Zhang, Haibo; Yang, Litao; Guo, Jinchao; Li, Xiang; Jiang, Lingxi; Zhang, Dabing
2008-07-23
To enforce the labeling regulations of genetically modified organisms (GMOs), the application of reference molecules as calibrators is becoming essential for practical quantification of GMOs. However, the reported reference molecules with tandem marker multiple targets have been proved not suitable for duplex PCR analysis. In this study, we developed one unique plasmid molecule based on one pMD-18T vector with three exogenous target DNA fragments of Roundup Ready soybean GTS 40-3-2 (RRS), that is, CaMV35S, NOS, and RRS event fragments, plus one fragment of soybean endogenous Lectin gene. This Lectin gene fragment was separated from the three exogenous target DNA fragments of RRS by inserting one 2.6 kb DNA fragment with no relatedness to RRS detection targets in this resultant plasmid. Then, we proved that this design allows the quantification of RRS using the three duplex real-time PCR assays targeting CaMV35S, NOS, and RRS events employing this reference molecule as the calibrator. In these duplex PCR assays, the limits of detection (LOD) and quantification (LOQ) were 10 and 50 copies, respectively. For the quantitative analysis of practical RRS samples, the results of accuracy and precision were similar to those of simplex PCR assays, for instance, the quantitative results were at the 1% level, the mean bias of the simplex and duplex PCR were 4.0% and 4.6%, respectively, and the statistic analysis ( t-test) showed that the quantitative data from duplex and simplex PCR had no significant discrepancy for each soybean sample. Obviously, duplex PCR analysis has the advantages of saving the costs of PCR reaction and reducing the experimental errors in simplex PCR testing. The strategy reported in the present study will be helpful for the development of new reference molecules suitable for duplex PCR quantitative assays of GMOs.
Zhao, Lihong; Li, Ruiying; Liu, Aihua; Zhao, Shuping
2015-07-01
The objective of this study was to build and apply a duplex real time quantitative reverse transcription-polymerase chain reaction (RT-PCR) for rubella virus. Firstly, a 60-bp-long armored RV RNA was constructed in the laboratory. Secondly, a duplex real time RT-PCR assay was established. Thirdly, the 60-bp-long armored RV RNA was used as an internal positive control (IPC) for the duplex real time RT-PCR. And finally the duplex real time RT-PCR assay was applied to detect RV RNA in clinical specimens. The in-house assay has a high amplification efficiency (0.99), a high analytical sensitivity (200 copies/mL), and a good reproducibility. The diagnostic specificity and sensitivity of the in-house assay were both 100%, due to the monitoring of the armored RV RNA IPC. Therefore, the in-house duplex real time quantitative RT-PCR assay is a specific, sensitive, reproducible and accurate assay for quantitation of RV RNA in clinical specimens. And noncompetitive armored RV RNA IPC can monitor RT-PCR inhibition and prevent false-negative and inaccurate results in the real time detection system. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao
2016-04-15
The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events. Copyright © 2016 Elsevier B.V. All rights reserved.
[A Duplex PCR Method for Detection of Babesia caballi and Theileria equi].
Zhang, Yang; Zhang, Yu-ting; Wang, Zhen-bao; Bolati; Li, Hai; Bayinchahan
2015-04-01
To develop a duplex PCR assay for detection of Babesia caballi and Theileria equi. Two pairs of primers were designed according to the BC48 gene of B. caballi and 18 s rRNA gene of T. equi, and a duplex PCR assay was developed by the optimization of reaction conditions. The specificity, sensitivity and reliability of the method were tested. The horse blood samples of suspected cases were collected from Yili region, and detected by the duplex PCR, microspopy, conventional PCR, and fluorescence quantitative PCR, and the results were compared. Using the duplex PCR assay, the specific fragments of 155 bp and 280 bp were amplified from DNA samples of B. caballi and T. equi, respectively. No specific fragment was amplified from DNA samples of B. bigemina, Theilerdia annulata, Theilerdia sergenti, Toxoplasma gondii, Neospora caninum, and Trypanosoma evansi. The limit of detection was 4.85 x 10(5) copies/L for B. caballi DNA and 4.85 x 10(4) copies/µl for T. equi DNA, respectively. Among the 24 blood samples, 11 were found B. caballi-positive by the duplex PCR assay, and 18 were T. equi-positive. The coincidence rate of microscopy, conventional PCR, and fluorescence quantitative PCR with duplex PCR was 91.7% (22/24), 95.8% (23/24), and 95.8% (23/24), respectively. A duplex PCR assay for simultaneous detection of B. caballi and T. equi is established.
Slavícková, A; Forsterová, K; Ivánek, R; Cerný, J; Klener, P
2005-01-01
Various quantitative PCR approaches have been utilized during the last years to provide information about the treatment efficacy and the risk of recurrent disease in haematological malignancies. Apart from the frequently used real-time PCR, cost-saving modified standard PCR methods may be applied as well. This report evaluates the utility of the end-point comparative duplex PCR. We have used this method for monitoring of 35 patients with either NHL or CLL and observed a good correlation between quantitative molecular results and clinical outcome. There was also an agreement between comparative duplex PCR and real-time PCR in patients who were monitored by both methods. We therefore believe that use of this technique should be strongly considered instead of simple qualitative detection in monitoring of therapeutic outcome in NHL or CLL patients.
Selvaraj, Vijayanandraj; Maheshwari, Yogita; Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg; Yokomi, Raymond
2018-01-01
Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium "Candidatus Liberibacter asiaticus" (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer.
Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg
2018-01-01
Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium “Candidatus Liberibacter asiaticus” (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer. PMID:29772016
Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao
2016-03-18
Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems.
Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao
2016-01-01
Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems. PMID:26999129
USDA-ARS?s Scientific Manuscript database
A SYBR® Green-based real-time quantitative reverse transcription PCR (qRT-PCR) assay in combination with melt curve analysis (MCA) was developed for the detection of nine grapevine viruses. The detection limits for singleplex qRT-PCR for all nine grapevine viruses were determined to be in the range ...
Simplex and duplex event-specific analytical methods for functional biotech maize.
Lee, Seong-Hun; Kim, Su-Jeong; Yi, Bu-Young
2009-08-26
Analytical methods are very important in the control of genetically modified organism (GMO) labeling systems or living modified organism (LMO) management for biotech crops. Event-specific primers and probes were developed for qualitative and quantitative analysis for biotech maize event 3272 and LY 038 on the basis of the 3' flanking regions, respectively. The qualitative primers confirmed the specificity by a single PCR product and sensitivity to 0.05% as a limit of detection (LOD). Simplex and duplex quantitative methods were also developed using TaqMan real-time PCR. One synthetic plasmid was constructed from two taxon-specific DNA sequences of maize and two event-specific 3' flanking DNA sequences of event 3272 and LY 038 as reference molecules. In-house validation of the quantitative methods was performed using six levels of mixing samples, from 0.1 to 10.0%. As a result, the biases from the true value and the relative deviations were all within the range of +/-30%. Limits of quantitation (LOQs) of the quantitative methods were all 0.1% for simplex real-time PCRs of event 3272 and LY 038 and 0.5% for duplex real-time PCR of LY 038. This study reports that event-specific analytical methods were applicable for qualitative and quantitative analysis for biotech maize event 3272 and LY 038.
Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing
2008-06-04
Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.
Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing
2008-01-01
Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost. PMID:18522756
Te, Shu Harn; Chen, Enid Yingru
2015-01-01
The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892
A ready-to-use duplex qPCR to detect Leishmania infantum DNA in naturally infected dogs.
Rampazzo, Rita de Cássia Pontello; Solcà, Manuela da Silva; Santos, Liliane Celestino Sales; Pereira, Lais de Novaes; Guedes, José Carlos Oliveira; Veras, Patrícia Sampaio Tavares; Fraga, Deborah Bittencourt Mothé; Krieger, Marco Aurélio; Costa, Alexandre Dias Tavares
2017-11-15
Canine visceral leishmaniasis (CVL) is a systemic disease caused by Leishmania infantum. A precise CVL diagnosis would allow for a faster and more specific treatment. Quantitative PCR (qPCR) is a sensitive and specific technique that can diagnose CVL and also monitor parasite load in the animal during the course of the infection or treatment. The aim of this study was to develop a ready-to-use (gelified and freezer-free) duplex qPCR for the identification of infected animals. We combined a new qPCR protocol that detects the canine 18S rRNA gene with an existing protocol for L. infantum kDNA detection, creating a duplex qPCR. This duplex method was then developed into a ready-to-use format. The performance of the duplex and singleplex reactions were compared in the traditional format (liquid and freezer-stored). Furthermore, the duplex qPCR performance was compared between the ready-to-use and traditional formats. The singleplex and new duplex qPCR exhibited the same detection limit in the traditional format (0.1 parasites/reaction). The ready-to-use format showed a detection limit of 1 parasite/reaction without affecting the reaction efficiency. The performance of the new qPCR protocol in the two formats was assessed using canine tissue samples from 82 dogs in an endemic CVL area that were previously characterized by standard serological and parasitological protocols. Splenic aspirates provided a higher rate of positivity (92.9%) followed by skin (50%) and blood (35.7%). The reported detection limits were observed for all tissues studied. Our results show that the amplification of L. infantum kDNA and canine DNA in a single tube, using either the traditional or ready-to-use format, exhibited the same diagnostic performance as amplification of the parasite kDNA alone. The detection of the host gene strengthens the qPCR results by confirming the presence and quality of DNA in the samples and the absence of polymerase inhibitors. The ready-to-use duplex qPCR format has many advantages. By joining two qPCR protocols into one, more results can be obtained in the same amount of time with reduced costs and embedded quality control. Reagents are preloaded and stored on the plate, reducing the operator's hands-on time to set up a reaction, as well as decreasing manipulation steps, which reduces the risk of mistakes or contamination. Thus, the ready-to-use duplex format turns qPCR into a robust, easy-to-use tool, which could help increase the availability of qPCR for CVL diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
de Gier, Camilla; Pickering, Janessa L.; Richmond, Peter C.; Thornton, Ruth B.
2016-01-01
We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001). PMID:27335148
Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc
2004-03-01
Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.
Samson, Maria Cristina; Gullì, Mariolina; Marmiroli, Nelson
2010-07-01
Methodologies that enable the detection of genetically modified organisms (GMOs) (authorized and non-authorized) in food and feed strongly influence the potential for adequate updating and implementation of legislation together with labeling requirements. Quantitative polymerase chain reaction (qPCR) systems were designed to boost the sensitivity and specificity on the identification of GMOs in highly degraded DNA samples; however, such testing will become economically difficult to cope with due to increasing numbers of approved genetically modified (GM) lines. Multiplexing approaches are therefore in development to provide cost-efficient solution. Construct-specific primers and probe were developed for quantitative analysis of Roundup Ready soybean (RRS) event glyphosate-tolerant soybean (GTS) 40-3-2. The lectin gene (Le1) was used as a reference gene, and its specificity was verified. RRS- and Le1-specific quantitative real-time PCR (qRTPCR) were optimized in a duplex platform that has been validated with respect to limit of detection (LOD) and limit of quantification (LOQ), as well as accuracy. The analysis of model processed food samples showed that the degradation of DNA has no adverse or little effects on the performance of quantification assay. In this study, a duplex qRTPCR using TaqMan minor groove binder-non-fluorescent quencher (MGB-NFQ) chemistry was developed for specific detection and quantification of RRS event GTS 40-3-2 that can be used for practical monitoring in processed food products.
Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong
2015-08-01
The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi
2011-01-01
To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.
Hughesman, Curtis; Fakhfakh, Kareem; Bidshahri, Roza; Lund, H Louise; Haynes, Charles
2015-02-17
Advances in real-time polymerase chain reaction (PCR), as well as the emergence of digital PCR (dPCR) and useful modified nucleotide chemistries, including locked nucleic acids (LNAs), have created the potential to improve and expand clinical applications of PCR through their ability to better quantify and differentiate amplification products, but fully realizing this potential will require robust methods for designing dual-labeled hydrolysis probes and predicting their hybridization thermodynamics as a function of their sequence, chemistry, and template complementarity. We present here a nearest-neighbor thermodynamic model that accurately predicts the melting thermodynamics of a short oligonucleotide duplexed either to its perfect complement or to a template containing mismatched base pairs. The model may be applied to pure-DNA duplexes or to duplexes for which one strand contains any number and pattern of LNA substitutions. Perturbations to duplex stability arising from mismatched DNA:DNA or LNA:DNA base pairs are treated at the Gibbs energy level to maintain statistical significance in the regressed model parameters. This approach, when combined with the model's accounting of the temperature dependencies of the melting enthalpy and entropy, permits accurate prediction of T(m) values for pure-DNA homoduplexes or LNA-substituted heteroduplexes containing one or two independent mismatched base pairs. Terms accounting for changes in solution conditions and terminal addition of fluorescent dyes and quenchers are then introduced so that the model may be used to accurately predict and thereby tailor the T(m) of a pure-DNA or LNA-substituted hydrolysis probe when duplexed either to its perfect-match template or to a template harboring a noncomplementary base. The model, which builds on classic nearest-neighbor thermodynamics, should therefore be of use to clinicians and biologists who require probes that distinguish and quantify two closely related alleles in either a quantitative PCR or dPCR assay. This potential is demonstrated by using the model to design allele-specific probes that completely discriminate and quantify clinically relevant mutant alleles (BRAF V600E and KIT D816V) in a dPCR assay.
Development of a duplex ddPCR assay for detection of “Candidatus Liberibacter asiaticus”
USDA-ARS?s Scientific Manuscript database
Huanglongbing (HLB) (aka citrus greening) is a devastating citrus disease associated with “Candidatus Liberibacter asiaticus” (CLas). Currently, diagnosis of CLas in regulatory samples is based on a real-time quantitative polymerase chain reaction (qPCR) assay using 16S rRNA gene specific primers/pr...
Reinbold, James B.; Coetzee, Johann F.; Sirigireddy, Kamesh R.; Ganta, Roman R.
2010-01-01
Insufficient diagnostic sensitivity and specificity coupled with the potential for cross-reactivity among closely related Anaplasma species has made the accurate determination of infection status problematic. A method for the development of simplex and duplex real-time quantitative reverse transcriptase PCR (qRT-PCR) assays for the detection of A. marginale and A. phagocytophilum 16S rRNA in plasma-free bovine peripheral blood samples is described. The duplex assay was able to detect as few as 100 copies of 16S rRNA of both A. marginale and A. phagocytophilum in the same reaction. The ratio of 16S rRNA to 16S DNA copies for A. marginale was determined to be 117.9:1 (95% confidence interval [95% CI], 100.7:1, 135.2:1). Therefore, the detection limit is the minimum infective unit of one A. marginale bacterium. The duplex assay detected nonequivalent molar ratios as high as 100-fold. Additionally, the duplex assay and a competitive enzyme-linked immunosorbent assay (cELISA) were used to screen 237 samples collected from herds in which anaplasmosis was endemic. When the cELISA was evaluated by the results of the qRT-PCR, its sensitivity and specificity for the detection of A. marginale infection were found to be 65.2% (95% CI, 55.3%, 75.1%) and 97.3% (95% CI, 94.7%, 99.9%), respectively. A. phagocytophilum infection was not detected in the samples analyzed. One- and two-way receiver operator characteristic curves were constructed in order to recommend the optimum negative cutoff value for the cELISA. Percentages of inhibition of 20 and 15.3% were recommended for the one- and two-way curves, respectively. In conclusion, the duplex real-time qRT-PCR assay is a highly sensitive and specific diagnostic tool for the accurate and precise detection of A. marginale and A. phagocytophilum infections in cattle. PMID:20463162
Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay
Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen
2015-01-01
Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility. PMID:26544710
Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.
Huang, Yong; Xing, Na; Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen
2015-01-01
Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.
Liu, Shasha; Xu, Kunhua; Wu, Zhigang; Xie, Xiao; Feng, Junli
2016-09-01
Tunas are economically important fishery worldwide, and are often used for commercial processed production. For effective fishery management and protection of consumers' rights, it is important to develop a molecular method to identify species in canned tuna products rapidly and reliably. Here, we have developed a duplex quantitative real-time PCR (qPCR) for identification of five highly priced tuna species (Thunnus maccoyii, Thunnus obesus, Thunnus albacares, Thunnus alalunga and Katsuwonus pelamis) from processed as well as fresh fish. After amplification and sequencing of seven genetic markers commonly used for species identification, 16S rDNA and control region (CR) of mitochondrial DNA were selected as the reference gene markers for genus Thunnus and tuna species identification, respectively. Subsequently, a 73 bp fragment of 16S rDNA and 85-99 bp fragment of CR were simultaneously amplified from each target species by qPCR. The qPCR efficiency of each reaction was calculated according to the standard curves, and the method was validated by amplification DNA extracted from single or mixed tuna specimen. The developed duplex qPCR system was applied to authenticate species of 14 commercial tuna products successfully, which demonstrated it was really a useful and academic technique to identify highly priced tuna species.
Tahk, Hongmin; Lee, Min Hwa; Lee, Kang Bum; Cheon, Doo-Sung; Choi, Changsun
2011-07-01
This study aimed to develop a specific and sensitive duplex reverse transcription polymerase chain reaction enzyme-linked immunosorbent assay (duplex RT-PCR-ELISA) for hepatitis A virus (HAV) and hepatitis E virus (HEV). Duplex RT-PCR-ELISA could detect and differentiate HAV and HEV with specific probes. When ELISA technique was used to detect probe-bound RT-PCR products, duplex RT-PCR-ELISA could detect as little as 0.1 ng/μL HAV and HEV from clinical samples. Human norovirus, enterovirus, poliovirus, murine norovirus and feline calicivirus were used for the specificity test; all were negative. Therefore duplex RT-PCR-ELISA can be used for the simultaneous detection of HAV and HEV in contaminated fecal samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Lobanov, Vladislav A; Peckle, Maristela; Massard, Carlos L; Brad Scandrett, W; Gajadhar, Alvin A
2018-03-02
Equine piroplasmosis (EP) is an economically significant infection of horses and other equine species caused by the tick-borne protozoa Theileria equi and Babesia caballi. The long-term carrier state in infected animals makes importation of such subclinical cases a major risk factor for the introduction of EP into non-enzootic areas. Regulatory testing for EP relies on screening of equines by serological methods. The definitive diagnosis of EP infection in individual animals will benefit from the availability of sensitive direct detection methods, for example, when used as confirmatory assays for non-negative serological test results. The objectives of this study were to develop a real-time quantitative polymerase chain reaction (qPCR) assay for simultaneous detection of both agents of EP, perform comprehensive evaluation of its performance and assess the assay's utility for regulatory testing. We developed a duplex qPCR targeting the ema-1 gene of T. equi and the 18S rRNA gene of B. caballi and demonstrated that the assay has high analytical sensitivities for both piroplasm species. Validation of the duplex qPCR on samples from 362 competitive enzyme-linked immunosorbent assay (cELISA)-negative horses from Canada and the United States yielded no false-positive reactions. The assay's performance was further evaluated using samples collected from 430 horses of unknown EP status from a highly endemic area in Brazil. This set of samples was also tested by a single-target 18S rRNA qPCR for T. equi developed at the OIE reference laboratory for EP in Japan, and a previously published single-target 18S rRNA qPCR for B. caballi whose oligonucleotides we adopted for use in the duplex qPCR. Matching serum samples were tested for antibodies to these parasites using cELISA. By the duplex qPCR, T. equi-specific 18S rRNA qPCR and cELISA, infections with T. equi were detected in 87.9% (95% confidence interval, CI: 84.5-90.7%), 90.5% (95% CI: 87.3-92.3%) and 87.4% (95% CI: 84.0-90.2%) of the horses, respectively. The B. caballi prevalence estimates were 9.3% (95% CI: 6.9-12.4%) by the duplex qPCR and 7.9% (95% CI: 5.7-10.9%) by the respective single-target qPCR assay. These values were markedly lower compared to the seroprevalence of 58.6% (95% CI: 53.9-63.2%) obtained by B. caballi-specific cELISA. The relative diagnostic sensitivity of the duplex qPCR for T. equi was 95.5%, as 359 of the 376 horses with exposure to T. equi confirmed by cELISA had parasitemia levels above the detection limit of the molecular assay. In contrast, only 39 (15.5%) of the 252 horses with detectable B. caballi-specific antibodies were positive for this piroplasm species by the duplex qPCR. The duplex qPCR described here performed comparably to the existing single-target qPCR assays for T. equi and B. caballi and will be more cost-effective in terms of results turnaround time and reagent costs when both pathogens are being targeted for disease control and epidemiological investigations. These validation data also support the reliability of the ema-1 gene-specific oligonucleotides developed in this study for confirmatory testing of non-negative serological test results for T. equi by qPCR. However, the B. caballi-specific qPCR cannot be similarly recommended as a confirmatory assay for routine regulatory testing due to the low level of agreement with serological test results demonstrated in this study. Further studies are needed to determine the transmission risk posed by PCR-negative equines with detectable antibodies to B. caballi.
Development of duplex real-time PCR for the detection of WSSV and PstDV1 in cultivated shrimp.
Leal, Carlos A G; Carvalho, Alex F; Leite, Rômulo C; Figueiredo, Henrique C P
2014-07-05
The White spot syndrome virus (WSSV) and Penaeus stylirostris penstyldensovirus 1 (previously named Infectious hypodermal and hematopoietic necrosis virus-IHHNV) are two of the most important viral pathogens of penaeid shrimp. Different methods have been applied for diagnosis of these viruses, including Real-time PCR (qPCR) assays. A duplex qPCR method allows the simultaneous detection of two viruses in the same sample, which is more cost-effective than assaying for each virus separately. Currently, an assay for the simultaneous detection of the WSSV and the PstDV1 in shrimp is unavailable. The aim of this study was to develop and standardize a duplex qPCR assay for the simultaneous detection of the WSSV and the PstDV1 in clinical samples of diseased L. vannamei. In addition, to evaluate the performance of two qPCR master mixes with regard to the clinical sensitivity of the qPCR assay, as well as, different methods for qPCR results evaluation. The duplex qPCR assay for detecting WSSV and PstDV1 in clinical samples was successfully standardized. No difference in the amplification of the standard curves was observed between the duplex and singleplex assays. Specificities and sensitivities similar to those of the singleplex assays were obtained using the optimized duplex qPCR. The analytical sensitivities of duplex qPCR were two copies of WSSV control plasmid and 20 copies of PstDV1 control plasmid. The standardized duplex qPCR confirmed the presence of viral DNA in 28 from 43 samples tested. There was no difference for WSSV detection using the two kits and the distinct methods for qPCR results evaluation. High clinical sensitivity for PstDV1 was obtained with TaqMan Universal Master Mix associated with relative threshold evaluation. Three cases of simultaneous infection by the WSSV and the PstDV1 were identified with duplex qPCR. The standardized duplex qPCR was shown to be a robust, highly sensitive, and feasible diagnostic tool for the simultaneous detection of the WSSV and the PstDV1 in whiteleg shrimp. The use of the TaqMan Universal Master Mix and the relative threshold method of data analysis in our duplex qPCR method provided optimal levels of sensitivity and specificity.
A polymerase chain reaction strategy for the diagnosis of camelpox.
Balamurugan, Vinayagamurthy; Bhanuprakash, Veerakyathappa; Hosamani, Madhusudhan; Jayappa, Kallesh Danappa; Venkatesan, Gnanavel; Chauhan, Bina; Singh, Raj Kumar
2009-03-01
Camelpox is a contagious viral skin disease that is mostly seen in young camels. The disease is caused by the Camelpox virus (CMLV). In the present study, a polymerase chain reaction (PCR) assay based on the C18L gene (encoding ankyrin repeat protein) and a duplex PCR based on the C18L and DNA polymerase (DNA pol) genes were developed. The former assay yields a specific amplicon of 243 bp of the C18L gene, whereas the duplex PCR yields 243- and 96-bp products of the C18L and DNA pol genes, respectively, in CMLV, and only a 96-bp product of the DNA pol gene in other orthopoxviruses. The limit of detection was as low as 0.4 ng of viral DNA. Both PCR assays were employed successfully for the direct detection and differentiation of CMLV from other orthopoxviruses, capripoxviruses, and parapoxviruses in both cell culture samples and clinical material. Furthermore, a highly sensitive SYBR Green dye-based, real-time PCR was optimized for quantitation of CMLV DNA. In the standard curve of the quantitative assay, the melting temperature of the specific amplicon at 77.6 degrees C with peak measured fluorescence in dissociation plot was observed with an efficiency of 102%. To the authors' knowledge, this is the first report to describe a C18L gene-based PCR for specific diagnosis of camelpox infection.
Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L
2015-03-01
Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Peng; Peng, Xiaomin; Cui, Shujuan; Shao, Junbin; Zhu, Xuping; Zhang, Daitao; Liang, Huijie; Wang, Quanyi
2013-07-30
Streptococcal superantigens (SAgs) are the major virulence factors of infection in humans for group A Streptococcus (GAS) bacteria. A panel consisting of seven duplex real-time PCR assays was developed to simultaneously detect 13 streptococcal SAgs and one internal control which may be important in the control of GAS-mediated diseases. Primer and probe sequences were selected based on the highly conserved region from an alignment of nucleotide sequences of the 13 streptococcal SAgs. The reaction conditions of the duplex real-time PCR were optimized and the specificity of the duplex assays was evaluated using SAg positive strains. The limit of detection of the duplex assays was determined by using 10-fold serial dilutions of the DNA of 13 streptococcal SAgs and compared to a conventional polymerase chain reaction (PCR) method for evaluating the duplex assays sensitivity. Using the duplex assays, we were able to differentiate between 13 SAgs from Streptococcus strains and other non-Streptococcus bacteria without cross-reaction. On the other hand, the limit of detection of the duplex assays was at least one or two log dilutions lower than that of the conventional PCR. The panel was highly specific (100%) and the limit of detection of these duplex groups was at least ten times lower than that obtained by using a conventional PCR method.
Luo, Yakun; Liang, Lin; Zhou, Ling; Zhao, Kai; Cui, Shangjin
2015-07-01
Nanoparticle-assisted polymerase chain reaction (nanoPCR) is a novel method for the simple, rapid, and specific amplification of DNA and has been used to detect viruses. A duplex nanoPCR molecular detection system was developed to detect pseudorabies virus (PRV) and porcine bocavirus (PBoV). Primers were selected to target conserved regions within the PRV gE gene and the PBoV NS1 gene. Under optimized nanoPCR reaction conditions, two specific fragments of 316 bp (PRV) and 996 bp (PBoV) were amplified by the duplex nanoPCR with a detection limit of 6 copies for PRV and 95 copies for PBoV; no fragments were amplified when other porcine viruses were used as template. When used to test 550 clinical samples, the duplex nanoPRC assay and a conventional duplex PCR assay provided very similar results (98.1% consistency); single PRV infections, single PBoV infections, and concurrent PRV and PBoV infections were detected in 37%, 15%, and 9% of the samples, respectively. The results indicate that the novel duplex nanoPCR assay is useful for the rapid detection of PRV and PBoV in pigs. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Yu; Liang, Lin; Luo, Yakun; Wang, Guihua; Wang, Chunren; Cui, Yudong; Ai, Xia; Cui, Shangjin
2017-02-01
In this study, a novel duplex nanoparticle-assisted polymerase chain reaction (nanoPCR) assay was developed to detect porcine epidemic diarrhea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV). Two pairs of primers were designed based on the conserved region within the N gene of PEDV and TGEV. In a screening of 114 clinical samples from four provinces in China for PEDV and TGEV, 48.2 and 3.5 % of the samples, respectively, tested positive. Under optimized conditions, the duplex nanoPCR assay had a detection limit of 7.6 × 10 1 and 8.5 × 10 1 copies μL -1 for PEDV and TGEV, respectively. The sensitivity of the duplex nanoPCR assay was ten times higher than that of a conventional PCR assay. Moreover, no fragments were amplified when the duplex nanoPCR assay was used to test samples containing other porcine viruses. Our results indicate that the duplex nanoPCR assay described here is useful for the rapid detection of PEDV and TGEV and can be applied in clinical diagnosis.
Fast-mode duplex qPCR for BCR-ABL1 molecular monitoring: innovation, automation, and harmonization.
Gerrard, Gareth; Mudge, Katherine; Foskett, Pierre; Stevens, David; Alikian, Mary; White, Helen E; Cross, Nicholas C P; Apperley, Jane; Foroni, Letizia
2012-07-01
Reverse transcription quantitative polymerase chain reaction (RTqPCR)is currently the most sensitive tool available for the routine monitoring of disease level in patients undergoing treatment for BCRABL1 associated malignancies. Considerable effort has been invested at both the local and international levels to standardise the methodology and reporting criteria used to assess this critical metric. In an effort to accommodate the demands of increasing sample throughput and greater standardization, we adapted the current best-practice guidelines to encompass automation platforms and improved multiplex RT-qPCR technology.
Quantitative Analysis of Food and Feed Samples with Droplet Digital PCR
Morisset, Dany; Štebih, Dejan; Milavec, Mojca; Gruden, Kristina; Žel, Jana
2013-01-01
In this study, the applicability of droplet digital PCR (ddPCR) for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies) of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR) approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed. PMID:23658750
USDA-ARS?s Scientific Manuscript database
A duplex quantitative real-time polymerase chain reaction (qPCR) assay was developed to differentiate between Bolbophorus damnificus and Bolbophorus type II species cercariae. Both trematode species are prevalent throughout the commercial catfish industry,.as both infect the ram’s horn snail, Plano...
Yuan, Wen; Wang, Jing; Xu, Fengjiao; Huang, Bihong; Lian, Yuexiao; Rao, Dan; Yin, Xueqin; Wu, Miaoli; Zhu, Yujun; Zhang, Yu; Huang, Ren; Guo, Pengju
2016-10-01
Theiler's murine encephalomyelitis virus (TMEV) and rat theilovirus (RTV), the member of the genus Cardiovirus, are widespread in laboratory mice and rats, and are potential contaminants of biological materials. Cardioviruses infection may cause serious complications in biomedical research. To improve the efficiency of routine screening for Cardioviruses infection, a duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was developed for simultaneous detection and differentiation of TMEV and RTV. The duplex assay was specific for reference strains of TMEV and RTV, and no cross-reaction was found with seven other rodent viruses. The limits of detection of both TMEV and RTV were 4×10(1) copies RNA/reaction. Reproducibility was estimated using standard dilutions, with coefficients of variation <3.1%. 439 clinical samples were evaluated by both duplex real-time RT-PCR and conventional RT-PCR. For 439 clinical samples,95 samples were positive for TMEV and 72 samples were positive for RTV using duplex real-time RT-PCR approach, whereas only 77 samples were positive for TMEV and 66 samples were positive for RTV when conventional RT-PCR was applied. Mixed infections were found in 20 samples when analyzed by conventional RT-PCR whereas 30 samples were found to be mixed infection when duplex real-time RT-PCR was applied. This duplex assay provides a useful tool for routine health monitoring and screening of contaminated biological materials of these two viruses. Copyright © 2016 Elsevier B.V. All rights reserved.
Hwang, Seoyeon; Kang, Byunghak; Hong, Jiyoung; Kim, Ahyoun; Kim, Hyejin; Kim, Kisang; Cheon, Doo-Sung
2013-07-01
Human enterovirus (EV) 71 is the main etiological agent of hand, foot, and mouth disease (HFMD). It is associated with neurological complications, and caused fatalities during recent outbreaks in the Asia-Pacific region. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. In this study, a duplex real-time RT-PCR assay was developed in order to simultaneously detect pan-EV and EV71. EV71-specific primers and probes were designed based on the highly conserved VP1 region of EV71. Five EV71 strains were detected as positive, and no positive fluorescence signal was observed in the duplex real-time RT-PCR for other viral RNA, which showed 100% specificity for the selected panel, and no cross-reactions were observed in this duplex real-time RT-PCR. The EV71-specific duplex real-time RT-PCR was more sensitive than conventional RT-PCR, and detected viral titers that were 10-fold lower than those measured by the latter. Of the 381 HFMD clinical specimens, 196 (51.4%) cases were pan-EV-positive, of which 170 (86.7%) were EV71-positive when tested by pan-EV and EV71-specific duplex real-time RT-PCR. EV71-specific duplex real-time RT-PCR offers a rapid and sensitive method to detect EV71 from clinical specimens, and will allow quarantine measures to be taken more effectively during outbreaks. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Schonfeld, Julie; Tran, Luan
2016-01-01
The WetLab-2 system was developed by NASA Ames Research Center to offer new capabilities to researchers. The system can lyse cells and extract RNA (Ribonucleic Acid) on-orbit from different sample types ranging from microbial cultures to animal tissues. The purified RNA can then either be stabilized for return to Earth or can be used to conduct on-orbit quantitative Reverse Transcriptase PCR (Polymerase Chain Reaction) (qRT-PCR) analysis without the need for sample return. The qRT-PCR results can be downlinked to the ground a few hours after the completion of the run. The validation flight of the WetLab-2 system launched on SpaceX-8 on April 8, 2016. On orbit operations started on April 15th with system setup and was followed by three quantitative PCR runs using an E. coli genomic DNA template pre-loaded at three different concentrations. These runs were designed to discern if quantitative PCR functions correctly in microgravity and if the data is comparable to that from the ground control runs. The flight data showed no significant differences compared to the ground data though there was more variability in the values, this was likely due to the numerous small bubbles observed. The capability of the system to process samples and purify RNA was then validated using frozen samples prepared on the ground. The flight data for both E. coli and mouse liver clearly shows that RNA was successfully purified by our system. The E. coli qRT-PCR run showed successful singleplex, duplex and triplex capability. Data showed high variability in the resulting Cts (Cycle Thresholds [for the PCR]) likely due to bubble formation and insufficient mixing during the procedure run. The mouse liver qRT-PCR run had successful singleplex and duplex reactions and the variability was slightly better as the mixing operation was improved. The ability to purify and stabilize RNA and to conduct qRT-PCR on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. The ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. The WetLab-2 Project is supported by the Research Integration Office in the ISS Program.
Kim, Mi-Ju; Lee, Shin-Young; Kim, Hyun-Joong; Lee, Jeong Su; Joo, In Sun; Kwak, Hyo Sun; Kim, Hae-Yeong
2016-08-28
The simultaneous detection and accurate identification of hepatitis A virus (HAV) is critical in food safety and epidemiological studies to prevent the spread of HAV outbreaks. Towards this goal, a one-step duplex reverse-transcription (RT)-PCR method was developed targeting the VP1/P2B and VP3/VP1 regions of the HAV genome for the qualitative detection of HAV. An HAV RT-qPCR standard curve was produced for the quantification of HAV RNA. The detection limit of the duplex RT-PCR method was 2.8 × 10(1) copies of HAV. The PCR products enabled HAV genotyping analysis through DNA sequencing, which can be applied for epidemiological investigations. The ability of this duplex RT-PCR method to detect HAV was evaluated with HAV-spiked samples of fresh lettuce, frozen strawberries, and oysters. The limit of detection of the one-step duplex RT-PCR for each food model was 9.4 × 10(2) copies/20 g fresh lettuce, 9.7 × 10(3) copies/20 g frozen strawberries, and 4.1 × 10(3) copies/1.5 g oysters. Use of a one-step duplex RT-PCR method has advantages such as shorter time, decreased cost, and decreased labor owing to the single amplification reaction instead of four amplifications necessary for nested RT-PCR.
Comparison of monoplex and duplex RT-PCR assays for the detection of measles virus.
Binkhamis, Khalifa; Gillis, Hayley; Lafreniere, Joseph Daniel; Hiebert, Joanne; Mendoza, Lillian; Pettipas, Janice; Severini, Alberto; Hatchette, Todd F; LeBlanc, Jason J
2017-01-01
Rapid and accurate detection of measles virus is important for case diagnosis and public health management. This study compared the performance of two monoplex RT-PCR reactions targeting the H and N genes to a duplex RT-PCR targeting both genes simultaneously. The duplex simplified processing without compromising assay performance characteristic. Copyright © 2016 Elsevier B.V. All rights reserved.
Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction
Chen, Xian; Gupta, Goutam; Bradbury, E. Morton
2001-01-01
Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.
Palle-Reisch, Monika; Cichna-Markl, Margit; Hochegger, Rupert
2014-06-15
The paper presents a duplex real-time PCR assay for the simultaneous detection of three potentially allergenic mustard species commonly used in food: white mustard (Sinapis alba), black mustard (Brassica nigra) and brown mustard (Brassica juncea). White mustard is detected in the "green" and black/brown mustard in the "yellow" channel. The duplex real-time PCR assay does not show cross-reactivity with other Brassicaceae species including broccoli, cauliflower, radish and rapeseed. Low cross-reactivities (difference in the Ct value ⩾ 11.91 compared with the positive control) were obtained with cumin, fenugreek, ginger, rye and turmeric. When applying 500 ng DNA per PCR tube, the duplex real-time PCR assay allowed the detection of white, black and brown mustard in brewed model sausages down to a concentration of 5mg/kg in 10 out of 10 replicates. The duplex real-time PCR assay was applied to verify correct labelling of commercial foodstuffs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Saba Shirvan, Aylar; Mardani, Karim
2014-01-01
Infectious bronchitis (IB) and Newcastle disease (ND) are highly contagious and the most economically important diseases of the poultry affecting respiratory tract and causing economic losses in poultry industry throughout the world. In the present study, the simultaneous detection and differentiation of causative agents of these diseases were investigated using duplex-RT-PCR. RNA was extracted from vaccinal and reference strains of infectious bronchitis virus (IBV) and Newcastle disease virus (NDV) and then cDNA was synthesized. Using two universal primer sets for detection of IBV and NDV, the duplex-RT-PCR was developed. In order to assess the efficiency of the developed duplex RT-PCR, a number of 12 broiler farms with the symptoms of respiratory tract infection was sampled (trachea, lung and kidney were sampled from affected birds suspicious for IBV and NDV infections). After RNA extraction from tissues and cDNA synthesis, the presence of IBV and NDV genome were investigated using duplex-PCR. The results showed that three of twelve examined broiler farms were positive for IBV and two farms were positive for NDV and IBV. The results revealed that the duplex-RT-PCR is a quick and sensitive procedure for simultaneously detecting IBV and NDV in birds with respiratory infections.
Development of a one-step duplex RT-qPCR for the quantification of phocine distemper virus.
Bogomolni, Andrea L; Frasca, Salvatore; Matassa, Keith A; Nielsen, Ole; Rogers, Kara; De Guise, Sylvain
2015-04-01
Worldwide, stranded marine mammals and the network personnel who respond to marine mammal mortality have provided much of the information regarding marine morbillivirus infections. An assay to determine the amount of virus present in tissue samples would be useful to assist in routine surveying of animal health and for monitoring large-scale die-off events. False negatives from poor-quality samples prevent determination of the true extent of infection, while only small amounts of tissue samples or archived RNA may be available at the time of collection for future retrospective analysis. We developed a one-step duplex real-time reverse transcriptase-quantitative-PCR assay (RT-qPCR) based on Taqman probe technology to quantify phocine distemper virus (PDV) isolated from an outbreak in harbor (Phoca vitulina concolor) and gray seals (Halichoerus grypus) along the northeast US coast in 2006. The glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) gene was selected to assess RNA quality. This duplex assay is specific for PDV and sensitive through a range of 10(0) to 10(9) copies ds-plasmid DNA. For the GAPDH target, the reaction in duplex amplified 10(0) to 10(9) copies of ds-plasmid DNA and was detectable in multiple seal species. This assay reduced the likelihood of false negative results due to degradation of tissues and well-to-well variability while providing sensitive and specific detection of PDV, which would be applicable in molecular epidemiologic studies and pathogen detection in field and laboratory investigations involving a variety of seal species.
Ye, Y W; Ling, N; Han, Y J; Wu, Q P
2014-11-01
Pathogenic Yersinia enterocolitica is involved in yersiniosis through expression of chromosome-borne or plasmid-borne virulence factors. Yersinia enterocolitica is a cold-tolerant pathogen frequently isolated from refrigerated or frozen foods. However, little attention has been focused on the prevalence of pathogenic Y. enterocolitica in refrigerated or frozen dairy samples in China. In this study, we developed a new duplex PCR targeting the plasmid-borne virF gene and chromosome-borne ail gene for detection of pathogenic Y. enterocolitica isolates. We established a detection limit for the duplex PCR of 6.5 × 10(2)cfu/mL in artificially contaminated dairy samples. In addition, the duplex PCR could detect directly 4.5 to 5.7 cfu of Y. enterocolitica in 5 mL of brain heart infusion broth after 6 h of enrichment at 28 °C. A newly developed dot hybridization assay further confirmed specificity of the duplex PCR for detection of virulent Y. enterocolitica. Furthermore, 13 Y. enterocolitica and 5 pathogenic strains, from 88 commercial frozen or refrigerated dairy products, were detected successfully by the China National Standard method (GB/T4789.8-2008) and the duplex PCR, respectively. Finally, biotypes and serotypes of pathogenic Y. enterocolitica strains were further characterized. The duplex PCR developed here is reliable for large-scale screening, routine monitoring, and risk assessment of pathogenic Y. enterocolitica in refrigerated or frozen dairy products. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Cui, Yanyan; Zhang, Yan; Jian, Fuchun; Zhang, Longxian; Wang, Rongjun; Cao, Shuxuan; Wang, Xiaoxing; Yan, Yaqun; Ning, Changshen
2017-05-01
Theileria spp. and Anaplasma spp., which are important tick-borne pathogens (TBPs), impact the health of humans and animals in tropical and subtropical areas. Theileria and Anaplasma co-infections are common in sheep and goats. Following alignment of the relevant DNA sequences, two primer sets were designed to specifically target the Theileria spp. 18S rRNA and Anaplasma spp. 16S rRNA gene sequences. Genomic DNA from the two genera was serially diluted tenfold for testing the sensitivities of detection of the primer sets. The specificities of the primer sets were confirmed when DNA from Anaplasma and Theileria (positive controls), other related hematoparasites (negative controls) and ddH 2 O were used as templates. Fifty field samples were also used to evaluate the utility of single PCR and duplex PCR assays, and the detection results were compared with those of the PCR methods previously published. An optimized duplex PCR assay was established from the two primer sets based on the relevant genes from the two TBPs, and this assay generated products of 298-bp (Theileria spp.) and 139-bp (Anaplasma spp.). The detection limit of the assay was 29.4 × 10 -3 ng per μl, and there was no cross-reaction with the DNA from other hematoparasites. The results showed that the newly developed duplex PCR assay had an efficiency of detection (P > 0.05) similar to other published PCR methods. In this study, a duplex PCR assay was developed that can simultaneously identify Theileria spp. and Anaplasma spp. in sheep and goats. This duplex PCR is a potentially valuable assay for epidemiological studies of TBPs in that it can detect cases of mixed infections of the pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.
Nikzad, Jafar; Shahhosseini, Soraya; Tabarzad, Maryam; Nafissi-Varcheh, Nastaran; Torshabi, Maryam
2017-02-14
In the pharmaceutical industry, hard- and soft-shelled capsules are typically made from gelatin, commonly derived from bovine and porcine sources. To ensure that pharmaceutical products comply with halal regulations in Muslim countries (no porcine products allowed), development of a valid, reliable, quick, and most importantly, cost-effective tests are of utmost importance. We developed a species-specific duplex polymerase chain reaction (PCR) assay targeting 149 bp porcine and 271 bp bovine mitochondrial DNA (mtDNA) to simultaneously detect both porcine and bovine DNA (in one reaction at the same time) in gelatin. Some additional simplex PCR tests (targeting 126 bp bovine and 212 bp porcine mtDNA) and real-time PCR using a commercially available kit (for identification of porcine DNA) were used to verify the selectivity and sensitivity of our duplex PCR. After optimization of DNA extraction and PCR methods, hard/soft pharmaceutical gelatin capsules (containing drug) were tested for the presence of porcine and/or bovine DNA. Duplex PCR detected the presence of as little as 0.1% porcine DNA, which was more accurate than the commercially available kit. Of all gelatin capsules tested (n = 24), 50% contained porcine DNA (pure porcine gelatin alone or in combination with bovine gelatin). Duplex PCR presents an easy-to-follow, quick, low-cost and reliable method to simultaneously detect porcine and bovine DNAs (>100 bp) in minute amounts in highly processed gelatin-containing pharmaceutical products (with a 0.1% sensitivity for porcine DNA) which may be used for halal authentication. Simultaneous detection of porcine and bovine DNA in gelatin capsules by duplex PCR.
Criado-Fornelio, A; Buling, A; Asenzo, G; Benitez, D; Florin-Christensen, M; Gonzalez-Oliva, A; Henriques, G; Silva, M; Alongi, A; Agnone, A; Torina, A; Madruga, C R
2009-06-10
This paper reports two new quantitative PCR (qPCR) assays, developed in an attempt to improve the detection of bovine piroplasmids. The first of these techniques is a duplex TaqMan assay for the simultaneous diagnosis of Babesia bovis and B. bigemina. This technique is ideal for use in South America where bovids harbour no theilerids. The second technique, which is suitable for the diagnosis of both babesiosis and theileriosis worldwide, involves fluorescence resonance energy transfer (FRET) probes. In FRET assays, Babesia bovis, B. divergens, Babesia sp. (B. major or B. bigemina), Theileria annae and Theileria sp. were all identifiable based on the melting temperatures of their amplified fragments. Both techniques provided linear calibration curves over the 0.1fg/microl to 0.01ng/microl DNA range. The assays showed good sensitivity and specificity. To assess their performance, both procedures were compared in two separate studies: the first was intended to monitor the experimental infection of calves with B. bovis and the second was a survey where 200 bovid/equine DNA samples from different countries were screened for piroplasmids. Comparative studies showed that duplex TaqMan qPCR was more sensitive than FRET qPCR in the detection of babesids.
Durant, Jean-Francois; Irenge, Leonid M; Fogt-Wyrwas, Renata; Dumont, Catherine; Doucet, Jean-Pierre; Mignon, Bernard; Losson, Bertrand; Gala, Jean-Luc
2012-12-07
Toxocarosis is a zoonotic disease caused by Toxocara canis (T. canis) and/or Toxocara cati (T. cati), two worldwide distributed roundworms which are parasites of canids and felids, respectively. Infections of humans occur through ingestion of embryonated eggs of T. canis or T. cati, when playing with soils contaminated with dogs or cats feces. Accordingly, the assessment of potential contamination of these areas with these roundworms eggs is paramount. A duplex quantitative real-time PCR (2qPCR) targeting the ribosomal RNA gene internal transcribed spacer (ITS2) has been developed and used for rapid and specific identification of T. canis and T. cati eggs in fecal and soil samples. The assay was set up on DNA samples extracted from 53 adult worms including T. canis, T. cati, T. leonina, Ascaris suum (A. suum) and Parascaris equorum (P. equorum). The assay was used to assess the presence of T. cati eggs in several samples, including 12 clean soil samples spiked with eggs of either T. cati or A. suum, 10 actual soil samples randomly collected from playgrounds in Brussels, and fecal samples from cats, dogs, and other animals. 2qPCR results on dogs and cats fecal samples were compared with results from microscopic examination. 2qPCR assay allowed specific detection of T. canis and T. cati, whether adult worms, eggs spiked in soil or fecal samples. The 2qPCR limit of detection (LOD) in spiked soil samples was 2 eggs per g of soil for a turnaround time of 3 hours. A perfect concordance was observed between 2qPCR assay and microscopic examination on dogs and cats feces. The newly developed 2qPCR assay can be useful for high throughput prospective or retrospective detection of T.canis and/or T. cati eggs in fecal samples as well as in soil samples from playgrounds, parks and sandpits.
Nguyen, Khue Thi; Nguyen, Nga Thi Bich; Doan, Huong Thi Thanh; Le, Xuyen Thi Kim; Hoang, Chau Thi Minh; De, Nguyen Van
2012-01-01
A single-step multiplex PCR (here referred to as a duplex PCR) has been developed for simultaneous detection and diagnosis of Fasciola hepatica and F. gigantica. These species overlap in distribution in many countries of North and East Africa and Central and Southeast Asia and are similar in egg morphology, making identification from fecal samples difficult. Based on a comparative alignment of mitochondrial DNA (mtDNA) spanning the region of cox1-trnT-rrnL, two species-specific forward primers were designed, FHF (for F. hepatica) and FGF (for F. gigantica), and a single reverse primer, FHGR (common for both species). Conventional PCR followed by sequencing was applied using species-specific primer pairs to verify the specificity of primers and the identity of Fasciola DNA templates. Duplex PCR (using three primers) was used for testing with the DNA extracted from adult worms, miracidia, and eggs, producing amplicons of 1,031 bp for F. hepatica and 615 bp for F. gigantica. The duplex PCR failed to amplify from DNA of other common liver and intestinal trematodes, including two opisthorchiids, three heterophyids, an echinostomid, another fasciolid, and a taeniid cestode. The sensitivity assay showed that the duplex PCR limit of detection for each Fasciola species was between 0.012 ng and 0.006 ng DNA. Evaluation using DNA templates from 32 Fasciola samples (28 adults and 4 eggs) and from 25 field-collected stools of ruminants and humans revealed specific bands of the correct size and the presence of Fasciola species. This novel mtDNA duplex PCR is a sensitive and fast tool for accurate identification of Fasciola species in areas of distributional and zonal overlap. PMID:22692744
Le, Thanh Hoa; Nguyen, Khue Thi; Nguyen, Nga Thi Bich; Doan, Huong Thi Thanh; Le, Xuyen Thi Kim; Hoang, Chau Thi Minh; De, Nguyen Van
2012-08-01
A single-step multiplex PCR (here referred to as a duplex PCR) has been developed for simultaneous detection and diagnosis of Fasciola hepatica and F. gigantica. These species overlap in distribution in many countries of North and East Africa and Central and Southeast Asia and are similar in egg morphology, making identification from fecal samples difficult. Based on a comparative alignment of mitochondrial DNA (mtDNA) spanning the region of cox1-trnT-rrnL, two species-specific forward primers were designed, FHF (for F. hepatica) and FGF (for F. gigantica), and a single reverse primer, FHGR (common for both species). Conventional PCR followed by sequencing was applied using species-specific primer pairs to verify the specificity of primers and the identity of Fasciola DNA templates. Duplex PCR (using three primers) was used for testing with the DNA extracted from adult worms, miracidia, and eggs, producing amplicons of 1,031 bp for F. hepatica and 615 bp for F. gigantica. The duplex PCR failed to amplify from DNA of other common liver and intestinal trematodes, including two opisthorchiids, three heterophyids, an echinostomid, another fasciolid, and a taeniid cestode. The sensitivity assay showed that the duplex PCR limit of detection for each Fasciola species was between 0.012 ng and 0.006 ng DNA. Evaluation using DNA templates from 32 Fasciola samples (28 adults and 4 eggs) and from 25 field-collected stools of ruminants and humans revealed specific bands of the correct size and the presence of Fasciola species. This novel mtDNA duplex PCR is a sensitive and fast tool for accurate identification of Fasciola species in areas of distributional and zonal overlap.
Morán, Félix; Olmos, Antonio; Lotos, Leonidas; Predajňa, Lukáš; Katis, Nikolaos; Glasa, Miroslav; Maliogka, Varvara; Ruiz-García, Ana B
2018-01-01
Grapevine Pinot gris virus (GPGV) is a widely distributed grapevine pathogen that has been associated to the grapevine leaf mottling and deformation disease. With the aim of better understanding the disease epidemiology and providing efficient control strategies a specific and quantitative duplex TaqMan real-time RT-PCR assay has been developed. This method has allowed reliable quantitation of the GPGV titer ranging from 30 up to 3 x 108 transcript copies, with a detection limit of 70 viral copies in plant material. The assay targets a grapevine internal control that reduces the occurrence of false negative results, thus increasing the diagnostic sensitivity of the technique. Viral isolates both associated and non-associated to symptoms from Greece, Slovakia and Spain have been successfully detected. The method has also been applied to the absolute quantitation of GPGV in its putative transmission vector Colomerus vitis. Moreover, the viral titer present in single mites has been determined. In addition, in the current study a new polymorphism in the GPGV genome responsible for a shorter movement protein has been found. A phylogenetic study based on this genomic region has shown a high variability among Spanish isolates and points to a different evolutionary origin of this new polymorphism. The methodology here developed opens new possibilities for basic and epidemiological studies as well as for the establishment of efficient control strategies.
Zhang, Jianqiang; Tsai, Yun-Long; Lee, Pei-Yu Alison; Chen, Qi; Zhang, Yan; Chiang, Cheng-Jen; Shen, Yu-Han; Li, Fu-Chun; Chang, Hsiao-Fen Grace; Gauger, Phillip C; Harmon, Karen M; Wang, Hwa-Tang Thomas
2016-08-01
Recent outbreaks of porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) in multiple countries have caused significant economic losses and remain a serious challenge to the swine industry. Rapid diagnosis is critical for the implementation of efficient control strategies before and during PEDV and PDCoV outbreaks. Insulated isothermal PCR (iiPCR) on the portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, a singleplex PEDV RT-iiPCR, a singleplex PDCoV RT-iiPCR, and a duplex PEDV/PDCoV real-time RT-PCR (rRT-PCR) commercial reagents targeting the M gene were compared to an N gene-based PEDV rRT-PCR and an M gene-based PDCoV rRT-PCR that were previously published and used as reference PCRs. All PCR assays were highly specific and did not cross react with other porcine enteric pathogens. Analytical sensitivities of the PEDV RT-iiPCR, PDCoV RT-iiPCR and duplex PEDV/PDCoV rRT-PCR were determined using in vitro transcribed RNA as well as viral RNA extracted from ten-fold serial dilutions of PEDV and PDCoV cell culture isolates. Performance of each PCR assay was further evaluated using 170 clinical samples (86 fecal swabs, 24 feces, 19 intestines, and 41 oral fluids). Compared to the reference PEDV rRT-PCR, the sensitivity, specificity and accuracy of the PEDV RT-iiPCR were 97.73%, 98.78%, and 98.24%, respectively, and those of the duplex PEDV/PDCoV rRT-PCR were 98.86%, 96.34%, and 97.65%, respectively. Compared to the reference PDCoV rRT-PCR, the sensitivity, specificity and accuracy of the PDCoV RT-iiPCR were 100%, 100%, and 100%, respectively, and those of the PEDV/PDCoV duplex rRT-PCR were 96.34%, 100%, and 98.24%, respectively. Overall, all three new PCR assays were comparable to the reference rRT-PCRs for detection of PEDV and/or PDCoV. The PEDV and PDCoV RT-iiPCRs are potentially useful tools for on-site detection and the duplex PEDV/PDCoV rRT-PCR provides a convenient method to simultaneously detect the two viruses and differentiate PEDV from PDCoV. Copyright © 2016 Elsevier B.V. All rights reserved.
Kang, Xiao-ping; Jiang, Tao; Li, Yong-qiang; Lin, Fang; Liu, Hong; Chang, Guo-hui; Zhu, Qing-yu; Qin, E-de; Qin, Cheng-feng; Yang, Yin-hui
2010-06-02
A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009) influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose) for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.
Camargo, Vinícius da Silva; Santana, Bruna Nicoleti; Ferrari, Elis Domingos; Nakamura, Alex Akira; Nagata, Walter Bertequini; Nardi, Ana Rita Moraes; Meireles, Marcelo Vasconcelos
2018-01-01
This study used several diagnostic methods to examine the occurrence of and molecularly characterize Cryptosporidium spp. in captive canaries (Serinus canaria) in southern and southeastern Brazil. A total of 498 fecal samples were purified by centrifugal-flotation using Sheather's solution. Cryptosporidium spp. diagnosis was performed using three diagnostic methods: malachite green negative staining, nested PCR targeting the 18S rRNA gene, followed by sequencing the amplified fragments, and duplex real-time PCR targeting the 18S rRNA specific to detect Cryptosporidium galli and Cryptosporidium avian genotype III. The overall positivity for Cryptosporidium spp. (total samples positive in at least one protocol) from the microscopic analysis, nested PCR and duplex real-time PCR protocol results was 13.3% (66/498). The positivity rates were 2.0% (10/498) and 4.6% (23/498) for Cryptosporidium spp. by microscopy and nested PCR, respectively. Sequencing of 20 samples amplified by nested PCR identified C. galli (3.0%; 15/498), Cryptosporidium avian genotype I (0.8%; 4/498) and Cryptosporidium avium (0.2%; 1/498). Duplex real-time PCR revealed a positivity of 7.8% (39/498) for C. galli and 2.4% (12/498) for avian genotype III. Malachite green negative staining differed significantly from nested PCR in detecting Cryptosporidium spp. Duplex real-time PCR was more sensitive than nested PCR/sequencing for detecting gastric Cryptosporidium in canaries.
Basic quantitative polymerase chain reaction using real-time fluorescence measurements.
Ares, Manuel
2014-10-01
This protocol uses quantitative polymerase chain reaction (qPCR) to measure the number of DNA molecules containing a specific contiguous sequence in a sample of interest (e.g., genomic DNA or cDNA generated by reverse transcription). The sample is subjected to fluorescence-based PCR amplification and, theoretically, during each cycle, two new duplex DNA molecules are produced for each duplex DNA molecule present in the sample. The progress of the reaction during PCR is evaluated by measuring the fluorescence of dsDNA-dye complexes in real time. In the early cycles, DNA duplication is not detected because inadequate amounts of DNA are made. At a certain threshold cycle, DNA-dye complexes double each cycle for 8-10 cycles, until the DNA concentration becomes so high and the primer concentration so low that the reassociation of the product strands blocks efficient synthesis of new DNA and the reaction plateaus. There are two types of measurements: (1) the relative change of the target sequence compared to a reference sequence and (2) the determination of molecule number in the starting sample. The first requires a reference sequence, and the second requires a sample of the target sequence with known numbers of the molecules of sequence to generate a standard curve. By identifying the threshold cycle at which a sample first begins to accumulate DNA-dye complexes exponentially, an estimation of the numbers of starting molecules in the sample can be extrapolated. © 2014 Cold Spring Harbor Laboratory Press.
Sampath, Asanga; Weerasekera, Manjula; Dilhari, Ayomi; Gunasekara, Chinthika; Bulugahapitiya, Uditha; Fernando, Neluka; Samaranayake, Lakshman
2017-12-01
Candida dubliniensis shares a wide range of phenotypic characteristics with Candida albicans including a common trait called germ tube positivity. Hence, laboratory differentiation of these two species is cumbersome. Duplex PCR analyses for C. albicans and C. dubliniensis was performed directly on DNA extracted from a total of 122 germ tube positive isolates derived from 100 concentrated oral rinse samples from a random cohort of diabetics attending a clinic in Sri Lanka. These results were confirmed by DNA sequencing of internal transcribed spacer (ITS) region of rDNA of the yeasts. Performance efficacy of duplex PCR was then compared with phenotypic identification using a standard battery of phenotypic tests. Of the 122 germ tube positive isolates three were identified by duplex PCR as C. dubliniensis and the remainder as C. albicans. On the contrary, when the standard phenotypic tests, sugar assimilation and chlamydospore formation, were used to differentiate the two species 13 germ tube positive isolates were erroneously identified as C. dubliniensis. Duplex PCR was found to be rapid, sensitive and more specific than phenotypic identification methods in discriminating C. dubliniensis from C. albicans. This is also the first report on the oral carriage of C. dubliniensis in a Sri Lankan population.
Shrivastava, Kamal; Garima, Kushal; Narang, Anshika; Bhattacharyya, Kausik; Vishnoi, Ekta; Singh, Roshan Kumar; Chaudhry, Anil; Prasad, Rajendra; Bose, Mridula; Varma-Basil, Mandira
2017-03-01
We explored the efficiency of Rv1458c, the gene encoding a putative ABC drug transporter specific for the Mycobacterium tuberculosis complex (MTBC), as a diagnostic marker. A 190 bp region of Rv1458c and a 300 bp region of hsp65 were targeted in a novel duplex PCR assay and the results were compared with those for PCR restriction analysis(PRA) using the restriction enzymes NruI and BamHI. Species identification of a subset of the isolates (n=50) was confirmed by sequencing. Clinical isolates of M. tuberculosis (n=426) obtained from clinically suspected patients of pulmonary tuberculosis and mycobacterial (n=13) and non-mycobacterial (n=8) reference strains were included in the study. The duplex PCR assay correctly identified 320/426 isolates as MTBC and 106/426 isolates as non-tuberculous mycobacteria(NTM). The test was 100 % specific and sensitive when compared with NruI/BamHI PCR restriction analysis and highlighted the use of Rv1458c as a diagnostic marker for MTBC. The duplex PCR assay could be developed for use as a screening test to identify MTBC in clinical specimens in peripheral laboratories with limited resources.
Taly, Valerie; Pekin, Deniz; Benhaim, Leonor; Kotsopoulos, Steve K; Le Corre, Delphine; Li, Xinyu; Atochin, Ivan; Link, Darren R; Griffiths, Andrew D; Pallier, Karine; Blons, Hélène; Bouché, Olivier; Landi, Bruno; Hutchison, J Brian; Laurent-Puig, Pierre
2013-12-01
Multiplex digital PCR (dPCR) enables noninvasive and sensitive detection of circulating tumor DNA with performance unachievable by current molecular-detection approaches. Furthermore, picodroplet dPCR facilitates simultaneous screening for multiple mutations from the same sample. We investigated the utility of multiplex dPCR to screen for the 7 most common mutations in codons 12 and 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) oncogene from plasma samples of patients with metastatic colorectal cancer. Fifty plasma samples were tested from patients for whom the primary tumor biopsy tissue DNA had been characterized by quantitative PCR. Tumor characterization revealed that 19 patient tumors had KRAS mutations. Multiplex dPCR analysis of the plasma DNA prepared from these samples identified 14 samples that matched the mutation identified in the tumor, 1 sample contained a different KRAS mutation, and 4 samples had no detectable mutation. Among the tumor samples that were wild type for KRAS, 2 KRAS mutations were identified in the corresponding plasma samples. Duplex dPCR (i.e., wild-type and single-mutation assay) was also used to analyze plasma samples from patients with KRAS-mutated tumors and 5 samples expected to contain the BRAF (v-raf murine sarcoma viral oncogene homolog B) V600E mutation. The results for the duplex analysis matched those for the multiplex analysis for KRAS-mutated samples and, owing to its higher sensitivity, enabled detection of 2 additional samples with low levels of KRAS-mutated DNA. All 5 samples with BRAF mutations were detected. This work demonstrates the clinical utility of multiplex dPCR to screen for multiple mutations simultaneously with a sensitivity sufficient to detect mutations in circulating DNA obtained by noninvasive blood collection.
2012-01-01
Background Toxocarosis is a zoonotic disease caused by Toxocara canis (T. canis) and/or Toxocara cati (T. cati), two worldwide distributed roundworms which are parasites of canids and felids, respectively. Infections of humans occur through ingestion of embryonated eggs of T. canis or T. cati, when playing with soils contaminated with dogs or cats feces. Accordingly, the assessment of potential contamination of these areas with these roundworms eggs is paramount. Methods A duplex quantitative real-time PCR (2qPCR) targeting the ribosomal RNA gene internal transcribed spacer (ITS2) has been developed and used for rapid and specific identification of T. canis and T. cati eggs in fecal and soil samples. The assay was set up on DNA samples extracted from 53 adult worms including T. canis, T. cati, T. leonina, Ascaris suum (A. suum) and Parascaris equorum (P. equorum). The assay was used to assess the presence of T. cati eggs in several samples, including 12 clean soil samples spiked with eggs of either T. cati or A. suum, 10 actual soil samples randomly collected from playgrounds in Brussels, and fecal samples from cats, dogs, and other animals. 2qPCR results on dogs and cats fecal samples were compared with results from microscopic examination. Results 2qPCR assay allowed specific detection of T. canis and T. cati, whether adult worms, eggs spiked in soil or fecal samples. The 2qPCR limit of detection (LOD) in spiked soil samples was 2 eggs per g of soil for a turnaround time of 3 hours. A perfect concordance was observed between 2qPCR assay and microscopic examination on dogs and cats feces. Conclusion The newly developed 2qPCR assay can be useful for high throughput prospective or retrospective detection of T.canis and/or T. cati eggs in fecal samples as well as in soil samples from playgrounds, parks and sandpits. PMID:23216873
Dong, X. Y.; Li, W. H.; Zhu, J. L.; Liu, W. J.; Zhao, M. Q.; Luo, Y. W.; Chen, J. D.
2015-01-01
Canine distemper virus (CDV) is the cause of canine distemper (CD) which is a severe and highly contagious disease in dogs. In the present study, a duplex reverse transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of CDV. Four primers were designed to detect and discriminate the two viruses by generating 638- and 781-bp cDNA products, respectively. Furthermore, the duplex RT-PCR method was used to detect 67 field samples suspected of CD from Guangdong province in China. Results showed that, 33 samples were to be wild-type-like. The duplex RT-PCR method exhibited high specificity and sensitivity which could be used to effectively detect and differentiate wild-type and vaccine CDV, indicating its use for clinical detection and epidemiological surveillance. PMID:27175171
NASA Astrophysics Data System (ADS)
Novianty, E.; Kartikasari, L. R.; Lee, J. H.; Cahyadi, M.
2017-04-01
Meat based food products have a big opportunity to mix and adulterated with other meats. Muslim communities are prohibited to consume pork-containing product or other pig derivatives in food. Therefore, the high sensitivity, fast, cheap and accurate approach is needed to detect pig contamination in raw meat and meat-processed product such as meatball. The aim of this study was to identify pork contamination in meatball using genetic marker of mitochondrial DNA cytochrome b gene by duplex-PCR. Samples were prepared and designed by following the proportions 0, 1, 5, 10, 25% of pork in meatballs, respectively. The DNA genome was extracted from meatballs and polymerase chain reaction (PCR) was performed using species specific primer to isolate mt-DNA cytochrome b gene. The results showed that the DNA genome was successfully isolated from pork, beef, and contaminated meatballs. Furthermore, 2% agarose gels was able to visualize of duplex-PCR to identify pork contamination in meatballs up to very small proportion (1%). It can be concluded that duplex-PCR of mt-DNA cytochrome b gene was very sensitive to identify pork contamination in meatball with the presence of specific 398 bp DNA band.
Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping; Wei, Hongping
2017-10-01
Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers ( nuc and mecA ) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli , MSSA, and other mecA -positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. Copyright © 2017 American Society for Microbiology.
Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping
2017-01-01
ABSTRACT Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers (nuc and mecA) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli, MSSA, and other mecA-positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. PMID:28724560
Detection of 12 respiratory viruses by duplex real time PCR assays in respiratory samples.
Arvia, Rosaria; Corcioli, Fabiana; Ciccone, Nunziata; Della Malva, Nunzia; Azzi, Alberta
2015-12-01
Different viruses can be responsible for similar clinical manifestations of respiratory infections. Thus, the etiological diagnosis of respiratory viral diseases requires the detection of a large number of viruses. In this study, 6 duplex real-time PCR assays, using EvaGreen intercalating dye, were developed to detect 12 major viruses responsible for respiratory diseases: influenza A and B viruses, enteroviruses (including enterovirus spp, and rhinovirus spp), respiratory syncytial virus, human metapneumovirus, coronaviruses group I (of which CoV 229E and CoV NL63 are part) and II (including CoV OC43 and CoV HKU1), parainfluenza viruses type 1, 2, 3 and 4, human adenoviruses and human bocaviruses. The 2 target viruses of each duplex reaction were distinguishable by the melting temperatures of their amplicons. The 6 duplex real time PCR assays were applied for diagnostic purpose on 202 respiratory samples from 157 patients. One hundred fifty-seven samples were throat swabs and 45 were bronchoalveolar lavages. The results of the duplex PCR assays were confirmed by comparison with a commercial, validated, assay; in addition, the positive results were confirmed by sequencing. The analytical sensitivity of the duplex PCR assays varied from 10(3) copies/ml to 10(4) copies/ml. For parainfluenza virus 2 only it was 10(5) copies/ml. Seventy clinical samples (35%) from 55 patients (30 children and 25 adults) were positive for 1 or more viruses. In adult patients, influenza A virus was the most frequently detected respiratory virus followed by rhinoviruses. In contrast, respiratory syncytial virus was the most common virus in children, followed by enteroviruses, influenza A virus and coronavirus NL63. The small number of samples/patients does not allow us to draw any epidemiological conclusion. Altogether, the results of this study indicate that the 6 duplex PCR assays described in this study are sensitive, specific and cost-effective. Thus, this assay could be particularly useful to identify the main respiratory viruses directly from clinical samples, after nucleic acid extraction, and, also, to screen a large number of patients for epidemiological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brotherton, Paul; Sanchez, Juan J.; Cooper, Alan; Endicott, Phillip
2010-01-01
The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples. PMID:19864251
Ramírez, Juan Carlos; Cura, Carolina Inés; Moreira, Otacilio da Cruz; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Guedes, Paulo Marcos da Matta; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Galvão, Lúcia Maria da Cunha; da Câmara, Antonia Cláudia Jácome; Espinoza, Bertha; de Noya, Belkisyole Alarcón; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G.
2015-01-01
An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872
Chen, Jingfang; Zhang, Rusheng; Ou, Xinhua; Yao, Dong; Huang, Zheng; Li, Linzhi; Sun, Biancheng
2017-06-01
A TaqMan based duplex one-step real time RT-PCR (rRT-PCR) assay was developed for the rapid detection of Coxsackievirus A10 (CV-A10) and other enterovirus (EVs) in clinical samples. The assay was fully evaluated and found to be specific and sensitive. When applied in 115 clinical samples, a 100% diagnostic sensitivity in CV-A10 detection and 97.4% diagnostic sensitivity in other EVs were found. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tran, L.; Parra, Macarena P.; Jung, J.; Boone, T.; Schonfeld, Julie; Almeida, Eduardo
2017-01-01
The NASA Ames WetLab-2 system was developed to offer new on-orbit gene expression analysis capabilities to ISS researchers and can be used to conduct on-orbit RNA isolation and quantitative real time PCR (RT-qPCR) analysis of gene expression from a wide range of biological samples ranging from microbes to mammalian tissues. On orbit validation included three quantitative PCR (qPCR) runs using an E. coli genomic DNA template pre-loaded at three different concentrations. The flight Ct values for the DNA standards showed no statistically significant differences relative to ground controls although there was increased noise in Ct curves, likely due to microgravity-related bubble retention in the optical windows. RNA was successfully purified from both E. coli and mouse liver samples and successfully generated singleplex, duplex and triplex data although with higher standard deviations than ground controls, also likely due to bubbles. Using volunteer science activities, a potential bubble reduction strategy was tested and resulted in smooth amplification curves and tighter Cts between replicates. The WetLab-2 validation experiment demonstrates a novel molecular biology workbench on ISS which allows scientists to purify and stabilize RNA, and to conduct RT-qPCR analyses on-orbit with rapid results. This novel ability is an important step towards utilizing ISS as a National Laboratory facility with the capability to conduct and adjust science experiments in real time without sample return, and opens new possibilities for rapid medical diagnostics and biological environmental monitoring on ISS.
Qin, Shaomin; Underwood, Darren; Driver, Luke; Kistler, Carol; Diallo, Ibrahim; Kirkland, Peter D
2018-06-01
We evaluated a fluorogenic probe-based assay for the detection of encephalomyocarditis virus (EMCV) by comparing a set of published primers and probe to a new set of primers and probe. The published reagents failed to amplify a range of Australian isolates and an Italian reference strain of EMCV. In contrast, an assay based on 2 new sets of primers and probes that were run in a duplex reverse-transcription real-time PCR (RT-rtPCR) worked well, with high amplification efficiency. The analytical sensitivity was ~100-fold higher than virus isolation in cell culture. The intra-assay variation was 0.21-4.90%. No cross-reactivity was observed with a range of other porcine viruses. One hundred and twenty-two clinical specimens were tested simultaneously by RT-rtPCR and virus isolation in cell culture; 72 specimens gave positive results by RT-rtPCR, and 63 of these were also positive by virus isolation. Of 245 archived cell culture isolates of EMCV that were tested in the RT-rtPCR, 242 samples were positive. The new duplex RT-rtPCR assay is a reliable tool for the detection of EMCV in clinical specimens and for use in epidemiologic investigations.
Four human Plasmodium species quantification using droplet digital PCR.
Srisutham, Suttipat; Saralamba, Naowarat; Malleret, Benoit; Rénia, Laurent; Dondorp, Arjen M; Imwong, Mallika
2017-01-01
Droplet digital polymerase chain reaction (ddPCR) is a partial PCR based on water-oil emulsion droplet technology. It is a highly sensitive method for detecting and delineating minor alleles from complex backgrounds and provides absolute quantification of DNA targets. The ddPCR technology has been applied for detection of many pathogens. Here the sensitive assay utilizing ddPCR for detection and quantification of Plasmodium species was investigated. The assay was developed for two levels of detection, genus specific for all Plasmodium species and for specific Plasmodium species detection. The ddPCR assay was developed based on primers and probes specific to the Plasmodium genus 18S rRNA gene. Using ddPCR for ultra-sensitive P. falciparum assessment, the lower level of detection from concentrated DNA obtained from a high volume (1 mL) blood sample was 11 parasites/mL. For species identification, in particular for samples with mixed infections, a duplex reaction was developed for detection and quantification P. falciparum/ P. vivax and P. malariae/ P. ovale. Amplification of each Plasmodium species in the duplex reaction showed equal sensitivity to singleplex single species detection. The duplex ddPCR assay had higher sensitivity to identify minor species in 32 subpatent parasitaemia samples from Cambodia, and performed better than real-time PCR. The ddPCR assay shows high sensitivity to assess very low parasitaemia of all human Plasmodium species. This provides a useful research tool for studying the role of the asymptomatic parasite reservoir for transmission in regions aiming for malaria elimination.
Detection of adulterated murine components in meat products by TaqMan© real-time PCR.
Fang, Xin; Zhang, Chi
2016-02-01
Using murine meat to substitute mutton has been identified as a new type of meat fraud in China, yet no detection method for murine species has been reported. Here, three kinds of rodent were used as target species to establish a murine-specific real-time PCR method of detection. The mitochondrial cytochrome b gene (cytb) of each target was sequenced and a TaqMan probe was designed based on the cytb. Simultaneously, an internal positive control (IPC) plasmid along with its respective probe were designed to monitor the PCR reaction. As a result, the duplex real-time PCR system was verified to be specific. The limit of detection (LOD) was lower than 1 pg of DNA per reaction and 0.1% murine contamination in meat mixtures. Standard curves were generated for a quantitative analysis. Thus, this study provided a new tool to control the quality of meat products for official and third-party laboratories. Copyright © 2015. Published by Elsevier Ltd.
Sex determination in goat by amplification of the HMG box using duplex PCR.
Shi, Lei; Yue, Wenbin; Ren, Youshe; Lei, Fulin; Zhao, Junxing
2008-05-01
The objective of this study was to obtain a fast, accurate and reliable method of determining the sex of goat embryos prior to implantation through amplification of the high-motility-group (HMG) box of the sex-determining region of the Y chromosome (SRY) gene of the goats. Goat specific primers were designed for duplex polymerase chain reaction (PCR). As an internal control gene, the goat beta-action gene sequence was simultaneously amplified together with the HMG box of goat SRY gene. Males showed both 1 SRY band and 1 beta-action band, but only 1 beta-action band was present in the agarose gel electrophoresis of females. The result indicated that the goat HMG-box sequence motif of SRY was male specific. Afterward, the optimized PCR procedure was applied in 30 embryo biopsies and the biopsied embryos were transferred into 30 recipient female goats. The sex of the 13 kids proved anatomically corresponded to the sex determined by PCR (100% accuracy). Thus, this study showed that this duplex PCR method can be applied to sex the goat pre-implantation embryos and to manipulate the sex ratio of offspring in goat breeding programs.
Higgins, Owen; Clancy, Eoin; Forrest, Matthew S; Piepenburg, Olaf; Cormican, Martin; Boo, Teck Wee; O'Sullivan, Nicola; McGuinness, Claire; Cafferty, Deirdre; Cunney, Robert; Smith, Terry J
2018-04-01
Recombinase polymerase amplification (RPA) is an isothermal nucleic acid amplification technology that provides rapid and robust infectious disease pathogen detection, ideal for point-of-care (POC) diagnostics in disease-prevalent low-resource countries. We have developed and evaluated three duplex RPA assays incorporating competitive internal controls for the detection of leading bacterial meningitis pathogens. Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae singleplex RPA assays were initially developed and evaluated, demonstrating 100% specificity with limits of detection of 4.1, 8.5 and 3.9 genome copies per reaction, respectively. Each assay was further developed into internally controlled duplex RPA assays via the incorporation of internal amplification control templates. Clinical performance of each internally controlled duplex RPA assay was evaluated by testing 64 archived PCR-positive clinical samples. Compared to real-time PCR, all duplex RPA assays demonstrated 100% diagnostic specificity, with diagnostic sensitivities of 100%, 86.3% and 100% for the S. pneumoniae, N. meningitidis and H. influenzae assays, respectively. This study details the first report of internally controlled duplex RPA assays for the detection of bacterial meningitis pathogens: S. pneumoniae, N. meningitidis and H. influenzae. We have successfully demonstrated the clinical diagnostic utility of each duplex RPA assay, introducing effective diagnostic technology for POC bacterial meningitis identification in disease-prevalent developing countries. Copyright © 2018 Elsevier Inc. All rights reserved.
Vernel-Pauillac, Frédérique; Merien, Fabrice
2006-12-01
For many years, the pathogenic bacterium Neisseria gonorrhoeae, the etiologic agent of gonorrhea, was generally susceptible to penicillin, until the emergence of resistant strains. Well-characterized genetic variations in the penicillin resistance-determining region correlate with decreased susceptibility to penicillin. At least 5 genes (penA, penB, mtrR, ponA, and penC) are involved in the chromosomally mediated resistance to this antibiotic. To date, no development of multiplex PCR assays targeting a range of gonococcal genes and variations as a means of predicting antibiotic resistance has been reported. The aim of this study was to develop a duplex assay using DNA from isolated strains. We describe the development and evaluation on the LightCycler platform of a real-time duplex PCR assay (hybridization probe format) for rapid and specific detection of ponA and penA variations, predicting penicillin susceptibilities. The real-time duplex PCR assay successfully detected variations in ponA and penA genes by use of distinct melting temperatures from a total of 120 Neisseria gonorrhoeae isolates. Moreover, the variation profiles obtained with the real-time PCR and the melting analysis showed good correlation with the pattern of penicillin susceptibility generated with classical antibiograms. Nucleotide sequencing data were in complete agreement with multiplex assay results. The presented assay is suitable for the detection of chromosomally mediated resistant strains of Neisseria gonorrhoeae in genotyping studies and could be valuable in the effective antimicrobial strategy to gonococci.
Ruan, Jia; Li, Ming; Liu, Ya-Pan; Li, Yuan-Qian; Li, Yong-Xin
2013-03-15
Cronobacter spp. (Enterobacter sakazakii) is an emerging opportunistic pathogen with a 40-80% mortality rate in infants and immunocompromised crowd resulting from the consumption of contaminated food. A novel method for detecting Cronobacter spp. in food samples by duplex polymerase chain reaction (PCR) in combination with capillary electrophoresis-laser induced fluorescence (CE-LIF) detector has been developed. The specific gene sequences of 16S-23S rDNA internal transcribed spacer (ITS) and the outer membrane protein A (OmpA) of Cronobacter spp. were amplified by duplex PCR. The PCR products were separated and determined sensitively by CE-LIF within 12min. The relative standard deviations of migration time for the detected DNA fragments were 2.01-2.91%. The detection limit was as low as 1.6×10(1)cfu/mL of Cronobacter spp. Besides, the specificity of the method was verified by 24 non-Cronobacter bacterial strains. A total of 120 commercial infant food formula were tested for the presence of Cronobacter spp. by using the proposed method. This current study demonstrates that the combination of CE-LIF method with duplex PCR is rapid, sensitive and environmental friendly, and has the potential to be adapted for the routine detection of Cronobacter spp. in food samples. To the best of our knowledge, this is the first use of CE-LIF for the detection of Cronobacter spp. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Schelm, Stefanie; Haase, Ilka; Fischer, Christin; Fischer, Markus
2017-01-18
Marzipan is a confectionary which is mostly offered in form of filled chocolate, pralines, or pure. According to the German guidelines for oil seeds only almonds, sugar and water are admitted ingredients of marzipan. A product very similar in taste is persipan which is used in the confectionary industry because of its stronger flavor. For persipan production almonds are replaced by debittered apricot or peach kernels. To guarantee high quality products for consumers, German raw paste producers have agreed a limit of apricot kernels in marzipan raw paste of 0.5%. Different DNA-based methods for quantitation of persipan contaminations in marzipan are already published. To increase the detection specificity compared to published intercalation dye-based assays, the present work demonstrate the utilization of a multiplex real-time PCR based on the Plexor technology. Thus, the present work enables the detection of at least 0.1% apricot DNA in almond DNA or less. By analyzing DNA mixtures, the theoretical limit of quantification of the duplex PCR for the quantitation of persipan raw paste DNA in marzipan raw paste DNA was determined as 0.05%.
2010-01-01
Background The hepatitis C virus (HCV) genome is extremely heterogeneous. Several HCV infections can not be detected using currently available commercial assays, probably because of mismatches between the template and primers/probes. By aligning the HCV sequences, we developed a duplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay using 2 sets of primers/probes and a specific armored RNA as internal control. The 2 detection probes were labelled with the same fluorophore, namely, 6-carboxyfluorescein (FAM), at the 5' end; these probes could mutually combine, improving the power of the test. Results The limit of detection of the duplex primer/probe assay was 38.99 IU/ml. The sensitivity of the assay improved significantly, while the specificity was not affected. All HCV genotypes in the HCV RNA Genotype Panel for Nucleic Acid Amplification Techniques could be detected. In the testing of 109 serum samples, the performance of the duplex real-time RT-PCR assay was identical to that of the COBAS AmpliPrep (CAP)/COBAS TaqMan (CTM) assay and superior to 2 commercial HCV assay kits. Conclusions The duplex real-time RT-PCR assay is an efficient and effective viral assay. It is comparable with the CAP/CTM assay with regard to the power of the test and is appropriate for blood-donor screening and laboratory diagnosis of HCV infection. PMID:20529244
Sakalar, Ergün; Ergün, Seyma Özçirak; Akar, Emine
2015-01-01
A duplex real-time polymerase chain reaction (PCR) based assay for the detection of porcine and horse meat in sausages was designed by using EvaGreen fluorescent dye. Primers were selected from mitochondrial 12S rRNA and 16S rRNA genes which are powerful regions for identification of horse and porcine meat. DNA from reference samples and industrial products was successfully extracted using the GIDAGEN® Multi-Fast DNA Isolation Kit. Genomes were identified based on their specific melting peaks (Mp) which are 82.5℃ and 78℃ for horse and porcine, respectively. The assay used in this study allowed the detection of as little as 0.0001% level of horse meat and 0.001% level of porcine meat in the experimental admixtures. These findings indicate that EvaGreen based duplex real-time PCR is a potentially sensitive, reliable, rapid and accurate assay for the detection of meat species adulterated with porcine and horse meats.
Opota, Onya; Jaton, Katia; Branley, James; Vanrompay, Daisy; Erard, Veronique; Borel, Nicole; Longbottom, David; Greub, Gilbert
2015-10-01
Chlamydia psittaci and Chlamydia abortus are closely related intracellular bacteria exhibiting different tissue tropism that may cause severe but distinct infection in humans. C. psittaci causes psittacosis, a respiratory zoonotic infection transmitted by birds. C. abortus is an abortigenic agent in small ruminants, which can also colonize the human placenta and lead to foetal death and miscarriage. Infections caused by C. psittaci and C. abortus are underestimated mainly due to diagnosis difficulties resulting from their strict intracellular growth. We developed a duplex real-time PCR to detect and distinguish these two bacteria in clinical samples. The first PCR (PCR1) targeted a sequence of the 16S-23S rRNA operon allowing the detection of both C. psittaci and C. abortus. The second PCR (PCR2) targeted the coding DNA sequence CPSIT_0607 unique to C. psittaci. The two PCRs showed 100 % detection for ≥ 10 DNA copies per reaction (1000 copies ml(- 1)). Using a set of 120 samples, including bacterial reference strains, clinical specimens and infected cell culture material, we monitored 100 % sensitivity and 100 % specificity for the detection of C. psittaci and C. abortus for PCR1. When PCR1 was positive, PCR2 could discriminate C. psittaci from C. abortus with a positive predictive value of 100 % and a negative predictive value of 88 %. In conclusion, this new duplex PCR represents a low-cost and time-saving method with high-throughput potential, expected to improve the routine diagnosis of psittacosis and pregnancy complication in large-scale screening programs and also during outbreaks.
NASA Astrophysics Data System (ADS)
Rahmawati, E.; Ibrahim, F.; Imran, D.; Sudarmono, P.
2017-08-01
Focal brain lesion is a neurological complication in HIV, which is marked as a space occupying lesion (SOL) and needs rapid and effective treatment. This lesion is mainly caused by encephalitis toxoplasma and primary central nervous system lymphoma related to the Epstein-Barr virus (EBV) infection, which is difficult to distinguish using CT scan or magnetic resonance imaging (MRI). The gold standard of diagnosing focal brain lesion has been brain biopsy, but this examination is an invasive procedure that causes complications. The objective of this study is to obtain the rapid laboratory diagnosis of Toxoplasma gondii (T. gondii) and EBV infection. In this experimental study, blood and cerebrospinal fluid were obtained from HIV patients who were admitted to the Neurology Department of Cipto Mangunkusumo Hospital. The samples were examined using duplex real-time polymerase chain reaction (PCR) to detect T. gondii and EBV. The first step was the optimization of duplex real-time PCR, including the annealing temperature, primer and probe concentration, elution volume, and template volume. Minimal DNA detection was used to measure minimal T. gondii and EBV. Cross reactions were determined for technical specificity using the bacteria and viruses Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa, Mycobacterium tuberculosis H37Rv, Candida spp, cytomegalovirus, herpes zoster virus, and varicella zoster virus. Duplex real-time PCR was applied optimally to patients. In the optimization of duplex real-time PCR, the annealing temperature of T. gondii and EBV were 58 °C, the concentration of primer forward and reverse for T. gondii and EBV were 0.2 μM, the concentration of probe for T. gondii and EBV were 0.4μM and 0.2 μM, respectively. Minimal DNA detection of T. gondii and EBV were 5.68 copy/ml and 1.31 copy/ml, respectively. There was no cross reaction between another bacteria and virus that were used as the primer and probe for T. gondii and EBV. The blood duplex real-time PCR was positive for T. gondii (16%), EBV (40%), and both (16%). The cerebrospinal fluid samples were positive for T. gondii (20%), EBV (28%), and both (4%).
Cai, Yicun; He, Yuping; Lv, Rong; Chen, Hongchao; Wang, Qiang; Pan, Liangwen
2017-01-01
Meat products often consist of meat from multiple animal species, and inaccurate food product adulteration and mislabeling can negatively affect consumers. Therefore, a cost-effective and reliable method for identification and quantification of animal species in meat products is required. In this study, we developed a duplex droplet digital PCR (dddPCR) detection and quantification system to simultaneously identify and quantify the source of meat in samples containing a mixture of beef (Bos taurus) and pork (Sus scrofa) in a single digital PCR reaction tube. Mixed meat samples of known composition were used to test the accuracy and applicability of this method. The limit of detection (LOD) and the limit of quantification (LOQ) of this detection and quantification system were also identified. We conclude that our dddPCR detection and quantification system is suitable for quality control and routine analyses of meat products.
Abdeldaim, Guma; Svensson, Erik; Blomberg, Jonas; Herrmann, Björn
2016-11-01
A duplex real-time PCR based on the rnpB gene was developed for Mycobacterium spp. The assay was specific for the Mycobacterium tuberculosis complex (MTB) and also detected all 19 tested species of non-tuberculous mycobacteria (NTM). The assay was evaluated on 404 clinical samples: 290 respiratory samples and 114 from tissue and other non-respiratory body sites. M. tuberculosis was detected by culture in 40 samples and in 30 samples by the assay. The MTB assay showed a sensitivity similar to Roche Cobas Amplicor MTB-PCR (Roche Molecular Systems, Pleasanton, CA, USA). There were only nine samples with non-tuberculous mycobacteria detected by culture. Six of them were detected by the PCR assay. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Nan, Wenlong; Tan, Pengfei; Wang, Yong; Xu, Zouliang; Mao, Kairong; Peng, Daxin; Chen, Yiping
2014-09-01
Immunisation with attenuated Brucella spp. vaccines prevents brucellosis, but may also interfere with diagnosis. In this study, a duplex PCR was developed to distinguish Brucella suis vaccine strain S2 from field strains of B. suis biovar 1 and other Brucella spp. The PCR detected 60 fg genomic DNA of B. suis S2 or biovar 1 field strains and was able to distinguish B. suis S2 and wild-type strains of B. suis biovar 1 among 76 field isolates representing all the common species and biovars, as well as four vaccine strains, of Brucella. Copyright © 2014 Elsevier Ltd. All rights reserved.
Detection of pseudorabies virus by duplex droplet digital PCR assay.
Ren, Meishen; Lin, Hua; Chen, Shijie; Yang, Miao; An, Wei; Wang, Yin; Xue, Changhua; Sun, Yinjie; Yan, Yubao; Hu, Juan
2018-01-01
Aujeszky's disease, caused by pseudorabies virus (PRV), has damaged the economy of the Chinese swine industry. A large number of PRV gene-deleted vaccines have been constructed based on deletion of the glycoprotein E ( gE) gene combined with other virulence-related gene deletions, such as thymidine kinase ( TK), whereas PRV wild-type strains contain an intact gE gene. We developed a sensitive duplex droplet digital PCR (ddPCR) assay to rapidly detect PRV wild-type isolates and gE gene-deleted viral vaccines. We compared this assay with a TaqMan real-time PCR (qPCR) using the same primers and probes. Both assays exhibited good linearity and repeatability; however, ddPCR maintained linearity at extremely low concentrations, whereas qPCR did not. Based on positive results for both gE and gB, the detection limit of ddPCR was found to be 4.75 copies/µL in contrast of 76 copies/µL for qPCR, showing that ddPCR provided a 16-fold improvement in sensitivity. In addition, no nonspecific amplification was shown in specificity testing, and the PRV wild-type was distinguished from a gE-deleted strain. The ddPCR was more sensitive when analyzing clinical serum samples. Thus, ddPCR may become an appropriate detection platform for PRV.
Detection of chicken contamination in beef meatball using duplex-PCR Cyt b gene
NASA Astrophysics Data System (ADS)
Sari, E. P.; Kartikasari, L. R.; Cahyadi, M.
2017-04-01
Beef is one of expensive animal protein sources compared to other meats, on the other hand, chicken is cheap animal protein source. Mixing of chicken into beef meatball is possibly performed to decrease production cost. The aim of this study was to detect chicken contamination in beef meatball using Cytochrome b (Cyt b) gene by duplex-PCR. Sample was designed and prepared as follows, 100% of chicken meatball, 100% of beef meatball and serial level of chicken contaminations in beef meatball (1, 5, 10 and 25%, respectively). Isolation of DNA genome from meatball was according to the guideline of gSYNCTM DNA Extraction Kit for animal tissue. The PCR reaction was carried out using KAPA2G Fast Multiplex Mix. This study found that the DNA genome was succesfully extracted. Moreover, chicken contamination in beef meatball was indicated by the presence of 227 bp DNA band on 2% of agarose gels. Current study revealed that duplex-PCR using Cyt b gene as a genetic marker was able to detect chicken contamination in beef meatball until 1% of chicken meat in the sample. It can be effectively used to identify contamination and also authenticate species origin in animal products to protect consumer from undesirable contents in the food.
Kumar, Sandeep; Baranwal, V K; Joshi, Subodh; Arya, Meenakshi; Majumder, S
2010-06-01
Reduced seed production in onion is associated with Onion yellow dwarf virus (OYDV), a filamentous Potyvirus. Onion is also infected with other filamentous virus particles suspected to be Allexivirus. RT-PCR was used to detect mixed infection of both the viruses in leaves and bulbs. A duplex RT-PCR was developed, which simultaneously detected the presence of these two viruses in winter (Rabi) onion bulb. In summer (Kharif) onion bulbs only Allexivirus was detected. The absence of OYDV in summer crop is discussed. The sequencing of RT-PCR amplified products confirmed the identity of OYDV and Allexivirus, the latter showing closer identity to Garlic virus C (GVC)/Garlic mite-borne mosaic virus. This makes the first detection of an Allexivirus in onion crop in India. The duplex RT-PCR to detect these viruses (OYDV and Allexivirus) would be an improvement for indexing of viruses in onion bulbs for seed production.
Demeke, Tigst; Eng, Monika
2018-05-01
Droplet digital PCR (ddPCR) has been used for absolute quantification of genetically engineered (GE) events. Absolute quantification of GE events by duplex ddPCR requires the use of appropriate primers and probes for target and reference gene sequences in order to accurately determine the amount of GE materials. Single copy reference genes are generally preferred for absolute quantification of GE events by ddPCR. Study has not been conducted on a comparison of reference genes for absolute quantification of GE canola events by ddPCR. The suitability of four endogenous reference sequences ( HMG-I/Y , FatA(A), CruA and Ccf) for absolute quantification of GE canola events by ddPCR was investigated. The effect of DNA extraction methods and DNA quality on the assessment of reference gene copy numbers was also investigated. ddPCR results were affected by the use of single vs. two copy reference genes. The single copy, FatA(A), reference gene was found to be stable and suitable for absolute quantification of GE canola events by ddPCR. For the copy numbers measured, the HMG-I/Y reference gene was less consistent than FatA(A) reference gene. The expected ddPCR values were underestimated when CruA and Ccf (two copy endogenous Cruciferin sequences) were used because of high number of copies. It is important to make an adjustment if two copy reference genes are used for ddPCR in order to obtain accurate results. On the other hand, real-time quantitative PCR results were not affected by the use of single vs. two copy reference genes.
Kutyavin, Igor V.
2013-01-01
Described in the article is a new approach for the sequence-specific detection of nucleic acids in real-time polymerase chain reaction (PCR) using fluorescently labeled oligonucleotide probes. The method is based on the production of PCR amplicons, which fold into dumbbell-like secondary structures carrying a specially designed ‘probe-luring’ sequence at their 5′ ends. Hybridization of this sequence to a complementary ‘anchoring’ tail introduced at the 3′ end of a fluorescent probe enables the probe to bind to its target during PCR, and the subsequent probe cleavage results in the florescence signal. As it has been shown in the study, this amplicon-endorsed and guided formation of the probe-target duplex allows the use of extremely short oligonucleotide probes, up to tetranucleotides in length. In particular, the short length of the fluorescent probes makes possible the development of a ‘universal’ probe inventory that is relatively small in size but represents all possible sequence variations. The unparalleled cost-effectiveness of the inventory approach is discussed. Despite the short length of the probes, this new method, named Angler real-time PCR, remains highly sequence specific, and the results of the study indicate that it can be effectively used for quantitative PCR and the detection of polymorphic variations. PMID:24013564
Lee, Hong Kai; Lee, Chun Kiat; Loh, Tze Ping; Tang, Julian Wei-Tze; Chiu, Lily; Tambyah, Paul A; Sethi, Sunil K; Koay, Evelyn Siew-Chuan
2010-09-01
With the relative global lack of immunity to the pandemic influenza A/H1N1/2009 virus that emerged in April 2009 as well as the sustained susceptibility to infection, rapid and accurate diagnostic assays are essential to detect this novel influenza A variant. Among the molecular diagnostic methods that have been developed to date, most are in tandem monoplex assays targeting either different regions of a single viral gene segment or different viral gene segments. We describe a dual-gene (duplex) quantitative real-time RT-PCR method selectively targeting pandemic influenza A/H1N1/2009. The assay design includes a primer-probe set specific to only the hemagglutinin (HA) gene of this novel influenza A variant and a second set capable of detecting the nucleoprotein (NP) gene of all swine-origin influenza A virus. In silico analysis of the specific HA oligonucleotide sequence used in the assay showed that it targeted only the swine-origin pandemic strain; there was also no cross-reactivity against a wide spectrum of noninfluenza respiratory viruses. The assay has a diagnostic sensitivity and specificity of 97.7% and 100%, respectively, a lower detection limit of 50 viral gene copies/PCR, and can be adapted to either a qualitative or quantitative mode. It was first applied to 3512 patients with influenza-like illnesses at a tertiary hospital in Singapore, during the containment phase of the pandemic (May to July 2009).
Janwan, Penchom; Intapan, Pewpan M; Thanchomnang, Tongjit; Lulitanond, Viraphong; Anamnart, Witthaya; Maleewong, Wanchai
2011-12-01
Human opisthorchiasis caused by the liver fluke Opisthorchis viverrini is an endemic disease in Southeast Asian countries including the Lao People's Democratic Republic, Cambodia, Vietnam, and Thailand. Infection with the soil-transmitted roundworm Strongyloides stercoralis is an important problem worldwide. In some areas, both parasitic infections are reported as co-infections. A duplex real-time fluorescence resonance energy transfer (FRET) PCR merged with melting curve analysis was developed for the rapid detection of O. viverrini and S. stercoralis in human fecal samples. Duplex real-time FRET PCR is based on fluorescence melting curve analysis of a hybrid of amplicons generated from two genera of DNA elements: the 162 bp pOV-A6 DNA sequence specific to O. viverrini and the 244 bp 18S rRNA sequence specific to S. stercoralis, and two pairs of specific fluorophore-labeled probes. Both O. viverrini and S. stercoralis can be differentially detected in infected human fecal samples by this process through their different fluorescence channels and melting temperatures. Detection limit of the method was as little as two O. viverrini eggs and four S. stercoralis larvae in 100 mg of fecal sample. The assay could distinguish the DNA of both parasites from the DNA of negative fecal samples and fecal samples with other parasite materials, as well as from the DNA of human leukocytes and other control parasites. The technique showed 100% sensitivity and specificity. The introduced duplex real-time FRET PCR can reduce labor time and reagent costs and is not prone to carry over contamination. The method is important for simultaneous detection especially in areas where both parasites overlap incidence and is useful as the screening tool in the returning travelers and immigrants to industrialized countries where number of samples in the diagnostic units will become increasing.
Umhang, Gérald; Poulle, Marie-Lazarine; Millon, Laurence
2016-01-01
Studying the environmental occurrence of parasites of concern for humans and animals based on coprosamples is an expanding field of work in epidemiology and the ecology of health. Detecting and quantifying Toxocara spp. and Echinococcus multilocularis, two predominant zoonotic helminths circulating in European carnivores, in feces may help to better target measures for prevention. A rapid, sensitive, and one-step quantitative PCR (qPCR) allowing detection of E. multilocularis and Toxocara spp. was developed in the present study, combined with a host fecal test based on the identification of three carnivores (red fox, dog, and cat) involved in the life cycles of these parasites. A total of 68 coprosamples were collected from identified specimens from Vulpes vulpes, Canis lupus familiaris, Canis lupus, Felis silvestris catus, Meles meles, Martes foina, and Martes martes. With DNA coprosamples, real-time PCR was performed in duplex with a qPCR inhibitor control specifically designed for this study. All the coprosample host identifications were confirmed by qPCR combined with sequencing, and parasites were detected and confirmed (E. multilocularis in red foxes and Toxocara cati in cats; 16% of samples presented inhibition). By combining parasite detection and quantification, the host fecal test, and a new qPCR inhibitor control, we created a technique with a high sensitivity that may considerably improve environmental studies of pathogens. PMID:26969697
Knapp, Jenny; Umhang, Gérald; Poulle, Marie-Lazarine; Millon, Laurence
2016-05-15
Studying the environmental occurrence of parasites of concern for humans and animals based on coprosamples is an expanding field of work in epidemiology and the ecology of health. Detecting and quantifying Toxocara spp. and Echinococcus multilocularis, two predominant zoonotic helminths circulating in European carnivores, in feces may help to better target measures for prevention. A rapid, sensitive, and one-step quantitative PCR (qPCR) allowing detection of E. multilocularis and Toxocara spp. was developed in the present study, combined with a host fecal test based on the identification of three carnivores (red fox, dog, and cat) involved in the life cycles of these parasites. A total of 68 coprosamples were collected from identified specimens from Vulpes vulpes, Canis lupus familiaris, Canis lupus, Felis silvestris catus, Meles meles, Martes foina, and Martes martes With DNA coprosamples, real-time PCR was performed in duplex with a qPCR inhibitor control specifically designed for this study. All the coprosample host identifications were confirmed by qPCR combined with sequencing, and parasites were detected and confirmed (E. multilocularis in red foxes and Toxocara cati in cats; 16% of samples presented inhibition). By combining parasite detection and quantification, the host fecal test, and a new qPCR inhibitor control, we created a technique with a high sensitivity that may considerably improve environmental studies of pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Detection of methicillin-resistant Staphylococcus aureus by a duplex droplet digital PCR assay.
Kelley, Kashonda; Cosman, Angela; Belgrader, Phillip; Chapman, Brenda; Sullivan, Donna C
2013-07-01
Health care-associated infections with methicillin-resistant Staphylococcus aureus (MRSA) contribute to significant hospitalization costs. We report here a droplet digital PCR (ddPCR) assay, which is a next-generation emulsion-based endpoint PCR assay for high-precision MRSA analysis. Reference cultures of MRSA, methicillin-susceptible S. aureus (MSSA), and confounders were included as controls. Copan swabs were used to sample cultures and collect specimens for analysis from patients at a large teaching hospital. Swab extraction and cell lysis were accomplished using magnetic-driven agitation of silica beads. Quantitative PCR (qPCR) (Roche Light Cycler 480) and ddPCR (Bio-Rad QX100 droplet digital PCR system) assays were used to detect genes for the staphylococcal protein SA0140 (SA) and the methicillin resistance (mecA) gene employing standard TaqMan chemistries. Both qPCR and ddPCR assays correctly identified culture controls for MRSA (76), MSSA (12), and confounder organisms (36) with 100% sensitivity and specificity. Analysis of the clinical samples (211 negative and 186 positive) collected during a study of MRSA nasal carriage allowed direct comparison of the qPCR and ddPCR assays to the Cepheid MRSA GeneXpert assay. A total of 397 clinical samples were examined in this study. Cepheid MRSA GeneXpert values were used to define negative and positive samples. Both the qPCR and ddPCR assays were in good agreement with the reference assay. The sensitivities for the qPCR and ddPCR assays were 96.8% (95% confidence interval [CI], 93.1 to 98.5%) and 96.8% (95% CI, 93.1 to 98.5%), respectively. Both the qPCR and ddPCR assays had specificities of 91.9% (95% CI, 87.5 to 94.9%) for qPCR and 91.0% (95% CI, 86.4 to 94.2%) for ddPCR technology.
Chiu, Yi-Ting; Chen, Yi-Hsuan; Wang, Ting-Shaun; Yen, Hung-Kai; Lin, Tsair-Fuh
2017-05-20
Harmful cyanobacteria have been an important concern for drinking water quality for quite some time, as they may produce cyanotoxins and odorants. Microcystis and Cylindrospermopsis are two common harmful cyanobacterial genera detected in freshwater lakes and reservoirs, with microcystins (MCs) and cylindrospermopsin (CYN) as their important metabolites, respectively. In this study, two sets of duplex qPCR systems were developed, one for quantifying potentially-toxigenic Microcystis and Microcystis , and the other one for cylindrospermopsin-producing cyanobacteria and Cylindrospermopsis . The duplex qPCR systems were developed and validated in the laboratory by using 338 samples collected from 29 reservoirs in Taiwan and her offshore islands. Results show that cell numbers of Microcystis and Cylindorspermopsis enumerated with microscopy, and MCs and CYN concentrations measured with the enzyme-linked immuno-sorbent assay method, correlated well with their corresponding gene copies determined with the qPCR systems (range of coefficients of determination R² = 0.392-0.740). The developed qPCR approach may serve as a useful tool for the water industry to diagnose the presence of harmful cyanobacteria and the potential presence of cyanotoxins in source waters.
Brandfass, Christoph; Karlovsky, Petr
2006-01-23
Fusarium head blight (FHB) is a disease of cereal crops, which has a severe impact on wheat and barley production worldwide. Apart from reducing the yield and impairing grain quality, FHB leads to contamination of grain with toxic secondary metabolites (mycotoxins), which pose a health risk to humans and livestock. The Fusarium species primarily involved in FHB are F. graminearum and F. culmorum. A key prerequisite for a reduction in the incidence of FHB is an understanding of its epidemiology. We describe a duplex-PCR-based method for the simultaneous detection of F. culmorum and F. graminearum in plant material. Species-specific PCR products are identified by melting curve analysis performed in a real-time thermocycler in the presence of the fluorescent dye SYBR Green I. In contrast to multiplex real-time PCR assays, the method does not use doubly labeled hybridization probes. PCR with product differentiation by melting curve analysis offers a cost-effective means of qualitative analysis for the presence of F. culmorum and F. graminearum in plant material. This method is particularly suitable for epidemiological studies involving a large number of samples.
NASA Astrophysics Data System (ADS)
Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana
2016-10-01
The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.
Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana
2016-10-14
The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.
Chiu, Yi-Ting; Chen, Yi-Hsuan; Wang, Ting-Shaun; Yen, Hung-Kai; Lin, Tsair-Fuh
2017-01-01
Harmful cyanobacteria have been an important concern for drinking water quality for quite some time, as they may produce cyanotoxins and odorants. Microcystis and Cylindrospermopsis are two common harmful cyanobacterial genera detected in freshwater lakes and reservoirs, with microcystins (MCs) and cylindrospermopsin (CYN) as their important metabolites, respectively. In this study, two sets of duplex qPCR systems were developed, one for quantifying potentially-toxigenic Microcystis and Microcystis, and the other one for cylindrospermopsin-producing cyanobacteria and Cylindrospermopsis. The duplex qPCR systems were developed and validated in the laboratory by using 338 samples collected from 29 reservoirs in Taiwan and her offshore islands. Results show that cell numbers of Microcystis and Cylindorspermopsis enumerated with microscopy, and MCs and CYN concentrations measured with the enzyme-linked immuno-sorbent assay method, correlated well with their corresponding gene copies determined with the qPCR systems (range of coefficients of determination R2 = 0.392−0.740). The developed qPCR approach may serve as a useful tool for the water industry to diagnose the presence of harmful cyanobacteria and the potential presence of cyanotoxins in source waters. PMID:28531121
Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich
2013-10-30
Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.
Weidmann, Manfred; Armbruster, Katrin; Hufert, Frank T
2008-08-01
To optimise molecular detection of herpesviruses an internally controlled multiplex Taqman-PCR for the detection of Herpes simplex virus 1 (HSV1), Herpes simplex virus 2 (HSV2) and Varicella-zoster virus (VZV) was developed. The selection of the dye combination working on the ABI 7700 cycler for this multiplex PCR revealed crosstalk phenomena between several combinations of reference dyes and reporter dyes. A final dye combination with CY5 as reference dye and FAM/JOE/TXR as reporter dyes was selected. The influence of the concentration of the internal positive control (IPC) concentration on the quantitative results of HSV1, HSV2 and VZV positive patient samples was analysed. The results indicate that high IPC concentrations are detrimental for the sensitivity of the multiplex assay and that the presence of the IPC molecule narrows the dynamic range of the duplex PCRs between any of the virus PCRs and the IPC-PCR. The optimised multiplex assay detecting HSV1, HSV2 and VZV using 10(3) IPC molecules showed a performance and sensitivity comparable to that of the individual assays.
Randall, Luke; Lemma, Fabrizio; Rodgers, John; Vidal, Ana; Clifton-Hadley, Felicity
2010-02-01
A common problem of both conventional and real-time PCR assays is failure of DNA amplification due to the presence of inhibitory substances in samples. In view of this, our aim was to develop and evaluate internal amplification controls (IACs) for use with an existing duplex real-time PCR assay for Campylobacter coli and Campylobacter jejuni. Both competitive and non-competitive IACs were developed and evaluated. The competitive approach involved a DNA fragment of the coding region of the fish viral haemorrhagic septicaemia virus, flanked by the mapA PCR primers, whilst the non-competitive approach utilized an extra set of universal 16S rDNA primers. Both IAC-PCR assay types were evaluated using cultures of Campylobacter and chicken caecal content samples. Both IACs were sensitive to caecal inhibitors, making them suitable for detecting inhibition which could lead to false-negatives. Results showed that both IACs at optimum concentrations worked well without reducing the overall sensitivity of the PCR assay. Compared to culture, the optimized competitive IAC-PCR assay detected 45/47 positives (sensitivity 93.6 %, specificity 80.1 %); however, it had the advantage over culture in that it could detect mixed infections of C. coli and C. jejuni and was capable of giving a result for a sample within a day.
Asing; Ali, Eaqub; Hamid, Sharifah Bee Abd; Hossain, Motalib; Ahamad, Mohammad Nasir Uddin; Hossain, S M Azad; Naquiah, Nina; Zaidul, I S M
2016-11-01
The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected species widely used in exotic foods and traditional medicines. Currently available polymerase chain reaction (PCR) assays to identify MBT lack automation and involve long targets which break down in processed or denatured tissue. This SYBR Green duplex real-time PCR assay has addressed this research gap for the first time through the combination of 120- and 141-bp targets from MBT and eukaryotes for the quantitative detection of MBT DNA in food chain and herbal medicinal preparations. This authentication ensures better security through automation, internal control and short targets that were stable under the processing treatments of foods and medicines. A melting curve clearly demonstrated two peaks at 74.63 ± 0.22 and 78.40 ± 0.31°C for the MBT and eukaryotic products, respectively, under pure, admixed and commercial food matrices. Analysis of 125 reference samples reflected a target recovery of 93.25-153.00%, PCR efficiency of 99-100% and limit of detection of 0.001% under various matrices. The quantification limits were 0.00001, 0.00170 ± 0.00012, 0.00228 ± 0.00029, 0.00198 ± 0.00036 and 0.00191 ± 0.00043 ng DNA for the pure meat, binary mixtures, meatball, burger and frankfurter products, respectively. The assay was used to screen 100 commercial samples of traditional Chinese herbal jelly powder from eight different brands; 22% of them were found to be MBT-positive (5.37 ± 0.50-7.00 ± 0.34% w/w), which was reflected through the Ct values (26.37 ± 0.32-28.90 ± 0.42) and melting curves (74.63-78.65 ± 0.22°C) of the amplified MBT target (120 bp), confirming the speculation that MBT materials are widely used in Chinese herbal desserts, exotic dishes consumed with the hope of prolonging life and youth.
Methods for applying accurate digital PCR analysis on low copy DNA samples.
Whale, Alexandra S; Cowen, Simon; Foy, Carole A; Huggett, Jim F
2013-01-01
Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA.
Methods for Applying Accurate Digital PCR Analysis on Low Copy DNA Samples
Whale, Alexandra S.; Cowen, Simon; Foy, Carole A.; Huggett, Jim F.
2013-01-01
Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA. PMID:23472156
Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana
2016-01-01
The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets. PMID:27739510
Measuring secondary phases in duplex stainless steels
NASA Astrophysics Data System (ADS)
Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.
2009-01-01
The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.
Hu, Qin; Zhu, Dekang; Ma, Guangpeng; Cheng, Anchun; Wang, Mingshu; Chen, Shun; Jia, Renyong; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue
2016-10-01
Duck hepatitis A virus (DHAV) is a highly infectious pathogen that causes significant bleeding lesions in the viscera of ducklings less than 3 weeks old. There are three serotypes of DHAV: serotype 1 (DHAV-1), serotype 2 (DHAV-2) and serotype 3 (DHAV-3). These serotypes have no cross-antigenicity with each other. To establish an rRT-PCR assay for the rapid detection of a mixed infection of DHAV-1 and DHAV-3, two pairs of primers and a pair of matching TaqMan probes were designed based on conserved regions of DHAV-1 VP0 and DHAV-3 VP3. Finally, we established a one-step duplex rRT-PCR assay with high specificity and sensitivity for the simultaneous detection of DHAV-1 and DHAV-3. This method showed no cross-antigenicity with the other pathogens tested, including duck plague virus, Muscovy duck parvovirus, Riemerella anatipestifer, and pathogenic E. coli from ducks. Sensitivity tests identified the minimum detection limits of this method as 98 (DHAV-1) and 10 (DHAV-3) copies/reaction. To validate the method, thirty-eight clinical samples and thirty artificially infected samples collected from dead duck embryos were studied. Thirty-seven samples were positive for DHAV-1, seventeen samples were positive for DHAV-3, and fourteen samples were positive for a mixed infection using the duplex rRT-PCR method. The method established in this study is specific, sensitive, convenient and timesaving and is a powerful tool for detecting DHAV-1, DHAV-3, and their mixed infection and for conducting surveys of pandemic virus strains. Copyright © 2016. Published by Elsevier B.V.
Use of Bacteriophage MS2 as an Internal Control in Viral Reverse Transcription-PCR Assays
Dreier, Jens; Störmer, Melanie; Kleesiek, Knut
2005-01-01
Diagnostic systems based on reverse transcription (RT)-PCR are widely used for the detection of viral genomes in different human specimens. The application of internal controls (IC) to monitor each step of nucleic acid amplification is necessary to prevent false-negative results due to inhibition or human error. In this study, we designed various real-time RT-PCRs utilizing the coliphage MS2 replicase gene, which differ in detection format, amplicon size, and efficiency of amplification. These noncompetitive IC assays, using TaqMan, hybridization probe, or duplex scorpion probe techniques, were tested on the LightCycler and Rotorgene systems. In our approach, clinical specimens were spiked with the control virus to monitor the efficiency of extraction, reverse transcription, and amplification steps. The MS2 RT-PCR assays were applied for internal control when using a second target hepatitis C virus RNA in duplex PCR in blood donor screening. The 95% detection limit was calculated by probit analysis to 44.9 copies per PCR (range, 38.4 to 73.4). As demonstrated routinely, application of MS2 IC assays exhibits low variability and can be applied in various RT-PCR assays. MS2 phage lysates were obtained under standard laboratory conditions. The quantification of phage and template RNA was performed by plating assays to determine PFU or via real-time RT-PCR. High stability of the MS2 phage preparations stored at −20°C, 4°C, and room temperature was demonstrated. PMID:16145106
Xie, Ping
2015-10-09
Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.
Xie, Ping
2015-01-01
Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by “hungry” codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel. PMID:26473825
Chaudhry, Rama; Valavane, Arvind; Sreenath, K; Choudhary, Mamta; Sagar, Tanu; Shende, Trupti; Varma-Basil, Mandira; Mohanty, Srujana; Kabra, S K; Dey, A B; Thakur, Bhaskar
2017-12-01
Atypical pathogens including Mycoplasma pneumoniae and Legionella pneumophila are increasingly recognized as important causes of community-acquired pneumonia (CAP). Mycoplasma pneumoniae accounts for 20-40% of all CAP and L. pneumophila is responsible for 3-15% of cases. The paucity of data from India in this regard prompted us to conduct this prospective multicentric analysis to detect the prevalence of M. pneumoniae and L. pneumophila in our geographical region. A total of 453 patients with symptoms of pneumonia and 90 controls with no history of lower respiratory tract infections were included in the study. A duplex polymerase chain reaction (PCR) targeting 543 bp region of P1 adhesin gene of M. pneumoniae and 375 bp region of macrophage infectivity potentiator (mip) gene of L. pneumophila was standardized for simultaneous detection of these atypical pathogens. Respiratory secretions, blood, and urine samples were collected from each patient and control and were subjected to duplex PCR, culture and serology for M. pneumoniae and L. pneumophila . Urine samples were subjected for detecting L. pneumophila antigen. Among the 453 patients investigated for M. pneumoniae , 52 (11.4%) were positive for IgM antibodies, 17 were positive by culture, and seven tested positive by PCR ( P1 gene). Similarly for L. pneumophila , 50 cases (11%) were serologically positive for IgM antibodies, one was positive by PCR ( mip gene) and urine antigen detection. A total of eight samples were positive by duplex PCR for M. pneumoniae P1 gene ( N = 7) and L. pneumophila mip gene ( N = 1). Of the 90 controls, two samples (2.2%) showed IgM positivity, and 15 (16.7%) showed IgG positivity for M. pneumoniae . For L. pneumophila , three samples (3.3%) tested positive for IgM, and 12 (13.3%) tested positive for IgG antibodies. The study findings indicate the presence of M. pneumoniae and L. pneumophila in our geographical region, and a combination of laboratory approaches including PCR, culture, and serology is required for effective detection of these agents.
Chang, Chia-Yi; Deng, Ming-Chung; Wang, Fun-In; Tsai, Hsiang-Jung; Yang, Chia-Huei; Chang, Chieh; Huang, Yu-Liang
2014-06-01
The porcine respiratory disease complex (PRDC) is the most common disease in commercial pork production worldwide. Porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV), the most important agents of PRDC, usually co-infect in the same pigs. In order to survey the prevalence of PCV2 and PRRSV in pigs of various ages, a duplex reverse transcription real-time PCR (DRT-rPCR) was developed and applied in the present study. The DRT-rPCR did not cross-react with 10 swine viruses other than PCV2 and PRRSV, with detection limits of 1 TCID50/ml for PCV2 and 6.3 TCID50/ml for PRRSV. Surveillance using DRT-rPCR together with serology revealed that in the five farms studied, pigs were most susceptible to PRRSV at 6-14 weeks of age, whereas susceptibility to PCV2 varied by the management system but was mostly at 10-14 weeks of age. Cross analysis of viral loads versus antibody titers revealed that PCV2 load was affected negatively by anti-PCV2 ORF2 antibody, which constituted the most important non-infectious factor affecting the development of PMWS. These results indicated that DRT-rPCR was developed and applied successfully to the surveillance of PCV2 and PRRSV in the field. Copyright © 2014 Elsevier B.V. All rights reserved.
Multi-shell model of ion-induced nucleic acid condensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois
2016-04-21
We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes in- duced by tri-valent cobalt hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. The duplex aggregation free energy is de- composed into attraction and repulsion components represented by simple analytic expressions. The source of the short-range attraction between NA duplexes in the aggregated phase is the in- teraction of CoHex ions in the overlapping regions of the “external” shells with the oppositely chargedmore » duplexes. The attraction depends on CoHex binding affinity to the “external” shell of nearly neutralized duplex and the number of ions in the shell overlapping volume. For a given NA duplex sequence and structure, these parameters are estimated from molecular dynamics simula- tion. The attraction is opposed by the residual repulsion of nearly neutralized duplexes as well as duplex configurational entropy loss upon aggregation. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA conden- sation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. The model also predicts that longer NA fragments will condense easier than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation, lends support to proposed NA condensation picture based on the multivalent “ion binding shells”.« less
Li, Pengfei; Zhang, Ruihua; Chen, Junhao; Sun, Dapeng; Lan, Jingjing; Lin, Shaoli; Song, Shasha; Xie, Zhijing; Jiang, Shijin
2017-11-01
Duck short beak and dwarfism syndrome (SBDS) is an emerging infectious disease caused by a novel goose parvovirus-related virus (NGPV) in China. Until now, it remains uncertain whether the Cherry Valley ducks and mule ducks with SBDS are co-infected with classical goose parvovirus (GPV) and NGPV. In this study, a duplex semi-nested PCR assay with high specificity and sensitivity was developed for detection of the two viruses. Using the duplex PCR assay, NGPV was tested positive in all the 15 duck flocks with SBDS, whereas classical GPV was not detected in all the 133 sick and dead ducks collected from East China. A total of 87 (91.58%) Cherry Valley ducks aged from 5 to 18days and 35 (92.11%) mule ducks aged from 17 to 25days were detected positive for NGPV. In the NGPV-positive ducks, the virus detection rates were 81.97% to 8.20% in heart, liver, spleen, lung, kidney, pancreas, bile, thymus, bursa of Fabricius, and brain. The results indicated that NGPV was prevalent in the duck flocks of East China, whereas classical GPV was not detected in Cherry Valley ducks and mule ducks with SBDS. NGPV has extensive tissue tropism in Cherry Valley duck and mule duck, which could invade both the central and peripheral immune organs and break through the blood-brain barrier of ducks. Copyright © 2017 Elsevier B.V. All rights reserved.
Moreira, Bernardo G; You, Yong; Owczarzy, Richard
2015-03-01
Cyanine dyes are important chemical modifications of oligonucleotides exhibiting intensive and stable fluorescence at visible light wavelengths. When Cy3 or Cy5 dye is attached to 5' end of a DNA duplex, the dye stacks on the terminal base pair and stabilizes the duplex. Using optical melting experiments, we have determined thermodynamic parameters that can predict the effects of the dyes on duplex stability quantitatively (ΔG°, Tm). Both Cy dyes enhance duplex formation by 1.2 kcal/mol on average, however, this Gibbs energy contribution is sequence-dependent. If the Cy5 is attached to a pyrimidine nucleotide of pyrimidine-purine base pair, the stabilization is larger compared to the attachment to a purine nucleotide. This is likely due to increased stacking interactions of the dye to the purine of the complementary strand. Dangling (unpaired) nucleotides at duplex terminus are also known to enhance duplex stability. Stabilization originated from the Cy dyes is significantly larger than the stabilization due to the presence of dangling nucleotides. If both the dangling base and Cy3 are present, their thermodynamic contributions are approximately additive. New thermodynamic parameters improve predictions of duplex folding, which will help design oligonucleotide sequences for biophysical, biological, engineering, and nanotechnology applications. Copyright © 2015. Published by Elsevier B.V.
Multi-shell model of ion-induced nucleic acid condensation
NASA Astrophysics Data System (ADS)
Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.
2016-04-01
We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding shells."
Shirasu, Naoto; Kuroki, Masahide
2014-01-01
We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.
Zoutman, Willem H; Nell, Rogier J; Versluis, Mieke; van Steenderen, Debby; Lalai, Rajshri N; Out-Luiting, Jacoba J; de Lange, Mark J; Vermeer, Maarten H; Langerak, Anton W; van der Velden, Pieter A
2017-03-01
Quantifying T cells accurately in a variety of tissues of benign, inflammatory, or malignant origin can be of great importance in a variety of clinical applications. Flow cytometry and immunohistochemistry are considered to be gold-standard methods for T-cell quantification. However, these methods require fresh, frozen, or fixated cells and tissue of a certain quality. In addition, conventional and droplet digital PCR (ddPCR), whether followed by deep sequencing techniques, have been used to elucidate T-cell content by focusing on rearranged T-cell receptor (TCR) genes. These approaches typically target the whole TCR repertoire, thereby supplying additional information about TCR use. We alternatively developed and validated two novel generic single duplex ddPCR assays to quantify T cells accurately by measuring loss of specific germline TCR loci and compared them with flow cytometry-based quantification. These assays target sequences between the Dδ2 and Dδ3 genes (TRD locus) and Dβ1 and Jβ1.1 genes (TRB locus) that become deleted systematically early during lymphoid differentiation. Because these ddPCR assays require small amounts of DNA instead of freshly isolated, frozen, or fixated material, initially unanalyzable (scarce) specimens can be assayed from now on, supplying valuable information about T-cell content. Our ddPCR method provides a novel and sensitive way for quantifying T cells relatively fast, accurate, and independent of the cellular context. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Immuno capture PCR for rapid and sensitive identification of pathogenic Bacillus anthracis.
Makam, Shivakiran S; Majumder, Saugata; Kingston, Joseph J; Urs, Radhika M; Tuteja, Urmil; Sripathi, Murali H; Batra, Harsh V
2013-12-01
Immuno capture PCR (IPCR) is a technique capable of detecting the pathogens with high specificity and sensitivity. Rapid and accurate detection of Bacillus anthracis was achieved using anti-EA1 antibodies to capture the cells and two primer sets targeting the virulence factors of the pathogen i.e., protective antigen (pag) and capsule (cap) in an IPCR format. Monoclonal antibodies specific to B. anthracis were generated against extractable antigen 1 protein and used as capture antibody onto 96 well polystyrene plates. Following the binding of the pathogen, the DNA extraction was carried out in the well itself and further processed for PCR assay. We compared IPCR described here with conventional duplex PCR using the same primers and sandwich ELISA using the monoclonal antibodies developed in the present study. IPCR was capable of detecting as few as 10 and 100 cfu ml⁻¹ of bacterial cells and spores, respectively. IPCR was found to be 2-3 logs more sensitive than conventional duplex PCR and the sandwich ELISA. The effect of other bacteria and any organic materials on IPCR was also analyzed and found that this method was robust with little change in the sensitivity in the presence of interfering agents. Moreover, we could demonstrate a simple process of microwave treatment for spore disruption which otherwise are resistant to chemical treatments. Also, the IPCR could clearly distinguish the pathogenic and nonpathogenic strains of B. anthracis in the same assay. This can help in saving resources on unnecessary decontamination procedures during false alarms.
Ho, Dominik; Dose, Christian; Albrecht, Christian H.; Severin, Philip; Falter, Katja; Dervan, Peter B.; Gaub, Hermann E.
2009-01-01
Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA·ligand interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imidazole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D- and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration dependence nanomolar to picomolar dissociation constants of dsDNA·ligand complexes were determined, agreeing well with prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and dsDNA·ligand complexes. PMID:19486688
Janczarek, Monika; Palusińska-Szysz, Marta
2016-05-01
Legionella bacteria are organisms of public health interest due to their ability to cause pneumonia (Legionnaires' disease) in susceptible humans and their ubiquitous presence in water supply systems. Rapid diagnosis of Legionnaires' disease allows the use of therapy specific for the disease. L. pneumophila serogroup 1 is the most common cause of infection acquired in community and hospital environments. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this work, simplex and duplex PCR assays with the use of new molecular markers pcs and pmtA involved in phosphatidylcholine synthesis were specified for rapid and cost-efficient identification and distinguishing Legionella species. The sets of primers developed were found to be sensitive and specific for reliable detection of Legionella belonging to the eight most clinically relevant species. Among these, four primer sets I, II, VI, and VII used for duplex-PCRs proved to have the highest identification power and reliability in the detection of the bacteria. Application of this PCR-based method should improve detection of Legionella spp. in both clinical and environmental settings and facilitate molecular typing of these organisms.
Translational Entropy and DNA Duplex Stability.
Privalov, Peter L; Crane-Robinson, Colyn
2018-01-09
Investigation of folding/unfolding DNA duplexes of various size and composition by superprecise calorimetry has revised several long-held beliefs concerning the forces responsible for the formation of the double helix. It was established that: 1) the enthalpy and the entropy of duplex unfolding are temperature dependent, increasing with temperature rise and having the same heat capacity increment for CG and AT pairs; 2) the enthalpy of AT melting is greater than that of the CG pair, so the stabilizing effect of the CG pair in comparison with AT results not from its larger enthalpic contribution (as expected from its extra hydrogen bond), but from the larger entropic contribution of the AT pair that results from its ability to fix ordered water in the minor groove and release it upon duplex unfolding; 3) the translation entropy, resulting from the appearance of a new kinetic unit on duplex dissociation, determines the dependence of duplex stability on its length and its concentration (it is an order-of-magnitude smaller than predicted from the statistical mechanics of gases and is fully expressed by the stoichiometric correction term); 4) changes in duplex stability on reshuffling the sequence (the "nearest-neighbor effect") result from the immobilized water molecules fixed by AT pairs in the minor groove; and 5) the evaluated thermodynamic components permit a quantitative expression of DNA duplex stability. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Thermodynamics of Oligonucleotide Duplex Melting
ERIC Educational Resources Information Center
Schreiber-Gosche, Sherrie; Edwards, Robert A.
2009-01-01
Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…
Del Río, Jonathan Sabaté; Svobodova, Marketa; Bustos, Paulina; Conejeros, Pablo; O'Sullivan, Ciara K
2016-12-01
Electrochemical detection of solid-phase isothermal recombinase polymerase amplification (RPA) of Piscirickettsia salmonis in salmon genomic DNA is reported. The electrochemical biosensor was constructed by surface functionalization of gold electrodes with a thiolated forward primer specific to the genomic region of interest. Solid-phase RPA and primer elongation were achieved in the presence of the specific target sequence and biotinylated reverse primers. The formation of the subsequent surface-tethered duplex amplicons was electrochemically monitored via addition of streptavidin-linked HRP upon completion of solid-phase RPA. Successful quantitative amplification and detection were achieved in less than 1 h at 37 °C, calibrating with PCR-amplified genomic DNA standards and achieving a limit of detection of 5 · 10 -8 μg ml -1 (3 · 10 3 copies in 10 μl). The presented system was applied to the analysis of eight real salmon samples, and the method was also compared to qPCR analysis, observing an excellent degree of correlation. Graphical abstract Schematic of use of electrochemical RPA for detection of Psiricketessia salmonis in salmon liver.
Félix-Urquídez, Dalmira; Pérez-Urquiza, Melina; Valdez Torres, José-Benigno; León-Félix, Josefina; García-Estrada, Raymundo; Acatzi-Silva, Abraham
2016-01-05
Certified reference materials (CRMs) are required to guarantee the reliability of analytical measurements. The CRMs available in the field of genetically modified organisms (GMOs) are characterized using real-time polymerase chain reaction (qPCR). This technology has limited application, because of its dependence on a calibrant. The objective of this study was to obtain a method with higher metrological quality, to characterize the CRMs for their contents of T-nos/hmg copy number ratio in maize. A duplex droplet digital PCR (ddPCR) assay was developed and optimized by a central composite design. The developed method achieved an absolute limit of detection (LOD) of 11 cP T-nos, a relative LOD of 0.034%, a limit of quantification (LOQ) of 23 cP (relative LOQ of 0.08%), and a dynamic range of 0.08%-100% T-nos/hmg ratio. The specificity and applicability of the assay were established for the analysis of low T-nos concentrations (0.9%) in several corn varieties. The convenience of DNA digestion to reduce measurement bias in the case of multiple-copy binding was confirmed through an enzymatic restriction assay. Given its overall performance, this method can be used to characterize CRM candidates for their contents of T-nos/hmg ratio.
Kothera, Linda; Byrd, Brian; Savage, Harry M
2017-11-07
Aedes aegypti (L.) and Ae. albopictus (Skuse) are important arbovirus vectors in the United States, and the recent emergence of Zika virus disease as a public health concern in the Americas has reinforced a need for tools to rapidly distinguish between these species in collections made by vector control agencies. We developed a duplex real-time PCR assay that detects both species and does not cross-amplify in any of the other seven Aedes species tested. The lower limit of detection for our assay is equivalent to ∼0.03 of a first-instar larva in a 60-µl sample (0.016 ng of DNA per real-time PCR reaction). The assay was sensitive and specific in mixtures of both species that reflected up to a 2,000-fold difference in DNA concentration. In addition, we developed a simple protocol to extract DNA from sonicated first-instar larvae, and used that DNA to test the assay. Because it uses real-time PCR, the assay saves time by not requiring a separate visualization step. This assay can reduce the time needed for vector control agencies to make species identifications, and thus inform decisions about surveillance and control. Published by Oxford University Press on behalf of Entomological Society of America 2017 This work is written by US Government employees and is in the public domain in the US.
2015-01-01
Certified reference materials (CRMs) are required to guarantee the reliability of analytical measurements. The CRMs available in the field of genetically modified organisms (GMOs) are characterized using real-time polymerase chain reaction (qPCR). This technology has limited application, because of its dependence on a calibrant. The objective of this study was to obtain a method with higher metrological quality, to characterize the CRMs for their contents of T-nos/hmg copy number ratio in maize. A duplex droplet digital PCR (ddPCR) assay was developed and optimized by a central composite design. The developed method achieved an absolute limit of detection (LOD) of 11 cP T-nos, a relative LOD of 0.034%, a limit of quantification (LOQ) of 23 cP (relative LOQ of 0.08%), and a dynamic range of 0.08%–100% T-nos/hmg ratio. The specificity and applicability of the assay were established for the analysis of low T-nos concentrations (0.9%) in several corn varieties. The convenience of DNA digestion to reduce measurement bias in the case of multiple-copy binding was confirmed through an enzymatic restriction assay. Given its overall performance, this method can be used to characterize CRM candidates for their contents of T-nos/hmg ratio. PMID:26605751
Multi-shell model of ion-induced nucleic acid condensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois
We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(III) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derivedmore » from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent “ion binding shells.”.« less
Multi-shell model of ion-induced nucleic acid condensation
Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Onufriev, Alexey V.
2016-01-01
We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent “ion binding shells.” PMID:27389241
[Ultrasonographic study of blood flow in the renal arteries of patients with arterial hypertension].
Makarenko, E S; Dombrovskiĭ, V I; Nelasov, N Iu
2012-01-01
Vascular duplex ultrasound duplex with simultaneous ECG registration was made to estimate the quantitative and time parameters of blood flow in the renal arteries with grade 1-2 arterial hypertension. There were increases in vascular resistance indices and acceleration phase index and a reduction in systolic phase index. There were correlations of the time parameters of blood flow in the renal arteries with age and lipidogram values.
Råsbäck, T; Fellström, C; Gunnarsson, A; Aspán, A
2006-08-01
Traditional culture and biochemical tests (CBT) were compared with PCR for sensitivity and detection of Brachyspira hyodysenteriae and Brachyspira pilosicoli in seeded faeces and clinical samples from diarrhoeic pigs. A duplex PCR system was developed based on primers detecting the tlyA-gene of B. hyodysenteriae and the 16S rRNA-gene of B. pilosicoli. Sensitivities for the PCR system were determined on seeded faeces, using DNA that had been recovered from primary cultures or extracted directly from faeces. Compared to CBT, PCR applied to DNA extracted directly from faeces lowered the sensitivity by a factor of 1000 to 10,000. B. hyodysenteriae and B. pilosicoli detection was compared for CBT and PCR using 200 clinical samples. CBT detected more B. hyodysenteriae isolates in the clinical samples than PCR, but fewer B. pilosicoli positive samples. An atypical strongly haemolytic isolate was detected only by CBT.
Wen, X J; Cheng, A C; Wang, M S; Jia, R Y; Zhu, D K; Chen, S; Liu, M F; Liu, F; Chen, X Y
2014-09-01
Duck hepatitis A virus (DHAV) is an infectious pathogen causing fatal duck viral hepatitis in ducklings. Although both the inactivated vaccines and live attenuated vaccines have been used to protect ducklings, DHAV-1 and DHAV-3 still cause significant serious damage to the duck industry in China and South Korea. For rapid detection, differentiation, and epidemic investigation of DHAV in China, a genotype-specific 1-step duplex reverse-transcription (RT) PCR assay was established in this study. The sensitivity and specificity of the developed RT-PCR assay was evaluated with nucleic acids extracted from 2 DHAV reference strains, and 9 other infectious viruses and bacteria. The genotype-specific primers amplified different size DNA fragments encompassing the complete VP1 gene of the DHAV-1 or DHAV-3. The assay detected the liver samples collected from experimentally infected ducklings and dead ducklings collected from different regions of China. Sequence analysis of these DNA fragments indicated that VP1 sequences of DHAV-1 can be used to distinguish wild type and vaccine strains. The phylogenetic analysis of VP1 sequences indicated that the developed RT-PCR assay can be used for epidemic investigation of DHAV-1 and DHAV-3. The developed RT-PCR assay can be used as a specific molecular tool for simultaneous detection, differentiation, and sequencing the VP1 gene of DHAV-1 and DHAV-3, which can be used for understanding the epidemiology and evolution of DHAV. © 2014 Poultry Science Association Inc.
Accurate measurement of transgene copy number in crop plants using droplet digital PCR.
Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger
2017-06-01
Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Jia, Yanwei; Mak, Pui-In; Massey, Conner; Martins, Rui P; Wangh, Lawrence J
2013-12-07
LATE-PCR is an advanced form of non-symmetric PCR that efficiently generates single-stranded DNA which can readily be characterized at the end of amplification by hybridization to low-temperature fluorescent probes. We demonstrate here for the first time that monoplex and duplex LATE-PCR amplification and probe target hybridization can be carried out in double layered PDMS microfluidics chips containing dried reagents. Addition of a set of reagents during dry down overcomes the common problem of single-stranded oligonucleotide binding to PDMS. These proof-of-principle results open the way to construction of inexpensive point-of-care devices that take full advantage of the analytical power of assays built using LATE-PCR and low-temperature probes.
Sakuraba, Shun; Asai, Kiyoshi; Kameda, Tomoshi
2015-11-05
The dimerization free energies of RNA-RNA duplexes are fundamental values that represent the structural stability of RNA complexes. We report a comparative analysis of RNA-RNA duplex dimerization free-energy changes upon mutations, estimated from a molecular dynamics simulation and experiments. A linear regression for nine pairs of double-stranded RNA sequences, six base pairs each, yielded a mean absolute deviation of 0.55 kcal/mol and an R(2) value of 0.97, indicating quantitative agreement between simulations and experimental data. The observed accuracy indicates that the molecular dynamics simulation with the current molecular force field is capable of estimating the thermodynamic properties of RNA molecules.
von Wurmb-Schwark, Nicole; Mályusz, Victoria; Fremdt, Heike; Koch, Christine; Simeoni, Eva; Schwark, Thorsten
2006-05-01
The forensic scientist often has to cope with problematic samples from the crime scene due to their minute size and thus the low amount of extractable DNA. The retrieval of DNA from swabs taken from the surface of the skin, for example, in cases of strangulation, can be especially difficult. We systematically investigated swabs taken from the skin (to obtain a genetic profile from the victim and also from a possible offender) and from sperm cell containing swabs using two extraction kits: the Invisorb forensic and the Invisorb spin swab kit (both Invitek, Germany). DNA quality and quantity were tested on ethidium bromide containing agarose gels and in a highly sensitive duplex-PCR, which amplifies fragments specific for mitochondrial and nuclear DNA. Absolute quantification was done using real time PCR. Samples, which were positive in the duplex-PCR, were also employed to genetic fingerprinting using the Powerplex ES and the AmpFlSTRIdentifiler(TM) kits. Our study shows that the easy-to-use Invisorb spin swab kit is very suitable for DNA isolation from swabs taken from the skin and also from sperm cells. Retrieval of cells from the skin with swabs moistened in extraction buffer, not in distilled water, led to a significant higher DNA yield.
Dash, Paban Kumar; Parida, Manmohan; Santhosh, S R; Saxena, Parag; Srivastava, Ambuj; Neeraja, Mamidi; Lakshmi, V; Rao, P V Lakshmana
2008-09-01
Dengue (DEN) and chikungunya (CHIK) have emerged as the 2 most important arboviral infections of global significance. The similarities in clinical presentations, their circulation in the same geographic area, and the transmission through the same vector necessitate an urgent need for the differential diagnosis of these 2 infections. So far, no single assay is reported for differential diagnosis of these 2 infections. In this study, we report the development and evaluation of a 1-step single-tube duplex reverse transcription polymerase chain reaction (D-RT-PCR) assay by targeting E1 gene of CHIK and C-prM gene junction of DEN virus (DENV), respectively. The sensitivity of this assay was found to be better than conventional virus isolation and could detect as low as 100 copies of genomic RNA, which is equivalent to respective virus-specific RT-PCR. The evaluation was carried out with 360 clinical samples from recent CHIK and DEN outbreaks in India. This assay could also be able to detect dual infection of CHIK and DEN in 3 patients. The phylogenetic analysis based on the nucleotide sequencing of D-RT-PCR amplicon could precisely identify the genotypes of all the serotypes of DENV and CHIK viruses (CHIKV). These findings demonstrate the potential clinical and epidemiologic application of D-RT-PCR for rapid sensitive detection, differentiation, and genotyping of DENV and CHIKV in clinical samples.
Investigation of plastic deformation heterogeneities in duplex steel by EBSD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, S., E-mail: wronski@ftj.agh.edu.pl; Tarasiuk, J., E-mail: tarasiuk@ftj.agh.edu.pl; Bacroix, B., E-mail: brigitte.bacroix@univ-paris13.fr
2012-11-15
An EBSD analysis of a duplex steel (austeno-ferritic) deformed in tension up to fracture is presented. The main purpose of the paper is to describe, qualitatively and quantitatively, the differences in the behavior of the two phases during plastic deformation. In order to do so, several topological maps are measured on the deformed state using the electron backscatter diffraction technique. Distributions of grain size, misorientation, image quality factor and texture are then analyzed in detail. - Highlights: Black-Right-Pointing-Pointer Heterogeneities in duplex steel is studied. Black-Right-Pointing-Pointer The behavior of the two phases during plastic deformation is studied. Black-Right-Pointing-Pointer IQ factor distributionmore » and misorientation characteristics are examined using EBSD.« less
Fundamentals of multiplexing with digital PCR.
Whale, Alexandra S; Huggett, Jim F; Tzonev, Svilen
2016-12-01
Over the past decade numerous publications have demonstrated how digital PCR (dPCR) enables precise and sensitive quantification of nucleic acids in a wide range of applications in both healthcare and environmental analysis. This has occurred in parallel with the advances in partitioning fluidics that enable a reaction to be subdivided into an increasing number of partitions. As the majority of dPCR systems are based on detection in two discrete optical channels, most research to date has focused on quantification of one or two targets within a single reaction. Here we describe 'higher order multiplexing' that is the unique ability of dPCR to precisely measure more than two targets in the same reaction. Using examples, we describe the different types of duplex and multiplex reactions that can be achieved. We also describe essential experimental considerations to ensure accurate quantification of multiple targets.
Larsen, Jesper; Soldanova, Katerina; Aziz, Maliha; Contente-Cuomo, Tania; Petersen, Andreas; Vandendriessche, Stien; Jiménez, Judy N.; Mammina, Caterina; van Belkum, Alex; Salmenlinna, Saara; Laurent, Frederic; Skov, Robert L.; Larsen, Anders R.; Andersen, Paal S.; Price, Lance B.
2013-01-01
Staphylococcus aureus clonal complex 398 (CC398) isolates cluster into two distinct phylogenetic clades based on single-nucleotide polymorphisms (SNPs) revealing a basal human clade and a more derived livestock clade. The scn and tet(M) genes are strongly associated with the human and the livestock clade, respectively, due to loss and acquisition of mobile genetic elements. We present canonical single-nucleotide polymorphism (canSNP) assays that differentiate the two major host-associated S. aureus CC398 clades and a duplex PCR assay for detection of scn and tet(M). The canSNP assays correctly placed 88 S. aureus CC398 isolates from a reference collection into the human and livestock clades and the duplex PCR assay correctly identified scn and tet(M). The assays were successfully applied to a geographically diverse collection of 272 human S. aureus CC398 isolates. The simple assays described here generate signals comparable to a whole-genome phylogeny for major clade assignment and are easily integrated into S. aureus CC398 surveillance programs and epidemiological studies. PMID:24244535
Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations.
Owczarzy, Richard; Moreira, Bernardo G; You, Yong; Behlke, Mark A; Walder, Joseph A
2008-05-13
Accurate predictions of DNA stability in physiological and enzyme buffers are important for the design of many biological and biochemical assays. We therefore investigated the effects of magnesium, potassium, sodium, Tris ions, and deoxynucleoside triphosphates on melting profiles of duplex DNA oligomers and collected large melting data sets. An empirical correction function was developed that predicts melting temperatures, transition enthalpies, entropies, and free energies in buffers containing magnesium and monovalent cations. The new correction function significantly improves the accuracy of predictions and accounts for ion concentration, G-C base pair content, and length of the oligonucleotides. The competitive effects of potassium and magnesium ions were characterized. If the concentration ratio of [Mg (2+)] (0.5)/[Mon (+)] is less than 0.22 M (-1/2), monovalent ions (K (+), Na (+)) are dominant. Effects of magnesium ions dominate and determine duplex stability at higher ratios. Typical reaction conditions for PCR and DNA sequencing (1.5-5 mM magnesium and 20-100 mM monovalent cations) fall within this range. Conditions were identified where monovalent and divalent cations compete and their stability effects are more complex. When duplexes denature, some of the Mg (2+) ions associated with the DNA are released. The number of released magnesium ions per phosphate charge is sequence dependent and decreases surprisingly with increasing oligonucleotide length.
Murata, Ken; Hayashibara, Toshihisa; Sugahara, Kazuyuki; Uemura, Akiko; Yamaguchi, Taku; Harasawa, Hitomi; Hasegawa, Hiroo; Tsuruda, Kazuto; Okazaki, Toshiro; Koji, Takehiko; Miyanishi, Takayuki; Yamada, Yasuaki; Kamihira, Shimeru
2006-01-01
Adult T-cell leukemia (ATL) is associated with prior infection with human T-cell leukemia virus type 1 (HTLV-1); however, the mechanism by which HTLV-1 causes adult T-cell leukemia has not been fully elucidated. Recently, a functional basic leucine zipper (bZIP) protein coded in the minus strand of HTLV-1 genome (HBZ) was identified. We report here a novel isoform of the HTLV-1 bZIP factor (HBZ), HBZ-SI, identified by means of reverse transcription-PCR (RT-PCR) in conjunction with 5′ and 3′ rapid amplification of cDNA ends (RACE). HBZ-SI is a 206-amino-acid-long protein and is generated by alternative splicing between part of the HBZ gene and a novel exon located in the 3′ long terminal repeat of the HTLV-1 genome. Consequently, these isoforms share >95% amino acid sequence identity, and differ only at their N termini, indicating that HBZ-SI is also a functional protein. Duplex RT-PCR and real-time quantitative RT-PCR analyses showed that the mRNAs of these isoforms were expressed at equivalent levels in all ATL cell samples examined. Nonetheless, we found by Western blotting that the HBZ-SI protein was preferentially expressed in some ATL cell lines examined. A key finding was obtained from the subcellular localization analyses of these isoforms. Despite their high sequence similarity, each isoform was targeted to distinguishable subnuclear structures. These data show the presence of a novel isoform of HBZ in ATL cells, and in addition, shed new light on the possibility that each isoform may play a unique role in distinct regions in the cell nucleus. PMID:16474156
Klanicova, Barbora; Seda, Jaromir; Slana, Iva; Slany, Michal; Pavlik, Ivo
2013-12-01
Mycobacteria are widely present in diverse aquatic habitats, where they can survive for months or years while some species can even proliferate. The resistance of different mycobacterial species to disinfection methods like chlorination or ozonation could result in their presence in the final tap water of consumers. In this study, the culture method, Mycobacterium tuberculosis complex conventional duplex PCR for detection of non-tuberculous mycobacteria (NTM) and quantitative real-time PCR (qPCR) to detect three subspecies of M. avium species (M. a. avium, M. a. hominissuis, and M. a. paratuberculosis) were used to trace their possible path of transmission from the watershed through the reservoir and drinking water plant to raw drinking water and finally to households. A total of 124 samples from four drinking water supply systems in the Czech Republic, 52 dam sediments, 34 water treatment plant sludge samples, and 38 tap water household sediments, were analyzed. NTM of 11 different species were isolated by culture from 42 (33.9 %) samples; the most prevalent were M. gordonae (16.7 %), M. triplex (14.3 %), M. lentiflavum (9.5 %), M. a. avium (7.1 %), M. montefiorenase (7.1 %), and M. nonchromogenicum (7.1 %). NTM DNA was detected in 92 (76.7 %) samples. By qPCR analysis a statistically significant decrease (P < 0.01) was observed along the route from the reservoir (dam sediments), through water treatment sludge and finally to household sediments. The concentrations ranged from 10(0) to 10(4) DNA cells/g. It was confirmed that drinking water supply systems (watershed-reservoir-drinking water treatment plant-household) might be a potential transmission route for mycobacteria.
Przybylska, Arnika; Fiedler, Żaneta; Frąckowiak, Patryk; Obrępalska-Stęplowska, Aleksandra
2018-06-01
Thrips palmi and Frankliniella occidentalis (order Thysanoptera) are thrips species that represent major plant pests. They are polyphagous insects capable of adversely affecting crop production. As such, in the European Union, these thrips species should be regulated as quarantine organisms. T. palmi and F. occidentalis can cause considerable damage to susceptible plants by feeding on them and transmitting several viruses responsible for serious plant diseases. Successful pest control strategies are based on an early, fast, and reliable diagnosis, which precedes the selection of appropriate steps to limit the effects of harmful organisms. We herein describe a novel diagnostic approach that enables the sensitive and species-specific detection (and differentiation) of these pests in a duplex polymerase chain reaction assay, which was adapted for both standard and real-time quantitative assays. Our method is based on the amplification of a 5.8S-internal transcribed spacer 2 ribosomal DNA fragment that is conserved between T. palmi and F. occidentalis.
NASA Astrophysics Data System (ADS)
Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang
2018-04-01
To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.
USDA-ARS?s Scientific Manuscript database
Huanglongbing (HLB) is the most destructive disease of citrus and has been detected in over 250 urban citrus trees in southern California. HLB is associated with the uncultivable bacterium “Candidatus Liberibacter asiaticus” (CLas) and is transmitted by the Asian citrus psyllid. Quarantines in Calif...
Multiplex Detection of Aspergillus Species.
Martínez-Culebras, Pedro; Selma, María Victoria; Aznar, Rosa
2017-01-01
Multiplex real-time polymerase chain reaction (PCR) provides a fast and accurate DNA-based tool for the simultaneous amplification of more than one target sequence in a single reaction. Here a duplex real-time PCR assay is described for the simultaneous detection of Aspergillus carbonarius and members of the Aspergillus niger aggregate, which are the main responsible species for ochratoxin A (OTA) contamination in grapes. This single tube reaction targets the beta-ketosynthase and the acyl transferase domains of the polyketide synthase of A. carbonarius and the A. niger aggregate, respectively.Besides, a rapid and efficient fungi DNA extraction procedure is described suitable to be applied in wine grapes. It includes a pulsifier equipment to remove conidia from grapes which prevents releasing of PCR inhibitors.
de Kruijf, Marcel; Govender, Rodney; Yearsley, Dermot; Coffey, Aidan; O'Mahony, Jim
2017-05-01
The aim of this study was to investigate the efficacy of IS_MAP04 as a potential new diagnostic quantitative PCR (qPCR) target for the detection of Mycobacterium avium subspecies paratuberculosis from bovine faeces. IS_MAP04 primers were designed and tested negative against non-MAP strains. The detection limit of IS_MAP04 qPCR was evaluated on different MAP K-10 DNA concentrations and on faecal samples spiked with different MAP K-10 cell dilutions. A collection of 106 faecal samples was analysed and the efficacy of IS_MAP04 was statistically compared with IS900 and IS_MAP02. The detection limits observed for IS_MAP04 and IS900 on MAP DNA was 34 fg and 3.4 fg respectively. The detection limit of MAP from inoculated faecal samples was 10 2 CFU/g for both IS_MAP04 and IS900 targets and a detection limit of 10 2 CFU/g was also achieved with a TaqMan qPCR targeting IS_MAP04. The efficacy of IS_MAP04 to detect positive MAP faecal samples was 83.0% compared to 85.8% and 83.9% for IS900 and IS_MAP02 respectively. Strong kappa agreements were observed between IS_MAP04 and IS900 (κ=0.892) and between IS_MAP04 and IS_MAP02 (κ=0.897). As a new molecular target, IS_MAP04 showed that the detection limit was comparable to IS900 to detect MAP from inoculated faecal material. The MAP detection efficacy of IS_MAP04 from naturally infected faecal samples proved to be relatively comparable to IS_MAP02, but yielded efficacy results slightly less than IS900. Moreover, IS_MAP04 could be of significant value when used in duplex or multiplex qPCR assays. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Squash mosaic virus (SqMV) is a seed-borne virus, belonging to the genus Commovirus in the subfamily Comoviridae of family Secoviridae. SqMV has a bipartite single-stranded ribonucleic acid (RNA) genome (RNA1 and RNA2) encapsidated separately with two capsid proteins. Two serotypes (genotypes) of ...
Spring-Connell, Alexander M.; Evich, Marina G.; Debelak, Harald; Seela, Frank; Germann, Markus W.
2016-01-01
A truly universal nucleobase enables a host of novel applications such as simplified templates for PCR primers, randomized sequencing and DNA based devices. A universal base must pair indiscriminately to each of the canonical bases with little or preferably no destabilization of the overall duplex. In reality, many candidates either destabilize the duplex or do not base pair indiscriminatingly. The novel base 8-aza-7-deazaadenine (pyrazolo[3,4-d]pyrimidin- 4-amine) N8-(2′deoxyribonucleoside), a deoxyadenosine analog (UB), pairs with each of the natural DNA bases with little sequence preference. We have utilized NMR complemented with molecular dynamic calculations to characterize the structure and dynamics of a UB incorporated into a DNA duplex. The UB participates in base stacking with little to no perturbation of the local structure yet forms an unusual base pair that samples multiple conformations. These local dynamics result in the complete disappearance of a single UB proton resonance under native conditions. Accommodation of the UB is additionally stabilized via heightened backbone conformational sampling. NMR combined with various computational techniques has allowed for a comprehensive characterization of both structural and dynamic effects of the UB in a DNA duplex and underlines that the UB as a strong candidate for universal base applications. PMID:27566150
Tahir, Djamel; Bittar, Fadi; Barré-Cardi, Hélène; Sow, Doudou; Dahmani, Mustapha; Mediannikov, Oleg; Raoult, Didier; Davoust, Bernard; Parola, Philippe
2017-02-15
Dirofilaria immitis and D. repens are filarioid nematodes of animals and humans, transmitted by the bite of infected mosquitoes. Domestic and wild canids are a major natural host and reservoir for these parasites. In this study, we designed a duplex real-time PCR protocol targeting the mitochondrial cytochrome c oxidase subunit I (COI) gene, detecting both D. immitis and D. repens using two primer pairs and two Dirofilaria-specific hydrolysable probes. The sensitivity and specificity of the primers and probes were tested in both experimental and naturally infected samples. The detection limits of this assay were evaluated using plasmid DNA from D. immitis and D. repens. No cross-reaction was observed when testing this system against DNA from other filarial nematodes. The detection limit of the real-time PCR system was one copy per reaction mixture containing 5μl of template DNA. Field application of the new duplex real-time assay was conducted in Corsica. The prevalence rate of D. immitis was 21.3% (20/94) in dogs. In a locality where most dogs with Dirofilaria spp. infection were found, D. immitis and D. repens were detected in 5% (20/389) and 1.5% (6/389) of the Aedes albopictus population, respectively. These results suggest that this sensitive assay is a powerful tool for monitoring dirofilariosis in endemic or high risk areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Maruyama, Kohei; Takeyama, Haruko; Nemoto, Etsuo; Tanaka, Tsuyoshi; Yoda, Kiyoshi; Matsunaga, Tadashi
2004-09-20
Single nucleotide polymorphism (SNP) detection for aldehyde dehydrogenase 2 (ALDH2) gene based on DNA thermal dissociation curve analysis was successfully demonstrated using an automated system with bacterial magnetic particles (BMPs) by developing a new method for avoiding light scattering caused by nanometer-size particles when using commercially available fluorescent dyes such as FITC, Cy3, and Cy5 as labeling chromophores. Biotin-labeled PCR products in ALDH2, two allele-specific probes (Cy3-labeled detection probe for ALDH2*1 and Cy5-labeled detection probe for ALDH2*2), streptavidin-immobilized BMPs (SA-BMPs) were simultaneously mixed. The mixture was denatured at 70 degrees C for 3 min, cooled slowly to 25 degrees C, and incubated for 10 min, allowing the DNA duplex to form between Cy3- or Cy5-labeled detection probes and biotin-labeled PCR products on SA-BMPs. Then duplex DNA-BMP complex was heated to 58 degrees C, a temperature determined by dissociation curve analysis and a dissociated single-base mismatched detection probe was removed at the same temperature under precise control. Furthermore, fluorescence signal from the detection probe was liberated into the supernatant from completely matched duplex DNA-BMP complex by heating to 80 degrees C and measured. In the homozygote target DNA (ALDH2*1/*1 and ALDH2*2/*2), the fluorescence signals from single-base mismatched were decreased to background level, indicating that mismatched hybridization was efficiently removed by the washing process. In the heterozygote target DNA (ALDH2*1/*2), each fluorescence signals was at a similar level. Therefore, three genotypes of SNP in ALDH2 gene were detected using the automated detection system with BMPs. Copyright 2004 Wiley Periodicals, Inc.
Improved DNA hybridization parameters by Twisted Intercalating Nucleic Acid (TINA).
Schneider, Uffe Vest
2012-01-01
This thesis establishes oligonucleotide design rules and applications of a novel group of DNA stabilizing molecules collectively called Twisted Intercalating Nucleic Acid - TINA. Three peer-reviewed publications form the basis for the thesis. One publication describes an improved and rapid method for determination of DNA melting points and two publications describe the effects of positioning TINA molecules in parallel triplex helix and antiparallel duplex helix forming DNA structures. The third publication establishes that TINA molecules containing oligonucleotides improve an antiparallel duplex hybridization based capture assay's analytical sensitivity compared to conventionel DNA oligonucleotides. Clinical microbiology is traditionally based on pathogenic microorganisms' culture and serological tests. The introduction of DNA target amplification methods like PCR has improved the analytical sensitivity and total turn around time involved in clinical diagnostics of infections. Due to the relatively weak hybridization between the two strands of double stranded DNA, a number of nucleic acid stabilizing molecules have been developed to improve the sensitivity of DNA based diagnostics through superior binding properties. A short introduction is given to Watson-Crick and Hoogsteen based DNA binding and the derived DNA structures. A number of other nucleic acid stabilizing molecules are described. The stabilizing effect of TINA molecules on different DNA structures is discussed and considered in relation to other nucleic acid stabilizing molecules and in relation to future use of TINA containing oligonucleotides in clinical diagnostics and therapy. In conclusion, design of TINA modified oligonucleotides for antiparallel duplex helixes and parallel triplex helixes follows simple purpose dependent rules. TINA molecules are well suited for improving multiplex PCR assays and can be used as part of novel technologies. Future research should test whether combinations of TINA molecules and other nucleic acid stabilizing molecules can increase analytical sensitivity whilst maintaining nucleobase mismatch discrimination in triplex helix based diagnostic assays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strizhkov, B. N.; Drobyshev, A. L.; Mikhailovich, V. M.
PCR amplification on a microarray of gel-immobilized primers (microchip) has been developed. One of a pair of PCR primers was immobilized inside a separate microchip polyacrylamide porous gel pad of 0.1 x 0.1 x 0.02 (or 0.04) micron in size and 0.2 (or 0.4) nL in volume. The amplification was carried out simultaneously both in solution covering the microchip array and inside gel pads. Each gel pad contained the immobilized forward primers, while the fluorescently labeled reverse primers, as well as all components of the amplification reaction, diffused into the gel pads from the solution. To increase the amplification efficiency,more » the forward primers were also added into the solution. The kinetics of amplification was measured in real time in parallel for all gel pads with a fluorescent microscope equipped with a charge-coupled device (CCD) camera. The accuracy of the amplification was assessed by using the melting curves obtained for the duplexes formed by the labeled amplification product and the gel-immobilized primers during the amplification process; alternatively, the duplexes were produced by hybridization of the extended immobilized primers with labeled oligonucleotide probes. The on-chip amplification was applied to detect the anthrax toxin genes and the plasmid-borne beta-lactamase gene responsible for bacterial ampicillin resistance. The allele-specific type of PCR amplification was used to identify the Shiga toxin gene and discriminate it from the Shiga-like one. The genomic mutations responsible for rifampicin resistance of the Mycobacterium tuberculosis strains were detected by the same type of PCR amplification of the rpoB gene fragment isolated from sputum of tuberculosis patients. The on-chip PCR amplification has been shown to be a rapid, inexpensive and powerful tool to test genes responsible for bacterial toxin production and drug resistance, as well as to reveal point nucleotide mutations.« less
Sandeu, Maurice Marcel; Moussiliou, Azizath; Moiroux, Nicolas; Padonou, Gilles G.; Massougbodji, Achille; Corbel, Vincent; Tuikue Ndam, Nicaise
2012-01-01
Background An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. Methods Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. Results The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. Conclusion This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations. PMID:23285168
Marron, Alan O; Akam, Michael; Walker, Giselle
2013-01-01
Cultures of heterotrophic protists often require co-culturing with bacteria to act as a source of nutrition. Such cultures will contain varying levels of intrinsic bacterial contamination that can interfere with molecular research and cause problems with the collection of sufficient material for sequencing. Measuring the levels of bacterial contamination for the purposes of molecular biology research is non-trivial, and can be complicated by the presence of a diverse bacterial flora, or by differences in the relative nucleic acid yield per bacterial or eukaryotic cell. Here we describe a duplex PCR-based assay that can be used to measure the levels of contamination from marine bacteria in a culture of loricate choanoflagellates. By comparison to a standard culture of known target sequence content, the assay can be used to quantify the relative proportions of bacterial and choanoflagellate material in DNA or RNA samples extracted from a culture. We apply the assay to compare methods of purifying choanoflagellate cultures prior to DNA extraction, to determine their effectiveness in reducing bacterial contamination. Together with measurements of the total nucleic acid concentration, the assay can then be used as the basis for determining the absolute amounts of choanoflagellate DNA or RNA present in a sample. The assay protocol we describe here is a simple and relatively inexpensive method of measuring contamination levels in nucleic acid samples. This provides a new way to establish quantification and purification protocols for molecular biology and genomics in novel heterotrophic protist species. Guidelines are provided to develop a similar protocol for use with any protistan culture. This assay method is recommended where qPCR equipment is unavailable, where qPCR is not viable because of the nature of the bacterial contamination or starting material, or where prior sequence information is insufficient to develop qPCR protocols.
Ragheb, Suzan M; Yassin, Aymen S; Amin, Magdy A
2012-01-01
Notable progress has been made in methods that encourage the use of polymerase chain reaction (PCR) as a rapid and accurate tool in microbiological testing of pharmaceuticals. In this study, the detection of the four main specified microorganisms according to the pharmacopeial recommendations, Salmonella spp, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, was optimized in different pharmaceutical dosage forms and raw materials. Uniplex PCR was performed for the detection of each microorganism individually targeting the conserved region in each bacterial genome. Further optimizations were done to perform duplex and multiplex PCR assays considering relative concentrations of competitor primers used in the reaction. The uniplex PCR amplicons were successfully sequenced, confirming the conservation of used primers. Other validation parameters such as specificity, sensitivity, and robustness were examined closely. The method provides a high-throughput screening method to test different pharmaceutical preparations for specified microorganisms for the detection of microbiological contamination. Strict regulations govern the production of pharmaceutical products whether they are sterile or nonsterile. Certain official tests are carried out in microbiology testing laboratory in any pharmaceutical production facility to ensure the pharmaceuticals microbiological quality according to the standard pharmacopeial recommendations. Nonsterile products must be free of specified microorganisms that are used as a check for their quality. Topical preparations must be free of Pseudomonas aeruginosa and Staphylococcus aureus, and oral preparations must be free of Salmonella spp and Escherichia coli. Conventional microbiological methods are time-consuming, labor-intensive, and require long incubation times, resulting in delaying the release of the products. In this study, we tested and validated a polymerase chain reaction identification approach to detect indicator bacteria in pharmaceutical preparations. The method depends on amplification of certain conserved genes located in the four specified bacteria. The method is optimized to be carried out individually or collectively to detect all indicator bacteria in a single reaction in different forms of pharmaceutical products.
Bergmann, Sven M; Riechardt, Meike; Fichtner, Dieter; Lee, Peiyu; Kempter, Jolanta
2010-02-01
Previous and new PCRs for KHV detection were compared by estimation of their sensitivity in recognizing KHV DNA in plasmids, cell culture extracted KHV DNA and total DNA obtained from field tissue samples. A modified real-time PCR (Gilad et al., 2004), combined with an internal control system (IC2, Hoffmann et al., 2006) in a duplex assay, was used as a "gold standard". The lowest reliably determined virus concentration between, 5 and 10 KHV DNA genomic equivalents, was found by real-time PCR (Gilad et al., 2004), nested PCR (Bergmann et al., 2006) and one-tube semi-nested PCR. All other published and unpublished PCRs, as well as the commercial Loopamp, recognized KHV DNA at higher concentrations only. Additionally, KHV variants, newly adapted to European conditions, which could not be detected by PCR according to Bercovier et al. (2005) were found in two field samples from carp and koi from different regions of Germany. A negative influence of sample pooling was shown with field samples tested by real-time PCR. 2009 Elsevier B.V. All rights reserved.
Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes
Watkins, Norman E.; SantaLucia, John
2005-01-01
Nearest-neighbor thermodynamic parameters of the ‘universal pairing base’ deoxyinosine were determined for the pairs I·C, I·A, I·T, I·G and I·I adjacent to G·C and A·T pairs. Ultraviolet absorbance melting curves were measured and non-linear regression performed on 84 oligonucleotide duplexes with 9 or 12 bp lengths. These data were combined with data for 13 inosine containing duplexes from the literature. Multiple linear regression was used to solve for the 32 nearest-neighbor unknowns. The parameters predict the Tm for all sequences within 1.2°C on average. The general trend in decreasing stability is I·C > I·A > I·T ≈ I· G > I·I. The stability trend for the base pair 5′ of the I·X pair is G·C > C·G > A·T > T·A. The stability trend for the base pair 3′ of I·X is the same. These trends indicate a complex interplay between H-bonding, nearest-neighbor stacking, and mismatch geometry. A survey of 14 tandem inosine pairs and 8 tandem self-complementary inosine pairs is also provided. These results may be used in the design of degenerate PCR primers and for degenerate microarray probes. PMID:16264087
Determination of Bifidobacterium and Lactobacillus in breast milk of healthy women by digital PCR.
Qian, L; Song, H; Cai, W
2016-09-01
Breast milk is one of the most important sources of postnatal microbes. Quantitative real-time polymerase chain reaction (qRT-PCR) is currently used for the quantitative analysis of bacterial 16S rRNA genes in breast milk. However, this method relies on the use of standard curves and is imprecise when quantitating target DNA of low abundance. In contrast, droplet digital PCR (DD-PCR) provides an absolute quantitation without the need for calibration curves. A comparison between DD-PCR and qRT-PCR was conducted for the quantitation of Bifidobacterium and Lactobacillus 16S RNA genes in human breast milk, and the impacts of selected maternal factors were studied on the composition of these two bacteria in breast milk. From this study, DD-PCR reported between 0-34,460 16S rRNA gene copies of Bifidobacterium genera and between 1,108-634,000 16S rRNA gene copies of Lactobacillus genera in 1 ml breast milk. The 16S rRNA gene copy number of Lactobacillus genera was much greater than that of Bifidobacterium genera in breast milk. DD-PCR showed a 10-fold lower limit of quantitation as compared to qRT-PCR. A higher correlation and agreement was observed between qRT-PCR and DD-PCR in Lactobacillus quantitation as compared to Bifidobacterium quantitation. Based on our DD-PCR quantitation, a low abundance of Bifidobacterium bacteria in breast milk was correlated to higher pre-pregnancy body mass index (BMI). However, no significant difference was observed for these two bacteria in breast milk between mothers who had vaginal deliveries and caesarean deliveries. This study suggests that DD-PCR is a better tool to quantitate the bacterial load of breast milk compared to the conventional qRT-PCR method. The number of breast milk Bifidobacterium bacteria is influenced by maternal pre-pregnancy BMI.
Han, Jee Eun; Tang, Kathy F. J.; Tran, Loc H.; Lightner, Donald V.
2016-01-01
The 69 kb plasmid pVPA3-1 was identified in Vibrio parahaemolyticus strain 13-028/A3 that can cause acute hepatopancreatic necrosis disease (AHPND). This disease is responsible for mass mortalities in farmed penaeid shrimp and is referred to as early mortality syndrome (EMS). The plasmid has a GC content of 45.9% with a copy number of 37 per bacterial cell as determined by comparative quantitative PCR analyses. It consists of 92 open reading frames that encode mobilization proteins, replication enzymes, transposases, virulence-associated proteins, and proteins similar to Photorhabdus insect-related (Pir) toxins. In V. parahaemolyticus, these Pir toxin-like proteins are encoded by 2 genes ( pirA- and pirB-like) located within a 3.5 kb fragment flanked with inverted repeats of a transposase-coding sequence (1 kb). The GC content of these 2 genes is only 38.2%, substantially lower than that of the rest of the plasmid, which suggests that these genes were recently acquired. Based on a proteomic analysis, the pirA-like (336 bp) and pirB-like (1317 bp) genes encode for 13 and 50 kDa proteins, respectively. In laboratory cultures of V. parahaemolyticus 13-028/A3, both proteins were secreted into the culture medium. We developed a duplex PCR diagnostic method, with a detection limit of 105 CFU ml−1 and targeting pirA- and pirB-like genes in this strain of V. parahaemolyticus. This PCR protocol can reliably detect AHPND-causing strains of V. parahaemolyticus and does not cross react with non-pathogenic strains or with other species of Vibrio isolated from shrimp ponds. PMID:25667334
Lehman, Susan M; Kim, Won-Sik; Castle, Alan J; Svircev, Antonet M
2008-06-01
Erwinia amylovora and E. pyrifoliae are the causative agents of fire blight and Asian pear blight, respectively. The pathogens are closely related, with overlapping host ranges. Data are unavailable on the current distribution of E. pyrifoliae and on the interaction between the two species when they are present together on the same host. In this study, a duplex real-time polymerase chain reaction (PCR) protocol was developed to monitor the population dynamics of E. amylovora and E. pyrifoliae on the surface of Bartlett pear blossoms. Bacterial cells washed from blossoms were used directly as the PCR template without DNA extraction. Primers and a probe based on the E. amylovora levansucrase gene detected all E. amylovora strains. All E. pyrifoliae strains, including the Japanese Erwinia strains previously described as E. amylovora, were detected with a primer and probe combination based on the E. pyrifoliae hrpW gene. Disease development and severity were not significantly different in blossoms inoculated with individual Erwinia species or with a mixture of the two species. However, E. amylovora grew to greater population sizes than did E. pyrifoliae in both single species inoculations and in mixtures, suggesting that E. amylovora has a greater competitive fitness on Bartlett pear blossoms than E. pyrifoliae.
Tojo, Axel; Malm, Johan; Marko-Varga, György; Lilja, Hans; Laurell, Thomas
2014-01-01
The antibody microarrays have become widespread, but their use for quantitative analyses in clinical samples has not yet been established. We investigated an immunoassay based on nanoporous silicon antibody microarrays for quantification of total prostate-specific-antigen (PSA) in 80 clinical plasma samples, and provide quantitative data from a duplex microarray assay that simultaneously quantifies free and total PSA in plasma. To further develop the assay the porous silicon chips was placed into a standard 96-well microtiter plate for higher throughput analysis. The samples analyzed by this quantitative microarray were 80 plasma samples obtained from men undergoing clinical PSA testing (dynamic range: 0.14-44ng/ml, LOD: 0.14ng/ml). The second dataset, measuring free PSA (dynamic range: 0.40-74.9ng/ml, LOD: 0.47ng/ml) and total PSA (dynamic range: 0.87-295ng/ml, LOD: 0.76ng/ml), was also obtained from the clinical routine. The reference for the quantification was a commercially available assay, the ProStatus PSA Free/Total DELFIA. In an analysis of 80 plasma samples the microarray platform performs well across the range of total PSA levels. This assay might have the potential to substitute for the large-scale microtiter plate format in diagnostic applications. The duplex assay paves the way for a future quantitative multiplex assay, which analyses several prostate cancer biomarkers simultaneously. PMID:22921878
Dicer is dispensable for asymmetric RISC loading in mammals
Betancur, Juan G.; Tomari, Yukihide
2012-01-01
In flies, asymmetric loading of small RNA duplexes into Argonaute2-containing RNA-induced silencing complex (Ago2-RISC) requires Dicer-2/R2D2 heterodimer, which acts as a protein sensor for the thermodynamic stabilities of the ends of small RNA duplexes. However, the mechanism of small RNA asymmetry sensing in mammalian RISC assembly remains obscure. Here, we quantitatively examined RISC assembly and target silencing activity in the presence or absence of Dicer in mammals. Our data show that, unlike the well-characterized fly Ago2-RISC assembly pathway, mammalian Dicer is dispensable for asymmetric RISC loading in vivo and in vitro. PMID:22106413
Dicer is dispensable for asymmetric RISC loading in mammals.
Betancur, Juan G; Tomari, Yukihide
2012-01-01
In flies, asymmetric loading of small RNA duplexes into Argonaute2-containing RNA-induced silencing complex (Ago2-RISC) requires Dicer-2/R2D2 heterodimer, which acts as a protein sensor for the thermodynamic stabilities of the ends of small RNA duplexes. However, the mechanism of small RNA asymmetry sensing in mammalian RISC assembly remains obscure. Here, we quantitatively examined RISC assembly and target silencing activity in the presence or absence of Dicer in mammals. Our data show that, unlike the well-characterized fly Ago2-RISC assembly pathway, mammalian Dicer is dispensable for asymmetric RISC loading in vivo and in vitro.
Enhanced Reverse Transcription-PCR Assay for Detection of Norovirus Genogroup I
Dreier, Jens; Störmer, Melanie; Mäde, Dietrich; Burkhardt, Sabine; Kleesiek, Knut
2006-01-01
We have developed a one-tube reverse transcription (RT)-PCR method using the real-time TaqMan PCR system for the detection of norovirus genogroup I (NV GGI). By introduction of a novel probe based on locked nucleic acid technology, we enhanced the sensitivity of the assay compared to those of conventional TaqMan probes. The sensitivity of the NV GGI RT-PCR was determined by probit analysis with defined RNA standards and quantified norovirus isolates to 711 copies/ml (95% detection limit). In order to detect PCR inhibition, we included a heterologous internal control (IC) system based on phage MS2. This internally controlled RT-PCR was tested on different real-time PCR platforms, LightCycler, Rotorgene, Mastercycler EP realplex, and ABI Prism. Compared to the assay without an IC, the duplex RT-PCR exhibited no reduction in sensitivity in clinical samples. In combination with an established NV GGII real-time RT-PCR, we used the novel assay in a routine assay for diagnosis of clinical and food-borne norovirus infection. We applied this novel assay to analyze outbreaks of nonbacterial acute gastroenteritis. Norovirus of GGI was detected in these outbreaks. Sequence and similarity plot analysis of open reading frame 1 (ORF1) and ORF2 showed two genotypes, GGI/2 and GGI/4, in semiclosed communities. PMID:16891482
Kato, Junki; Masaki, Ayako; Fujii, Keiichiro; Takino, Hisashi; Murase, Takayuki; Yonekura, Kentaro; Utsunomiya, Atae; Ishida, Takashi; Iida, Shinsuke; Inagaki, Hiroshi
2016-11-01
Detection of HTLV-1 provirus using paraffin tumor sections may assist the diagnosis of adult T-cell leukemia/lymphoma (ATLL). For the detection, non-quantitative PCR assay has been reported, but its usefulness and limitations remain unclear. To our knowledge, quantitative PCR assay using paraffin tumor sections has not been reported. Using paraffin sections from ATLLs and non-ATLL T-cell lymphomas, we first performed non-quantitative PCR for HTLV-1 provirus. Next, we determined tumor ratios and carried out quantitative PCR to obtain provirus copy numbers. The results were analyzed with a simple regression model and a novel criterion, cut-off using 95 % rejection limits. Our quantitative PCR assay showed an excellent association between tumor ratios and the copy numbers (r = 0.89, P < 0.0001). The 95 % rejection limits provided a statistical basis for the range for the determination of HTLV-1 involvement. Its application suggested that results of non-quantitative PCR assay should be interpreted very carefully and that our quantitative PCR assay is useful to estimate the status of HTLV-1 involvement in the tumor cases. In conclusion, our quantitative PCR assay using paraffin tumor sections may be useful for the screening of ATLL cases, especially in HTLV-1 non-endemic areas where easy access to serological testing for HTLV-1 infection is limited. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Han, Min; Kang, Xing; Liu, Zhengbin; Zhang, Tingting; Li, Yanwei; Chen, Chao; Wang, Huijuan
2017-07-01
HLA-B*57:01 is strongly associated with severe adverse drug reaction induced by the anti-HIV drug abacavir (ABC) and antibiotic flucloxacillin. This study was dedicated to establishing a new method for HLA-B*57:01 genotyping and investigating the HLA-B*57:01 distribution pattern in four Chinese populations. A single-tube duplex real-time polymerase chain reaction (PCR) system was established by combining the amplification refractory mutation system and TaqMan probe. The reliability of this assay was validated by comparing the genotyping results with those by sequence-based typing. With this assay, the distribution of HLA-B*57:01 in 354 blood samples from four ethnic groups, namely, Han, Tibetan, Uighur, and Buyei, was determined. A 100% concordance was observed between the results of real-time PCR and sequence-based typing in 50 Uighur samples. As low as 0.016 ng DNA that carried HLA-B*57:01 could be detected with this assay. HLA-B*57:01 carriers identified in 100 Northern Han Chinese, 104 Buyeis, 100 Tibetans, and 50 Uighurs were 0, 1 (0.96%), 3 (3%), and 6 (12%), respectively. The carrier rate of HLA-B*57:01 in Uighur was significantly higher than those in Northern Han (p = .001) and Buyei (p = .005). The newly established real-time PCR assay provides a rapid and reliable tool for HLA-B*57:01 allele screening before the prescription of ABC and flucloxacillin in clinical practice.
Hanson, Erin K.; Ballantyne, Jack
2014-01-01
Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen). The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive, screening of biological evidence. PMID:24715968
Hanson, Erin K; Ballantyne, Jack
2013-01-01
Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen). The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive, screening of biological evidence.
2012-01-01
Background Artificial neural networks (ANNs) are widely studied for evaluating diseases. This paper discusses the intelligence mode of an ANN in grading the diagnosis of liver fibrosis by duplex ultrasonogaphy. Methods 239 patients who were confirmed as having liver fibrosis or cirrhosis by ultrasound guided liver biopsy were investigated in this study. We quantified ultrasonographic parameters as significant parameters using a data optimization procedure applied to an ANN. 179 patients were typed at random as the training group; 60 additional patients were consequently enrolled as the validating group. Performance of the ANN was evaluated according to accuracy, sensitivity, specificity, Youden’s index and receiver operating characteristic (ROC) analysis. Results 5 ultrasonographic parameters; i.e., the liver parenchyma, thickness of spleen, hepatic vein (HV) waveform, hepatic artery pulsatile index (HAPI) and HV damping index (HVDI), were enrolled as the input neurons in the ANN model. The sensitivity, specificity and accuracy of the ANN model for quantitative diagnosis of liver fibrosis were 95.0%, 85.0% and 88.3%, respectively. The Youden’s index (YI) was 0.80. Conclusions The established ANN model had good sensitivity and specificity in quantitative diagnosis of hepatic fibrosis or liver cirrhosis. Our study suggests that the ANN model based on duplex ultrasound may help non-invasive grading diagnosis of liver fibrosis in clinical practice. PMID:22716936
Phosphorylation-specific status of RNAi triggers in pharmacokinetic and biodistribution analyses
Trubetskoy, Vladimir S.; Griffin, Jacob B.; Nicholas, Anthony L.; Nord, Eric M.; Xu, Zhao; Peterson, Ryan M.; Wooddell, Christine I.; Rozema, David B.; Wakefield, Darren H.; Lewis, David L.
2017-01-01
Abstract The RNA interference (RNAi)-based therapeutic ARC-520 for chronic hepatitis B virus (HBV) infection consists of a melittin-derived peptide conjugated to N-acetylgalactosamine for hepatocyte targeting and endosomal escape, and cholesterol-conjugated RNAi triggers, which together result in HBV gene silencing. To characterize the kinetics of RNAi trigger delivery and 5΄-phosphorylation of guide strands correlating with gene knockdown, we employed a peptide-nucleic acid (PNA) hybridization assay. A fluorescent sense strand PNA probe binding to RNAi duplex guide strands was coupled with anion exchange high performance liquid chromatography to quantitate guide strands and metabolites. Compared to PCR- or ELISA-based methods, this assay enables separate quantitation of non-phosphorylated full-length guide strands from 5΄-phosphorylated forms that may associate with RNA-induced silencing complexes (RISC). Biodistribution studies in mice indicated that ARC-520 guide strands predominantly accumulated in liver. 5΄-phosphorylation of guide strands was observed within 5 min after ARC-520 injection, and was detected for at least 4 weeks corresponding to the duration of HBV mRNA silencing. Guide strands detected in RISC by AGO2 immuno-isolation represented 16% of total 5΄-phosphorylated guide strands in liver, correlating with a 2.7 log10 reduction of HBsAg. The PNA method enables pharmacokinetic analysis of RNAi triggers, elucidates potential metabolic processing events and defines pharmacokinetic-pharmacodynamic relationships. PMID:28180327
Purified oocysts of Cryptosporidium parvum were used to evaluate applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-...
Li, Yan; Wu, Tao; Qi, Xian; Ge, Yiyue; Guo, Xiling; Wu, Bin; Yu, Huiyan; Zhu, Yefei; Shi, Zhiyang; Wang, Hua; Cui, Lunbiao; Zhou, Minghao
2013-12-01
A novel reassortant influenza A (H7N9) virus emerged recently in China. In this study, a duplex real-time reverse transcription polymerase chain reaction (rRT-PCR) assay was developed for the simultaneous detection of hemagglutinin (HA) and neuraminidase (NA) genes of H7N9 influenza viruses. The sensitivity of the assay was determined to be 10 RNA copies per reaction for both HA and NA genes. No cross-reactivity was observed with other influenza virus subtypes or respiratory tract viruses. One hundred and forty-six clinical and environmental specimens were tested and compared with reference methods and were found to be consistent. The assay is suitable for large-scale screening due to short turnaround times and high specificity, sensitivity, and reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.
Ceol, M; Forino, M; Gambaro, G; Sauer, U; Schleicher, E D; D'Angelo, A; Anglani, F
2001-01-01
Gene expression can be examined with different techniques including ribonuclease protection assay (RPA), in situ hybridisation (ISH), and quantitative reverse transcription-polymerase chain reaction (RT/PCR). These methods differ considerably in their sensitivity and precision in detecting and quantifying low abundance mRNA. Although there is evidence that RT/PCR can be performed in a quantitative manner, the quantitative capacity of this method is generally underestimated. To demonstrate that the comparative kinetic RT/PCR strategy-which uses a housekeeping gene as internal standard-is a quantitative method to detect significant differences in mRNA levels between different samples, the inhibitory effect of heparin on phorbol 12-myristate 13-acetate (PMA)-induced-TGF-beta1 mRNA expression was evaluated by RT/PCR and RPA, the standard method of mRNA quantification, and the results were compared. The reproducibility of RT/PCR amplification was calculated by comparing the quantity of G3PDH and TGF-beta1 PCR products, generated during the exponential phases, estimated from two different RT/PCR (G3PDH, r = 0.968, P = 0.0000; TGF-beta1, r = 0.966, P = 0.0000). The quantitative capacity of comparative kinetic RT/PCR was demonstrated by comparing the results obtained from RPA and RT/PCR using linear regression analysis. Starting from the same RNA extraction, but using only 1% of the RNA for the RT/PCR compared to RPA, significant correlation was observed (r = 0.984, P = 0.0004). Moreover the morphometric analysis of ISH signal was applied for the semi-quantitative evaluation of the expression and localisation of TGF-beta1 mRNA in the entire cell population. Our results demonstrate the close similarity of the RT/PCR and RPA methods in giving quantitative information on mRNA expression and indicate the possibility to adopt the comparative kinetic RT/PCR as reliable quantitative method of mRNA analysis. Copyright 2001 Wiley-Liss, Inc.
Takezawa, Yusuke; Nishiyama, Kotaro; Mashima, Tsukasa; Katahira, Masato; Shionoya, Mitsuhiko
2015-10-12
A novel bifacial ligand-bearing nucleobase, 5-hydroxyuracil (U(OH) ), which forms both a hydrogen-bonded base pair (U(OH) -A) and a metal-mediated base pair (U(OH) -M-U(OH) ) has been developed. The U(OH) -M-U(OH) base pairs were quantitatively formed in the presence of lanthanide ions such as Gd(III) when U(OH) -U(OH) pairs were consecutively incorporated into DNA duplexes. This result established metal-assisted duplex stabilization as well as DNA-templated assembly of lanthanide ions. Notably, a duplex possessing U(OH) -A base pairs was destabilized by addition of Gd(III) ions. This observation suggests that the hybridization behaviors of the U(OH) -containing DNA strands are altered by metal complexation. Thus, the U(OH) nucleobase with a bifacial base-pairing property holds great promise as a component for metal-responsive DNA materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wons, Juliana; Meiller, Ralph; Bergua, Antonio; Bogdan, Christian; Geißdörfer, Walter
2017-01-01
A 29-year-old woman presented with unilateral, chronic follicular conjunctivitis since 6 weeks. While the conjunctival swab taken from the patient's eye was negative in a Chlamydia (C.) trachomatis -specific PCR, C. felis was identified as etiological agent using a pan- Chlamydia TaqMan-PCR followed by sequence analysis. A pet kitten of the patient was found to be the source of infection, as its conjunctival and pharyngeal swabs were also positive for C. felis . The patient was successfully treated with systemic doxycycline. This report, which presents one of the few documented cases of human C. felis infection, illustrates that standard PCR tests are designed to detect the most frequently seen species of a bacterial genus but might fail to be reactive with less common species. We developed a modified pan- Chlamydia / C. felis duplex TaqMan-PCR assay that detects C. felis without the need of subsequent sequencing. The role of chlamydiae-specific serum antibody titers for the diagnosis of follicular conjunctivitis is discussed.
Zeng, Yan; Wan, Yi; Zhang, Dun; Qi, Peng
2015-01-01
A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III (Exo-III) aided cycling amplification has been developed. This magneto-DNA duplex probe contains a partly hybrid fluorophore-modified capture probe and a fluorophore-modified signal probe with magnetic microparticle as carrier. In the presence of a perfectly matched target bacterial DNA, blunt 3'-terminus of the capture probe is formed, activating the Exo-III aided cycling amplification. Thus, Exo-III catalyzes the stepwise removal of mononucleotides from this terminus, releasing both fluorophore-modified signal probe, fluorescent dyes of the capture probe and target DNA. The released target DNA then starts a new cycle, while released fluorescent fragments are recovered with magnetic separation for fluorescence signal collection. This system exhibited sensitive detection of bacterial DNA, with a detection limit of 14 pM because of the unique cleavage function of Exo-III, high fluorescence intensity, and separating function of magneto-DNA duplex probes. Besides this sensitivity, this strategy exhibited excellent selectivity with mismatched bacterial DNA targets and other bacterial species targets and good applicability in real seawater samples, hence, this strategy could be potentially used for qualitative and quantitative analysis of bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.
Validation of PCR methods for quantitation of genetically modified plants in food.
Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P
2001-01-01
For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.
Microfluidics-based digital quantitative PCR for single-cell small RNA quantification.
Yu, Tian; Tang, Chong; Zhang, Ying; Zhang, Ruirui; Yan, Wei
2017-09-01
Quantitative analyses of small RNAs at the single-cell level have been challenging because of limited sensitivity and specificity of conventional real-time quantitative PCR methods. A digital quantitative PCR (dqPCR) method for miRNA quantification has been developed, but it requires the use of proprietary stem-loop primers and only applies to miRNA quantification. Here, we report a microfluidics-based dqPCR (mdqPCR) method, which takes advantage of the Fluidigm BioMark HD system for both template partition and the subsequent high-throughput dqPCR. Our mdqPCR method demonstrated excellent sensitivity and reproducibility suitable for quantitative analyses of not only miRNAs but also all other small RNA species at the single-cell level. Using this method, we discovered that each sperm has a unique miRNA profile. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
[A new method of processing quantitative PCR data].
Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun
2003-05-01
Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.
Begum, Sharmin; Uddin, Md Jashim; Platts-Mills, James A.; Liu, Jie; Kirkpatrick, Beth D.; Chowdhury, Anwarul H.; Jamil, Khondoker M.; Haque, Rashidul; Petri, William A.; Houpt, Eric R.
2014-01-01
Amid polio eradication efforts, detection of oral polio vaccine (OPV) virus in stool samples can provide information about rates of mucosal immunity and allow estimation of the poliovirus reservoir. We developed a multiplex one-step quantitative reverse transcription-PCR (qRT-PCR) assay for detection of OPV Sabin strains 1, 2, and 3 directly in stool samples with an external control to normalize samples for viral quantity and compared its performance with that of viral culture. We applied the assay to samples from infants in Dhaka, Bangladesh, after the administration of trivalent OPV (tOPV) at weeks 14 and 52 of life (on days 0 [pre-OPV], +4, +11, +18, and +25 relative to vaccination). When 1,350 stool samples were tested, the sensitivity and specificity of the quantitative PCR (qPCR) assay were 89 and 91% compared with culture. A quantitative relationship between culture+/qPCR+ and culture−/qPCR+ stool samples was observed. The kinetics of shedding revealed by qPCR and culture were similar. qPCR quantitative cutoffs based on the day +11 or +18 stool samples could be used to identify the culture-positive shedders, as well as the long-duration or high-frequency shedders. Interestingly, qPCR revealed that a small minority (7%) of infants contributed the vast majority (93 to 100%) of the total estimated viral excretion across all subtypes at each time point. This qPCR assay for OPV can simply and quantitatively detect all three Sabin strains directly in stool samples to approximate shedding both qualitatively and quantitatively. PMID:25378579
Development and evaluation of a quantitative PCR assay for detection of Hepatozoon sp.
Criado-Fornelio, A; Buling, A; Cunha-Filho, N A; Ruas, J L; Farias, N A R; Rey-Valeiron, C; Pingret, J L; Etievant, M; Barba-Carretero, J C
2007-12-25
With the aim to improve current molecular diagnostic techniques of Hepatozoon sp. in carnivore mammals, we developed a quantitative PCR (qPCR) assay with SYBR Green I((R)). The method, consisting of amplification of a 235bp fragment of the 18S rRNA gene, is able to detect at least 0.1fg of parasite DNA. Reproducible quantitative results were obtained over a range of 0.1ng-0.1fg of Hepatozoon sp. DNA. To assess the performance of the qPCR assay, DNA samples from dogs (140) and cats (50) were tested with either standard PCR or qPCR. Positive samples were always confirmed by partial sequencing of the 18S rRNA gene. Quantitative PCR was 15.8% more sensitive than standard PCR to detect H. canis in dogs. In cats, no infections were detected by standard PCR, compared to two positives by qPCR (which were infected by H. canis as shown by sequencing).
Anaplasma marginale and A. phagocytophilum in cattle in Tunisia.
M'ghirbi, Youmna; Bèji, Marwa; Oporto, Beatriz; Khrouf, Fatma; Hurtado, Ana; Bouattour, Ali
2016-10-20
Tick-borne diseases caused by Anaplasma species put serious constraints on the health and production of domestic cattle in tropical and sub-tropical regions. After recovering from a primary infection, cattle typically become persistent carriers of pathogens and play a critical role in the epidemiology of the disease, acting as reservoirs of the Anaplasma spp. In this study a duplex PCR assay was used for the simultaneous detection of Anaplasma marginale and Anaplasma phagocytophilum in cattle using two primer pairs targeting msp4 and msp2 genes, respectively. We used this method to analyze DNA preparations derived from 328 blood cattle samples that were collected from 80 farms distributed among Tunisia's four bioclimatic zones. The prevalence of the A. marginale infection (24.7 %) was significantly higher and more widespread (in all bioclimatic areas) than that of A. phagocytophilum (0.6 %), which was found in a mixed infection with A. marginale. The duplex PCR assay used proved to be a rapid, specific and inexpensive mean for the simultaneous detection of Anaplasma marginale and Anaplasma phagocytophilum in cattle blood. It allowed us to report the identification of A. phagocytophilum for the first time in cattle in Tunisia and confirm the presence of A. marginale in cattle from several geographical areas of the country. Further epidemiological studies undertaken using this assay will help improve the surveillance of the associated diseases in the regions where they are endemic.
Meissner, Oliver A; Verrel, Frauke; Tató, Federico; Siebert, Uwe; Ramirez, Heldin; Ruppert, Volker; Schoenberg, Stefan O; Reiser, Maximilian
2004-11-01
The danger of limb loss as a consequence of acute occlusion of infrapopliteal bypasses underscores the requirement for careful patient follow-up. The objective of this study was to determine the agreement and accuracy of contrast material-enhanced moving-table magnetic resonance (MR) angiography and duplex ultrasonography (US) in the assessment of failing bypass grafts. In cases of discrepancy, digital subtraction angiography (DSA) served as the reference standard. MR angiography was performed in 24 consecutive patients with 26 femorotibial or femoropedal bypass grafts. Each revascularized limb was divided into five segments--(i) native arteries proximal to the graft; (ii) proximal anastomosis; (iii) graft course; (iv) distal anastomosis; and (v) native arteries distal to the graft-resulting in 130 vascular segments. Three readers evaluated all MR angiograms for image quality and the presence of failing grafts. The degree of stenosis was compared to the findings of duplex US, and in case of discrepancy, to DSA findings. Two separate analyses were performed with use of DSA only and a combined diagnostic endpoint as the reference standard. Image quality was rated excellent or intermediate in 119 of 130 vascular segments (92%). Venous overlay was encountered in 26 of 130 segments (20%). In only two segments was evaluation of the outflow region not feasible. One hundred seventeen of 130 vascular segments were available for quantitative analysis. In 109 of 117 segments (93%), MR angiography and duplex US showed concordant findings. In the eight discordant segments in seven patients, duplex US overlooked four high-grade stenoses that were correctly identified by MR angiography and confirmed by DSA. Percutaneous transluminal angioplasty was performed in these cases. In no case did MR angiography miss an area of stenosis of sufficient severity to require treatment. Total accuracy for duplex US ranged from 0.90 to 0.97 depending on the reference standard used, whereas MR angiography was completely accurate (1.00) regardless of the standard definition. Our data strongly suggest that the accuracy of MR angiography for identifying failing grafts in the infrapopliteal circulation is equal to that of duplex US and superior to that of duplex US in cases of complex revascularization. MR angiography should be included in routine follow-up of patients undergoing infrapopliteal bypass surgery.
Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H
2016-07-01
Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error in the velocity measurement of less than 10%. With the addition of cases with a range of pathologies, this duplex ultrasound simulator will be a useful tool for training health-care providers in vascular ultrasound applications and for assessing their skills in an objective and quantitative manner. © The Author(s) 2016.
Gadsby, Naomi J; Helgason, Kristjan O; Dickson, Elizabeth M; Mills, Jonathan M; Lindsay, Diane S J; Edwards, Giles F; Hanson, Mary F; Templeton, Kate E
2016-02-01
Urinary antigen testing for Legionella pneumophila serogroup 1 is the leading rapid diagnostic test for Legionnaires' Disease (LD); however other Legionella species and serogroups can also cause LD. The aim was to determine the utility of front-line L. pneumophila and Legionella species PCR in a severe respiratory infection algorithm. L. pneumophila and Legionella species duplex real-time PCR was carried out on 1944 specimens from hospitalised patients over a 4 year period in Edinburgh, UK. L. pneumophila was detected by PCR in 49 (2.7%) specimens from 36 patients. During a LD outbreak, combined L. pneumophila respiratory PCR and urinary antigen testing had optimal sensitivity and specificity (92.6% and 98.3% respectively) for the detection of confirmed cases. Legionella species was detected by PCR in 16 (0.9%) specimens from 10 patients. The 5 confirmed and 1 probable cases of Legionella longbeachae LD were both PCR and antibody positive. Front-line L. pneumophila and Legionella species PCR is a valuable addition to urinary antigen testing as part of a well-defined algorithm. Cases of LD due to L. longbeachae might be considered laboratory-confirmed when there is a positive Legionella species PCR result and detection of L. longbeachae specific antibody response. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hemmer, H.; Grong, Ø.
1999-11-01
The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.
Minguzzi, Stefano; Terlizzi, Federica; Lanzoni, Chiara; Poggi Pollini, Carlo; Ratti, Claudio
2016-01-01
Many efforts have been made to develop a rapid and sensitive method for phytoplasma and virus detection. Taking our cue from previous works, different rapid sample preparation methods have been tested and applied to Candidatus Phytoplasma prunorum (‘Ca. P. prunorum’) detection by RT-qPCR. A duplex RT-qPCR has been optimized using the crude sap as a template to simultaneously amplify a fragment of 16S rRNA of the pathogen and 18S rRNA of the host plant. The specific plant 18S rRNA internal control allows comparison and relative quantification of samples. A comparison between DNA and RNA contribution to qPCR detection is provided, showing higher contribution of the latter. The method presented here has been validated on more than a hundred samples of apricot, plum and peach trees. Since 2013, this method has been successfully applied to monitor ‘Ca. P. prunorum’ infections in field and nursery. A triplex RT-qPCR assay has also been optimized to simultaneously detect ‘Ca. P. prunorum’ and Plum pox virus (PPV) in Prunus. PMID:26742106
NASA Technical Reports Server (NTRS)
El Fantroussi, Said; Urakawa, Hidetoshi; Bernhard, Anne E.; Kelly, John J.; Noble, Peter A.; Smidt, H.; Yershov, G. M.; Stahl, David A.
2003-01-01
Oligonucleotide microarrays were used to profile directly extracted rRNA from environmental microbial populations without PCR amplification. In our initial inspection of two distinct estuarine study sites, the hybridization patterns were reproducible and varied between estuarine sediments of differing salinities. The determination of a thermal dissociation curve (i.e., melting profile) for each probe-target duplex provided information on hybridization specificity, which is essential for confirming adequate discrimination between target and nontarget sequences.
Li, Wenli; Drake, Mary Anne
2001-01-01
A quantitative competitive PCR (QC-PCR) assay was developed to detect and quantify Escherichia coli O157:H7 cells. From 103 to 108 CFU of E. coli O157:H7 cells/ml was quantified in broth or skim milk, and cell densities predicted by QC-PCR were highly related to viable cell counts (r2 = 0.99 and 0.93, respectively). QC-PCR has potential for quantitative detection of pathogenic bacteria in foods. PMID:11425755
Li, Xiaofang; Cui, Jinghua; Du, Xiaoli; Cui, Zhigang; Huang, Yibing; Kan, Biao
2017-01-01
Cronobacter sakazakii and Cronobacter malonaticus are the most common species of Cronobacter , so it is necessary to detect the two species as soon as possible in surveillance programs. We developed a real-time PCR method for identifying C. sakazakii and C. malonaticus from the genus Cronobacter . In this study, the two pairs of primers and probes were designed, targeting 16S rRNA and fusA, respectively. The specificity of the real-time PCR assay was validated with 112 strains of Cronobacter , including 56 C. sakazakii , 32 C. malonaticus , 16 Cronobacter dublinensis , 6 Cronobacter turicensis , and 2 Cronobacter muytjensii . The results showed that C. sakazakii and C. malonaticus were all correctly identified, consistent with the results of another method by analyzing the clustering of the fusA sequence. The detection limit for pure culture was 10 2 CFU/ml and 10 3 CFU/g for artificially contaminated rehydrated powdered infant formula. Therefore, the developed real-time PCR was a rapid, sensitive, and reliable method for the identification of C. sakazakii and C. malonaticus .
PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR
ABSTRACT
Palatal Dysmorphogenesis : Quantitative RT-PCR
Gary A. Held and Barbara D. Abbott
Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...
NASA Astrophysics Data System (ADS)
Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen
2008-10-01
Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.
NASA Astrophysics Data System (ADS)
Liu, Ji-Hua
2018-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11472187 and 11602166), the National Basic Research Program of China (Grant No. 2014CB046805), and the Natural Science Foundation of Tianjin, China (Grant No. 16JCYBJC40500).
Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.
Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...
Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR).
Felder, Eva; Mossbrugger, Ilona; Lange, Mirko; Wölfel, Roman
2012-09-01
Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR) assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5'-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.
Taylor, Sean C; Mrkusich, Eli M
2014-01-01
In the past decade, the techniques of quantitative PCR (qPCR) and reverse transcription (RT)-qPCR have become accessible to virtually all research labs, producing valuable data for peer-reviewed publications and supporting exciting research conclusions. However, the experimental design and validation processes applied to the associated projects are the result of historical biases adopted by individual labs that have evolved and changed since the inception of the techniques and associated technologies. This has resulted in wide variability in the quality, reproducibility and interpretability of published data as a direct result of how each lab has designed their RT-qPCR experiments. The 'minimum information for the publication of quantitative real-time PCR experiments' (MIQE) was published to provide the scientific community with a consistent workflow and key considerations to perform qPCR experiments. We use specific examples to highlight the serious negative ramifications for data quality when the MIQE guidelines are not applied and include a summary of good and poor practices for RT-qPCR. © 2013 S. Karger AG, Basel.
Joshi, Molishree; Keith Pittman, H; Haisch, Carl; Verbanac, Kathryn
2008-09-01
Quantitative real-time PCR (qPCR) is a sensitive technique for the detection and quantitation of specific DNA sequences. Here we describe a Taqman qPCR assay for quantification of tissue-localized, adoptively transferred enhanced green fluorescent protein (EGFP)-transgenic cells. A standard curve constructed from serial dilutions of a plasmid containing the EGFP transgene was (i) highly reproducible, (ii) detected as few as two copies, and (iii) was included in each qPCR assay. qPCR analysis of genomic DNA was used to determine transgene copy number in several mouse strains. Fluorescent microscopy of tissue sections showed that adoptively transferred vascular endothelial cells (VEC) from EGFP-transgenic mice specifically localized to tissue with metastatic tumors in syngeneic recipients. VEC microscopic enumeration of liver metastases strongly correlated with qPCR analysis of identical sections (Pearson correlation 0.81). EGFP was undetectable in tissue from control mice by qPCR. In another study using intra-tumor EGFP-VEC delivery to subcutaneous tumors, manual cell count and qPCR analysis of alternating sections also strongly correlated (Pearson correlation 0.82). Confocal microscopy of the subcutaneous tumor sections determined that visual fluorescent signals were frequently tissue artifacts. This qPCR methodology offers specific, objective, and rapid quantitation, uncomplicated by tissue autofluorescence, and should be readily transferable to other in vivo models to quantitate the biolocalization of transplanted cells.
Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S
2017-06-01
Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P < 0.05) lower than vital stain and PMA-qPCR methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.
A newly developed integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method and its applicability in UV disinfection studies is described. This method utilizes a singular cell culture system coupled with four RTqPCR assays to detect infectious serotypes t...
Abdeldaim, G; Herrmann, B; Korsgaard, J; Olcén, P; Blomberg, J; Strålin, K
2009-06-01
The pneumolysin (ply) gene is widely used as a target in PCR assays for Streptococcus pneumoniae in respiratory secretions. However, false-positive results with conventional ply-based PCR have been reported. The aim here was to study the performance of a quantitative ply-based PCR for the identification of pneumococcal lower respiratory tract infection (LRTI). In a prospective study, fibreoptic bronchoscopy was performed in 156 hospitalized adult patients with LRTI and 31 controls who underwent bronchoscopy because of suspicion of malignancy. Among the LRTI patients and controls, the quantitative ply-based PCR applied to bronchoalveolar lavage (BAL) fluid was positive at >or=10(3) genome copies/mL in 61% and 71% of the subjects, at >or=10(5) genome copies/mL in 40% and 58% of the subjects, and at >or=10(7) genome copies/mL in 15% and 3.2% of the subjects, respectively. Using BAL fluid culture, blood culture, and/or a urinary antigen test, S. pneumoniae was identified in 19 LRTI patients. As compared with these diagnostic methods used in combination, quantitative ply-based PCR showed sensitivities and specificities of 89% and 43% at a cut-off of 10(3) genome copies/mL, of 84% and 66% at a cut-off of 10(5) genome copies/mL, and of 53% and 90% at a cut-off of 10(7) genome copies/mL, respectively. In conclusion, a high cut-off with the quantitative ply-based PCR was required to reach acceptable specificity. However, as a high cut-off resulted in low sensitivity, quantitative ply-based PCR does not appear to be clinically useful. Quantitative PCR methods for S. pneumoniae using alternative gene targets should be evaluated.
Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A
2014-12-01
Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.
Gu, Z.; Sam, S. S.; Sun, Y.; Tang, L.; Pounds, S.; Caliendo, A. M.
2016-01-01
A potential benefit of digital PCR is a reduction in result variability across assays and platforms. Three sets of PCR reagents were tested on two digital PCR systems (Bio-Rad and RainDance), using three different sets of PCR reagents for quantitation of cytomegalovirus (CMV). Both commercial quantitative viral standards and 16 patient samples (n = 16) were tested. Quantitative accuracy (compared to nominal values) and variability were determined based on viral standard testing results. Quantitative correlation and variability were assessed with pairwise comparisons across all reagent-platform combinations for clinical plasma sample results. The three reagent sets, when used to assay quantitative standards on the Bio-Rad system, all showed a high degree of accuracy, low variability, and close agreement with one another. When used on the RainDance system, one of the three reagent sets appeared to have a much better correlation to nominal values than did the other two. Quantitative results for patient samples showed good correlation in most pairwise comparisons, with some showing poorer correlations when testing samples with low viral loads. Digital PCR is a robust method for measuring CMV viral load. Some degree of result variation may be seen, depending on platform and reagents used; this variation appears to be greater in samples with low viral load values. PMID:27535685
Poltev, V I; Anisimov, V M; Sanchez, C; Deriabina, A; Gonzalez, E; Garcia, D; Rivas, F; Polteva, N A
2016-01-01
It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex. We found that directionality of the sugar-phosphate backbone and the preferable ranges of its torsion angles, combined with the difference between purines and pyrimidines. in ring bases, define the dependence of three-dimensional structure of the Watson-Crick duplex on nucleotide base sequence. In this work, we extended these density functional theory computations to the minimal' fragments of DNA duplex, complementary desoxydinucleoside monophosphates complexes with Na-ions. Using several computational methods and various functionals, we performed a search for energy minima of BI-conformation for complementary desoxydinucleoside monophosphates complexes with different nucleoside sequences. Two sequences are optimized using ab initio method at the MP2/6-31++G** level of theory. The analysis of torsion angles, sugar ring puckering and mutual base positions of optimized structures demonstrates that the conformational characteristic features of complementary desoxydinucleoside monophosphates complexes with Na-ions remain within BI ranges and become closer to the corresponding characteristic features of the Watson-Crick duplex crystals. Qualitatively, the main characteristic features of each studied complementary desoxydinucleoside monophosphates complex remain invariant when different computational methods are used, although the quantitative values of some conformational parameters could vary lying within the limits typical for the corresponding family. We observe that popular functionals in density functional theory calculations lead to the overestimated distances between base pairs, while MP2 computations and the newer complex functionals produce the structures that have too close atom-atom contacts. A detailed study of some complementary desoxydinucleoside monophosphate complexes with Na-ions highlights the existence of several energy minima corresponding to BI-conformations, in other words, the complexity of the relief pattern of the potential energy surface of complementary desoxydinucleoside monophosphate complexes. This accounts for variability of conformational parameters of duplex fragments with the same base sequence. Popular molecular mechanics force fields AMBER and CHARMM reproduce most of the conformational characteristics of desoxydinucleoside monophosphates and their complementary complexes with Na-ions but fail to reproduce some details of the dependence of the Watson-Crick duplex conformation on the nucleotide sequence.
Müller, Norbert; Vonlaufen, Nathalie; Gianinazzi, Christian; Leib, Stephen L.; Hemphill, Andrew
2002-01-01
The previously described Nc5-specific PCR test for the diagnosis of Neospora caninum infections was used to develop a quantitative PCR assay which allows the determination of infection intensities within different experimental and diagnostic sample groups. The quantitative PCR was performed by using a dual fluorescent hybridization probe system and the LightCycler Instrument for online detection of amplified DNA. This assay was successfully applied for demonstrating the parasite proliferation kinetics in organotypic slice cultures of rat brain which were infected in vitro with N. caninum tachyzoites. This PCR-based method of parasite quantitation with organotypic brain tissue samples can be regarded as a novel ex vivo approach for exploring different aspects of cerebral N. caninum infection. PMID:11773124
Chen, Yue-yue; Peng, Zhi-lan; Liu, Shan-ling; He, Bing; Hu, Min
2007-06-01
To establish a method of using real-time fluorescence quantitative PCR and RT-PCR to detect the E6 and E7 genes of human papillomavirus type 16 (HPV-16). Plasmids containing HPV-16 E6 or E7 were used to generate absolute standard curves. Three cervical carcinoma cell lines CaSki, SiHa and HeLa were tested by real-time fluorescence quantitative PCR and RT-PCR analyses for the expressions of HPV-16 E6 and E7. The correlation coefficients of standard curves were larger than 0. 99, and the PCR efficiency was more than 90%. The relative levels of HPV-16 E6 and E7 DNA and RNA were CaSki>SiHa>HeLa cell. HPV-16 E6 and E7 quantum by real-time fluorescence quantitative PCR and RT-PCR analyses may serve as a reliable and sensitive tool. This study provides the possibility of further researches on the relationship between HPV-16 E6 or E7 copy number and cervical carcinoma.
Costa, Pedro; Ferreira, Ana S; Amaro, Ana; Albuquerque, Teresa; Botelho, Ana; Couto, Isabel; Cunha, Mónica V; Viveiros, Miguel; Inácio, João
2013-01-01
Bovine tuberculosis has been tackled for decades by costly eradication programs in most developed countries, involving the laboratory testing of tissue samples from allegedly infected animals for detection of Mycobacterium tuberculosis complex (MTC) members, namely Mycobacterium bovis. Definitive diagnosis is usually achieved by bacteriological culture, which may take up to 6-12 weeks, during which the suspect animal carcass and herd are under sanitary arrest. In this work, a user-friendly DNA extraction protocol adapted for tissues was coupled with an IS6110-targeted semi-nested duplex real-time PCR assay to enhance the direct detection of MTC bacteria in animal specimens, reducing the time to achieve a diagnosis and, thus, potentially limiting the herd restriction period. The duplex use of a novel β-actin gene targeted probe, with complementary targets in most mammals, allowed the assessment of amplification inhibitors in the tissue samples. The assay was evaluated with a group of 128 fresh tissue specimens collected from bovines, wild boars, deer and foxes. Mycobacterium bovis was cultured from 57 of these samples. Overall, the full test performance corresponds to a diagnostic sensitivity and specificity of 98.2% (CIP95% 89.4-99.9%) and 88.7% (CIP95% 78.5-94.7%), respectively. An observed kappa coefficient was estimated in 0.859 (CI P95% 0.771-0.948) for the overall agreement between the semi-nested PCR assay and the bacteriological culture. Considering only bovine samples (n = 69), the diagnostic sensitivity and specificity were estimated in 100% (CIP95% 84.0-100%) and 97.7% (CIP95% 86.2-99.9%), respectively. Eight negative culture samples exhibiting TB-like lesions were detected by the semi-nested real-time PCR, thus emphasizing the increased potential of this molecular approach to detect MTC-infected animal tissues. This novel IS6110-targeted assay allows the fast detection of tuberculous mycobacteria in animal specimens with very high sensitivity and specificity, being amenable and cost effective for use in the routine veterinary diagnostic laboratory with further automation possibilities.
USDA-ARS?s Scientific Manuscript database
Quantitative PCR (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5’-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi, the soybean rust pathogen. Because of the extreme sensitivity of Q-PCR, the DNA of a single u...
Ahberg, Christian D.; Manz, Andreas; Neuzil, Pavel
2015-01-01
Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio. PMID:26088868
Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali
2012-03-01
Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.
Scherrer, Simone; Frei, Daniel; Wittenbrink, Max Michael
2016-12-01
Progressive atrophic rhinitis (PAR) in pigs is caused by toxigenic Pasteurella multocida. In Switzerland, PAR is monitored by selective culture of nasal swabs and subsequent polymerase chain reaction (PCR) screening of bacterial colonies for the P. multocida toxA gene. A panel of 203 nasal swabs from a recent PAR outbreak were used to evaluate a novel quantitative real-time PCR for toxigenic P. multocida in porcine nasal swabs. In comparison to the conventional PCR with a limit of detection of 100 genome equivalents per PCR reaction, the real-time PCR had a limit of detection of 10 genome equivalents. The real-time PCR detected toxA-positive P. multocida in 101 samples (49.8%), whereas the conventional PCR was less sensitive with 90 toxA-positive samples (44.3%). In comparison to the real-time PCR, 5.4% of the toxA-positive samples revealed unevaluable results by conventional PCR. The approach of culture-coupled toxA PCR for the monitoring of PAR in pigs is substantially improved by a novel quantitative real-time PCR.
Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng
2016-12-01
This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.
Evolution of cooperation under social pressure in multiplex networks
NASA Astrophysics Data System (ADS)
Pereda, María
2016-09-01
In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.
Zhang, Hui; Yang, Yin; Dong, Huilei; Cai, Chenxin
2016-12-15
DNA methyltransferase (MTase) activity is highly correlated with the occurrence and development of cancer. This work reports a superstructure-based electrochemical assay for signal-amplified detection of DNA MTase activity using M.SssI as an example. First, low-density coverage of DNA duplexes on the surface of the gold electrode was achieved by immobilized mercaptohexanol, followed by immobilization of DNA duplexes. The duplex can be cleaved by BstUI endonuclease in the absence of DNA superstructures. However, the cleavage is blocked after the DNA is methylated by M.SssI. The DNA superstructures are formed with the addition of helper DNA. By using an electroactive complex, RuHex, which can bind to DNA double strands, the activity of M.SssI can be quantitatively detected by differential pulse voltammetry. Due to the high site-specific cleavage by BstUI and signal amplification by the DNA superstructure, the biosensor can achieve ultrasensitive detection of DNA MTase activity down to 0.025U/mL. The method can be used for evaluation and screening of the inhibitors of MTase, and thus has potential in the discovery of methylation-related anticancer drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Evolution of cooperation under social pressure in multiplex networks.
Pereda, María
2016-09-01
In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.
Interlaboratory Comparison of Quantitative PCR Test Results for Dehalococcoides
Quantitative PCR (qPCR) techniques have been widely used to measure Dehalococcoides (Dhc) DNA in the groundwater at field sites for several years. Interpretation of these data may be complicated when different laboratories using alternate methods conduct the analysis. An...
Human fecal source identification with real-time quantitative PCR
Waterborne diseases represent a significant public health risk worldwide, and can originate from contact with water contaminated with human fecal material. We describe a real-time quantitative PCR (qPCR) method that targets a Bacteroides dori human-associated genetic marker for...
Caliendo, A M; St George, K; Kao, S Y; Allega, J; Tan, B H; LaFontaine, R; Bui, L; Rinaldo, C R
2000-06-01
The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients.
Caliendo, Angela M.; St. George, Kirsten; Kao, Shaw-Yi; Allega, Jessica; Tan, Ban-Hock; LaFontaine, Robert; Bui, Larry; Rinaldo, Charles R.
2000-01-01
The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients. PMID:10834964
The U.S. EPA is currently evaluating rapid, real-time quantitative PCR (qPCR) methods for determining recreational water quality based on measurements of fecal indicator bacteria DNA sequences. In order to potentially use qPCR for other Clean Water Act needs, such as updating cri...
Targeting GPR30 in Abiraterone and MDV3100 Resistant Prostate Cancer
2017-12-01
ID Labs, London, ON, Canada) following the manufacturer’s protocols. Quantitative real- time PCR Total RNA was treated with RNase-free DNase (Qiagen...99-gene panel for confirmation based on a literature search showing their relatedness to cell-mediated immune responses. Quantitative real- time PCR...mouse neutrophils (Geiser et al. 1993, Schaider et al. 2003), we analyzed murine neutrophil-related cytokine genes using quantitative real- time PCR
Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals.
Berrada, H; Soriano, J M; Mañes, J; Picó, Y
2006-01-01
Staphylococcus aureus is considered the second most common pathogen to cause outbreaks of food poisoning, exceeded only by Campylobacter. Consumption of foods containing this microorganism is often identified as the cause of illness. In this study, a rapid, reliable, and sensitive real-time quantitative PCR was developed and compared with conventional culture methods. Real-time quantitative PCR was carried out by purifying DNA extracts of S. aureus with a Staphylococcus sample preparation kit and quantifying it in the LightCycler system with hybridization probes. The assay was linear from a range of 10 to 10(6) S. aureus cells (r2 > 0.997). The PCR reaction presented an efficiency of >85%. Accuracy of the PCR-based assay, expressed as percent bias, was around 13%, and the precision, expressed as a percentage of the coefficient of variation, was 7 to 10%. Intraday and interday variability were studied at 10(2) CFU/g and was 12 and 14%, respectively. The proposed method was applied to the analysis of 77 samples of restaurant meals in Valencia (Spain). In 11.6% of samples S. aureus was detected by real-time quantitative PCR, as well as by the conventional microbiological method. An excellent correspondence between real-time quantitative PCR and microbiological numbers (CFU/g) was observed with deviations of < 28%.
Jiang, Lingxi; Yang, Litao; Rao, Jun; Guo, Jinchao; Wang, Shu; Liu, Jia; Lee, Seonghun; Zhang, Dabing
2010-02-01
To implement genetically modified organism (GMO) labeling regulations, an event-specific analysis method based on the junction sequence between exogenous integration and host genomic DNA has become the preferential approach for GMO identification and quantification. In this study, specific primers and TaqMan probes based on the revealed 5'-end junction sequence of GM cotton MON15985 were designed, and qualitative and quantitative polymerase chain reaction (PCR) assays were established employing the designed primers and probes. In the qualitative PCR assay, the limit of detection (LOD) was 0.5 g kg(-1) in 100 ng total cotton genomic DNA, corresponding to about 17 copies of haploid cotton genomic DNA, and the LOD and limit of quantification (LOQ) for quantitative PCR assay were 10 and 17 copies of haploid cotton genomic DNA, respectively. Furthermore, the developed quantitative PCR assays were validated in-house by five different researchers. Also, five practical samples with known GM contents were quantified using the developed PCR assay in in-house validation, and the bias between the true and quantification values ranged from 2.06% to 12.59%. This study shows that the developed qualitative and quantitative PCR methods are applicable for the identification and quantification of GM cotton MON15985 and its derivates.
Digital Assays Part I: Partitioning Statistics and Digital PCR.
Basu, Amar S
2017-08-01
A digital assay is one in which the sample is partitioned into many small containers such that each partition contains a discrete number of biological entities (0, 1, 2, 3, …). A powerful technique in the biologist's toolkit, digital assays bring a new level of precision in quantifying nucleic acids, measuring proteins and their enzymatic activity, and probing single-cell genotypes and phenotypes. Part I of this review begins with the benefits and Poisson statistics of partitioning, including sources of error. The remainder focuses on digital PCR (dPCR) for quantification of nucleic acids. We discuss five commercial instruments that partition samples into physically isolated chambers (cdPCR) or droplet emulsions (ddPCR). We compare the strengths of dPCR (absolute quantitation, precision, and ability to detect rare or mutant targets) with those of its predecessor, quantitative real-time PCR (dynamic range, larger sample volumes, and throughput). Lastly, we describe several promising applications of dPCR, including copy number variation, quantitation of circulating tumor DNA and viral load, RNA/miRNA quantitation with reverse transcription dPCR, and library preparation for next-generation sequencing. This review is intended to give a broad perspective to scientists interested in adopting digital assays into their workflows. Part II focuses on digital protein and cell assays.
Complementary techniques: validation of gene expression data by quantitative real time PCR.
Provenzano, Maurizio; Mocellin, Simone
2007-01-01
Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.
Molecular diagnosis of malaria by photo-induced electron transfer fluorogenic primers: PET-PCR.
Lucchi, Naomi W; Narayanan, Jothikumar; Karell, Mara A; Xayavong, Maniphet; Kariuki, Simon; DaSilva, Alexandre J; Hill, Vincent; Udhayakumar, Venkatachalam
2013-01-01
There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs.
Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan (trademark)) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glab...
A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...
Sharma, Nidhi; Hoshika, Shuichi; Hutter, Daniel; Bradley, Kevin M; Benner, Steven A
2014-10-13
Recombinase polymerase amplification (RPA) is an isothermal method to amplify nucleic acid sequences without the temperature cycling that classical PCR uses. Instead of using heat to denature the DNA duplex, RPA uses recombination enzymes to swap single-stranded primers into the duplex DNA product; these are then extended using a strand-displacing polymerase to complete the cycle. Because RPA runs at low temperatures, it never forces the system to recreate base-pairs following Watson-Crick rules, and therefore it produces undesired products that impede the amplification of the desired product, complicating downstream analysis. Herein, we show that most of these undesired side products can be avoided if the primers contain components of a self-avoiding molecular recognition system (SAMRS). Given the precision that is necessary in the recombination systems for them to function biologically, it is surprising that they accept SAMRS. SAMRS-RPA is expected to be a powerful tool within the range of amplification techniques available to scientists. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method ...
Monochloramine disinfection kinetics were determined for the pure culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture independent methods: (1) LIVE/DEAD® BacLight™ (LD) and (2) propidium monoazide quantitative PCR (PMA-qPCR). Both methods were f...
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...
There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...
Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....
There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...
USDA-ARS?s Scientific Manuscript database
Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize the viru...
Ismail, M; Bokaee, S; Davies, J; Harrington, K J; Pandha, H
2009-01-01
Aquaporins (AQPs) are intrinsic membrane proteins that facilitate selective water and small solute movement across the plasma membrane. In this study, we investigate the role of inhibiting AQPs in sensitising prostate cancer cells to cryotherapy. PC-3 and DU145 prostate cancer cells were cooled to 0, −5 and −10°C. The expression of AQP3 in response to freezing was determined using real-time quantitative polymerase chain reaction (RT–qPCR) and western blot analysis. Aquaporins were inhibited using mercuric chloride (HgCl2) and small interfering RNA (siRNA) duplex, and cell survival was assessed using a colorimetric assay. There was a significant increase in AQP3 expression in response to freezing. Cells treated with AQP3 siRNA were more sensitive to cryoinjury compared with control cells (P<0.001). Inhibition of the AQPs by HgCl2 also increased the sensitivity of both cell lines to cryoinjury and there was a complete loss of cell viability at −10°C (P<0.01). In conclusion, we have shown that AQP3 is involved directly in cryoinjury. Inhibition of AQP3 increases the sensitivity of prostate cancer cells to freezing. This strategy may be exploited in the clinic to improve the efficacy of prostate cryotherapy. PMID:19513079
Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Uehara, Masayuki; Sugano, Mitsutoshi; Okumura, Nobuo; Honda, Takayuki
2015-05-20
Chimerism analysis is important for the evaluation of engraftment and predicting relapse following hematopoietic stem cell transplantation (HSCT). We developed a chimerism analysis for single nucleotide polymorphisms (SNPs), including rapid screening of the discriminable donor/recipient alleles using droplet allele-specific PCR (droplet-AS-PCR) pre-HSCT and quantitation of recipient DNA using AS-quantitative PCR (AS-qPCR) following HSCT. SNP genotyping of 20 donor/recipient pairs via droplet-AS-PCR and the evaluation of the informativity of 5 SNP markers for chimerism analysis were performed. Samples from six follow-up patients were analyzed to assess the chimerism via AS-qPCR. These results were compared with that determined by short tandem repeat PCR (STR-PCR). Droplet-AS-PCR could determine genotypes within 8min. The total informativity using all 5 loci was 95% (19/20). AS-qPCR provided the percentage of recipient DNA in all 6 follow-up patients without influence of the stutter peak or the amplification efficacy, which affected the STR-PCR results. The droplet-AS-PCR had an advantage over STR-PCR in terms of rapidity and simplicity for screening before HSCT. Furthermore, AS-qPCR had better accuracy than STR-PCR for quantification of recipient DNA following HSCT. The present chimerism assay compensates for the disadvantages of STR-PCR and is readily performable in clinical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.
Jaffer, Usman; Normahani, Pasha; Singh, Prashant; Aslam, Mohammed; Standfield, Nigel J
2015-01-01
In vascular surgery, duplex ultrasonography is a valuable diagnostic tool in patients with peripheral vascular disease, and there is increasing demand for vascular surgeons to be able to perform duplex scanning. This study evaluates the role of a novel simulation training package on vascular ultrasound (US) skill acquisition. A total of 19 novices measured predefined stenosis in a simulated pulsatile vessel using both peak systolic velocity ratio (PSVR) and diameter reduction (DR) methods before and after a short period of training using a simulated training package. The training package consisted of a simulated pulsatile vessel phantom, a set of instructional videos, duplex ultrasound objective structured assessment of technical skills (DUOSATS) tool, and a portable US scanner. Quantitative metrics (procedure time, percentage error using PSVR and DR methods, DUOSAT scores, and global rating scores) before and after training were compared. Subjects spent a median time of 144 mins (IQR: 60-195) training using the simulation package. Subjects exhibited statistically significant improvements when comparing pretraining and posttraining DUOSAT scores (pretraining = 17 [16-19.3] vs posttraining = 30 [27.8-31.8]; p < 0.01), global rating score (pretraining = 1 [1-2] vs posttraining = 4 [3.8-4]; p < 0.01), percentage error using both the DR (pretraining = 12.6% [9-29.6] vs posttraining = 10.3% [8.9-11.1]; p = 0.03) and PSVR (pretraining = 60% [40-60] vs posttraining = 20% [6.7-20]; p < 0.01) methods. In this study, subjects with no previous practical US experience developed the ability to both acquire and interpret arterial duplex images in a pulsatile simulated phantom following a short period of goal direct training using a simulation training package. A simulation training package may be a valuable tool for integration into a vascular training program. However, further work is needed to explore whether these newly attained skills are translated into clinical assessment. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
One step screening of retroviral producer clones by real time quantitative PCR.
Towers, G J; Stockholm, D; Labrousse-Najburg, V; Carlier, F; Danos, O; Pagès, J C
1999-01-01
Recombinant retroviruses are obtained from either stably or transiently transfected retrovirus producer cells. In the case of stably producing lines, a large number of clones must be screened in order to select the one with the highest titre. The multi-step selection of high titre producing clones is time consuming and expensive. We have taken advantage of retroviral endogenous reverse transcription to develop a quantitative PCR assay on crude supernatant from producing clones. We used Taqman PCR technology, which, by using fluorescence measurement at each cycle of amplification, allows PCR product quantification. Fluorescence results from specific degradation of a probe oligonucleotide by the Taq polymerase 3'-5' exonuclease activity. Primers and probe sequences were chosen to anneal to the viral strong stop species, which is the first DNA molecule synthesised during reverse transcription. The protocol consists of a single real time PCR, using as template filtered viral supernatant without any other pre-treatment. We show that the primers and probe described allow quantitation of serially diluted plasmid to as few as 15 plasmid molecules. We then test 200 GFP-expressing retroviral-producing clones either by FACS analysis of infected cells or by using the quantitative PCR. We confirm that the Taqman protocol allows the detection of virus in supernatant and selection of high titre clones. Furthermore, we can determine infectious titre by quantitative PCR on genomic DNA from infected cells, using an additional set of primers and probe to albumin to normalise for the genomic copy number. We demonstrate that real time quantitative PCR can be used as a powerful and reliable single step, high throughput screen for high titre retroviral producer clones.
Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F
2016-08-03
Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.
There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method p...
USDA-ARS?s Scientific Manuscript database
Quantitative PCR (qPCR) can be used to detect and monitor pathogen colonization, but early attempts to apply the technology to quiescent Botrytis cinerea infections of grape berries identified some specific limitations. In this study, four DNA extraction methods, two tissue-grinding methods, two gra...
Human fecal pollution of recreational waters remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality research and manag...
Molecular detection methods such as PCR have been extensively used to type Cryptosporidium oocysts detected in the environment. More recently, studies have developed quantitative real-time PCR assays for detection and quantification of microbial contaminants in water as well as ...
Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...
Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...
The Salt Creek watershed in northwest Indiana drains into Lake Michigan near several heavily used recreational beaches. This study aimed to investigate the levels of fecal indicator bacteria, enterococci and Bacteroidales, in Salt Creek using real-time quantitative PCR (qPCR) an...
Neutron-Encoded Protein Quantification by Peptide Carbamylation
NASA Astrophysics Data System (ADS)
Ulbrich, Arne; Merrill, Anna E.; Hebert, Alexander S.; Westphall, Michael S.; Keller, Mark P.; Attie, Alan D.; Coon, Joshua J.
2014-01-01
We describe a chemical tag for duplex proteome quantification using neutron encoding (NeuCode). The method utilizes the straightforward, efficient, and inexpensive carbamylation reaction. We demonstrate the utility of NeuCode carbamylation by accurately measuring quantitative ratios from tagged yeast lysates mixed in known ratios and by applying this method to quantify differential protein expression in mice fed a either control or high-fat diet.
Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee
2011-01-01
Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089
Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay
Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming
2011-01-01
Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997
Targeting neuroendocrine differentiation for prostate cancer radiosensitization
2017-12-01
Secondary HRP-conjugated antibodies were purchased fromGEHealthcare UK Ltd. (Buckinghamshire, UK). 2.5. RNA isolation and quantitative real- time PCR (qRT...gene expression data using real- time quantitative PCR and the 2(-Delta Delta C(T))Method,Methods 25 (2001) 402–408. [47] T.K. Kelly, T.B. Miranda, G...relative gene expression data using real- time quantitative PCR and the 2(−Delta Delta C(T)) method, Methods 25 (2001) 402–408. [37] J. Ren, L. Wen, X
Quantitative polymerase chain reaction (qPCR) is increasingly being used for the quantitative detection of fecal indicator bacteria in beach water. QPCR allows for same-day health warnings, and its application is being considered as an optionn for recreational water quality testi...
Detection of unculturable bacteria in periodontal health and disease by PCR.
Harper-Owen, R; Dymock, D; Booth, V; Weightman, A J; Wade, W G
1999-05-01
Recently developed molecular methods have made it possible to characterize mixed microflora in their entirety, including the substantial numbers of bacteria which do not grow on artificial culture media. In a previous study, molecular analysis of the microflora associated with acute oral infections resulted in the identification of three phylotypes, PUS3.42, PUS9.170, and PUS9.180, representing as-yet-uncultured organisms. The aim of this study was to design and validate specific PCR primers for these phylotypes and to determine their incidences in samples collected from healthy and diseased periodontal tissues. Two specific reverse primers were devised for each phylotype, and these were used in duplex PCRs with universal forward and reverse primers. All three phylotypes were detected in periodontal sites; PUS9.170, related to oral asaccharolytic Eubacterium spp., was significantly associated with disease. This study demonstrates the possibility of using unculturable, and therefore uncharacterized, organisms as markers of disease.
Tian, Hui; Sun, Yuanyuan; Liu, Chenghui; Duan, Xinrui; Tang, Wei; Li, Zhengping
2016-12-06
MicroRNA (miRNA) analysis in a single cell is extremely important because it allows deep understanding of the exact correlation between the miRNAs and cell functions. Herein, we wish to report a highly sensitive and precisely quantitative assay for miRNA detection based on ligation-based droplet digital polymerase chain reaction (ddPCR), which permits the quantitation of miRNA in a single cell. In this ligation-based ddPCR assay, two target-specific oligonucleotide probes can be simply designed to be complementary to the half-sequence of the target miRNA, respectively, which avoids the sophisticated design of reverse transcription and provides high specificity to discriminate a single-base difference among miRNAs with simple operations. After the miRNA-templated ligation, the ddPCR partitions individual ligated products into a water-in-oil droplet and digitally counts the fluorescence-positive and negative droplets after PCR amplification for quantification of the target molecules, which possesses the power of precise quantitation and robustness to variation in PCR efficiency. By integrating the advantages of the precise quantification of ddPCR and the simplicity of the ligation-based PCR, the proposed method can sensitively measure let-7a miRNA with a detection limit of 20 aM (12 copies per microliter), and even a single-base difference can be discriminated in let-7 family members. More importantly, due to its high selectivity and sensitivity, the proposed method can achieve precise quantitation of miRNAs in single-cell lysate. Therefore, the ligation-based ddPCR assay may serve as a useful tool to exactly reveal the miRNAs' actions in a single cell, which is of great importance for the study of miRNAs' biofunction as well as for the related biomedical studies.
Francesconi, Andrea; Kasai, Miki; Petraitiene, Ruta; Petraitis, Vidmantas; Kelaher, Amy M.; Schaufele, Robert; Hope, William W.; Shea, Yvonne R.; Bacher, John; Walsh, Thomas J.
2006-01-01
Bronchoalveolar lavage (BAL) is widely used for evaluation of patients with suspected invasive pulmonary aspergillosis (IPA). However, the diagnostic yield of BAL for detection of IPA by culture and direct examination is limited. Earlier diagnosis may be facilitated by assays that can detect Aspergillus galactomannan antigen or DNA in BAL fluid. We therefore characterized and compared the diagnostic yields of a galactomannan enzyme immunoassay (GM EIA), quantitative real-time PCR (qPCR), and quantitative cultures in experiments using BAL fluid from neutropenic rabbits with experimentally induced IPA defined as microbiologically and histologically evident invasion. The qPCR assay targeted the rRNA gene complex of Aspergillus fumigatus. The GM EIA and qPCR assay were characterized by receiver operator curve analysis. With an optimal cutoff of 0.75, the GM EIA had a sensitivity and specificity of 100% in untreated controls. A decline in sensitivity (92%) was observed when antifungal therapy (AFT) was administered. The optimal cutoff for qPCR was a crossover of 36 cycles, with sensitivity and specificity of 80% and 100%, respectively. The sensitivity of qPCR also decreased with AFT to 50%. Quantitative culture of BAL had a sensitivity of 46% and a specificity of 100%. The sensitivity of quantitative culture decreased with AFT to 16%. The GM EIA and qPCR assay had greater sensitivity than culture in detection of A. fumigatus in BAL fluid in experimentally induced IPA (P ± 0.04). Use of the GM EIA and qPCR assay in conjunction with culture-based diagnostic methods applied to BAL fluid could facilitate accurate diagnosis and more-timely initiation of specific therapy. PMID:16825367
Texture evolution and their effects on the mechanical properties of duplex Mg-Li alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yun; Zhang, Lehao; Wang, Hongtao
Texture evolution is strongly dependent on the deformation mode during thermo-mechanical treatments. In this paper, we report the texture evolution in a duplex Mg-Li alloy. The results provide an evidence of deformation mode transition in the hexagonal-close-packed (hcp) alpha phase with various thickness reductions. The activation sequence of deformation modes is basal slip first, and then pyramidal slip during hot-rolling to a thickness reduction of 40%. The relative activity of slip decreases with further thickness reduction. After annealing, basal texture is strengthened and pyramidal component disappears due to static recrystallization and grain growth. The microstructure, specifically texture evolution in bothmore » hcp alpha and body-centered cubic (bcc) beta phase and their effects on mechanical properties are quantitatively analyzed and assessed. (C) 2016 Elsevier B.V. All rights reserved.« less
Texture evolution and their effects on the mechanical properties of duplex Mg-Li alloy
Zou, Yun; Zhang, Lehao; Wang, Hongtao; ...
2016-01-27
Texture evolution is strongly dependent on the deformation mode during thermo-mechanical treatments. In this paper, we report the texture evolution in a duplex Mg-Li alloy. The results provide an evidence of deformation mode transition in the hexagonal-close-packed (hcp) alpha phase with various thickness reductions. The activation sequence of deformation modes is basal slip first, and then pyramidal slip during hot-rolling to a thickness reduction of 40%. The relative activity of slip decreases with further thickness reduction. After annealing, basal texture is strengthened and pyramidal component disappears due to static recrystallization and grain growth. The microstructure, specifically texture evolution in bothmore » hcp alpha and body-centered cubic (bcc) beta phase and their effects on mechanical properties are quantitatively analyzed and assessed. (C) 2016 Elsevier B.V. All rights reserved.« less
Frølund, Maria; Björnelius, Eva; Lidbrink, Peter; Ahrens, Peter; Jensen, Jørgen Skov
2014-01-01
A novel multiplex quantitative real-time polymerase chain reaction (qPCR) for simultaneous detection of U. urealyticum and U. parvum was developed and compared with quantitative culture in Shepard's 10 C medium for ureaplasmas in urethral swabs from 129 men and 66 women, and cervical swabs from 61 women. Using culture as the gold standard, the sensitivity of the qPCR was 96% and 95% for female urethral and cervical swabs, respectively. In male urethral swabs the sensitivity was 89%. The corresponding specificities were 100%, 87% and 99%. The qPCR showed a linear increasing DNA copy number with increasing colour-changing units. Although slightly less sensitive than culture, this multiplex qPCR assay detecting U. urealyticum and U. parvum constitutes a simple and fast alternative to the traditional methods for identification of ureaplasmas and allows simultaneous species differentiation and quantitation in clinical samples. Furthermore, specimens overgrown by other bacteria using the culture method can be evaluated in the qPCR.
2015-01-01
DNA oxidation by reactive oxygen species is nonrandom, potentially leading to accumulation of nucleobase damage and mutations at specific sites within the genome. We now present the first quantitative data for sequence-dependent formation of structurally defined oxidative nucleobase adducts along p53 gene-derived DNA duplexes using a novel isotope labeling-based approach. Our results reveal that local nucleobase sequence context differentially alters the yields of 2,2,4-triamino-2H-oxal-5-one (Z) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (OG) in double stranded DNA. While both lesions are overproduced within endogenously methylated MeCG dinucleotides and at 5′ Gs in runs of several guanines, the formation of Z (but not OG) is strongly preferred at solvent-exposed guanine nucleobases at duplex ends. Targeted oxidation of MeCG sequences may be caused by a lowered ionization potential of guanine bases paired with MeC and the preferential intercalation of riboflavin photosensitizer adjacent to MeC:G base pairs. Importantly, some of the most frequently oxidized positions coincide with the known p53 lung cancer mutational “hotspots” at codons 245 (GGC), 248 (CGG), and 158 (CGC) respectively, supporting a possible role of oxidative degradation of DNA in the initiation of lung cancer. PMID:24571128
How to Combine ChIP with qPCR.
Asp, Patrik
2018-01-01
Chromatin immunoprecipitation (ChIP) coupled with quantitative PCR (qPCR) has in the last 15 years become a basic mainstream tool in genomic research. Numerous commercially available ChIP kits, qPCR kits, and real-time PCR systems allow for quick and easy analysis of virtually anything chromatin-related as long as there is an available antibody. However, the highly accurate quantitative dimension added by using qPCR to analyze ChIP samples significantly raises the bar in terms of experimental accuracy, appropriate controls, data analysis, and data presentation. This chapter will address these potential pitfalls by providing protocols and procedures that address the difficulties inherent in ChIP-qPCR assays.
Singh, R P; Nie, X; Singh, M; Coffin, R; Duplessis, P
2002-01-01
Phenolic compounds from plant tissues inhibit reverse transcription-polymerase chain reaction (RT-PCR). Multiple-step protocols using several additives to inhibit polyphenolic compounds during nucleic acid extraction are common, but time consuming and laborious. The current research highlights that the inclusion of 0.65 to 0.70% of sodium sulphite in the extraction buffer minimizes the pigmentation of nucleic acid extracts and improves the RT-PCR detection of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in potato (Solanum tuberosum) tubers and Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) in leaves and bark in the sweet cherry (Prunus avium) tree. Substituting sodium sulphite in the nucleic acid extraction buffer eliminated the use of proteinase K during extraction. Reagents phosphate buffered saline (PBS)-Tween 20 and polyvinylpyrrolidone (PVP) were also no longer required during RT or PCR phase. The resultant nucleic acid extracts were suitable for both duplex and multiplex RT-PCR. This simple and less expensive nucleic acid extraction protocol has proved very effective for potato cv. Russet Norkotah, which contains a high amount of polyphenolics. Comparing commercially available RNA extraction kits (Catrimox and RNeasy), the sodium sulphite based extraction protocol yielded two to three times higher amounts of RNA, while maintaining comparable virus detection by RT-PCR. The sodium sulphite based extraction protocol was equally effective in potato tubers, and in leaves and bark from the cherry tree.
USDA-ARS?s Scientific Manuscript database
Accurate identification and quantification of Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, within root tissue and soil are important tasks. Several quantitative PCR (qPCR) assays have been developed but there are no reports comparing their use in sensitive and specific...
Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...
Soejima, Mikiko; Tsuchiya, Yuji; Egashira, Kouichi; Kawano, Hiroyuki; Sagawa, Kimitaka; Koda, Yoshiro
2010-06-01
Anhaptoglobinemic patients run the risk of severe anaphylactic transfusion reaction because they produce serum haptoglobin (Hp) antibodies. Being homozygous for the Hp gene deletion (HP(del)) is the only known cause of congenital anhaptoglobinemia, and clinical diagnosis of HP(del) before transfusion is important to prevent anaphylactic shock. We recently developed a 5'-nuclease (TaqMan) real-time polymerase chain reaction (PCR) method. A SYBR Green I-based duplex real-time PCR assay using two forward primers and a common reverse primer followed by melting curve analysis was developed to determine HP(del) zygosity in a single tube. In addition, to obviate initial DNA extraction, we examined serially diluted blood samples as PCR templates. Allelic discrimination of HP(del) yielded optimal results at blood sample dilutions of 1:64 to 1:1024. The results from 2231 blood samples were fully concordant with those obtained by the TaqMan-based real-time PCR method. The detection rate of the HP(del) allele by the SYBR Green I-based method is comparable with that using the TaqMan-based method. This method is readily applicable due to its low initial cost and analyzability using economical real-time PCR machines and is suitable for high-throughput analysis as an alternative method for allelic discrimination of HP(del).
Day, I N; O'Dell, S D; Spanakis, E; Weavind, G P
1999-02-01
Important requirements for molecular genetic epidemiological studies are economy, sample parallelism, convenience of setup and accessibility, goals inadequately met by existent approaches. We invented microplate array diagonal gel electrophoresis (MADGE) to gain simultaneously the advantages of simple setup, 96-well microplate compatibility, horizontal electrophoresis, and the resolution of polyacrylamide. At essentially no equipment cost (one simple plastic gel former), 10-100-fold savings on time for sample coding, liquid transfers, and data documentation, in addition to volume reductions and gel re-use, can be achieved. MADGE is compatible with ARMS, restriction analysis and other pattern analyses. CpG-PCR is a general PCR approach to CpG sites (10-20% of all human single base variation): both primers have 3' T, and are abutted to the CpG, forcing a TaqI restriction site if the CpG is intact. Typically, a 52 bp PCR product is then cut in half. CpG-PCR also illustrates that PAGE-MADGE readily permits analysis of 'ultrashort' PCRs. Melt-MADGE employs real-time-variable-temperature electrophoresis to examine duplex mobility during melting, achieving DGGE-like de novo, mutation scanning, but with the conveniences of arbitrary programmability, MADGE compatibility and short run time. This suite of methods enhances our capability to type or scan thousands of samples simultaneously, by 10-100-fold.
Qiu, Fang-Zhou; Shen, Xin-Xin; Zhao, Meng-Chuan; Zhao, Li; Duan, Su-Xia; Chen, Chen; Qi, Ju-Ju; Li, Gui-Xia; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun
2018-05-02
Human adenovirus (HAdV) serotypes 2, 3 and 7 are more prevalent than other serotypes and have been associated with severe pneumonia in pediatric children. Molecular typing of HAdV is not routinely performed in clinical diagnostic laboratories as it is time-consuming and labor-intensive. In the present study, we developed a triplex quantitative real-time PCR assay (tq-PCR) in a single closed tube for differential detection and quantitative analysis of HAdV serotypes 2, 3 and 7. The sensitivity, specificity, reproducibility and clinical performance of tq-PCR were evaluated. The analytical sensitivity of the tq-PCR was 100 copies/reaction for each of HAdV serotypes 2, 3 and 7, and no cross-reaction with other common respiratory viruses or HAdV serotypes 1,4,5,6,31,55 and 57 was observed. The coefficients of variation (CV) of intra-assay and inter-assay were between 0.6% to 3.6%. Of 138 previously-defined HAdV-positive nasopharyngeal aspirates samples tested, the detection agreement between tq-PCR and nested PCR was 96.38% (133/138). The proposed tq-PCR assay is a sensitive, specific and reproducible method and has the potential for clinical use in the rapid and differential detection and quantitation of HAdV serotypes 2, 3 and 7.
Molecular Diagnosis of Malaria by Photo-Induced Electron Transfer Fluorogenic Primers: PET-PCR
Lucchi, Naomi W.; Narayanan, Jothikumar; Karell, Mara A.; Xayavong, Maniphet; Kariuki, Simon; DaSilva, Alexandre J.; Hill, Vincent; Udhayakumar, Venkatachalam
2013-01-01
There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs. PMID:23437209
Pierce, K E; Mistry, R; Reid, S M; Bharya, S; Dukes, J P; Hartshorn, C; King, D P; Wangh, L J
2010-07-01
A novel molecular assay for the detection of foot-and-mouth disease virus (FMDV) was developed using linear-after-the-exponential polymerase chain reaction (LATE-PCR). Pilot experiments using synthetic DNA targets demonstrated the ability of LATE-PCR to quantify initial target concentration through endpoint detection. A two-step protocol involving reverse transcription (RT) followed by LATE-PCR was then used to confirm the ability of the assay to detect FMDV RNA. Finally, RT and LATE-PCR were combined in a one-step duplex assay for co-amplification of an FMDV RNA segment and an internal control comprised of an Armored RNA. In that form, each of the excess primers in the reaction mixture hybridize to their respective RNA targets during a short pre-incubation, then generate cDNA strands during a 3-min RT step at 60°C, and the resulting cDNA is amplified by LATE-PCR without intervening sample processing. The RT-LATE-PCR assay generates fluorescent signals at endpoint that are proportional to the starting number of RNA targets and can detect a range of sequence variants using a single mismatch-tolerant probe. In addition to offering improvements over current laboratory-based molecular diagnostic assays for FMDV, this new assay is compatible with a novel portable ('point-of-care') device, the BioSeeq II, designed for the rapid diagnosis of FMD in the field. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.
Quantitative analysis of pork and chicken products by droplet digital PCR.
Cai, Yicun; Li, Xiang; Lv, Rong; Yang, Jielin; Li, Jian; He, Yuping; Pan, Liangwen
2014-01-01
In this project, a highly precise quantitative method based on the digital polymerase chain reaction (dPCR) technique was developed to determine the weight of pork and chicken in meat products. Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of species-specific DNAs in meat products. However, it is limited in amplification efficiency and relies on standard curves based Ct values, detecting and quantifying low copy number target DNA, as in some complex mixture meat products. By using the dPCR method, we find the relationships between the raw meat weight and DNA weight and between the DNA weight and DNA copy number were both close to linear. This enabled us to establish formulae to calculate the raw meat weight based on the DNA copy number. The accuracy and applicability of this method were tested and verified using samples of pork and chicken powder mixed in known proportions. Quantitative analysis indicated that dPCR is highly precise in quantifying pork and chicken in meat products and therefore has the potential to be used in routine analysis by government regulators and quality control departments of commercial food and feed enterprises.
Explicit ions/implicit water generalized Born model for nucleic acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.
Ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model, and utilizes a non-standard approach to defining the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes – disconnected dielectric boundary around the solute-ion or ion-ion pairs. Fully analytical description of all energymore » components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force (PMF) for Na+-Cl− ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of DNA duplex; these differences in the counterion binding patters were shown earlier to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with homopolymeric poly(dA·dT) DNA duplex with modified (de-methylated) and native Thymine bases are used to explore the physics behind CoHex-Thymine interactions. The simulations suggest that the ion desolvation penalty due to proximity to the low dielectric volume of the methyl group can contribute significantly to CoHex-Thymine interactions. Compared to the steric repulsion between the ion and the methyl group, the desolvation penalty interaction has a longer range, and may be important to consider in the context of methylation effects on DNA condensation.« less
Explicit ions/implicit water generalized Born model for nucleic acids
NASA Astrophysics Data System (ADS)
Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.
2018-05-01
The ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure, and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model and utilizes a non-standard approach to define the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes—disconnected dielectric boundary around the solute-ion or ion-ion pairs. A fully analytical description of all energy components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force for Na+-Cl- ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of the RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of the DNA duplex; these differences in the counterion binding patters were earlier shown to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with the homopolymeric poly(dA.dT) DNA duplex with modified (de-methylated) and native thymine bases are used to explore the physics behind CoHex-thymine interactions. The simulations suggest that the ion desolvation penalty due to proximity to the low dielectric volume of the methyl group can contribute significantly to CoHex-thymine interactions. Compared to the steric repulsion between the ion and the methyl group, the desolvation penalty interaction has a longer range and may be important to consider in the context of methylation effects on DNA condensation.
La Bella, A; Gimondo, P; Camboni, M
1993-01-01
Duplex-Doppler sonography could be employed in the quantitative investigation of intestinal motility. Preliminary data indicate reproductivity of the method in normal subjects and possible clinical applications in some pathological conditions affecting intestinal transit. Particularly, the possibility to discriminate between segments at different peristaltic activity seems to be very useful in intestinal obstruction. Further studies are necessary to validate this method.
Calibration-free assays on standard real-time PCR devices
Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr
2017-01-01
Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration. PMID:28327545
Calibration-free assays on standard real-time PCR devices
NASA Astrophysics Data System (ADS)
Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr
2017-03-01
Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration.
Comparative diagnostics of allergy using quantitative immuno-PCR and ELISA.
Simonova, Maria A; Pivovarov, Victor D; Ryazantsev, Dmitry Y; Dolgova, Anna S; Berzhets, Valentina M; Zavriev, Sergei K; Svirshchevskaya, Elena V
2018-05-01
Estimation of specific IgE is essential for the prevention of allergy progression. Quantitative immuno-PCR (qiPCR) can increase the sensitivity of IgE detection. We aimed to develop qiPCR and compare it to the conventional ELISA in identification of IgE to Alt a 1 and Fel d 1 allergens. Single stranded 60-mer DNA conjugated to streptavidin was used to detect antigen-IgE-biotin complex by qiPCR. In semi-logarithmic scale qiPCR data were linear in a full range of serum dilutions resulting in three- to ten-times higher sensitivity of qiPCR in comparison with ELISA in IgE estimation in low titer sera. Higher sensitivity of qiPCR in identification of low titer IgE is a result of a higher linearity of qiPCR data.
Kim, Tae Gwan; Jeong, So-Yeon; Cho, Kyung-Suk
2014-07-01
The newly developed droplet digital PCR (DD-PCR) has shown promise as a DNA quantification technology in medical diagnostic fields. This study evaluated the applicability of DD-PCR as a quantitative tool for soil DNA using quantitative real-time PCR (qRT-PCR) as a reference technology. Cupriavidus sp. MBT14 and Sphingopyxis sp. MD2 were used, and a primer/TaqMan probe set was designed for each (CupMBT and SphMD2, respectively). Standard curve analyses on tenfold dilution series showed that both qRT-PCR and DD-PCR exhibited excellent linearity (R (2) = 1.00) and PCR efficiency (≥92 %) across their detectable ranges. However, DD-PCR showed a tenfold greater sensitivity than qRT-PCR. MBT14 and MD2 were added to non-sterile soil at 0 ~ 5 × 10(8) and 0 ~ 5 × 10(7) cells per gram of soil, respectively (n = 5). This bacterial load test indicated that DD-PCR was more sensitive and discriminating than qRT-PCR. For instance, DD-PCR showed a gradual DNA increase from 14 to 141,160 MBT14 rDNA copies μL DNA extract(-1) as the bacterial load increased, while qRT-PCR could quantify the DNA (6,432 copies μL DNA(-1)) at ≥5 × 10(5) MBT14 per gram of soil. When temporal DNA changes were monitored for 3 weeks in the amended soils, the two technologies exhibited nearly identical changes over time. Linearity tests (y = a · x) revealed excellent quantitative agreement between the two technologies (a = 0.98, R (2) = 0.97 in the CupMBT set and a = 0.90, R (2) = 0.94 in the SphMD2 set). These results suggest that DD-PCR is a promising tool to examine temporal dynamics of microorganisms in complex environments.
Various media compositions (phosphate 1-50 mM; ionic strength 2.8-150 meq/L) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics determined by Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient 37-490...
The BEACH Act of 2000 directed the U.S. EPA to establish more expeditious methods for the detection of pathogen indicators in coastal waters, as well as new water quality criteria based on these methods. Progress has been made in developing a quantitative PCR (qPCR) method for en...
USDA-ARS?s Scientific Manuscript database
Downy mildew of spinach (Spinacia oleracea L.), caused by Peronospora effusa, is a disease constraint on production worldwide, including in California where the majority of United States spinach is grown. The aim of this study was to develop a real-time quantitative PCR (qPCR) assay for detection o...
Aguirre, C; Olivares, N; Luppichini, P; Hinrichsen, P
2015-02-01
A PCR-based method was developed to identify Naupactus cervinus (Boheman) and Naupactus xanthographus (Germar), two curculionids affecting the citrus industry in Chile. The quarantine status of these two species depends on the country to which fruits are exported. This identification method was developed because it is not possible to discriminate between these two species at the egg stage. The method is based on the species-specific amplification of sequences of internal transcribed spacers, for which we cloned and sequenced these genome fragments from each species. We designed an identification system based on two duplex-PCR reactions. Each one contains the species-specific primer set and a second generic primer set that amplify a short 18S region common to coleopterans, to avoid false negatives. The marker system is able to differentiate each Naupactus species at any life stage, and with a diagnostic sensitivity to 0.045 ng of genomic DNA. This PCR kit was validated by samples collected from different citrus production areas throughout Chile and showed 100% accuracy in differentiating the two Naupactus species. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Inoue, Hiroaki; Takama, Tomoko; Yoshizaki, Miwa; Agata, Kunio
2015-01-01
We detected Legionella species in 111 bath water samples and 95 cooling tower water samples by using a combination of conventional plate culture, quantitative polymerase chain reaction (qPCR) and qPCR combined with ethidium monoazide treatment (EMA-qPCR) methods. In the case of bath water samples, Legionella spp. were detected in 30 samples by plate culture, in 85 samples by qPCR, and in 49 samples by EMA-qPCR. Of 81 samples determined to be Legionella-negative by plate culture, 56 and 23 samples were positive by qPCR and EMA-qPCR, respectively. Therefore, EMA treatment decreased the number of Legionella-positive bath water samples detected by qPCR. In contrast, EMA treatment had no effect on cooling tower water samples. We therefore expect that EMA-qPCR is a useful method for the rapid detection of viable Legionella spp. from bath water samples.
Huang, Ke-Jing; Shuai, Hong-Lei; Zhang, Ji-Zong
2016-03-15
A highly sensitive and ultrasensitive electrochemical aptasensor for platelet-derived growth factor BB (PDGF-BB) detection is fabricated based on layered molybdenum selenide-graphene (MoSe2-Gr) composites and Exonuclease III (Exo III)-aided signal amplification. MoSe2-Gr is prepared by a simple hydrothermal method and used as a promising sensing platform. Exo III has a specifical exo-deoxyribonuclease activity for duplex DNAs in the direction from 3' to 5' terminus, however its activity is limited on the duplex DNAs with more than 4 mismatched terminal bases at 3' ends. Herein, aptamer and complementary DNA (cDNA) sequences are designed with four thymine bases on 3' ends. In the presence of target protein, the aptamer associates with it and facilitates the formation of duplex DNA between cDNA and signal DNA. The duplex DNA then is digested by Exo III and releases cDNA, which hybridizes with signal DNA to perform a new cleavage process. Nevertheless, in the absence of target protein, the aptamer hybridizes with cDNA will inhibit the Exo III-assisted nucleotides cleavage. The signal DNA then hybridizes with capture DNA on the electrode. Subsequently, horse radish peroxidase is fixed on electrode by avidin-biotin reaction and then catalyzes hydrogen peroxide and hydroquinone to produce electrochemical response. Therefore, a bridge can be established between the concentration of target protein and the degree of the attenuation of the obtained signal, providing a quantitative measure of target protein with a broad detection range of 0.0001-1 nM and a detection limit of 20 fM. Copyright © 2015 Elsevier B.V. All rights reserved.
High-throughput real-time quantitative reverse transcription PCR.
Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F
2006-02-01
Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.
Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells.
Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Myszka, Kamila; Borkowska, Monika; Grajek, Włodzimierz
2010-01-01
Microbial colonization is an important step in establishing pathogenic or probiotic relations to host cells and in biofilm formation on industrial or medical devices. The aim of this work was to verify the applicability of quantitative PCR (Real-Time PCR) to measure bacterial colonization of epithelial cells. Salmonella enterica and Caco-2 intestinal epithelial cell line was used as a model. To verify sensitivity of the assay a competition of the pathogen cells to probiotic microorganism was tested. The qPCR method was compared to plate count and radiolabel approach, which are well established techniques in this area of research. The three methods returned similar results. The best quantification accuracy had radiolabel method, followed by qPCR. The plate count results showed coefficient of variation two-times higher than this of qPCR. The quantitative PCR proved to be a reliable method for enumeration of microbes in colonization assay. It has several advantages that make it very useful in case of analyzing mixed populations, where several different species or even strains can be monitored at the same time.
Okeke, Lilian Akudo; Cadmus, Simeon; Okeke, Ikenna Osemeka; Muhammad, Maryam; Awoloh, Oluchi; Dairo, David; Waziri, Endie Ndadilnasiya; Olayinka, Adebola; Nguku, Patrick Mboyo; Fawole, Olufunmilayo
2014-01-01
Bovine tuberculosis (BTB) is widespread yet poorly controlled in Nigeria hence posing a public health threat. This study determined the prevalence of Mycobacterium tuberculosis complex (MTC) and factors associated with MTC among slaughtered cattle at Jos South Abattoir in Plateau State, Nigeria. We conducted a cross sectional study in which we collected 168 lung samples systematically from 485 slaughtered cattle from May-June, 2012, and tested for acid fast bacilli (AFB) using Ziehl-Neelsen test and a duplex polymerase chain reaction technique (PCR) for MTC detection. Data on cattle socio-demographic characteristics and risk factors for zoonotic BTB infection was obtained and analyzed using Epi info version 3.5.3 to determine frequency, proportions, and prevalence odds ratios. Multiple logistic regression was done at 95% Confidence Interval (CI). The mean age of the cattle was 5.6 ± 1.3 years and (108) 64.3% were females. Majority were indigenous White Fulani breed of cattle (58.5%) and about half (54.8%) were slightly emaciated. Prevalence of MTB complex was 21.4% by AFB test and 16.7% by duplex PCR. Of 33 (19.6%) lungs with lesions, 27 (81.8%) were positive for AFB; while of 135 (80.4%) lungs without lesions, 9 (6.7%) were positive for AFB. Lungs with lesions were 52 times more likely to test positive to AFB test compared to tissues without lesions (AOR=52.3; 95% CI: 16.4-191.8). The presence of MTC in cattle signifies its potential risk to public health. Presence of lesions on lungs is a reliable indicator of MTC infection that meat inspectors should look out for.
Stachelska, Milena A
2017-12-04
The aim of this paper was to detect Lactobacillus delbrueckii and Streptococcus thermophilus using real-time quantitative PCR assay in 7-day ripening cheese produced from unpasteurised milk. Real-time quantitative PCR assays were designed to identify and enumerate the chosen species of lactic acid bacteria (LAB) in ripened cheese. The results of molecular quantification and classic bacterial enumeration showed a high level of similarity proving that DNA extraction was carried out in a proper way and that genomic DNA solutions were free of PCR inhibitors. These methods revealed the presence of L. delbrueckii and S. thermophilus. The real-time PCR enabled quantification with a detection of 101-103 CFU/g of product. qPCR-standard curves were linear over seven log units down to 101 copies per reaction; efficiencies ranged from 77.9% to 93.6%. Cheese samples were analysed with plate count method and qPCR in parallel. Compared with the classic plate count method, the newly developed qPCR method provided faster and species specific identification of two dairy LAB and yielded comparable quantitative results.
USDA-ARS?s Scientific Manuscript database
In this study, an ultra sensitive and quantitative diagnostic system for “Candidatus Liberibacter asiaticus” was developed. This system adapts a nested PCR and Taq-Man PCR in a single closed tube. The procedure involves two steps of PCR using the species specific outer and inner primer pairs. Differ...
Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo
2015-04-01
This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.
Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo
2015-01-01
This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis. PMID:25828383
Quantitative PCR for Genetic Markers of Human Fecal Pollution
Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...
Gene Profiling Technique to Accelerate Stem Cell Therapies for Eye Diseases
... like RPE. They also use a technique called quantitative RT-PCR to measure the expression of genes ... higher in iPS cells than mature RPE. But quantitative RT-PCR only permits the simultaneous measurement of ...
Demeke, Tigst; Ratnayaka, Indira; Phan, Anh
2009-01-01
The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.
Shuga, Joe; Zeng, Yong; Novak, Richard; Lan, Qing; Tang, Xiaojiang; Rothman, Nathaniel; Vermeulen, Roel; Li, Laiyu; Hubbard, Alan; Zhang, Luoping; Mathies, Richard A; Smith, Martyn T
2013-09-01
Cancers are heterogeneous and genetically unstable. New methods are needed that provide the sensitivity and specificity to query single cells at the genetic loci that drive cancer progression, thereby enabling researchers to study the progression of individual tumors. Here, we report the development and application of a bead-based hemi-nested microfluidic droplet digital PCR (dPCR) technology to achieve 'quantitative' measurement and single-molecule sequencing of somatically acquired carcinogenic translocations at extremely low levels (<10(-6)) in healthy subjects. We use this technique in our healthy study population to determine the overall concentration of the t(14;18) translocation, which is strongly associated with follicular lymphoma. The nested dPCR approach improves the detection limit to 1×10(-7) or lower while maintaining the analysis efficiency and specificity. Further, the bead-based dPCR enabled us to isolate and quantify the relative amounts of the various clonal forms of t(14;18) translocation in these subjects, and the single-molecule sensitivity and resolution of dPCR led to the discovery of new clonal forms of t(14;18) that were otherwise masked by the conventional quantitative PCR measurements. In this manner, we created a quantitative map for this carcinogenic mutation in this healthy population and identified the positions on chromosomes 14 and 18 where the vast majority of these t(14;18) events occur.
Battersby, Thomas R; Albalos, Maria; Friesenhahn, Michel J
2007-05-01
Nucleic acid duplexes associating through purine-purine base pairing have been constructed and characterized in a remarkable demonstration of nucleic acids with mixed sequence and a natural backbone in an alternative duplex structure. The antiparallel deoxyribose all-purine duplexes associate specifically through Watson-Crick pairing, violating the nucleobase size-complementarity pairing convention found in Nature. Sequence-specific recognition displayed by these structures makes the duplexes suitable, in principle, for information storage and replication fundamental to molecular evolution in all living organisms. All-purine duplexes can be formed through association of purines found in natural ribonucleosides. Key to the formation of these duplexes is the N(3)-H tautomer of isoguanine, preferred in the duplex, but not in aqueous solution. The duplexes have relevance to evolution of the modern genetic code and can be used for molecular recognition of natural nucleic acids.
Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR.
Stein, Erica V; Duewer, David L; Farkas, Natalia; Romsos, Erica L; Wang, Lili; Cole, Kenneth D
2017-01-01
Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single unit of measurement rather than a ratio of values.
Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR
Duewer, David L.; Farkas, Natalia; Romsos, Erica L.; Wang, Lili; Cole, Kenneth D.
2017-01-01
Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single unit of measurement rather than a ratio of values. PMID:29145448
Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung
2017-08-01
HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; P<0.0001), with an average bias of -0.24 log 10 copies/ml. The in-house developed HHV-6 qPCR method is a sensitive and reliable assay with lower cost for the detection and quantification of HHV-6 DNA when compared to the RealStar ® HHV-6 PCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantitative PCR for genetic markers of human fecal pollution
Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for enumeration of two recently described hum...
2009-01-01
Quantization of gene expression requires that an accurate measurement of a specific transcript is made. In this paper, a quantitative reverse transcription-polymerase chain reaction (RT-PCR) by competition for tilapia growth hormone receptor type I is designed and validated. This experimental procedure was used to determine the abundance of growth hormone receptor type I transcript in different tilapia tissues. The results obtained with this developed competitive RT-PCR were similar to real-time PCR results reported recently. This protocol provides a reliable alternative, but less expensive than real-time PCR to quantify specific genes. PMID:19495916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellon, S.F.; Coleman, J.H.; Lippard, S.J.
The DNA unwinding produced by specific adducts of the antitumor drug cis-diamminedi-chloroplatinum(II) has been quantitatively determined. Synthetic DNA duplex oligonucleotides of varying lengths with two base pair cohesive ends were synthesized and characterized that contained site-specific intrastrand N7-purine/N7-purine cross-links. Included are cis-(Pt(NH{sub 3}){sub 2}(d(GpG))), cis-(Pt(NH){sub 3}{sub 2}(d(ApG))), and cis-(Pt(NH{sub 3}){sub 2}(d(GpTpG))) adducts, respectively referred to as cis-GG, cis-AG, and cis-GTG. Local DNA distortions at the site of platination were amplified by polymerization of these monomers and quantitatively evaluated by using polyacrylamide gel electrophoresis. The extent of DNA unwinding was determined by systematically varying the interplatinum distance, or phasing, in polymersmore » containing the adducts. The multimer that migrates most slowly gives the optimal phasing for cooperative bending, from which the degree of unwinding can be obtained. The authors find that the cis-GG and cis-AG adducts both unwind DNA by 13{degrees}, while the cis-GTG adduct unwinds DNA by 23{degrees}. In addition, experiments are presented that support previous studies revealing that a hinge joint forms at the sites of platination in DNA molecules containing trans-GTG adducts. On the basis of an analysis of the present and other published studies of site-specifically modified DNA. The authors propose that local duplex unwinding is a major determinant in the recognition of DNA damage by the Escherichia coli (A)BC excinuclease. In addition, local duplex unwinding of 13{degrees} and bending by 35{degrees} are shown to correlate well with the recognition of platinated DNA by a previously identified damage recognition protein (DRP) in human cells.« less
2011-01-01
Background Restriction endonucleases are widely applied in recombinant DNA technology. Among them, enzymes of class IIS, which cleave DNA beyond recognition sites, are especially useful. We use BsaI enzyme for the pinpoint introduction of halogen nucleobases into DNA. This has been done for the purpose of anticancer radio- and phototherapy that is our long-term objective. Results An enzymatic method for synthesizing long double-stranded DNA labeled with the halogen derivatives of nucleobases (Hal-NBs) with 1-bp accuracy has been put forward and successfully tested on three different DNA fragments containing the 5-bromouracil (5-BrU) residue. The protocol assumes enzymatic cleavage of two Polymerase-Chain-Reaction (PCR) fragments containing two recognition sequences for the same or different class IIS restriction endonucleases, where each PCR fragment has a partially complementary cleavage site. These sites are introduced using synthetic DNA primers or are naturally present in the sequence used. The cleavage sites are not compatible, and therefore not susceptible to ligation until they are partially filled with a Hal-NB or original nucleobase, resulting in complementary cohesive end formation. Ligation of these fragments ultimately leads to the required Hal-NB-labeled DNA duplex. With this approach, a synthetic, extremely long DNA fragment can be obtained by means of a multiple assembly reaction (n × maximum PCR product length: n × app. 50 kb). Conclusions The long, precisely labeled DNA duplexes obtained behave in very much the same manner as natural DNA and are beyond the range of chemical synthesis. Moreover, the conditions of synthesis closely resemble the natural ones, and all the artifacts accompanying the chemical synthesis of DNA are thus eliminated. The approach proposed seems to be completely general and could be used to label DNA at multiple pre-determined sites and with halogen derivatives of any nucleobase. Access to DNAs labeled with Hal-NBs at specific position is an indispensable condition for the understanding and optimization of DNA photo- and radio-degradation, which are prerequisites for clinical trials of Hal-NBs in anticancer therapy. PMID:21864341
Sobolewski, Ireneusz; Polska, Katarzyna; Zylicz-Stachula, Agnieszka; Jeżewska-Frąckowiak, Joanna; Rak, Janusz; Skowron, Piotr
2011-08-24
Restriction endonucleases are widely applied in recombinant DNA technology. Among them, enzymes of class IIS, which cleave DNA beyond recognition sites, are especially useful. We use BsaI enzyme for the pinpoint introduction of halogen nucleobases into DNA. This has been done for the purpose of anticancer radio- and phototherapy that is our long-term objective. An enzymatic method for synthesizing long double-stranded DNA labeled with the halogen derivatives of nucleobases (Hal-NBs) with 1-bp accuracy has been put forward and successfully tested on three different DNA fragments containing the 5-bromouracil (5-BrU) residue. The protocol assumes enzymatic cleavage of two Polymerase-Chain-Reaction (PCR) fragments containing two recognition sequences for the same or different class IIS restriction endonucleases, where each PCR fragment has a partially complementary cleavage site. These sites are introduced using synthetic DNA primers or are naturally present in the sequence used. The cleavage sites are not compatible, and therefore not susceptible to ligation until they are partially filled with a Hal-NB or original nucleobase, resulting in complementary cohesive end formation. Ligation of these fragments ultimately leads to the required Hal-NB-labeled DNA duplex. With this approach, a synthetic, extremely long DNA fragment can be obtained by means of a multiple assembly reaction (n × maximum PCR product length: n × app. 50 kb). The long, precisely labeled DNA duplexes obtained behave in very much the same manner as natural DNA and are beyond the range of chemical synthesis. Moreover, the conditions of synthesis closely resemble the natural ones, and all the artifacts accompanying the chemical synthesis of DNA are thus eliminated. The approach proposed seems to be completely general and could be used to label DNA at multiple pre-determined sites and with halogen derivatives of any nucleobase. Access to DNAs labeled with Hal-NBs at specific position is an indispensable condition for the understanding and optimization of DNA photo- and radio-degradation, which are prerequisites for clinical trials of Hal-NBs in anticancer therapy.
Vaïtilingom, M; Pijnenburg, H; Gendre, F; Brignon, P
1999-12-01
A fast and quantitative method was developed to detect transgenic "Maximizer" maize "event 176" (Novartis) and "Roundup Ready" soybean (Monsanto) in food by real-time quantitative PCR. The use of the ABI Prism 7700 sequence detection system allowed the determination of the amplified product accumulation through a fluorogenic probe (TaqMan). Fluorescent dyes were chosen in such a way as to coamplify total and transgenic DNA in the same tube. Using real-time quantitative PCR, 2 pg of transgenic or total DNA per gram of starting sample was detected in 3 h after DNA extraction and the relative amounts of "Maximizer" maize and "Roundup Ready" soybean in some representative food products were quantified.
Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro
2012-06-27
The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.
Renal pelvis urothelial carcinoma of the upper moiety in complete right renal duplex: a case report.
Zhang, Yiran; Yu, Quanfeng; Zhang, Zhihong; Liu, Ranlu; Xu, Yong
2015-01-01
Urothelial carcinoma (UC) originated from renal pelvis is the common tumor of the urinary system, however, neoplasia of the renal pelvis in duplex kidneys is extremely rare, especially in the complete renal and ureteral duplex cases. We present the first case of renal pelvis UC of the upper moiety in a complete right renal duplex. This male patient has bilateral complete renal and ureteral duplex. To the best of our knowledge, this is the first reported case of renal pelvis UC in a complete renal duplex system. After this experience we feel that the diagnosis of renal pelvis UC in duplex kidneys is not so easy, and once the diagnosis is determined, the whole renal duplex units and bladder cuff or ectopic orifice should be excised radically.
On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform.
Tachibana, Hiroaki; Saito, Masato; Shibuya, Shogo; Tsuji, Koji; Miyagawa, Nobuyuki; Yamanaka, Keiichiro; Tamiya, Eiichi
2015-12-15
Polymerase chain reaction (PCR)-based genetic testing has become a routine part of clinical diagnoses and food testing. In these fields, rapid, easy-to-use, and cost-efficient PCR chips are expected to be appeared for providing such testing on-site. In this study, a new autonomous disposable plastic microfluidic PCR chip was created, and was utilized for quantitative detection of pathogenic microorganisms. To control the capillary flow of the following solution in the PCR microchannel, a driving microchannel was newly designed behind the PCR microchannel. This allowed the effective PCR by simply dropping the PCR solution onto the inlet without any external pumps. In order to achieve disposability, injection-molded cyclo-olefin polymer (COP) of a cost-competitive plastic was used for the PCR chip. We discovered that coating the microchannel walls with non-ionic surfactant produced a suitable hydrophilic surface for driving the capillary flow through the 1250-mm long microchannel. As a result, quantitative real-time PCR with the lowest initial concentration of human, Escherichia coli (E. coli), and pathogenic E. coli O157 genomic DNA of 4, 0.0019, 0.031 pg/μl, respectively, was successfully achieved in less than 18 min. Our results indicate that the platform presented in this study provided a rapid, easy-to-use, and low-cost real-time PCR system that could be potentially used for on-site gene testing. Copyright © 2015 Elsevier B.V. All rights reserved.
Keller, Mark; Naue, Jana; Zengerle, Roland; von Stetten, Felix; Schmidt, Ulrike
2015-01-01
Nested PCR remains a labor-intensive and error-prone biomolecular analysis. Laboratory workflow automation by precise control of minute liquid volumes in centrifugal microfluidic Lab-on-a-Chip systems holds great potential for such applications. However, the majority of these systems require costly custom-made processing devices. Our idea is to augment a standard laboratory device, here a centrifugal real-time PCR thermocycler, with inbuilt liquid handling capabilities for automation. We have developed a microfluidic disk segment enabling an automated nested real-time PCR assay for identification of common European animal groups adapted to forensic standards. For the first time we utilize a novel combination of fluidic elements, including pre-storage of reagents, to automate the assay at constant rotational frequency of an off-the-shelf thermocycler. It provides a universal duplex pre-amplification of short fragments of the mitochondrial 12S rRNA and cytochrome b genes, animal-group-specific main-amplifications, and melting curve analysis for differentiation. The system was characterized with respect to assay sensitivity, specificity, risk of cross-contamination, and detection of minor components in mixtures. 92.2% of the performed tests were recognized as fluidically failure-free sample handling and used for evaluation. Altogether, augmentation of the standard real-time thermocycler with a self-contained centrifugal microfluidic disk segment resulted in an accelerated and automated analysis reducing hands-on time, and circumventing the risk of contamination associated with regular nested PCR protocols.
Watanabe, Masaru; Kawaguchi, Tomoya; Isa, Shun-Ichi; Ando, Masahiko; Tamiya, Akihiro; Kubo, Akihito; Saka, Hideo; Takeo, Sadanori; Adachi, Hirofumi; Tagawa, Tsutomu; Kawashima, Osamu; Yamashita, Motohiro; Kataoka, Kazuhiko; Ichinose, Yukito; Takeuchi, Yukiyasu; Watanabe, Katsuya; Matsumura, Akihide; Koh, Yasuhiro
2017-07-01
Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy. Here, we developed a multiplex picodroplet digital PCR (ddPCR) assay to detect 3 common EGFR mutations in 1 reaction. Serial-dilution experiments with genomic DNA harboring EGFR mutations revealed linear performance, with analytical sensitivity ~0.01% for each mutation. All 33 EGFR-activating mutations detected in formalin-fixed paraffin-embedded (FFPE) tissue samples by the conventional method were also detected by this multiplex assay. Owing to the higher sensitivity, an additional mutation (T790M; including an ultra-low-level mutation, <0.1%) was detected in the same reaction. Regression analysis of the duplex assay and multiplex assay showed a correlation coefficient (R 2 ) of 0.9986 for L858R, 0.9844 for an exon 19 deletion, and 0.9959 for T790M. Using ddPCR, we designed a multiplex ultrasensitive genotyping platform for 3 common EGFR mutations. Results of this proof-of-principle study on clinical samples indicate clinical utility of multiplex ddPCR for screening for multiple EGFR mutations concurrently with an ultra-rare pretreatment mutation (T790M). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Liu, L; Luo, Y; Accensi, F; Ganges, L; Rodríguez, F; Shan, H; Ståhl, K; Qiu, H-J; Belák, S
2017-10-01
African swine fever (ASF) and classical swine fever (CSF) are two highly infectious transboundary animal diseases (TADs) that are serious threats to the pig industry worldwide, including in China, the world's largest pork producer. In this study, a duplex real-time PCR assay was developed for the rapid detection and differentiation of African swine fever virus (ASFV) and classical swine fever virus (CSFV). The assay was performed on a portable, battery-powered PCR thermocycler with a low sample throughput (termed as 'T-COR4 assay'). The feasibility and reliability of the T-COR4 assay as a possible field method was investigated by testing clinical samples collected in China. When evaluated with reference materials or samples from experimental infections, the assay performed in a reliable manner, producing results comparable to those obtained from stationary PCR platforms. Of 59 clinical samples, 41 had results identical to a two-step CSFV real-time PCR assay. No ASFV was detected in these samples. The T-COR4 assay was technically easy to perform and produced results within 3 h, including sample preparation. In combination with a simple sample preparation method, the T-COR4 assay provides a new tool for the field diagnosis and differentiation of ASF and CSF, which could be of particular value in remote areas. © 2016 Blackwell Verlag GmbH.
Sequence-Selective Formation of Synthetic H-Bonded Duplexes
2017-01-01
Oligomers equipped with a sequence of phenol and pyridine N-oxide groups form duplexes via H-bonding interactions between these recognition units. Reductive amination chemistry was used to synthesize all possible 3-mer sequences: AAA, AAD, ADA, DAA, ADD, DAD, DDA, and DDD. Pairwise interactions between the oligomers were investigated using NMR titration and dilution experiments in toluene. The measured association constants vary by 3 orders of magnitude (102 to 105 M–1). Antiparallel sequence-complementary oligomers generally form more stable complexes than mismatched duplexes. Mismatched duplexes that have an excess of H-bond donors are stabilized by the interaction of two phenol donors with one pyridine N-oxide acceptor. Oligomers that have a H-bond donor and acceptor on the ends of the chain can fold to form intramolecular H-bonds in the free state. The 1,3-folding equilibrium competes with duplex formation and lowers the stability of duplexes involving these sequences. As a result, some of the mismatch duplexes are more stable than some of the sequence-complementary duplexes. However, the most stable mismatch duplexes contain DDD and compete with the most stable sequence-complementary duplex, AAA·DDD, so in mixtures that contain all eight sequences, sequence-complementary duplexes dominate. Even higher fidelity sequence selectivity can be achieved if alternating donor–acceptor sequences are avoided. PMID:28857551
Riedel, Timothy E; Zimmer-Faust, Amity G; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T; Ebentier, Darcy L; Byappanahalli, Muruleedhara; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B; Griffith, John F; Holden, Patricia A; Shanks, Orin C; Weisberg, Stephen B; Jay, Jennifer A
2014-04-01
Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample. Copyright © 2014 Elsevier Ltd. All rights reserved.
Riedel, Timothy E.; Zimmer-Faust, Amity G.; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T.; Ebentier, Darcy L.; Byappanahalli, Muruleedhara N.; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B.; Griffith, John F.; Holden, Patricia A.; Shanks, Orin C.; Weisberg, Stephen B.; Jay, Jennifer A.
2014-01-01
Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.
Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.
Smith, Cindy J; Osborn, A Mark
2009-01-01
Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.
Pan, Xiao-Ben; Wei, Lai; Han, Jin-Chao; Gao, Yan
2008-01-01
Fluorescence quantitative real-time PCR (FQ-PCR) is a recently developed technique increasingly used for clinical diagnosis by detection of hepatitis B virus (HBV) DNA in serum. FQ-PCR is also used in scientific research for detection of HBV DNA in cell culture. Understanding potential FQ-PCR interference factors can improve the accuracy of HBV DNA quantification in cell culture medium. HBV positive serum was diluted with culture medium to produce three test groups with HBV DNA levels of 5 x 10(7) copies/ml (high), 5 x 10(5) copies/ml (medium), and 5 x 10(3) copies/ml (low). Chromosome DNA was extracted from HepG2 cells and then added to high, medium, and low group samples at final concentrations of 0, 12.5, 25, 50, and 100 microg/ml. The samples were quantified by FQ-PCR and data were evaluated using statistical software. No marked changes were seen in the quantitative curves for high level HBV DNA samples when the samples were supplemented with 0-100 microg/ml of chromosome DNA. Interference was observed in medium level samples when 50 and 100 microg/ml of chromosome DNA was added. Interference was also observed in low level HBV DNA samples when the concentration of added chromosome DNA was greater than 25 microg/ml. The interference was eliminated when samples were digested by DNase I prior to PCR detection. In Conclusions, the presence of cellular chromosome DNA can interfere with the detection of HBV DNA by FQ-PCR. Removal of cellular chromosome DNA from culture media prior to FQ-PCR is necessary for reliable HBV DNA quantitative detection. (c) 2007 Wiley-Liss, Inc.
Glowing locked nucleic acids: brightly fluorescent probes for detection of nucleic acids in cells.
Østergaard, Michael E; Cheguru, Pallavi; Papasani, Madhusudhan R; Hill, Rodney A; Hrdlicka, Patrick J
2010-10-13
Fluorophore-modified oligonucleotides have found widespread use in genomics and enable detection of single-nucleotide polymorphisms, real-time monitoring of PCR, and imaging of mRNA in living cells. Hybridization probes modified with polarity-sensitive fluorophores and molecular beacons (MBs) are among the most popular approaches to produce hybridization-induced increases in fluorescence intensity for nucleic acid detection. In the present study, we demonstrate that the 2'-N-(pyren-1-yl)carbonyl-2'-amino locked nucleic acid (LNA) monomer X is a highly versatile building block for generation of efficient hybridization probes and quencher-free MBs. The hybridization and fluorescence properties of these Glowing LNA probes are efficiently modulated and optimized by changes in probe backbone chemistry and architecture. Correctly designed probes are shown to exhibit (a) high affinity toward RNA targets, (b) excellent mismatch discrimination, (c) high biostability, and (d) pronounced hybridization-induced increases in fluorescence intensity leading to formation of brightly fluorescent duplexes with unprecedented emission quantum yields (Φ(F) = 0.45-0.89) among pyrene-labeled oligonucleotides. Finally, specific binding between messenger RNA and multilabeled quencher-free MBs based on Glowing LNA monomers is demonstrated (a) using in vitro transcription assays and (b) by quantitative fluorometric assays and direct microscopic observation of probes bound to mRNA in its native form. These features render Glowing LNA as promising diagnostic probes for biomedical applications.
Peková, Sona; Marková, Jana; Pajer, Petr; Dvorák, Michal; Cetkovský, Petr; Schwarz, Jirí
2005-01-01
Patients with chronic lymphocytic leukemia (CLL) can relapse even after aggressive therapy and autografts. It is commonly assumed that to prevent relapse the level of minimal residual disease (MRD) should be as low as possible. To evaluate MRD, highly sensitive quantitative assays are needed. The aim of the study was to develop a robust and sensitive method for detection of the clonal immunoglobulin heavy-chain variable (IgV(H)) rearrangement in CLL and to introduce a highly sensitive and specific methodology for MRD monitoring in patients with CLL who undergo intensive treatment. As a prerequisite for MRD detection, touch-down reverse transcriptase (RT)-PCR using degenerate primers were used for the diagnostic identification of (H) gene rearrangement(s). For quantitative MRD detection in 18 patients, we employed a real-time RT-PCR assay (RQ-PCR) making use of patient-specific primers and the cost-saving Sybr-Green reporter dye (SG). For precise calibration of RQ-PCR, patient-specific IgV(H) sequences were cloned. Touch-down RT-PCR with degenerate primers allowed the successful detection of IgV(H) clonal rearrangement(s) in 252 of 257 (98.1%) diagnostic samples. Biallelic rearrangements were found in 27 of 252 (10.7%) cases. Degenerate primers used for the identification of clonal expansion at diagnosis were not sensitive enough for MRD detection. In contrast, our RQ-PCR assay using patient-specific primers and SG reached the sensitivity of 10(-)(6). We demonstrated MRD in each patient tested, including four of four patients in complete remission following autologous hematopoietic stem cell transplantation (HSCT) and three of three following allogeneic 'mini'-HSCT. Increments in MRD might herald relapse; aggressive chemotherapy could induce molecular remission. Our touch-down RT-PCR has higher efficiency to detect clonal IgV(H) rearrangements including the biallelic ones. MRD quantitation of IgV(H) expression using SG-based RQ-PCR represents a highly specific, sensitive, and economic alternative to the current quantitative methods.
Real-Time PCR (qPCR) Primer Design Using Free Online Software
ERIC Educational Resources Information Center
Thornton, Brenda; Basu, Chhandak
2011-01-01
Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…
Detection and quantitation of HPV in genital and oral tissues and fluids by real time PCR
2010-01-01
Background Human papillomaviruses (HPVs) remain a serious world health problem due to their association with anogenital/oral cancers and warts. While over 100 HPV types have been identified, a subset is associated with malignancy. HPV16 and 18 are the most prevalent oncogenic types, while HPV6 and 11 are most commonly responsible for anogenital warts. While other quantitative PCR (qPCR) assays detect oncogenic HPV, there is no single tube assay distinguishing the most frequent oncogenic types and the most common types found in warts. Results A Sybr Green-based qPCR assay was developed utilizing degenerate primers to the highly conserved HPV E1 theoretically detecting any HPV type. A single tube multiplex qPCR assay was also developed using type-specific primer pairs and TaqMan probes that allowed for detection and quantitation of HPV6,11,16,18. Each HPV type was detected over a range from 2 × 101 to 2 × 106copies/reaction providing a reliable method of quantitating type-specific HPV in 140 anogenital/cutaneous/oral benign and malignant specimens. 35 oncogenic and low risk alpha genus HPV types were detected. Concordance was detected in previously typed specimens. Comparisons to the gold standard detected an overall sensitivity of 89% (95% CI: 77% - 96%) and specificity of 90% (95%CI: 52% - 98%). Conclusion There was good agreement between the ability of the qPCR assays described here to identify HPV types in malignancies previously typed using standard methods. These novel qPCR assays will allow rapid detection and quantitation of HPVs to assess their role in viral pathogenesis. PMID:20723234
Wan, Cai-Feng; Liu, Xue-Song; Wang, Lin; Zhang, Jie; Lu, Jin-Song; Li, Feng-Hua
2018-06-01
To clarify whether the quantitative parameters of contrast-enhanced ultrasound (CEUS) can be used to predict pathological complete response (pCR) in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy (NAC). Fifty-one patients with histologically proved locally advanced breast cancer scheduled for NAC were enrolled. The quantitative data for CEUS and the tumor diameter were collected at baseline and before surgery, and compared with the pathological response. Multiple logistic regression analysis was performed to examine quantitative parameters at CEUS and the tumor diameter to predict the pCR, and receiver operating characteristic (ROC) curve analysis was used as a summary statistic. Multiple logistic regression analysis revealed that PEAK (the maximum intensity of the time-intensity curve during bolus transit), PEAK%, TTP% (time to peak), and diameter% were significant independent predictors of pCR, and the area under the ROC curve was 0.932(Az 1 ), and the sensitivity and specificity to predict pCR were 93.7% and 80.0%. The area under the ROC curve for the quantitative parameters was 0.927(Az 2 ), and the sensitivity and specificity to predict pCR were 81.2% and 94.3%. For diameter%, the area under the ROC curve was 0.786 (Az 3 ), and the sensitivity and specificity to predict pCR were 93.8% and 54.3%. The values of Az 1 and Az 2 were significantly higher than that of Az 3 (P = 0.027 and P = 0.034, respectively). However, there was no significant difference between the values of Az 1 and Az 2 (P = 0.825). Quantitative analysis of tumor blood perfusion with CEUS is superior to diameter% to predict pCR, and can be used as a functional technique to evaluate tumor response to NAC. Copyright © 2018. Published by Elsevier B.V.
Structure and stability of the consecutive stereoregulated chiral phosphorothioate DNA duplex.
Kanaori, K; Tamura, Y; Wada, T; Nishi, M; Kanehara, H; Morii, T; Tajima, K; Makino, K
1999-12-07
The duplex structures of the stereoregulated phosphorothioate DNAs, [R(p),R(p)]- and [S(p),S(p)]-[d(GC(ps)T(ps)ACG)] (ps, phosphorothioate; PS-DNA), with their complementary RNA have been investigated by combined use of (1)H NMR and restrained molecular dynamics calculation. Compared to those obtained for the unmodified duplex structures (PO-DNA.RNA), the NOE cross-peak intensities are virtually identical for the PS-DNA.RNA hybrid duplexes. The structural analysis on the basis of the NOE restraints reveals that all of the three DNA.RNA duplexes take a A-form conformation and that there is no significant difference in the base stacking for the DNA.RNA hybrid duplexes. On the other hand, the NOE cross-peak intensities of the protons around the central T(ps)A step of the PS-DNA.DNA duplexes are apparently different from those of PO-DNA. DNA. The chemical shifts of H8/6 and H1' at the T(ps)A step are also largely different among PS-DNA.DNAs and PO-DNA.DNA, suggesting that the DNA.DNA structure is readily changed by the introduction of the phosphorothioate groups to the central T(p)A step. The structure calculations indicate that all of these DNA.DNA duplexes are B-form although there exist some small differences in helical parameters between the [R(p),R(p)]- and [S(p),S(p)]PS-DNA.DNA duplexes. The melting temperatures (T(m)) were determined for all of the duplexes by plotting the chemical shift change of isolated peaks as a function of temperature. For the PS-DNA.RNA hybrid duplexes, the [S(p),S(p)] isomer is less stable than the [R(p),R(p)] isomer while this trend is reversed for the PS-DNA.DNA duplexes. Consequently, although the PS-DNA.RNA duplexes take the similar A-form structure, the duplex stability is different between PS-DNA.RNA duplexes. The stability of the DNA.RNA duplexes may not be governed by the A-form structure itself but by some other factors such as the hydration around the phosphorothioate backbone, although the T(m) difference of the DNA.DNA duplexes could be explained by the structural factor.
Seo, Jung Soo; Jeon, Eun Ji; Kim, Moo Sang; Woo, Sung Ho; Kim, Jin Do; Jung, Sung Hee; Park, Myoung Ae; Jee, Bo Young; Kim, Jin Woo; Kim, Yi-Cheong; Lee, Eun Hye
2012-06-01
Intestinal giant-cystic disease (IGCD) of the Israel carp (Cyprinus carpio nudus) has been recognized as one of the most serious diseases afflicting inland farmed fish in the Republic of Korea, and Thelohanellus kitauei has been identified as the causative agent of the disease. Until now, studies concerning IGCD caused by T. kitauei in the Israel carp have been limited to morphological and histopathological examinations. However, these types of diagnostic examinations are relatively time-consuming, and the infection frequently cannot be detected in its early stages. In this study, we cloned the full-length 18S rRNA gene of T. kitauei isolated from diseased Israel carps, and carried out molecular identification by comparing the sequence with those of other myxosporeans. Moreover, conventional PCR and real-time quantitative PCR (qPCR) using oligonucleotide primers for the amplification of 18S rRNA gene fragment were established for further use as methods for rapid diagnosis of IGCD. Our results demonstrated that both the conventional PCR and real-time quantitative PCR systems applied herein are effective for rapid detection of T. kitauei spores in fish tissues and environmental water.
Fini, F; Gallinella, G; Girotti, S; Zerbini, M; Musiani, M
1999-09-01
Quantitative PCR of viral nucleic acids can be useful clinically in diagnosis, risk assessment, and monitoring of antiviral therapy. We wished to develop a chemiluminescence competitive PCR (cPCR) for parvovirus B19. Parvovirus DNA target sequences and competitor sequences were coamplified and directly labeled. Amplified products were then separately hybridized by specific biotin-labeled probes, captured onto streptavidin-coated ELISA microplates, and detected immunoenzymatically using chemiluminescent substrates of peroxidase. Chemiluminescent signals were quantitatively analyzed by a microplate luminometer and were correlated to the amounts of amplified products. Luminol-based systems displayed constant emission but had a higher detection limit (100-1000 genome copies) than the acridan-based system (20 genome copies). The detection limit of chemiluminescent substrates was lower (20 genome copies) than colorimetric substrates (50 genome copies). In chemiluminescence cPCR, the titration curves showed linear correlation above 100 target genome copies. Chemiluminescence cPCR was positive in six serum samples from patients with parvovirus infections and negative in six control sera. The chemiluminescence cPCR appears to be a sensitive and specific method for the quantitative detection of viral DNAs.
Kim, Jaai; Lim, Juntaek; Lee, Changsoo
2013-12-01
Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.
Domain Requirements for DNA Unwinding by Mycobacterial UvrD2, an Essential DNA Helicase†
Sinha, Krishna Murari; Stephanou, Nicolas C.; Unciuleac, Mihaela-Carmen; Glickman, Michael S.; Shuman, Stewart
2008-01-01
Mycobacterial UvrD2 is a DNA-dependent ATPase with 3′ to 5′ helicase activity. UvrD2 is an atypical helicase, insofar as its N-terminal ATPase domain resembles the superfamily I helicases UvrD/PcrA, yet it has a C-terminal HRDC domain, which is a feature of RecQ-type superfamily II helicases. The ATPase and HRDC domains are connected by a CxxC-(14)-CxxC tetracysteine module that defines a new clade of UvrD2-like bacterial helicases found only in Actinomycetales. By characterizing truncated versions of Mycobacterium smegmatis UvrD2, we show that whereas the HRDC domain is not required for ATPase or helicase activities in vitro, deletion of the tetracysteine module abolishes duplex unwinding while preserving ATP hydrolysis. Replacing each of the CxxC motifs with a double-alanine variant AxxA had no effect on duplex unwinding, signifying that the domain module, not the cysteines, is crucial for function. The helicase activity of a truncated UvrD2 lacking the tetracysteine and HRDC domains was restored by the DNA-binding protein Ku, a component of the mycobacterial NHEJ system and a cofactor for DNA unwinding by the paralogous mycobacterial helicase UvrD1. Our findings indicate that coupling of ATP hydrolysis to duplex unwinding can be achieved by protein domains acting in cis or trans. Attempts to disrupt the M. smegmatis uvrD2 gene were unsuccessful unless a second copy of uvrD2 was present elsewhere in the chromosome, indicating that UvrD2 is essential for growth of M. smegmatis. PMID:18702526
QUANTITATIVE PCR OF SELECTED ASPERGILLUS, PENICILLIUM AND PAECILOMYCES SPECIES
A total of 65 quantitative PCR (QPCR) assays, incorporating fluorigenic 5' nuclease (TaqMan®) chemistry and directed at the nuclear ribosomal RNA operon, internal transcribed spacer regions (ITS1 or ITS2) was developed and tested for the detection of Aspergillus, Penicillium and ...
Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Guillier, Laurent; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie
2015-05-18
Sensitive and quantitative detection of foodborne enteric viruses is classically achieved by quantitative RT-PCR (RT-qPCR). Recently, digital PCR (dPCR) was described as a novel approach to genome quantification without need for a standard curve. The performance of microfluidic digital RT-PCR (RT-dPCR) was compared to RT-qPCR for detecting the main viruses responsible for foodborne outbreaks (human Noroviruses (NoV) and Hepatitis A virus (HAV)) in spiked lettuce and bottled water. Two process controls (Mengovirus and Murine Norovirus) were used and external amplification controls (EAC) were added to examine inhibition of RT-qPCR and RT-dPCR. For detecting viral RNA and cDNA, the sensitivity of the RT-dPCR assays was either comparable to that of RT-qPCR (RNA of HAV, NoV GI, Mengovirus) or slightly (around 1 log10) decreased (NoV GII and MNV-1 RNA and of HAV, NoV GI, NoV GII cDNA). The number of genomic copies determined by dPCR was always from 0.4 to 1.7 log10 lower than the expected numbers of copies calculated by using the standard qPCR curve. Viral recoveries calculated by RT-dPCR were found to be significantly higher than by RT-qPCR for NoV GI, HAV and Mengovirus in water, and for NoV GII and HAV in lettuce samples. The RT-dPCR assay proved to be more tolerant to inhibitory substances present in lettuce samples. This absolute quantitation approach may be useful to standardize quantification of enteric viruses in bottled water and lettuce samples and may be extended to quantifying other human pathogens in food samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Beumer, Amy; King, Dawn; Donohue, Maura; Mistry, Jatin; Covert, Terry; Pfaller, Stacy
2010-01-01
It has been suggested that Mycobacterium avium subspecies paratuberculosis has a role in Crohn's disease. The organism may be acquired but is difficult to culture from the environment. We describe a quantitative PCR (qPCR) method to detect M. avium subsp. paratuberculosis in drinking water and the results of its application to drinking water and faucet biofilm samples collected in the United States. PMID:20817803
Abdeldaim, Guma M K; Strålin, Kristoffer; Olcén, Per; Blomberg, Jonas; Mölling, Paula; Herrmann, Björn
2013-06-01
A quantitative polymerase chain reaction (PCR) for the fucK gene was developed for specific detection of Haemophilus influenzae. The method was tested on sputum and nasopharyngeal aspirate (NPA) from 78 patients with community-acquired pneumonia (CAP). With a reference standard of sputum culture and/or serology against the patient's own nasopharyngeal isolate, H. influenzae etiology was detected in 20 patients. Compared with the reference standard, fucK PCR (using the detection limit 10(5) DNA copies/mL) on sputum and NPA showed a sensitivity of 95.0% (19/20) in both cases, and specificities of 87.9% (51/58) and 89.5% (52/58), respectively. In a receiver operating characteristic curve analysis, sputum fucK PCR was found to be significantly superior to sputum P6 PCR for detection of H. influenzae CAP. NPA fucK PCR was positive in 3 of 54 adult controls without respiratory symptoms. In conclusion, quantitative fucK real-time PCR provides a sensitive and specific identification of H. influenzae in respiratory secretions. Copyright © 2013 Elsevier Inc. All rights reserved.
Montesinos, Isabel; Brancart, Françoise; Schepers, Kinda; Jacobs, Frederique; Denis, Olivier; Delforge, Marie-Luce
2015-06-01
A total of 120 bronchoalveolar lavage specimens from HIV and non-HIV immunocompromised patients, positive for Pneumocystis jirovecii by an "in house" real-time polymerase chain reaction (PCR), were evaluated by the Bio-Evolution Pneumocystis real-time PCR, a commercial quantitative assay. Patients were classified in 2 categories based on clinical and radiological findings: definite and unlikely Pneumocystis pneumonia (PCP). For the "in house" PCR, cycle threshold 34 was established as cut-off value to discriminate definite PCP from unlikely PCP with 65% and 85% of sensitivity and specificity, respectively. For the Bio-Evolution quantitative PCR, a cut-off value of 2.8×10(5)copies/mL was defined with 72% and 82% of sensitivity and specificity, respectively. Overlapped zones of results for definite and unlikely PCP were observed. Quantitative PCR is probably a useful tool for PCP diagnosis. However, for optimal management of PCP in non-HIV immunocompromised patients, operational thresholds should be assessed according to underlying diseases and other clinical and radiological parameters. Copyright © 2015 Elsevier Inc. All rights reserved.
Yan, Xu; Bishop, David J.
2018-01-01
Gene expression analysis by quantitative PCR in skeletal muscle is routine in exercise studies. The reproducibility and reliability of the data fundamentally depend on how the experiments are performed and interpreted. Despite the popularity of the assay, there is a considerable variation in experimental protocols and data analyses from different laboratories, and there is a lack of consistency of proper quality control steps throughout the assay. In this study, we present a number of experiments on various steps of quantitative PCR workflow, and demonstrate how to perform a quantitative PCR experiment with human skeletal muscle samples in an exercise study. We also tested some common mistakes in performing qPCR. Interestingly, we found that mishandling of muscle for a short time span (10 mins) before RNA extraction did not affect RNA quality, and isolated total RNA was preserved for up to one week at room temperature. Demonstrated by our data, use of unstable reference genes lead to substantial differences in the final results. Alternatively, cDNA content can be used for data normalisation; however, complete removal of RNA from cDNA samples is essential for obtaining accurate cDNA content. PMID:29746477
Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.
Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro
2010-01-01
The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.
Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.
2011-01-01
Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.
Real-time PCR: Advanced technologies and applications
USDA-ARS?s Scientific Manuscript database
This book brings together contributions from 20 experts in the field of PCR, providing a broad perspective of the applications of quantitative real-time PCR (qPCR). The editors state in the preface that the aim is to provide detailed insight into underlying principles and methods of qPCR to provide ...
Genetic mapping uncovers cis-regulatory landscape of RNA editing.
Ramaswami, Gokul; Deng, Patricia; Zhang, Rui; Anna Carbone, Mary; Mackay, Trudy F C; Li, Jin Billy
2015-09-16
Adenosine-to-inosine (A-to-I) RNA editing, catalysed by ADAR enzymes conserved in metazoans, plays an important role in neurological functions. Although the fine-tuning mechanism provided by A-to-I RNA editing is important, the underlying rules governing ADAR substrate recognition are not well understood. We apply a quantitative trait loci (QTL) mapping approach to identify genetic variants associated with variability in RNA editing. With very accurate measurement of RNA editing levels at 789 sites in 131 Drosophila melanogaster strains, here we identify 545 editing QTLs (edQTLs) associated with differences in RNA editing. We demonstrate that many edQTLs can act through changes in the local secondary structure for edited dsRNAs. Furthermore, we find that edQTLs located outside of the edited dsRNA duplex are enriched in secondary structure, suggesting that distal dsRNA structure beyond the editing site duplex affects RNA editing efficiency. Our work will facilitate the understanding of the cis-regulatory code of RNA editing.
Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging
NASA Astrophysics Data System (ADS)
Maetz, Jean-Yves; Cazottes, Sophie; Verdu, Catherine; Kleber, Xavier
2016-01-01
The effect of isothermal aging at 963 K (690 °C) on the microstructure of a 2101 lean duplex stainless steel, with the composition Fe-21.5Cr-5Mn-1.6Ni-0.22N-0.3Mo, was investigated using a multi-technique and multi-scale approach. The kinetics of phase transformation and precipitation was followed from a few minutes to thousands of hours using thermoelectric power measurements; based on these results, certain aging states were selected for electron microscopy characterization. Scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy were used to quantitatively describe the microstructural evolution through crystallographic analysis, chemical analysis, and volume fraction measurements from the macroscopic scale down to the nanometric scale. During aging, the precipitation of M23C6 carbides, Cr2N nitrides, and σ phase as well as the transformation of ferrite into austenite and austenite into martensite was observed. These complex microstructural changes are controlled by Cr volume diffusion. The precipitation and phase transformation mechanisms are described.
Vira, Shaleen; Ramme, Austin J; Alaia, Michael J; Steiger, David; Vigdorchik, Jonathan M; Jaffe, Frederick
2016-07-01
Duplex ultrasound is routinely used to evaluate suspected deep venous thrombosis after total joint arthroplasty. When there is a clinical suspicion for a pulmonary embolism, a chest angiogram (chest CTA) is concomitantly obtained. Two questions were addressed: First, for the population of patients who receive duplex ultrasound after total joint arthroplasty, what is the rate of positive results? Second, for these patients, how many of these also undergo chest CTA for clinical suspicion of pulmonary embolus and how many of these tests are positive? Furthermore, what is the correlation between duplex ultrasound results and chest CTA results? A retrospective chart review was conducted of total joint replacement patients in 2011 at a single institution. Inclusion criteria were adult patients who underwent a postoperative duplex ultrasonography for clinical suspicion of deep venous thrombosis (DVT). Demographic data, result of duplex scan, clinical indications for obtaining the duplex scan, and DVT prophylaxis used were recorded. Additionally, if a chest CTA was obtained for clinical suspicion for pulmonary embolus, results and clinical indication for obtaining the test were recorded. The rate of positive results for duplex ultrasonography and chest CTA was computed and correlated based on clinical indications. Two hundred ninety-five patients underwent duplex ultrasonography of which only 0.7% were positive for a DVT. One hundred three patients underwent a chest CTA for clinical suspicion of a pulmonary embolism (PE) of which 26 revealed a pulmonary embolus, none of which had a positive duplex ultrasound. Postoperative duplex scans have a low rate of positive results. A substantial number of patients with negative duplex results subsequently underwent chest CTA for clinical suspicion for which a pulmonary embolus was found, presumably resulting from a DVT despite negative duplex ultrasound result. A negative duplex ultrasonography should not rule out the presence of a DVT which can embolize to the lungs and thus should not preclude further workup when clinical suspicion exists for a pulmonary embolus.
Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution
Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...
Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification.
Fuchs-Telka, Sabine; Fister, Susanne; Mester, Patrick-Julian; Wagner, Martin; Rossmanith, Peter
2017-02-01
DNA is one of the most frequently analyzed molecules in the life sciences. In this article we describe a simple and fast protocol for quantitative DNA isolation from bacteria based on hydrophobic ionic liquid supported cell lysis at elevated temperatures (120-150 °C) for subsequent PCR-based analysis. From a set of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was identified as the most suitable for quantitative cell lysis and DNA extraction because of limited quantitative PCR inhibition by the aqueous eluate as well as no detectable DNA uptake. The newly developed method was able to efficiently lyse Gram-negative bacterial cells, whereas Gram-positive cells were protected by their thick cell wall. The performance of the final protocol resulted in quantitative DNA extraction efficiencies for Gram-negative bacteria similar to those obtained with a commercial kit, whereas the number of handling steps, and especially the time required, was dramatically reduced. Graphical Abstract After careful evaluation of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyr + ][Ntf 2 - ]) was identified as the most suitable ionic liquid for quantitative cell lysis and DNA extraction. When used for Gram-negative bacteria, the protocol presented is simple and very fast and achieves DNA extraction efficiencies similar to those obtained with a commercial kit. ddH 2 O double-distilled water, qPCR quantitative PCR.
Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan
2008-09-01
In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.
Nagy, Balint; Nagy, Richard Gyula; Lazar, Levente; Schonleber, Julianna; Papp, Csaba; Rigo, Janos
2015-05-20
Aneuploidies are the most frequent chromosomal abnormalities at birth. Autosomal aneuploidies cause serious malformations like trisomy 21, trisomy 18 and trisomy 13. However sex chromosome aneuploidies are causing less severe syndromes. For the detection of these aneuploidies, the "gold standard" method is the cytogenetic analysis of fetal cells, karyograms show all numerical and structural abnormalities, but it takes 2-4 weeks to get the reports. Molecular biological methods were developed to overcome the long culture time, thus, FISH and quantitative fluorescent PCR were introduced. In this work we show our experience with a commercial kit for the detection of sex chromosome aneuploidies. We analyzed 20.173 amniotic fluid samples for the period of 2006-2013 in our department. A conventional cytogenetic analysis was performed on the samples. We checked the reliability of quantitative fluorescent PCR and DNA fragment analysis on those samples where sex chromosomal aneuploidy was diagnosed. From the 20.173 amniotic fluid samples we found 50 samples with sex chromosome aneuploidy. There were 19 samples showing 46, XO, 17 samples with 46, XXY, 9 samples with 47, XXX and 5 samples with 47, XYY karyotypes. The applied quantitative fluorescent PCR and DNA fragment analyses method are suitable to detect all abnormal sex chromosome aneuploidies. Quantitative fluorescent PCR is a fast and reliable method for detection of sex chromosome aneuploidies. Copyright © 2015. Published by Elsevier B.V.
Vital, Pierangeli G; Van Ha, Nguyen Thi; Tuyet, Le Thi Hong; Widmer, Kenneth W
2017-02-01
Surface water samples in Vietnam were collected from the Saigon River, rural and suburban canals, and urban runoff canals in Ho Chi Minh City, Vietnam, and were processed to enumerate Escherichia coli. Quantification was done through membrane filtration and quantitative real-time polymerase chain reaction (PCR). Mean log colony-forming unit (CFU)/100 ml E. coli counts in the dry season for river/suburban canals and urban canals were log 2.8 and 3.7, respectively, using a membrane filtration method, while using Taqman quantitative real-time PCR they were log 2.4 and 2.8 for river/suburban canals and urban canals, respectively. For the wet season, data determined by the membrane filtration method in river/suburban canals and urban canals samples had mean counts of log 3.7 and 4.1, respectively. While mean log CFU/100 ml counts in the wet season using quantitative PCR were log 3 and 2, respectively. Additionally, the urban canal samples were significantly lower than those determined by conventional culture methods for the wet season. These results show that while quantitative real-time PCR can be used to determine levels of fecal indicator bacteria in surface waters, there are some limitations to its application and it may be impacted by sources of runoff based on surveyed samples.
Detection of Unculturable Bacteria in Periodontal Health and Disease by PCR
Harper-Owen, R.; Dymock, D.; Booth, V.; Weightman, A. J.; Wade, W. G.
1999-01-01
Recently developed molecular methods have made it possible to characterize mixed microflora in their entirety, including the substantial numbers of bacteria which do not grow on artificial culture media. In a previous study, molecular analysis of the microflora associated with acute oral infections resulted in the identification of three phylotypes, PUS3.42, PUS9.170, and PUS9.180, representing as-yet-uncultured organisms. The aim of this study was to design and validate specific PCR primers for these phylotypes and to determine their incidences in samples collected from healthy and diseased periodontal tissues. Two specific reverse primers were devised for each phylotype, and these were used in duplex PCRs with universal forward and reverse primers. All three phylotypes were detected in periodontal sites; PUS9.170, related to oral asaccharolytic Eubacterium spp., was significantly associated with disease. This study demonstrates the possibility of using unculturable, and therefore uncharacterized, organisms as markers of disease. PMID:10203507
HSV2 acute retinal necrosis: diagnosis and monitoring with quantitative polymerase chain reaction.
Cottet, L; Kaiser, L; Hirsch, H H; Baglivo, E
2009-06-01
To describe a case of HSV2 acute retinal necrosis (ARN) diagnosed and monitored with quantitative polymerase chain reaction (PCR) in ocular fluids. Case report. Quantitative PCR was performed in the aqueous humor (AH) and vitreous using primers specific for herpes virus. A positive PCR was found for HSV2 in the AH (>100,000,000 viral copies - 8.00 log/ml). After therapy, another anterior chamber tap showed a reduction of the viral load at 4.28 log/ml (19205 copies), confirming the efficacy of the treatment. After six months, PCR on the vitreous still showed the presence of HSV2 viral particles in the eye (3.14 log DNA copies/ml, 1379 copies) although the lesion was healed. This case demonstrates that PCR is useful to detect viral DNA in AH and vitreous and to monitor viral activity and therapeutic response. Viral DNA persists in ocular fluids for months in the presence of a healed infection.
Zhou, Yanfei; Bradshaw, Rosie E; Johnson, Richard D; Hume, David E; Simpson, Wayne R; Schmid, Jan
2014-03-01
Perennial ryegrass (Lolium perenne) is a widely used pasture grass, which is frequently infected by Neotyphodium lolii endophytes that enhance grass performance but can produce alkaloids inducing toxicosis in livestock. Several selected endophyte strains with reduced livestock toxicity, but that confer insect resistance, are now in common use. Little is known regarding the survival and persistence of these endophytes when in competition with common toxic endophytes. This is mainly because there are currently no assays available to easily and reliably quantify different endophytes in pastures or in batches of seeds infected with multiple strains. We developed real time PCR assays, based on secondary metabolite genes known to differ between N. lolii endophyte strains, to quantify two selected endophytes, AR1 and AR37, and a common toxic ecotype used in New Zealand. A duplex PCR allowed assessment of endophyte:grass DNA ratios with high sensitivity, specificity and precision. Endophyte specific primers/probes could detect contamination of AR37 seeds with other endophytes down to a level of 3-25%. We demonstrated that it is possible to quantify different endophyte strains simultaneously using multiplex PCR. This method has potential applications in management of endophytes in pastures and in fundamental research into this important plant-microbe symbiosis. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors.
Mosayebi, Majid; Louis, Ard A; Doye, Jonathan P K; Ouldridge, Thomas E
2015-12-22
The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.
Zoster duplex: a clinical report and etiologic analysis.
Zhang, Feng; Zhou, Jin
2015-01-01
Herpes zoster (HZ) duplex is a rare disease presentation. The mechanisms of varicella zoster virus (VZV) reactivation in multiple dermal regions are unknown. To present a HZ duplex case occurring in an immunocompetent woman and to analyze the possible underlying causes of HZ duplex. We present a HZ duplex case in an immunocompetent woman and analyzed the possible contributing factors in 36 HZ duplex cases. Continuously distributed variables were categorized by numbers and percentages. In our study, 24 cases (66.7%) were from Asia, 16 cases (44.4%) were in individuals ≥ 50 years of age, and 17 cases (47.2%) occurred in immunocompromised patients. Of the 36 cases, 23 involved women (63.9%) and 13 involved men. Eighteen patients suffering from HZ duplex, 13 of which were women (72.2%), did not suffer from any chronic systemic disease or have a long history of taking drugs. HZ duplex is a rare event that can occur in both immunocompetent and immunosuppressed individuals. HZ duplex might be associated with the Asia region, advanced age, immunosuppression, and being female.
Nguyen, Thi Quynh Ngoc; Lim, Kah Wai; Phan, Anh Tuân
2017-09-20
Small-molecule ligands targeting nucleic acids have been explored as potential therapeutic agents. Duplex groove-binding ligands have been shown to recognize DNA in a sequence-specific manner. On the other hand, quadruplex-binding ligands exhibit high selectivity between quadruplex and duplex, but show limited discrimination between different quadruplex structures. Here we propose a dual-specific approach through the simultaneous application of duplex- and quadruplex-binders. We demonstrated that a quadruplex-specific ligand and a duplex-specific ligand can simultaneously interact at two separate binding sites of a quadruplex-duplex hybrid harbouring both quadruplex and duplex structural elements. Such a dual-specific targeting strategy would combine the sequence specificity of duplex-binders and the strong binding affinity of quadruplex-binders, potentially allowing the specific targeting of unique quadruplex structures. Future research can be directed towards the development of conjugated compounds targeting specific genomic quadruplex-duplex sites, for which the linker would be highly context-dependent in terms of length and flexibility, as well as the attachment points onto both ligands.
Li, Guimin; Li, Wangfeng; Liu, Lixia
2012-01-01
Real-time PCR has engendered wide acceptance for quantitation of hepatitis B virus (HBV) DNA in the blood due to its improved rapidity, sensitivity, reproducibility, and reduced contamination. Here we describe a cost-effective and highly sensitive HBV real-time quantitative assay based on the light upon extension real-time PCR platform and a simple and reliable HBV DNA preparation method using silica-coated magnetic beads.
Methods for Characterization of Alternative RNA Splicing.
Harvey, Samuel E; Cheng, Chonghui
2016-01-01
Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.
Millon, L; Herbrecht, R; Grenouillet, F; Morio, F; Alanio, A; Letscher-Bru, V; Cassaing, S; Chouaki, T; Kauffmann-Lacroix, C; Poirier, P; Toubas, D; Augereau, O; Rocchi, S; Garcia-Hermoso, D; Bretagne, S
2016-09-01
The main objective of this study was to assess the diagnostic performance of a set of three Mucorales quantitative PCR assays in a retrospective multicentre study. Mucormycosis cases were recorded thanks to the French prospective surveillance programme (RESSIF network). The day of sampling of the first histological or mycological positive specimen was defined as day 0 (D0). Detection of circulating DNA was performed on frozen serum samples collected from D-30 to D30, using quantitative PCR assays targeting Rhizomucor, Lichtheimia, Mucor/Rhizopus. Forty-four patients diagnosed with probable (n = 19) or proven (n = 25) mucormycosis were included. Thirty-six of the 44 patients (81%) had at least one PCR-positive serum. The first PCR-positive sample was observed 9 days (range 0-28 days) before diagnosis was made using mycological criteria and at least 2 days (range 0-24 days) before imaging. The identifications provided with the quantitative PCR assays were all concordant with culture and/or PCR-based identification of the causal species. Survival rate at D84 was significantly higher for patients with an initially positive PCR that became negative after treatment initiation than for patients whose PCR remained positive (48% and 4%, respectively; p <10 -6 ). The median time for complete negativity of PCR was 7 days (range 3-19 days) after initiation of l-AmB treatment. Despite some limitations due to the retrospective design of the study, we showed that Mucorales quantitative PCR could not only confirm the mucormycosis diagnosis when other mycological arguments were present but could also anticipate this diagnosis. Quantification of DNA loads may also be a useful adjunct to treatment monitoring. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...
MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS
Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...
The ease and rapidity of quantitative DNA sequence detection by real-time PCR instruments promises to make their use increasingly common for the microbial analysis many different types of environmental samples. To fully exploit the capabilities of these instruments, correspondin...
Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...
QUANTITATIVE PCR ANALYSIS OF HOUSE DUST CAN REVEAL ABNORMAL MOLD CONDITIONS
Indoor mold populations were measured in the dust of homes in Cleveland and Cincinnati, OH, by quantitative PCR (QPCR) and, in Cincinnati, also by culturing. QPCR assays for 82 species (or groups of species) were used to identify and quantify indoor mold populations in moldy home...
[Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa].
Jin, X J; Gong, Y L; Yang, L; Mo, B H; Peng, Y Z; He, P; Zhao, J N; Li, X L
2018-04-20
Objective: To establish an optimized method of recombinase polymerase amplification (RPA) to rapidly detect Pseudomonas aeruginosa in clinic. Methods: (1) The DNA templates of one standard Pseudomonas aeruginosa strain was extracted and detected by polymerase chain reaction (PCR), real-time fluorescence quantitative PCR and RPA. Time of sample loading, time of amplification, and time of detection of the three methods were recorded. (2) One standard Pseudomonas aeruginosa strain was diluted in 7 concentrations of 1×10(7,) 1×10(6,) 1×10(5,) 1×10(4,) 1×10(3,) 1×10(2,) and 1×10(1) colony forming unit (CFU)/mL after recovery and cultivation. The DNA templates of Pseudomonas aeruginosa and negative control strain Pseudomonas putida were extracted and detected by PCR, real-time fluorescence quantitative PCR, and RPA separately. The sensitivity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (3) The DNA templates of one standard Pseudomonas aeruginosa strain and four negative control strains ( Staphylococcus aureus, Acinetobacter baumanii, Candida albicans, and Pseudomonas putida ) were extracted separately, and then they were detected by PCR, real-time fluorescence quantitative PCR, and RPA. The specificity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (4) The DNA templates of 28 clinical strains of Pseudomonas aeruginosa preserved in glycerin, 1 clinical strain of which was taken by cotton swab, and negative control strain Pseudomonas putida were extracted separately, and then they were detected by RPA. Positive amplification signals of the clinical strains were observed, and the detection rate was calculated. All experiments were repeated for 3 times. Sensitivity results were analyzed by GraphPad Prism 5.01 statistical software. Results: (1) The loading time of RPA, PCR, and real-time fluorescence quantitative PCR for detecting Pseudomonas aeruginosa were all 20 minutes. In PCR, time of amplification was 98 minutes, time of gel detection was 20 minutes, and the total time was 138 minutes. In real-time fluorescence quantitative PCR, amplification and detection could be completed simultaneously, which took 90 minutes, and the total time was 110 minutes. In RPA, amplification and detection could also be completed simultaneously, which took 15 minutes, and the total time was 35 minutes. (2) Pseudomonas putida did not show positive amplification signals or gel positive results in any of the three detection methods. The detection limit of Pseudomonas aeruginosa in real-time fluorescence quantitative PCR and PCR was 1×10(1) CFU/mL, and that of Pseudomonas aeruginosa in RPA was 1×10(2) CFU/mL. In RPA and real-time fluorescence quantitative PCR, the higher the concentration of Pseudomonas aeruginosa, the shorter threshold time and smaller the number of cycles, namely shorter time for detecting the positive amplified signal. In real-time fluorescence quantitative PCR, all positive amplification signal could be detected when the concentration of Pseudomonas aeruginosa was 1×10(1)-1×10(7) CFU/mL. In RPA, the detection rate of positive amplification signal was 0 when the concentration of Pseudomonas aeruginosa was 1×10(1) CFU/mL, while the detection rate of positive amplification signal was 67% when the concentration of Pseudomonas aeruginosa was 1×10(2) CFU/mL, and the detection rate of positive amplification signal was 100% when the concentration of Pseudomonas aeruginosa was 1×10(3)-1×10(7) CFU/mL. (3) In RPA, PCR, and real-time fluorescence quantitative PCR, Pseudomonas aeruginosa showed positive amplification signals and gel positive results, but there were no positive amplification signals or gel positive results in four negative control strains of Acinetobacter baumannii, Staphylococcus aureus, Candida albicans, and Pseudomonas putida . (4) In RPA, 28 clinical strains of Pseudomonas aeruginosa preserved in glycerin and 1 clinical strain of Pseudomonas aeruginosa taken by cotton swab showed positive amplification signals, while Pseudomonas putida did not show positive amplification signal. The detection rate of positive amplification signal of 29 clinical strains of Pseudomonas aeruginosa in RPA was 100%. Conclusions: The established optimized RPA technology for fast detection of Pseudomonas aeruginosa requires shorter time, with high sensitivity and specificity. It was of great value in fast detection of Pseudomonas aeruginosa infection in clinic.
Kaushik, Mahima; Kukreti, Shrikant
2006-01-01
Structural polymorphism of DNA is a widely accepted property. A simple addition to this perception has been our recent finding, where a single nucleotide polymorphism (SNP) site present in a quasipalindromic sequence of beta-globin LCR exhibited a hairpin-duplex equilibrium. Our current studies explore that secondary structures adopted by individual complementary strands compete with formation of a perfect duplex. Using gel-electrophoresis, ultraviolet (UV)-thermal denaturation, circular dichroism (CD) techniques, we have demonstrated the structural transitions within a perfect duplex containing 11 bp quasipalindromic stretch (TGGGG(G/C)CCCCA), to hairpins and bulge duplex forms. The extended version of the 11 bp duplex, flanked by 5 bp on both sides also demonstrated conformational equilibrium between duplex and hairpin species. Gel-electrophoresis confirms that the duplex coexists with hairpin and bulge duplex/cruciform species. Further, in CD spectra of duplexes, presence of two overlapping positive peaks at 265 and 285 nm suggest the features of A- as well as B-type DNA conformation and show oligomer concentration dependence, manifested in A --> B transition. This indicates the possibility of an architectural switching at quasipalindromic region between linear duplex to a cruciform structure. Such DNA structural variations are likely to be found in the mechanics of molecular recognition and manipulation by proteins.
Boivin, G; Bélanger, R; Delage, R; Béliveau, C; Demers, C; Goyette, N; Roy, J
2000-12-01
The performance of a commercially available qualitative PCR test for plasma (AMPLICOR CMV Test; Roche Diagnostics) and a quantitative PCR test for plasma and leukocytes (COBAS AMPLICOR CMV MONITOR Test; Roche Diagnostics) was evaluated with samples from 50 blood or marrow allogeneic transplant recipients who received short courses of sequential ganciclovir therapy (2 weeks intravenously followed by 2 weeks orally) based on a positive cytomegalovirus (CMV) pp65 antigenemia (AG) assay. The number of persons with a positive CMV test was significantly higher for leukocyte-based assays (AG, 67.5%; PCR, 62.5%) compared to both quantitative and qualitative PCR tests of plasma (42.5 and 35%, respectively). One person developed CMV disease during the study despite a negative AG assay; in this particular case, all PCR assays were found to be positive 10 days before his death. There was a trend for earlier positivity after transplantation and more rapid negativity after initiation of ganciclovir for the tests performed on leukocytes. The mean number of CMV copies as assessed by PCR was significantly higher in leukocytes than in plasma (P = 0.02). Overall, excellent agreement (kappa coefficient, >0.75) was found only between the two PCR assays (qualitative and quantitative) based on plasma. These results suggest that either the pp65 AG assay or the COBAS AMPLICOR CMV MONITOR Test using leukocytes could be used to safely monitor CMV viremia in related allogeneic blood or marrow transplant recipients. Such a strategy will result in preemptive treatment for about two-thirds of the persons with a relatively low rate (<33%) of secondary viremic episodes following short courses of ganciclovir therapy.
Bliem, Rupert; Schauer, Sonja; Plicka, Helga; Obwaller, Adelheid; Sommer, Regina; Steinrigl, Adolf; Alam, Munirul; Reischer, Georg H.; Farnleitner, Andreas H.
2015-01-01
Vibrio cholerae is a severe human pathogen and a frequent member of aquatic ecosystems. Quantification of V. cholerae in environmental water samples is therefore fundamental for ecological studies and health risk assessment. Beside time-consuming cultivation techniques, quantitative PCR (qPCR) has the potential to provide reliable quantitative data and offers the opportunity to quantify multiple targets simultaneously. A novel triplex qPCR strategy was developed in order to simultaneously quantify toxigenic and nontoxigenic V. cholerae in environmental water samples. To obtain quality-controlled PCR results, an internal amplification control was included. The qPCR assay was specific, highly sensitive, and quantitative across the tested 5-log dynamic range down to a method detection limit of 5 copies per reaction. Repeatability and reproducibility were high for all three tested target genes. For environmental application, global DNA recovery (GR) rates were assessed for drinking water, river water, and water from different lakes. GR rates ranged from 1.6% to 76.4% and were dependent on the environmental background. Uncorrected and GR-corrected V. cholerae abundances were determined in two lakes with extremely high turbidity. Uncorrected abundances ranged from 4.6 × 102 to 2.3 × 104 cell equivalents liter−1, whereas GR-corrected abundances ranged from 4.7 × 103 to 1.6 × 106 cell equivalents liter−1. GR-corrected qPCR results were in good agreement with an independent cell-based direct detection method but were up to 1.6 log higher than cultivation-based abundances. We recommend the newly developed triplex qPCR strategy as a powerful tool to simultaneously quantify toxigenic and nontoxigenic V. cholerae in various aquatic environments for ecological studies as well as for risk assessment programs. PMID:25724966
A Droplet Digital PCR Method for Severe Combined Immunodeficiency Newborn Screening.
Vidal-Folch, Noemi; Milosevic, Dragana; Majumdar, Ramanath; Gavrilov, Dimitar; Matern, Dietrich; Raymond, Kimiyo; Rinaldo, Piero; Tortorelli, Silvia; Abraham, Roshini S; Oglesbee, Devin
2017-09-01
Severe combined immunodeficiency (SCID) benefits from early intervention via hematopoietic cell transplantation to reverse T-cell lymphopenia (TCL). Newborn screening (NBS) programs use T-cell receptor excision circle (TREC) levels to detect SCID. Real-time quantitative PCR is often performed to quantify TRECs in dried blood spots (DBSs) for NBS. Yet, real-time quantitative PCR has inefficiencies necessitating normalization, repeat analyses, or standard curves. To address these issues, we developed a multiplex, droplet digital PCR (ddPCR) method for measuring absolute TREC amounts in one DBS punch. TREC and RPP30 levels were simultaneously measured with a Bio-Rad AutoDG and QX200 ddPCR system. DBSs from 610 presumed-normal, 29 lymphocyte-profiled, and 10 clinically diagnosed infants (1 X-linked SCID, 1 RAG1 Omenn syndrome, and other conditions) were tested. Control infants showed 14 to 474 TREC copies/μL blood. SCID infants, and other TCL conditions, had ≤15 TREC copies/μL. The ddPCR lower limit of quantitation was 14 TREC copies/μL, and the limit of detection was 4 TREC copies/μL. Intra-assay and interassay imprecision was <20% CV for DBSs at 54 to 60 TREC copies/μL. Testing 29 infants with known lymphocyte profiles resulted in a sensitivity of 88.9% and a specificity of 100% at TRECs <20 copies/μL. We developed a multiplex ddPCR method for the absolute quantitation of DBS TRECs that can detect SCID and other TCL conditions associated with absent or low TRECs and validated this method for NBS. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang
2018-05-01
Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2 > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.
PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples.
Wang, R F; Cao, W W; Cerniglia, C E
1996-01-01
PCR procedures based on 16S rRNA gene sequences specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human (adult and baby) feces and animal (rat, mouse, cat, dog, monkey, and rabbit) feces. Fusobacterium prausnitzii, Peptostreptococcus productus, and Clostridium clostridiiforme had high PCR titers (the maximum dilutions for positive PCR results ranged from 10(-3) to 10(-8)) in all of the human and animal fecal samples tested. Bacteroides thetaiotaomicron, Bacteroides vulgatus, and Eubacterium limosum also showed higher PCR titers (10(-2) to 10(-6)) in adult human feces. The other bacteria tested, including Escherichia coli, Bifidobacterium adolescentis, Bifidobacterium longum, Lactobacillus acidophilus, Eubacterium biforme, and Bacteroides distasonis, were either at low PCR titers (less than 10(-2)) or not detected by PCR. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps. PMID:8919784
Quantitative Real-Time Legionella PCR for Environmental Water Samples: Data Interpretation
Joly, Philippe; Falconnet, Pierre-Alain; André, Janine; Weill, Nicole; Reyrolle, Monique; Vandenesch, François; Maurin, Max; Etienne, Jerome; Jarraud, Sophie
2006-01-01
Quantitative Legionella PCRs targeting the 16S rRNA gene (specific for the genus Legionella) and the mip gene (specific for the species Legionella pneumophila) were applied to a total of 223 hot water system samples (131 in one laboratory and 92 in another laboratory) and 37 cooling tower samples (all in the same laboratory). The PCR results were compared with those of conventional culture. 16S rRNA gene PCR results were nonquantifiable for 2.8% of cooling tower samples and up to 39.1% of hot water system samples, and this was highly predictive of Legionella CFU counts below 250/liter. PCR cutoff values for identifying hot water system samples containing >103 CFU/liter legionellae were determined separately in each laboratory. The cutoffs differed widely between the laboratories and had sensitivities from 87.7 to 92.9% and specificities from 77.3 to 96.5%. The best specificity was obtained with mip PCR. PCR cutoffs could not be determined for cooling tower samples, as the results were highly variable and often high for culture-negative samples. Thus, quantitative Legionella PCR appears to be applicable to samples from hot water systems, but the positivity cutoff has to be determined in each laboratory. PMID:16597985
2013-01-01
Background A rapid, non-invasive, and inexpensive point-of-care (POC) diagnostic for malaria followed by therapeutic intervention would improve the ability to control infection in endemic areas. Methods A semi-nested PCR amplification protocol is described for quantitative detection of Plasmodium falciparum and is compared to a traditional nested PCR. The approach uses primers that target the P. falciparum dihydrofolate reductase gene. Results This study demonstrates that it is possible to perform an uninterrupted, asymmetric, semi-nested PCR assay with reduced assay time to detect P. falciparum without compromising the sensitivity and specificity of the assay using saliva as a testing matrix. Conclusions The development of this PCR allows nucleic acid amplification without the need to transfer amplicon from the first PCR step to a second reaction tube with nested primers, thus reducing both the chance of contamination and the time for analysis to < two hours. Analysis of the PCR amplicon yield was adapted to lateral flow detection using the quantitative up-converting phosphor (UCP) reporter technology. This approach provides a basis for migration of the assay to a POC microfluidic format. In addition the assay was successfully evaluated with oral samples. Oral fluid collection provides a simple non-invasive method to collect clinical samples. PMID:23433252
Koehler, Christian J; Arntzen, Magnus Ø; Thiede, Bernd
2015-05-15
Stable isotopic labeling techniques are useful for quantitative proteomics. A cost-effective and convenient method for diethylation by reductive amination was established. The impact using either carbon-13 or deuterium on quantification accuracy and precision was investigated using diethylation. We established an effective approach for stable isotope labeling by diethylation of amino groups of peptides. The approach was validated using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and nanospray liquid chromatography/electrospray ionization (nanoLC/ESI)-ion trap/orbitrap for mass spectrometric analysis as well as MaxQuant for quantitative data analysis. Reaction conditions with low reagent costs, high yields and minor side reactions were established for diethylation. Furthermore, we showed that diethylation can be applied to up to sixplex labeling. For duplex experiments, we compared diethylation in the analysis of the proteome of HeLa cells using acetaldehyde-(13) C(2)/(12) C(2) and acetaldehyde-(2) H(4)/(1) H(4). Equal numbers of proteins could be identified and quantified; however, (13) C(4)/(12) C(4) -diethylation revealed a lower variance of quantitative peptide ratios within proteins resulting in a higher precision of quantified proteins and less falsely regulated proteins. The results were compared with dimethylation showing minor effects because of the lower number of deuteriums. The described approach for diethylation of primary amines is a cost-effective and accurate method for up to sixplex relative quantification of proteomes. (13) C(4)/(12) C(4) -diethylation enables duplex quantification based on chemical labeling without using deuterium which reduces identification of false-negatives and increases the quality of the quantification results. Copyright © 2015 John Wiley & Sons, Ltd.
Byoun, Mun Sub; Yoo, Changhoon; Sim, Sang Jun; Lim, Chae Seung; Kim, Sung Woo
2018-01-01
Real-time PCR, also called quantitative PCR (qPCR), has been powerful analytical tool for detection of nucleic acids since it developed. Not only for biological research but also for diagnostic needs, qPCR technique requires capacity to detect multiple genes in recent years. Solid phase PCR (SP-PCR) where one or two directional primers are immobilized on solid substrates could analyze multiplex genetic targets. However, conventional SP-PCR was subjected to restriction of application for lack of PCR efficiency and quantitative resolution. Here we introduce an advanced qPCR with primer-incorporated network (PIN). One directional primers are immobilized in the porous hydrogel particle by covalent bond and the other direction of primers are temporarily immobilized at so-called 'Supplimers'. Supplimers released the primers to aqueous phase in the hydrogel at the thermal cycling of PCR. It induced the high PCR efficiency over 92% with high reliability. It reduced the formation of primer dimers and improved the selectivity of qPCR thanks to the strategy of 'right primers supplied to right place only'. By conducting a six-plex qPCR of 30 minutes, we analyzed DNA samples originated from malaria patients and successfully identified malaria species in a single reaction. PMID:29293604
Methods And Devices For Characterizing Duplex Nucleic Acid Molecules
Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen
2005-08-30
Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.
Quantitative phenotyping of X-disease resistance in chokecherry using real-time PCR.
Huang, Danqiong; Walla, James A; Dai, Wenhao
2014-03-01
A quantitative real-time SYBR Green PCR (qPCR) assay has been developed to detect and quantify X-disease phytoplasmas in chokecherry. An X-disease phytoplasma-specific and high sensitivity primer pair was designed based on the 16S rRNA gene sequence of X-disease phytoplasmas. This primer pair was specific to the 16SrIII group (X-disease) phytoplasmas. The qPCR method can quantify phytoplasmas from a DNA mix (a mix of both chokecherry and X-disease phytoplasma DNA) at as low as 0.001 ng, 10-fold lower than conventional PCR using the same primer pair. A significant correlation between the copy number of phytoplasmas and visual phenotypic rating scores of X-disease resistance in chokecherry plants was observed. Disease resistant chokecherries had a significantly lower titer of X-disease phytoplasmas than susceptible plants. This suggests that the qPCR assay provides a more objective tool to phenotype phytoplasma disease severity, particularly for early evaluation of host resistance; therefore, this method will facilitate quantitative phenotyping of disease resistance and has great potential in enhancing plant breeding. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Litao; Pan, Aihu; Zhang, Kewei; Guo, Jinchao; Yin, Changsong; Chen, Jianxiu; Huang, Cheng; Zhang, Dabing
2005-08-10
As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM insect resistant cottons quantification. All of these results indicated that our established conventional and TaqMan real-time PCR assays were applicable to detect the three insect resistant cottons qualitatively and quantitatively.
Gerdes, Lars; Iwobi, Azuka; Busch, Ulrich; Pecoraro, Sven
2016-01-01
Digital PCR in droplets (ddPCR) is an emerging method for more and more applications in DNA (and RNA) analysis. Special requirements when establishing ddPCR for analysis of genetically modified organisms (GMO) in a laboratory include the choice between validated official qPCR methods and the optimization of these assays for a ddPCR format. Differentiation between droplets with positive reaction and negative droplets, that is setting of an appropriate threshold, can be crucial for a correct measurement. This holds true in particular when independent transgene and plant-specific reference gene copy numbers have to be combined to determine the content of GM material in a sample. Droplets which show fluorescent units ranging between those of explicit positive and negative droplets are called ‘rain’. Signals of such droplets can hinder analysis and the correct setting of a threshold. In this manuscript, a computer-based algorithm has been carefully designed to evaluate assay performance and facilitate objective criteria for assay optimization. Optimized assays in return minimize the impact of rain on ddPCR analysis. We developed an Excel based ‘experience matrix’ that reflects the assay parameters of GMO ddPCR tests performed in our laboratory. Parameters considered include singleplex/duplex ddPCR, assay volume, thermal cycler, probe manufacturer, oligonucleotide concentration, annealing/elongation temperature, and a droplet separation evaluation. We additionally propose an objective droplet separation value which is based on both absolute fluorescence signal distance of positive and negative droplet populations and the variation within these droplet populations. The proposed performance classification in the experience matrix can be used for a rating of different assays for the same GMO target, thus enabling employment of the best suited assay parameters. Main optimization parameters include annealing/extension temperature and oligonucleotide concentrations. The droplet separation value allows for easy and reproducible assay performance evaluation. The combination of separation value with the experience matrix simplifies the choice of adequate assay parameters for a given GMO event. PMID:27077048
Gerdes, Lars; Iwobi, Azuka; Busch, Ulrich; Pecoraro, Sven
2016-03-01
Digital PCR in droplets (ddPCR) is an emerging method for more and more applications in DNA (and RNA) analysis. Special requirements when establishing ddPCR for analysis of genetically modified organisms (GMO) in a laboratory include the choice between validated official qPCR methods and the optimization of these assays for a ddPCR format. Differentiation between droplets with positive reaction and negative droplets, that is setting of an appropriate threshold, can be crucial for a correct measurement. This holds true in particular when independent transgene and plant-specific reference gene copy numbers have to be combined to determine the content of GM material in a sample. Droplets which show fluorescent units ranging between those of explicit positive and negative droplets are called 'rain'. Signals of such droplets can hinder analysis and the correct setting of a threshold. In this manuscript, a computer-based algorithm has been carefully designed to evaluate assay performance and facilitate objective criteria for assay optimization. Optimized assays in return minimize the impact of rain on ddPCR analysis. We developed an Excel based 'experience matrix' that reflects the assay parameters of GMO ddPCR tests performed in our laboratory. Parameters considered include singleplex/duplex ddPCR, assay volume, thermal cycler, probe manufacturer, oligonucleotide concentration, annealing/elongation temperature, and a droplet separation evaluation. We additionally propose an objective droplet separation value which is based on both absolute fluorescence signal distance of positive and negative droplet populations and the variation within these droplet populations. The proposed performance classification in the experience matrix can be used for a rating of different assays for the same GMO target, thus enabling employment of the best suited assay parameters. Main optimization parameters include annealing/extension temperature and oligonucleotide concentrations. The droplet separation value allows for easy and reproducible assay performance evaluation. The combination of separation value with the experience matrix simplifies the choice of adequate assay parameters for a given GMO event.
Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster are considered to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. In response, the United States Environmental Protectio...
Modern techniques for tracking fecal pollution in environmental waters require investing in DNA-based methods to determine the presence of specific fecal sources. To help water quality managers decide whether to employ routine polymerase chain reaction (PCR) or quantitative PC...
A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae
USDA-ARS?s Scientific Manuscript database
Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...
USDA-ARS?s Scientific Manuscript database
Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...
Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.
Cafferty, Brian J; Musetti, Caterina; Kim, Keunsoo; Horowitz, Eric D; Krishnamurthy, Ramanarayanan; Hud, Nicholas V
2016-04-07
Proflavine, a known intercalator of DNA and RNA, promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise form duplexes with low thermal stability, and even some that show no sign of duplex formation in the absence of proflavine. These findings demonstrate the potential for intercalators to be used as cofactors for the assembly of rationally designed nucleic acid structures, and could provide fundamental insights regarding intercalation of natural nucleic acid duplexes.
Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi
2013-01-01
In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize.
Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua
2016-01-01
Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455
Determining Fungi rRNA Copy Number by PCR
The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within ...
Pulverer, Walter; Hofner, Manuela; Preusser, Matthias; Dirnberger, Elisabeth; Hainfellner, Johannes A; Weinhaeusel, Andreas
2014-01-01
MGMT promoter methylation is associated with favorable prognosis and chemosensitivity in glioblastoma multiforme (GBM), especially in elderly patients. We aimed to develop a simple methylation-sensitive restriction enzyme (MSRE)-based quantitative PCR (qPCR) assay, allowing the quantification of MGMT promoter methylation. DNA was extracted from non-neoplastic brain (n = 24) and GBM samples (n = 20) upon 3 different sample conservation conditions (-80 °C, formalin-fixed and paraffin-embedded (FFPE); RCL2-fixed). We evaluated the suitability of each fixation method with respect to the MSRE-coupled qPCR methylation analyses. Methylation data were validated by MALDITOF. qPCR was used for evaluation of alternative tissue conservation procedures. DNA from FFPE tissue failed reliable testing; DNA from both RCL2-fixed and fresh frozen tissues performed equally well and was further used for validation of the quantitative MGMT methylation assay (limit of detection (LOD): 19.58 pg), using individual's undigested sample DNA for calibration. MGMT methylation analysis in non-neoplastic brain identified a background methylation of 0.10 ± 11% which we used for defining a cut-off of 0.32% for patient stratification. Of GBM patients 9 were MGMT methylationpositive (range: 0.56 - 91.95%), and 11 tested negative. MALDI-TOF measurements resulted in a concordant classification of 94% of GBM samples in comparison to qPCR. The presented methodology allows quantitative MGMT promoter methylation analyses. An amount of 200 ng DNA is sufficient for triplicate analyses including control reactions and individual calibration curves, thus excluding any DNA qualityderived bias. The combination of RCL2-fixation and quantitative methylation analyses improves pathological routine examination when histological and molecular analyses on limited amounts of tumor samples are necessary for patient stratification.
Fornazari, Felipe; da Silva, Rodrigo Costa; Richini-Pereira, Virginia Bodelão; Beserra, Hugo Enrique Orsini; Luvizotto, Maria Cecília Rui; Langoni, Helio
2012-09-01
Leptospirosis is an infectious disease of worldwide importance. The development of diagnostic techniques allows sick animals to be identified, reservoirs to be eliminated and the disease prevented and controlled. The present study aimed to compare different techniques for diagnosing leptospirosis in sheep. Samples of kidney, liver and blood were collected from 465 animals that originated from a slaughterhouse. The sera were analyzed by the Microscopic Agglutination Test (MAT), and kidney and liver samples of seropositive animals were analyzed using four techniques: bacteriological culture, the Warthin Starry (WS) technique, conventional PCR (cPCR), and quantitative PCR (qPCR). With the MAT, 21 animals were positive (4.5%) to serovars Hardjo (n=12), Hebdomadis (n=5), Sentot (n=2), Wolfii (n=1) and Shermani (n=1). Titers were 100 (n=10), 200 (n=2), 400 (n=6) and 1600 (n=3). No animal was positive by bacteriological culture; four animals were positive by the WS technique in kidney samples; six animals were positive by cPCR in kidney samples; and 11 animals were positive by qPCR, eight of which in kidney samples and three in liver. The bacterial quantification revealed a median of 4.3 bacteria/μL in liver samples and 36.6 bacteria/μL in kidney samples. qPCR presented the highest sensitivity among the techniques, followed by cPCR, the WS technique and bacteriological culture. These results indicate that sheep can carry leptospires of the Sejroe serogroup, and demonstrate the efficiency of quantitative PCR to detect Leptospira spp. in tissue samples. Published by Elsevier B.V.
Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing
2005-11-30
Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.
Wolffs, Petra; Norling, Börje; Rådström, Peter
2005-03-01
Real-time PCR technology is increasingly used for detection and quantification of pathogens in food samples. A main disadvantage of nucleic acid detection is the inability to distinguish between signals originating from viable cells and DNA released from dead cells. In order to gain knowledge concerning risks of false-positive results due to detection of DNA originating from dead cells, quantitative PCR (qPCR) was used to investigate the degradation kinetics of free DNA in four types of meat samples. Results showed that the fastest degradation rate was observed (1 log unit per 0.5 h) in chicken homogenate, whereas the slowest rate was observed in pork rinse (1 log unit per 120.5 h). Overall results indicated that degradation occurred faster in chicken samples than in pork samples and faster at higher temperatures. Based on these results, it was concluded that, especially in pork samples, there is a risk of false-positive PCR results. This was confirmed in a quantitative study on cell death and signal persistence over a period of 28 days, employing three different methods, i.e. viable counts, direct qPCR, and finally floatation, a recently developed discontinuous density centrifugation method, followed by qPCR. Results showed that direct qPCR resulted in an overestimation of up to 10 times of the amount of cells in the samples compared to viable counts, due to detection of DNA from dead cells. However, after using floatation prior to qPCR, results resembled the viable count data. This indicates that by using of floatation as a sample treatment step prior to qPCR, the risk of false-positive PCR results due to detection of dead cells, can be minimized.
Raphael, Jacques; Gandhi, Sonal; Li, Nim; Lu, Fang-I; Trudeau, Maureen
2017-07-01
Estrogen receptor (ER) negative (-) breast cancer (BC) patients have better tumor response rates than ER-positive (+) patients after neoadjuvant chemotherapy (NCT). We conducted a retrospective review using the institutional database "Biomatrix" to assess the value of quantitative ER status in predicting tumor response at surgery and to identify potential predictors of survival outcomes. Univariate followed by multivariable regression analyses were conducted to assess the association between quantitative ER and tumor response assessed as tumor size reduction and pathologic complete response (pCR). Predictors of recurrence-free survival (RFS) were identified using a cox proportional hazards model (CPH). A log-rank test was used to compare RFS between groups if a significant predictor was identified. 304 patients were included with a median follow-up of 43.3 months (Q1-Q3 28.7-61.1) and a mean age of 49.7 years (SD 10.9). Quantitative ER was inversely associated with tumor size reduction and pCR (OR 0.99, 95% CI 0.99-1.00, p = 0.027 and 0.98 95% CI 0.97-0.99, p < 0.0001, respectively). A cut-off of 60 and 80% predicted best the association with tumor size reduction and pCR, respectively. pCR was shown to be an independent predictor of RFS (HR 0.17, 95% CI 0.07-0.43, p = 0.0002) in all patients. At 5 years, 93% of patients with pCR and 72% of patients with residual tumor were recurrence-free, respectively (p = 0.0012). Quantitative ER status is inversely associated with tumor response in BC patients treated with NCT. A cut-off of 60 and 80% predicts best the association with tumor size reduction and pCR, respectively. Therefore, patients with an ER status higher than the cut-off might benefit from a neoadjuvant endocrine therapy approach. Patients with pCR had better survival outcomes independently of their tumor phenotype. Further prospective studies are needed to validate the clinical utility of quantitative ER as a predictive marker of tumor response.
Whale, Alexandra S; Huggett, Jim F; Cowen, Simon; Speirs, Valerie; Shaw, Jacqui; Ellison, Stephen; Foy, Carole A; Scott, Daniel J
2012-06-01
One of the benefits of Digital PCR (dPCR) is the potential for unparalleled precision enabling smaller fold change measurements. An example of an assessment that could benefit from such improved precision is the measurement of tumour-associated copy number variation (CNV) in the cell free DNA (cfDNA) fraction of patient blood plasma. To investigate the potential precision of dPCR and compare it with the established technique of quantitative PCR (qPCR), we used breast cancer cell lines to investigate HER2 gene amplification and modelled a range of different CNVs. We showed that, with equal experimental replication, dPCR could measure a smaller CNV than qPCR. As dPCR precision is directly dependent upon both the number of replicate measurements and the template concentration, we also developed a method to assist the design of dPCR experiments for measuring CNV. Using an existing model (based on Poisson and binomial distributions) to derive an expression for the variance inherent in dPCR, we produced a power calculation to define the experimental size required to reliably detect a given fold change at a given template concentration. This work will facilitate any future translation of dPCR to key diagnostic applications, such as cancer diagnostics and analysis of cfDNA.
Darvall, K A L; Sam, R C; Bate, G R; Adam, D J; Silverman, S H; Bradbury, A W
2010-08-01
Digital photoplethysmography (PPG) provides an inexpensive, reproducible, quantitative, non-invasive assessment of lower limb venous function. To examine the relationship between venous refilling time (VRT) and severity of venous disease, and also between changes in VRT and symptomatic improvement after ultrasound guided foam sclerotherapy (UGFS) for symptomatic superficial venous reflux (SVR). Prior to and 6 months after UGFS, 246 patients (317 limbs) completed a symptom questionnaire, underwent duplex ultrasonography and clinical assessment, and VRT measurement by digital PPG. Health related quality of life (HRQL) questionnaires were also completed. Median VRT improved from 11 to 31 s (P < 0.0005, Wilcoxon Signed Ranks). Abnormal VRT (<20 s) correlated well with the presence of SVR on duplex (sensitivity 75%, specificity 94%). Pre-treatment there was a significant relationship between reducing VRT and increasing CEAP clinical grade (P < 0.0005, chi(2)), extent of SVR on duplex (P < 0.0005) and a non-significant relationship with overall increasing symptom severity (P = 0.097). Relief of all symptoms was more likely when there was normalisation of VRT after treatment (80% vs. 65%, P < 0.0005, chi(2)). Pre-treatment VRT correlated with both generic physical (r = 0.428, P = 0.002) and disease-specific (r = -0.413, P = 0.003, Spearman's rank) HRQL. UGFS for SVR improves VRT measured by digital PPG and that improvement correlates with symptom relief. Copyright (c) 2010 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Comparison of the age-related porcine endogenous retrovirus (PERV) expression using duplex RT-PCR
Moon, Hyoung Joon; Kim, Hye Kwon; Park, Seong Jun; Lee, Chul Seung; Song, Dae Sub; Kang, Bo Kyu
2009-01-01
Porcine endogenous retroviruses (PERVs) are members of family Retroviridae, genus Gamma retrovirus, and transmitted by both horizontally and vertically like other endogenous retroviruses (ERVs). PERV was initially described in the 1970s having inserted its gene in the host genome of different pig breeds, and three classes, PERV-A, PERV-B, and PERV-C are known. The therapeutic use of living cells, tissues, and organs from animals called xenotransplantation might relieve the limited supply of allografts in the treatment of organ dysfunction. Because of ethical considerations, compatible organ sizes, and physiology, the pig has been regarded as an alternative source for xenotransplantation. Sensitive duplex reverse transcription-polymerase chain reaction protocols for simultaneously detecting PERV gag mRNA and porcine glyceraldehydes 3-phosphate dehydrogenase mRNA in one tube was established. To compare the age-related PERV expression patterns of the lung, liver, spleen, kidney, heart, and pancreas in commercial pigs, 20 pigs from four age groups (5 heads each in 10 days-, 40 days-, 70 days-, and 110 days-old, respectively) were used in this study. The expression patterns of PERV were statistically different among age groups in lung, liver, and kidney (ANOVA, p < 0.05). These data may support in the selection of appropriate donor pigs expressing low levels of PERV mRNA. PMID:19934597
Measuring thermodynamic details of DNA hybridization using fluorescence.
You, Yong; Tataurov, Andrey V; Owczarzy, Richard
2011-07-01
Modern real-time PCR systems make it easy to monitor fluorescence while temperature is varied for hundreds of samples in parallel, permitting high-throughput studies. We employed such system to investigate melting transitions of ordered nucleic acid structures into disordered random coils. Fluorescent dye and quencher were attached to oligonucleotides in such a way that changes of fluorescence intensity with temperature indicated progression of denaturation. When fluorescence melting data were compared with traditional ultraviolet optical experiments, commonly used dye/quencher combinations, like fluorescein and tetramethylrhodamine, showed substantial discrepancies. We have therefore screened 22 commercially available fluorophores and quenchers for their ability to reliably report annealing and melting transitions. Dependence of fluorescence on temperature and pH was also investigated. The optimal performance was observed using Texas Red or ROX dyes with Iowa Black RQ or Black Hole quenchers. These labels did not alter two-state nature of duplex melting process and provided accurate melting temperatures, free energies, enthalpies, and entropies. We also suggest a new strategy for determination of DNA duplex thermodynamics where concentration of a dye-labeled strand is kept constant and its complementary strand modified with a quencher is added at increasing excess. These methodological improvements will help build predictive models of nucleic acid hybridization. Copyright © 2011 Wiley Periodicals, Inc., a Wiley company.
Zengerle, Roland; von Stetten, Felix; Schmidt, Ulrike
2015-01-01
Nested PCR remains a labor-intensive and error-prone biomolecular analysis. Laboratory workflow automation by precise control of minute liquid volumes in centrifugal microfluidic Lab-on-a-Chip systems holds great potential for such applications. However, the majority of these systems require costly custom-made processing devices. Our idea is to augment a standard laboratory device, here a centrifugal real-time PCR thermocycler, with inbuilt liquid handling capabilities for automation. We have developed a microfluidic disk segment enabling an automated nested real-time PCR assay for identification of common European animal groups adapted to forensic standards. For the first time we utilize a novel combination of fluidic elements, including pre-storage of reagents, to automate the assay at constant rotational frequency of an off-the-shelf thermocycler. It provides a universal duplex pre-amplification of short fragments of the mitochondrial 12S rRNA and cytochrome b genes, animal-group-specific main-amplifications, and melting curve analysis for differentiation. The system was characterized with respect to assay sensitivity, specificity, risk of cross-contamination, and detection of minor components in mixtures. 92.2% of the performed tests were recognized as fluidically failure-free sample handling and used for evaluation. Altogether, augmentation of the standard real-time thermocycler with a self-contained centrifugal microfluidic disk segment resulted in an accelerated and automated analysis reducing hands-on time, and circumventing the risk of contamination associated with regular nested PCR protocols. PMID:26147196
Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.
2018-01-01
Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909
Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R
2008-05-15
A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.
Ziels, Ryan M; Beck, David A C; Martí, Magalí; Gough, Heidi L; Stensel, H David; Svensson, Bo H
2015-04-01
The ecophysiology of long-chain fatty acid-degrading syntrophic β-oxidizing bacteria has been poorly understood due to a lack of quantitative abundance data. Here, TaqMan quantitative PCR (qPCR) assays targeting the 16S rRNA gene of the known mesophilic syntrophic β-oxidizing bacterial genera Syntrophomonas and Syntrophus were developed and validated. Microbial community dynamics were followed using qPCR and Illumina-based high-throughput amplicon sequencing in triplicate methanogenic bioreactors subjected to five consecutive batch feedings of oleic acid. With repeated oleic acid feeding, the initial specific methane production rate significantly increased along with the relative abundances of Syntrophomonas and methanogenic archaea in the bioreactor communities. The novel qPCR assays showed that Syntrophomonas increased from 7 to 31% of the bacterial community 16S rRNA gene concentration, whereas that of Syntrophus decreased from 0.02 to less than 0.005%. High-throughput amplicon sequencing also revealed that Syntrophomonas became the dominant genus within the bioreactor microbiomes. These results suggest that increased specific mineralization rates of oleic acid were attributed to quantitative shifts within the microbial communities toward higher abundances of syntrophic β-oxidizing bacteria and methanogenic archaea. The novel qPCR assays targeting syntrophic β-oxidizing bacteria may thus serve as monitoring tools to indicate the fatty acid β-oxidization potential of anaerobic digester communities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
The pathogen causing corky root on lettuce, Sphingobium suberifaciens, is recalcitrant to standard epidemiological methods. Primers were selected from 16S rDNA sequences useful for the specific detection and quantification of S. suberifaciens. Conventional (PCR) and quantitative (qPCR) PCR protocols...
Bruckert, G; Vivien, D; Docagne, F; Roussel, B D
2016-04-01
Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.
Vendrame, Marco; Manzano, Marisa; Comi, Giuseppe; Bertrand, Julien; Iacumin, Lucilla
2014-09-01
Brettanomyces bruxellensis is a current problem in winemaking all over the world, and the question if B. bruxellensis has a positive or negative impact on wine is one of the most controversial discussions in the world. The presence of live B. bruxellensis cells represents the risk of growth and an increase in cell numbers, which is related to the potential production of volatile phenols. In this work, the optimisation of a PMA-quantitative PCR (qPCR) method to enumerate only viable cells was carried out using the standard strain B. bruxellensis DSMZ 70726. The obtained detection limits were 0.83 log CFU/mL in red wine, 0.63 log CFU/mL in white wine and 0.23 log CFU/mL in beer. Moreover, the quantification was also performed by Reverse Transcription quantitative PCR (RT-qPCR), and the results showed a higher detection limit for all of the trials. Copyright © 2014 Elsevier Ltd. All rights reserved.
A preamplification approach to GMO detection in processed foods.
Del Gaudio, S; Cirillo, A; Di Bernardo, G; Galderisi, U; Cipollaro, M
2010-03-01
DNA is widely used as a target for GMO analysis because of its stability and high detectability. Real-time PCR is the method routinely used in most analytical laboratories due to its quantitative performance and great sensitivity. Accurate DNA detection and quantification is dependent on the specificity and sensitivity of the amplification protocol as well as on the quality and quantity of the DNA used in the PCR reaction. In order to enhance the sensitivity of real-time PCR and consequently expand the number of analyzable target genes, we applied a preamplification technique to processed foods where DNA can be present in low amounts and/or in degraded forms thereby affecting the reliability of qualitative and quantitative results. The preamplification procedure utilizes a pool of primers targeting genes of interest and is followed by real-time PCR reactions specific for each gene. An improvement of Ct values was found comparing preamplified vs. non-preamplified DNA. The strategy reported in the present study will be also applicable to other fields requiring quantitative DNA testing by real-time PCR.
Quantitative competitive (QC) PCR for quantification of porcine DNA.
Wolf, C; Lüthy, J
2001-02-01
Many meat products nowadays may contain several species in different proportions. To protect consumers from fraud and misdeclarations, not only a qualitative but also a quantitative monitoring of ingredients of complex food products is necessary. DNA based techniques like the polymerase chain reaction (PCR) are widely used for identification of species but no answer to the proportional amount of a certain species could be given using current techniques. In this study we report the development and evaluation of a quantitative competitive polymerase chain reaction (QC-PCR) for detection and quantification of porcine DNA using a new porcine specific PCR system based on the growth hormone gene of sus scrofa. A DNA competitor differing by 30 bp in length from the porcine target sequence was constructed and used for PCR together with the target DNA. Specificity of the new primers was evaluated with DNA from cattle, sheep, chicken and turkey. The competitor concentration was adjusted to porcine DNA contents of 2 or 20% by coamplification of mixtures containing porcine and corresponding amounts of bovine DNA in defined ratios.
Detection of isotype switch rearrangement in bulk culture by PCR.
Max, E E; Mills, F C; Chu, C
2001-05-01
When a B lymphocyte changes from synthesizing IgM to synthesizing IgG, IgA, or IgE, this isotype switch is generally accompanied by a unique DNA rearrangement. The protocols in this unit describe two polymerase chain reaction (PCR)-based strategies for detecting switch rearrangements in bulk culture. The first involves direct PCR across the switch junctions, providing the opportunity for characterizing the recombination products by nucleotide sequence analysis; however, because of characteristics inherent to the PCR methodology this strategy cannot easily be used as a quantitative assay for recombination. A support protocol details the preparation of the 5' Su PCR probe for this protocol. The second basic protocol describes a method known as digestion-circularization PCR (DCPCR) that is more amenable to quantitation but yields no information on structure of the recombination products. Both techniques should be capable of detecting reciprocal deletion circles as well as functional recombination products remaining on the expressed chromosome.
Han, Joan C.; Elsea, Sarah H.; Pena, Heloísa B.; Pena, Sérgio Danilo Junho
2013-01-01
Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations. PMID:24288428
Quantitative PCR for human herpesviruses 6 and 7.
Secchiero, P; Zella, D; Crowley, R W; Gallo, R C; Lusso, P
1995-01-01
A quantitative PCR assay for the detection of human herpesvirus 6 (HHV-6) (variants A and B) and HHV-7 DNAs in clinical samples was developed. The assay uses a nonhomologous internal standard (IS) for each virus that is coamplified with the wild-type target sequence in the same vial and with the same pair of primers. This method allows for a correction of the variability of efficiency of the PCR technique. A standard curve is constructed for each experiment by coamplification of known quantities of the cloned HHV-6 or HHV-7 target templates with the respective IS. Absolute quantitation of the test samples is then achieved by determining the viral target/IS ratio of the hybridization signals of the amplification products and plotting this value against the standard curve. Using this assay, we quantitated the amount of HHV-6 or HHV-7 DNA in infected cell cultures and demonstrated an inhibitory effect of phosphonoformic acid on the replication of HHV-6 and HHV-7 in vitro. As the first clinical application of this procedure, we performed preliminary measurements of the loads of HHV-6 and HHV-7 in lymph nodes from patients with Hodgkin's disease and AIDS. Application of this quantitative PCR method should be helpful for elucidating the pathogenic roles of HHV-6 and HHV-7. PMID:7559960
Thermal stability of DNA quadruplex-duplex hybrids.
Lim, Kah Wai; Khong, Zi Jian; Phan, Anh Tuân
2014-01-14
DNA has the capacity to adopt several distinct structural forms, such as duplex and quadruplex helices, which have been implicated in cellular processes and shown to exhibit important functional properties. Quadruplex-duplex hybrids, generated from the juxtaposition of these two structural elements, could find applications in therapeutics and nanotechnology. Here we used NMR and CD spectroscopy to investigate the thermal stability of two classes of quadruplex-duplex hybrids comprising fundamentally distinct modes of duplex and quadruplex connectivity: Construct I involves the coaxial orientation of the duplex and quadruplex helices with continual base stacking across the two components; Construct II involves the orthogonal orientation of the duplex and quadruplex helices with no base stacking between the two components. We have found that for both constructs, the stability of the quadruplex generally increases with the length of the stem-loop incorporated, with respect to quadruplexes comprising nonstructured loops of the same length, which showed a continuous drop in stability with increasing loop length. The stability of these complexes, particularly Construct I, can be substantially influenced by the base-pair steps proximal to the quadruplex-duplex junction. Bulges at the junction are largely detrimental to the adoption of the desired G-quadruplex topology for Construct I but not for Construct II. These findings should facilitate future design and prediction of quadruplex-duplex hybrids.
Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences
König, Sebastian L. B.; Huppert, Julian L.; Sigel, Roland K. O.; Evans, Amanda C.
2013-01-01
G-quadruplexes and i-motifs are complementary examples of non-canonical nucleic acid substructure conformations. G-quadruplex thermodynamic stability has been extensively studied for a variety of base sequences, but the degree of duplex destabilization that adjacent quadruplex structure formation can cause has yet to be fully addressed. Stable in vivo formation of these alternative nucleic acid structures is likely to be highly dependent on whether sufficient spacing exists between neighbouring duplex- and quadruplex-/i-motif-forming regions to accommodate quadruplexes or i-motifs without disrupting duplex stability. Prediction of putative G-quadruplex-forming regions is likely to be assisted by further understanding of what distance (number of base pairs) is required for duplexes to remain stable as quadruplexes or i-motifs form. Using oligonucleotide constructs derived from precedented G-quadruplexes and i-motif-forming bcl-2 P1 promoter region, initial biophysical stability studies indicate that the formation of G-quadruplex and i-motif conformations do destabilize proximal duplex regions. The undermining effect that quadruplex formation can have on duplex stability is mitigated with increased distance from the duplex region: a spacing of five base pairs or more is sufficient to maintain duplex stability proximal to predicted quadruplex/i-motif-forming regions. PMID:23771141
Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A
2018-06-06
Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.
Ronish, B; Hakhverdyan, M; Ståhl, K; Gallardo, C; Fernandez-Pinero, J; Belák, S; Leblanc, N; Wangh, L
2011-03-01
African swine fever virus (ASFV) is a highly pathogenic DNA virus that is the causative agent of African swine fever (ASF), an infectious disease of domestic and wild pigs of all breeds and ages, causing a range of syndromes. Acute disease is characterized by high fever, haemorrhages in the reticuloendothelial system, and a high mortality rate. A powerful novel diagnostic assay based on the Linear-After-The-Exponential-PCR (LATE-PCR) principle was developed to detect ASFV. LATE-PCR is an advanced form of asymmetric PCR which results in direct amplification of large amount of single-stranded DNA. Fluorescent readings are acquired using endpoint analysis after PCR amplification. Amplification of the correct product is verified by melting curve analysis. The assay was designed to amplify the VP72 gene of ASFV genome. Nineteen ASFV DNA cell culture virus strains and three tissue samples (spleen, tonsil, and liver) from infected experimental pigs were tested. Virus was detected in all of the cell culture and tissue samples. None of five ASFV-related viruses tested produced a positive signal, demonstrating the high specificity of the assay. The sensitivity of the LATE-PCR assay was determined in two separate real-time monoplex reactions using samples of synthetic ASFV and synthetic control-DNA targets that were diluted serially from 10⁹ to 1 initial copies per reaction. The detection limit was 1 and 10 copies/reaction, respectively. The sensitivity of the assay was also tested in a duplex end-point reactions comprised of a constant level of 150 copies of synthetic control-DNA and a clinical sample of spleen tissue diluted serially from 10⁻¹ to 10⁻⁵. The detection limit was 10⁻⁵ dilution which corresponds to approximately 1 copy/reaction. Since the assay is designed to be used in either laboratory settings or in a portable PCR machine (Bio-Seeq Portable Veterinary Diagnostics Laboratory; Smiths Detection, Watford UK), the LATE-PCR provides a robust and novel tool for the diagnosis of ASF both in the laboratory and in the field. Copyright © 2010 Elsevier B.V. All rights reserved.
Water-evaporation reduction by duplex films: application to the human tear film.
Cerretani, Colin F; Ho, Nghia H; Radke, C J
2013-09-01
Water-evaporation reduction by duplex-oil films is especially important to understand the physiology of the human tear film. Secreted lipids, called meibum, form a duplex film that coats the aqueous tear film and purportedly reduces tear evaporation. Lipid-layer deficiency is correlated with the occurrence of dry-eye disease; however, in-vitro experiments fail to show water-evaporation reduction by tear-lipid duplex films. We review the available literature on water-evaporation reduction by duplex-oil films and outline the theoretical underpinnings of spreading and evaporation kinetics that govern behavior of these systems. A dissolution-diffusion model unifies the data reported in the literature and identifies dewetting of duplex films into lenses as a key challenge to obtaining significant evaporation reduction. We develop an improved apparatus for measuring evaporation reduction by duplex-oil films including simultaneous assessment of film coverage, stability, and temperature, all under controlled external mass transfer. New data reported in this study fit into the larger body of work conducted on water-evaporation reduction by duplex-oil films. Duplex-oil films of oxidized mineral oil/mucin (MOx/BSM), human meibum (HM), and bovine meibum (BM) reduce water evaporation by a dissolution-diffusion mechanism, as confirmed by agreement between measurement and theory. The water permeability of oxidized-mineral-oil duplex films agrees with those reported in the literature, after correction for the presence of mucin. We find that duplex-oil films of bovine and human meibum at physiologic temperature reduce water evaporation only 6-8% for a 100-nm film thickness pertinent to the human tear film. Comparison to in-vivo human tear-evaporation measurements is inconclusive because evaporation from a clean-water surface is not measured and because the mass-transfer resistance is not characterized. Copyright © 2013 Elsevier B.V. All rights reserved.
Design of primers and probes for quantitative real-time PCR methods.
Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J
2015-01-01
Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.
Nathan, Lucas M; Simmons, Megan; Wegleitner, Benjamin J; Jerde, Christopher L; Mahon, Andrew R
2014-11-04
The use of molecular surveillance techniques has become popular among aquatic researchers and managers due to the improved sensitivity and efficiency compared to traditional sampling methods. Rapid expansion in the use of environmental DNA (eDNA), paired with the advancement of molecular technologies, has resulted in new detection platforms and techniques. In this study we present a comparison of three eDNA surveillance platforms: traditional polymerase chain reaction (PCR), quantitative PCR (qPCR), and digital droplet PCR (ddPCR) in which water samples were collected over a 24 h time period from mesocosm experiments containing a population gradient of invasive species densities. All platforms reliably detected the presence of DNA, even at low target organism densities within the first hour. The two quantitative platforms (qPCR and ddPCR) produced similar estimates of DNA concentrations. The analyses completed with ddPCR was faster from sample collection through analyses and cost approximately half the expenditure of qPCR. Although a new platform for eDNA surveillance of aquatic species, ddPCR was consistent with more commonly used qPCR and a cost-effective means of estimating DNA concentrations. Use of ddPCR by researchers and managers should be considered in future eDNA surveillance applications.
The U.S. Environmental Protection Agency (EPA) has provided recommended beach advisory values in its 2012 recreational water quality criteria (RWQC) for states wishing to use quantitative polymerase chain reaction (qPCR) for the monitoring of Enterococcus fecal indicator bacteria...
USDA-ARS?s Scientific Manuscript database
Quantitative PCR (qPCR) can be used to detect and monitor pathogen colonization, but early attempts to apply the technology to Botrytis cinerea infection of grape berries have identified limitations to current techniques. In this study, four DNA extraction methods, two grinding methods, two grape or...
Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress
USDA-ARS?s Scientific Manuscript database
Lolium temulentum is a valuable model grass species for the study of stress in forage and turf grasses. Gene expression analysis by quantitative real time RT-PCR relies on the use of proper internal standards. The aim of this study was to identify and evaluate reference genes for use in real-time q...
USDA-ARS?s Scientific Manuscript database
The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...
QUANTITATIVE PCR ANALYSIS OF MOLDS IN THE DUST FROM HOMES OF ASTHMATIC CHILDREN IN NORTH CAROLINA
The vacuum bag (VB) dust was analyzed by mold specific quantitative PCR. These results were compared to the analysis survey calculated for each of the homes. The mean and standard deviation (SD) of the ERMI values in the homes of the NC asthmatic children was 16.4 (6.77), compa...
Tang, L.; Sun, Y.; Buelow, D.; Gu, Z.; Caliendo, A. M.; Pounds, S.
2016-01-01
Given recent advances in the development of quantitative standards, particularly WHO international standards, efforts to better understand the commutability of reference materials have been made. Existing approaches in evaluating commutability include prediction intervals and correspondence analysis; however, the results obtained from existing approaches may be ambiguous. We have developed a “deviation-from-ideal” (DFI) approach to evaluate commutability of standards and applied it to the assessment of Epstein-Bar virus (EBV) load testing in four quantitative PCR assays, treating digital PCR as a reference assay. We then discuss advantages and limitations of the DFI approach as well as experimental design to best evaluate the commutability of an assay in practice. PMID:27076654
Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu
2011-09-01
To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.
Developing noninvasive diagnosis for single-gene disorders: the role of digital PCR.
Barrett, Angela N; Chitty, Lyn S
2014-01-01
Cell-free fetal DNA constitutes approximately 10 % of the cell-free DNA found in maternal plasma and can be used as a reliable source of fetal genetic material for noninvasive prenatal diagnosis (NIPD) from early pregnancy. The relatively high levels of maternal background can make detection of paternally inherited point mutations challenging. Diagnosis of inheritance of autosomal recessive disorders using qPCR is even more challenging due to the high background of mutant maternal allele. Digital PCR is a very sensitive modified method of quantitative real-time PCR (qPCR), allowing absolute quantitation and rare allele detection without the need for standards or normalization. Samples are diluted and then partitioned into a large number of small qPCR reactions, some of which contain the target molecule and some which do not; the proportion of positive reactions can be used to calculate the concentration of targets in the initial sample. Here we discuss the use of digital PCR as an accurate approach to NIPD for single-gene disorders.
Whale, Alexandra S; Devonshire, Alison S; Karlin-Neumann, George; Regan, Jack; Javier, Leanne; Cowen, Simon; Fernandez-Gonzalez, Ana; Jones, Gerwyn M; Redshaw, Nicholas; Beck, Julia; Berger, Andreas W; Combaret, Valérie; Dahl Kjersgaard, Nina; Davis, Lisa; Fina, Frederic; Forshew, Tim; Fredslund Andersen, Rikke; Galbiati, Silvia; González Hernández, Álvaro; Haynes, Charles A; Janku, Filip; Lacave, Roger; Lee, Justin; Mistry, Vilas; Pender, Alexandra; Pradines, Anne; Proudhon, Charlotte; Saal, Lao H; Stieglitz, Elliot; Ulrich, Bryan; Foy, Carole A; Parkes, Helen; Tzonev, Svilen; Huggett, Jim F
2017-02-07
This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.
Remans, Tony; Keunen, Els; Bex, Geert Jan; Smeets, Karen; Vangronsveld, Jaco; Cuypers, Ann
2014-10-01
Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results; however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this commentary, we direct researchers to appropriate procedures, outline a method to present the remaining uncertainty in data accuracy, and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data. © 2014 American Society of Plant Biologists. All rights reserved.
Seo, K H; Valentin-Bon, I E; Brackett, R E
2006-03-01
Salmonellosis caused by Salmonella Enteritidis (SE) is a significant cause of foodborne illnesses in the United States. Consumption of undercooked eggs and egg-containing products has been the primary risk factor for the disease. The importance of the bacterial enumeration technique has been enormously stressed because of the quantitative risk analysis of SE in shell eggs. Traditional enumeration methods mainly depend on slow and tedious most-probable-number (MPN) methods. Therefore, specific, sensitive, and rapid methods for SE quantitation are needed to collect sufficient data for risk assessment and food safety policy development. We previously developed a real-time quantitative PCR assay for the direct detection and enumeration of SE and, in this study, applied it to naturally contaminated ice cream samples with and without enrichment. The detection limit of the real-time PCR assay was determined with artificially inoculated ice cream. When applied to the direct detection and quantification of SE in ice cream, the real-time PCR assay was as sensitive as the conventional plate count method in frequency of detection. However, populations of SE derived from real-time quantitative PCR were approximately 1 log higher than provided by MPN and CFU values obtained by conventional culture methods. The detection and enumeration of SE in naturally contaminated ice cream can be completed in 3 h by this real-time PCR method, whereas the cultural enrichment method requires 5 to 7 days. A commercial immunoassay for the specific detection of SE was also included in the study. The real-time PCR assay proved to be a valuable tool that may be useful to the food industry in monitoring its processes to improve product quality and safety.
A real time genotyping PCR assay for polyomavirus BK.
Gard, Lilli; Niesters, Hubert G M; Riezebos-Brilman, Annelies
2015-09-01
Polyomavirus BK (BKV) may cause nephropathy in renal transplant recipients and hemorrhagic cystitis in bone marrow recipients. We developed real-time PCRs (RT-PCR) to determine easily and rapidly the different BKV genotypes (BKGT) (I-IV). On the VP1 gene a duplex of RT-PCRs was developed and validated to differentiate the four main BKGT. 212 BKV positive samples (21 plasma, 191 urine) were tested with these specific PCRs. Of these 212 samples, 55 PCR results were additionally confirmed by sequencing a VP1 gene fragment (nucleotide 1630-1956). For every genotype, a highly specific, precise and internally controlled assay was developed with a limit of detection of log 3 copies per ml. In 18 (8.5%) of these samples genotyping was not successful due to a low viral load. By sequence analysis, the genotype of 46 out of 55 and 2 out of 4 samples with double infection could be confirmed. This study describes RT-PCRs for detection of the main BKGT. It proved to be rapid, cheap and sensitive compared to sequencing. Double infections can also be detected. This method will be of value to investigate the role of BKV infection in relation to the genotype. Copyright © 2015 Elsevier B.V. All rights reserved.
Azzi, Salah; Steunou, Virginie; Rousseau, Alexandra; Rossignol, Sylvie; Thibaud, Nathalie; Danton, Fabienne; Le Jule, Marilyne; Gicquel, Christine; Le Bouc, Yves; Netchine, Irène
2011-02-01
Many human syndromes involve a loss of imprinting (LOI) due to a loss (LOM) or a gain of DNA methylation (GOM). Most LOI occur as mosaics and can therefore be difficult to detect with conventional methods. The human imprinted 11p15 region is crucial for the control of fetal growth, and LOI at this locus is associated with two clinical disorders with opposite phenotypes: Beckwith-Wiedemann syndrome (BWS), characterized by fetal overgrowth and a high risk of tumors, and Russell-Silver syndrome (RSS), characterized by intrauterine and postnatal growth restriction. Until recently, we have been using Southern blotting for the diagnosis of RSS and BWS. We describe here a powerful quantitative technique, allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), for the diagnosis of these two complex disorders. We first checked the specificity of the probes and primers used for ASMM RTQ-PCR. We then carried out statistical validation for this method, on both retrospective and prospective populations of patients. This analysis demonstrated that ASMM RTQ-PCR is more sensitive than Southern blotting for detecting low degree of LOI. Moreover, ASMM RTQ-PCR is a very rapid, reliable, simple, safe, and cost effective method. © 2011 Wiley-Liss, Inc.
Duplex gall bladder: bystander or culprit.
Kumar, Jogender; Yadav, Arushi
2017-08-30
Gall bladder (GB) duplication is a rare anatomical malformation, which can be detected by preoperative imaging study. We present a case of duplex gall bladder in a 14-year-old boy who presented with abdominal pain. On ultrasound, he had right nephrolithiasis and duplex gall bladder. Duplex gall bladder was confirmed on MR cholangiopancreatography. There was a dilemma for surgical management of duplex gall bladder; however, he became asymptomatic after conservative treatment. Prophylactic surgery is not recommended for asymptomatic incidentally detected duplex gall bladder. Radiologists and paediatric surgeons should be sensitised about the exact anatomy of this entity. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Zhuqing, Wang; Tongxiang, Liang; Ken, Suzuki; Hideo, Miura
Surface molybdenum enrichment on 2205 duplex stainless steel was obtained by the ball milling technique. The electrochemical results showed molybdenum enrichment on the surface of 2205 duplex stainless steel improved its corrosion resistance in a typical proton exchange membrane fuel cell environment. This was mainly attributed to higher molybdenum content in the passive film formed on 2205 duplex stainless steel after ball milling. The decreased donor and acceptor concentrations improved significantly the corrosion resistance of surface molybdenum-enriched 2205 duplex stainless steel bipolar plates in the simulated cathodic proton exchange membrane fuel cells environment. In addition, the interfacial contact resistance of the 2205 duplex stainless steel bipolar plates slightly decreased due to surface molybdenum enrichment.
The principle and application of new PCR Technologies
NASA Astrophysics Data System (ADS)
Yu, Miao; Cao, Yue; Ji, Yubin
2017-12-01
Polymerase chain reaction (PCR) is essentially a selective DNA amplification technique commonlyapplied for genetic testing and molecular diagnosis because of its high specificity and sensitivity.PCR technologies as the key of molecular biology, has realized that the qualitative detection of absolute quantitative has been changed. It has produced a variety of new PCR technologies, such as extreme PCR, photonic PCR, o-amplification at lower denaturation temperature PCR, nanoparticle PCR and so on. In this paper, the principle and application of PCR technologies are reviewed, and its development is prospected too.
Avian influenza virus detection and quantitation by real-time RT-PCR
USDA-ARS?s Scientific Manuscript database
Real-time RT-PCR (rRT-PCR) has been used for avian influenza virus (AIV) detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of rRT-PCR are: high sensitivity, high specificity, rapid time-to-result, scalability, cost, and its inherentl...
Banting, Graham S.; Braithwaite, Shannon; Scott, Candis; Kim, Jinyong; Jeon, Byeonghwa; Ashbolt, Nicholas; Ruecker, Norma; Tymensen, Lisa; Charest, Jollin; Pintar, Katarina; Checkley, Sylvia
2016-01-01
ABSTRACT Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)–quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053–1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari. Campylobacters in raw sewage were present at ∼102/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease prevention related to food and water exposures. IMPORTANCE The results of this study demonstrate the importance of assay validation upon data interpretation of environmental monitoring for Campylobacter when using molecular biology-based assays. Previous studies describing Campylobacter prevalence in Canada utilized primers that we have determined to be nonspecific due to their cross-amplification of Arcobacter spp. As such, Campylobacter prevalence may have been vastly overestimated in other studies. Additionally, the development of a quantitative assay described in this study will allow accurate determination of Campylobacter concentrations in environmental water samples, allowing more informed decisions to be made about water usage based on quantitative microbial risk assessment. PMID:27235434
Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria
2003-12-15
Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.
Clifton, D.R.; Rodriguez, R.J.
1997-01-01
A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.
Clifton, D.R.; Rodriguez, R.J.
1997-01-01
A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.
Normalised quantitative polymerase chain reaction for diagnosis of tuberculosis-associated uveitis.
Barik, Manas Ranjan; Rath, Soveeta; Modi, Rohit; Rana, Rajkishori; Reddy, Mamatha M; Basu, Soumyava
2018-05-01
Polymerase chain reaction (PCR)-based diagnosis of tuberculosis-associated uveitis (TBU) in TB-endemic countries is challenging due to likelihood of latent mycobacterial infection in both immune and non-immune cells. In this study, we investigated normalised quantitative PCR (nqPCR) in ocular fluids (aqueous/vitreous) for diagnosis of TBU in a TB-endemic population. Mycobacterial copy numbers (mpb64 gene) were normalised to host genome copy numbers (RNAse P RNA component H1 [RPPH1] gene) in TBU (n = 16) and control (n = 13) samples (discovery cohort). The mpb64:RPPH1 ratios (normalised value) from each TBU and control sample were tested against the current reference standard i.e. clinically-diagnosed TBU, to generate Receiver Operating Characteristic (ROC) curves. The optimum cut-off value of mpb64:RPPH1 ratio (0.011) for diagnosing TBU was identified from the highest Youden index. This cut-off value was then tested in a different cohort of TBU and controls (validation cohort, 20 cases and 18 controls), where it yielded specificity, sensitivity and diagnostic accuracy of 94.4%, 85.0%, and 89.4% respectively. The above values for conventional quantitative PCR (≥1 copy of mpb64 per reaction) were 61.1%, 90.0%, and 74.3% respectively. Normalisation markedly improved the specificity and diagnostic accuracy of quantitative PCR for diagnosis of TBU. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantitative analysis of periodontal pathogens by ELISA and real-time polymerase chain reaction.
Hamlet, Stephen M
2010-01-01
The development of analytical methods enabling the accurate identification and enumeration of bacterial species colonizing the oral cavity has led to the identification of a small number of bacterial pathogens that are major factors in the etiology of periodontal disease. Further, these methods also underpin more recent epidemiological analyses of the impact of periodontal disease on general health. Given the complex milieu of over 700 species of microorganisms known to exist within the complex biofilms found in the oral cavity, the identification and enumeration of oral periodontopathogens has not been an easy task. In recent years however, some of the intrinsic limitations of the more traditional microbiological analyses previously used have been overcome with the advent of immunological and molecular analytical methods. Of the plethora of methodologies reported in the literature, the enzyme-linked immunosorbent assay (ELISA), which combines the specificity of antibody with the sensitivity of simple enzyme assays and the polymerase chain reaction (PCR), has been widely utilized in both laboratory and clinical applications. Although conventional PCR does not allow quantitation of the target organism, real-time PCR (rtPCR) has the ability to detect amplicons as they accumulate in "real time" allowing subsequent quantitation. These methods enable the accurate quantitation of as few as 10(2) (using rtPCR) to 10(4) (using ELISA) periodontopathogens in dental plaque samples.
Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate.
Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine
2016-01-01
Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans , and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.
Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate
Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine
2016-01-01
Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations. PMID:28066365
Suresh, Gorle; Priyakumar, U Deva
2015-09-01
Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes. Copyright © 2015 Elsevier Inc. All rights reserved.
Assembly and analysis of eukaryotic Argonaute–RNA complexes in microRNA-target recognition
Gan, Hin Hark; Gunsalus, Kristin C.
2015-01-01
Experimental studies have uncovered a variety of microRNA (miRNA)–target duplex structures that include perfect, imperfect and seedless duplexes. However, non-canonical binding modes from imperfect/seedless duplexes are not well predicted by computational approaches, which rely primarily on sequence and secondary structural features, nor have their tertiary structures been characterized because solved structures to date are limited to near perfect, straight duplexes in Argonautes (Agos). Here, we use structural modeling to examine the role of Ago dynamics in assembling viable eukaryotic miRNA-induced silencing complexes (miRISCs). We show that combinations of low-frequency, global modes of motion of Ago domains are required to accommodate RNA duplexes in model human and C. elegans Ago structures. Models of viable miRISCs imply that Ago adopts variable conformations at distinct target sites that generate distorted, imperfect miRNA-target duplexes. Ago's ability to accommodate a duplex is dependent on the region where structural distortions occur: distortions in solvent-exposed seed and 3′-end regions are less likely to produce steric clashes than those in the central duplex region. Energetic analyses of assembled miRISCs indicate that target recognition is also driven by favorable Ago-duplex interactions. Such structural insights into Ago loading and target recognition mechanisms may provide a more accurate assessment of miRNA function. PMID:26432829
Jaffer, U; Singh, P; Pandey, V A; Aslam, M; Standfield, N J
2014-01-01
Duplex ultrasound facilitates bedside diagnosis and hence timely patient care. Its uptake has been hampered by training and accreditation issues. We have developed an assessment tool for Duplex arterial stenosis measurement for both simulator and patient based training. A novel assessment tool: duplex ultrasound assessment of technical skills was developed. A modified duplex ultrasound assessment of technical skills was used for simulator training. Novice, intermediate experience and expert users of duplex ultrasound were invited to participate. Participants viewed an instructional video and were allowed ample time to familiarize with the equipment. Participants' attempts were recorded and independently assessed by four experts using the modified duplex ultrasound assessment of technical skills. 'Global' assessment was also done on a four point Likert scale. Content, construct and concurrent validity as well as reliability were evaluated. Content and construct validity as well as reliability were demonstrated. The simulator had good satisfaction rating from participants: median 4; range 3-5. Receiver operator characteristic analysis has established a cut point of 22/ 34 and 25/ 40 were most appropriate for simulator and patient based assessment respectively. We have validated a novel assessment tool for duplex arterial stenosis detection. Further work is underway to establish transference validity of simulator training to improved skill in scanning patients. We have developed and validated duplex ultrasound assessment of technical skills for simulator training.
H-Bond Self-Assembly: Folding versus Duplex Formation.
Núñez-Villanueva, Diego; Iadevaia, Giulia; Stross, Alexander E; Jinks, Michael A; Swain, Jonathan A; Hunter, Christopher A
2017-05-17
Linear oligomers equipped with complementary H-bond donor (D) and acceptor (A) sites can interact via intermolecular H-bonds to form duplexes or fold via intramolecular H-bonds. These competing equilibria have been quantified using NMR titration and dilution experiments for seven systems featuring different recognition sites and backbones. For all seven architectures, duplex formation is observed for homo-sequence 2-mers (AA·DD) where there are no competing folding equilibria. The corresponding hetero-sequence AD 2-mers also form duplexes, but the observed self-association constants are strongly affected by folding equilibria in the monomeric states. When the backbone is flexible (five or more rotatable bonds separating the recognition sites), intramolecular H-bonding is favored, and the folded state is highly populated. For these systems, the stability of the AD·AD duplex is 1-2 orders of magnitude lower than that of the corresponding AA·DD duplex. However, for three architectures which have more rigid backbones (fewer than five rotatable bonds), intramolecular interactions are not observed, and folding does not compete with duplex formation. These systems are promising candidates for the development of longer, mixed-sequence synthetic information molecules that show sequence-selective duplex formation.
USDA-ARS?s Scientific Manuscript database
Downy mildew of spinach, caused by Peronospora effusa, is a disease constraint on spinach production worldwide. The aim of this study was to develop a real-time quantitative PCR assay for detection of airborne inoculum of P. effusa in California. This type of assay may, in combination with disease-...
Optimization of Diamond Nucleic Acid Dye for quantitative PCR.
Haines, Alicia M; Tobe, Shanan S; Linacre, Adrian
2016-10-01
Here, we evaluate Diamond Nucleic Acid Dye (DD) for use in quantitative PCR (qPCR) applications. Although DD is a commercially available stain for detection of DNA separated by gel electrophoresis, its use as a detection dye in qPCR has yet to be described. To determine if DD can be used in qPCR, we investigated its inhibitory effects on qPCR at concentrations ranging 0.1-2.5×. Serial dilution of DNA was used to determine the efficiency, sensitivity, and linearity of DD-generated qPCR data in comparison to other commonly used fluorescent dyes such as SYBR Green (SG), EvaGreen (EG), and BRYT Green (BG). DD was found to be comparable with other dyes for qPCR applications, with an R2 value >0.9 and an efficiency of 0.83. Mitochondrial DNA (mtDNA) target signals were successfully produced by DD over a DNA dilution range of ~28 ng- 0.28 pg, demonstrating comparable sensitivity to the other dyes investigated. Cq values obtained using DD were lower than those using EG by almost 7 cycles. We conclude that Diamond Nucleic Acid Dye is a cheaper, less toxic alternative for qPCR applications.
Bridge, Julia A
2017-01-01
The introduction of molecular testing into cytopathology laboratory practice has expanded the types of samples considered feasible for identifying genetic alterations that play an essential role in cancer diagnosis and treatment. Reverse transcription-polymerase chain reaction (RT-PCR), a sensitive and specific technical approach for amplifying a defined segment of RNA after it has been reverse-transcribed into its DNA complement, is commonly used in clinical practice for the identification of recurrent or tumor-specific fusion gene events. Real-time RT-PCR (quantitative RT-PCR), a technical variation, also permits the quantitation of products generated during each cycle of the polymerase chain reaction process. This review addresses qualitative and quantitative pre-analytic and analytic considerations of RT-PCR as they relate to various cytologic specimens. An understanding of these aspects of genetic testing is central to attaining optimal results in the face of the challenges that cytology specimens may present. Cancer Cytopathol 2017;125:11-19. © 2016 American Cancer Society. © 2016 American Cancer Society.
Prenatal diagnosis of i(18q) and dup(18q) cases by quantitative fluorescent PCR
Castro-Volio, Isabel; Ortíz-Morales, Fernando; Valle-Bourrouet, Luisa; Malespín-Bendaña, Wendy
2013-01-01
Particular sonographic fetal malformations are common in chromosome 18 aberrations, requiring invasive prenatal tests to confirm the diagnosis. Karyotyping is the gold standard assay in these cases, although it is a high complexity, expensive and approximately 2 weeks turnaround time test. On the contrary, quantitative fluorescent PCR is considered an accurate, simple, low cost and rapid assay, particularly useful for the diagnosis of aneuploidies of chromosomes 13, 18 and 21 and for the detection of maternal cell contamination of the sample. Clinical presentation of two cases of rare chromosome 18 defects, diagnosed using both techniques. One case was an isochromosome and the other was a partial duplication. Quantitative fluorescent PCR was an invaluable tool for the cytogenetics laboratory PMID:24045756
Noronha, Anne M; Noll, David M; Wilds, Christopher J; Miller, Paul S
2002-01-22
The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross-link, in which the cross-linked base pairs can still maintain hydrogen bond contacts, molecular models suggest that formation of the -GC- staggered cross-link disrupts hydrogen bonding and may also perturb adjacent base pairs leading to an overall reduction in helix stability. Duplexes with specifically positioned and oriented cross-links can be used as substrates to study DNA repair mechanisms.
Han, Ahram; Min, Seung-Kee; Kim, Mi-Sook; Joo, Kwon Wook; Kim, Jungsun; Ha, Jongwon; Lee, Joongyub; Min, Sang-Il
2016-10-07
Use of arteriovenous fistulas, the most preferred type of access for hemodialysis, is limited by their high maturation failure rate. The aim of this study was to assess whether aggressive surveillance with routine duplex ultrasound and intervention can decrease the maturation failure rate of arteriovenous fistulas. We conducted a single-center, parallel-group, randomized, controlled trial of patients undergoing autogenous arteriovenous fistula. Patients were randomly assigned (1:1) to either the routine duplex or selective duplex group. In the routine duplex group, duplex ultrasound and physical examination were performed 2, 4, and 8 weeks postoperatively. In the selective duplex group, duplex examination was performed only when physical examination detected an abnormality. The primary end point was the maturation failure rate 8 weeks after fistula creation. Maturation failure was defined as the inability to achieve clinical maturation ( i.e. , a successful first use) and failure to achieve sonographic maturation (fistula flow >500 ml/min and diameter >6 mm) within 8 weeks. Between June 14, 2012, and June 25, 2014, 150 patients were enrolled (75 patients in each group), and 118 of those were included in the final analysis. The maturation failure rate was lower in the routine duplex group (8 of 59; 13.6%) than in the selective duplex group (15 of 59; 25.4%), but the difference was not statistically significant (odds ratio, 0.46; 95% confidence interval, 0.18 to 1.19; P =0.10). Factors associated with maturation failure were women (odds ratio, 3.84; 95% confidence interval, 1.05 to 14.06; P =0.04), coronary artery disease (odds ratio, 6.36; 95% confidence interval, 1.62 to 24.95; P <0.01), diabetes (odds ratio, 6.10; 95% confidence interval, 1.76 to 21.19; P <0.01), and the preoperative cephalic vein diameter (odds ratio, 0.30; 95% confidence interval, 0.13 to 0.71; P <0.01). Postoperative routine duplex surveillance failed to prove superiority compared with selective duplex after physical examination for reducing arteriovenous fistula maturation failure. However, the wide 95% confidence interval for the effect of intervention precludes a firm conclusion that routine duplex surveillance was not beneficial. Copyright © 2016 by the American Society of Nephrology.
Thermodynamic and hydration effects for the incorporation of a cationic 3-aminopropyl chain into DNA
Soto, Ana Maria; Kankia, Besik I.; Dande, Prasad; Gold, Barry; Marky, Luis A.
2002-01-01
The introduction of cationic 5-(ω-aminoalkyl)-2′-deoxypyrimidines into duplex DNA has been shown to induce DNA bending. In order to understand the energetic and hydration contributions for the incorporation of a cationic side chain in DNA a combination of spectroscopy, calorimetry and density techniques were used. Specifically, the temperature unfolding and isothermal formation was studied for a pair of duplexes with sequence d(CGTAGUCG TGC)/d(GCACGACTACG), where U represents 2′-deoxyuridine (‘control’) or 5-(3-aminopropyl)-2′-deoxyuridine (‘modified’). Continuous variation experiments confirmed 1:1 stoichiometries for each duplex and the circular dichroism spectra show that both duplexes adopted the B conformation. UV and differential scanning calorimetry melting experiments reveal that each duplex unfolds in two-state transitions. In low salt buffer, the ‘modified’ duplex is more stable and unfolds with a lower endothermic heat and lower release of counterion and water. This electrostatic stabilization is entropy driven and disappears at higher salt concentrations. Complete thermodynamic profiles at 15°C show that the favorable formation of each duplex results from the compensation of a favorable exothermic heat with an unfavorable entropy contribution. However, the isothermal profiles yielded a differential enthalpy of 8.8 kcal/mol, which is 4.3 kcal/mol higher than the differential enthalpy observed in the unfolding profiles. This indicates that the presence of the aminopropyl chain induces an increase in base stacking interactions in the modified single strand and a decrease in base stacking interactions in the modified duplex. Furthermore, the formation of the ‘control’ duplex releases water while the ‘modified’ duplex takes up water. Relative to the control duplex, formation of the modified duplex at 15°C yielded a marginal differential ΔG° term, positive ΔΔHITC–Δ(TΔS) compensation, negative ΔΔV and a net release of counterions. The opposite signs of the differential enthalpy–entropy compensation and differential volume change terms show a net uptake of structural water around polar and non-polar groups. This indicates that incorporation of the aminopropyl chain induces a higher exposure of aromatic bases to the solvent, which may be consistent with a small and local bend in the ‘modified’ duplex. PMID:12136099
Digital PCR for detection of citrus pathogens
USDA-ARS?s Scientific Manuscript database
Citrus trees are often infected with multiple pathogens of economic importance, especially those with insect or mite vectors. Real-time/quantitative PCR (qPCR) has been used for high-throughput detection and relative quantification of pathogens; however, target reference or standards are required. I...
USDA-ARS?s Scientific Manuscript database
Quantitative real-time PCR (qRT-PCR) is a reliable and reproducible technique for measuring and evaluating changes in gene expression. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. In this study, expres...
EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. The viral ribonucleic acid (RNA) from water sample concentrates is extracted and tested for enterovirus and norovirus RNA using reverse transcription-quantitative PCR (RT-qPCR). V...
Benefits of Automatic Duplexing Fact Sheet
This resource provides a how-to duplex guide, informs the reader on the benefits and cost savings from automatic duplexing, and several off the shelf print management software options for your facility.
Electron Beam Welding of Duplex Steels with using Heat Treatment
NASA Astrophysics Data System (ADS)
Schwarz, Ladislav; Vrtochová, Tatiana; Ulrich, Koloman
2010-01-01
This contribution presents characteristics, metallurgy and weldability of duplex steels with using concentrated energy source. The first part of the article describes metallurgy of duplex steels and the influence of nitrogen on their solidification. The second part focuses on weldability of duplex steels with using electron beam aimed on acceptable structure and corrosion resistance performed by multiple runs of defocused beam over the penetration weld.
Böttcher, S; Ritgen, M; Pott, C; Brüggemann, M; Raff, T; Stilgenbauer, S; Döhner, H; Dreger, P; Kneba, M
2004-10-01
The clinically most suitable method for minimal residual disease (MRD) detection in chronic lymphocytic leukemia is still controversial. We prospectively compared MRD assessment in 158 blood samples of 74 patients with CLL after stem cell transplantation (SCT) using four-color flow cytometry (MRD flow) in parallel with consensus IgH-PCR and ASO IgH real-time PCR (ASO IgH RQ-PCR). In 25 out of 106 samples (23.6%) with a polyclonal consensus IgH-PCR pattern, MRD flow still detected CLL cells, proving higher sensitivity of flow cytometry over PCR-genescanning with consensus IgH-primers. Of 92 samples, 14 (15.2%) analyzed in parallel by MRD flow and by ASO IgH RQ-PCR were negative by our flow cytometric assay but positive by PCR, thus demonstrating superior sensitivity of RQ-PCR with ASO primers. Quantitative MRD levels measured by both methods correlated well (r=0.93). MRD detection by flow and ASO IgH RQ-PCR were equally suitable to monitor MRD kinetics after allogeneic SCT, but the PCR method detected impending relapses after autologous SCT earlier. An analysis of factors that influence sensitivity and specificity of flow cytometry for MRD detection allowed to devise further improvements of this technique.
NASA Astrophysics Data System (ADS)
Yin, An; Kelty, Thomas K.; Davis, Gregory A.
1989-09-01
Geologic mapping in southern Glacier National Park, Montana, reveals the presence of two duplexes sharing the same floor thrust fault, the Lewis thrust. The westernmost duplex (Brave Dog Mountain) includes the low-angle Brave Dog roof fault and Elk Mountain imbricate system, and the easternmost (Rising Wolf Mountain) duplex includes the low-angle Rockwell roof fault and Mt. Henry imbricate system. The geometry of these duplexes suggests that they differ from previously described geometric-kinematic models for duplex development. Their low-angle roof faults were preexisting structures that were locally utilized as roof faults during the formation of the imbricate systems. Crosscutting of the Brave Dog fault by the Mt. Henry imbricate system indicates that the two duplexes formed at different times. The younger Rockwell-Mt. Henry duplex developed 20 km east of the older Brave Dog-Elk Mountain duplex; the roof fault of the former is at a higher structural level. Field relations confirm that the low-angle Rockwell fault existed across the southern Glacier Park area prior to localized formation of the Mt. Henry imbricate thrusts beneath it. These thrusts kinematically link the Rockwell and Lewis faults and may be analogous to P shears that form between two synchronously active faults bounding a simple shear system. The abandonment of one duplex and its replacement by another with a new and higher roof fault may have been caused by (1) warping of the older and lower Brave Dog roof fault during the formation of the imbricate system (Elk Mountain) beneath it, (2) an upward shifting of the highest level of a simple shear system in the Lewis plate to a new decollement level in subhorizontal belt strata (= the Rockwell fault) that lay above inclined strata within the first duplex, and (3) a reinitiation of P-shear development (= Mt. Henry imbricate faults) between the Lewis thrust and the subparallel, synkinematic Rockwell fault.
Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.
2017-01-01
Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne’s disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne’s test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne’s disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples. PMID:28210245
Sato, Naoki; Seo, Genichiro; Benno, Yoshimi
2014-01-01
Strain-specific polymerase chain reaction (PCR) primers for detection of Bacillus mesentericus strain TO-A (BM TO-A) were developed. The randomly amplified polymorphic DNA (RAPD) technique was used to produce potential strain-specific markers. A 991-bp RAPD marker found to be strain-specific was sequenced, and two primer pairs specific to BM TO-A were constructed based on this sequence. In addition, we explored a more specific DNA region using inverse PCR, and designed a strain-specific primer set for use in real-time quantitative PCR (qPCR). These primer pairs were tested against 25 Bacillus subtilis strains and were found to be strain-specific. After examination of the detection limit and linearity of detection of BM TO-A in feces, the qPCR method and strain-specific primers were used to quantify BM TO-A in the feces of healthy volunteers who had ingested 3×10(8) colony forming unit (CFU) of BM TO-A per day in tablets. During the administration period, BM TO-A was detected in the feces of all 24 subjects, and the average number of BM TO-A detected using the culture method and qPCR was about 10(4.8) and 10(5.8) cells per gram of feces, respectively. Using the qPCR method, BM TO-A was detected in the feces of half of the subjects 3 d after withdrawal, and was detected in the feces of only one subject 1 week after withdrawal. These results suggest that the qPCR method using BM TO-A strain-specific primers is useful for the quantitative detection of this strain in feces.
Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.
Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S
2008-07-01
A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.
Kim, Miju; Yoo, Insuk; Lee, Shin-Young; Hong, Yeun; Kim, Hae-Yeong
2016-11-01
The TaqMan® real-time PCR assay using the mitochondrial D-loop region was developed for the quantitative detection of pork in processed meat products. The newly designed primers and probe specifically amplified pork without any cross-reactivity with non-target animal species. The limit of detection of the real-time PCR assay was 0.1pg of heat-treated pork meat and 0.1% (w/w) pork meat in beef and chicken meat mixtures. The quantitative real-time PCR assay was applied to analyze the pork meat content in 22 commercial processed meat products including jerkies, press hams, sausages, hamburger patties and steaks, grilled short rib patties, and nuggets. The developed real-time PCR method was able to detect pork meat in various types of processed meat products that declared the use of pork meat on their label. All processed meat products that declared no use of pork meat showed a negative result in the assay. The method developed in this study showed sensitivity and specificity in the quantification of pork meat in commercial processed meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Qualitative PCR method for Roundup Ready soybean: interlaboratory study.
Kodama, Takashi; Kasahara, Masaki; Minegishi, Yasutaka; Futo, Satoshi; Sawada, Chihiro; Watai, Masatoshi; Akiyama, Hiroshi; Teshima, Reiko; Kurosawa, Yasunori; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi
2011-01-01
Quantitative and qualitative methods based on PCR have been developed for genetically modified organisms (GMO). Interlaboratory studies were previously conducted for GMO quantitative methods; in this study, an interlaboratory study was conducted for a qualitative method for a GM soybean, Roundup Ready soy (RR soy), with primer pairs designed for the quantitative method of RR soy studied previously. Fourteen laboratories in Japan participated. Each participant extracted DNA from 1.0 g each of the soy samples containing 0, 0.05, and 0.10% of RR soy, and performed PCR with primer pairs for an internal control gene (Le1) and RR soy followed by agarose gel electrophoresis. The PCR product amplified in this PCR system for Le1 was detected from all samples. The sensitivity, specificity, and false-negative and false-positive rates of the method were obtained from the results of RR soy detection. False-negative rates at the level of 0.05 and 0.10% of the RR soy samples were 6.0 and 2.3%, respectively, revealing that the LOD of the method was somewhat below 0.10%. The current study demonstrated that the qualitative method would be practical for monitoring the labeling system of GM soy in kernel lots.
Bogema, D. R.; Deutscher, A. T.; Fell, S.; Collins, D.; Eamens, G. J.
2015-01-01
Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease. PMID:25588653
Base Pair Opening in a Deoxynucleotide Duplex Containing a cis-syn Thymine Cyclobutane Dimer Lesion
Wenke, Belinda B.; Huiting, Leah N.; Frankel, Elisa B.; Lane, Benjamin F.; Núñez, Megan E.
2014-01-01
The cis-syn thymine cyclobutane dimer is a DNA photoproduct implicated in skin cancer. We compared the stability of individual base pairs in thymine dimer-containing duplexes to undamaged parent 10-mer duplexes. UV melting thermodynamic measurements, CD spectroscopy, and 2D NOESY NMR spectroscopy confirm that the thymine dimer lesion is locally and moderately destabilizing within an overall B-form duplex conformation. We measured the rates of exchange of individual imino protons by NMR using magnetization transfer from water and determined the equilibrium constant for the opening of each base pair Kop. In the normal duplex Kop decreases from the frayed ends of the duplex toward the center, such that the central TA pair is the most stable with a Kop of 8×10−7. In contrast, base pair opening at the 5’T of the thymine dimer is facile. The 5’T of the dimer has the largest equilibrium constant (Kop =3×10−4) in its duplex, considerably larger than even the frayed penultimate base pairs. Notably, base pairing by the 3’T of the dimer is much more stable than by the 5’T, indicating that the predominant opening mechanism for the thymine dimer lesion is not likely to be flipping out into solution as a single unit. The dimer asymmetrically affects the stability of the duplex in its vicinity, destabilizing base pairing on its 5’ side more than on the 3’ side. The striking differences in base pair opening between parent and dimer duplexes occur independently of the duplex-single strand melting transitions. PMID:24328089
Kimmitt, P T; Tabrizi, S N; Crosatti, M; Garland, S M; Schober, P C; Rajakumar, K; Chapman, C A
2010-04-01
We aimed to evaluate the acceptability of self-collected tampon samples for the screening of female sex workers for sexually transmitted infections. We recruited 65 sex workers, and 63 agreed to provide tampon samples. The tampon samples were processed by realtime polymerase chain reaction (PCR) targeting Neisseria gonorrhoeae and Chlamydia trachomatis. Urethral and endocervical swabs were also obtained from 61 of 63 participants and tested using culture (N. gonorrhoeae) and the BD ProbeTec strand displacement amplification (SDA) (C. trachomatis) assay. Tampon sampling was preferred by 95% of the women and all favoured being tested away from genitourinary medicine clinics; the most common reasons cited were avoidance of embarrassment (40%) and convenience (30%). Besides near-universal acceptability of tampon sampling, the tampon sampling-PCR approach described in this study appeared to have enhanced sensitivity compared with conventional testing, suggesting the possibility of a residual hidden burden of N. gonorrhoeae and/or C. trachomatis genital infections in UK female sex workers.
Hole Transport in A-form DNA/RNA Hybrid Duplexes
NASA Astrophysics Data System (ADS)
Wong, Jiun Ru; Shao, Fangwei
2017-01-01
DNA/RNA hybrid duplexes are prevalent in many cellular functions and are an attractive target form for electrochemical biosensing and electric nanodevice. However the electronic conductivities of DNA/RNA hybrid duplex remain relatively unexplored and limited further technological applications. Here cyclopropyl-modified deoxyribose- and ribose-adenosines were developed to explore hole transport (HT) in both DNA duplex and DNA/RNA hybrids by probing the transient hole occupancies on adenine tracts. HT yields through both B-form and A-form double helixes displayed similar shallow distance dependence, although the HT yields of DNA/RNA hybrid duplexes were lower than those of DNA duplexes. The lack of oscillatory periods and direction dependence in HT through both helixes implied efficient hole propagation can be achieved via the hole delocalization and coherent HT over adenine tracts, regardless of the structural variations.
Hole Transport in A-form DNA/RNA Hybrid Duplexes
Wong, Jiun Ru; Shao, Fangwei
2017-01-01
DNA/RNA hybrid duplexes are prevalent in many cellular functions and are an attractive target form for electrochemical biosensing and electric nanodevice. However the electronic conductivities of DNA/RNA hybrid duplex remain relatively unexplored and limited further technological applications. Here cyclopropyl-modified deoxyribose- and ribose-adenosines were developed to explore hole transport (HT) in both DNA duplex and DNA/RNA hybrids by probing the transient hole occupancies on adenine tracts. HT yields through both B-form and A-form double helixes displayed similar shallow distance dependence, although the HT yields of DNA/RNA hybrid duplexes were lower than those of DNA duplexes. The lack of oscillatory periods and direction dependence in HT through both helixes implied efficient hole propagation can be achieved via the hole delocalization and coherent HT over adenine tracts, regardless of the structural variations. PMID:28084308
Immunomediator expression profiling in two beluga whale (delphinapterus leucas) clinical cases
USDA-ARS?s Scientific Manuscript database
Cytokines and other immunomediators can be biomarkers of inflammation. Quantitative real-time PCR (qPCR) has been used to examine cytokine gene expression in beluga whale (Delphinapterus leucas) peripheral blood mononuclear cells (PBMC). Thus, qPCR-based immunomediator assays could supplement clinic...
The application of quantitative real-time PCR (qPCR) methods for the identification of fecal microorganisms in surface waters has the potential to revolutionize water quality monitoring worldwide. Unlike traditional cultivation methods, qPCR estimates the concentration of gen...
Barakat, Fareed H; Luthra, Rajyalakshmi; Yin, C Cameron; Barkoh, Bedia A; Hai, Seema; Jamil, Waqar; Bhakta, Yaminiben I; Chen, Su; Medeiros, L Jeffrey; Zuo, Zhuang
2011-08-01
Nucleophosmin 1 (NPM1) is the most commonly mutated gene in acute myeloid leukemia. Detection of NPM1 mutations is useful for stratifying patients for therapy, predicting prognosis, and assessing for minimal residual disease. Several methods have been developed to rapidly detect NPM1 mutations in genomic DNA and/or messenger RNA specimens. To directly compare a quantitative real-time polymerase chain reaction (qPCR) assay with a widely used capillary electrophoresis assay for detecting NPM1 mutations. We adopted and modified a qPCR assay designed to detect the 6 most common NPM1 mutations and performed the assay in parallel with capillary electrophoresis assay in 207 bone marrow aspirate or peripheral blood samples from patients with a range of hematolymphoid neoplasms. The qPCR assay demonstrated a higher analytical sensitivity than the capillary electrophoresis 1/1000 versus 1/40, respectively. The capillary electrophoresis assay generated 10 equivocal results that needed to be repeated, whereas the qPCR assay generated only 1 equivocal result. After test conditions were optimized, the qPCR and capillary electrophoresis methods produced 100% concordant results, 85 positive and 122 negative. Given the higher analytical sensitivity and specificity of the qPCR assay, that assay is less likely to generate equivocal results than the capillary electrophoresis assay. Moreover, the qPCR assay is quantitative, faster, cheaper, less prone to contamination, and well suited for monitoring minimal residual disease.
Quantitation of Porcine Cytomegalovirus in Pig Tissues by PCR
Fryer, Jacqueline F. L.; Griffiths, Paul D.; Fishman, Jay A.; Emery, Vincent C.; Clark, Duncan A.
2001-01-01
A quantitative-competitive PCR for the quantification of porcine cytomegalovirus (PCMV) was developed. The virus was detected in a variety of pig organs (including potential xenotransplant donations), with viral loads ranging from <10 to 97 genome copies/μg of DNA. This assay will have significant utility for studying the activation and replication of PCMV and in swine models for allo- and xenotransplantation. PMID:11230447
Cortés-Hinojosa, Galaxia; Gulland, Frances M D; Goldstein, Tracey; Venn-Watson, Stephanie; Rivera, Rebecca; Archer, Linda L; Waltzek, Thomas B; Gray, Gregory C; Wellehan, James F X
2017-03-01
California sea lion adenovirus 1 (CSLAdV-1) has been associated with hepatitis and enteritis in several wild and captive populations of diverse pinniped species. Currently available tests have been limited to pan-adenoviral polymerase chain reaction (PCR) followed by sequencing. We present the development of a quantitative probe-hybridization PCR (qPCR) assay for rapid, sensitive, and specific detection of this virus in California sea lions ( Zalophus californianus) and other pinnipeds. This assay did not amplify other mammalian adenoviruses and is able to detect consistently down to 10 viral copies per well. Compared with the gold standard conventional pan-adenovirus PCR/sequencing assay, diagnostic sensitivity and specificity of 100% and 88.2% were found, respectively. The lower diagnostic specificity of this qPCR assay may be the result of the lower limit of detection of this assay compared with the gold standard rather than the result of detection of true false-positives.
A PCR primer bank for quantitative gene expression analysis.
Wang, Xiaowei; Seed, Brian
2003-12-15
Although gene expression profiling by microarray analysis is a useful tool for assessing global levels of transcriptional activity, variability associated with the data sets usually requires that observed differences be validated by some other method, such as real-time quantitative polymerase chain reaction (real-time PCR). However, non-specific amplification of non-target genes is frequently observed in the latter, confounding the analysis in approximately 40% of real-time PCR attempts when primer-specific labels are not used. Here we present an experimentally validated algorithm for the identification of transcript-specific PCR primers on a genomic scale that can be applied to real-time PCR with sequence-independent detection methods. An online database, PrimerBank, has been created for researchers to retrieve primer information for their genes of interest. PrimerBank currently contains 147 404 primers encompassing most known human and mouse genes. The primer design algorithm has been tested by conventional and real-time PCR for a subset of 112 primer pairs with a success rate of 98.2%.
Li, Yongru; Su, Hongwei; Lan, Yajia
2018-05-29
Background: Food safety is one of the most important public health problems in the world,and pathogenic bacterium is a major factor causing serious foodborne diseases. Objective: Two methods of duplex PCR combined with capillary electrophoresis laser-induced fluorescence detector (CE-LIF) and microchip capillary electrophoresis laser-induced fluorescence detector (MCE-LIF) have been developed for the simultaneous detection of Yersinia enterocolitica and Listeria monocytogenes in various foods. The specific conservative sequences of these two bacteria were amplified. Methods: After labelled with nucleic acid dye SYBR Gold and SYBR Orange, the PCR products were analyzed by CE-LIF and MCE-LIF, respectively. Under the optimal conditions, the detection of PCR products of the target bacteria was achieved in less than 15 min by CE-LIF and within 6 min by MCE-LIF. Results: The alignment analysis demonstrated that the PCR products had good agreement with the sequences published in GenBank. The CE-LIF method could detect 10 CFU/mL Y. enterocolitica and L. monocytogenes , and the MCE-LIF method could detect 100 CFU/mL Y. enterocolitica and L. monocytogenes . The intraday precisions of migration time and peak area of DNA markers and PCR products were in the range of 1.13 to 1.18% and 1.60 to 6.29%, respectively, for CE-LIF and 1.18 to 1.48% and 2.85 to 4.06%, respectively, for MCE-LIF. Conclusions : The proposed methods could be applied to target bacterial detection infood samples rapidly, sensitively, and specifically. Highlights : Two new methods based on CE and MCE have been developed for the simultaneous detection of Y. enterocolitica and L. monocytogenes in foodstuffs, and they can detect the bacteria directly without any enrichment because of their high sensitivity.
Miyoshi, Daisuke; Nakamura, Kaori; Tateishi-Karimata, Hisae; Ohmichi, Tatsuo; Sugimoto, Naoki
2009-03-18
It has been revealed recently that molecular crowding, which is one of the largest differences between in vivo and in vitro conditions, is a critical factor determining the structure, stability, and function of nucleic acids. However, the effects of molecular crowding on Watson-Crick and Hoogsteen base pairs remain unclear. In order to investigate directly and quantitatively the molecular crowding effects on base pair types in nucleic acids, we designed intramolecular parallel- and antiparallel-stranded DNA duplexes consisting of Hoogsteen and Watson-Crick base pairs, respectively, as well as an intramolecular parallel-stranded triplex containing both types of base pairs. Thermodynamic analyses demonstrated that the values of free energy change at 25 degrees C for Hoogsteen base-pair formations decreased from +1.45 +/- 0.15 to +1.09 +/- 0.13 kcal mol(-1), and from -1.89 +/- 0.13 to -2.71 +/- 0.11 kcal mol(-1) in the intramolecular duplex and triplex, respectively, when the concentration of PEG 200 (polyethylene glycol with average molecular weight 200) increased from 0 to 20 wt %. However, corresponding values for Watson-Crick formation in the duplex and triplex increased from -10.2 +/- 0.2 to -8.7 +/- 0.1 kcal mol(-1), and from -10.8 +/- 0.2 to -9.2 +/- 0.2 kcal mol(-1), respectively. Furthermore, it was revealed that the opposing effects of molecular crowding on the Hoogsteen and Watson-Crick base pairs were due to different behaviors of water molecules binding to the DNA strands.
Zanchetta, Giuliano; Giavazzi, Fabio; Nakata, Michi; Buscaglia, Marco; Cerbino, Roberto; Clark, Noel A.; Bellini, Tommaso
2010-01-01
Concentrated solutions of duplex-forming DNA oligomers organize into various mesophases among which is the nematic (N∗), which exhibits a macroscopic chiral helical precession of molecular orientation because of the chirality of the DNA molecule. Using a quantitative analysis of the transmission spectra in polarized optical microscopy, we have determined the handedness and pitch of this chiral nematic helix for a large number of sequences ranging from 8 to 20 bases. The B-DNA molecule exhibits a right-handed molecular double-helix structure that, for long molecules, always yields N∗ phases with left-handed pitch in the μm range. We report here that ultrashort oligomeric duplexes show an extremely diverse behavior, with both left- and right-handed N∗ helices and pitches ranging from macroscopic down to 0.3 μm. The behavior depends on the length and the sequence of the oligomers, and on the nature of the end-to-end interactions between helices. In particular, the N∗ handedness strongly correlates with the oligomer length and concentration. Right-handed phases are found only for oligomers shorter than 14 base pairs, and for the sequences having the transition to the N∗ phase at concentration larger than 620 mg/mL. Our findings indicate that in short DNA, the intermolecular double-helical interactions switch the preferred liquid crystal handedness when the columns of stacked duplexes are forced at high concentrations to separations comparable to the DNA double-helix pitch, a regime still to be theoretically described. PMID:20876125
Chase, D.M.; Elliott, D.G.; Pascho, R.J.
2006-01-01
Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids.
Abdeldaim, Guma M K; Strålin, Kristoffer; Kirsebom, Leif A; Olcén, Per; Blomberg, Jonas; Herrmann, Björn
2009-08-01
A quantitative real-time polymerase chain reaction (PCR) based on the omp P6 gene was developed to detect Haemophilus influenzae. Its specificity was determined by analysis of 29 strains of 11 different Haemophilus spp. and was compared with PCR assays having other target genes: rnpB, 16S rRNA, and bexA. The method was evaluated on nasopharyngeal aspirates from 166 adult patients with community-acquired pneumonia. When 10(4) DNA copies/mL was used as cutoff limit for the method, P6 PCR had a sensitivity of 97.5% and a specificity of 96.0% compared with the culture. Of 20 culture-negative but P6 PCR-positive cases, 18 were confirmed by fucK PCR as H. influenzae. Five (5.9%) of 84 nasopharyngeal aspirates from adult controls tested PCR positive. We conclude that the P6 real-time PCR is both sensitive and specific for identification of H. influenzae in respiratory secretions. Quantification facilitates discrimination between disease-causing H. influenzae strains and commensal colonization.
High-Throughput RT-PCR for small-molecule screening assays
Bittker, Joshua A.
2012-01-01
Quantitative measurement of the levels of mRNA expression using real-time reverse transcription polymerase chain reaction (RT-PCR) has long been used for analyzing expression differences in tissue or cell lines of interest. This method has been used somewhat less frequently to measure the changes in gene expression due to perturbagens such as small molecules or siRNA. The availability of new instrumentation for liquid handling and real-time PCR analysis as well as the commercial availability of start-to-finish kits for RT-PCR has enabled the use of this method for high-throughput small-molecule screening on a scale comparable to traditional high-throughput screening (HTS) assays. This protocol focuses on the special considerations necessary for using quantitative RT-PCR as a primary small-molecule screening assay, including the different methods available for mRNA isolation and analysis. PMID:23487248
[Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].
Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing
2012-08-01
Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.
Kam, Winnie W Y; Lake, Vanessa; Banos, Connie; Davies, Justin; Banati, Richard
2013-05-30
Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.
Yin, Chang-Xin; Jiang, Qian-Li; He, Han; Yu, Guo-Pan; Xu, Yue; Meng, Fan-Yi; Yang, Mo
2012-02-01
This study was aimed to establish a method for rapid detecting BK polyomavirus (BKV) and to investigate the feasibility and value used in leukemia patients undergoing hematopoietic stem cell transplantation. Primers were designed according to BKV gene sequence; the quantitative standards for BKV and a real-time fluorescent quantitative PCR for BKV were established. The BKV level in urine samples from 36 patients after hematopoietic stem cell transplantation were detected by established method. The results showed that the standard of reconstructed plasmid and real time fluorescent quantitative PCR method were successfully established, its good specificity, sensitivity and stability were confirmed by experiments. BKV was found in 55.56% of urine samples, and the BKV load in urine was 2.46 × 10(4) - 7.8 × 10(9) copy/ml. It is concluded that the establishment of real-time fluorescent quantitative PCR for BKV detection provides a method for early diagnosis of the patients with hemorrhagic cystitis after hematopoietic stem cell transplantation.
Mathematics of quantitative kinetic PCR and the application of standard curves.
Rutledge, R G; Côté, C
2003-08-15
Fluorescent monitoring of DNA amplification is the basis of real-time PCR, from which target DNA concentration can be determined from the fractional cycle at which a threshold amount of amplicon DNA is produced. Absolute quantification can be achieved using a standard curve constructed by amplifying known amounts of target DNA. In this study, the mathematics of quantitative PCR are examined in detail, from which several fundamental aspects of the threshold method and the application of standard curves are illustrated. The construction of five replicate standard curves for two pairs of nested primers was used to examine the reproducibility and degree of quantitative variation using SYBER Green I fluorescence. Based upon this analysis the application of a single, well- constructed standard curve could provide an estimated precision of +/-6-21%, depending on the number of cycles required to reach threshold. A simplified method for absolute quantification is also proposed, in which quantitative scale is determined by DNA mass at threshold.
Curreli, Francesca; Robles, Monica A; Friedman-Kien, Alvin E; Flore, Ornella
2003-02-01
Kaposi's sarcoma-associated herpesvirus is a novel herpesvirus linked to AIDS-related neoplasms. Currently it is difficult to evaluate the number of virions in viral preparation or in samples obtained from patients with Kaposi's sarcoma (KS), since no protocol for determining the plaque forming units of KSHV exists. We constructed a fragment of a different size than the target viral DNA to carry out a competitive-quantitative PCR. Both fragment and viral DNA were added to a single PCR reaction to compete for the same set of primers. By knowing the amount of the competitor added to the reaction, we could determine the number of viral DNA molecules. We used this assay successfully to detect and quantify KSHV genomes from KS skin biopsies and pleural effusion lymphoma, and from different viral preparations. To date, this is the most convenient and economic method that allows an accurate and fast viral detection/quantitation with a single PCR.
Nanopore Analysis of the 5-Guanidinohydantoin to Iminoallantoin Isomerization in Duplex DNA.
Zeng, Tao; Fleming, Aaron M; Ding, Yun; Ren, Hang; White, Henry S; Burrows, Cynthia J
2018-04-06
In DNA, guanine oxidation yields diastereomers of 5-guanidinohydantoin (Gh) as one of the major products. In nucleosides and single-stranded DNA, Gh is in a pH-dependent equilibrium with its constitutional isomer iminoallantoin (Ia). Herein, the isomerization reaction between Gh and Ia was monitored in duplex DNA using a protein nanopore by measuring the ionic current when duplex DNA interacts with the pore under an electrophoretic force. Monitoring current levels in this single-molecule method proved to be superior for analysis of population distributions in an equilibrating mixture of four isomers in duplex DNA as a function of pH. The results identified Gh as a major isomer observed when base paired with A, C, or G at pH 6.4-8.4, and Ia was a minor isomer of the reaction mixture that was only observed when the pH was >7.4 in the duplex DNA context. The present results suggest that Gh will be the dominant isomer in duplex DNA under physiological conditions regardless of the base-pairing partner in the duplex.
Reducing the background fluorescence in mice receiving fluorophore/inhibitor DNA duplexes.
Liang, Minmin; Liu, Xinrong; Liu, Guozheng; Dou, Shuping; Cheng, Dengfeng; Liu, Yuxia; Rusckowski, Mary; Hnatowich, Donald J
2011-02-07
In principle, a DNA duplex consisting of an antisense fluorophore-conjugated major strand hybridized to a shorter complementary inhibitor-conjugated minor strand should provide fluorescence only in the tumor after intravenous administration if designed to remain intact except in the presence in tumor of its mRNA target. While we have obtained impressive tumor images in mice using this approach, there remains some background fluorescence. In this study, tissue homogenates of selected mouse organs were incubated with a test duplex and the kinetics of duplex dissociation in normal tissues were measured. In this manner we were able to identify the liver as the likely major source responsible for the duplex dissociation providing this fluorescence background. Thereafter liver homogenates were used to screen a series of duplex candidates with variable-length minor strands, and dissociation was measured by gel electrophoresis. The selected fluorophore/inhibitor duplex with improved stability displayed an insignificant (P > 0.05) background fluorescence after administration to SKH-1 normal mice and apparently without affecting target mRNA binding in vitro in cell culture or in vivo in tumor bearing mice.
Kocalka, Petr; Andersen, Nicolai K; Jensen, Frank; Nielsen, Poul
2007-11-23
A general protocol for converting alkyl and aryl halides into azides and for converting these in situ into 1,4-disubstituted triazoles was applied with 5-ethynyl-2'-deoxyuridine. This afforded three modified 2'-deoxyuridine analogues with either unsubstituted or 1-phenyl-/1-benzyl-substituted triazoles in their 5-positions. Modelling demonstrates coplanarity of the two heteroaromatic rings, and UV spectroscopy showed the uracil pK(a) values to be almost unchanged. The three nucleosides were introduced into nonamer oligonucleotides by phosphoramidite chemistry. The heteroaromatic triazoles became positioned in the major grooves of the short dsDNA and DNA-RNA duplexes. While single modifications led to decreased duplex stability, the stacking of four consecutive modifications led to enhanced duplex stability, especially for DNA-RNA duplexes. The duplex structures were studied by CD spectroscopy and molecular dynamics simulations, which supported the conjecture that the duplex stabilizing effect is due to efficient stacking of the heteroaromatic triazoles.
A multiplexed droplet digital PCR assay performs better than qPCR on inhibition prone samples.
Sedlak, Ruth Hall; Kuypers, Jane; Jerome, Keith R
2014-12-01
We demonstrate the development of a multiplex droplet digital PCR assay for human cytomegalovirus (CMV), human adenovirus species F, and an internal plasmid control that may be useful for PCR inhibition-prone clinical samples. This assay performs better on inhibition-prone stool samples than a quantitative PCR assay for CMV and is the first published clinical virology droplet digital PCR assay to incorporate an internal control. Copyright © 2014 Elsevier Inc. All rights reserved.
Quantification of Plasma miRNAs by Digital PCR for Cancer Diagnosis
Ma, Jie; Li, Ning; Guarnera, Maria; Jiang, Feng
2013-01-01
Analysis of plasma microRNAs (miRNAs) by quantitative polymerase chain reaction (qPCR) provides a potential approach for cancer diagnosis. However, absolutely quantifying low abundant plasma miRNAs is challenging with qPCR. Digital PCR offers a unique means for assessment of nucleic acids presenting at low levels in plasma. This study aimed to evaluate the efficacy of digital PCR for quantification of plasma miRNAs and the potential utility of this technique for cancer diagnosis. We used digital PCR to quantify the copy number of plasma microRNA-21-5p (miR-21–5p) and microRNA-335–3p (miR-335–3p) in 36 lung cancer patients and 38 controls. Digital PCR showed a high degree of linearity and quantitative correlation with miRNAs in a dynamic range from 1 to 10,000 copies/μL of input, with high reproducibility. qPCR exhibited a dynamic range from 100 to 1×107 copies/μL of input. Digital PCR had a higher sensitivity to detect copy number of the miRNAs compared with qPCR. In plasma, digital PCR could detect copy number of both miR-21–5p and miR-335–3p, whereas qPCR was only able to assess miR-21–5p. Quantification of the plasma miRNAs by digital PCR provided 71.8% sensitivity and 80.6% specificity in distinguishing lung cancer patients from cancer-free subjects. PMID:24277982
Comparison of nested PCR and qPCR for the detection and quantitation of BoHV6 DNA.
Kubiś, Piotr; Materniak, Magdalena; Kuźmak, Jacek
2013-12-01
Nested PCR and qPCR (quantitative PCR) tests based on glycoprotein B (gB) gene were designed for detecting Bovine herpesvirus 6 (BoHV6) in bovine whole blood samples and wild ruminant blood clots (deer and roe-deer). This virus, commonly known as BLHV (bovine lymphotropic herpesvirus) belongs to the Herpesviridae family, subfamily Gammaherpesvirinae and Macavirus genus. DNA isolated from 92 dairy cow blood samples and 69 wild ruminant clots were examined for the presence of BoHV6 using nested PCR and qPCR tests. Viral DNA was detected by using nested PCR in 59 out of 92 bovine blood samples (64.1%), and by qPCR in 68 out of 92 bovine blood samples (73.9%), but none out of 69 DNA samples isolated from wild ruminant blood clots, was positive in both assays. The specificity of nested PCR and qPCR was confirmed by using BoHV1, BoHV4, BoHV6, BFV, BIV, and BLV DNA. The sensitivity of nested PCR and qPCR was determined using a serially 10-fold diluted vector pCR2.1HgB (2 × 10(0)-2 × 10(6)copies/reaction). In this testing, qPCR was more sensitive than the nested PCR, detecting two copies of BoHV6 whilst the limit of detection for nested PCR was 20 copies. In all qPCR assays, the coefficients of determination (R(2)) ranged between 0.990 and 0.999, and the calculated amplification efficiencies (Eff%) within the range of 89.7-106.9. The intra- and inter-assay CV (coefficient of variation) values did not exceed 4%. Copyright © 2013 Elsevier B.V. All rights reserved.
Kosasih, Agus Susanto; Sugiarto, Christine; Hayuanta, Hubertus Hosti; Juhaendi, Runingsih; Setiawan, Lyana
2017-08-08
Measurement of viral load in human immunodeficiency virus type 1 (HIV-1) infected patients is essential for the establishment of a therapeutic strategy. Several assays based on qPCR are available for the measurement of viral load; they differ in sample volume, technology applied, target gene, sensitivity and dynamic range. The Bioneer AccuPower® HIV-1 Quantitative RT-PCR is a novel commercial kit that has not been evaluated for its performance. This study aimed to evaluate the performance of the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit. In total, 288 EDTA plasma samples from the Dharmais Cancer Hospital were analyzed with the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit and the Roche COBAS? AmpliPrep/COBAS® TaqMan® HIV-1 version 2.0 (CAP/CTM v2.0). The performance of the Bioneer assay was then evaluated against the Roche CAP/CTM v2.0. Overall, there was good agreement between the two assays. The Bioneer assay showed significant linear correlation with CAP/CTM v2.0 (R2=0.963, p<0.001) for all samples (N=118) which were quantified by both assays, with high agreement (94.9%, 112/118) according to the Bland-Altman model. The mean difference between the quantitative values measured by Bioneer assay and CAP/CTM v2.0 was 0.11 Log10 IU/mL (SD=0.26). Based on these results, the Bioneer assay can be used to quantify HIV-1 RNA in clinical laboratories.
Inactivation conditions for human Norovirus measured by an in situ capture-qRT-PCR Method
USDA-ARS?s Scientific Manuscript database
Human noroviruses (HuNoVs) are the major cause of epidemic non-bacterial gastroenteritis. Due to the inability to cultivate HuNoVs, it has been a challenge to determine their infectivity. Quantitative real-time RT-PCR (qRT-PCR) is widely used in detecting HuNoVs. However, qRT-PCR only detects the...
Savasoglu, Kaan; Payzin, Kadriye Bahriye; Ozdemirkiran, Fusun; Berber, Belgin
2015-08-01
To determine the use of the Quantitative Real Time PCR (RQ-PCR) assay follow-up with Chronic Myeloid Leukemia (CML) patients. Cross-sectional observational. Izmir Ataturk Education and Research Hospital, Izmir, Turkey, from 2009 to 2013. Cytogenetic, FISH, RQ-PCR test results from 177 CMLpatients' materials selected between 2009 - 2013 years was set up for comparison analysis. Statistical analysis was performed to compare between FISH, karyotype and RQ-PCR results of the patients. Karyotyping and FISH specificity and sensitivity rates determined by ROC analysis compared with RQ-PCR results. Chi-square test was used to compare test failure rates. Sensitivity and specificity values were determined for karyotyping 17.6 - 98% (p=0.118, p > 0.05) and for FISH 22.5 - 96% (p=0.064, p > 0.05) respectively. FISH sensitivity was slightly higher than karyotyping but there was calculated a strong correlation between them (p < 0.001). RQ-PCR test failure rate did not correlate with other two tests (p > 0.05); however, karyotyping and FISH test failure rate was statistically significant (p < 0.001). Besides, the situation needed for karyotype analysis, RQ-PCR assay can be used alone in the follow-up of CMLdisease.
Longitudinal monitoring of bottlenose dolphins leukocyte cytokine mRNA responsiveness by qPCR
USDA-ARS?s Scientific Manuscript database
Both veterinarians caring for bottlenose dolphins (Tursiops truncatus) in managed populations and researchers monitoring wild populations use blood-based diagnostics to monitor bottlenose dolphin health. Quantitative PCR (qPCR) can be used to assess cytokine expression patterns of peripheral blood m...
Longitudinal monitoring of bottlenose dolphin leukocyte cytokine mRNA responsiveness by qPCR
USDA-ARS?s Scientific Manuscript database
Both veterinarians caring for bottlenose dolphins (Tursiops truncatus) in managed populations and researchers monitoring wild populations use blood-based diagnostics to monitor bottlenose dolphin health. Quantitative PCR (qPCR) can be used to assess cytokine expression patterns of peripheral blood m...
USDA-ARS?s Scientific Manuscript database
Identification of populations of Aspergillus section Nigri species in environmental samples using traditional methods is laborious and impractical for large numbers of samples. We developed species-specific primers and probes for quantitative droplet digital PCR (ddPCR) to improve sample throughput ...
Tran, Tuan M; Aghili, Amirali; Li, Shanping; Ongoiba, Aissata; Kayentao, Kassoum; Doumbo, Safiatou; Traore, Boubacar; Crompton, Peter D
2014-10-04
As public health efforts seek to eradicate malaria, there has been an emphasis on eliminating low-density parasite reservoirs in asymptomatic carriers. As such, diagnosing submicroscopic Plasmodium infections using PCR-based techniques has become important not only in clinical trials of malaria vaccines and therapeutics, but also in active malaria surveillance campaigns. However, PCR-based quantitative assays that rely on nucleic acid extracted from dried blood spots (DBS) have demonstrated lower sensitivity than assays that use cryopreserved whole blood as source material. The density of Plasmodium falciparum asexual parasites was quantified using genomic DNA extracted from dried blood spots (DBS) and the sensitivity of two approaches was compared: quantitative real-time PCR (qPCR) targeting the P. falciparum 18S ribosomal RNA gene, either with an initial conventional PCR amplification prior to qPCR (nested qPCR), or without an initial amplification (qPCR only). Parasite densities determined by nested qPCR, qPCR only, and light microscopy were compared. Nested qPCR results in 10-fold higher sensitivity (0.5 parasites/μl) when compared to qPCR only (five parasites/ul). Among microscopy-positive samples, parasite densities calculated by nested qPCR correlated strongly with microscopy for both asymptomatic (Pearson's r=0.58, P<0.001) and symptomatic (Pearson's r=0.70, P<0.0001) P. falciparum infections. Nested qPCR improves the sensitivity for the detection of P. falciparum blood-stage infection from clinical DBS samples. This approach may be useful for active malaria surveillance in areas where submicroscopic asymptomatic infections are prevalent.
Technique for quantitative RT-PCR analysis directly from single muscle fibers.
Wacker, Michael J; Tehel, Michelle M; Gallagher, Philip M
2008-07-01
The use of single-cell quantitative RT-PCR has greatly aided the study of gene expression in fields such as muscle physiology. For this study, we hypothesized that single muscle fibers from a biopsy can be placed directly into the reverse transcription buffer and that gene expression data can be obtained without having to first extract the RNA. To test this hypothesis, biopsies were taken from the vastus lateralis of five male subjects. Single muscle fibers were isolated and underwent RNA isolation (technique 1) or placed directly into reverse transcription buffer (technique 2). After cDNA conversion, individual fiber cDNA was pooled and quantitative PCR was performed using primer-probes for beta(2)-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, insulin-like growth factor I receptor, and glucose transporter subtype 4. The no RNA extraction method provided similar quantitative PCR data as that of the RNA extraction method. A third technique was also tested in which we used one-quarter of an individual fiber's cDNA for PCR (not pooled) and the average coefficient of variation between fibers was <8% (cycle threshold value) for all genes studied. The no RNA extraction technique was tested on isolated muscle fibers using a gene known to increase after exercise (pyruvate dehydrogenase kinase 4). We observed a 13.9-fold change in expression after resistance exercise, which is consistent with what has been previously observed. These results demonstrate a successful method for gene expression analysis directly from single muscle fibers.
Barber, L; Egan, J J; Lomax, J; Haider, Y; Yonan, N; Woodcock, A A; Turner, A J; Fox, A J
2000-08-01
Qualitative polymerase chain reaction (PCR) for the identification of cytomegalovirus (CMV) infection has a low predictive value for the identification of CMV pneumonia. This study prospectively evaluated the application of a quantitative PCR Enzyme-Linked Immuno-Sorbent Assay (ELISA) assay in 9 lung- and 18 heart-transplant recipients who did not receive ganciclovir prophylaxis. DNA was collected from peripheral blood polymorphonuclear leucocytes (PMNL) posttransplantation. Oligonucleotide primers for the glycoprotein B gene (149 bp) were used in a PCR ELISA assay using an internal standard for quantitation. CMV disease was defined as histological evidence of end organ damage. The median level CMV genome equivalents in patients with CMV disease was 2665/2 x 10(5) PMNL (range 1,200 to 61,606) compared to 100 x 10(5) PMNL (range 20 to 855) with infection but no CMV disease (p = 0.036). All patients with CMV disease had genome equivalents levels of >1200/2 x 10(5) PMNL. A cut-off level of 1,200 PMNL had a positive predictive value for CMV disease of 100% and a negative predictive value of 100%. The first detection of levels of CMV genome equivalents above a level of 1200/2 x 10(5) PMNL was at a median of 58 days (range 47 to 147) posttransplant. Quantitative PCR assays for the diagnosis of CMV infection may predict patients at risk of CMV disease and thereby direct preemptive treatment to high-risk patients.
Hoferer, Marc; Braun, Anne; Sting, Reinhard
2017-07-01
Standards are pivotal for pathogen quantification by real-time PCR (qPCR); however, the creation of a complete and universally applicable virus particle standard is challenging. In the present study a procedure based on purification of bovine herpes virus type 1 (BoHV-1) and subsequent quantification by transmission electron microscopy (TEM) is described. Accompanying quantitative quality controls of the TEM preparation procedure using qPCR yielded recovery rates of more than 95% of the BoHV-1 virus particles on the grid used for virus counting, which was attributed to pre-treatment of the grid with 5% bovine albumin. To compare the value of the new virus particle standard for use in qPCR, virus counter based quantification and established pure DNA standards represented by a plasmid and an oligonucleotide were included. It could be shown that the numbers of virus particles, plasmid and oligonucleotide equivalents were within one log10 range determined on the basis of standard curves indicating that different approaches provide comparable quantitative values. However, only virus particles represent a complete, universally applicable quantitative virus standard that meets the high requirements of an RNA and DNA virus gold standard. In contrast, standards based on pure DNA have to be considered as sub-standard due to limited applications. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Jin, Yang Oh; Mattes, Timothy E
2010-12-01
Vinyl chloride (VC) is a known human carcinogen that is primarily formed in groundwater via incomplete anaerobic dechlorination of chloroethenes. Aerobic, ethene-degrading bacteria (etheneotrophs), which are capable of both fortuitous and growth-linked VC oxidation, could be important in natural attenuation of VC plumes that escape anaerobic treatment. In this work, we developed a quantitative, real-time PCR (qPCR) assay for etheneotrophs in groundwater. We designed and tested degenerate qPCR primers for two functional genes involved in aerobic, growth-coupled VC- and ethene-oxidation (etnC and etnE). Primer specificity to these target genes was tested by comparison to nucleotide sequence databases, PCR analysis of template DNA extracted from isolates and environmental samples, and sequencing of qPCR products obtained from VC-contaminated groundwater. The assay was made quantitative by constructing standard curves (threshold cycle vs log gene copy number) with DNA amplified from Mycobacterium strain JS60, an etheneotrophic isolate. Analysis of groundwater samples from three different VC-contaminated sites revealed that etnC abundance ranged from 1.6 × 10(3) - 1.0 × 10(5) copies/L groundwater while etnE abundance ranged from 4.3 × 10(3) - 6.3 × 10(5) copies/L groundwater. Our data suggest this novel environmental measurement method will be useful for supporting VC bioremediation strategies, assisting in site closure, and conducting microbial ecology studies involving etheneotrophs.