While affective traits are stable in time, affective states can be regulated more rapidly by environmental stimuli, such as music, that indirectly modulate the brain state. Here, we tested whether a relaxing or irritating sound environment affects implicit processing of facial expressions. Moreover, we investigated whether and how individual traits of anxiety and emotional control interact with this process. 32 healthy subjects performed an implicit emotion processing task (presented to subjects as a gender discrimination task) while the sound environment was defined either by a) a therapeutic music sequence (MusiCure), b) a noise sequence or c) silence. Individual changes in mood were sampled before and after the task by a computerized questionnaire. Additionally, emotional control and trait anxiety were assessed in a separate session by paper and pencil questionnaires. Results showed a better mood after the MusiCure condition compared with the other experimental conditions and faster responses to happy faces during MusiCure compared with angry faces during Noise. Moreover, individuals with higher trait anxiety were faster in performing the implicit emotion processing task during MusiCure compared with Silence. These findings suggest that sound-induced affective states are associated with differential responses to angry and happy emotional faces at an implicit stage of processing, and that a relaxing sound environment facilitates the implicit emotional processing in anxious individuals.

  18. Affect as Information in Persuasion: A Model of Affect Identification and Discounting

    PubMed Central

    Albarracín, Dolores; Kumkale, G. Tarcan

    2016-01-01

    Three studies examined the implications of a model of affect as information in persuasion. According to this model, extraneous affect may have an influence when message recipients exert moderate amounts of thought, because they identify their affective reactions as potential criteria but fail to discount them as irrelevant. However, message recipients may not use affect as information when they deem affect irrelevant or when they do not identify their affective reactions at all. Consistent with this curvilinear prediction, recipients of a message that either favored or opposed comprehensive exams used affect as a basis for attitudes in situations that elicited moderate thought. Affect, however, had no influence on attitudes in conditions that elicited either large or small amounts of thought. PMID:12635909

  19. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology

    PubMed Central

    Posner, Jonathan; Russell, James A.; Peterson, Bradley S.

    2008-01-01

    The circumplex model of affect proposes that all affective states arise from cognitive interpretations of core neural sensations that are the product of two independent neurophysiological systems. This model stands in contrast to theories of basic emotions, which posit that a discrete and independent neural system subserves every emotion. We propose that basic emotion theories no longer explain adequately the vast number of empirical observations from studies in affective neuroscience, and we suggest that a conceptual shift is needed in the empirical approaches taken to the study of emotion and affective psychopathologies. The circumplex model of affect is more consistent with many recent findings from behavioral, cognitive neuroscience, neuroimaging, and developmental studies of affect. Moreover, the model offers new theoretical and empirical approaches to studying the development of affective disorders as well as the genetic and cognitive underpinnings of affective processing within the central nervous system. PMID:16262989

  20. Affections of the salivary ducts in buffaloes

    PubMed Central

    Misk, N.A.; Misk, T.N.; Semieka, M.A.; Ahmed, A.F.

    2014-01-01

    The aim of the present study was to determine different affections of the salivary ducts in buffaloes with special reference to diagnosis and treatment. The study was carried out on 39 buffaloes suffering from different affections of the salivary ducts. The recorded affections of the salivary ducts in buffaloes include; ectasia of the parotid duct (21 cases), parotid duct fistula (15 cases) and sialocele (3 cases). Each case was subjected to full study including case history, clinical examination, diagnosis, and treatment whenever possible. Exploratory puncture and radiography were used for confirmation of diagnosis. Intraoral marsupialization was performed for treatment of parotid duct ectasia. Salivary fistula was corrected by one of two successful techniques; the first by reconstruction of the parotid duct and the second by ligation of the parotid duct just caudal to the fistula opening. Sialoceles were corrected by removal of the mandibular salivary gland of the affected side. PMID:26623341

  1. Common Problems That Can Affect Your Voice

    MedlinePlus

    ... antibiotics are not effective. Bacterial infections of the larynx are much rarer and often are associated with ... nerves and muscles within the voice box or larynx. The most common neurological condition that affects the ...

  2. Cardiovascular and affective recovery from anticipatory threat

    PubMed Central

    Waugh, Christian E.; Panage, Sommer; Mendes, Wendy Berry; Gotlib, Ian H.

    2010-01-01

    Anticipating a stressor elicits robust cardiovascular and affective responses. Despite the possibility that recovery from these responses may have implications for physical and mental well-being, little research has examined this issue. In this study, participants either gave a public speech or anticipated giving a speech. Compared with speech-givers, participants who anticipated giving a speech, on average, exhibited similar cardiovascular recovery (decreased heart rate [HR] and increased respiratory sinus arrhythmia [RSA]), and reported lower negative affect during recovery. Only in the anticipation condition, however, were cardiovascular recovery and affective recovery associated: poor affective recovery predicted incomplete HR recovery and decreased RSA. These are the first data to compare explicitly recovery from anticipation of a stressor with recovery from the stressor itself. These findings suggest that failing to recover from anticipation has unique physiological costs that, in turn, may contribute to mental and physical illness. PMID:20096747

  3. Factors Affecting Tocopherol Concentrations in Soybean Seeds.

    PubMed

    Carrera, Constanza S; Seguin, Philippe

    2016-12-21

    Soybean seeds contain several health-beneficial compounds, including tocopherols, which are used by the nutraceutical and functional food industries. Soybean tocopherol concentrations are, however, highly variable. Large differences observed in tocopherol concentrations among soybean genotypes together with the relatively simple biosynthetic pathway involving few genes support the feasibility of selecting for high-tocopherol soybean. Tocopherol concentrations are also highly influenced by environmental factors and field management. Temperature during seed filling and soil moisture appear to be the main factors affecting tocopherol concentrations; other factors such as soil fertility and solar radiation also affect concentrations and composition. Field management decisions including seeding date, row spacing, irrigation, and fertilization also affect tocopherols. Knowledge of factors affecting soybean tocopherols is essential to develop management strategies that will lead to the production of seeds with consistent target concentrations that will meet the needs of the nutraceutical and functional food industries.

  4. Will Stress during Pregnancy Affect My Baby?

    MedlinePlus

    ... Research Information Clinical Trials Resources and Publications Will stress during pregnancy affect my baby? Skip sharing on social media ... health care provider during your prenatal visits. Posttraumatic Stress Disorder (PTSD) and Pregnancy PTSD is a more serious type of stress ...

  5. Postpartum Depression Affects New Dads, Too

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_163092.html Postpartum Depression Affects New Dads, Too Certain men at greater ... HealthDay News) -- Men can also suffer from postpartum depression after their baby is born. "Dads want to ...

  6. Affections of the salivary ducts in buffaloes.

    PubMed

    Misk, N A; Misk, T N; Semieka, M A; Ahmed, A F

    2014-01-01

    The aim of the present study was to determine different affections of the salivary ducts in buffaloes with special reference to diagnosis and treatment. The study was carried out on 39 buffaloes suffering from different affections of the salivary ducts. The recorded affections of the salivary ducts in buffaloes include; ectasia of the parotid duct (21 cases), parotid duct fistula (15 cases) and sialocele (3 cases). Each case was subjected to full study including case history, clinical examination, diagnosis, and treatment whenever possible. Exploratory puncture and radiography were used for confirmation of diagnosis. Intraoral marsupialization was performed for treatment of parotid duct ectasia. Salivary fistula was corrected by one of two successful techniques; the first by reconstruction of the parotid duct and the second by ligation of the parotid duct just caudal to the fistula opening. Sialoceles were corrected by removal of the mandibular salivary gland of the affected side.

  7. Organizational behavior: affect in the workplace.

    PubMed

    Brief, Arthur P; Weiss, Howard M

    2002-01-01

    The study of affect in the workplace began and peaked in the 1930s, with the decades that followed up to the 1990s not being particularly fertile. Whereas job satisfaction generally continues to be loosely but not carefully thought of and measured as an affective state, critical work in the 1990s has raised serious questions about the affective status of job satisfaction in terms of its causes as well as its definition and measurement. Recent research has focused on the production of moods and emotions at work, with an emphasis, at least conceptually, on stressful events, leaders, work groups, physical settings, and rewards/punishment. Other recent research has addressed the consequences of workers' feelings, in particular, a variety of performance outcomes (e.g., helping behaviors and creativity). Even though recent interest in affect in the workplace has been intense, many theoretical and methodological opportunities and challenges remain.

  8. Certain Bacteria May Affect Preterm Birth Risk

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_163401.html Certain Bacteria May Affect Preterm Birth Risk Bad 'bugs' tied ... Feb. 3, 2017 (HealthDay News) -- Certain types of bacteria in a pregnant woman's cervix and vagina can ...

  9. Alcohol: Does It Affect Blood Pressure?

    MedlinePlus

    ... pressure (hypertension) Does drinking alcohol affect your blood pressure? Answers from Sheldon G. Sheps, M.D. Drinking too much alcohol can raise blood pressure to unhealthy levels. Having more than three drinks ...

  10. Factors Affecting Academic Achievement Of Adult Students

    ERIC Educational Resources Information Center

    Beagle, Peggy; Melnyk, W. T.

    1971-01-01

    Article is an excerpt from Mrs. Beagle's original analysis and includes such considerations as increases in enrollment, university admission policies, counseling, study skills, study facilities, and financial policies and practices affecting adult students. References. (RB)

  11. Gasoline Composition Regulations Affecting LUST Sites

    EPA Science Inventory

    Passage of the Clean Air Act Amendments in 1990 imposed requirements on gasoline composition in the United States. Impacts to ground water are affected by the provisions that required oxygenated additives and limited benzene concentration. Reformulated and oxygenated gasoline w...

  12. Emotionally charged earcons reveal affective congruency effects.

    PubMed

    Lemmens, P M C; De Haan, A; Van Galen, G P; Meulenbroek, R G J

    2007-12-01

    In the present study, the affective impact of earcons on stimulus classification is investigated. We show, using a picture-categorization task, that the affective connotation of earcons in major and minor mode (representing positive and negative valence, respectively) can be congruent or incongruent with response valence. Twenty participants classified pictures of animals and instruments in 256 trials, using positive and negative Yes or No responses. Together with the pictures, either a chord in major mode or minor mode was played. The affective valence of the chords either did or did not match the valence of responses. Response-time latencies show congruency effects of the matching and non matching sound and response valences, indicating that it is important to carefully investigate human-computer interfaces for potential affective congruency effects, as these can either facilitate or inhibit user performance.

  13. Perceptual fluency and affect without recognition.

    PubMed

    Anand, P; Sternthal, B

    1991-05-01

    A dichotic listening task was used to investigate the affect-without-recognition phenomenon. Subjects performed a distractor task by responding to the information presented in one ear while ignoring the target information presented in the other ear. The subjects' recognition of and affect toward the target information as well as toward foils was measured. The results offer evidence for the affect-without-recognition phenomenon. Furthermore, the data suggest that the subjects' affect toward the stimuli depended primarily on the extent to which the stimuli were perceived as familiar (i.e., subjective familiarity), and this perception was influenced by the ear in which the distractor or the target information was presented. These data are interpreted in terms of current models of recognition memory and hemispheric lateralization.

  14. Negative affect, emotional acceptance, and smoking cessation.

    PubMed

    Carmody, Timothy P; Vieten, Cassandra; Astin, John A

    2007-12-01

    This article describes recent theoretical developments and empirical findings regarding the role of negative affect (NA) and emotion regulation in nicotine dependence and smoking cessation. It begins with a review of affect-based models of addiction that address conditioning, affect motivational, and neurobiological mechanisms and then describes the role of NA and emotion regulation in the initiation and maintenance of cigarette smoking. Next, the role of emotion regulation, coping skill deficits, depression, and anxiety sensitivity in explaining the relationship between NA and smoking relapse are discussed. We then review recent models of affect regulation, including emotional intelligence, reappraisal and suppression, and emotional acceptance, and describe implications for substance abuse and smoking cessation interventions. Finally, we point out the need for further investigations of the moderating role of individual differences in response to NA in the maintenance of nicotine dependence, and controlled randomized trials testing the efficacy of acceptance-based interventions in facilitating smoking cessation and relapse prevention.

  15. Heart Disease Affects Women of All Ages

    MedlinePlus

    ... Home Current Issue Past Issues Heart Disease Affects Women of All Ages Past Issues / Winter 2007 Table ... of this page please turn Javascript on. Young Women: Lifestyle-related factors that increase heart disease risk ...

  16. How Will Cancer Affect My Sex Life?

    MedlinePlus

    ... Families How will cancer affect my sex life? Sexual feelings and attitudes vary greatly among people, even ... people have little or no change in their sexual desire and energy level during cancer treatment. Others ...

  17. KWLA: Linking the Affective and Cognitive Domains.

    ERIC Educational Resources Information Center

    Mandeville, Thomas F.

    1994-01-01

    Advocates adding to the "KWL" instructional strategy chart a fourth column signifying children's affective responses, thus expanding the chart to "KWLA" as students assign their own relevance and personal value to their learning experiences. (SR)

  18. [Emotional intelligence, social support and affect regulation].

    PubMed

    Verissimo, Ramiro

    2005-01-01

    The aim of the present study was to gain additional information about the relationship between emotional intelligence, social support, and affectivity. The subjects were 64 university students who completed the short form of the Trait Meta-Mood Scale (TMMS-30), the Social Support Questionnaire, and the Multiple Affect Adjective Check List (MAACL). The results show that Social Support is high and significantly related with both Mood Repair, on one hand, and more Positive Affects and Sensation Seeking, on the other. These findings are consistent with the hypothesis that social support can be considered, somehow, as a way of mood repair; and thus not surprisingly is also associated with more Positive Affects and Sensation Seeking.

  19. Affect in Human-Robot Interaction

    DTIC Science & Technology

    2014-01-01

    even without deliberately modeling them: for example, if a robot backs away from a staircase it might be interpreted as a fear of falling by a person...chosen to deliberately embed explicit models of affect into robots, with the express purpose of enhancing the relationship between the human and robot...many psychological models of human affect have been explored. Two examples that have had commercial success are described

  20. Cognitive Psychophysiological Substrates of Affective Temperaments.

    PubMed

    Poyraz, Burç Çağrı; Sakallı Kani, Ayşe; Aksoy Poyraz, Cana; Öcek Baş, Tuba; Arıkan, Mehmet Kemal

    2017-03-01

    Affective temperaments are the subclinical manifestations or phenotypes of mood states and hypothetically represent one healthy end of the mood disorder spectrum. However, there is a scarcity of studies investigating the neurobiological basis of affective temperaments. One fundamental aspect of temperament is the behavioral reactivity to environmental stimuli, which can be effectively evaluated by use of cognitive event-related potentials (ERPs) reflecting the diversity of information processing. The aim of the present study is to explore the associations between P300 and the affective temperamental traits in healthy individuals. We recorded the P300 ERP waves using an auditory oddball paradigm in 50 medical student volunteers (23 females, 27 males). Participants' affective temperaments were evaluated using the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego-auto questionnaire version (TEMPS-A). In bivariate analyses, depressive temperament score was significantly correlated with P300 latency ( rs = 0.37, P < .01). In a multiple linear regression analysis, P300 latency showed a significant positive correlation with scores of depressive temperament (β = 0.40, P < .01) and a significant negative one with scores of cyclothymic temperament (β = -0.29, P = .03). Affective temperament scores were not associated with P300 amplitude and reaction times. These results indicate that affective temperaments are related to information processing in the brain. Depressive temperament may be characterized by decreased physiological arousal and slower information processing, while the opposite was observed for cyclothymic temperament.

  1. Eye movement during facial affect recognition by patients with schizophrenia, using Japanese pictures of facial affect.

    PubMed

    Shiraishi, Yuko; Ando, Kazuhiro; Toyama, Sayaka; Norikane, Kazuya; Kurayama, Shigeki; Abe, Hiroshi; Ishida, Yasushi

    2011-10-01

    A possible relationship between recognition of facial affect and aberrant eye movement was examined in patients with schizophrenia. A Japanese version of standard pictures of facial affect was prepared. These pictures of basic emotions (surprise, anger, happiness, disgust, fear, sadness) were shown to 19 schizophrenic patients and 20 healthy controls who identified emotions while their eye movements were measured. The proportion of correct identifications of 'disgust' was significantly lower for schizophrenic patients, their eye fixation time was significantly longer for all pictures of facial affect, and their eye movement speed was slower for some facial affects (surprise, fear, and sadness). One index, eye fixation time for "happiness," showed a significant difference between the high- and low-dosage antipsychotic drug groups. Some expected facial affect recognition disorder was seen in schizophrenic patients responding to the Japanese version of affect pictures, but there was no correlation between facial affect recognition disorder and aberrant eye movement.

  2. Affect networks: a structural analysis of the relationship between work ties and job-related affect.

    PubMed

    Totterdell, Peter; Wall, Toby; Holman, David; Diamond, Holly; Epitropaki, Olga

    2004-10-01

    The relationship between organizational networks and employees' affect was examined in 2 organizations. In Study 1, social network analysis of work ties and job-related affect for 259 employees showed that affect converged within work interaction groups. Similarity of affect between employees depended on the presence of work ties and structural equivalence. Affect was also related to the size and density of employees' work networks. Study 2 used a 10-week diary study of 31 employees to examine a merger of 2 organizational divisions and found that negative changes in employees' affect were related to having fewer cross-divisional ties and to experiencing greater reductions in network density. The findings suggest that affect permeates through and is shaped by organizational networks.

  3. Recent developments in affective recommender systems

    NASA Astrophysics Data System (ADS)

    Katarya, Rahul; Verma, Om Prakash

    2016-11-01

    Recommender systems (RSs) are playing a significant role since 1990s as they provide relevant, personalized information to the users over the internet. Lots of work have been done in information filtering, utilization, and application related to RS. However, an important area recently draws our attention which is affective recommender system. Affective recommender system (ARS) is latest trending area of research, as publication in this domain are few and recently published. ARS is associated with human behaviour, human factors, mood, senses, emotions, facial expressions, body gesture and physiological with human-computer interaction (HCI). Due to this assortment and various interests, more explanation is required, as it is in premature phase and growing as compared to other fields. So we have done literature review (LR) in the affective recommender systems by doing classification, incorporate reputed articles published from the year 2003 to February 2016. We include articles which highlight, analyse, and perform a study on affective recommender systems. This article categorizes, synthesizes, and discusses the research and development in ARS. We have classified and managed ARS papers according to different perspectives: research gaps, nature, algorithm or method adopted, datasets, the platform on executed, types of information and evaluation techniques applied. The researchers and professionals will positively support this survey article for understanding the current position, research in affective recommender systems and will guide future trends, opportunity and research focus in ARS.

  4. Dynamic musical communication of core affect.

    PubMed

    Flaig, Nicole K; Large, Edward W

    2014-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified "scene" that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience.

  5. Dynamic musical communication of core affect

    PubMed Central

    Flaig, Nicole K.; Large, Edward W.

    2013-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified “scene” that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience. PMID:24672492

  6. Affect intensity and processing fluency of deterrents.

    PubMed

    Holman, Andrei

    2013-01-01

    The theory of emotional intensity (Brehm, 1999) suggests that the intensity of affective states depends on the magnitude of their current deterrents. Our study investigated the role that fluency--the subjective experience of ease of information processing--plays in the emotional intensity modulations as reactions to deterrents. Following an induction phase of good mood, we manipulated both the magnitude of deterrents (using sets of photographs with pre-tested potential to instigate an emotion incompatible with the pre-existent affective state--pity) and their processing fluency (normal vs. enhanced through subliminal priming). Current affective state and perception of deterrents were then measured. In the normal processing conditions, the results revealed the cubic effect predicted by the emotional intensity theory, with the initial affective state being replaced by the one appropriate to the deterrent only in participants exposed to the high magnitude deterrence. In the enhanced fluency conditions the emotional intensity pattern was drastically altered; also, the replacement of the initial affective state occurred at a lower level of deterrence magnitude (moderate instead of high), suggesting the strengthening of deterrence emotional impact by enhanced fluency.

  7. Positive Affect and Negative Affect as Modulators of Cognition and Motivation: The Rediscovery of Affect in Achievement Goal Theory

    ERIC Educational Resources Information Center

    Bjornebekk, Gunnar

    2008-01-01

    A central hypothesis of classical motivation theory is that affect underlies motivation and its behavioural manifestations. However, this has been largely ignored in the past 30 years because social cognitivism has been the dominant theory. As a result, studies have concentrated on social cognitive processes when analysing those factors that…

  8. Auditory adaptation in vocal affect perception.

    PubMed

    Bestelmeyer, Patricia E G; Rouger, Julien; DeBruine, Lisa M; Belin, Pascal

    2010-11-01

    Previous research has demonstrated perceptual aftereffects for emotionally expressive faces, but the extent to which they can also be obtained in a different modality is unknown. In two experiments we show for the first time that adaptation to affective, non-linguistic vocalisations elicits significant auditory aftereffects. Adaptation to angry vocalisations caused voices drawn from an anger-fear morphed continuum to be perceived as less angry and more fearful, while adaptation to fearful vocalisations elicited opposite aftereffects (Experiment 1). We then tested the link between these aftereffects and the underlying acoustics by using caricatured adaptors. Although caricatures exaggerated the acoustical and affective properties of the vocalisations, the caricatured adaptors resulted in aftereffects which were comparable to those obtained with natural vocalisations (Experiment 2). Our findings suggest that these aftereffects cannot be solely explained by low-level adaptation to acoustical characteristics of the adaptors but are likely to depend on higher-level adaptation of neural representations of vocal affect.

  9. Neuromodulation, Emotional Feelings and Affective Disorders

    PubMed Central

    Wang, Fushun; Pereira, Alfredo

    2016-01-01

    Affective disorders such as anxiety, phobia and depression are a leading cause of disabilities worldwide. Monoamine neuromodulators are used to treat most of them, with variable degrees of efficacy. Here, we review and interpret experimental findings about the relation of neuromodulation and emotional feelings, in pursuit of two goals: (a) to improve the conceptualisation of affective/emotional states, and (b) to develop a descriptive model of basic emotional feelings related to the actions of neuromodulators. In this model, we hypothesize that specific neuromodulators are effective for basic emotions. The model can be helpful for mental health professionals to better understand the affective dynamics of persons and the actions of neuromodulators - and respective psychoactive drugs - on this dynamics. PMID:28031622

  10. Do recreational activities affect coastal biodiversity?

    NASA Astrophysics Data System (ADS)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors ("diving" and "fishing"). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  11. [Measurement of Affect Regulation Styles (MARS) expanded].

    PubMed

    Rovira, Darío Páez; Martínez Sánchez, Francisco; Sevillano Triguero, Verónica; Mendiburo Seguel, Andrés; Campos, Miriam

    2012-05-01

    An expanded Spanish version of the Measure of Affect Regulation Styles (MARS), was applied to episodes of anger and sadness, in a sample of 355 graduate students from Chile, Spain, and Mexico. The study examines the association between affective regulation, adaptation to episodes and dispositional coping and emotional regulation, and psychological well-being. With regard to perceived improvement of adaptive goals, the following adaptive affect regulation strategies were confirmed: Instrumental coping, seeking social support, positive reappraisal, distraction, rumination, self-comfort, self-control, and emotional expression were functional; whereas inhibition and suppression were dysfunctional. Adaptive strategies were positively associated with psychological well-being, reappraisal and humor as a coping strategy. Negative associations were found be